
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
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1. Introduction

Under the 7th RTD Framework Programme of the European Commission,

several grant agreements (about 75) fall in the remit of the ICT Challenge

“Cognitive systems and robotics”. The phenomenon demonstrates the still

lively interest in artificial intelligence for the European scientific community.

In particular, such projects concern issues about endowing artificial systems

with cognitive capabilities including: recognition, reasoning and planning,

learning and adaptation. The term “cognitive capabilities” is used with good

justification to indicate skills that can make a robotic device able to control

its own actions. Simple cognitive capabilities like establishing and recognising

patterns are prerequisites for higher level operations like conceptualization,

reasoning, planning, intelligent control and complex goal-oriented behaviour.

Moreover, the trend outlined in Strategic Research Agenda (SRA) issued

by the European Robotics Platform in 2009, predicts that by 2020 robots

should be programmable by learning (e.g., from observation or imitation).

Such systems will operate in non-deterministic environments and will regu-

larly be confronted with novelty and change. In order to work robustly and

adaptively, they not only have to be able to extract information from their

environment but also to reason and learn about it [44].

To accomplish such features, the employment of automatic design proce-

dures is needed since such procedures can make the process more robust and

flexible with respect to a customised one.

In this work, we treat the automatic design process as a search problem
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identifying two main components: the model that represents the robot be-

haviour and the optimisation algorithm that shapes the model according to

specific requirements. Generally, the most commonly used model is the arti-

ficial neural network (ANN) which attempts to simulate either the structure

or functional aspects of the biological central nervous system. ANNs and

genetic regulatory networks in general, have interesting features like robust-

ness and flexibility typical of biological systems. For these reasons, ANNs are

used in the field of Evolutionary Robotics where the network is trained by

means of techniques inspired by the Darwinian evolution. However, because

of their complexity, it is impossible to analyse the solutions found and to

reverse-engineer them.

We can try to overcome the problem using a simpler model of genetic reg-

ulatory networks called Boolean network (BN). BNs have been introduced by

Stuart Kauffmann in 1969 in order to study the mechanisms of evolutionary

processes in nature. With their compactness and simplicity we can never-

theless obtain complex behaviour and, moreover, we can study their internal

dynamics.

The second element of the design process concerns the optimisation al-

gorithm. An appropriate choice can be a specific metaheuristic technique

which, exploring immense search spaces, can find a viable solution in a lim-

ited amount of time.

In this work, developed in collaboration with the Institut de Recherches

Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA)

of the Université Libre de Bruxelles, we apply the automatic methodologies

to a swarm of BN-controlled robots in order to obtain a specific collective

behaviour. Until this moment, the design in swarm robotics has been empir-

ical, tailored to the specific case. However, because of the growing interest

of the research in this field, a more formal methodology is needed in order

to engineer the design of such systems.

Our goal is to program a set of robots with same controllers, in such a way

that they collectively can decide a specific action to perform in accordance
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with the environment. The environmental features are distributed and this

make the communication necessary to accomplish the task.

The specific task concerns the recognition of two different patterns drawn

on the floor. The robots are placed in order to uniformly covering all the

peculiarities that emerge from the floor. Robots must reach a consensus only

using local communication and signaling their status through the LEDs.

At first, we validate the automatic design methodology on a given instance

of the problem; this is necessary for determining a suitable optimisation al-

gorithm and a good evaluation criterion for the swarm. Subsequently, the

methodology is applied on a simpler case to better investigate the factors

that can increase the performance.

The abstract scenario depicted in our work is only a simple example of

swarm robotics applications which, however, can provide a proof of concept

for more concrete applications (e.g., the exploration of hostile environments

such as oceans, Mars, human body, etc.).

The thesis is structured as follows:

In Chapter 2 we introduce the Boolean networks as model used for rep-

resenting the robot behaviour. We focus on their dynamics detailing also

the analysis of a special kind of BNs used in our experiments: the Random

Boolean Networks. Finally, we provide an overview of previous works about

BNs design.

In Chapter 3 we define the concept of Boolean Network Robotics relying

on the basics of general robotics. We depict the methodology in all its as-

pects and we report recent studies about this field.

Chapter 4 contains the description of the task highlighting the main

emerging aspects, the description of the chosen robots, environments and

initial conditions for each experiment. We also include a brief overview on

the research areas which partially deal the same issues.

In Chapter 5 we report a sequence of preliminary experiments discussing
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for each case the correlations between the achieved results and the chosen

experimental settings.

In Chapter 6 we simplify the problem for a deeper study of the swarm

behaviour. In particular, we focus our analysis on the exchanged communi-

cations among robots.

Finally, Chapter 7 draws some conclusions and gives an outlook for future

works.



2. Boolean Networks

In this chapter we define the Boolean networks as model to represent the

robot behaviour. After a brief introduction in Sec. 2.1, we discuss their

dynamics in Sec. 2.2 while in Sec. 2.3 we focus on a special kind of BN used

in our experiments: the Random Boolean Network. Section 2.4 reports a

brief of previous works on BNs design.

2.1 Introduction

Boolean Networks (BNs) have been introduced by Stuart Kauffman in 1969

[23] as a simplified model of genetic regulatory networks (GRN) and as an

abstraction of complex systems in order to study the mechanisms of evolu-

tionary processes in nature. Despite their simplicity, BNs are very important

because, for many systems, the on-off Boolean idealization is either accurate

or the best idealization of the nonlinear behaviour of the components in the

system [27].

BNs consist of binary variables, each with two possible states (1 or 0).

The variables are connected such that the activity of each element is gov-

erned by the prior activity of some elements according to a Boolean switching

function. The set of these variables is structured like a directed graph with N

nodes. Each node xi has K ingoing arcs and an associated Boolean variable.

The values of the variables are determined by the function fi = (x1, . . . , xK)
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X1

X2

X3

X2 OR X3

X1 AND X2

X1 NOR X3

Figure 2.1: An example of Boolean Network with N = 3 and K = 2.

where the arguments are the Boolean variable value of the nodes whose out-

going arcs are connected to i. A simple example of BN is showed in Fig. 2.1.

We call state of the BN the sequence of the Boolean variable values

s(t) = (x1(t), . . . , xN(t)) in a given instant of time t. Since a Boolean vari-

able can assume only two different values, the state space size is finite (2N)

and the dynamic behaviour is characterized by a sequence of state updates.

Furthermore, several kinds of update rules and dynamics have been pro-

posed [19] like synchronous (the Boolean variables are all updated at the

same time), asynchronous deterministic (variables do not change their states

all at the same moment, but some do it earlier than others) asynchronous

non-deterministic (not only the nodes do not march in step but these nodes

are non-deterministically updated) etc... The one we consider in this thesis

is synchronous with a deterministic nodes updating.

2.2 Boolean Network Dynamics

The state space of Boolean networks is discrete. Thus, it is possible to enu-

merate all the possible states of the network and study interesting dynamics



2.2 Boolean Network Dynamics 7

X1

X2

X3

X2 OR X3

X1 AND X2

X1 NOR X3

X1 X2 X3 X1 X2 X3

0 0 0 0 1 0

0 0 1 1 0 0

0 1 0 1 1 0

0 1 1 1 0 0

1 0 0 0 0 0

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 0 1

t t+1

Figure 2.2: The table describes the dynamics of the BN showing the successor of each

state.

using concepts such as state (or phase) space, trajectories, attractors and

basins of attraction [6].

Since the state space is finite and the dynamics are deterministic, the

state succession assumes this structure:

• When the BN starts its progress, the trajectory (i.e., the evolution of

the BN into the state space) is a succession in which each state is

different from all the previous ones. This sequence of different states

is called transient and the number of states of the transient is called

lenght of the transient. The transient can have length 0.

• Since the network dynamics are deterministic and the state space is

finite, eventually a sequence of states will be repeated. Such sequences

are named attractors of the BN and they can be classified in cyclic

attractors with period t > 1 or point attractors whether t = 1. Point

attractors are also known as fixed points. The set of states that leads

towards an attractor is named basin of attraction.
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X 1

X 2

X 3

AND

OR

OR

(a)

100

011110

101

111

001 010

000

(b)

Figure 2.3: The figure shows a simple Boolean network (a) with three attractors (b): 2

fixed point and 1 cyclic attractor.

In Fig. 2.3 is shown the state space of a simple Boolean network with N = 3

and K = 2. In particular, we can see that several states join to the same

successor state. According to the Boolean functions of each node and initial

conditions, the trajectory can converge into three different attractors. Two

of these are fixed points (the states 111 and 000 ) while the other one is a

cyclic attractor (states 001 and 010 ).

The attractors are very important because they house the stable be-

haviour of many complex systems. The remaining space in state space are

visited only along transients leading to such attractors. Dynamical systems

ranging from genomic cybernetic systems to immune systems, neural net-

works, organ systems, communities, and ecosystems all exhibit attractors

[27]. Thus, the characteristics of attractors in complex systems with hun-

dreds, thousands or millions of interacting elements are inevitably of basic

importance.
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2.3 Random Boolean Networks

Starting from the original definition of BN, many variants exist that dif-

fer according to dynamics and updating rules. The most studied are the

Random Boolean Networks (RBNs). RBNs have been used to model living

organisms to provide evidence over the hypothesis that such entities could

be constructed through processes that display some degree of randomness

rather than being precisely programmed [23]. Because of their peculiarities,

RBNs have been also used as models in many different areas, such as evolu-

tionary theory, mathematics, sociology, neural networks, robotics, and music

generation [19].

