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Introduzione

Il concetto di pseudoconvessità viene introdotto per cercare di dare una
caratterizzazione ai domini di olomorfia, quei sottoinsiemi aperti U ⊆ Cn tali
che non esistono due insiemi non vuoti U1 e U2, con U2 connesso e U2 * U ,
U1 ⊆ U2 ∩ U , tali che per ogni funzione olomorfa h definita su U , esiste
un’altra funzione olomorfa h2 definita su U2, tale che h = h2 su U1.
Nel caso in cui n = 1 ogni sottoinsieme aperto di C risulta essere un do-
minio di olomorfia. La situazione quando si considera piú di una variabile
complessa è decisamente diversa e la loro caratterizzazione risulta essere par-
ticolarmente sottile, nello specifico si ha che non tutti i domini sono domini
di olomorfia.
La nozione di pseudoconvessità deriva direttamente da quella di convessità
nel caso reale, insieme alla definizione, a priori del tutto formale, della forma
di Levi.
Risulta poi che ogni dominio convesso è un dominio di olomorfia. Si ha però
che la convessità non è preservata sotto l’azione di mappe biolomorfe ed è
quindi necessaria una condizione geometrica meno stringente per lo studio
dei domini di olomorfia: questa condizione è proprio la pseudoconvessità.
Si avrà infatti che condizione necessaria e sufficiente per un insieme per essere
un dominio di olomorfia è che sia pseudoconvesso.
Infine, come si vedrà, la forma di Levi e il concetto di curvatura di Levi da
essa derivante, introdotti in un contesto puramente formale, hanno un sig-
nificato geometrico profondo, strettamente legato alla struttura dell’insieme
su cui sono definite. Si dimostrerà infatti una stima isoperimetrica che lega
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iv INTRODUZIONE

la curvatura di Levi alla misura dell’insieme.

Questo lavoro partirà da un’estensione analitica del concetto di convessità
geometrica, dimostrandone l’equivalenza e introducendo la forma di Levi, per
poi arrivare alla definizione di pseudoconvessità.
Nel secondo capitolo di introdurrà il concetto di curvatura di Levi, dandone
alcune caratterizzazioni ed esempi, fino a dimostrare la stima isoperimetrica
che lega curvatura di Levi e misura di un insieme.
Nell’ultimo capitolo si definiranno una serie di operatori di curvatura, in re-
lazione con la forma di Levi, che permetteranno di dimostrare alcuni teoremi
di confronto.



Chapter 1

Convexity and Pseudoconvexity

1.1 Notions of convexity

The classical definition of convexity is given by:
a subset Ω ∈ Rn is said to be convex if for any p, q ∈ Ω and any λ ∈ [0, 1]

the combination (1− λ)p+ λq ∈ Ω.
Later we shall refer to a set satisfying this condition as geometrically convex.
We know that the most useful definitions are the ones written as differential
conditions. Thus our wish is to find a differential characterization of con-
vexity. We shall begin with some notion we will use in the remainder of the
chapter.

Definition 1.1. Let Ω ⊆ Rn be a connected open set with boundary ∂Ω.
We say that Ω has Ck boundary, k ≥ 1, if exists a function % : Rn → R
belonging to Ck(U), where U is an open neighborhood of the boundary of Ω,
such that:

(i) Ω ∩ U = {x ∈ U |%(x) < 0}

(ii) ∇%(x) 6= 0, ∀x ∈ ∂Ω

We call this function % a defining function for Ω.
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2 1. Convexity and Pseudoconvexity

Definition 1.2. Let Ω ⊆ Rn be a connected open set with C1 boundary and
let % be a C1 defining function for Ω. Fixed a point p ∈ ∂Ω we say that
w = (w1, . . . , wn) a tangent vector to ∂Ω at p if

n∑
j=1

∂%

∂xj
(p) · wj = 0

and we write w ∈ Tp(∂Ω).

Remark 1. To make sense this definition must be independent from the choice
of the function %, before showing this we give this Lemma.

Lemma 1.1. Let %1 and %2 be two defining function for a connected open set
Ω ⊆ Rn and let p be a point in ∂Ω. We suppose %1, %2 ∈ Ck(U) where U is
a neighborhood of p. Then there exists a positive function h ∈ Ck−1(U) such
that

%1 = h%2 on U (1.1)

Proof. Due to the conditions required for h it can be uniquely determined as

h =
%1

%2

.

and it is positive and of class Ck on U \ ∂Ω. We fix now a point q ∈ U ∩ ∂Ω,
after a Ck local change of coordinates, we may assume q = 0,

U ∩ ∂Ω =
{
x ∈ U

∣∣ xn = 0
}

and %2(x) = xn. For x′ = (x1, . . . , xn−1) near zero, we have %1(x′, 0) = 0, and
by fundamental theorem of calculus we obtain

%1(x′, xn) = %1(x′, xn)− %1(x′, 0) = xn

∫ 1

0

∂%1

∂xn
(x′, txn)dt

the integral on the right side of the equation is a function of class Ck−1 near
0. This last statement is independent of the choice of Ck-coordinates, then
(1.1) holds with h ∈ Ck.



1.1 Notions of convexity 3

Remark 2. We now take another defining function η for Ω and there exists
another function h, not vanishing on a neighborhood of ∂Ω, such that η(x) =

h(x)%(x). In this case, for p ∈ ∂Ω:

n∑
j=1

∂η

∂xj
(p) · wj =

n∑
j=1

∂(h%)

∂xj
(p) · wj

= h(p)
n∑
j=1

∂%

∂xj
(p) · wj + %(p)

n∑
j=1

∂h

∂xj
(p) · wj

=h(p)
n∑
j=1

∂%

∂xj
(p) · wj

because %(p) = 0. So w is a tangent vector at P with respect to % if and only
if it is a tangent vector at P with respect to η.

Definition 1.3. Let Ω ⊂ RN be a bounded domain with C2 boundary and
defining function %. Let p be fixed in ∂Ω. We say that ∂Ω is (weakly) convex
at p if

n∑
j,k=1

∂2%

∂xi∂xj
(p) · wiwj ≥ 0

for every w ∈ Tp(∂Ω).
We say that ∂Ω is strongly convex if this inequality holds strictly whenever
w 6= 0.
A set Ω is said to be convex (strongly convex ) if ∂Ω is convex (strongly
convex) at each of its point.

Remark 3. The quadratic form(
∂2%

∂xi∂xj
(p) · wiwj

)
j,k=1,...,n

is called the real Hessian of the function %.
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Lemma 1.2. Let Ω ⊆ Rn be strongly convex. Then there is a constant C > 0

and a defining function η for Ω such that
n∑

j,k=1

∂2η

∂xi∂xj
(p)wiwj ≥ C|w|2 (1.2)

for every p ∈ ∂Ω and w ∈ Rn.

Proof. Let % be a C2 defining function for Ω and we set, for λ > 0:

%λ =
eλ%(x) − 1

λ

Let p ∈ ∂Ω and define

X = Xp =
{
w ∈ Rn

∣∣∣ |w| = 1,
n∑

i,j=1

∂2%

∂xi∂xj
(p)wiwj ≤ 0

}
no element in Xp could belong to Tp(∂Ω), moreover

Xp ⊆
{
w ∈ Rn

∣∣∣ |w| = 1,
n∑
i=1

∂%

∂xi
(p)wi 6= 0

}
.

Since Xp has been defined by an nonstrict inequality, it’s closed and also
bounded, then it’s compact and we can consider

µ = min
w∈Xp

{∣∣∣ n∑
i=1

∂%

∂xi
(p)wi

∣∣∣}
that is nonzero.
Then we define

λ =
−minw∈Xp

{∑n
i,j=1

∂2%
∂xi∂xj

(p)wiwj

}
µ2

and set η = %λ. Since e%(p) = 1, we have, for any w ∈ Rn with |w| = 1, that

n∑
i,j=1

∂2η

∂xi∂xj
(p)wiwj =

n∑
i,j=1

(
∂2%

∂xi∂xj
(p) + λ

∂%

∂xi
(p)

∂%

∂xj
(p)

)
wiwj

=
n∑

i,j=1

∂2%

∂xi∂xj
(p)wiwj + λ

∣∣∣∣ n∑
i=1

∂%

∂xi
(p)wi

∣∣∣∣2
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If w /∈ Xp then this expression is positive. If w ∈ Xp the expression is positive
by the choice of λ.
Since the set S = {w ∈ Rn

∣∣ |w| = 1} is compact, we can find a M > 0 such
that

k∑
j,k=1

∂η

∂xi∂xj
(p)wiwj ≥M , ∀w ∈ S

This give us the inequality (1.6) for p ∈ ∂Ω and w ∈ Rn such that |w| = 1.
If w is an arbitrary point in Rn, we set w = |w|w̃, with w̃ ∈ S. Then (1.6)
holds for w̃ ∈ S and multiplying both side of inequality (with w̃ ∈ S) by |w|2

we can obtain the result for an arbitrary w ∈ Rn.
Finally, this estimates hold uniformly in a neighborhood of p, contained in
∂Ω, so, since ∂Ω is compact, we can choose M uniformly over all boundary
points of Ω.

Proposition 1.3. If Ω is a bounded strongly convex domain, then Ω is geo-
metrically convex.

