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Introduzione

Il concetto di pseudoconvessita viene introdotto per cercare di dare una
caratterizzazione ai domini di olomorfia, quei sottoinsiemi aperti U C C" tali
che non esistono due insiemi non vuoti U; e Us, con Us; connesso e Uy ,i_ U,
U C Uy;NU, tali che per ogni funzione olomorfa h definita su U, esiste
un’altra funzione olomorfa hy definita su U,, tale che h = hy su Uj.

Nel caso in cui n = 1 ogni sottoinsieme aperto di C risulta essere un do-
minio di olomorfia. La situazione quando si considera piti di una variabile
complessa ¢ decisamente diversa e la loro caratterizzazione risulta essere par-
ticolarmente sottile, nello specifico si ha che non tutti i domini sono domini
di olomorfia.

La nozione di pseudoconvessita deriva direttamente da quella di convessita
nel caso reale, insieme alla definizione, a priori del tutto formale, della forma
di Leuvi.

Risulta poi che ogni dominio convesso ¢ un dominio di olomorfia. Si ha pero
che la convessita non é preservata sotto ’azione di mappe biolomorfe ed ¢
quindi necessaria una condizione geometrica meno stringente per lo studio
dei domini di olomorfia: questa condizione é proprio la pseudoconvessita.

Si avra infatti che condizione necessaria e sufficiente per un insieme per essere
un dominio di olomorfia € che sia pseudoconvesso.

Infine, come si vedra, la forma di Levi e il concetto di curvatura di Levi da
essa derivante, introdotti in un contesto puramente formale, hanno un sig-
nificato geometrico profondo, strettamente legato alla struttura dell’insieme

su cui sono definite. Si dimostrera infatti una stima isoperimetrica che lega

il
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la curvatura di Levi alla misura dell’insieme.

Questo lavoro partira da un’estensione analitica del concetto di convessita
geometrica, dimostrandone ’equivalenza e introducendo la forma di Levi, per
poi arrivare alla definizione di pseudoconvessita.

Nel secondo capitolo di introdurra il concetto di curvatura di Levi, dandone
alcune caratterizzazioni ed esempi, fino a dimostrare la stima isoperimetrica
che lega curvatura di Levi e misura di un insieme.

Nell’ultimo capitolo si definiranno una serie di operatori di curvatura, in re-
lazione con la forma di Levi, che permetteranno di dimostrare alcuni teoremi

di confronto.



Chapter 1

Convexity and Pseudoconvexity

1.1 Notions of convexity

The classical definition of convexity is given by:

a subset Q@ € R™ is said to be convex if for any p,q € Q and any X € [0,1]
the combination (1 — \)p + Aq € Q.

Later we shall refer to a set satisfying this condition as geometrically convex.
We know that the most useful definitions are the ones written as differential
conditions. Thus our wish is to find a differential characterization of con-
vexity. We shall begin with some notion we will use in the remainder of the

chapter.

Definition 1.1. Let 2 C R"™ be a connected open set with boundary 0.
We say that Q has C* boundary, k > 1, if exists a function o : R* — R
belonging to C*(U), where U is an open neighborhood of the boundary of €,
such that:

i) QNU ={x € Ulo(z) < 0}
(ii) Vo(z) # 0, Yz € 09

We call this function o a defining function for €.
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Definition 1.2. Let Q C R” be a connected open set with C* boundary and
let o be a C! defining function for Q. Fixed a point p € 9Q we say that

w = (wy,...,w,) a tangent vector to 0N at p if
> 5y, ) w; =0
= 8xj

and we write w € T,,(0%2).

Remark 1. To make sense this definition must be independent from the choice

of the function p, before showing this we give this Lemma.

Lemma 1.1. Let g1 and g3 be two defining function for a connected open set
Q C R™ and let p be a point in 0. We suppose 01,00 € C*(U) where U is
a neighborhood of p. Then there exists a positive function h € C*~1(U) such
that

01 =hos on U (1.1)

Proof. Due to the conditions required for A it can be uniquely determined as

h=2
02

and it is positive and of class C* on U \ 9Q. We fix now a point ¢ € U N 01,

after a C* local change of coordinates, we may assume ¢ = 0,
Uﬂ@Q:{er‘xn:O}

and g9(x) = z,,. For 2’ = (x1,...,2,_1) near zero, we have p;(z’,0) = 0, and

by fundamental theorem of calculus we obtain

1
0 ) = (e ) = e’ 0) = [ SOt
0 n

the integral on the right side of the equation is a function of class C*~! near
0. This last statement is independent of the choice of C*-coordinates, then

1.1) holds with h € C*. m
(1.1)
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Remark 2. We now take another defining function n for {2 and there exists
another function h, not vanishing on a neighborhood of 92, such that n(z) =
h(z)o(x). In this case, for p € O

S = 3 ),

j=1 Oz, j=1

because o(p) = 0. So w is a tangent vector at P with respect to g if and only

if it is a tangent vector at P with respect to 7.

Definition 1.3. Let Q C RY be a bounded domain with C? boundary and
defining function g. Let p be fixed in 0€2. We say that 0S) is (weakly) convex

at p if

for every w € T,(092).
We say that 0€ is strongly convex if this inequality holds strictly whenever

w # 0.
A set Q is said to be conver (strongly convex) if 0 is convex (strongly

convex) at each of its point.

Remark 3. The quadratic form

P9 (p) - wiw,
8:67;(91:]- p Ry

is called the real Hessian of the function p.
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Lemma 1.2. Let 2 C R" be strongly convex. Then there is a constant C' > 0
and a defining function n for Q) such that

w; > 2 .

jk=1
for every p € 02 and w € R™.
Proof. Let o be a C? defining function for Q and we set, for A > 0:

erelz) _q

Oox = 2\

Let p € 092 and define

X=X,={wer

no element in X, could belong to 7},(012), moreover

w| = 1, Za #o}

Since X, has been defined by an nonstrict inequality, it’s closed and also

X, c{weR"

bounded, then it’s compact and we can consider

"9
u—gen)g{‘;afi(p)wi

that is nonzero.
Then we define

. n 829
— mlnwEXp { Zi,j:l axiaxj (p)wlw]}
2
1%

and set 7 = gy. Since e?® = 1, we have, for any w € R" with |w| = 1, that

A:

n 82 n Do 90
zjzzl axﬁxj Z (axﬁ% )\axz( )al_] ( )) W;iWy
B Z Ox;0x; (Pl + 4 oz, (P
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If w ¢ X, then this expression is positive. If w € X, the expression is positive
by the choice of \.

Since the set S = {w € R"| |w| = 1} is compact, we can find a M > 0 such
that

on
8@-8:63-

(p)wyw; > M, Yw € S
k=1

This give us the inequality (1.6) for p € 99 and w € R™ such that |w| = 1.
If w is an arbitrary point in R™, we set w = |w|w, with w € S. Then (1.6)
holds for w € S and multiplying both side of inequality (with w € S) by |w]|?
we can obtain the result for an arbitrary w € R™.

Finally, this estimates hold uniformly in a neighborhood of p, contained in
0, so, since 0f2 is compact, we can choose M uniformly over all boundary
points of 2. O

Proposition 1.3. If Q) is a bounded strongly convex domain, then §2 is geo-

metrically convez.

