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Introduction

The first known isoperimetric problem is due to the legendary founder of

Chartage, the Queen Dido. The legend says that Dido, forced to the exile by

her brother, arrived to the coast of Tunisia asking the King of North Africa

for asylum and a piece of land. The king answered he would have given her as

much land as she could mark out with a bull’s skin. With an amazing trick,

Dido cut the bull’s skin into thin strips and sewed them together to get a

long string encircling the piece of land where she would have built Chartage.

This problem can be re-read in a rigorous mathematical context in the

following way:

‘What is the geometrical domain which maximizes the area among all the

figures with the same perimeter?’

Intuitively, the answer is the circle domain, known since the Greek and

rigorously proved only in the 19th century. By the time, this isoperimetric

problem has been extended to higher dimensions and several fields.

In particular, one can consider intrinsically curved spaces, entering the

realm of Riemannian Geometry. In this case, the hypothesis on the curvature

play a fundamental role leading to different conclusions, or inequalities, in

the case it is positive or negative.

In this dissertation we restrict to the positive case looking at the conse-

quences of a strictly positive lower bound of the curvature.

This hypothesis has implications to the first eigenvalue of the Laplacian

and to the isoperimetric profile of a Riemannian manifold of arbitrary dimen-

sion n. Not surprisingly, both of them are bounded from below by the round
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4 Introduction

sphere of dimension n and, when equality holds there exists an isometry

between the sphere and the manifold into consideration.

Since we have a bound from below, we can equivalently say that the

objects of our survey are minimized on the n−dimensional sphere. In this

sense, these results are considered as isoperimetric problems: both the first

eigenvalue of the Laplacian and the isoperimetric profile contain information

about the geometry of the manifold and we investigate how they can be

bounded, finding out that they are minimized by the sphere.

Once this is established, we look at the cases of equality. As already

said, it implies an isometry between the sphere and the manifold, therefore

we ask how much the condition on the curvature can be weakened to get at

least a homeomorphism between them. The answer is that if the sectional

curvature K satisfies the condition 1
4
< K ≤ 1, and M is simply connected

and compact, then it is homeomorphic to a sphere, and since there is a link

between the Ricci curvature and the sectional curvature, we get a restriction

on our initial hypothesis.

All the material is organized in the following way.

The first four chapters contain all the necessary preliminaries. The reason

why this introductory part is so long is that we want to make the reader

familiar with the topic and we want to be sure that everything we are going

to mention or talk about is already well defined and clear.

In Chapter 1 we describe how we move from a differential context to a

Riemannian one giving the basic definitions on Riemannian manifolds such

as affine and Levi-Civita connection, the metric function on a Riemannian

manifold and the notion of geodesics along with the exponential map, the

cut locus and the Theorem of Hopf-Rinow about the completeness. Chapter

2 is about curvature: after the definitions of sectional and Ricci curvature

we turn to the variational formulas for length and energy, we state Bonnet-

Myers Theorem, which can be seen as a first basic result under our hypothesis

on the curvature, and finally, we discuss Jacobi fields. Moreover, as a con-
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crete example, we calculate the sectional curvature of the complex projective

space, that will be recalled in the last chapter. In Chapter 3 we show how

the volume of a Riemannian manifold can be calculated presenting the com-

plete calculation for the n−dimensional round sphere and some comparison

theorems. Finally, in Chapter 4, we introduce the Laplace operator along

with the eigenvalue problems and useful properties of the eigenvalues of the

Laplacian.

After that, we have the main part of the dissertation.

In Chapter 5 we discuss some results about the first eigenvalue of the

Laplacian. We first present the calculation of the spectrum of the sphere of

radius r of dimension n and Bochner’s Formula. Both of them are useful

tools for the proof of Lichnerowicz’ Theorem which gives a comparison with

the sphere. Then we state and prove Cheeger’s Inequality, giving a general

bound for the first eigenvalue in the case of a compact Riemannian manifold.

In Chapter 6 we look at the isoperimetric profile. After the first defi-

nitions, we prove that the sphere minimizes the isoperimetric profile. The

proof of this result needs some preliminaries: a particular way of calculating

the volume of a manifold using the normal exponential map, Heintze-Karcher

Inequality which gives a bound for the square root of the differential of the

normal exponential map and the variational formulas for area and volume,

which we will discuss in full detail.

Finally, in Chapter 7 we present the Sphere Theorem, which answers the

question about the possibility of weakening the hypothesis on the curvature

to conclude a homeomorphism with the sphere. We have chosen to present

the proof only in the even dimensional case, since the odd dimensional one

needs Morse Theory. The proof is based on some fundamental properties of

the cut locus and on an important lower estimate of the injectivity radius

which we will prove in full detail. To conclude this chapter, we show that

the hypothesis of the theorem cannot be weakened by discussing the case of

the complex projective space.





Chapter 1

From differentiable manifolds

to Riemannian manifolds

The aim of this chapter is to introduce the space we are going to work

with. A Riemannian manifold is built from a differentiable manifold defining

an appropriate family of inner products at each point of the manifold. Since

we start with a differentiable manifold, the Riemannian one inherits all its

structures and objects.

In Section 1.1 we give a quick reminding of what an abstract manifold is

and of its main structures along with their fundamental properties. Once it is

done, in Section 1.2 we give a formal definition of Riemannian manifold and

we introduce typical concepts of Riemannian manifolds such as the covariant

derivative, the Levi-Civita connection, geodesics, exponential map and Jacobi

fields.

1.1 Definitions and preliminaries about dif-

ferentiable manifolds

For a complete introduction to differentiable manifolds and for all the

missing materials we refer to [DoC] and [Lee] for a first approach and to

[War] for a more abstract discussion.

7



8 1.1 Definitions and preliminaries about differentiable manifolds

Let M be a topological space. An atlas on M is a family {(Uα, φα)}α∈A
such that:

i)
⋃
α∈A Uα = M with Uα ⊂M ;

ii) φα : Uα −→ Vα ⊂ Rn is a bijective map for every α ∈ A with Uα and

Vα open. φα is called coordinate chart;

iii) the composite φα◦φ−1
β : φβ(Uα∩Uβ) −→ φα(Uα∩Uβ), called coordinate

change, is a differentiable map between open sets of Rn for any α, β ∈ A
and n is the dimension of M .