RBNs are a generalization of Boolean cellular automata (CA) [47], where

the state of each node is not affected necessarily by its neighbours, but po-

tentially by any node in the network. Differently from the general model pre-

sented in Sec. 2.1, RBNs presents randomly generated Boolean functions and

connections among nodes. If we try to imagine all possible networks, for each

node there will be 22K possible functions [21]. Each node has N !/(N −K)!

possible ordered combinations for K different links. Therefore all the possible

networks for given N and K will be:

(
22KN !

(N −K)!

)N

(2.1)

From Eq. 2.1 we can see that the space of networks increases exponen-

tially with the number of nodes N . Thus, the cardinality of such space is

very big also for small N values. However, general properties can be ex-

tracted from this huge universe of possible networks. Indeed, as well as in

many dynamical systems, it is possible to identify three dynamical regimes:

ordered, chaotic, and critical. A good way to visualize what happens would

be the plotting of the states of a network in a square lattice where the state

of a node depends topologically on its neighbours, and let the dynamics flow.
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Figure 2.4: Schematic view of the ordered, edge of chaos and chaotic regime in Boolean

networks with genes arranged on two-dimensional square lattice.

To show which states change and which ones are stable, we indicate chang-

ing states with white, and static ones with hatch marks (see Fig. 2.4). We

observe that:

• in the ordered phase, initially many states change, but quickly the

dynamics stabilise, and most of the nodes are static. At convergence,

what remains is a small number of white ”islands” of nodes changing

state surrounded by a striped ”sea” of static nodes.

• In the chaotic regime, most of the states change constantly, so the long-

term dynamics of the system converges on a white sea of nodes con-

stantly changing state dotted by a few striped islands of static nodes.

• In the critical regime, the dynamics of the system settles on a mid point

between the two previous regimes. Indeed, similarly to the chaotic

regime, the dynamics starts with a white sea of changing nodes is dotted

by striped islands of static nodes, but, as these islands join, they grow

in size so as to look like a sea, in which white islands appear. This

phase transition from the ordered to the chaotic regime is also known

as the edge of chaos.
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Given these regimes, it is possible to observe the stability of a network

after a perturbation (e.g., flipping the state of a node) and how the pertur-

bation spreads. In the ordered regime, usually the perturbation does not

spread. This is because changes cannot propagate from one green island to

another. In the chaotic phase, these small changes tend to propagate through

the network, making it highly sensitive to perturbations. Finally, for the edge

of chaos, changes can propagate, but not necessarily through all the network.

Order arises also as a result of forcing structures. Consider the Boolean

or function. This function asserts that, if at least one of the two input

nodes is active at a given moment, then the node state will be 1 at the next

network update. So, if a node input is constantly 1, the value of the other

input does not affect the state of the node. This kind of functions are called

Canalizing Boolean functions and their presence inside a network can force

the achievement of steady states.

Several RBN simulation experiments show that the networks with K ≤ 2

are in the ordered regime, and networks with K ≥ 3 are in the chaotic regime.

Furthermore, it is possible to identify analytically and statistically the crit-

ical line in the edge of chaos. Different solutions exist. One of these is the

Derrida annealed approximation [11] that measures the Hamming distance

of consecutive randomly chosen configuration of networks. In this way, it is

possible to find a relationship between K and p where p is a parameter called

homogeneity or bias. The Boolean function of a node can be represented by

a truth table in which a Boolean value is assigned to every combination of

input values. Homogeneity is defined as the probability p to have an truth

table entry with 0 as output value. Then, the critical line is defined by Eq.

2.2 and the related plot is showed in Fig. 2.5.

2p(1− p) = 1/K (2.2)

The importance of the complex regime, which represents the phase transi-

tion between order and chaos, is due to the fact that it combines the inherent
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Figure 2.5: Relationship between p and K in Derrida annealed approximation.

robustness of ordered regime and the flexibility of the chaotic one. Thinking

about living systems, they require certain stability to survive but also flexi-

bility to the environmental changes. This has lead people to argue that life

and computation occur more naturally at the edge of chaos [25].

2.4 Boolean Network Design

The emergence of interest in Boolean networks was motivated by the rapid

accumulation of genetic information and advancement of experimental tech-

niques, which led to studies on the engineering of artificial gene regulatory

networks and their respective models. Even if BNs derive from genetics, they

have also been studied as computational learning systems [34, 24, 12] and

proven capable of tackling hard problems [31]. Many analytical studies about

the properties and dynamics of BNs exist, but their synthesis has not been
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deeply studied. The first contribute in this direction is due to Kauffman and

Smith [26] where they proposed some issues that arise in applying Darwin’s

idea to the problem of designing adaptive automata. Subsequently, Lemke

et al. [28] investigate the adaptation of RBNs considering a general genetic

algorithm and a fitness function that takes into account the full network dy-

namical behaviour. Interesting inferences emerge related to the analysis of

the scenario that describes the adaptation on the proposed fitness landscape.

Some studies on the evolvability and robustness are conducted [2, 7, 13].

Szejka and Drossel in [45] focus on networks with canalizing functions where

the evolution is obtained with an adaptive walk. They found that in spite

of having a high degree of robustness, the evolved networks still share many

features with chaotic network. Fretter et al. [16] investigate the propaga-

tion of perturbations in Boolean networks by evaluating the Derrida plot

and modifications of it. They conclude that the simple distinction between

frozen, critical and chaotic networks is no longer useful, since such evolved

networks can display properties of all three types of networks. In addition,

Roli et al. [37] found some differences among the three kinds of networks.

They discuss the results of an experimental analysis in the design of Boolean

networks by means of genetic algorithms. The target of the evolution is to

find a network able to reach an attractor of a specific length. Initial popu-

lations composed of critical or chaotic networks are more likely to reach the

target. Moreover, the evolution starting from critical networks achieves the

best overall performance.
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3. Boolean Networks Robotics

This chapter first introduces the Boolean Network Robotics (Sec. 3.1) pro-

viding some basic concepts useful tu understand the reasons of interest for

this field. After, (Sec. 3.2) it describes in detail the methodology that un-

derlies the automatic design procedure. In Sec. 3.3 we report some recent

works that validate such methodology.

3.1 Basics

The very recent concept of Boolean Networks Robotics refers to the design

of robotic or multi-agent systems. To date, only a few preliminary studies

exist that focus on this problem [40, 18, 3, 39, 41, 38].

As in classical robotics, we consider two principal actors: the agent and

the environment where the agent acts. The agent (in its most general def-

inition) interacts with the environment using sensors and actuators. The

former ones are needed to sense the environment and the latter ones to act

in function of the goals and the sensed environmental information (see Fig.

3.1). A robot is a special kind of agent that operates inside the real world.

One of the hardest problems in the design of a behaviour for a robot is the

unpredictability of the real world, stemming from complex, non-linear phe-

nomena. In general, non-linear systems implies that we can no longer, as

we can with linear systems, decompose the systems into subsystems, solve
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Figure 3.1: Interaction between agent and environment.

each subsystem individually, and then reassemble them to give the complete

solution [35].

Thus, in real world scenarios, adaptation to constantly changing condi-

tions is often necessary, rendering rule-based strategies likely to fail. Darwin

suggested that adaptation and complexity could evolve by natural selection

acting successively on numerous small, heritable modifications [15]. That

said, the first proposal that Darwinian selection could generate efficient con-

trol systems can be attributed to Alan Turing in the 1950s. He asserted

that intelligent machines capable of adaptation and learning would be too

difficult to conceive by a human designer and could instead be obtained by

using an evolutionary process with mutations and selective reproduction [46].

The idea hinted by Alan Turing has been actually tried in a methodology

called evolutionary robotics. In this approach, genetic regulatory networks

can evolve to obtain the intended behaviour by means of a specific learning

process. BNs are extremely interesting because they are capable of producing

complex behaviours, notwithstanding the compactness of their description.

For this reason, we believe that BNs can effectively play the role of robot

programs [40].
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3.2 Methodology

The proposed approach consists in using BNs as robot controllers. In this

way, the robot behaviour can be described in terms of trajectories in a state

space, making it possible to design the robot program by directly exploiting

the dynamical characteristics of BNs, such as their attractors, basins of at-

traction and any dynamical property in general. For the design of BN robot,

several interrelated issues have to be tackled.

3.2.1 BN-Robot Coupling

The first issue is called coupling and concerns the mapping between sen-

sors and network inputs and between network outputs and actuators. Many

researchers treat BNs as isolated systems neglecting aspects of interactions

with an external environment. However, some important exceptions exist

[4, 12, 24, 34]. In our case, we divide the network in three specific sets of

nodes: input nodes, hidden nodes and output nodes. The input nodes are

nodes whose state is completely insensitive to the network dynamics (hence

the name) but updated by the sensors readings. Conversely, output nodes

are subjected to the network’s dynamics and their state is observed and used

as signal to trigger or adjust the robot’s actuators. All the remaining nodes

are hidden, i.e., they do not interact with the environment and we conjec-

ture that they could house processes related to memory and reasoning. The

output nodes’ states depend on such hidden nodes. The choice of which

nodes to use as input, output or hidden could be fixed a priori or updated

by means of a learning process. Fig. 3.2 shows the scheme of the coupling

between BN and robot. According to the type of sensor or actuator, the

mapping signal-state/state-signal can be one-to-one or obtained as result of

determined function (e.g., the output could correspond to the moving average

of the state values in time).
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Figure 3.2: Coupling Between BN and robot.