Proof. We consider the set €2 x €2 and is subset defined here:
Si={(w,w2) €EQAXQ| (1 =Nwi +dws € Q, for Ae]0;1[ }

S is open and non empty.

We prove now it is also closed. We fix a defining function 7 for €2 such that
Lemma 1.2 holds for 7.

By contradiction we suppose that S is not closed as subset of 2 x 2. Then
there exists a sequence (w?,w)) € S which converge to a point (w;,ws) € X
but not in S. By the defintion of S and of defining function, for every j the
function n((1 — t)w] + tw)) < 0, t € [0;1].

Taking the limit for j — oo we obtain 7((1 —t)w; + twy) < 0. So there exists
an interior point 7 € [0; 1] such that eta((1 — 7)w; + T7ws) < 0.

This is an interior maximum point on [0; 1| and this fact contradicts the

positive definition of the real Hessian of 7, so S is also closed. O
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Proposition 1.4. Let Q be a (weakly) convex set, then € is geometrically

CONnver.

Proof. To simplify the proof we assume that 0 is, at least, C3. Moreover
we can assume n > 2 and 0 € 2 without losing generality.

Then for every € > 0 and for M € N we define

€‘$|2M

0:(2) = oz) + — -

where ¢ is a defining function for €2, and we define
Q. ={zeQ|o(z) <0}

then we have 2. C Q0 when &’ < ¢ and |J, Q. = Q.
If we consider M large and ¢ small then (). is strongly convex. It follows

from previous proposition than every (). is geometrically covex, so it is also

Q. ]

Proposition 1.5. Let  C R® have C? boundary and be geometrically con-

vex. Then Q is (weakly) convex.

Proof. Fixed a defining function p for €2, we suppose, by contradiction, there
exist p € 0 and w € T,(0N) such that

Without losing generality we can assume that the R™ coordinates are such
that p = 0 and (0,0,...,0,1) is the outward normal vector to 02 at p. We
may also normalize the defining function so that %(p) =1

We define Q = Q' = tw+¢(0,0,...,0,1), where e > 0 and ¢ € R. By Taylor
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expansion we have:

Q) =00) + 3 2000+ 5 D 52 L 000, +ollQP)

do 1?2 e~ 0?0

. 2 2 | 2
b, (0)ww; + O(e”) + o(e” + t7)

7,k=1

=e — Kt* + O(e®) + o(e* + 7).

If t =0 and € > 0 is small enough we have that o(Q) > 0. However, if
we consider [f| > /2 then o(Q) < 0. This contradicts the definition of
geometric convexity.

Infact if we consider tq,t5 € R such that t; < — 2% and ty > % In this
case o(Q") < 0 and o(Q") < 0 that means Q", Q@ € Q and for geometric
convexity of € also AQ"™ + (1 — N\)Q™ belongs to , for every A € [0;1].
Explicitly we have AQ" + (1 — \)Q"% = (Mt; + (1 — Nt2)w +£(0,0,...,0,1).
Exploiting the Taylor expansion written before and the previous result, for
N = 2 (< 1), we have N't; + (1 — X)t3) = 0 and for € > 0 small enough

to—t1

we have o(NQ™ + (1 — N)Q%) > 0, i.e. Q" + (1 —N)Q™ ¢ Q. O

The next step is to express the differential condition for convexity in complex

notation. If z € C", then the complex coordinates for z are
z2=(z1,...,2n) = (x1 + Y1, ..., Tp + 1Y)

with z;,y; € RVi = 1,...,n. Obviusly we have a natural identification

between C" and R?", given by:

(‘rl +Zy177xn+2yn) — (‘rlvylu"wxrwyn)
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Now, fixed a open set ) C C" with C? boundary and assumed 0 is convex
at p, if o is a defining function for € which is C? near p, then the condition

that w = (& + iy, ..., &, + 1) belongs to T,(09) is given by:

where C" is identified with R?".

In complex notation we recall we have:

0 1,0 0 0 1,0 0
Y (. S d P
0z; 2 (&cj Z@yj> an 0%; (8% Z@y)
by adding this two term we obtain
o _0 0
Or; 0z 0%
and subtracting
o _1 (i _ i)
0y, 0z; 0z
moreover, we have
wj + W; w; — W;
fi — 5 J and n; = J 5; J

putting all this things together we can rewrite the equation as:

% '" [(%Jra%j)dp)} w;+W; 4%2[ (8_2']_8%]) (P)H(wj—@j) =0

Jj=1
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then by direct calculation we have

_ZKaZa 82,> (p>}(wj+wj)+%i[l<%_%> (p)]%(wj_wj):

Jj=1 J=

1~ (9o do, . Op 0o,
9 2 (f(p)wj + a_zj(p)wy + 8_%(29)1”] + ‘(p)wj

which is equivalent to:

2Re<i:1 o, (p)wl) = 0.

The space of the vector that satisfy this last equation is not closed under
multiplication by 7, so one prefers to study a slightly different tangent space

defined as follow.

Definition 1.4. Let Q C C" be a connected open set with C? boundary and
let o be a C? defining function for Q. Fixed a point p € 00 we say that
w € C" belongs to the complex tangent space to 0S) at p if
do
)
azj< ) w]

]:

and we write w € T,(99).
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Remark 4. It is quite obvious that 7,(0f2) is a linear subspace of 7,(0%2).

Before going forward with convexity conditions we give a couple of defi-

nition that will be useful during the following dissertation.

Definition 1.5. Let €2 C C be an open set and f : 2 — C a complex

function. Then f is said to be holomorphic in zy € € if exists the limit:

i 0+ O = f(=0)
¢—0 C

:f/(ZO) C?é()?CGC
We say f is holomorphic on € if it is holomorphic in every point of €.

Remark 5. We recall, taken z = x + iy, a function f, considered as a real

function, is holomorphic if and only if

of  of

——

or oy

then it said that f satisfies the Cauchy-Riemann equation.

Definition 1.6. Let now be 2 C C" a domain. A function f: Q) — C™ is
said to be holomorphic if it is locally expandable in €2 as a convergent power

series.

Remark 6. The definition can be restated as a function f is holomorphic if
and only if satisfies the Cauchy-Riemann equation in each variable separately

and it is locally square-integrable.

Definition 1.7. Let 2; and €2, be two open set in C", then a function
f Q1 — Qs is said to be biholomorphic if it is holomorphic, bijective and

its inverse is also holomorphic.

Now we take a look at the convexity condition on tangent vectors, rewriting

it in complex notation. If w € 7,(012), then
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n

0% ~ P “~ 0%
) 92 ) Z '
8:61(91:] (p>€1£k + ljzﬂ 813181% (P)fﬂ?k + — aylayj (p>77177k

” (aazi + a(;) <a% + 8%)@(1?)(% + i) (w; + ;)

n

0 0 0 0
2233 (524 52) 1 (5~ 52 e+ ) Sy~ )

] k=1

(1.3)

pbh—‘

2:: <azz ai,)l(a%—g%) (p)%(wi—wi)%(wj—mj)

(Z zzﬁzj wlw]) * Z 8z18z] (p)wit;

So we can see that the real Hessian, once we write it in complex coordinates,
decomposes into two parts.

Our aim now is to prove that the second part does transform canonically
under biholomorphyc mappings. We will call it the compler Hessian or the
Levi form of €.