Proof. We consider the set Ω× Ω and is subset defined here:

S := {(ω1, ω2) ∈ Ω× Ω | (1− λ)ω1 + λω2 ∈ Ω , for λ ∈ ]0; 1[ }

S is open and non empty.
We prove now it is also closed. We fix a defining function η for Ω such that
Lemma 1.2 holds for η.
By contradiction we suppose that S is not closed as subset of Ω × Ω. Then
there exists a sequence (ωj1, ω

j
2) ∈ S which converge to a point (ω1, ω2) ∈ Ω×Ω

but not in S. By the defintion of S and of defining function, for every j the
function η((1− t)ωj1 + tωj2) < 0, t ∈ [0; 1].
Taking the limit for j →∞ we obtain η((1− t)ω1 + tω2) ≤ 0. So there exists
an interior point τ ∈ [0; 1] such that eta((1− τ)ω1 + τω2) ≤ 0.
This is an interior maximum point on [0; 1] and this fact contradicts the
positive definition of the real Hessian of η, so S is also closed.



6 1. Convexity and Pseudoconvexity

Proposition 1.4. Let Ω be a (weakly) convex set, then Ω is geometrically
convex.

Proof. To simplify the proof we assume that ∂Ω is, at least, C3. Moreover
we can assume n ≥ 2 and 0 ∈ Ω without losing generality.
Then for every ε > 0 and for M ∈ N we define

%ε(x) = %(x) +
ε|x|2M

M

where % is a defining function for Ω, and we define

Ωε =
{
x ∈ Ω

∣∣ %ε(x) < 0
}

then we have Ωε ⊂ Ωε′ when ε′ < ε and
⋃
ε Ωε = Ω.

If we consider M large and ε small then Ωε is strongly convex. It follows
from previous proposition than every Ωε is geometrically covex, so it is also
Ω.

Proposition 1.5. Let Ω ⊂ Rn have C2 boundary and be geometrically con-
vex. Then Ω is (weakly) convex.

Proof. Fixed a defining function % for Ω, we suppose, by contradiction, there
exist p ∈ ∂Ω and w ∈ Tp(∂Ω) such that

n∑
j,k=1

∂2%

∂xi∂xj
(p)wiwj = −2K > 0

Without losing generality we can assume that the Rn coordinates are such
that p = 0 and (0, 0, . . . , 0, 1) is the outward normal vector to ∂Ω at p. We
may also normalize the defining function so that ∂%

∂xn
(p) = 1

We define Q = Qt = tw+ ε(0, 0, . . . , 0, 1), where ε > 0 and t ∈ R. By Taylor
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expansion we have:

%(Q) =%(0) +
n∑
i=1

∂%

∂xi
(0)Qi +

1

2

n∑
j,k=1

∂2%

∂xi∂xj
(0)QiQj + o(|Q|2)

=ε
∂%

∂xn
(0) +

t2

2

n∑
j,k=1

∂2%

∂xi∂xj
(0)wiwj +O(ε2) + o(ε2 + t2)

=ε−Kt2 +O(ε2) + o(ε2 + t2).

If t = 0 and ε > 0 is small enough we have that %(Q) > 0. However, if
we consider |t| >

√
2ε
K

then %(Q) < 0. This contradicts the definition of
geometric convexity.
Infact if we consider t1, t2 ∈ R such that t1 < −

√
2ε
K

and t2 >
√

2ε
K
. In this

case %(Qt1) < 0 and %(Qt2) < 0 that means Qt1 , Qt2 ∈ Ω and for geometric
convexity of Ω also λQt1 + (1− λ)Qt2 belongs to Ω, for every λ ∈ [0; 1].
Explicitly we have λQt1 + (1− λ)Qt2 = (λt1 + (1− λ)t2)w + ε(0, 0, . . . , 0, 1).
Exploiting the Taylor expansion written before and the previous result, for
λ′ = t2

t2−t1 (< 1), we have λ′t1 + (1 − λ′)t2) = 0 and for ε > 0 small enough
we have %(λ′Qt1 + (1− λ′)Qt2) > 0, i.e. λ′Qt1 + (1− λ′)Qt2 /∈ Ω.

The next step is to express the differential condition for convexity in complex
notation. If z ∈ Cn, then the complex coordinates for z are

z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn)

with xi, yi ∈ R∀i = 1, . . . , n. Obviusly we have a natural identification
between Cn and R2n, given by:

(x1 + iy1, . . . , xn + iyn) 7−→ (x1, y1, . . . , xn, yn)



8 1. Convexity and Pseudoconvexity

Now, fixed a open set Ω ⊂ Cn with C2 boundary and assumed ∂Ω is convex
at p, if % is a defining function for Ω which is C2 near p, then the condition
that w = (ξ1 + iη1, . . . , ξn + ηn) belongs to Tp(∂Ω) is given by:

n∑
i=1

∂%

∂xi
(p)ξi +

∂%

∂yi
(p)ηi = 0

where Cn is identified with R2n.
In complex notation we recall we have:

∂

∂zj
=

1

2

( ∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)

by adding this two term we obtain

∂

∂xj
=

∂

∂zj
+

∂

∂zj

and subtracting

∂

∂yj
=

1

i

( ∂

∂zj
− ∂

∂zj

)
moreover, we have

ξi =
wj + wj

2
and ηj =

wj − wj
2i

putting all this things together we can rewrite the equation as:

1

2

n∑
j=1

[( ∂

∂zj
+

∂

∂zj

)
%(p)

]
(wj+wj)+

1

2

n∑
j=1

[1

i

( ∂

∂zj
− ∂

∂zj

)
%(p)

]1

i
(wj−wj) = 0
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then by direct calculation we have

1

2

n∑
j=1

[( ∂

∂zj
+

∂

∂zj

)
%(p)

]
(wj + wj) +

1

2

n∑
j=1

[1

i

( ∂

∂zj
− ∂

∂zj

)
%(p)

]1

i
(wj − wj) =

=
1

2

n∑
j=1

(
∂%

∂zj
(p)wj +

∂%

∂zj
(p)wj +

∂%

∂zj
(p)wj +

∂%

∂zj
(p)wj

− ∂%

∂zj
(p)wj +

∂%

∂zj
(p)wj −

∂%

∂zj
(p)wj +

∂%

∂zj
(p)wj

)

=
n∑
j=1

∂%

∂zj
(p)wj +

∂%

∂zj
(p)wj

=
n∑
j=1

2Re

(
∂%

∂zj
(p)wj

)
= 2Re

( n∑
i=1

∂%

∂zi
(p)wi

)

which is equivalent to:

2Re

( n∑
i=1

∂%

∂zi
(p)wi

)
= 0.

The space of the vector that satisfy this last equation is not closed under
multiplication by i, so one prefers to study a slightly different tangent space
defined as follow.

Definition 1.4. Let Ω ⊆ Cn be a connected open set with C2 boundary and
let % be a C2 defining function for Ω. Fixed a point p ∈ ∂Ω we say that
w ∈ Cn belongs to the complex tangent space to ∂Ω at p if

n∑
j=1

∂%

∂zj
(p) · wj = 0

and we write w ∈ Tp(∂Ω).
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Remark 4. It is quite obvious that Tp(∂Ω) is a linear subspace of Tp(∂Ω).

Before going forward with convexity conditions we give a couple of defi-
nition that will be useful during the following dissertation.

Definition 1.5. Let Ω ⊆ C be an open set and f : Ω −→ C a complex
function. Then f is said to be holomorphic in z0 ∈ Ω if exists the limit:

lim
ζ→0

f(z0 + ζ)− f(z0)

ζ
= f ′(z0) ζ 6= 0 , ζ ∈ C

We say f is holomorphic on Ω if it is holomorphic in every point of Ω.

Remark 5. We recall, taken z = x + iy, a function f , considered as a real
function, is holomorphic if and only if

∂f

∂x
= −i∂f

∂y

then it said that f satisfies the Cauchy-Riemann equation.

Definition 1.6. Let now be Ω ⊆ Cn a domain. A function f : Ω −→ Cm is
said to be holomorphic if it is locally expandable in Ω as a convergent power
series.

Remark 6. The definition can be restated as a function f is holomorphic if
and only if satisfies the Cauchy-Riemann equation in each variable separately
and it is locally square-integrable.

Definition 1.7. Let Ω1 and Ω2 be two open set in Cn, then a function
f : Ω1 −→ Ω2 is said to be biholomorphic if it is holomorphic, bijective and
its inverse is also holomorphic.

Now we take a look at the convexity condition on tangent vectors, rewriting
it in complex notation. If w ∈ Tp(∂Ω), then
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0 ≤
n∑

i,j=1

∂2%

∂xi∂xj
(p)ξiξk + 2

n∑
i,j=1

∂2%

∂xi∂yj
(p)ξiηk +

n∑
i,j=1

∂2%

∂yi∂yj
(p)ηiηk

=
1

4

n∑
j,k=1

( ∂

∂zi
+

∂

∂zi

)( ∂

∂zj
+

∂

∂zj

)
%(p)(wi + wi)(wj + wj)

+ 2 · 1

4

n∑
j,k=1

( ∂

∂zi
+

∂

∂zi

)1

i

( ∂

∂zj
− ∂

∂zj

)
%(p)(wi + wi)

1

i
(wj − wj)

+
1

4

n∑
j,k=1

1

i

( ∂

∂zi
+

∂

∂zi

)1

i

( ∂

∂zj
− ∂

∂zj

)
%(p)

1

i
(wi − wi)

1

i
(wj − wj)

= 2Re

( n∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj

)
+ 2

n∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj

(1.3)

So we can see that the real Hessian, once we write it in complex coordinates,
decomposes into two parts.
Our aim now is to prove that the second part does transform canonically
under biholomorphyc mappings. We will call it the complex Hessian or the
Levi form of Ω.
Let Ω ⊂ Cn be a convex connected open set with C2 boundary, let U be a
neighborhood of Ω and % : U −→ R a defining funcion for Ω. Suppose that
ζ : U −→ ζ(U) is biholomorphic and set Ω′ = ζ(U). Then %′ ≡ % ◦ ζ−1

is a defining function for Ω′ (this result is a consequence of Hopf’s lemma).
Then fix a point p ∈ ∂Ω and its corrisponding p′ = ζ(p) ∈ ∂Ω′, finally, if
w ∈ Tp(∂Ω), then

w′ =

( n∑
j=1

∂ζ1(p)