3.2.2 BN-Controller Design

Once the input and the output mappings are defined, we have two ways

to design the resulting Boolean network. The first way is to design a BN

such that its dynamics satisfy given requirements. For example, in corre-

spondence of attractors with largest basins of attraction the robot exhibit

high-level behaviours and the transitions between attractors would corre-

spond to transitions between behaviours. In this way, the robot is driven

by the dynamics of its Boolean network. The latter possibility consists in

modelling the BN design process as a search problem, in which the goal is

maximising the robot’s performance. These two ways are not alternative and

can be combined. For example, once the basic behaviour is obtained with the

latter approach, we can use the former one in order to improve the robot’s

behaviour [41].

We use a design methodology based on metaheuristics. In fact, the design

of a BN that satisfies given criteria can be modelled as a constrained combina-

torial optimisation problem by properly defining the set of decision variables,

constraints and a evaluation function for reward and punish according to the

network behaviour. This approach is illustrated by the scheme in Fig. 3.3. In

our work, the decision variables manipulated by the metaheuristic algorithm

correspond to the Boolean functions contained inside the nodes while the
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Boolean Network

metaheuristic

target

evaluator

Boolean
functions

objective function

value

simulation

requirements

Figure 3.3: Metaheuristics for BN Design.

network topology is fixed at the beginning and never changed. A complete

assignment of decision variables defines an instance of a BN. Subsequently,

this network is used as robot control code and evaluated according to the spe-

cific target requirements, either on its dynamics or on the robot’s behaviour,

or both. Since real robots are expensive and prone to fail while simulations

are faster to execute a large number of experiments, we prefer to use a mod-

ular, multi-engine simulator for heterogeneous swarm robotics called ARGoS

[36]. The simulation parameters are controlled in real time by a specific soft-

ware application which, in function of the values of such parameters, evaluate

the behaviour of the network. Thus, when the simulation ends, we have a

specific performance value that will be used by a metaheuristic algorithm.

The metaheuristic algorithm, in turn, proceeds with the search.

The metaheuristic algorithm chosen for this work is a Stochastic Local

Search method called Iterated Local Search (ILS) [30, 22]. Below, we find a

more detailed description of this algorithm.
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3.2.3 Iterated Local Search

As all the stochastic local search algorithms, the Iterated Local Search (ILS)

starts at some location of the search space, representing a possible solution,

and try to improve it by iteratively move from the present location to a neigh-

bouring location. For preventing iterative improvement from getting stuck in

local optima, the ILS essentially alternates two types of search steps: one for

reaching local optima as efficiently as possible, and the other for effectively

escaping from local optima. The landscape that contains these local optima

is defined by an objective function that, in our case, we want to maximize.

Alg. 1 shows an outline for ILS.

Usually, the search process can be initialised in various ways, In this work

we start from a randomly chosen network. For each evaluation, the network

starts from the same randomly chosen state. From this initial candidate so-

lution, a locally optimal solution is obtained by applying a subsidiary local

search procedure localSearch. Subsequently, each iteration of the algorithm

consists of three major stages: perturbation, local search and acceptance crite-

rion. These components need to complement each other for achieving a good

trade-off between intensification and diversification of the search process.

Perturbation a perturbation (perturb) is applied to the current candidate

solution s obtaining a modified candidate solution s′. The role of

perturb is to modify the current candidate solution in a way that will

not be immediately undone by the subsequent local search phase. This

helps the search process to escape from local optima, and the subse-

quent local search phase has more possibility to discover different local

optima. In our case, the perturbation consists in flipping a single bit

randomly chosen into the truth table of each node.

Local Search The next stage is the application of a subsidiary local search

localSearch until a local optimum s′′ is obtained. The local search

procedure has a significant influence on the performance of any ILS
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Algorithm 1 Iterated Local Search

1: input: a problem instance π′ ∈ Π′

2: s← init(π′)

3: s← localSearch(π′, s)

4: ŝ← s

5: while not terminate(π′, s) do

6: s′ ← perturb(π′, s)

7: s′′ ← localSearch(π′, s′)

8: if f(s′′) ≥ f(ŝ) then

9: ŝ← s′′

10: end if

11: s← accept(π′, s, s′′)

12: end while

13: if ŝ ∈ S ′ then

14: return ŝ

15: else

16: return ∅
17: end if

algorithm. Considering the simplicity of the model and the reduced

number of nodes, we believe it is sufficient to use a simple Stochastic

Descent (SD) method. Starting from an initial candidate solution, the

SD choose at random both a node of the BN and an entry in the

truth table of the Boolean function characterising such node. Then,

the value of such entry is flipped. If a given move does not lead to an

improvement (i.e., a greater or equal value of the objective function to

maximize), such move is retracted; otherwise, the move is accepted and

the modified BN becomes the new candidate solution.

Acceptance Criterion The acceptance criterion, accept, also has influence

on the behaviour and performance of ILS. A strong intensification of

the search is obtained if the better of the two solutions s and s′′ is
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always accepted. Conversely, if the new local optimum s′′ is always

accepted regardless of its solution quality, the behaviour of the resulting

ILS algorithm corresponds to a random walk in the space of the local

optima of the given evaluation function. For our work, we prefer to

choose s′′ if it is better than or equal to s. Here, for exploring more

of the search space, we accept also a new candidate solution which

performance is the same performance of the previous best solution.

3.3 Related Work

In this work we employed the automatic design methodology seen in Sec. 3.2

in order to synthesize BN-based programs for robots able to perform a given

task. Even though BN robotics is quite recent research field, it is important

to summarise recent work in this area in order to provide its motivations and

perspectives.

Below, we report a summary of the first three works in this direction

where are shown different ways to validate the methodology.

3.3.1 A Proof of Concept

The first contribution in Boolean network robotics comes from Manfroni [40].

In this work, the methodology has been validated by experiments on abstract

case studies (e.g., design of a BN whose trajectory must reach a given a target

state at least once within a certain temporal interval). In these cases, the

networks obtained by automatic design process tend to the critical regime,

that is the most interesting and studied one.

After the validation, the methodology is applied to two robotic tasks:

path following and phototaxis & antiphototaxis. In the former, the robot

selects its actions only on the basis of the current sensory inputs. In the
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second task, more difficult than the previous one, the robot needs to keep a

sort of internal memory to achieve the goal. The result attained show that

BN dynamics is suitable to produce complex behaviours notwithstanding the

simplicity of the model. However, this work provide only a proof of concept,

without focusing on statistical properties of the methodology, such as its

success rate on robotics case studies.

3.3.2 Improving the Search Method

Garattoni [18] tests the methodology directly on two simple robotic tasks:

phototaxis and obstacle avoidance. The robustness of the methodology is

proven by the good results obtained utilising only a simple stochastic tech-

nique i.e., the stochastic descent. Subsequently, he studies some properties

of the search landscape showing that the dynamical regime of the initial so-

lution can impact the performance of the search process. For instance, initial

solutions in chaotic regime cause a deterioration of the search performance.

Moreover, the choice of the number of nodes can be decisive for the perfor-

mance of the process. In general, a small search landscape make the search

easy, but it is crucial to consider also the required computational capacity for

the target task. Another aspect carried out in that work concerns the link

between the improvements during the training and the network properties.

He shows that relevant improvements in the search landscape correspond to

particular effects on the dynamics of the networks, as the number of states

visited. Finally, the methodology has been employed for a sequence learning

task, more complex due to the form of memory required to be performed. In

this case, the difficulty of the simple stochastic descent emerges in tackling

the task. He proposed different methods with features of search diversifi-

cation, such as the iterated local search and variable neighborhoods search.

From the analysis on the results obtained it is possible to achieve a good

trade-off between intensification and diversification.
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3.3.3 State Space Analysis

The method is validated also in the work by Amaducci [3], experimenting the

obstacle avoidance and the phototaxis task but the focus of the work is on

the state space structure of the resulting networks. His studies show that the

networks tend to use a low portion of state space to achieve the target task.

In particular, he focuses attention on the relationship between the number

of used states and the quality of results. For example, in the ordered regime,

where the number of used states is lowest, he obtains better results compared

with the chaotic regime in which the number is highest. Furthermore, from

the analysis of the the state distribution during the design process, it emerges

that the number of states is subjected to an exploration phase (i.e., where

the number of visited states increases) and exploitation (i.e., states decrease).

He calls this phenomenom states compression mechanism. The results have

been confirmed with networks of different size. Subsequently, he plots the

entire state space structures showing that the network’s knowledge stored

within the state space is organized in hierarchies that increase the stability

and reliability of the network. From this analysis he states that such large

amount of information can not be extracted just by studying attractors.

The same studies are conducted on the sequence learning task where

the robot is required to keep an internal memory to achieve a given goal.

In this case, he observes a different behaviour in the state space, probably

due to the memory requirements to perform the task. The network realizes

memory by duplicating some portion of its state space and placing it in the

right position of the hierarchy. This mechanism is realized by the states

reuse together with the state space compression and duplication. Finally,

he demonstrates that, independently of the nature of the task, the network

behaviour can be represented by a finite states automaton.
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Starting from the outcomes reached in the previous BN-Robotics works

[40, 18, 3], we now define new objectives to push the limits of this research.