Let  C C" be a convex connected open set with C? boundary, let U be a
neighborhood of Q and ¢ : U — R a defining funcion for Q. Suppose that
¢ : U — ((U) is biholomorphic and set ' = ((U). Then ¢ = po (!
is a defining function for € (this result is a consequence of Hopf’s lemma).
Then fix a point p € 9 and its corrisponding p’ = ((p) € O, finally, if
w € T,(082), then

, n a n 8n /
w :(Z g;f)wj,...,z Caz(jp)wj>€7;/(89).

Jj=1 Jj=1
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Now let fix the complex coordinates on ((U) as zi, ..., 2/, we want to write

’n?

down the expression (1.3) determining convexity in terms of this coordinates

and w'.
We have
o 0 =000~ 90 3G, 0G :£:<9@ 0%
020z ) 0z £ 02 D5, et 04,07 D2 05| 4 D2 02,0
50 Z ¢’ 6Cl B 0% 0Cn OC,
8zja_k 82] — 0z, 0z, = 02, 0%) 0z; 0%y

Replacing this result in expression (1.3) we obtain:

n 82 / / - )
_2Re<z Z 5. 8zl C (p) Cl p)w;wy + Z Zf)zl 8%8%( )ijk>

7,k=11m=1

—~ 9 —~ 9, 9%
) AN AN, ve A
Re (l - 02«/;7182[/ (p )wmwl + L & a ( )aZ]aZk( )w]wk>

(1.4)

So the last part of the expression characterizing convexity is preserved under

biholomorphic mappings.
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1.2 Pseudoconvexity

Definition 1.8. Let Q C C" be a connected open set with C? boundary and
let 0 be a C? defining function for 9. Taken a p € 99 we say that Q is Levi
pseudoconvex at P if
%o
m 02,0z,

(pw;w >0,  Vw e T,(00). (1.5)

We say that the point p is strongly (or strictly) Levi pseudoconvez if this
inequality holds strictly whenever w # 0.
A set €2 is said to be Levi pseudoconvez (strongly Levi pseudoconvez) if every

p € 09 is Levi pseudoconvex (strongly Levi pseudoconvex).

Proposition 1.6. Let Q C C" be a connected open set with C? boundary and

p € 022 one of its point of convexity, then p is also a point of pseudoconvexity.

Proof. Let p be a defining function for €, consider w € T,(09), it follows
that also iw belongs to 7,(012). The hypothesis that p is a convexity point

for €2 gives us the expression, in complex notation:

when we consider w, and:

“9Re zn: ﬂ( Ywiw; | + 2 zn: s (p)wiw; > 0
) Gzi(?zj Pyt ) 821-8@ Pty =

when we take jw. If we add the two inequality we find that

n

%o

4
8zi8§j
=1

s

(pP)wiw; = 0

So if w is a point of convexity, it is also a point of pseudoconvexity. ]
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Lemma 1.7. Let €2 C R" be strongly pseudoconvex. Then there is a constant

C > 0 and a defining function n for Q such that

w; > 2 .
> MZ] p)wiw; > Clul (1.6)

Jk=1

for every p € 02 and w € C™.

Proof. The proof of this Lemma is completely similar to the one of Lemma
1.2. [

Example 1.1. Disks are convex sets then they are also pseudoconvex.

Explicity we take the unit disk
Q={zeC||z[ <1}

where, if we denote z = z + iy, |z| = \/2? + y%. The function p = |z| — 1 is
a defining function for (2.

Applying the Levi form to o, we get for p € 0

do _ 1 ( 2 1 2
Tz @ = (21l = 1) l0l” = o 2lpl — Il
1 1
= gl = gl
|p| 4

So () is Levi pseudoconvex.

Example 1.2. Let us consider the set Q = {(z1,2) € C? | 21>+ |2o|* < 1}.
Then the function ¢ := |21|> + |22|* — 1 is a defining function for Q. So we

apply the Levi form to ¢ considering the point (wy,wy) € C%

2
o o [ o Y B
Z 02,0%; (p)wiw; T 0 (8_El(p)w1w1 + a—zz(p)wlw2>
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Now if we consider z; = x; + 1y; for j = 1,2 and we remember that

2] = /25 +y3
o _1(9 .9
aZj N 2 8:1:j ayj
9 _1f9 .9
9z; 2\ 0x; Oy,

we obtain

0(z1, 22) = o(z1, Y1, w2, y2) =27 + Y7 + (25 + y3)* — 1
o+ Yt + oy +ys + 2a5y; — 1

and 5 5 5
o 1(0o . 0o 1 ( . ) .
oz, 5 (8x1 + Z@yl) 5 Tr1 + 21y T+ =2

0 1/0 .0 1 : ,
| Urot) RECE ARV RS RS

then the Levi form is given by:

i 829 ()w.w.fww _|_1 i_li @ WolD
: 8zi82j Pty =ttt 2 8xj 8yj 852 22

1
=ww; + 1 (12x% + 4y§ + 8ix9ys — Sixoys + 12y§ + 4$g> Wollly
1
:’wlwlz (16ZE§ + 16y§>w2w2 = |w1|2 + 4(1‘% —+ yg)]w2|2

=|w1|? + 4]2|*|wo|?

So Q is Levi pseudoconvex. Moreover 0f2 is strongly pseudoconvex except at
the boundary points where |2;|*> = 0 and the tangent vectors satisfy w; = 0.

These point are of the form (e?,0).
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Lemma 1.8 (Narasimhan).

Let 2 C C" be a connected open set with C? boundary and p a point of strong
pseudoconvexity. Then there exists a neighborhood of p, U C C" such that
and a biholomorphic function ¢ on U, such that ((UNON) is strongly conver.

Proof. Thanks to the previous proposition we know there exists a defining

function 7 of 2 such that:

w;w; > Clw|? Yw e C"
We may assume that P = 0 and the unit outward normal vector to 0f2
in pv = (1,0,...,0), this assumption can be obtained through rotations
and translations of coordinates; all the given definitions are invariant under
biholomorphic transformations, so they are invariant under translations or
unitary complex transformation.

We consider now Taylor expansion of 7 near p = 0:

(w) = n(0) + i@(om- 41 Z PN (0w
= — 0z; T2 L~ 92,0z, 7w
7=1 7,k=1
o, 1 0

25, O 5 2 g, O

2 ] Zjazk (17)
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(1.8)

By the implicit function theorem, we have that for small enough w this is a
well-posed invertible holomorphic map on a neighborhood of p. Through
the equation (1.8), we can express the defining function in terms of the

coordinates w':

ij(w') = 2Re(w;) + Zaw,wmﬂmm
J k=1

So the real Hessian at p of 1) is the Levi form and this one is definite positive
by hypothesis.

Then the boundary of ((WNQ) is strictly convex at ((p) and by continuity of
the second derivatives of 17, we may conclude that the boundary of (W N Q)
is strictly convex in a neighborhood V' of {(p). To complete the proof we
choose a neighborhood U C W of p such that ((U) C V. O
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Chapter 2
Levi Curvature

The purpose of this chapter is to introduce the Levi Curvature and to
understand its geometrical content. We will start with some notations and
with the very definition and we will finish up with an isoperimetric estimates,

which bond together Levi curvature and set’s measure.