∂zj
wj, . . . ,

n∑
j=1

∂ζn(p)

∂zj
wj

)
∈ Tp′(∂Ω′).
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Now let fix the complex coordinates on ζ(U) as z′1, . . . , z′n, we want to write
down the expression (1.3) determining convexity in terms of this coordinates
and w′.
We have

∂2%

∂zj∂zk
(p) =

∂

∂zj

n∑
l=1

∂%′

∂z′l

∂ζl
∂zk

=
n∑

l,m=1

∂2%′

∂z′m∂z
′
l

∂ζm
∂zj

∂ζl
∂zk

+
n∑
l=1

∂%′

∂z′l

∂2ζl
∂zj∂zk

∂2%

∂zj∂zk
(p) =

∂

∂zj

n∑
l=1

∂%′

∂z′l

∂ζ l
∂zk

=
n∑

l,m=1

∂2%′

∂z′m∂z
′
l

∂ζm
∂zj

∂ζ l
∂zk

Replacing this result in expression (1.3) we obtain:

2Re

( n∑
j,k=1

∂2%

∂zj∂zk
(p)wjwk

)
+ 2

n∑
j,k=1

∂2%

∂zj∂zk
(p)wjwk

=2Re

( n∑
j,k=1

n∑
l,m=1

∂2%′

∂z′m∂z
′
l

(p′)
∂ζm
∂zj

(p)
∂ζl
∂zk

(p)wjwk +
n∑

j,k=1

n∑
l=1

∂%′

∂z′l
(p′)

∂2ζl
∂zj∂zk

(p)wjwk

)

+ 2
n∑

j,k=1

n∑
l,m=1

∂2%′

∂z′m∂z
′
l

(p′)
∂ζm
∂zj

(p)
∂ζ l
∂zk

(p)wjwk

=2Re

( n∑
l,m=1

∂2%′

∂z′m∂z
′
l

(p′)w′mw
′
l +

n∑
j,k=1

n∑
l=1

∂%′

∂z′l
(p′)

∂2ζl
∂zj∂zk

(p)wjwk

)

+ 2
n∑

l,m=1

∂2%′

∂z′m∂z
′
l

(p′)w′mw
′
l

(1.4)

So the last part of the expression characterizing convexity is preserved under
biholomorphic mappings.



1.2 Pseudoconvexity 13

1.2 Pseudoconvexity

Definition 1.8. Let Ω ⊆ Cn be a connected open set with C2 boundary and
let % be a C2 defining function for ∂Ω. Taken a p ∈ ∂Ω we say that Ω is Levi
pseudoconvex at P if

∑
j,k

∂2%

∂zj∂zk
(p)wjwk ≥ 0 , ∀w ∈ Tp(∂Ω). (1.5)

We say that the point p is strongly (or strictly) Levi pseudoconvex if this
inequality holds strictly whenever w 6= 0.
A set Ω is said to be Levi pseudoconvex (strongly Levi pseudoconvex ) if every
p ∈ ∂Ω is Levi pseudoconvex (strongly Levi pseudoconvex).

Proposition 1.6. Let Ω ⊆ Cn be a connected open set with C2 boundary and
p ∈ ∂Ω one of its point of convexity, then p is also a point of pseudoconvexity.

Proof. Let % be a defining function for Ω, consider w ∈ Tp(∂Ω), it follows
that also iw belongs to Tp(∂Ω). The hypothesis that p is a convexity point
for Ω gives us the expression, in complex notation:

2Re

( n∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj

)
+ 2

n∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj ≥ 0

when we consider w, and:

−2Re

( n∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj

)
+ 2

n∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj ≥ 0

when we take iw. If we add the two inequality we find that

4
n∑

j,k=1

∂2%

∂zi∂zj
(p)wiwj ≥ 0

So if w is a point of convexity, it is also a point of pseudoconvexity.
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Lemma 1.7. Let Ω ⊆ Rn be strongly pseudoconvex. Then there is a constant
C > 0 and a defining function η for Ω such that

n∑
j,k=1

∂2η

∂zi∂zj
(p)wiwj ≥ C|w|2 (1.6)

for every p ∈ ∂Ω and w ∈ Cn.

Proof. The proof of this Lemma is completely similar to the one of Lemma
1.2.

Example 1.1. Disks are convex sets then they are also pseudoconvex.
Explicity we take the unit disk

Ω =
{
z ∈ C

∣∣ |z| < 1
}

where, if we denote z = x + iy, |z| =
√
x2 + y2. The function % = |z| − 1 is

a defining function for Ω.
Applying the Levi form to %, we get for p ∈ ∂Ω:

d%

dzdz
(p)ww =

1

4|p|2
(

2|p| − pp

|p|

)
|w|2 =

1

4|p|2
(2|p| − |p|)|w|2

=
1

4|p|
|w|2 =

1

4
|w|2.

So Ω is Levi pseudoconvex.

Example 1.2. Let us consider the set Ω = {(z1, z2) ∈ C2
∣∣ |z1|2 + |z2|4 < 1}.

Then the function % := |z1|2 + |z2|4 − 1 is a defining function for Ω. So we
apply the Levi form to % considering the point (w1, w2) ∈ C2:

2∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj =

∂

∂z1

(
∂%

∂z1

(p)w1w1 +
∂%

∂z2

(p)w1w2

)

+
∂

∂z2

(
∂%

∂z1

(p)w2w1 +
∂%

∂z2

(p)w2w2

)
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Now if we consider zj = xj + iyj for j = 1, 2 and we remember that

|zj| =
√
x2
j + y2

j

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
we obtain

%(z1, z2) = %(x1, y1, x2, y2) =x2
1 + y2

1 + (x2
2 + y2

2)2 − 1

x2
1 + y2

1 + x4
2 + y4

2 + 2x2
2y

2
2 − 1

and
∂%

∂z1

=
1

2

(
∂%

∂x1

+ i
∂%

∂y1

)
=

1

2

(
2x1 + 2iy1

)
= x1 + iy1 = z1

∂

∂z2

=
1

2

(
∂

∂x2

+ i
∂

∂y2

)
=

1

2

(
4x3

2 + 4x2y
2
2 + 4iy3

2 + 4ix2
2y2

)
then the Levi form is given by:

2∑
j,k=1

∂2%

∂zi∂zj
(p)wiwj = w1w1 +

1

2

(
∂

∂xj
− i ∂

∂yj

)(
∂%

∂z2

)
w2w2

=w1w1 +
1

4

(
12x2

2 + 4y2
2 + 8ix2y2 − 8ix2y2 + 12y2

2 + 4x2
2

)
w2w2

=w1w1
1

4

(
16x2

2 + 16y2
2

)
w2w2 = |w1|2 + 4(x2

2 + y2
2)|w2|2

=|w1|2 + 4|z2|2|w2|2

So Ω is Levi pseudoconvex. Moreover ∂Ω is strongly pseudoconvex except at
the boundary points where |z2|2 = 0 and the tangent vectors satisfy w1 = 0.
These point are of the form (eiθ, 0).
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Lemma 1.8 (Narasimhan).
Let Ω ⊆ Cn be a connected open set with C2 boundary and p a point of strong
pseudoconvexity. Then there exists a neighborhood of p, U ⊆ Cn such that
and a biholomorphic function ζ on U , such that ζ(U ∩∂Ω) is strongly convex.

Proof. Thanks to the previous proposition we know there exists a defining
function η of Ω such that:

n∑
j,k=1

∂2η

∂xi∂xj
(p)wiwj ≥ C|w|2 ∀w ∈ Cn

We may assume that P = 0 and the unit outward normal vector to ∂Ω

in p ν = (1, 0, . . . , 0), this assumption can be obtained through rotations
and translations of coordinates; all the given definitions are invariant under
biholomorphic transformations, so they are invariant under translations or
unitary complex transformation.
We consider now Taylor expansion of η near p = 0:

η(w) = η(0) +
n∑
j=1

∂η

∂zj
(0)wj +

1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk

+
n∑
j=1

∂η

∂zj
(0)wj +

1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk

+
1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk + o(|w|2)

= 2Re

( n∑
j=1

∂η

∂zj
(0)wj +

1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk

)

+
1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk + o(|w|2)

(1.7)
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= 2Re

(
w1 +

1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk

)

+
1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk + o(|w|2)

(1.8)

We now define the map ζ as follow:

w′1 =ζ1(w) = w1 +
1

2

n∑
j,k=1

∂2η

∂zj∂zk
(0)wjwk

w′2 =ζ2(w) = w2

...
...

w′n =ζn(w) = wn.

By the implicit function theorem, we have that for small enough w this is a
well-posed invertible holomorphic map on a neighborhood of p. Through
the equation (1.8), we can express the defining function in terms of the
coordinates w′:

η̃(w′) = 2Re(w1) +
1

2

n∑
j,k=1

∂2η

∂z′j∂z
′
k

(0)w′jw
′
k + o(|w|2).

So the real Hessian at p of η̃ is the Levi form and this one is definite positive
by hypothesis.
Then the boundary of ζ(W ∩Ω) is strictly convex at ζ(p) and by continuity of
the second derivatives of η, we may conclude that the boundary of ζ(W ∩Ω)

is strictly convex in a neighborhood V of ζ(p). To complete the proof we
choose a neighborhood U ⊆ W of p such that ζ(U) ⊆ V .
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Chapter 2

Levi Curvature

The purpose of this chapter is to introduce the Levi Curvature and to
understand its geometrical content. We will start with some notations and
with the very definition and we will finish up with an isoperimetric estimates,
which bond together Levi curvature and set’s measure.