The most important scientific question we want to address is: what happens

inside a system consisting of many BN-controlled robots interacting with each

other? This question is very important, because it moves towards new unex-

plored research areas, such as the interaction among Boolean networks and

new design techniques for swarm robotics. Swarm robotics is an important

application area for swarm intelligence. This concept refers to the emergent

collective intelligence of groups of simple autonomous agents, in particular,

autonomous robots [29]. An autonomous robot is viewed as a system that

acts independently on its environment interacting with other robots around

it. The peculiarity is that an autonomous robot does not follow commands

from a leader [14]. With a swarm of robots we can achieve some tasks that

would be impossible for a single entity.

As we saw in Chapter 3, a methodology exists in order to automatically

design the behaviour of a single robot. The goal of this work is to verify

if such methodology works when applied to a set of interacting robots. In

doing this, we need to define a specific task where collaboration is necessary.

In Sec. 4.1 we introduce the requirements chosen for such task, in Sec. 4.2

we describe in detail all its parts and in Sec. 4.3 we report some similar work

from the field of distributed computation.
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4.1 Task Requirements

The task that we want to consider needs distributed computation and sim-

plicity.

Distributed computation is realized by distributed systems which consist

of multiple autonomous computational entities that communicate through a

network for achieving a common goal. The distributed computation takes

place to solve large computational problems which are too demanding for a

single computational unit. Moreover, the information needed to achieve a

common goal could also be distributed among the nodes of the network. Ac-

cording to the swarm robotics definition, for our task we use a set of robots

with simple computational capabilities. Such robots can only exchange their

limited perceptions with the neighbourhood. The goal is to recognize a cer-

tain environment, whose characteristics can not be fully collected by local

perceptions of a single robot. Here, it is necessary that each robot commu-

nicates its local information until a consensus is reached.

Simplicity is a key issue when, as in our case, we do not have full knowl-

edge of the systems that we want to use. Indeed, although recent studies have

provided the tools to analyze the internal dynamics of Boolean networks, such

systems are yet partially unknown and many aspects are still unexplored. For

this reason, we use simple BN with a small number of nodes. Furthermore,

we employ such networks into simplified environments where the noise com-

ponent does not exist. In these conditions, the computational complexity is

reduced and it is possible to execute a large number of experiments. This

means that we can test the networks on a considerable amount of cases in

order to obtain a complete and thorough picture of the network behaviour.

4.2 Description

The task on which we want to validate the methodology consists of a swarm

of robots that communicate locally among them trying to recognize two dif-
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ferent floor patterns. Each robot can only sense the portion of floor below

itself and then send this information into the environment. Each robot, both

transmitter and receiver, perceives the information of the closest robot from

each cardinal point so that is also potentially able to understand what comes

from where (e.g., the northern robot perceives black floor, the southern one

a white floor, etc...). Each robot is equipped with LEDs which can be per-

ceived from an external observer. The goal is to design controllers able to

keep off all the LEDs of the entire swarm if the robots are placed on a certain

floor and turn on all the LEDs whether the swarm is located on the other

one.

Below, we report a more detailed description of the robots used for this

task, in particular the mapping between BN network and controller. Subse-

quently, we report a description of the floor patterns and of different initial

conditions on which we train the network.

4.2.1 Robots

The robot used for our experiments is called E-puck and it is showed in Fig.

4.1(a). The E-puck is a simple robot designed for educational and research

purposes. The full access to knowledge at every level of this robot improves

both the quality of the support to the students and the diffusion in the

research community [33].

A standard E-puck is equipped with several sensors and actuators but

only a small part of them is necessary for our issues. Moreover, we integrate

the robot structure with an open hardware/software board called E-puck

Range & Bearing that enables the robots to communicate and at the same

time obtain the range and bearing of the source of emission. Now we describe

the utilized sensors and actuators.
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(a) (b)

Figure 4.1: The E-puck robot (a) and the Range & Bearing (b).

E-puck Range & Bearing

The E-puck Range & Bearing board (RAB) (Figure 4.1(b)) was designed to

increase some communication features needed into a multi-robot scenario.

In particular, the board permits high communication range and speed, auto-

matic managing of modulation and demodulation and different communicat-

ing sensors that work in parallel [20]. To communicate, the board includes

12 sets of IR emission/reception modules. Each of these modules is equipped

with one infrared emitting diode, one infrared modulated receiver and one

infrared photodiode. The modules are uniformly distributed on the perime-

ter of the board (Figure 4.2).

With the RAB it is possible to transmit a 16 bits data frame. The

robots which receive the frame can also simultaneously calculate the dis-

tance (range) and orientation (bearing) to the emitter robot. It is also able

to receive and transmit data from/to different directions at the same time

and simultaneously identifying the location of several sources of emission.

Therefore, the range of transmission is parameterized from 0 cm to 80 cm.

In this way, one can tune the communication range according to the exper-

iment needs. For instance, in our experiments we set always the maximum
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Figure 4.2: (a) Emitters and (b) receivers distribution around the perimeter of the RAB.

range in order to be sure that each robot can sense at least a neighbour.

Ground Sensors

The ground sensors (GS) are composed of three active IR proximity sensors

placed in the front of the e-puck pointing directly at the ground [9]. These

sensor elements are mounted on a small printed circuit board (PCB) which

includes a microcontroller that continually samples the IR sensor elements.

Each IR sensor consists of an IR-emitting diode and a phototransistor. The

IR diode is used to emit a constant amount of infrared beam while the pho-

totransistor detects the amount of signal reflected by the surface. A white

surface reflects much more IR signal than a black surface. The e-puck Ground

Sensors can be used for several different applications. In our case, we employ

the sensor simply to understand whether the surface below the robot is black

or white.

LEDs

The E-puck is equipped by eight red light emitting diodes (LEDs) placed all

around the robot. These LEDs are covered by a translucent plastic and it is

possible to modulate their intensities. In our task, the LEDs are used as a

visual interface for the user to evaluate the correct behaviour of the robot.



30 Task Description

(a) (b)

Figure 4.3: In (a) is showed a close-up view of the e-puck Ground Sensors module while

in (b) the E-puck with LEDs on.

BN Coupling

Given the requirements in Sec. 4.1, for our experiments we use networks with

a small number of nodes and links. In particular, we think that 20 nodes

are sufficient to fulfill the task. Therefore, we set the number of ingoing arcs

K = 3. In this way, changing only the homogeneity p (i.e., considering the

truth table of a node, the probability to have an entry with 0 as output value

is equal to p), it is possible to obtain networks for all the dynamical regimes

(ordered, critic and chaotic; see Sec. 2.3). The networks are randomly gen-

erated by a software application.

In order to obtain the mapping with sensors and actuators, we need to

divide the nodes in three sets (input, hidden and output nodes). If we assign

an index for all the 20 nodes of the networks, we can obtain the following

mapping:

• nodes from 1 to 9: ground sensors and RAB (input nodes);

• node 10: LEDs (output node);

• nodes from 11 to 20: hidden nodes.
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Node id Sensor

1 GS sensing

2,3 RAB sensing from north

4,5 RAB sensing from east

6,7 RAB sensing from south

8,9 RAB sensing from west

Table 4.1: Mapping between the robot sensors and the input nodes. We use 1 node for

the GS and 8 nodes for the RAB: 2 nodes for direction.

In Tab. 4.1 it is showed the mapping between input nodes and sensors. Here,

we use a single node for representing the ground sensor information and 8

nodes to express the information of range and bearing.

If the colour sensed from the floor is white, the state of the node with

index 1 is 0 otherwise, if the colour is black, such state is 1. We use 8

nodes for the RAB since we want to group the neighbourhood information

by cardinal points (North, South, West and East). As shown in Fig. 4.4, we

define a range for each cardinal point. In this way, we associate a direction

for each signal received in function of its angle. In Tab. 4.2 we can see that

the information is composed by two nodes for cardinal point. Such double

information is needed since we consider the hypothesis that there could not

be neighbours in a certain direction. Indeed, the node with index i indicates

whether a neighbour exists while the other node with index i + 1 specifies

the kind of information (i.e., the colour of the floor). If we want to give a

rational behaviour to the network on the basis of such coding, the node i

should inhibit the information of node i+ 1. In the case that there are more

neighbours, we consider only the information from the nearest.

Finally, the state of the node 10 manages the LEDs. In particular, if the

state is 1 the LEDs are turned on, otherwise, the LEDs are turned off.
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Figure 4.4: E-puck with RAB perceptions by cardinal points. The arrow indicates the

front of the E-puck. The dashed lines identify the range for each cardinal points. According

to the simulator, the angles are in radians increasing in an anticlockwise direction within

the range [−π, π].

4.2.2 Environment

The environments employed for the task are simple bidimensional textures

that define the floors where the robots are placed. As showed in Fig. 4.5,

we use two kinds of floor. The former is a black-white tetromino composed

of four quadrants of alternating colour (like a simplified chessboard) while

the latter is a white floor with a black circle in the centre (like the Japanese

flag).

The chessboard texture is axially symmetrical while the Japanese flag is

also radially symmetric. The presence of such symmetries combined with a

uniform robot distribution prevents the creation of positional bias. Namely,

wherever the robots are placed, we always obtain the same quality of spatial

information.
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xi xi+1 Description

0 x no neighbours

1 0 neighbour exists and perceives white

1 1 neighbour exists and perceives black

Table 4.2: Coding of the values for each couple of nodes (xi, xi+1) driven by the RAB.