A differentiable manifold M , i.e. a C∞ manifold M , of dimension n is a

topological space set which comes with a countable atlas {(Uα, φα)}α∈A and

has the Hausdorff property, i.e. for every x, y ∈M with x 6= y there are open

neighbourhoods Ux and Uy such that Ux ∩ Uy = ∅.

From now on M will be our differentiable manifold of dimension n with

atlas {(Uα, φα)}α∈A.

Sometimes we will replace ‘differentiable’ with ‘smooth’.

A function f : U −→ R, with U open set of M , is a C∞ function if for

every chart φ on U the composite f ◦ φ−1 is a C∞ function.

If M̃ is a differentiable manifold of dimension m, a map g : M −→ M̃

is differentiable at the point p ∈ M if for any two charts (U, φ) on M and

(Ũ , ψ) on M̃ , the composite ψ ◦ g ◦ φ−1 is differentiable at φ(p).

It is a differentiable map if it is differentiable at each point p ∈M .

Let D(M, p) := {f : M −→ R | f is differentiable at p ∈M}.
A linear derivation v : D(M, p) −→ R is a tangent vector at p ∈M .

The set of all tangent vectors at the point p is called tangent space and

denoted by TpM .
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It can be shown, see [DoC, p. 7ff], that TpM carries a structure of a real

n−dimensional vector space.

A basis for TpM is the set
{

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

}
, choosing φ = (x1, . . . , xn)

as a chart on M .

The set of all tangent spaces of M at the point p, denoted by TM , is

called tangent bundle.

Further, the tangent bundle TM is a manifold of dimension 2n and the

foot-point projection π : TM −→ M such that π(v) = p, if v ∈ TpM , is a

differentiable map.

The differential of a function f : M −→ M̃ , with M̃ smooth manifold of

dimension m, at the point p ∈M is the map

Df(p) : TpM −→ Tf(p)M̃

such that for each curve c : [a, b] −→ M with c(0) = p and c′(0) ∈ TpM we

have

Df(p)(c′(0)) = (f ◦ c)′(0)

A vector field on M is a differentiable map X : M −→ TM such that

p 7−→ X(p) ∈ TpM .

We denote the vector space of all vector fields on M by X (M).

Taking a point p ∈ U ⊂ M and a chart φ = (x1, . . . , xn) on U , a vector

field X on M is written as

X(p) =
n∑
i=1

αi(p)
∂

∂xi

∣∣∣
p

where αi are differentiable functions on U for all i.

Sometimes it is also convenient to consider the function Xf : M −→ R
where f ∈ C∞(M) which is defined as

(Xf)(p) =
n∑
i=1

αi(p)
∂f

∂xi

∣∣∣
p
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Finally, let X, Y be two vector fields on M . We define the Lie brackets of

X and Y as the unique vector field Z = [X, Y ] such that for every f ∈ C∞(M)

we have

[X, Y ](f) = X(Y f)− Y (Xf)

The Lie brackets of X and Y have the following properties:

i) [X, Y ] = −[Y,X]

ii) [aX + bY, Z] = a[X,Z] + b[Y, Z]

iii) [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X

iv) [[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0

where Z ∈ X (M), f, g ∈ C∞(M) and a, b ∈ R.

1.2 Riemannian manifolds

Definition 1.2.1. Let M be a differential manifold. A Riemannian metric

g = {gp}p∈M is a family of symmetric inner products

gp : TpM × TpM → R

such that for every two vector fieldsX, Y onM the map p 7→ gp(X(p), Y (p))

is differentiable.

The couple (M, g) is called Riemannian manifold.

Just a word of notation: we will always replace the scripture gp(X(p), Y (p))

with < X(p), Y (p) >p (sometimes we will also drop the subscript ‘p’), unless

it is not clear what is the Riemannian metric used. In that case we will use

the round brackets instead of the angle one.

For simplicity we will write M instead of (M, g) to indicate a Riemannian

manifold, unless we need to specify the metric g.
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Let (M, g) be a Riemannian manifold and let ϕ = (x1, . . . , xn) be a coor-

dinate chart on U ⊂M . This chart defines a family of differentiable functions

gi,j : U −→ R, gi,j(p) :=<
∂

∂xi

∣∣∣
p
,
∂

∂xj

∣∣∣
p
>p

1.2.1 Affine connection and Levi-Civita connection

We now turn to the notion of differentiation on a manifold. When we

deal with smooth functions we already know how to work it out, but when

it comes to vector fields we need to introduce the so called affine connection

or covariant derivative and, more specifically, the Levi-Civita connection.

Definition 1.2.2. An affine connection or covariant derivative∇ on a smooth

manifold M is a map

∇ : X (M)×X (M) −→ X (M), (X, Y ) 7−→ ∇XY

with the following properties:

i) ∇fX+gYZ = f∇XZ + g∇YZ

ii) ∇X(Y + Z) = ∇XY +∇XZ

iii) ∇X(fY ) = f∇XY + (Xf)Y

where X, Y, Z ∈ X (M) and f, g differentiable functions on M .

We remark that this definition is given for any smooth manifold.

Turning to the Riemannian contest we have the following result.

Theorem 1.2.3 ([DoC], Theorem 3.6, p. 55). Given a Riemannian man-

ifold M , there exists a unique affine connection ∇, called the Levi-Civita

connection, satisfying the following conditions for every X, Y, Z ∈ X (M):

i) (Riemannian property) X(< Y,Z >) =< ∇XY, Z > + < Y,∇XZ >

ii) (Torsion freeness) [X, Y ] = ∇XY −∇YX



12 1.2 Riemannian manifolds

Since the theorem proves the uniqueness of the Levi-Civita connection we

get a formula which defines it uniquely

< ∇XY, Z >=
1

2

(
X < Y,Z > +Y < X,Z > −Z < X, Y >

− < X, [Y, Z] > − < Y, [X,Z] > − < Z, [Y,X] >
)

(1.1)

One can also ask if it is possible to differentiate a vector field along a

particular direction, i.e. along a given curve c : [a, b] −→ M . The answer is

positive and given by the following definition.

Definition 1.2.4. Let M be a Riemannian manifold and c : [a, b] −→M be a

curve on M . A differentiable map X : [a, b] −→ TM such that X(t) ∈ Tc(t)M
is called a vector field along the curve c.

The set of all vector fields along a curve c form a vector space denoted

by Xc(M).