Let’s start with some notations. Hereafter we shall denote with Ω a con-
nected open set such that Ω := {z ∈ Cn+1

∣∣ f(z) < 0}, where f ∈ C2 is its
defining function and ∂Ω := {z ∈ Cn + 1

∣∣ f(z) = 0} is a Real manifold.
We will write

fj = fzj =
∂f

∂zj

in our hypothesis f is a real value function and ∂pf := (f1(p), . . . , fn+1(p)) 6=
0 at any point p ∈ ∂Ω.
We shall also denote by Tp(∂Ω) the complex tangent space to ∂Ω at point p

Tp(∂Ω) =
{
w ∈ Cn + 1

∣∣∣ n+1∑
j=1

∂f

∂zj
wj = 0

}
.

We finally recall the Levi form defined by

Lp(f, w) := 〈H t
p (f)w,w〉 =

n+1∑
j,k=1

∂2f

∂zi∂zj
(p)wiwj

19
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Levi form, restricted to Tp(∂Ω), is invariant under biholomorphic maps and
recall that a domain Ω is Levi pseudoconvex if Levi form of f is strictly
positive definite ad any point p ∈ ∂Ω.

2.1 Levi Total Curvature

Definition 2.1. Let B = {u1, . . . , un} be an othonormal basis of Tp(∂Ω).
We define the B-normalized Levi form of ∂Ω at p the matrix

Lp(f,B) :=
1

||∇pf ||

(
〈Ht

p(f)uj, uk〉
)
j,k=1,...,n

and we will denote by λ1(p), . . . , λn(p) the eigenvalues of this matrix.

Proposition 2.1. The eigenvalues of the normalized Levi form don’t depend
on the defining function f and the basis B. The only depend on the domain
Ω.

Proof. Let B = {u1, . . . , un} and B′ = {v1, . . . , vn} be two othornormal basis
of Tp(∂Ω) and f and f ′ two defining function for Ω.
We shall denote by U the matrix with columns the vector of B:

U = [u1, . . . , un]

and by A(U) the matrix (〈H t
p (f)uj, uk〉)j,k=1,...,n. Then we have

At(U) = U∗H t
p (f)U

where U∗ = [u1, . . . , un].
Let now consider the matrix V = [v1, . . . , vn] related to the other othonormal
basis B′ of Tp(∂Ω), there exists a n × n othornormal matrix R such that
V = UR, then

At(V ) = R∗U∗H t
p (f)UR = R ∗ At(U)R
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so that A(V ) and A(U) have the same eigenvalues.
Since f and f ′ are defining function of Ω, there exists a function h ∈ C1,
strictly positive in a neighborhood of p, such that f ′ = hf . It follows that

f ′
j,k

(p) = h(p)fj,k(p) + hjfh(p) + hk(p)fj(p).

Hence, for every ζ ∈ Tp(∂Ω)

〈H t
p (f ′)ζ, ζ〉 =h(p)〈H t

p (f)ζ, ζ〉+ 2Re
(
〈ζ,∇pf〉〈∇ph, ζ〉

)
=h(p)〈H t

p (f ′)ζ, ζ〉.

But we have ∇pf
′ = h(p)∇pf , then

1

||∂pf ′||
〈H t

p (f ′)ζ, ζ〉 =
1

||∂pf ||
〈H t

p (f)ζ, ζ〉

for every ζ ∈ Tp(∂Ω).

Definition 2.2. Let Ω ⊆ Cn+1 be a connected open set, it’s said q-pseudoconvex
if ∀j ∈ {1, . . . , q}

σ(j)(λ1(p), . . . , λn+1(p)) :=
∑

1≤i1<...<ij≤n+1

λi1 . . . λij > 0

at every point p ∈ ∂Ω.
We call the function σ(j) jth elementary symmetric function.

Definition 2.3. For every q ∈ {1, . . . , n+ 1} we define q-curvature of Ω

K
(q)
∂Ω(p) =

1(
n

j

) σ(q)(λ)

When q = n we have

K
(n)
∂Ω (p) =

n+1∏
j=1

λj(p)

and in this case we call it Levi total curvature.
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Remark 7. Levi total curvature can be considered as the complex analogous
of the Gauss curvature.

Example 2.1. Let us consider the ball BR = {z ∈ Cn | |z|2 < R2} and let
f(z) = |z|2 −R2 be its defining function, then we have

Lp(f,B) =
1

R
In ∀p ∈ ∂BR,

for any orthonormal basis of Tp(∂Ω). So, all the eigenvalues of the normalized
Levi form are equal to 1

R
and

K
(q)
∂BR

(p) =
( 1

R

)q
(2.1)

for every p ∈ ∂BR.

Remark 8. If Ω is bounded domain of Cn+1 with boundary a C2 real hyper-
surface and f is its defining function, then the j-th Levi curvature of ∂Ω in
z = (z1, . . . , zn+1) ∈ ∂Ω is given by

K
(q)
∂Ω(z) =

1(
n

j

) 1

||∂f ||j+2

∑
1≤i1<...<ij+1≤n+1

∆(i1,...,ij+1)(f)

for every j = 1, . . . , n+ 1, where

||∂f || =

√√√√ n∑
j=1

|fj|2,

∆(i1,...,ij+1)(f) = det


0 fi1 . . . fij+1

fi1 fi1,i1 . . . fi1,ij+1

...
... . . . ...

fij+1
fij+1,i1

. . . fij+1,ij+1


with fj = fj and fjl = ∂2f

∂zj∂zl
.

If we consider the Levi total curvature we obtain
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K
(n)
∂Ω (p) = − 1

||∇pf ||n+2
det


0 f1 . . . fn+1

f1 f1,1 . . . f1,n+1
...

... . . . ...
fn+1 fn+1,n+1 . . . fn+1,n+1

 . (2.2)

Example 2.2. If we now consider the cylinder

CR =

{
(z1, . . . , zn+1) ∈ Cn+1

∣∣∣ n+1∑
j=1

|zj|2 < R2

}
from (2.2) we get

K
(n)
∂CR

(p) = 0

for every p ∈ ∂CR.
There exists some cylinder-like domains whose boundaries have strictly pos-
itive Levi total curvature, for instance, if we take

C∗R =

{
(z1, . . . , zn+1) ∈ Cn+1

∣∣∣ n+1∑
j=1

(zj + zj
2

)2

< R2

}
then we have

K
(n)
∂C∗R

(p) =
( 1

2R

)n
for every p ∈ ∂C∗R.

We’ll now see some integral formulas for compact hypersurfaces which relate
elementary symmetric functions in the eigenvalues of the complex Hessian
matrix of the defining function and the Levi curvatures of the hypersufaces.
We consider H the (n + 1) × (n + 1) Hessian matrix, with eigenvalues
λ1, . . . , λn+1 and let σ(j)(H) be the jth elementary symmetric function in
the eigenvalues of H:

σ(j)(H) =
∑

1≤i1<...<ij≤n+1

λi1 . . . λij
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if we denote H = (hlk) = ∂∂f and by ∂σ(j)(H)
∂hlk

the partial derivative of
the function σ(j) with respect to the term of place lk, we have, for all j =

0, 1, . . . , n:

n+1∑
l=1

∂l

(
∂σ(j+1)(∂∂f)

∂hlk

)
= 0 , ∀k = 1, . . . , n+ 1

we also know, by [6], that

n+1∑
l=1

∂l

(
∂σ(j+1)(∂∂f)

∂hlk

)
=

n+1∑
l=1

∂l
1

j!

∑
δ

(
i1 . . . ij l

j1 . . . jj k

)
fi1j1 . . . fijjj

=
n+1∑
l=1

1

j!

∑
δ

(
i1 . . . ij l

j1 . . . jj k

)(
jfi1j1 . . . fijjj l

)

where 1 ≤ i1, . . . , ij, j1, . . . , jj ≤ n + 1 and the Kronecker symbol δ assumes
value 1 (-1 respectively) if (i1, . . . , ij, l) are distinct and (j1, . . . , jj, k) is a even
permutation (an odd permutation respectively) of (i1, . . . , ij, l), otherwise it
has value 0. We also note that fijjj l is symmetric with respect to ij, l if the
Kronecker symbol is skew symmetric in those indices. So this sum is equal
to zero.

Lemma 2.2. For every f ∈ C2 and for every j = 1, . . . , n+ 1, we have

n+1∑
l,k=1

∂σ(j+1)

∂hlk
(∂∂f) flfk = −

∑
1≤i1<...<ij≤n+1

∆(1,i1,...,ij+1)(f).