When the node xi is 0 there is no neighbours.

(a) (b)

Figure 4.5: The patterns chosen for the recognition task. In (a) is showed the chessboard

floor while in (b) the Japanese flag floor.

4.2.3 Initial Conditions

Our goal is to obtain BN controllers that permit to the swarm the recognition

of the floors regardless the position and orientation of the robots. To do that,

a training process that evaluate the network on multiple initial conditions

is necessary. Such initial conditions differ by distribution and orientation.

Indeed, if we evaluate the network on a single distribution, we obtain a too

specialized behaviour that might not work if robots change position. Thus,

the higher the number of initial conditions, the more general the behaviour

of the network obtained at the end of the process.
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Robot Placement

Both the floors have texture composed by only two colours. In order to avoid

bias, we should not prefer an information over the other one i.e., it is impor-

tant to have the same amount of robots placed on both colours.

In order to uniformly distribute the robots, we use the Diffusion Algo-

rithm. Such algorithm simulates the behaviour of gas molecules which, col-

liding with each other, moving and uniformly cover the surrounding environ-

ment. Thus, we realise a simple secondary task where the swarm moves on a

generic arena implementing the diffusion algorithm. The arena has same size

as that defined for the original task. After an initial transient, we sample

periodically the position of each robot. In this way, we obtain a series of

different distributions of robots that we use as different initial conditions for

the evaluation.

4.3 Distributed Computation

From this work, thematics emerge such as self-organization and pattern clas-

sification. We can easily find studies about them in the literature. However,

it does not exist yet a work where such issues are treated for a swarm of

BN-controlled robots. Below, we report an overview of two specific research

areas that, taken together, slightly approach our issues: the sensors networks

and cellular automata.

4.3.1 Sensors Networks

Sensor Network (SN) consist of a large number of cheap, smart devices with

multiple on-board sensors, networked through wireless links and the Internet.

SNs provide unprecedented opportunities for instrumenting and controlling
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homes, cities, and the environment [10]. Sensor networks may have many

different types of sensors [1] such as seismic, low sampling rate magnetic,

thermal, visual, infrared, acoustic and radar, which are able to monitor a

wide variety of ambient conditions that include:

• temperature,

• humidity,

• vehicular,

• movement,

• lighting condition,

• pressure,

• noise levels,

• the presence or absence of certain kinds of objects,

• mechanical stress levels on attached objects, and the current charac-

teristics such as speed, direction, and size of an object.

In this field, the more interesting issue concerns the extension of the au-

tonomy of the sensors constituting the network. To this end, it is important

to conserve energy and to give up performance in other aspects of the op-

eration such as QoS and bandwidth utilization [43]. Thus, it is crucial to

find a good protocol for exchanging information with a good trade-off among

energy saving and QoS.

A remarkable work is [8] where is deeply described how a SN can solve

the distributed classification problem. They consider the tracking and the

classification of a target that crosses the sensor network. Each object in the

sensor field generates a time-varying spatial signature field that is sensed



36 Task Description

using multiple modalities. The classification is obtained by sampling the tar-

get’s signals over time and analyzing the corresponding time series.

There are two ways to achieve the classification: fusing data or fusing de-

cision. In both cases, there are some master nodes, different from the others,

that collect all data/decision to compute the final result. In general, we can

assert that the SN protocols assign roles to the network’s components. This

aspect is further confirmed in [5] and [10] where they sustain that SNs have

many similarities with multi-agent systems technology.

4.3.2 Cellular Automata

In the field of sensor networks the main issues concern the processing of sig-

nals coming from the real world and the autonomy of the physical devices.

Differently, a cellular automaton (CA) is a decentralized computing theoreti-

cal model principally studied to provide an excellent platform for performing

complex computation with the help of only local information. More pre-

cisely, we have a simple model of a spatially extended (in a certain number

of dimensions) decentralized system made up of a number of individual com-

ponents called cells [17]. The communication between cells is limited to local

interaction. Each individual cell is in a specific state which changes over time

depending on the states of its local neighbours. The overall structure can be

viewed as a parallel processing device. This simple structure when iterated

several times produces complex patterns displaying the potential to simulate

different sophisticated natural phenomena. In order to enable the CA to

reach a given computational goal, the researchers should be able to predict

the global behaviour from the local CA rules. If this was possible, one should

be able to design the local rules/initial conditions from a given prescribed

global behaviour. The only general method to determine the qualitative (av-

erage) dynamics of the system is to run simulations on a computer for various

initial global configurations.
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The inverse problem of deducing the local rules from a given global be-

haviour is extremely difficult. There have been some efforts, with limited suc-

cess, to build the attractor basin according to a given design specifications.

However, the most popular methodologies to address the inverse problem

of mapping the global behaviour to local CA rules are based on evolution-

ary computation techniques. One of these attempts is [32] where a genetic

algorithm (GA) is used to evolve CAs for two computational tasks: density

classification and synchronization. In both cases, the GA finds rules that give

rise to sophisticated emergent computational strategies. For understanding

how this individual works, they use a general method for reconstructing

the intrinsic computation. This method is called computational mechanics

framework and decomposes the behaviour in regular domains, particles and

particle interactions.

Considering the focus of our work, an interesting study is described in

[42] where the main goal is to understand under which conditions a given set

of interacting Boolean networks can be found in the same attractor. This

work is interesting because each cell is a random Boolean network that shares

some nodes with its neighbourhood. The value of these shared nodes is de-

termined by interaction functions which consider the shared nodes of neigh-

bouring cells. Each cell has the same structure and is driven by the same

interaction function. In these conditions, the CA evolves in discrete time.

Several experiments are launched with different initial condition, number of

shared nodes and different interaction functions. In order to measure the

influence of interaction on the degree of order, they define some variables

as a function of the presence of attractors into the CAs. In this way, it is

possible to classify the CAs in four classes on the basis of their response as

a function of the interaction strength. Moreover, analysing the values of the

variable called average attractor period (AMP) it is possible to understand

which class contains a certain CA. Although the phenomena observed are

complicated, they can provide insights to determine new ways to study the

interaction of random boolean networks.
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5. Preliminary Experiments

In this Chapter we report the sequence of preliminary experiments on which

we have validated the methodology. Sec. 5.1 describes the initial experimen-

tal settings such as the optimisation algorithm, the initial conditions, the

number of iterations and the sets of networks. Section 5.2 shows the results

using a simple stochastic descent method. Sec. 5.3 and Sec. 5.4 report the

experiments using the iterated local search method according two different

objective functions. In Section 5.5 we define a more sophisticated objective

function and we draw some considerations applying it on two cases of output

nodes encoding. Finally, Sec. 5.6 reports the results of experiments setted

by the previous considerations.

5.1 Initial Setting

We have launched 90 experiments with the following configuration:

Number of trials: 30

Iterations: 10000

Number of E-pucks: 20

For each experiment we have 20 E-pucks with the same initial Boolean

network as controller. The networks are generated at random but according

to the following features:
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• A total of 20 nodes;

• 9 input nodes: 1 node connected to the ground sensor, 8 nodes con-

nected to the range and bearing sensor;

• 1 output node to set the LEDs ON or OFF;

• Every input node is connected at least to a hidden node;

• Every hidden and output node has 3 ingoing connections (K = 3).

The networks used for the experiments can be grouped in three batches

with different homogeneity p (i.e., considering the truth table of a node, the

probability to have an entry with 0 as output value is equal to p).

• 30 initial networks with p = 0.5

• 30 initial networks with p = 0.788675

• 30 initial networks with p = 0.85

Such homogeneity values statistically correspond to chaotic, critical and

ordered regime (see Sec. 2.3). For each experiment, the robots have the same

network with identical initial state randomly generated.

We call trial a specific initial condition where the swarm of robots will be

simulated and evaluated. For each trial, every E-puck has a given position

and orientation. The criteria for assigning the positions and orientations are

widely described in Sec. 4.2.3. Each step of the training process evaluate

the simulation on 30 trials. In the first fifteen, the robots are placed on a

black-white tetromino floor while in the other ones we have the Japanese flag

floor.

To ensure a correct comparison on the two patterns, we set the same

positions and orientations for both sets of trials (i.e., let N the number of
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trials, the trial 1 has the same robot distribution and orientations of trial

N/2). The only thing that changes is the floor texture.

For each trial, the optimisation algorithm executes the simulation for

10000 times with these parameters:

Length: 20 (simulated seconds)

Ticks per second: 10

Random seed: 312

For the description of the robots’ behaviour during the simulation, you

can trace back to the Section 4.2. Let T the number of the simulation time

steps and x(t)i the behaviour of the epuck i at the time t, we consider the

performance Pn,k of a network n on a certain trial k as the number of correct

behaviours at the last time step t = T (Eq. 5.1).

Pn,k =


∑N

i=1 x(t)i t = T

0 otherwise

, x(t)i =

1 led is correct

0 otherwise
(5.1)

Sorting in descending order all the network performances for K trials, we

obtain the distribution DK

DK = {Pn,1, . . . , Pn,K} (5.2)

In this first setting, we define an evaluation function E(1) as the median

value of the distribution DK . The objective function to maximize F (1) is

simply equal to E(1).