Let’s start with some notations. Hereafter we shall denote with 2 a con-
nected open set such that Q := {z € C"™ | f(z) < 0}, where f € C? is its
defining function and 8 := {z € C* + 1 | f(z) = 0} is a Real manifold.

We will write

in our hypothesis f is a real value function and 9, f := (f1(p), ..., fut1(p)) #
0 at any point p € 0.
We shall also denote by 7,(012) the complex tangent space to 02 at point p

n+1 8f
T(00) = {weC +1| Za—zjwj =0},
j=1

We finally recall the Levi form defined by

Ly(f,w) = (A (HHw, w) =

19
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2. Levi Curvature

Levi form, restricted to 7,(012), is invariant under biholomorphic maps and
recall that a domain € is Levi pseudoconver if Levi form of f is strictly

positive definite ad any point p € 0f2.

2.1 Levi Total Curvature

Definition 2.1. Let B = {uy,...,u,} be an othonormal basis of 7,(0%2).
We define the B-normalized Levi form of 0S) at p the matrix

1
LA8B) =1 )

and we will denote by A1(p), ..., A.(p) the eigenvalues of this matrix.

(o)

7,k=1,...n

Proposition 2.1. The eigenvalues of the normalized Levi form don’t depend
on the defining function f and the basis B. The only depend on the domain
Q.

Proof. Let B ={uy,...,u,} and B’ = {vq,...,v,} be two othornormal basis

of 7,(0Q) and f and f’ two defining function for .
We shall denote by U the matrix with columns the vector of B:

U= [ul,...,un]
ANU) = U AU

where U* = [uy, . .., Uy).

Let now consider the matrix V' = [vy, ..., v,] related to the other othonormal
basis B’ of T,(0f2), there exists a n x n othornormal matrix R such that
V = UR, then

ANV) = RU* AN f)UR = R+ A(U)R
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so that A(V) and A(U) have the same eigenvalues.
Since f and f’ are defining function of ), there exists a function h € C*,

strictly positive in a neighborhood of p, such that f’ = hf. It follows that

£ o (0) = h(p) f5,(p) + hifu(p) + hi(p) f5(p)-
Hence, for every ¢ € 7,(02)

(2, (1")C,C) =h(p){A,(f)C,C) + 2Re((C, V. [){V,h, ()

=h(p)(4, (£')C.C)-
But we have V,f" = h(p)V, f, then

1 1
[10,.f1] 10, 1]
for every ¢ € 7,(09). O

(7, (f)C.C) = (4, (£)¢, <)

Definition 2.2. Let QO C C"*! be a connected open set, it’s said g-pseudoconvex
itvje{l,...,q}

cD (M), Ans1(p)) = Z Aiy - Ai; >0

1<ig <...<ij<n+1

at every point p € 0€).

We call the function 0@ jth elementary symmetric function.

Definition 2.3. For every ¢ € {1,...,n+ 1} we define g-curvature of Q

1
Kiw) =~ o0
n
(j>
When ¢ = n we have
n+1

K50 w) = [T )

and in this case we call it Levi total curvature.
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Remark 7. Levi total curvature can be considered as the complex analogous

of the Gauss curvature.

Example 2.1. Let us consider the ball By = {z € C" | |2]* < R?*} and let

f(2) = |z|* — R? be its defining function, then we have
1
Ly(f,B) = 5L Vp€0Bn,

for any orthonormal basis of 7,(0952). So, all the eigenvalues of the normalized

. 1
Levi form are equal to % and

K0 = (3)’ (21)

for every p € 0Bpg.

Remark 8. If © is bounded domain of C**! with boundary a C? real hyper-
surface and f is its defining function, then the j-th Levi curvature of 02 in

2= (21,...,2n41) € 0N is given by

1 1

(@) —
Kpq(2) = EhIEE > Airnisin) ()
n 1§i1<...<ij+1§n+1
<j>
for every j =1,...,n+ 1, where
10f] =
0 g fij+1
Bty (f) = det [ Tt Jofr o S
fij+1 fij+1,a v fi]'+1,ij+1

. i 2
with ;= f; and f;; = 825;7.

If we consider the Levi total curvature we obtain
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0 fT “ .. fm
1 fi f1T flTH
Oy — det ’ : 9.9
o) =g e (22)
fn+1 fn-i—l,ﬁ T fn-i-l,ni-‘rl

Example 2.2. If we now consider the cylinder

n+1
Cr = {(21,...,Zn+1) e Ct! ‘ Z|Zj|2 < RQ}

j=1
from (2.2) we get
K5, () = 0
for every p € 0Cj.
There exists some cylinder-like domains whose boundaries have strictly pos-

itive Levi total curvature, for instance, if we take

n+1

() <)

j=1

CI*% = {(21, Ce ,Zn+1) S (Cn+1

then we have
n L \"
Kiey ») = (23)

for every p € 9CY,.

We’ll now see some integral formulas for compact hypersurfaces which relate
elementary symmetric functions in the eigenvalues of the complex Hessian
matrix of the defining function and the Levi curvatures of the hypersufaces.
We consider H the (n + 1) X (n + 1) Hessian matrix, with eigenvalues
AL Ang1 and let o) (H) be the jth elementary symmetric function in
the eigenvalues of H:

cD(H) = > Xiy - i,

1<ii<...<ij<n+1
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if we denote H = (hgz) = 00f and by % the partial derivative of
1% _

the function o) with respect to the term of place Ik, we have, for all j =

0,1,....n

ntl G+ (99
Za(aa—(%f)):o, Vk=1,....n+1
=1 Ohpg

we also know, by [6], that

L (900D (9D 4o T
Z (0—f)> ZalﬁZ(S(Z,l Z.J k) e fr

=1 Ju - Jj

n+1 ) l

Z 230 g x) Vs L)
where 1 <'4y,...,%;,/1,...,J; <n+ 1 and the Kronecker symbol J assumes
value 1 (-1 respectively) if (i1, ..., 4;,() are distinct and (j1, ..., j;, k) is a even
permutation (an odd permutation respectively) of (i, ...,4;,(), otherwise it
has value 0. We also note that fij@ is symmetric with respect to i, if the
Kronecker symbol is skew symmetric in those indices. So this sum is equal

to zero.

Lemma 2.2. For every f € C? and for every j =1,...,n+ 1, we have

L gg ity

Oh (agf) flf% - Z A(17i17-~47ij+1)(f)'

Lk=1 Ik 1<iy <...<ij<n+1

Proof. Writing down explicitly ¢¥) we obtain

11,81 ce fi1,ij+1

oD (9df) = >
1<iy <...<ij+1<n+1
’ fijﬂﬂ fij+1,ij+1
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then we can rewrite the right hand side of the equality

ntl » n+1 1,01
oottt _ 0

> on— (0N Nifs = Sohfs Y. ol

1,k=1 Ik k=1 1<ir<..<ij<n41 'k

fij+1ﬂ

11,11 ce fil,ij+1

- X > e

1<i1<..<ij<n+1  Lk€{i1,.ij11} £ f
11,01 i

On the other hand, if we call F(0f,df,00f) = ~A iy, ij)

fil e fij+1

11,81 T fi1,ij+1

OF

EEEVAS| _
ofi, =1 fil*l’il filflﬂ'jﬂ
fizﬂ,ﬂ Tt fil+177;j+1
fml,ﬁ Tt fij+17ij+1
AR T fi1,ik71 fi17ik+1
2 _
OFF — (_1)l+k fiz—17i1 T fiz—1,ik—1 fil—lvik-&-l
8filafﬁ fil+17a T fil+17ik71 fiz+1,ik+1
fij+1ﬂ T fij+1»ik—1 fi]‘+1,ik+1