Proof. Writing down explicitly σ(j) we obtain

σ(j)(∂∂f) =
∑

1≤i1<...<ij+1≤n+1

∣∣∣∣∣∣∣∣
fi1,i1 . . . fi1,ij+1

... . . . ...
fij+1,i1

. . . fij+1,ij+1

∣∣∣∣∣∣∣∣
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then we can rewrite the right hand side of the equality

n+1∑
l,k=1

∂σ(j+1

∂hlk
(∂∂f)flfk =

n+1∑
l,k=1

flfk
∑

1≤i1<...<ij≤n+1

∂

∂hlk

∣∣∣∣∣∣∣∣
fi1,i1 . . . fi1,ij+1

... . . . ...
fij+1,i1

. . . fij+1,ij+1

∣∣∣∣∣∣∣∣

=
∑

1≤i1<...<ij≤n+1

∑
l,k∈{i1,...,ij+1}

∂

∂hlk

∣∣∣∣∣∣∣∣
fi1,i1 . . . fi1,ij+1

... . . . ...
fij+1,i1

. . . fij+1,ij+1

∣∣∣∣∣∣∣∣ flfk. (2.3)

On the other hand, if we call F (∂f, ∂f, ∂∂f) = −∆(1,i1,...,ij+1)(f), we have

∂F

∂fil
= (−1)l+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fi1 . . . fij+1

fi1,i1 . . . fi1,ij+1

... . . . ...
fil−1,i1

. . . fil−1,ij+1

fil+1,i1
. . . fil+1,ij+1

... . . . ...
fij+1,i1

. . . fij+1,ij+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F

∂fil∂fik
= (−1)l+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fi1,i1 . . . fi1,ik−1
fi1,ik+1

. . . fi1,ij+1

... . . . ...
... . . . ...

fil−1,i1
. . . fil−1,ik−1

fil−1,ik+1
. . . fil−1,ij+1

fil+1,i1
. . . fil+1,ik−1

fil+1,ik+1
. . . fil+1,ij+1

... . . . ...
... . . . ...

fij+1,i1
. . . fij+1,ik−1

fij+1,ik+1
. . . fij+1,ij+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∂

∂hlk

∣∣∣∣∣∣∣∣
fi1,i1 . . . fi1,ij+1

... . . . ...
fij+1,i1

. . . fij+1,ij+1

∣∣∣∣∣∣∣∣ .
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Furthermore we have

F (∂f, ∂f, ∂∂f) =F (∂f, ∂f, ∂∂f)− F (0, ∂f, ∂∂f)

=

∫ 1

0

dF

ds
(s∂f, ∂f, ∂∂f)ds

=

∫ 1

0

∑
l∈{i1,...,ij+1}

∂F

∂fl
(∂f, ∂f, ∂∂f)flds

=
∑

l∈{i1,...,ij+1}

∂F

∂fl
(∂f, ∂f, ∂∂f)fl

∫ 1

0

ds

=
∑

l∈{i1,...,ij+1}

∂F

∂fl
(∂f, ∂f, ∂∂f)fl

using the same argument and the previous results, we obtain

F (∂f, ∂f, ∂∂f) =
∑

l∈{i1,...,ij+1}

∂2F

∂fl∂fk
(∂f, ∂f, ∂∂f)flfk

=
∑

l∈{i1,...,ij+1}

∂

∂hlk

∣∣∣∣∣∣∣∣
fi1,i1 . . . fi1,ij+1

... . . . ...
fij+1,i1

. . . fij+1,ij+1

∣∣∣∣∣∣∣∣ flfk.
Substituing this result into (2.3), we have proved the Lemma.

We also have the following theorem.

Theorem 2.3. Let Ω be a bounded domain of Cn+1 with boundary a real C2

hypersurface. For every f ∈ C2 that is a defining function for Ω and for
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every j = 1, . . . , n, we have∫
Ω

σ(j+1)(∂∂f)dx =

(
n+ 1

j + 1

)
1

2(n+ 1)

∫
∂Ω

K
(j)
∂Ω(z)||∂f ||j+1dσ(x) (2.4)

where K(j)
∂Ω is the jth Levi curvature of ∂Ω.

Proof. σ(j) is an homogenous function of degree j, this means that for every
t ∈ R σ(j)(tA) = tjσ(j)(A), due to this property we get

σ(j+1)(∂∂f) =
1

j + 1

n+1∑
l,k=1

∂σ(j+1)(∂∂f

∂hlk
flk.

We now call νl = ∂lf
||∂f || and we identify Cn+1 with R2(n+1), then through the

previous equations and the classical divergence theorem we obtain∫
Ω

σ(j+1)(∂∂f)dx =
1

j + 1

∫
Ω

n+1∑
l,k

∂l

(
∂σ(j+1)

∂hl,k
(∂∂f)fk

)
dx

=
1

2(j + 1)

∫
∂Ω

n+1∑
l,k

(
∂σ(j+1)

∂hl,k
(∂∂f)fkνl

)
dσ(x)

=
1

2(j + 1)

∫
∂Ω

n+1∑
l,k

(
∂σ(j+1)

∂hl,k
(∂∂f)fkνl

)
||∂f ||

dσ(x)

=− 1

2(j + 1)

∫
∂Ω

∑
1≤i1<...<ij+1≤n+1 ∆(i1,...,ij+1)(f)

||∂f ||
dσ(x)

=−

(
n

j

)
1

2(j + 1)

∫
∂Ω

K
(j)
∂Ω(z)||∂f ||j+1dσ(x)

=−

(
n+ 1

j + 1

)
1

2(n+ 1)

∫
∂Ω

K
(j)
∂Ω(z)||∂f ||j+1dσ(x).
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We will use this integral formula to get an estimate of the jth Levi curvature
and to prove the following theorem.

Theorem 2.4 (Isoperimetric estimates).
Let Ω ∈ Cn+1 be a strictly bounded domain with boundary a real C∞-hypersurface.
If K(j)

∂Ω(z) is non negative at any point z ∈ ∂Ω, then

∫
∂Ω

(
1

K
(j)
∂Ω(ζ)

) 1
j

dσ(ζ) ≥ 2(n+ 1)|Ω|

where |Ω| stands for the Lebesgue measure of Ω.
We have the equality, for K(j)

∂Ω constant, if and only if Ω is a ball of radius(
1

K
(j)
∂Ω(z)

) 1
j .

Proof. If
∫
∂Ω

(
1

K
(j)
∂Ω(ζ)

) 1
j

dσ(ζ) = +∞ we have nothing to prove, so we assume

that
∫
∂Ω

(
1

K
(j)
∂Ω(ζ)

) 1
j

dσ(ζ) < +∞.

Let now f : Ω −→ R be the C2(Ω) solution of the Dirichlet problem{
tr(∂∂f) = 1 in Ω;

f = 0 in ∂Ω.
(2.5)

we recall that tr(∂∂) = 1
4
∆, where ∆ is the usual Laplace operator over R2n+2.

If ∂Ω is C2,α, then this Dirichlet problem has a unique solution f ∈ C2(Ω).
We also recall that for every (n+1)×(n+1) Hermitian matrix A the Newton
inequality holds

σj ≤

(
n+ 1

j

)(
tr(A)

n+ 1

)j
Moreover, this inequality holds if and only if the matrix A is proportional
to the identity matrix. Applying this inequality to the complex Hessian
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matrix of f , where f is a solution of the Dirichlet problem (2.5), we obtain
an estimate of the left side of (2.4)∫

Ω

σj+1(∂∂f)dx ≤

(
n+ 1

j

)
1

(n+ 1)j+1

∫
Ω

(
tr(∂∂f)

)j+1
dx

=

(
n+ 1

j

)
|Ω|

(n+ 1)j+1

Applying again the divergence theorem and calling N the unit outward unit
normal vector, we get∫

∂Ω

|∂f |dσ(x) =
1

2

∫
∂Ω

〈∇f,N〉dσ(x) =
1

2

∫
Ω

∆fdx = 2|Ω|

and using the Cauchy-Schwarz inequality in the right side of (2.4), we obtain

(
n+ 1

j + 1

)
1

2(n+ 1)

∫
∂Ω

K
(j)
∂Ω|∂f |

j+1dσ(x) ≥

(
n+ 1

j + 1

)(∫
∂Ω
|∂f |dσ(x)

)j+1

2(n+ 1)
( ∫

∂Ω

(
1

K
(j)
∂Ω

) 1
j
dσ(x)

)j

=

(
n+ 1

j + 1

)
(2|Ω|)j+1

2(n+ 1)
( ∫

∂Ω

(
1

K
(j)
∂Ω

) 1
j
dσ(x)

)j
the equality holds if and only if |∂f | is proportional to

(
1

K
(j)
∂Ω

)
.By equality

(2.4) and by those two inequality we infer

(2|Ω|)j

2(n+ 1)
( ∫

∂Ω

(
1

K
(j)
∂Ω

) 1
j
dσ(x)

)j ≤ 1

(n+ 1)j

and we obtain ∫
∂Ω

( 1

K
(j)
∂Ω

) 1
j
dσ(x) ≥ 2(n+ 1)|Ω|.

We have to prove now that the equality holds, for K(j)
∂Ω constant, if and only

if Ω is a ball of radius
(

1

K
(j)
∂Ω(z)

) 1
j .
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We know that we have the equality if and only if the complex Hessian matrix
of f is proportional to the identity matrix. The defining function for Ω has
been chosen such that tr(∂∂f) = 1, then ∂∂f = 1

n+1
I in Ω and by the

characterization of Levi Curvature we have(
K

(j)
∂Ω

) 1
j =

1

(n+ 1)|∂f |
on ∂Ω (2.6)

this equality is not enough to conclude that Ω is a ball. In fact, for every
pluriharmonic 1 function h and for every constant R, the function

f(z) = −R2 +
1

n+ 1
|z|2 + h(z)

satisfies ∂∂f = 1
n+1

I. If we take

h(z1, . . . , zn+1) =
Re(z2

1 + . . .+ z2
n+1)

2(n+ 1)

then h is plurisubharmonic and the set of the zeroes of the function

f(z1, . . . , zn+1) = −R2 +
3

2(n+ 1)

n+1∑
j=1

(
Re(zj)

)2
+

1

2(n+ 1)

n+1∑
j=1

(
Im(zj)

)2

is not a sphere, it’s an ellipsoid for every R 6= 0.
However, if K(j)

∂Ω is constant for some j, then by (2.6) |∂f | should be constant
on ∂Ω. It follows that the Dirichlet problem (2.5) is over determinate and by
Serrin’s theorem [7] we can conclude that Ω is a ball and ∂Ω is a sphere.

Remark 9. If K(j)
∂Ω is constant, then we have(

K
(j)
∂Ω

) 1
j ≤ |∂Ω|

2(n+ 1)|Ω|
(2.7)

Giving for known the definition of Euclidean mean curvature we end this
section with a quite important symmetry theorem.