E(1) = Pn,K
2
+1 , F (1) = max E(1) (5.3)

In the section below, we try to optimize the networks using a simple

stochastic descent method (Sec. 3.2.3).
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5.2 First Step: Stochastic Descent Results

At first glance, the results are not very satisfactory. In Fig. 5.1 we can see

two graphs. The first one (Fig. 5.1(a)) shows the boxplot of performance

values for each job. Boxplot is a convenient way of graphically depicting

groups of numerical data. The spacings between the different parts of the

box help indicate the degree of dispersion (spread) and skewness in the data.

The bottom and top of the box are always the 25th and 75th percentile (the

lower and upper quartiles, respectively), and the band in the middle of the

box is always the 50th percentile (the median). The ends of the whiskers

can represent several possible alternative values. In our case, the minimum

and maximum of all the data. Any data not included between the whiskers

are plotted as an outlier with a small circle. In this case, we note that the

median value is fairly low (14 on a maximum value of 20) even if some job

gets the value 15.

The second graph (Fig. 5.1(b)) is a histogram of the first iteration with

the best performance value for each job. Here, we can see that most of the

jobs reach the best value before 2000 iterations of the optimisation algorithm.

This suggests that an increase in the number of iterations is not necessary,

but rather, we need a better algorithm.

Finally, in the boxplot of Fig. 5.2 the values are divided by trial and

related to the last iteration with the best value reached. Considering only the

median values, we note that the second pattern (”Japanese flag”) is better

recognized by the swarm and the variance also is smaller.

5.3 Second Step: Iterated Local Search

On the basis of previous results we can conclude that the Stochastic Descent

algorithm is too weak to obtain a satisfactory result. We will try with the

Iterated Local Search algorithm (Sec. 3.2.3) with the Stochastic Descent
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Figure 5.1: (a) shows the boxplot of the best value of each job. (b) is a histogram that

indicates the frequency of achieving best value as a function of iterations.

logic wrapped inside. In this scenario, we have two levels of perturbation

that we call ILS perturbation and SD perturbation. The SD perturbation

takes place inside the Stochastic Descent algorithm contained within the ILS

body. This perturbation flips a bit of a boolean network’s node chosen at

random. Differently, the ILS perturbation flips a bit chosen at random for

each boolean network node (input nodes excluded). Thus, we launch the

experiments with the parameters below:

Number of trials: 30

Iterations: 20

SD Iterations: 500

Number of E-pucks: 20

Where Iterations and SD Iterations are respectively the iterations of the

ILS algorithm and the iterations of the Stochastic Descent within it. The

total number of SD iterations is 10000; like the previous case.
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Figure 5.2: In this graph we have the performance distribution for each trial. The first

half of boxplot relates to the chessboard, the second half to the Japanese flag.

5.3.1 Results

By looking at Fig. 5.3(a), a slight improvement could be observed with

respect to the previous algorithm. The boxplot’s shape is the same but we

have a outlier in 16. From Fig. 5.3(b) we have almost the same situation

seen before (most of the job reaches the best value before 1000 SD iterations,

i.e., before the 5th ILS iteration).

The performance values showed in Fig. 5.4 refer to the best SD iteration

contained within the best ILS iteration. In this case, the first half of the

trials (first pattern) has lower average values than the previous case and the

second half values are slightly higher. This is due to the use of a rather

myopic objective function. As saw in Eq. 5.3 , we consider only the median

value from the performance distribution on 30 trials forcing the evolution to

improve only this feature. Since the median provides only discrete values, it
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Figure 5.3: (a) shows the boxplot of the best values of each job. (b) shows when the

best performance value is reached. The Iterations-axis refers to the ILS iterations.

seems that it is not a good heuristic search for this problem. Thus, we try

with the average which is continuous and more sensitive to the bound values.

5.4 Third Step: Iterated Local Search with

Average as Objective Function

To face this problem we run another batch of experiments with the same

setting seen before:

Number of trials: 30

Iterations: 20

SD Iterations: 500

Number of E-pucks: 20
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Figure 5.4: In this graph we have the performance distribution for each trial. These

values result from the last SD iteration with the best value contained within the last ILS

iteration with the best value.

We define a new evaluation function E(2) as the average number of correct

behaviours (LEDs on/off) on the trial distribution DK (Eq. 5.2). In this way,

we take into account more of the overall network goodness. The objective

function F (2) is the same as in the previous case.

E(2) =
1

K

K∑
k=1

Pn,k , F (2) = max E(2) (5.4)

5.4.1 Results

The boxplot in Fig. 5.5(a) shows a distribution of values worse than in

the previous results. However, we can observe that the distribution is more
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Figure 5.5: The boxplot in (a) shows worse results than previous case while in (b) is

possible to see a landscape with many flourishing areas.

compact. Also in Fig. 5.6 is showed that.

An interesting observation comes from Fig. 5.5(b).The histogram shows

that there is a non negligible fraction of experiments which attain the best

value at 10-15 iterations of ILS. ILS exploits most of the available iterations.

We could then conclude that the objective function E(2) enables the search

process to perform a wider exploration than in the previous cases.

5.5 Fourth Step: Objective Function H

Till this moment, the evaluation has taken place only at the last time step

(see Eq. 5.1). By analysing the simulation, we observe that a cyclical LEDs

behaviour emerges. This makes us conjecture that an evaluation based on

a single time step can be rather noisy. Indeed, the behaviour at the last

considered time step can be completely different from the other nearby steps.
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Figure 5.6: Even if the values are lower, we can see the emergence of more compactness

among patterns.

More precisely, we could well reward a network which however does not reach

a fixed-point attractor.

Thus, we need to direct the network evolution towards a higher stability.

As shown in Eq. 5.5, we extend the evaluation x along the last t time steps.

p(t)i =


x(t)i t > T − t

0 otherwise

, x(t)i =

1 led is correct

0 otherwise
(5.5)

Let p(t)i the performance of the epuck i at step t, we can define Pn,k the

performance of the network n on the trial k (Eq. 5.6).

Pn,k =
1

N

N∑
i=1

1

t

t∑
j=1

p(j)i (5.6)
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Where N is the number of robots and t is the time window length. The

result is normalized according to N . In this way, the networks’ score will be

as high as the number of correct behaviours maintained over t by each robot.

Let DK the sorted (in descending order) performance distribution seen in

Eq. 5.2, we define E the evaluation function on the distribution DK . In Eq.

5.7, we summarise two possibilities tried in the previous steps.

E(1) = Pn,K
2
+1 , E(2) =

1

K

K∑
k=1

Pn,k (5.7)

In this level of evaluation we can add a compactness function c to reward

the networks with smaller variance on the distribution.

c =
1

K

K∑
k=1

[
max
DK

−Pn,k

]
(5.8)

Here, we calculate the average distance from the maximum value of the

distribution DK normalised on the number of trials K. In order to combine

this function, which is to be maximised, with the previous ones, which is to

be minimised, we introduce a variant, called C (Eq. 5.9).

C = 1− 1

K

K∑
k=1

[
max
DK

−Pn,k

]
(5.9)

The combined objective function H is defined as follows:

H = max (αE + (1− α)C) α ∈ [0, 1] (5.10)

The scalar α make it possible to modify the weights of the evaluation

during the training process. For instance, in the first half of the process we

could prefer the definition of networks with good performance and only in the

second half we could tune α in order to increase the importance of compact

results.
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5.5.1 Two Different Batches of Experiments

This time we launch two new batches of 90 experiments with the Iterated

Local Search algorithm. Both batches have E(2) as evaluation function (the

average value on the distribution). Furthermore, we try to increase the num-

ber of ILS iteration to enable a larger exploration of the landscape. Below

the setting in detail:

Number of trials: 30

Iterations: 30

SD Iterations: 500

Number of E-pucks: 20

Objective Function: H , (E = E(2), α = 0.8)

For the moment, we maintain the same value for α in all the ILS iterations.

The only difference between the two batches is the epuck’s LEDs actuator.

In the first batch, like the previous cases, the LEDs are directly controlled by

the BN output nodes for each step. In the second one, in order to obtain a

binary value for the LEDs state, we compare the moving average (MA) of the

output node’s value over time with a threshold. We consider values inside a

time window no larger than 9 time steps (Alg. 2). This method permit us

to reduce the network’s oscillation and we move further to the stability.

As shown in Alg. 2 the output node’s state at step j (sj) is always 0 or

1. So, when the value of MA is greater than 0.5 it means that the amount

of 1-values into the buffer S is greater than the 0-values (vice versa with

MA < 0.5 ). When MA = 0.5 we have the same amount of 1s and 0s. In

this case, we choose at random the value for the LEDs.
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Algorithm 2 Moving Average for Controlling the LEDs actuator

1: input: the output node buffer S, the current output node sj

2: for all time steps j do

3: if dim(S) = 9 then

4: erase first element(S)

5: push back(S, sj)

6: else

7: push back(S, sj)

8: end if

9: MA← 1
dim(S)

∑dim(S)
j=1 sj

10: if MA = 0.5 then

11: LEDs← take element at random(S)

12: else if MA > 0.5 then

13: LEDs← 1

14: else

15: LEDs← 0

16: end if

17: return LEDs

18: end for

5.5.2 Results

Since both batches produce almost the same results, we illustrate only the

graphs from the MA batch (i.e., the batch where the robots’ LEDs are driven

by the moving average of at most 9 output elements, Fig. 5.7). Let 1 be the

objective function value that corresponds to a perfect network behaviour for

all the trials; in Fig. 5.7(a) we obtain a best value greater than 0.7 and a

worst value around 0.5. This proves the compactness of the final results even

if it is still a bit away from the optimum. An interesting trend emerges from

Fig. 5.7(b) where, except for few cases, all the trials have a good median

value (over 0.6). Trials with indexes 3,4,6 and 10 seem to be difficult to be

recognized while trial 1 is the one which obtains the highest average score.