11,01 te fi17ij+1

fij+1ﬂ'1 fij+1ﬂ'j+1

G+ 1

fi17ij+1

fij+1aij+1

fifs (2.3)

(f), we have

fil,ij+1

fiz—1,ij+1

fil+17ij+l

fij+17ij+1
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Furthermore we have

F(0f,0f,00f) =F(0f,0f,00f) — F(0,0f,00f)

:/ A o751, 00f)ds
. ds

8f (af7 af? aaf).flds

lE{’Ll ..... l]+1}

o _ _ 1
- Y Grerareans [ as

le{i1 ..... ij+1}

= Y 05950005
lefit, .. ijs1} f

using the same argument and the previous results, we obtain

FOSDLOIN = Y o (01,0500
1€{i,ijsr} 1R

8 21,21 ° fil,i]'+1
= > 79 A C R

le{il ..... ij+1} Uk f _ f i
Lj+1,21 "7 i1t +1

Substituing this result into (2.3), we have proved the Lemma.

We also have the following theorem.

Theorem 2.3. Let Q be a bounded domain of C*™! with boundary a real C?
hypersurface. For every f € C? that is a defining function for Q and for
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every j =1,...,n, we have

/QU‘J“)(W o = (ji 1) ﬁ/ KR 0f|Hdo(z)  (2.4)

where K g(% is the jth Levi curvature of Of).

Proof. ¢\ is an homogenous function of degree j, this means that for every
teR oW (tA) = o) (A), due to this property we get

. _ 1 M o gpGi+1)09f
U (90 f) = E _
g - .
(00f) 1 — Oy fi

We now call v, = H%l_f\l and we identify C**' with R2"*1 | then through the

previous equations and the classical divergence theorem we obtain

(5+1) — do it
/Q (@01~ / 251( - aaf)fk)dx

n+1 ]+1
/89 1k ( ahlk (aaf)fkl/l)da( )

1 ntl (%ml (aaf>fk’/z)
T2+ 1) /az 1971

do(x)

_ 1 / Zl<11< <ijy1<n+1 A(n 77777 Zﬁl)(f)da(x)

2(j+1) leaal

- (j) 2(j£r 1) /m KS(2)[|0f1]* do(x)

n+1 ; ,
== <j:1> ST [ KRG o ),
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]

We will use this integral formula to get an estimate of the jth Levi curvature

and to prove the following theorem.

Theorem 2.4 (Isoperimetric estimates).
Let Q € C"L be a strictly bounded domain with boundary a real C™-hypersurface.
If Kg(%(z) is non negative at any point z € OS2, then

/aQ <m) ;d"(o > 2(n + 1)|Q

where || stands for the Lebesque measure of .

We have the equality, for K(% constant, if and only if Q is a ball of radius

1
()"
K50(2)

Proof. 1f fan <m> J do(¢) = +oo we have nothing to prove, so we assume
that [, (m) do(¢) < 4o0.
Let now f : Q — R be the C?(Q) solution of the Dirichlet problem

(2.5)

tr(00f) =1 in
f=0 in 0€).

we recall that tr(09) = LA, where A is the usual Laplace operator over R*"+2.
If 0 is %, then this Dirichlet problem has a unique solution f € C2(1Q).
We also recall that for every (n+1) x (n+1) Hermitian matrix A the Newton

oe (M) (Y

Moreover, this inequality holds if and only if the matrix A is proportional

inequality holds

to the identity matrix. Applying this inequality to the complex Hessian
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matrix of f, where f is a solution of the Dirichlet problem (2.5), we obtain

an estimate of the left side of (2.4)
— n -+ 1 1 — j+1
JRICAE ( j ) e L rean) s

_[(n+1 19|
N j (n+4 1)7+1

Applying again the divergence theorem and calling N the unit outward unit

normal vector, we get
1
0f|do(z) = 2/ (V £, NYdo(z /Afdx_2|Q|
o0

and using the Cauchy-Schwarz inequality in the right side of (2.4), we obtain

n+1 j+1
(nH) / K90 do(z) > <J+1> (o 0714202
j4+1)2(n+1) =

2(041) (U (7))
n+1 "
<j+ 1) @2lofy

1) (fo () o))’

the equality holds if and only if |0f]| is proportional to < m) By equality

2.4) and by those two inequality we infer
( y quality
J
2/ o1

1

2+ 1) <f39< (J)) (ZE‘))J ~ (n+4 1)

and we obtain Lo
/{m(Kw) do(z) > 2(n +1)|Q.

We have to prove now that the equality holds, for K {% constant, if and only

1

if 2 is a ball of radius (ﬁ) .
KBQ(Z)
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We know that we have the equality if and only if the complex Hessian matrix
of f is proportional to the identity matrix. The defining function for {2 has
been chosen such that tr(00f) = 1, then 00f = n+r1[ in Q and by the

characterization of Levi Curvature we have

G)Y3 _ 1
(Ks0)7 = EE o)) (2.6)

this equality is not enough to conclude that € is a ball. In fact, for every

pluriharmonic ! function A and for every constant R, the function
1
=R+ ——|z*+h
f(2) + n+1|z| + h(z)
satisfies 00 f = HLHI. If we take

Re(zf+...+22.,)
2(n+1)

h(217 e ,Zn+1) =

then A is plurisubharmonic and the set of the zeroes of the function

n+1 n+1
3 1

f(z1,0 0 2am) = =R + STCE) > (Re()” + STl > (Im(z))”

j=1 j=1
is not a sphere, it’s an ellipsoid for every R # 0.
However, if K ég is constant for some j, then by (2.6) |0f| should be constant
on 09. It follows that the Dirichlet problem (2.5) is over determinate and by

Serrin’s theorem [7] we can conclude that  is a ball and 052 is a sphere. [

Remark 9. If K ég is constant, then we have

o) 109l
(Kfm) =2+ )0 (2.7)

Giving for known the definition of Euclidean mean curvature we end this

section with a quite important symmetry theorem.

Let f:Q — C a C? function. f is said to be pluriharmonic if for every complex line
I ={a+b(} the function ¢ — f(a+ b¢) is harmonic on the set ; = {( € C | a+b{ € Q}.
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Remark 10. Let H be the Euclidean mean curvature of 9€2. We recall the

Minkowski formula

tégda: REEe (2.8)

where v is the outward unit normal.

Theorem 2.5. Let Q C C™"! be a bounded star-shaped domain with boundary
a smooth real hyper surface. If the j-Levi curvature is a constant K9 > 0 at
every point of 0S), then the maximum of the Euclidean mean curvature of 02

W1
15 bounded from below by (K(J)) 7. Moreover, if the mean curvature of 0§ is

bounded from above by (K(j))%, then 0S) is a sphere e § is a ball.