1Let f : Ω→ C a C2 function. f is said to be pluriharmonic if for every complex line
l = {a+ bζ} the function ζ → f(a+ bζ) is harmonic on the set Ωl = {ζ ∈ C | a+ bζ ∈ Ω}.
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Remark 10. Let H be the Euclidean mean curvature of ∂Ω. We recall the
Minkowski formula ∫

∂Ω

dσ =

∫
∂Ω

H(x)〈ν, x〉dσ(x) (2.8)

where ν is the outward unit normal.

Theorem 2.5. Let Ω ⊆ Cn+1 be a bounded star-shaped domain with boundary
a smooth real hyper surface. If the j-Levi curvature is a constant K(j) > 0 at
every point of ∂Ω, then the maximum of the Euclidean mean curvature of ∂Ω

is bounded from below by
(
K(j)

) 1
j . Moreover, if the mean curvature of ∂Ω is

bounded from above by
(
K(j)

) 1
j , then ∂Ω is a sphere e Ω is a ball.

Proof. If Ω is star-shaped with respect to a point, using the divergence the-
orem and by (2.8) we have

|∂Ω| =
∫
∂Ω

dσ ≤ max
∂Ω

H

∫
∂Ω

〈ν, x〉dσ(x)

= max
∂Ω

H

∫
Ω

( 2(n+1)∑
j=1

∂xj
∂xj

)
dx = 2(n+ 1)|Ω|max

∂Ω
H.

(2.9)

Then by (2.9) we obtain

max
∂Ω

H ≥ |∂Ω|
2(n+ 1)|Ω|

since K(j) is a positive constant, by (2.7) we have(
K(j)

) 1
j ≤ |∂Ω|

2(n+ 1)|Ω|
≤ max

∂Ω
H.

Moreover, if max∂ΩH ≤
(
K(j)

) 1
j then

(
K

(j)
∂Ω

) 1
j

=
|∂Ω|

2(n+ 1)|Ω|

and by Theorem 2.4 we can conclude that Ω is a ball.
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Chapter 3

Comparison Theorems

Definition 3.1. Let U be a subset of Rn and s : U −→ R. The application
s is said generalized symmetric function in Rn if:

(i) U and s are invariant with respect to one-to-one rearrangements of
λ1, . . . , λn.
Moreover, U is an open cone contained in the half-space{

(λ1, . . . , λn) ∈ Rn
∣∣∣ n∑

j=1

λj > 0
}

and if λ(A), λ(B) ∈ U , then λ(tA+ (1− t)B) ∈ U , for every t ∈ [0, 1];

(ii) s is smooth and

∂s

∂λj
(λ) > 0 ∀λ ∈ U ∀j = 1, . . . , n;

(iii) for every n× n Hermitian matrix A, the function A −→ S(A), defined
by

S(A) = s(λ(A)),

is smooth and S(A)→ 0 as A→ 0.

For brevity hereafter we shall denote λp(∂Ω) the set of the eigenvalues of the
B-normalized Levi for of ∂Ω at p, λp(Lp(f,B)).

33
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Remark 11. Given a generalized symmetric funcion s : U −→ R, U ⊆ Rn,
the real-value map p 7−→ s(λp(∂Ω)), p ∈ ∂Ω, can be seen as a geometric
feature of ∂Ω.

Definition 3.2. A domain Ω will be said to be s-admissible if λp(∂Ω) ⊆ U ,
for every p ∈ ∂Ω.
Ω is said s-pseudoconvex if is s-admissible and s(λp(∂)) > 0, for every p ∈ ∂Ω.
A defining function f of a domain Ω is said s-admissible if Ω is s-admissible.
Finally, the real number

Sp(∂Ω) := s(λp(∂Ω))

will be called the s-pseudocurvature of ∂Ω at p.

Remark 12. Notion of s-pseudoconvexity and s-pseudocurvature are indepen-
dent from the choice of the defining function f of Ω.

Definition 3.3 (Mean Levi Curvature).
When q = 1 the Levi Curvature K(1)

∂Ω(p) is said mean Levi curvature, indeed
we have

K
(1)
∂Ω(p) =

λ1 + . . .+ λn
n

.

Remark 13. All the previous definitions can be ”localized”, then we can extend
the notion of s-pseudoconvexity to all the graphs of functions defined in a
open subset of R2n+1.

Definition 3.4. Let Ω ∈ R2n+1 an open set and let u be a C2(Ω,R) function.
We denote

Γ(u) =
{

(ξ, τ) ∈ Ω× R
∣∣ u(ξ) < τ

}
γ(u) =

{
(ξ, u(ξ)) ∈ Ω× R

∣∣ ξ ∈ Ω
}
.
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Remark 14. Identifying R2n+2 with Cn+1, we can consider Γ(u) and γ(u) as
subsets of Cn+1.
A function u is said s-pseudoconvex if Γ(u) is s-pseudoconvex in every point
of γ(u).

3.1 Curvature Operators

In this section we will denote by Ω = {z ∈ Cn+1 | f(z) < 0} a domain
of Cn+1 with defining function f ∈ C2, such that ∇pf 6= 0 when f(p) = 0

and ∂Ω = {z ∈ Cn+1 | f(z) = 0}. As first thing we want to show explicitly
a basis of Tp(∂Ω). Since ∇pf 6= 0, we may assume fn+1(p) 6= 0 and define

hl = el − αlen+1

for l = 1, . . . , n, where (e1, . . . , en+1) is the canonical basis for Cn+1, and

αl = αl(p) :=
fl(p)

fn+1(p)
. (3.1)

Then V = {hl | l = 1, . . . n} is a basis for Tp(∂Ω), in fact

〈hl,∇pf〉 =
n+1∑
j=1

〈el − αlen+1, fj(p)ej〉 = fl(p)− αlfn+1(p) = 0.

Hereafter we will identify hl with the complex differential operator

Zl = ∂zl − αl∂zn+1 l = 1, . . . , n. (3.2)

If we consider a point p ∈ ∂Ω, we have

Zl(f) = 〈hl,∇pf〉 = 0 (3.3)

for every l = 1, . . . , n. We also put

αl = αl
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and

Zl = ∂zl − αl∂zn+1 .

Finally, we define for any j, k ∈ {1, . . . , n}

Aj,k = Aj,k(p) := 〈H t
p (f)hj, hk〉.

then we have

Aj,k =〈H t
p (f)(ej − αjen+1), ek − αken+1〉

=fj,k − αkfj,n+1 − αjfn+1.k + αjαkfn+1,n+1.

replacing in the right-hand side of this equation the definitions of αj and αk,
we obtain

Aj,k = − 1

||fn+1||2
det


0 fk fn+1

fj fj,k fj,n+1

fn+1 fn+1,k fn+1,n+1

 . (3.4)

We will denote this matrix

A(f) =
(
Aj,k(f)

)
j,k=1,...,n

.

Proposition 3.1. The eigenvalues of the normalized Levi form of ∂Ω at the
point p ∈ ∂Ω are eigenvalues of the matrix

C(f) :=
1

||∇pf ||
A(f)H(f) (3.5)

where

H(f) = In −
αα∗

1 + ||α||2

with αα∗ products of α = (α1, . . . , αn)t and α∗ = (α1, . . . , αn).

Proof. We shall denote as V the (n+ 1)×n matrix with columns h1, . . . , hn,

v = [h1, . . . , hn] hl = el + αlen+1



3.1 Curvature Operators 37

then, taken U = [u1, . . . , un] with u1, . . . , un orthonormal basis of Tp(∂Ω)

there exists an n× n matrix N such that

V = UN t.

Since At = V ∗H t
p (f)V , we have At(f) = N(U∗H t

p (f)U)N t and

1

||∇pf ||
A(f) = NLp(f, U)N∗

where Lp(f, U) is the U-normalized Levi matrix, then follows that the matrix

Lp(f, U) =
1

||∇pf ||
N−1A(f)(N∗)−1 (3.6)

has the same eigenvalues of the matrix

1

||∇pf ||
A(f)(NN∗)−1.

On the other hand, since U is orthogonal, (NN∗)t = NU∗UN t = V ∗ V , and
by direct calculation we have

(V ∗V )t = In + αα∗.

Finally, by Sherman-Morrison formula

(In + αα∗) = In −
αα∗

1 + ||α||2

Remark 15. Levi total curvature and Levi mean curvature can be expressed
in terms of the matrix A(f) as follows

K
(n)
∂Ω (p) =

||fn+1||2

||∇pf ||n+2
detA(f)

and
K

(1)
∂Ω(p) =

1

||∇pf ||n+2
tr
((
In −

αα∗

1 + ||α||2
)
A(f)

)
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Remark 16. By direct calculation we obtain

Zj(αk) = − 1

f 3
n+1

det


0 fk fn+1

fj fj,k fj,n+1

fn+1 fn+1,k fn+1,n+1

 (3.7)

Zj(αk) = − 1

||fn+1||2fn+1

det


0 fk fn+1

fj fj,k fj,n+1

fn+1 fn+1,k fn+1,n+1

 =
1

fn+1

Aj,k. (3.8)

As a consequence we have the identities

Zj(αk) = Zk(αj) (3.9)

and

Zj(αk) = Zj(αk =
1

fn+1

Aj,k =
1

fn+1

Ak,j. (3.10)

Proposition 3.2. We have, for every j, k = 1, . . . , n,

(i) [Zj, Zk] = 0,

(ii) [Zj, Zk] = Aj,k(f)
(

1
fn+1

∂zn+1 − 1
fn+1

∂zn+1

)
.