52 Preliminary Experiments
0.

60
0.

65
0.

70

Best Value for each job

O
bj

 F
un

ct
io

n

(a)

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●

●

●

●●●

●●
●
●
●

●●●

●●●

●●●

●●

●

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.
2

0.
4

0.
6

0.
8

Values for each trial, for each job

Trial

E
va

lu
at

io
n 

F
un

ct
io

n

(b)

Figure 5.7: Two graphs related to the batch with the buffered controllers (MA). In (a)

we note a distribution compact with little variance but that never reach the optimum. In

(b) some trial deviates from the general trend.

5.6 Fifth Step: Tuning Parameters

From the previous results, we can conclude that the buffered controller MA

do not provide relevant improvements. Moreover, since the value of H is the

sum of the functions C and E, it is impossible to distinguish the compactness

contribution from the performance one. Such aspect is relevant in order to

tune the subsequent experimental setting. Finally, analysing the output log

of the best jobs, we find best results around the last SD iterations.

For this reasons, we launch other two batches of experiments with the

following different setting:

Number of trials: 30

Iterations: 30

SD Iterations: 1000
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Number of E-pucks: 20

Objective Function: H , (E = E(2), α = 1(batch1), α = 0.9(batch2))

We have increased the number of SD iteration giving more chances to

exploitation. The α value changes in relation to the case. In the former

batch (α = 1) we completely stamp out the C function’s effects (see Eq.

5.10) while we have a weakly presence in the latter (α = 0.9). In this way, it

is possible to prefer the correct behaviour of the robot over the compactness.

Therefore, we want to exclude the ordered networks (i.e., since K is always

3, we exclude the networks with p = 0.85, see Fig. 2.5) and so we launch

only 60 experiments per batch instead of the previous 90. Indeed, because

of their strong resistance to perturbations, the ordered networks are harder

to change than the other ones. Thus, we can save computational time by

focusing only on chaotic and critic networks.

5.6.1 Results

The results are very similar to the previous case. The only difference is

shown in Fig. 5.8 where the median value in the case with α = 1 is under

the threshold of 0.65 while it is slightly above in the other case. We note

that the variance is identical. We think that the greater previous best value

of H (about 0.7) was pushed up by function C. The only influence of E is

not sufficient to improve the results nor with 1000 SD iterations. The other

graphs do not provide any additional information.
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Figure 5.8: Boxplots of the best values with different influence of E. In both graphs

there are no improvements compared to the previous case.



6. A Simpler Case

In the previous chapter, we tackled the problem trying different approaches.

Since the results are not very satisfactory, we simplify the instance of the

problem to better investigate the factors that influence the performance.

More precisely, we start with a very simple instance of the problem, then,

analysing its results, we draw possible hypothesis of improvement. Subse-

quently, we increase the complexity of the problem taking into account the

previous outcomes.

In Sec. 6.1 and Sec. 6.2 we respectively describe the simplest instance

of the problem and its results. Sec. 6.3 reports description and results of a

slightly more complex instance while in Sec. 6.4 and Sec. 6.5 we define two

other instances very similar to the original one (see Cap. 5) and we discuss

the results applying the insights derived from the simpler instances.

6.1 Description

The simplified instance of the problem considers two kinds of pattern like the

previous cases. However, even if the first pattern remains the chessboard, we

replace the second floor (Japanese flag) with a vertical black-white splitted

floor (Fig. 6.1). The robots are only 4 and are placed like a grid at the same

distance from the centre. Each robot is oriented toward the centre. Due

to the specific combination of floor patterns and placements, two kinds of

symmetries emerge: rotational symmetry and positional symmetry.
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With the rotational symmetry, each robot has the same kind of neigh-

bourhood i.e., no robots at South and only one robot for the other cardinal

points. The positional symmetry is due to the fact that each robot is placed

in a different interesting area so that the received information is not redun-

dant for the receiver. As we can see in Fig. 6.1, in order to recognize the

floor, it is theoretically sufficient to compare the sensed information from the

ground with the received information from North (i.e., if the northern infor-

mation has the same colour perceived from the floor below, then the swarm

is on the first floor, otherwise, on the second floor).

Unlike the previous experiments, we want to exchange different types of

information in order to check if a specific one could be able to significantly

affect the performance. For this goal, we use two new pieces of information

that we call dialog and led information. The dialog information is given by

the value of a generic hidden node while the led information represents the

value of the output node that commands the LEDs. Both nodes have ingoing

arcs only from hidden nodes. In this way, the information is obtained only by

the internal network processing and does not depend directly from inputs.

We define 6 combinations of information to exchange: ground, dialog,

led, ground+dialog, ground+led and dialog+led. Then, we launch one batch

for each combination. In cases in which we have a single exchanged infor-

mation (ground, dialog or led) we use a network with 14 nodes where 4

are input nodes while in the cases with double information (ground+dialog,

ground+led and dialog+led) the network has 17 nodes with 7 input nodes.

We report the mapping between sensors and input nodes in Tab. 6.1 and

Tab. 6.2. Since we know a priori the positions of the robots, a single bit is

sufficient to encode the information received from each cardinal point.

Now we can define the experimental setting as follows:

Number of trials: 2

Iterations: 30

SD iterations: 10000

Number of E-pucks: 4

Objective Function: H , (E = E(2), α = 1)

Since the experiments have a single placement for the robots, there are only

two initial conditions (trials) where only the floors change. The small number
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Node id Sensor

1 GS sensing

2 RAB sensing from north

3 RAB sensing from east

4 RAB sensing from west

Table 6.1: Mapping between the robot sensors and the input nodes in the simplest case

with a single exchanged information. The network has 14 nodes and we use 1 node for the

GS and 3 nodes for the RAB. Given the a priori known placement, we need only 1 node

for direction.

Node id Sensor

1 GS sensing

2,3 RAB sensing from north

4,5 RAB sensing from east

5,6 RAB sensing from west

Table 6.2: Mapping between the robot sensors and the input nodes in the simplest case

with two informations. The network has 17 nodes and we use 1 node for the GS and 6

nodes for the RAB.

of trials and robots permits us to achieve a large number of iterations (i.e.,

30× 10000 = 300, 000 iterations) in a reasonable amount of time. We choose

E = E(2) as evaluation function (Eq. 5.4) and we exclude the contribution

of the compactness function (with α = 1, see Eq. 5.10). In the next section,

we discuss the results obtained.

6.2 First Results

In Fig. 6.2 we plot the results of the jobs with the previous setting. We com-

pare the batches using two different methods. In the former, we use boxplots
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(a) (b)

Figure 6.1: The simpler case floors with E-pucks’ placement. The circles represent the

E-pucks and the arrows indicate the relative Norths.

of the best value distributions (Fig 6.2(a)). Each boxplot refers to the batch

where the robots exchange the information indicated on the abscissa (e.g.,

L+D means jobs with led+dialog comunication, G means jobs with ground

comunication, etc.). We can see that the batches reach the optimum in 4

cases out of 6. Among these, 3 batches exchange double information. With

single information, only jobs from the batch G reaches the optimum. Except

for some outliers, the jobs of batches with double information always reach

the optimum and therefore there is no variance.

The latter method consists of comparing the distributions using the Mann-

Whitney test also called the Mann–Whitney–Wilcoxon or Wilcoxon test. The

Wilcoxon test is a non-parametric statistical hypothesis test for assessing

whether one of two samples of independent distributions tends to have larger

values than the other. Here, we consider two hypotheses: null hypothesis

and alternative hypothesis. At first, the null hypothesis is always accepted

while the alternative hypothesis it is the one we try to prove. Under the

null hypothesis, the distributions are equal while our alternative hypothesis

states that the first distribution (that we call X) exceeds the distribution Y .

The probability that the null hypothesis is true is indicated by the p-value.
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Figure 6.2: Information comparison analysing best value distributions. Two methods

to compare the distributions. In (a) we have the boxplots of the 6 batches while in (b) it

is shown the p-values of Wilcoxon test for each pair of different information exchanged.

For simplicity, we colour the cell in function of the level of significance. Darker cells mean

high probability that the X information exceeds the Y information. The white cells do

not permit evaluation.

Small p-values also mean high probability that the alternative hypothesis is

verified. We perform the Wilcoxon test on all the pairs of distributions and

we plot the p-values in the grid in Fig. 6.2(b). The smaller the p-value,

the higher the probability that the abscissa information is greater than the

corresponding one on the ordinate. The p-values distribution confirms the

observations made about boxplots in Fig. 6.2(a).

6.3 Results Without Rotational Symmetry

Given the good results achieved before, we slightly increase the difficulty

of the task removing the rotational symmetry. Thus, we assign a random
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(a) (b)

Figure 6.3: The simpler case floors with E-pucks random orientation.

orientation for each E-puck obtaining the placement shown in Fig. 6.3. In

this case, the network needs more flexibility since there is a different neigh-

bourhood for each robot. In fact, while in the previous case each robot had

a neighbour for each direction except in the South, now the cardinal point

without information changes as a function of the robot orientation. In order

to understand where the information is absent, we need a different commu-

nication coding that involves another bit in the exchanged payload. The

networks used to exchange single and double information have respectively

20 and 28 nodes and the input mapping is shown in Tab. 6.3 and in Tab.