Proposition 1.2.5 ([DoC],Proposition 2.2, p. 50). Let M be a differentiable

Riemannian manifold, ∇ be the Levi-Civita connection on M , X be a vector

field along the differentiable curve c : [a, b] → M . There exists a unique

vector field, denoted by D
dt
X, along c such that for every X, Y ∈ Xc(M) and

f : [a, b] −→ R differentiable map we have the following:

i) D
dt

(X + Y ) = D
dt
X + D

dt
Y

ii) D
dt

(fX) = f ′(t)X + f D
dt
X

iii) If X is induced by a vector field Y ∈ X (M), i.e. X(t) = Y (c(t)), then
D
dt
X = ∇c′(t)Y

This unique vector field is called the covariant derivative of X along the curve

c.

By the covariant derivative we can define parallel vector fields along a

given curve.
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Definition 1.2.6. Let M be a Riemannian manifold, c : [a, b] −→ M be

a differentiable curve on M and D
dt

be the covariant derivative along c. A

vector field X along c is called parallel if D
dt
X ≡ 0.

The parallel vector field along a given curve c with a given initial value

X(t0) = v is unique (see [Gal-Hul-Laf, Proposition 2.72, p. 75]).

Definition 1.2.7. Let M be a Riemannian manifold and let c : [a, b] −→M

be a curve along M . The parallel transport Pc is a linear map

Pc : Tc(a)M −→ Tc(b)M, such that Pc(v) = X(b)

where v ∈ Tc(a)M and X ∈ Xc(M) is the unique parallel along c such

that X(a) = v.

Proposition 1.2.8 ([Gal-Hul-Laf], Proposition 2.74, p. 75). The parallel

transport Pc : Tc(a)M −→ Tc(b)M is a linear isometry.

1.2.2 Riemannian manifolds as metric spaces

Our next goal is to define a distance function on a Riemannian manifold

which allows us to talk about distance between points.

Definition 1.2.9. Let M be a Riemannian manifold and let c : [a, b] −→M

be a curve on M . We define the length of the curve c as

l(c) =

∫ b

a

||c′(t)||c(t) dt

where ||v|| = √< v, v >.

If c is a piecewise differentiable curve, i.e. c is continuous and there exists a

partition a = t0 < t1 < . . . < tn = b such that c|[ti,ti+1] is differentiable, then

l(c) =
n∑
i=0

l(c|[ti,ti+1]) =
n∑
i=0

∫ ti+1

ti

||c′(t)||c(t)dt

It can be shown that the length is invariant under reparametrization.
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Definition 1.2.10. A differentiable curve c : [a, b] −→ M is arc-length

parametrised if ||c′(t)||c(t) = 1 for all t ∈ [a, b]

Every differentiable curve c : [a, b] −→ M such that c′(t) 6= 0 for all

t ∈ [a, b] has an arc-length reparametrization, that is, it can be turned into

a curve γ : [0, l(c)] −→ M by a strictly monotone differentiable function

ψ : [0, l(c)] −→ [a, b] with ψ(0) = a and ψ(l(c)) = b.

We can now define the distance function.

Definition 1.2.11. Let M be a connected Riemannian manifold. We define

the distance function as the map

d : M ×M −→ R such that d(p, q) = inf l(c)

where the infimum runs all over the curves c : [a, b] −→ M , piecewise

differentiable, such that c(a) = p and c(b) = q.

Now it must be shown that this function is indeed a distance function,

i.e it is non-negative, symmetric and the triangle inequality holds. For this

we refer to [Gal-Hul-Laf, Definition-Proposition 2.91, p. 84].

Furthermore, TpM inherits this metric function, therefore we can define

the unit tangent space SpM = {v ∈ TpM | ||v|| = 1}, the unit metric ball

into TpM , and the unit tangent bundle SM = ∪p∈MSpM .

1.2.3 Geodesics

Definition and characterizations of geodesics

Definition 1.2.12. Let M be a Riemannian manifold and let D
dt

be the

covariant derivative along the curve γ : [a, b] −→ M . γ is said to be a

geodesic if for all t ∈ [a, b] we have D
dt
γ′(t) = 0.

Here we have stated the formal definition of geodesics, but they can also

be characterized as the solution of a second order differential equation.
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Further, they can be considered as critical points of the length function.

We want to investigate the relation between this two points of view.

Theorem 1.2.13 ([Gal-Hul-Laf], Theorem 2.79, p.77). Let M be a Rieman-

nian manifold, p ∈M and U ⊂M be an open neighbourhood of p. Choose a

vector v ∈ TpM , then there exists a unique geodesic cv : [−ε, ε] −→ M such

that cv(0) = 0 and c′v(0) = v.

From this theorem we derive the local existence and the uniqueness of a

geodesic under certain conditions.

Now we turn to the other characterization of geodesics, but before we

give the definition of length of a variation.

Definition 1.2.14. Let M be a Riemannian manifold and c : [a, b] −→ M

be a differentiable curve. A map F : (−ε, ε)× [a, b] −→M is a variation of c

if F (0, t) = c(t) for every t ∈ [a, b].

The variation is said to be proper if F (s, a) = c(a) and F (s, b) = c(b) for

all s ∈ (−ε, ε).
The variation is geodesic if all the curves c(t) = F (0, t) are geodesics.

Definition 1.2.15. Let M be a Riemannian manifold, X be a vector field

on M along the curve c : [a, b] −→ M and F : (−ε, ε) × [a, b] −→ M be

a variation of c. The vector field X is the variational vector field of F if

X(t) := ∂F
∂s

(0, t).

We note that if the variation F is proper then we have X(a) = X(b) = 0.

Definition 1.2.16. We define the length l : (−ε, ε) −→ [0,∞) of a given

variation F along a curve c : [a, b] −→ M with M Riemannian manifold as

follow:

l(s) =

∫ b

a

∥∥∥∂F
∂t

(s, t)
∥∥∥ dt

Now we can regard geodesics as critical points of the length function.
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Theorem 1.2.17 ([Sak], Proposition 2.6, p. 38). Let M be a Rieman-

nian manifold. A curve c : [−ε, ε] −→ M is a geodesic if and only if it

is parametrized by arc-length and l′(0) = 0 for every proper variation of c.

Actually for the proof of this theorem we need to use the first variation

formula of length, but since it is just a reminding chapter and we are not

interested in the proofs of our statement, we postpone this formula to the

next chapter.

We have the following corollary.