Proof. We have

[Zj, Zk] =
(
Zk(αj)− Zj(αk)

)
∂zn+1

from (3.9) follows [Zj, Zk] = 0. As before we have

[Zj, Zk] =
(
Zk(αj)

)
∂zn+1 −

(
Zj(αk)

)
∂zn+1

then, by (3.8) and (3.13), we obtain

[Zj, Zk] =
1

fn+1

Aj,k(f)∂zn+1 −
1

fn+1

Aj,k(f)∂zn+1

.
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Proposition 3.3. Let s be a generalized symmetric function. Let Ω be an
s-admissible domain.Then the s-pseudocurvature of ∂Ω at p ∈ ∂Ω can be
written as

Sp(∂Ω) =
n∑

j,k=1

aj,kAj,k

where aj,k = ak,j smoothly depends on ∂zf , ∂zf , ∂z∂zf and
n∑

j,k=1

aj,kζjζk ≥ m||ζ||2 ∀ζ ∈ Cn

with m > 0 which depends continuously on p and f .

Proof. By definition we have

Sp(∂Ω) = S(Lp(f,B)) = s(λ1, . . . , λn)

where Lp(f,B) is the B-normalized Levi form and λ1, . . . , λn its eigenvalues.
Moreover, if we consider the set of the Hermitian admissible matrix C =

(cl,k)l,k=1,...,n, the function C 7−→ S(C) is smooth. We will denote by Sl,k(C)

the derivatives of S with respect to cl,k. Since L = Lp(f,B) is admissible,
also L + C is admissible, for every Hermitian nonnegative matrix C small
enough. Then we have

S(L+ C)− S(L) = s(η1, . . . , ηn)− s(λ1, . . . , λn)

where η1, . . . , ηn are the eigenvalues of L+C. Since C ≥ 0, we have ηj ≥ λj,
∀j = 1, . . . , n, and by Definition 3.1-(ii)

δ = δ(L) =
1

2
min

{ ∂s

∂λj
(λ1, . . . , λn)

∣∣ j = 1, . . . , n
}
> 0

Hence, for C small enough

S(L+ C)− S(L) =

∫ 1

0

ds

dτ
(λ+ τ(η − λ))dτ

=
n∑
j=1

∫ 1

0

∂s

∂λj
s(λ+ τ(η − λ))dτ(ηj − λj)

≥δ
∑

j = 1n(ηj − ηj) = δ
(
tr(L+ C)− tr(L)

)
=δtr(C).
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We now apply this result to the matrix C = tζζ∗, with ζ ∈ Cn and t > 0

small enough, obtaining

S(L+ tζζ∗)− S(L) ≥ δtr(C) = δt||ζ||2. (3.11)

On the other hand
dS

dt
(L+ tζζ∗)

∣∣∣
t=0

=
n∑

l,k=1

Sl,k(L)ζlζk.

It follows from inequality (3.11) that
n∑

l,k=1

Sl,k(L)ζlζk ≥ δ||ζ||2 ∀ζ ∈ Cn. (3.12)

We will denote by ∇S the matrix (Sl,k)l,k=1,...,n. L is admissible so also tL is
admissible for 0 < t ≤ 1, then

S(L) =

∫ 1

0

dS

dt
(tL)dt =

∫ 1

0

tr(∇S(tL)L)dt

=

∫ 1

0

tr
(
∇S(tL)

1

||∇pf ||
N−1A(f)(N∗)−1

)
dt

=

∫ 1

0

tr
((N∗)−1∇S(tL)N−1

||∇pf ||
A(f)

)
dt.

Denoting by (aj,k)j,k=1,...,n the matrix∫ 1

0

tr
((N∗)−1∇S(tL)N−1

||∇pf ||
dt

we obtain

S(L) =
n∑

j,k=1

aj,kAj,k.

On the other hand, by (3.12)∑
j, k = 1naj,kζjζk =

∫ 1

0

〈∇S(tL)N−1ζ,N−1ζ〉 1

||∇pf ||
dt

≥ 1

||∇pf ||
||N−1ζ||2

∫ 1

0

δ(tL)dt ≥ m||ζ||2
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where
m := inf

||ζ||=1

(
1

||∇pf ||
||N−1ζ||2

∫ 1

0

δ(tL)dt

)
is strictly positive and continuously depending on p and f .

Now we want to analyze the structure of the curvature operators when ap-
plied to the graph of a function u

γ(u) =
{

(ξ, u(ξ)) ∈ Ω× R
∣∣ ξ ∈ Ω

}
.

we consider γ(u) as (a subset of) the boundary of the domain

Γ(u) =
{

(ξ, τ) ∈ Ω× R
∣∣ u(ξ) < τ

}
for which we will take the defining function f(ξ, τ) = u(ξ)− τ . We will also
identify R2n+1 × R con Cn+1 and we wil denote a point of R2n+1 by ξ =

(x1, y1, . . . , xn, yn, t), while we will denote a point in Cn+1 by z = (z1, . . . , zn)

where zj = xj + iyj, ∀j = 1, . . . , n and zn+1 = t+ iτ . Recalling the previous
definitions u is s-admissible if f is s-admissible, u is said s-psudoconvex at a
point ξ ∈ Ω if Γ(u) is s-pseudoconvex at the point (ξ, u(ξ)) ∈ γ(u). If u is
s-pseudoconvex at any point we will say u is s-pseudoconvex.
Let now be ξ ∈ Ω and p = (ξ, u(ξ)) ∈ γ(u), let f the defining function for
Γ(u), by (3.3) we have 0 = Zl(u)− Zl(τ), so it follows

Zl(u) =
i

2
αl (3.13)

where
αl =

fl
fn+1

=
∂xlu− i∂yl
∂tu+ i

.

We remark that for a function v independent of τ

Zl(v) =
(
∂zl −

1

2
αl∂t

)
(v),

we call Wl the complex vector field

Wl = ∂zl −
1

2
αl∂t
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so that Zl(v) = Wl(v). we will also denote

Wl = ∂zl −
1

2
αl∂t

with this notation
Wl(u) =

i

2
αl

and, finally, we put
Bj,k(u) = Aj,k(u− τ) (3.14)

Proposition 3.4. At any point of Ω we have

(i) 1
2
(WjWk +WkWj)(u) =

Bj,k(u)

1+u2
t
,

(ii) [Wj,Wk] = −4i
Bj,k(u)

1+u2
t
∂t.

Proof. By identities (3.8) and (3.9) and by the independence of αj from τ ,
we have

WkWj(u) =
i

2
Wk(αj) =

i

2
Zk(αj) = i

Aj,k(u− τ)

(∂t − i∂τ )(u− τ)

=i
Bj,k(u)

∂tu+ i
.

So

WjWk(u) = WjWk(u) = −i
Bk,j(u)

∂tu− i
= −i

Bj,k(u)

∂tu− i
and

(WjWk +WkWj)(u) = iBj,k(u)
( 1

∂tu+ 1
− 1

∂tu− 1

)
= 2

Bj,k(u)

1 + u2
t

,

this proves (i).

We remark that
[Wj,Wk] = −(Wj(αk −Wk(αj))∂t.

Then, since

Wj(αk) = 2iWjWk(u), Wk(αj) = −2iWkWj(u),

(ii) follows from (i).
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Corollary 3.5. Let u : Ω −→ R be an s-admissible function. Then

dim
(
SpanC

{
Wj, [Wj,Wk]

∣∣ j, k = 1, . . . , n
})

= n+ 1 (3.15)

at any point of Ω.

Proof. Let ξ ∈ Ω be fixed and p = (ξ, u(ξ)). Let λ1, . . . , λn be the eigenvalues
of the normalized Levi form of γ(u) at the point p. Then λ1+. . .+λn > 0. As
a consequence of Proposition (3.1) the matrix (Bj,k)j,k=1,...,n is not vanishing,
so there exists a couple (l,m) such that Bl,m 6= 0 and by Proposition (3.4)
W1, . . . ,Wn, [Wl,Wm] are linearly independent in Cn+1.

Definition 3.5. Let K be a function:

K : Ω× R× R2n+1 −→ R.

We say that u has assigned s-Levi curvature K in Ω if

Sp(γ(u)) = K(ξ, u,∇u)

where p = (ξ, u(ξ)), for every ξ ∈ Ω. ∇u stands for the Euclidean gradient
of u in R2n+1.

Proposition 3.6. Let u ∈ C2(Ω,R) be an s-admissible function. If u has
the assigned s-Levi curvature K in Ω, the it satisfy

L u = K(ξ, u,∇u)

for ξ ∈ Ω, where L is a fully nonlinear operator:

L = Lu :=
n∑

j,k=1

bj,k
WjWk +WkWj

2
(3.16)

and bj,k = bk,j = bj,k(∇u,H u) smootly depends on ∇u and the real Hessian
matrix H u. Moreover, for every compact set C ⊆ Ω there exists m > 0 such
that

n∑
j,k=1

aj,k(∇u(ξ),H u(ξ))ζjζk ≥ m||ζ||2 ∀ζ ∈ Cn

for every ξ ∈ C.
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Proof. By Proposition (3.3) we have

n∑
j,k=1

aj,kBj,k = K(ξ, u,∇u) in Ω.

then by Proposition (3.4) we get the result with

bj,k =
aj,k

1 + u2
t

.

We now introduce the ’real’ form for those curvature operator, let us take

Xj = 2Re(Wj) Yj = −2Im(Wj)

and
aj = −Re(αj) bj = Im(αj).

for every j = 1, . . . , n. We recall that Wj = ∂zj −
αj

2
∂t, then we have

Xj = ∂xj + aj∂t Xj = ∂yj + bj∂t (3.17)

for every j = 1, . . . , n. With this new notations we can rewrite (3.13)

(Xj − iYj)(u) = −iαj = −bj − iaj

so
Xj(u) = −bj Yj(u) = aj.