6.4.

Like in the previous case, we compare the best value distributions

using boxplots and Wilcoxon test. From Fig. 6.4 a general improvement of

the performance emerges. All the batches reach the optimum, however, the

grid in Fig. 6.4(b) clearly shows the excess of distributions where there is a

double information exchanged. The phenomenon is even more accentuate if

such information contains spatial data (i.e., the ground information).

Contrarily to expectations, the absence of rotational symmetry has not

worsened the performance. Moreover, with the new specific orientation, all

batches reach optimum in almost all their cases.
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Node id Sensor

1 GS sensing

2,3 RAB sensing from north

4,5 RAB sensing from east

6,7 RAB sensing from south

8,9 RAB sensing from west

Table 6.3: Input mapping in the simpler case without rotational symmetry, single infor-

mation exchanged. For each direction, we encode the received data with 2 node values.

The node with smaller index indicates the presence/absence of the neighbour.

Node id Sensor

1 GS sensing

2,3,4 RAB sensing from north

5,6,7 RAB sensing from east

8,9,10 RAB sensing from south

11,12,13 RAB sensing from west

Table 6.4: Input mapping in the simpler case without rotational symmetry, double

information exchanged. For each direction, we encode the received data with 3 node

values. The node with smaller index indicates the presence/absence of the neighbour.

6.4 A New Instance of the Problem

From the previous analysis, it emerges that the ground information boosts the

performance in the case of composed information. Now we check whether

such information can increase the performance when applied in harder in-

stances of the problem. In particular, we propose the following setting:

Number of trials: 20

Iterations: 20

SD iterations: 1500
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Figure 6.4: Comparison among best values in the case without rotational symmetry. All

the batches reach the optimum and the best combinations contain the ground information.

Number of E-pucks: 10

Objective Function: H , (E = E(2), α = 1)

Here, the key change is the increase of initial conditions (trials) and robots.

For each trial, we uniformly distribute 10 robots (applying the method de-

scribed in Sec. 4.2.3) and we choose at random the orientations. For com-

putational load issues, we must strongly decrease the number of stochastic

descent iterations (i.e., from 10000 to 1500). The floor patterns remain the

same. In Fig. 6.5 we report the comparison. Although no batch reaches the

optimum, we mostly get a success rate around 80%. The Wilcoxon grid in

Fig. 6.5(b) shows the dominance of “D+G” (dialog+ground) and “L+G”

(led+ground) distribution. Such result is consistent with the simpler case,

confirming the influence of informations composed with spatial data.
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Figure 6.5: Comparison among best values in a more complex case with 10 robots and

20 trials. The results are consistent with the simpler case.

6.5 Results With Japanese Flag

For approaching further to the original setting described in Chapter 5, we

replace the vertical splitted floor (Fig. 6.1(b)) with the Japanese flag pat-

tern shown in Fig. 4.5(b). As we can see from the analysis in Fig. 6.6, the

organization of the results are very different from the previous case. How-

ever, most of batches reach a better success rate around 90% than the 80%

reached before. On the other hand, the only conclusion we can draw from

the Wilcoxon grid is that all the combinations predominate the single ground

information “G”. Perhaps, such phenomena is due to the different level of

symmetry among patterns which make it harder the recognition relying on

the spatial data.
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Figure 6.6: Comparison among best values with 10 robots, 20 trials and Japanese flag

pattern. We get higher performance peaks than previous case. Using patterns with dif-

ferent level of symmetry, it seems to lead the ground data to be irrelevant.



7. Conclusion

In this thesis we employed an automatic design methodology in order to de-

velop robotic programs for tasks that require collective computation. Such

procedures need two main components that are a model for the robot be-

haviour and an optimisation algorithm to improve the model characteristics.

As model, we used Boolean networks which, although simple, can exhibit

complex dynamics. The used optimisation algorithm consists in a metha-

heuristic technique. In particular, we choose stochastic local search algo-

rithms.

The entire process can be viewed as a constrained combinatorial opti-

misation problem where the decision variables correspond to the Boolean

functions inside the nodes while the objective function guides the tuning of

such variables in order to maximise the robots performance.

The methodology has been validated on a well-defined task where the

swarm of robots must recognise a certain environment whose characteristics

can not be fully collected by perceptions of a single robot. In order to focus-

ing the analysis on the collaborative computation, we equipped robots with

simple computational capabilities such as the communication limited to the

neighbourhood. In addition, we tried to keep the experiments simple enough

to limit the computational resources as much as possible.

In the first part of the experiments we identified a suitable optimisation

algorithm as well as a good evaluation criteria for the swarm. Initially, we

tried a simple stochastic descent method but such algorithm was too weak
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to obtain satisfactory results. Thus, we replaced it with an iterated local

search algorithm obtaining a slight improvement. We noted that the current

objective function (i.e., the median of the performance on different initial

conditions) provided only discrete values and it seemed that it was not a

good heuristic search for this problem. Then, we changed the objective func-

tion with the average number of correct behaviours. With such new objective

function we observed more compact performance values across the initial con-

ditions and a wider exploration of the search space. Subsequently, we further

improved the objective function by extending the evaluation on a longer time

period of the simulation and adding a factor to reward the compactness of

the results. Since the obtained performance values were highly compact but

lacking improvements, we sharply weakened the contribution of the compact-

ness function. Also in this case, we do not get significant changes.

Since results were still not quite satisfactory, we simplified the instance

of the problem to better investigate the factors that influence the perfor-

mance. In particular, we started with a very simple instance of the problem

where a small amount of robots with the same kind of neighbourhood are

placed in different relevant areas. We analysed the exchange of different

types of information in order to check if a specific one prevails the others.

The experiments where robots exchange double information always obtained

networks with maximum value of the objective function. In the case of single

information, we obtained optimal results only with the exchange of spatial

information. Subsequently, we slightly increased the difficulty by assigning

a random orientation for each robot and contrary to expectations, general

improvements emerged in all kinds of experiments. Moreover, double infor-

mation that contain spatial data still leads to better performance. After,

we checked whether such informations can increase the performance when

applied in harder instances of the problem. Although in these cases no ex-

periments reached the optimum, we got a high success rate confirming also

the influence of informations composed by spatial data. The predominance

of such information disappears if we use patterns with different level of sym-
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metry. However, the success rate remains high proving of the strength of the

methodology.

This thesis can provide insights for a wide range of future works. A first

possibility concerns the improvement of the evaluation criteria. Indeed, we

could add more sophisticated terms inside the objective function as we have

partially done for the compactness factor (see Sec. 5.5). We could also focus

on the optimisation algorithm, trying new trade-offs between exploration and

exploitation as well as we could change the features of the search space (e.g.,

using a variable neighbourhood search).

The experiments could be repeated with other settings e.g., using Boolean

networks with different size, connections and topologies. According to such

networks, we could define new couplings between nodes and sensors/actua-

tors, moreover, new communication protocols and codings would be needed.

Regarding swarm robotics, it could be interesting to study the task with

hundreds or thousands of robots. For the moment, it is impossible for our

simulator to deal with huge swarms of robots that exchange such amount

of information. A viable solution could be the development of a simplified

simulator that neglects demanding aspects like the physical ones.

Finally, we could conduct studies about dynamics of complex systems

consisting of interacting Boolean networks. For instance, in Appendix A we

show a preliminary study in which we search correlations between the fixed

point achieved by the swarm (which is a network of BNs) and the dynamics

of each single node.
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A. Interacting Boolean

Networks

Interacting BNs are not much studied in the literature, even though the topic

would be of great importance for collective intelligence. The main scientific

issue concerns the discovery of internal factors that lead to the emergence of

a specific behaviour of the complex system where components are complex

systems themselves.

In this work, we have a swarm of robots controlled by the same Boolean

network. The goal can be only reached with the interactions between these

networks. Such robots, communicating among them, must turn on or off

the LEDs depending on the floor below. Thus, we can see the swarm as

a network (that we call supernet) which must reach a fixed point attractor

within a specific time window. Its nodes are themselves networks with their

own internal dynamics.

As a first attempt to study these dynamics, we consider the Hamming

distances of the states of each robot (denoted by vectors of 0s and 1s) between

two successive moments in which there is a totally correct swarm behaviour

(that we call unison). Plotting such values in a single graph (Fig. A.1),

we can observe the internal dynamics of the supernet before and during the

achievement of a fixed point unison.

In Fig. A.1 are shown the Hamming distances of 4 BN-controlled robots

from a simulation of 100 time step long. We have a priori checked that the
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Figure A.1: Interacting BN dynamics. We plot the Hamming distances of 4 interacting

BN-controlled robots considering consecutive unison steps. All the BNs reach a fixed point

like the supernet.

network has an optimal behaviour, i.e., the swarm keeps consecutively unison

at least during the last 20 time steps (see Sec. 5.5). After a first transient

phase, all the robots stabilize and reach, in turn, a fixed point.

Thus, only for the BN used in this example, we can assert that the

supernet reaches the fixed point unison when all the individual nodes (robots)

reach, in turn, an internal fixed point. This is only an example of interaction

analysis. In order to generalise the assertion before, we need to perform

several tests with different types of networks and initial conditions.
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