Corollary 1.2.18. Let M be a Riemannian manifold and p, q ∈ M . Let

c : [a, b] −→ M be the shortest curve with c(a) = p, c(b) = q parametrized

proportionally to arc-length. Then c is a geodesic.

Exponential map

The notion of geodesic is useful to introduce the exponential map, a map

from a subset of the tangent space of M at the point p into the manifold itself.

Moreover, under certain condition it is a diffeomorphism which means that

there exists its inverse function. So we can come and go from the tangent

space into the manifold working with a space homeomorphic to an open set

of Rn or with an open neighbourhood of p in the initial manifold according

to the situation.

Definition 1.2.19. Let M be a Riemannian manifold and p be a point in

M . Then let v ∈ TpM and cv be the geodesic on M such that cv(0) = p and

c′v(0) = v. If cv(1) exists, we define the map

expp(v) := cv(1)

from a subset of TpM into M . This map is called the exponential map of

M at the point p.

Proposition 1.2.20 ([DoC],Proposition 2.9, p. 65). Let M be a Riemannian

manifold and p ∈ M . There exists an ε > 0 such that expp : Bε(0p) −→ M ,
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where Bε(0p) ⊂ TpM denotes the ball of radius ε centred at the origin 0p of

TpM , is a diffeomorphism into its image.

To conclude this part we state the so called Gauss Lemma.

Theorem 1.2.21 (Gauss Lemma, [Sak], proposition 2.3, p. 36). Let M be

a Riemannian manifold and p ∈ M . For u ∈ TpM suppose that a geodesic

γ(t) = γu(t) is defined for 0 ≤ t ≤ b. Then expp is defined on an open

neighborhood of {tu | t ∈ [0, b]} in TpM , and we get the following:

i) D expp(tu) maps u to γ′(t).

ii) if we regard ξ ∈ TpM also as a vector in TtuTM via the canonical

identification, then the equality

< D expp(tu)ξ, γ′(t) >=< u, ξ >

holds. In particular, ‖D expp(tu)u‖ = ‖u‖ and D expp(tu)ξ ⊥ γ′(t) if

ξ ⊥ u.

Completeness

From analysis and topology we know what ‘being complete’ means for

a space. Using geodesics we have another notion of completeness: ‘being

geodesically complete’. This is related to usual notion of completeness via

Hopf-Rinow Thereom.

Definition 1.2.22. Let M be a Riemannian manifold and γ : [a, b] −→ M

be a geodesic with γ(a) = p and γ(b) = q. γ is said to be minimal between

p and q if d(p, q) = l(γ).

Definition 1.2.23. Let M be a Riemannian manifold. M is said to be

geodesically complete if any geodesic γ : [a, b] −→ M can be extended to a

geodesic defined on all R.

Theorem 1.2.24 (Hopf-Rinow Theorem, [DoC], Theorem 2.8, p.146). Let

M be a Riemannian manifold and let p be a point in M . Then the following

are equivalent:
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i) expp is defined on all TpM ;

ii) every closed and bounded set of M is compact;

iii) M is complete as a metric space;

iv) M is geodesically complete.

In addition, if any of these statements holds then for each point q in M there

exists a minimal geodesic γ joining p and q.

Cut locus

The last objects we recall about geodesics are the cut locus and the in-

jectivity radius, which will be discussed in detail in Chapter 7.

Definition 1.2.25. Let M be a Rienmannian manifold and γ : [0, T ] → M

be a geodesic on M with γ(0) = p ∈M and γ′(0) = v ∈ TpM .

Set tv = sup{t > 0 | γ is minimal between p and γ(t)}.
If tv <∞ we say that γ(tv) is the cut point of p along γ and we refer to

tv as its cut value along γ.

The set Cm(p) = {γ(tv) | v ∈ TpM and tv <∞} is the cut locus of p.

In other words, the cut point of a point p along a specific geodesic is the

last point for which the geodesic is minimal.

Remark 1.2.26. If M is compact, then diam(M) = supp,q∈M d(p, q) is finite

and every two points can be joined by a minimal geodesic according to Hopf-

Rinow Theorem and so we get the existence of the cut point for every geodesic

starting from p.

Finally we have this last definition.

Definition 1.2.27. The injectivity radius of M is defined as

i(M) = inf
p∈M

d(p, Cm(p))



Chapter 2

Curvature

The curvature is a key point in Riemannian Geometry. Speaking in simple

words, we can say that Riemannian Geometry studies curved spaces and

somehow the curvature measures how much the curved space is far away from

a flat one. Therefore we can consider flat spaces, such as R, as particular cases

with curvature identically zero. Here we give a quick reminder of different

kind of curvatures on a Riemannian manifold and of all the objects related

to them.

In Section 2.1 we give the definitions of the sectional and Ricci curvature

followed by the calculation of the curvature of the complex projective space.

In Sections 2.2 and 2.3 we recall the first and second variational formula for

length and energy and we state the Bonnet-Myers Theorem which relates

a particular bound of the Ricci curvature with the diameter of a manifold.

Finally, in Section 2.4 we introduce and discuss Jacobi fields.

2.1 Sectional and Ricci curvatures

We start from the definition of Riemannian curvature tensor and of sec-

tional curvature.

Definition 2.1.1. Let M be a Riemannian manifold and ∇ be the Levi-

Civita connection on M . The Riemannian curvature tensor is the map

19
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R : X (M)×X (M)×X (M)→ X (M)

such that

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ −∇[Y,X]Z

For all the properties of the Riemannian curvature tensor we refer to

[DoC, Section 2, Chapter 4].

Definition 2.1.2. Let M be a Riemannian manifold, p be a point in M and

Σ be a 2−dimensional subspace of TpM . Then let v1, v2 ∈ TpM such that

Σ = span{v1, v2}. Then the sectional curvature of Σ is defined as

K(Σ) = K(v1, v2) :=
< R(v1, v2)v1, v2 >

||v1||2||v2||2− < v1, v2 >2

Remark 2.1.3. It is easy to verify that this definition is independent on the

choice of the vectors v1 and v2.

The second curvature we have is the Ricci curvature which is still defined

with a tensor.

Definition 2.1.4. Let M be a Riemannian manifold of dimension n, p ∈M
and v, w be two vectors in TpM .

The function R(v, ·)w : TpM −→ TpM such that u 7−→ R(v, u)w is linear.