Proof. 1f Q) is star-shaped with respect to a point, using the divergence the-

orem and by (2.8) we have

|09 —/ do <maxH | (v,x)do(z)
o0

o0N 90
(2.9)
2(n+1)
_maxH Z 8% n+1)|Q|maxH
= ax]
Then by (2.9) we obtain

max H 2 ﬂ

09 2(n+1)|Q

since K9 is a positive constant, by (2.7) we have

(K(j))% <199

N Ak HL
=om+ 1) = e

N
Moreover, if maxgo H < (K(J)) 7 then

G\i 109
(#52) BEICESE

and by Theorem 2.4 we can conclude that €2 is a ball. [
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Chapter 3
Comparison Theorems

Definition 3.1. Let U be a subset of R” and s : U — R. The application

s is said generalized symmetric function in R™ if:

(i) U and s are invariant with respect to one-to-one rearrangements of
ALy ooy A

Moreover, U is an open cone contained in the half-space

g)\j >O}

and if A\(A), A(B) € U, then \(tA+ (1 —t)B) € U, for every t € [0, 1];

{(Al,...,)\n)eRn

(i) s is smooth and

0s

— (A A =1,...,n;
8/\j()>0 VYA e U Vj T

(iii) for every n x n Hermitian matrix A, the function A — S(A), defined
by
S(A) = s(A(A)),

is smooth and S(A) — 0 as A — 0.

For brevity hereafter we shall denote \,(052) the set of the eigenvalues of the
B-normalized Levi for of 02 at p, \,(L,(f, B)).

33
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Remark 11. Given a generalized symmetric funcion s : U — R, U C R",
the real-value map p — s(A,(09)), p € 09, can be seen as a geometric
feature of OS2.

Definition 3.2. A domain €2 will be said to be s-admissible if \,(092) C U,
for every p € 0f).

2 is said s-pseudoconver if is s-admissible and s(\,(9)) > 0, for every p € 09.
A defining function f of a domain €2 is said s-admissible if ) is s-admissible.

Finally, the real number
$,(09) 1= s(0(09)

will be called the s-pseudocurvature of 02 at p.

Remark 12. Notion of s-pseudoconvexity and s-pseudocurvature are indepen-

dent from the choice of the defining function f of €.

Definition 3.3 (Mean Levi Curvature).
When ¢ = 1 the Levi Curvature K ((9}2) (p) is said mean Levi curvature, indeed

we have

M+ A
Kjo(p) = =————".

Remark 13. All the previous definitions can be "localized”; then we can extend
the notion of s-pseudoconvexity to all the graphs of functions defined in a

open subset of R?*+1,

Definition 3.4. Let Q € R*"™ an open set and let u be a C*(, R) function.
We denote
I(u)={(&7) € QxR | u(©) <7}

) = {(6.u(€) QxR | €0}
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Remark 14. Identifying R?*"*2? with C"*!, we can consider I'(u) and ~(u) as
subsets of C"*.

A function u is said s-pseudoconvex if I'(u) is s-pseudoconvex in every point
of v(u).

3.1 Curvature Operators

In this section we will denote by Q = {z € C"* | f(z) < 0} a domain
of C"*! with defining function f € C?, such that V,f # 0 when f(p) = 0
and 00 = {z € C""! | f(z) = 0}. As first thing we want to show explicitly
a basis of 7,(0€2). Since V, f # 0, we may assume f,41(p) # 0 and define

hi = e — oyenqn

for [ =1,...,n, where (ey,...,€e,,1) is the canonical basis for C**!, and
fi(p)
a; = qq(p) = : 3.1
: (P) frr1(p) (3.1)
Then V ={h; |l =1,...n} is a basis for 7,(012), in fact
n+1
(hi, Vip f) = Z(el — aient, f3(p)es) = filp) — cufura(p) = 0.
j=1

Hereafter we will identify h; with the complex differential operator
Z; =0, —o0,,., l=1...n (3.2)
If we consider a point p € J€2, we have
Zi(f) = (lu, V,f) =0 (3.3)
for every [ =1,...,n. We also put

a7 = o
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and

then we have
Aj,E :<%?(f)<€j - Oéjenﬂ), €k — Oéken+1>
=ik — oxfim — @ fapis T O i nr

replacing in the right-hand side of this equation the definitions of a; and ag,

we obtain

. 0 I5 fart
A+=——"——det . = U . 3.4
Jik ||fn+1||2 fJ fg,k f],n+1 ( )

n+1 fn+1,% fn+1,m

We will denote this matrix

-----

Proposition 3.1. The eigenvalues of the normalized Levi form of 0 at the

point p € 082 are eigenvalues of the matriz

1
CU) = g AUH() 35)
where
aa’*
H(f) =1, — W
with ao™ products of a = (ay,...,a,)" and o = (@, ..., ay,).

Proof. We shall denote as V' the (n+ 1) x n matrix with columns hy, ..., h,,

V= [hl,...,hn] hl:€l+al€n+1
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then, taken U = [uq,...,u,| with us,...,u, orthonormal basis of 7,(02)

there exists an n X n matrix N such that
V = UN".

Since A' =V « A f)V, we have A'(f) = N(U*A)(f)U)N' and

1

mA(f) = NL,(f,U)N"

where L,(f,U) is the U-normalized Levi matrix, then follows that the matrix

L(f.U) = mw-ww)—l (3.6)

has the same eigenvalues of the matrix
1
IV fll

On the other hand, since U is orthogonal, (NN*) = NU*UN* =V %V, and

by direct calculation we have

A(f)(NNT)

(V*V) =1, + aa™.

Finally, by Sherman-Morrison formula

aa*

1, N=1,— ——
(I +a’) A

]

Remark 15. Levi total curvature and Levi mean curvature can be expressed

in terms of the matrix A(f) as follows

KS%( _Md t A
) =g, g 4 AV)

and

K530) = ozt ( (1~ 1) A))
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Remark 16. By direct calculation we obtain

. 0 Ji St
Zj(ow) = ——z—det | f;  fix  finn (3.7)
n+1
Jovr Jovrk farine
. 0 i Jort )
Zi(ap) = ———————det , - - = Az (3.8
D T I I
fn—i—l fn+1,E fn+1,m
As a consequence we have the identities
Zi(ax) = Zi(a;) (3.9)
and
Z=(ou) = Zi( iy pe g ' (3.10)
(o) = Zi(ap = = = .
A PR e fa
Proposition 3.2. We have, for every j,k=1,...,n,
(i) [Z;. Z] = 0,
(i1) [Zjv Zy| = Aj,E(f) (fn;_,'_lazn+1 - %azm)
Proof. We have
25, Zh) = (Z(ey) — Z(an)) D,
from (3.9) follows [Z;, Zx] = 0. As before we have
[Zj> ZE] = (ZE(aj))aZn-H - (ZJ(QE))aZm
then, by (3.8) and (3.13), we obtain
1 1
(2}, Zz] = fn—HAj,E(f)azn+1 - %Aj,ﬁ(f)azn_‘_l
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Proposition 3.3. Let s be a generalized symmetric function. Let ) be an
s-admissible domain. Then the s-pseudocurvature of 02 at p € 02 can be
written as .
Sp(0) = Y a; 54,5
k=1

where a;z = a5 smoothly depends on 0.f, Oz f, 0.0zf and

n

3 a6 = mllcl? Ve

J,k=1

with m > 0 which depends continuously on p and f.
Proof. By definition we have
Sp(09) = S(Ly(f, B)) = s(A1, ..., \n)
where L,(f, B) is the B-normalized Levi form and Ay, ..., \, its eigenvalues.