This relations together with (3.17) let us rewrite aj and bj

aj =
uyj − uxjut

1 + u2
t

,

bj =
−uxj − uyjut

1 + u2
t

.

We now consider the matrix B = (bj,k)j,k=1,...,n, we put

B1 = Re(B) B2 = Im(B).
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and we define the matrix C = (cj,k as the following 2n× 2n block matrix

C =
1

4

(
B1 B2

−B2 B1

)
.

Renaming the vector fields Xj and Yj

Xj = Vj Yj = Vn+j

for j = 1, . . . , n, we can rewrite the curvature operator

L = Lu =
2n∑

j,k=1

cj,k(ξ)VjVk (3.18)

with cj,k(ξ) = cj,k(∇u(ξ),H u(ξ)). Moreover, by Proposition (3.6), for every
compact set C ⊆ Ω

2n∑
j,k=1

cj,k(ξ)ηjηk ≥
m

4

2n∑
j=1

η2
j ∀η ∈ R2n , ∀ξ ∈ C.

Hence, the operator L is ’elliptic’ only along 2n linearly independent direc-
tions and it is not elliptic at any point.
The missing ellipticity direction can be recovered by commutation, indeed
the commutator

[Vj, Vk] = vj,k∂t

for a suitable function vj,k in Ω. By Corollary (3.5), for every ξ ∈ Ω there
exists (j, k) such that vj, k(ξ) 6= 0, so

dim
(
SpanR

{
Vj, [Vj, Vk]

∣∣ j, k = 1, . . . , 2n
})

= 2n+ 1

at any point of Ω.
This property will be crucial in the proof of strong maximum and comparison
theorem.
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3.2 Strong Maximum

and Comparison Principle

Hereafter we will take Ω ⊆ R2n+1 an open set and X1, . . . , X2n linear C1

vector fields in Ω such that

dim
(
SpanR

{
Xj(ξ), [Xj, Xk](ξ)

∣∣ j, k = 1, . . . , 2n
})

= 2n+ 1

for every ξ ∈ Ω. We consider the partial differential operator:

M =
2n∑

j,k=1

βj,k(ξ)XjXk + 〈β,∇〉+ c

where β = (β1, . . . , β2n) and c are real continuos function in Ω. We finally
assume that for every compact set C ⊂ Ω there exists a constant m =

m(C) > 0 such that

2n∑
j,k=1

βj,k(ξ)ηjηk ≥ m||ξ||2 ∀ξ ∈ C, ∀η ∈ R2n

.

Theorem 3.7 (Strong Maximum Principle).
Let Ω0 ⊆ Ω be an open and connected set. Let ω be a C2(Ω0,R) function
such that {

Mω ≥ 0 in Ω0

ω ≤ 0 in ∂Ω0

Then ω ≤ 0 in Ω0 or ω ≡ 0 in Ω0.

Proof. For a detailed proof see [4]

Theorem 3.8 (Comparison Principle).
Let Ω ⊂ R2n+1 be a connected open set. Let u, v ∈ C2(Ω,R) be two s-
pseudoconvex functions. If u ≤ v in Ω and

L u−K(ξ, u,∇u) ≥ L v −K(ξ, v,∇v)

in Ω for some smooth function K : Ω× R× R2n+1 −→ R, then u ≡ v in Ω.
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Proof. First of all, we will denote by L(u) and L(v) the normalized Levi
matrix of u and v, given by replacing in (3.5) the defining function f with
u− τ and v − τ respectly.
The functions u and v are s-admissible, so the eigenvalues of %L(u) + (1 −
%)L(v) belong to U for every 0 ≤ % ≤ 1, where U is the domain of s.
Let us consider w = u− v, we have

L u−L v =Luu−Lvu = S(L(u))− S(L(v))

=

∫ 1

0

dS

d%
(%L(u) + (1− %)L(v))d%

=

∫ 1

0

tr(∇S(%L(u) + (1− %)L(v)) · (L(u)− L(v)))d%

=tr(I · (L(u)− L(v)))

(3.19)

where
I :=

∫ 1

0

∇S(%L(u) + (1− %)L(v))d%

which is a positive definite matrix by (3.12). Considering (3.6) we also have

tr(I · (L(u)− L(v))) = tr(Ĩ · (B(u)−B(v))) + 〈β,∇w〉

where β is a continuous function and

Ĩ =
2√

1 + ||∇u||2
(N−1(u− τ) · I · (N∗)−1(u− τ))

is positive, Hermitian and have continuous coefficients.
Moreover, by Proposition 3.4 and by (3.14), we obtain

B(u)−B(v) =
1

2

(
(1 + u2

t )(WjWk +WkWj)u− (1 + v2
t )(WjWk +WkWj)v

)n
j,k=1

=
1 + u2

t

2

(
(WjWk +WkWj)u− (WjWk +WkWj)v

)n
j,k=1

+ first order derivatives of w.
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We want to write this last term as a second-order operator acting on w, so
we denote Wj[u](w) = (∂zj − 1

2
αj(u)∂t)(w), we also have Wj(u) = Wj[u](u).

Then, we obtain

(WlWm +WmWl)(u)− (WlWm +WmWl)(v) =(Wl[u]Wm[u] +Wm[u]Wl[u])(w)

+ first order derivatives of w.

(3.20)

Hence, denoting Vj[u] = 2Re(Wj[u]) and Vn+j[u] = −2Im(Wj[u]), we can
write

Luu−Lvv =
2n∑

j,k=1

cj,kVj[u]Vk[u](w) + first order derivatives of w. (3.21)

where C = (cj.k) is a positive, non symmetric matrix, defined by

C =
1

4

(
ReĨ ImĨ

−ImĨ ReĨ

)
.

Moreover

K(ξ, u,∇u)−K(ξ, v,∇v) = first order derivatives of w + c1w, (3.22)

and, by (3.20) and (3.22), we have

L u−K(ξ, u,∇u)−L v +K(ξ, v,∇v) = Mw.

Hence, Mw ≥ 0 in Ω and w ≤ 0 in ∂Ω, so the thesis follows from Theorem
3.7.

Theorem 3.9. Let Ω and Ω′ be s-pseudoconvex domains of Cn+1 with con-
nected boundaries. Let suppose the following conditions are satisfied

(i) Ω′ ⊆ Ω and ∂Ω ∩ ∂Ω′ 6= ∅,

(ii) Sp′(∂Ω′) ≤ Sp(∂Ω) for every p ∈ ∂Ω and p′ ∈ ∂Ω′.

Then Ω′ = Ω.
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Proof. We want to prove that for every fixed p ∈ ∂Ω ∩ ∂Ω′ there exists an
open set U ⊆ Cn+1, p ∈ U such that U ∩ ∂Ω = U ∩ ∂Ω′. Then, thanks to the
connectedness of ∂Ω and ∂Ω′, it will follow that ∂Ω = ∂Ω′. This, together
with the inclusion Ω′ ⊆ Ω give us the equality Ω′ = Ω.
So, let p ∈ ∂Ω ∩ ∂Ω′. Without losing generality, we assume p = (ξ0, τ0) with
ξ0 ∈ R2n+1 and τ0 ∈ R and the existence of an open set D ⊆ R2n+1 and a
connected open set U ⊆ Cn+1 = R2n+1 × R such that:

(i) p ∈ U and ξ0 ∈ D,

(ii) there exists u, v ∈ C2(D,R), such that

Ω ∩ U = Γ(u) ∩ U, ∂Ω ∩ U = γ(u) ∩ U,

Ω′ ∩ U = Γ(v) ∩ U, ∂Ω′ ∩ U = γ(v) ∩ U.

So, we have Ω′ ⊆ Ω and p ∈ ∂Ω∩∂Ω′∩U , then u ≤ v in Ω and u(ξ0) = v(ξ0).
Moreover, u and v are s-pseudoconvex and by the second hypotesis of the
theorem

(L)u ≥ (L)v in Ω.

By Theorem 3.8 we can conclude that u ≡ v in Ω, then ∂Ω′ ∩ U = ∂Ω ∩ U
and this concludes the proof.

We conclude the section with some interesting corollaries of this theorem.

Corollary 3.10. Let Ω ⊆ Cn+1 be a q-pseudoconvex domain with connected
boundary, 1 ≤ q ≤ n. Let BR(z0) ⊆ Ω be a ball tangent to ∂Ω in a point of
∂Ω. Then, if

K
(q)
∂Ω(p) ≥

( 1

R

)q
∀p ∈ ∂Ω,

we have Ω = BR(z0).

Proof. The proof follows directly from Theorem 3.9 and identity (2.1) from
Example 2.1.
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Corollary 3.11. Let u : R2n+1 −→ R be a q-pseudoconvex C2 function,
where

BR = {ξ ∈ R2n+1 | |ξ| < R}.

Then
R ≤ sup

ξ∈BR

( 1

K(q)(ξ, u)

) 1
q
.

Proof. By contradiction we assume this inequality false. Then there exists
r > 0, r < R such that

K(q)(ξ, u) >
(1

r

)q
∀ξ ∈ Br. (3.23)

On the other hand, there exists Br(α) ⊂ R2n+1, contained in Γ(u) such that
touches γ(u) at a point p0 = (ξ0u(ξ0)). We now consider v : Br(β) −→ R,
whose graph γ(v) is the lower hemisphere of ∂Br(α). It follows from (3.23)
and identity (2.1) from Example 2.1, that

K(q)(ξ, u) > K(q)(ξ, v) ∀ξ ∈ Br(β),

Furthermore, u ≤ v in Br(β) and u(ξ0) = v(ξ0), then by Theorem 3.8 u ≡ v

in Br(β). This contradict the fact that the gradient of u is bounded in Br(β)

while the one of v is not.
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