The Ricci curvature tensor is defined as

Ric(v, w) = tr(R(v, ·)w) =
n∑
i=1

< R(v, vi)w, vi >

where v1, . . . , vn is an arbitrary orthonormal base of TpM .

The Ricci curvature is defined as

Ric(v) = Ric(v, v) =
n∑
i=1

< R(v, vi)v, vi >

If v is a unit tangent vector and {v1 = v, v2, . . . , vn} form an arbitrary

orthonormal basis of TpM , then

Ric(v) =
n∑
i=2

< R(v1, vi)v1, vi >
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We remark that this definition is independent on the choice of the basis

of TpM because the trace itself is independent on the basis chosen.

2.1.1 Example: Sectional curvature of Pn(C), the com-

plex projective space

As a concrete example we calculate the sectional curvature of the complex

projective space. For the calculation we use some results about Riemannian

submersions for which we refer reader to [Sak, Section 6, Chapter 2, p. 74ff]

for a quick introduction and to [Gal-Hul-Laf, pp. 63-65 and Section III.D ]

for a detailed discussion.

We consider Pn(C) as Cn+1 − {0}/ ∼ where ∼ is the relation given by

z ∼ w =⇒ z = λw with λ 6= 0.

Considering the unit sphere S2n+1 in Cn+1, there exists a submersion

f : S2n+1 −→ Pn(C).

Equipping S2n+1 with the metric g induced by Cn+1 = R2n+2 and con-

sidering the group of isometries eiθ : S2n+1 −→ S2n+1, 0 ≤ θ ≤ 2π, we can

make f a Riemannian submersion, i.e. a submersion whose differential is

an isometry on the horizontal space into the tangent space of the complex

projective plane in each point, defining uniquely a Riemannian metric h on

Pn(C) by

hq(u, v) = gp(u, v)

where q = f(p) and u, v are the horizontal lifts of u, v respectively, namely,

Df(p)(u) = u and Df(p)(v) = v.

Here the vertical space is the space of all tangent vectors in the direc-

tion of some fiber f−1(p) while the horizontal space contains the tangent

vectors orthogonal to the fiber. Moreover the vertical directions form a one

dimensional space at every point.

Therefore the map f is indeed

f : (S2n+1, g) −→ (Pn(C), h)
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Let X, Y ∈ X (Pn(C)) be a pair of orthonormal vector fields. We observe

that by the definition of h, the horizontal lifts X,Y of X and Y , are a pair

of orthonormal vector fields on S2n+1 as well.

Let Z ∈ TS2n+1 such that Z(p) = d
dθ
eiθp = ip. It turns out that the

multiplication by i is an isometry and Z is tangent to the fiber f−1(p), i.e. a

vertical vector field with norm 1.

Further, let c : (−ε, ε) −→ S2n+1 be a curve such that c(0) = p and

c′(0) = X(p) and let ∇̃ be the Levi-Civita connection on S2n+1, we have

(∇̃XZ)(p) =
d

dt

∣∣∣
t=0

(Z ◦ c)(t) = ic′(0) = iX(p)

We also note that ∇̃XZ = ∇̃ZX. In fact, [X,Z] = 0 because X is an

horizontal vector field and Z a vertical one and it is possible to find a local

coordinate system such that X,Z are coordinate directions.

Moreover

g([X,Y ], Z) = g(∇̃XY , Z)− g(∇̃YX,Z) =

= X
(
g(Y , Z)

)
− g(Y , ∇̃XZ)− Y

(
g(X,Z)

)
+ g(X, ∇̃YZ) =

= −g(Y , ∇̃XZ) + g(X, ∇̃YZ) =

= −Z
(
g(X,Y )

)
+ g(∇̃ZY ,X) + g(X, ∇̃ZY ) =

= 2g(X, ∇̃ZY ) = 2g(iY ,X)

The vertical component of [X,Y ], denoted by [X,Y ]v, is given by:

[X,Y ]v = g([X,Y ], Z)Z = 2g(iY ,X)Z

Therefore

‖[X,Y ]v‖2 = 4g(X, iY )2‖Z‖2 = g(X, iY ) = 4 cos2 ϕ



2.2 Variational formulas of length and energy 23

where the last equality is due to g(X, iY ) = ‖X‖2 · ‖iY ‖2 cosϕ = cosϕ

where ϕ is the angle between X and Y .

At this point we can use O’Neill Formula (see [Gal-Hul-Laf, Theorem

3.61, p. 127]) which states that if f : (M̃, g̃) −→ (M, g) is a Riemannian

submersion, then for each pair of orthonormal vector fields X, Y ∈ X (M)

and for their horizontal lifts X,Y ∈ X (M̃), we have the following relation:

K(span{X, Y }) = K(span{X,Y }) +
3

4
‖[X,Y ]v‖2

Hence, for the sectional curvature of Pn(C) we have:

1 ≤ K(span{X, Y }) = 1 + 3 cos2 ϕ ≤ 4

In particular, we can rescale the metric on Pn(C) in such a way that

1

4
≤ K(span{X, Y }) ≤ 1

2.2 Variational formulas of length and energy

For variational formulas we mean formulas about derivatives of a function

defined on a variation. In our case we are going to recall them for the first

and second derivative of length, introduced in Definition 1.2.23, and of energy

that we define below.

Definition 2.2.1. Let F : (−ε, ε) × [a, b] −→ M be a variation on a Rie-

mannian manifold M along the curve c : [a, b] −→M . We define the energy

as the map

E : (−ε, ε) −→ [0,∞) such that E(s) =
1

2

∫ b

a

∥∥∥∂F
∂s

(s, t)
∥∥∥2

dt

Before starting with variational formulas, we want to show the relation

between energy and length. In fact, taking a curve c : [a, b] −→ M on a

Riemannian manifold M and considering the associated length and energy,

by Cauchy-Schwartz Inequality we get:

l(c)2 ≤ 2(b− a)E(c) (2.1)
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with equality if and only if the curve is parametrized proportional to

arc-length.

This relation and the fact that geodesics minimize the length (see Corol-

lary 1.2.18) allow the following lemma.

Lemma 2.2.2 ([DoC], Lemma 2.3, p. 194). Let M be a Riemannian man-

ifold and let p, q ∈ M . We consider the minimal geodesic γ : [a, b] −→ M

joining p and q. Then, for all curves c : [a, b] −→ M joining p and q we

have:

E(γ) ≤ E(c)

Equality holds if and only if c is a minimal geodesic.