Moreover, if we consider the set of the Hermitian admissible matrix C' =

77777

the derivatives of S with respect to ¢;z. Since L = L,(f, B) is admissible,
also L + C' is admissible, for every Hermitian nonnegative matrix C' small

enough. Then we have
S(L+C)—=S(L)=s(m,.-.,nn) — (A1, -, \n)
where 7y, ..., 7, are the eigenvalues of L + C. Since C' > 0, we have n; > A;,
Vj=1,...,n, and by Definition 3.1-(ii)
d=0(L) = %min{ Os

Hence, for C' small enough

S(L+C) = S(L) :/0 %()\ (= A))dr

— Z/O %50\ +7(n—A)dr(n; = Aj)

>5y j=1"(n; —n;) = 8(tr(L + C) — tr(L))
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We now apply this result to the matrix C' = ¢¢C*, with ( € C* and ¢ > 0

small enough, obtaining
S(L+t¢¢*) — S(L) > otr(C) = 6t]|C])?. (3.11)
On the other hand

dsS
—(L+16C7) Z S 5(L)GC
Lk=1
It follows from inequality (3.11) that
> SelGG 2 AP WeT (3.12)

Lk=1
We will denote by V.S the matrix (Slj)l,kzl 7777 n. L 1s admissible so also tL is
admissible for 0 < t <1, then

S(L) = /0 ‘fi (tL)dt — /O I (VS(L) D)t

:/Oltr<VS(tL) HvifHNlA(f)(N*)l)dt

:/O tr<(N*)_HVVf}tHL>N_ Af))

Denoting by (a;7);jk=1,..n the matrix

-----

! i (N*)'VS(tL)N~*
[

we obtain .
=D adiE
jk=1
On the other hand, by (3.12)
1

dt
Vol

1
Sk = 1,508, = / (VS(L)N ¢, N1Q)

1
IV /]l

>

1
IVl [ ezt = miiq)?
0
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where

o 1 e [ )
m._élﬂlfl(vafHHN ¢|| /0 d(tL)dt

is strictly positive and continuously depending on p and f. ]

Now we want to analyze the structure of the curvature operators when ap-

plied to the graph of a function u
J() = {(Eu(€) € QxR | £ € Q).

we consider y(u) as (a subset of) the boundary of the domain
I(u)={(&7) e QxR |ué) <7}

for which we will take the defining function f(&,7) = u(§) — 7. We will also
identify R?"*! x R con C"™! and we wil denote a point of R**! by £ =
(T1,Y1, - -+ s Tn, Yn, t), while we will denote a point in C" by z = (21,...,2,)
where z; = z; +iy;, Vj = 1,...,n and 2,1 =t +i7. Recalling the previous
definitions u is s-admissible if f is s-admissible, u is said s-psudoconvex at a
point £ € Q if T'(u) is s-pseudoconvex at the point (§,u(§)) € y(u). If u is
s-pseudoconvex at any point we will say u is s-pseudoconvex.

Let now be £ € Q and p = (§,u(§)) € y(u), let f the defining function for
I'(u), by (3.3) we have 0 = Z;(u) — Z;(7), so it follows

i

Zl(u) = 50[1 (313)

where .
fi O, — 10y,

N fn+1 &gu + )
We remark that for a function v independent of 7

1

(07}

Zi(v) = (@l — Ealé?t)(v),
we call WW; the complex vector field
1
V[/l = 82’1 - _Oélat

2
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so that Z;(v) = W;(v). we will also denote

with this notation

and, finally, we put

Proposition 3.4. At any point of 2 we have

(3.14)

. ij(u)
(i) 3(W;Wg+ WelWj)(u) = 5,
.. .B. - (u
(1) [W;,Wy] = —42%{53)@.
Proof. By identities (3.8) and (3.9) and by the independence of a; from 7,
we have
i 0 - Ajglu—T)
W (1) =Wl = = F—(on,) — J,
WkI/V](u) 2Wk(a]) 2 k(aJ) Z(at—iaT)(u—T)
:Z.Bj,ﬁu)‘
@u +1
N B3 0
S — By5(u B;z(u
WiWg(u) = WiWi(u) = —i 6tuj—i =—i a:u —
and
1 1 Bz (u)
. — _— . — 'B‘, _ — 2 Js
(Wil W) (w) = B, (5o — 50 —7) =21

this proves (i).

We remark that
Wy, Wg] = =(Wj(ag — Wi(ay))0:.

Then, since
Wilag) = 20W;Wi(u),  Wilay) = —2iWgW(u),

(i) follows from (i).
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Corollary 3.5. Let u : 2 — R be an s-admissible function. Then
dim (Spcm@{Wj, (W, Wr] | k=1 ... ,n}) =n-+1 (3.15)
at any point of €2.

Proof. Let £ € Q be fixed and p = (£, u(§)). Let Ay, ..., A, be the eigenvalues
of the normalized Levi form of «(u) at the point p. Then A +...4+ X, > 0. As

-----

so there exists a couple (I, m) such that B,z # 0 and by Proposition (3.4)
Wi, ..., Wy, [W;, W] are linearly independent in C"*!. O

Definition 3.5. Let K be a function:
K:QxRxR"! R
We say that u has assigned s-Levi curvature K in € if
Sp(y(u)) = K(&,u, Vu)

where p = (&, u(§)), for every £ € Q. Vu stands for the Euclidean gradient

of u in R?"+1,

Proposition 3.6. Let u € C*(,R) be an s-admissible function. If u has

the assigned s-Levi curvature K in ), the it satisfy
Lu=K(& u,Vu)

for & € Q, where £ is a fully nonlinear operator:

L=L=> bj,ijW’f; Ve, (3.16)

jk=1

n

and b,z = E = b, 7:(Vu, #u) smootly depends on Vu and the real Hessian
matriz 7u. Moreover, for every compact set C' C §Q there exists m > 0 such

that

n

3" a1 (Vul€), Au(€))GC = mllclP vCeC

k=1
for every € € C.
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Proof. By Proposition (3.3) we have

Z a;5B;5 = K(§u, Vu) in Q.

then by Proposition (3.4) we get the result with

ik
14 u?

b

j7E

We now introduce the 'real’ form for those curvature operator, let us take

and

aj = —Re(oy) b = Im(oy).
for every j =1,...,n. We recall that W; = 0., — 5.0;, then we have

Xj = @xj + ajat Xj = 8yj + bjat (317)

for every j = 1,...,n. With this new notations we can rewrite (3.13)

(Xj —iY))(u) = —ia; =

—b; —ia;
SO

Xj(u) = =b;  Yj(u) =a;.