As a consequence, all curves which minimize energy are parametrized

proportionally by arc-length. In particular, minimizing curves for energy are

minimal geodesics.

We can now introduce the variational formulas.

First and second variational formula for length

Theorem 2.2.3 (First variational formula of length). Let M be a Rieman-

nian manifold and F : (−ε, ε) × [a, b] −→ M be a variation of a curve

c : [a, b] −→ M with c′(t) 6= 0 for all t ∈ [a, b]. Let X be its variational

vector field and l : (−ε, ε) −→ [0,∞) be the associated length. Then we have:

l′(0) =

∫ b

a

1

||c′(t)||
d

dt
< X(t), c′(t) > dt−

∫ b

a

1

||c′(t)||
< X(t),

D

dt
c′(t) > dt

(2.2)

Moreover if c is arc-length parametrized, then:

l′(0) =< X(b), c′(b) > − < X(a), c′(a) > −
∫ b

a

< X(t),
D

dt
c′(t) > dt (2.3)

For its proof we refer to [Sak, Proposition 2.5, p. 38].

Remark 2.2.4. If the variation F is proper and the curve c is a geodesic then

l′(0) = 0. Therefore geodesics are critical points for length.
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Theorem 2.2.5 (Second variational formula for length). Let M be a Rie-

mannian manifold and let F : (−ε, ε)× [a, b] −→M be a proper variation of

a geodesic c : [a, b] −→ M with ||c′(t)|| = 1 for all t ∈ [a, b]. Let X be its

variational vector field and X⊥ = X(t)− < X(t), c′(t) > c′(t) be the compo-

nent of X orthogonal to c′. If l : (−ε, ε) −→M is the associated length, then

l′(0) = 0 and

l′′(0) =

∫ b

a

∥∥∥D
dt
X⊥
∥∥∥2

−K(span{c′, X⊥})‖X⊥‖2 dt (2.4)

If X⊥ = 0, we set K(span{c′, X⊥}) = 0.

For its proof we refer to [Sak, p. 91]

First and second variational formula for energy

Theorem 2.2.6 (First variational formula for energy). Let M be a Rieman-

nian manifold and F : (−ε, ε)× [a, b] −→M be a variation of a differentiable

curve c : [a, b] −→M with c′(t) 6= 0 for all t ∈ [a, b]. Let X be its variational

vector field and consider E : (−ε, ε) −→ M the associated energy. We have

the following:

E ′(0) =< X(b), c′(b) > − < X(a), c′(a) > −
∫ b

a

< X(t),
D

dt
c′(t) dt (2.5)

For its proof we refer to [DoC, Proposition 2.4, p. 195].

As a consequence we have the following.

Proposition 2.2.7 ([DoC], Proposition 2.5, p. 196). A differentiable curve

c : [a, b] −→ M on a Riemannian manifold M is a geodesic if and only if,

for every proper variation F of c we have E ′(0) = 0.

That is, geodesics are critical points of the energy function for every

proper variation.

Theorem 2.2.8 (Second variational formula for energy). Let M be a Rie-

mannian manifold and let F : (−ε, ε) × [a, b] −→ M be a variation of a
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geodesic c : [a, b] −→M . Let X be its variational vector field. Then we have:

E ′′(0) =

∫ b

a

∥∥∥D
dt
X
∥∥∥2

− < R(X, c′)c′, X > dt

+ <
D

ds

∣∣∣
s=0

∂F

∂s
(s, b), c′(b) > − <

D

ds

∣∣∣
s=0

∂F

∂s
(s, a), c′(a) > (2.6)

In particular, if the variation is proper the last two terms vanish.

The reference for the proof is [DoC, Proposition 2.8 and following Re-

marks, p. 197ff].

2.3 Bonnet-Myers Theorem

Bonnet-Myers Theorem shows that the curvature, in this case the Ricci

curvature, has implication on the diameter of a manifold. It can be proved

by a variational argument using the second variational formula for length.

For a complete proof see [DoC, Theorem 3.1, p. 200], .

Theorem 2.3.1 (Bonnet-Myers Theorem). Let M be a connected, complete,

n−dimensional Riemannian manifold such that

Ric(v) ≥ n− 1

r2

for all v ∈ SM = {w ∈ TM | ||w|| = 1}. Then we have

diam(M) ≤ πr

In particular, M is closed and bounded and therefore it is compact.

It can be shown that this estimate is optimal since equality holds for the

round n−sphere of radius r, Snr . In fact, its sectional curvature is constant

and equal to 1
r2

so the Ricci curvature is exactly equal to n−1
r2

, which means

that the hypothesis of the theorem are satisfied. Moreover its diameter is πr

and the theorem is satisfied with equality.
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2.4 Jacobi fields

Definition 2.4.1. Let M be a Riemannian manifold, let R(·, ·) denote the

Riemannian tensor and let γ : [a, b] −→M be a geodesic. A Jacobi field is a

vector field J along γ satisfying the following equation for every t ∈ [a, b]:

D2

dt2
J(t) +R(γ′(t), J(t))γ′(t) = 0 (2.7)

Equation (2.7) is called Jacobi equation.

For simplicity we will write J ′′+R(γ′, J)γ′ = 0 denoting with the double

dash the second covariant derivative of the vector field J along the geodesic γ.

As for geodesics, Jacobi fields can be obtained solving a second order

differential equation.

Theorem 2.4.2 ([Gal-Hul-Laf], Theorem 3.43, part (i), p. 115). Let M be a

Riemannian manifold of dimension n and let γ : [0, T ] −→ M be a geodesic

on M . Then for any u, v ∈ Tγ(0)M there exists a unique Jacobi field along γ

such that J(0) = u and J ′(t) := D
dt
J(t) = v. If J(0) and J ′(0) are orthogonal

to γ′(0) then J(t) is orthogonal to γ′(t) for every t.

The vector space of all Jacobi fields has dimension 2n and the subspace

of all the Jacobi fields which are normal to γ has dimension 2(n− 1).

This is not the only way to get a Jacobi field: they also arise as variational

vector fields of a geodesic variation.

Proposition 2.4.3 ([Gal-Hul-Laf], Proposition 3.45, p. 116). Let M be a

Riemannian manifold, γ : [a, b] −→ M be a geodesic on M and F be a

geodesic variation of γ. Then J(t) = ∂
∂s
F (0, t) is a Jacobi field along γ.