This relations together with (3.17) let us rewrite a; and b;

_ Uy T U Uy
a; = —L——"~—

14+u? 7’

T Uay T Uy U
bj = ———F—
1+ u;
We now consider the matrix B = (b;7);r=1

By, = Re(B) By = Im(B).
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and we define the matrix C' = (¢; as the following 2n x 2n block matrix

1 B, B
C== b
4\ -B, B
Renaming the vector fields X; and Y;

X;i=V;  Yj=Vay

for j =1,...,n, we can rewrite the curvature operator
2n
L=L=) crl&ViVi (3.18)
k=1

with ¢;;(€) = ¢; x(Vu(&), #u()). Moreover, by Proposition (3.6), for every
compact set C' C ()

2n 2n
m 2 2n
gk 1c]',k(§)77j77k = T E 1 n; Vn e R*™ | V¢ e C.
JR= J]=

Hence, the operator .Z is ’elliptic” only along 2n linearly independent direc-
tions and it is not elliptic at any point.
The missing ellipticity direction can be recovered by commutation, indeed

the commutator

[‘/j7 Vk] = Uj,kat
for a suitable function v;; in 2. By Corollary (3.5), for every £ € Q there
exists (j, k) such that v;, k(§) # 0, so

dim (SpanR{Vj, Vi, Vil ‘ jk=1,... ,2n}> =2n+1

at any point of 2.
This property will be crucial in the proof of strong maximum and comparison

theorem.
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3.2 Strong Maximum

and Comparison Principle

Hereafter we will take Q C R?"*! an open set and X1, ..., X5, linear C!

vector fields in €2 such that
dim <SpanR{Xj(§), (X5, Xil(©) | 4 k=1,..., 2n}> =2n+1

for every £ € ). We consider the partial differential operator:

2n
M= Bl X; X+ (B, V) + ¢
k=1
where § = (f1,...,02,) and c are real continuos function in 2. We finally

assume that for every compact set C C €2 there exists a constant m =
m(C) > 0 such that

2n
Z Biu(E)nme = ml[€]]? V¢ € C,Vn e R™

Jk=1

Theorem 3.7 (Strong Maximum Principle).
Let Qo C Q be an open and connected set. Let w be a C*(Qo,R) function

such that
{ M >0 inQ

w<0 in iy
Then w <0 in Qy or w =0 wn .

Proof. For a detailed proof see [4] O

Theorem 3.8 (Comparison Principle).
Let Q C R* be a connected open set. Let u,v € C*(Q,R) be two s-

pseudoconver functions. If u < v in Q and
Lu— K& u,Vu) > Lv— K(& v, Vo)

in Q for some smooth function K : Q0 x R x R**! —+ R, then u = v in .
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Proof. First of all, we will denote by L(u) and L(v) the normalized Levi
matrix of u and v, given by replacing in (3.5) the defining function f with
u — 7 and v — 7T respectly.

The functions v and v are s-admissible, so the eigenvalues of oL(u) + (1 —
0)L(v) belong to U for every 0 < o < 1, where U is the domain of s.

Let us consider w = v — v, we have

Lu—Lv=Lu— Lu=S(L(u)) —S(L(v))

:/0 9 oLu) + (1 - 0)L(v))do

(3.19)

_ /O tr(VS(oL(u) + (1 — 0)L(v)) - (L(u) — L(v)))do

=tr(I - (L(u) — L(v)))
where

I:= /01 VS(oL(u) + (1 — 0)L(v))do

which is a positive definite matrix by (3.12). Considering (3.6) we also have

tr(l- (L(u) — L(v))) = tr(I - (B(u) — B(v))) + (8, Vw)
where [ is a continuous function and
T — ;(N—l(u —7)-I- (N Y u—1))

V14| Vul|?

is positive, Hermitian and have continuous coefficients.

Moreover, by Proposition 3.4 and by (3.14), we obtain

Blu) — B(o) =5 (1 + ) (W5 W + Witk )u — (1 + )W, Wi + WihW)o)'

n
jk=1

_1—|—uf
2

+ first order derivatives of w.

(W; Wi + WeWj)u — (W, Wi + WiW;))

Jk=

1
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We want to write this last term as a second-order operator acting on w, so

we denote Wjlu](w) = (0., — sa;(u)9,)(w), we also have W;(u) = W;[u](u).
Then, we obtain

(WiWa + W) (u) — (Wil + Wi W) (v) =(Wi[u]Waslu] + Wialu]Wilu]) (w)

+ first order derivatives of w.

(3.20)

Hence, denoting V;[u] = 2Re(W;[u]) and V,4;[u] = —2Im(W;[u]), we can

write

2n
Lo — Ly = Z ;i VjlulVi[ul(w) + first order derivatives of w. (3.21)

Jk=1

where C' = (c; ) is a positive, non symmetric matrix, defined by
1 Rel Iml
c=- ")
4\ —ImlI Rel

K(&u,Vu) — K(&,v,Vv) = first order derivatives of w + ciw,  (3.22)

Moreover

and, by (3.20) and (3.22), we have
gu_K(f?“avu) —ZU—FK(é,U,VU) = M w.

Hence, #w > 0in Q and w < 0 in 02, so the thesis follows from Theorem
3.7. O

Theorem 3.9. Let Q and Q' be s-pseudoconvexr domains of C*1 with con-

nected boundaries. Let suppose the following conditions are satisfied
(1) V CQ and OQNOQ #0,
(11) Sy (0Y) < S,(0R) for every p € 0 and p' € 05V,

Then ) = (.
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Proof. We want to prove that for every fixed p € 9Q N 0 there exists an
open set U C C"™!, p € U such that UN 9 = UNOSY. Then, thanks to the
connectedness of €2 and 9V, it will follow that 02 = 0€)'. This, together
with the inclusion Q' C Q give us the equality €' = Q.

So, let p € 02 N Y. Without losing generality, we assume p = (&, 79) with
& € R and 7y € R and the existence of an open set D C R***! and a

connected open set U C C"*! = R?"*! x R such that:
(i) pe U and & € D,
(i) there exists u, v € C*(D,R), such that
QNU=T(w)nU, 0QNU=~(u)nU,
ANU=T)NU, VNU=~(v)NnU.

So, we have ' C Q and p € 02N NU, then u < v in Q and u (&) = v(&).
Moreover, u and v are s-pseudoconvex and by the second hypotesis of the

theorem

(L)u > (L)v in Q.
By Theorem 3.8 we can conclude that « = v in Q, then 0Q' NU = 90 NU
and this concludes the proof. [

We conclude the section with some interesting corollaries of this theorem.

Corollary 3.10. Let Q C C*™! be a g-pseudoconvex domain with connected
boundary, 1 < q < n. Let Br(29) C 2 be a ball tangent to 0X) in a point of
0). Then, if

1\¢
K > () weon

we have ) = Bgr(2).

Proof. The proof follows directly from Theorem 3.9 and identity (2.1) from
Example 2.1. O
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Corollary 3.11. Let u : R**' — R be a g-pseudoconvexr C? function,

where
Br ={¢ e R*"" | |¢] < R}.

Then

1 1
R< s (b )
56313% K(q)(f,u)

Proof. By contradiction we assume this inequality false. Then there exists

r >0, r < R such that
1
K9(¢,u) > (;)q Ve € B,. (3.23)

On the other hand, there exists B,(«a) C R*"™!| contained in T'(u) such that
touches y(u) at a point py = (§u(&p)). We now consider v : B.(5) — R,
whose graph 7(v) is the lower hemisphere of 0B, («). It follows from (3.23)
and identity (2.1) from Example 2.1, that

K9 u) > K9(¢v)  VeeB(8),

Furthermore, u < v in B,(f) and u(&) = v(&), then by Theorem 3.8 u = v
in B,.(8). This contradict the fact that the gradient of u is bounded in B,.(53)

while the one of v is not. OJ
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