Conversely every Jacobi field can be obtained in that way.

2.4.1 Jacobi fields and the exponential map

There is a strict link between Jacobi fields, geodesics and curvature and

as geodesics are linked to the exponential map, so are Jacobi fields.
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Corollary 2.4.4 ([DoC], Corollary 2.5, p. 114). Let γ : [0, T ] −→ M be

a geodesic on Riemannian manifold M , then a Jacobi field J along γ with

J(0) = 0 is given by J(t) = D expp(tγ
′(0))(tJ ′(0)) for all t ∈ [0, T ].

2.4.2 Conjugate points

Definition 2.4.5. Let M be a Riemannian manifold, γ : [a, b] −→ M be a

geodesic on M and t0, t1 ∈ [a, b] with t0 < t1. The point γ(t1) is conjugate

to γ(t0) if there exists a non vanishing Jacobi field J along γ such that

J(t0) = J(t1) = 0. The maximum number of these linearly independent

vector fields is called the multiplicity of the conjugate point γ(t1).

We observe that if γ(t1) is conjugate to γ(t0), then also γ(t0) is conjugate

to γ(t1).

Proposition 2.4.6 ([DoC], Proposition 3.5, p. 117). Let M be a Riemannian

manifold and let γ : [0, T ] −→ M be a geodesic with γ(0) = p. The point

q = γ(t0), t0 ∈ (0, T ] is said to be conjugate to p if and only if v0 = t0γ
′(0) ∈

TpM is a critical point of expp. Moreover, the multiplicity of q as conjugate

point is equal to the dimension of the kernel of the map (D expp)v0.

Therefore we have a characterization of conjugate points as critical point

of the exponential map.

Moreover the conjugate points are related to minimal geodesics.

Proposition 2.4.7 ([DoC], Corollary 2.9, p. 248). Let γ : [0, a] −→ M be

a geodesic segment on a Riemannian manifold M such that γ(a) is not a

conjugate point of γ(0). Then γ has no conjugate points on (0, a) if and only

if for all proper variations of γ there exists δ > 0 such that E(s) < E(δ) for

0 < |s| < δ. In particular, if γ is minimal, γ has no conjugate points on

(0, a).
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2.4.3 Rauch Comparison Theorem

Rauch Comparison Theorem gives a way to compare the length of Jacobi

fields on two Riemannian manifoldsM and M̃ when their sectional curvatures

are such that KM̃(Σ̃) ≤ KM(Σ).

For the proof we refer to [DoC, Theorem 2.3, p. 215].

Theorem 2.4.8 (Rauch Comparison Theorem). Let Mn and M̃n+k be two

Riemannian manifolds. Then let c : [0, T ] −→ M , c̃ : [0, T ] −→ M̃ be two

arc-length parametrized geodesics on M and M̃ and let J : [0, T ] −→ TM ,

J̃ : [0, T ] −→ TM̃ be two orthogonal Jacobi fields along c and c̃ respectively,

with J(0) = J̃(0) = 0 and ||D
dt
J(0)|| = ||D

dt
J̃(0)||. Assume that c̃ does not

have conjugate points on (0, T ] and that KM̃(Σ̃) ≤ KM(Σ) for all t ∈ [0, T ]

and for any 2−planes Σ ⊂ Tc(t)M, Σ̃ ⊂ Tc̃(t)M̃ . Then

||J(t) ≥ ||J̃(t)|| ∀ t ∈ [0, T ]

Moreover, if for some t0 ∈ (0, T ] we have that ||J̃(t0)|| = ||J(t0)||, then

KM̃(Σ̃) = KM(Σ) for all t ∈ [0, t0].

An application of this theorem gives information about the distance of a

point p from its first conjugate point.

Proposition 2.4.9 ([DoC], Proposition 2.4, p. 218). Let M be a Riemannian

manifold and let γ be a geodesic on M . If M has sectional curvature K such

that 0 < L ≤ K ≤ H, L,H constants, then the distance d along γ between

two conjugate points is such that

π√
H
≤ d ≤ π√

L

Anyway this is not the only consequence of the Rauch Comparison Thereom,

for example it can also be used to compare length of curves.

The following proposition is a special version of [DoC, Proposition 2.5, p.

218].
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Proposition 2.4.10. Let Mn be an n−dimensional Riemannian manifold

and let Sn be the n−dimensional round sphere of sectional curvature δ. As-

sume that the sectional curvature of Mn are all bigger or equal to δ, i.e.

KMn ≥ δ. Let p ∈ M and ρ > 0 such that expp : Bρ(0p) −→ M is a

diffeomorphism. For any triangle 4p, q1, q2 on M with d(p, q1), d(p, q2) ≤ ρ

and ^q1pq2 = α < π and comparison triangle 4pq1q2 on Sn with d(p, q1) =

d(p, q1) and d(p, q2) = d(p, q2) and ^q1pq2 = α, we have

dM(q1, q1) ≤ dSn(q1, q2) ≤ diam(Sn) =
π

2
√
δ



Chapter 3

Riemannian volume

One of the fundamental concepts in Riemannian Geometry is how to

compute integrals on Riemannian manifolds. In this chapter we want to show

what integrating a function on a manifold means and how we can calculate

it. Once it is established, we can talk about volume.

In Section 3.1 we give the definition of the integral of a function defined

on a manifold and of the volume of a manifold showing how it is calculated.

Then, in Section 3.2 we focus on the volume of the n−sphere and finally, in

Section 3.3 we give some comparison theorems about volume of metric balls

of manifolds with certain conditions on the curvature.

3.1 Riemannian measure

Definition 3.1.1. Let (M, g) be a Riemannian manifold of dimension n with

ϕ = (x1, . . . , xn) : U −→ V a local coordinate chart. Let f : M −→ R be a

map such that supp f ⊂ U . The integral of f over M is defined as∫
M

f dvoln =

∫
U

f dvoln :=

∫
V

f ◦ ϕ−1(x)
√

det gij ◦ ϕ−1(x) dx

This means that
√

det gij dx defines a local density or a local measure on

the manifold.

31



32 3.1 Riemannian measure

At a first glance, this definition seems to be dependent on the choice of

the coordinate chart, but this is actually not true. In fact, let φ : U −→ V ′

another coordinate chart on U with φ = (y1, . . . , yn).

Then F = φ ◦ ϕ−1 : V −→ V ′ is a diffeomorphism. Since V and V ′ are

subset of Rn, we have the following transformation rule:∫
V ′
h(y) dy =

∫
V

(h ◦ F )(x)| detDF (x)| dx (3.1)

Let g̃ij(p) =< ∂
∂yi

∣∣
p
, ∂
∂yj

∣∣
p
> be the Riemannian metric associated to the

chart φ. There is the following relation:

gij(p) =<
∂

∂xi

∣∣∣
p
,
∂

∂xj

∣∣∣
p
>=

∑
k,l

∂yk
∂xi

(p)
∂yl
∂xj

(p) <
∂

∂yk

∣∣∣
p
,
∂

∂yl

∣∣∣
p
>

Setting G = (gij), G̃ = (g̃ij) and ∂Y =
((

∂yi
∂xj

)
ij

)
we obtain the following

matrix relation

G = (∂Y )T G̃(∂Y )

Since the differential of F is the matrix DF (x) =
((∂(yi◦φ−1)

∂xj
(x)
)
ij

)
and

observing that p = φ−1(x), we have

detG(p) = (detDF (φ(x)))2(det G̃(p))

Hence∫
V

f◦ϕ−1(x)
√

det gij◦ϕ−1(x) dx =

∫
V

f◦ϕ−1(x)
√

det g̃ij◦ϕ−1(x)| detDF (x)| dx =

=

∫
V

f ◦ φ−1 ◦ F (x)
√

det g̃ij ◦ φ−1 ◦ F (x)| detDF (x)| dx =

=

∫
V

f ◦ φ−1(y)
√

det g̃ij ◦ φ−1(y) dy

However we need to remark that the Riemannian measure dvoln just

introduced is only a local measure. To get a global Riemannian measure we

need to define the integral of f over M using the partition of unity.
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Definition 3.1.2. Let (M, g) be a Riemannian manifold of dimension n,

{(Uα, ϕα)}α∈A be a countable atlas and {ψα}α∈A be a smooth subordinate

partition of unity, i.e. ψα : Vα ⊂ Uα −→ [0, 1] and
∑

α∈A φα = 1. For a

function f : M −→ R we define∫
M

f dvoln =
∑
α∈A

∫
Vα

f · ψα dvoln

It can be checked that this definition is independent on the choice of the

atlas and on the subordinated partition of unity.

Definition 3.1.3. Let (M, g) be a Riemannian manifold of dimension n and

ϕ = (x1, . . . , xn) : U ⊂ M −→ V ⊂ Rn be a coordinate chart. The volume

of a set A ⊂ U is defined as

Vol(A) =

∫
M

χA dvoln =

∫
A

dvoln =

∫
ϕ(A)

√
det gij ◦ ϕ−1(x) dx

where χA is the characteristic function of A.

We say that A ⊂ M is a set of measure zero if for every coordinate chart

ϕ : U −→ V we have Vol(U ∩ A) = 0.

Definition 3.1.4. Let (M, g) be a Riemannian manifold of dimension n.

The volume of M is defined as

Vol(M) =

∫
M

dvoln (3.2)

One can refer to the volume of any n−dimensional manifold M as the

n−dimensional volume writing Voln(M). In fact, for k > n, Volk(M) = 0

and for the (n − 1)−dimensional volume of M we mean the volume of its

boundary, which has dimension (n − 1). If M does not have boundary we

set Voln−1(M) =∞.

At this point we can obtain an expression for the volume of a Riemannian

manifold M of dimension n.
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We will not follow the approach suggested by Definition 3.1.2, instead we

choose an almost global chart, ϕ : M\Z −→ V ⊂ Rn with Z a set of measure

zero, to obtain ∫
M

f dvoln =

∫
M\Z

f dvoln

and then we write the last integral as a multiple integral in the Euclidean

space.

With this guideline (3.2) is replaced by

Vol(M) =

∫
M\Z

dvoln

The most suitable choice for the set Z is Cm(p), the cut locus of a point

p ∈M . Then, the exponential map expp is a diffeomorphism into M\Cm(p)

and, since TpM is an R-vector space with the same dimension ofM , exp−1
p can

be viewed as a chart on M\Cm(p). Moreover, the Riemannian measure and

the Euclidean measure agree on TpM if we identify TpM with the Euclidean

Rn via an isometry.

Therefore we can write

Vol(M) =

∫
Up

√
det(gij ◦ expp)(x) dx (3.3)

where Up = exp−1
p (M\Cm(p)) ∈ TpM and dx is the Riemannian measure on

TpM restricted to Up.

To split (3.3) in a multiple integral in the Euclidean space we work as

follow.

Set V = {(r, v) ∈ (0,∞)×SpM | v ∈ SpM and 0 < r < tv} and we define

the map

θ : V −→M\C(p), such that (t, v) 7−→ expp tv

We observe that for v fixed, θ(t, v) is the geodesic starting at p with initial

tangent vector v.

Then, we take {e1 = v, e2, . . . , en} an orthonormal basis of TpM and

Jacobi fields Ji(t) for i = 2, . . . , n along the geodesic cv(t) = expp tv with

Ji(0) = 0 and J ′i(0) = ei.
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It holds, see Corollary 2.4.4, that Ji(t) = t(D expp)(tv)(ei) for i = 2, . . . , n.

Further we have that c′v(t) = (D expp)(tv)(e1).

Henceforth, the entries of the matrix (gij ◦ expp) at tv are given by

gij(expp tv) =


< c′v(t), c

′
v(t) > for i = j = 1

t−1 < c′v(t), Jj(t) > for i = 1 and j = 2, . . . , n

t−2 < Ji(t), Jj(t) > for i = 2, . . . , n and j = 2, . . . , n

Therefore, taking the square root of its determinant, we have√
det(gij ◦ expp)(tv) = t−(n−1)

√
det(< Ji(t), Jj(t) >)ij

It remains to write the measure on Up. Let dvoln−1 denote the Riemannian

measure on SpM induced by the Euclidean measure on TpM . We remark that

we cannot talk about an induced Euclidean measure on SpM since it is not

diffeomorphic to a subset of Rn.

We have the following relation:

dx = tn−1dt dvoln−1

Hence√
det(gij ◦ expp)(tv) dx = tn−1

√
det(gij ◦ expp)(tv) dt dvoln−1

=
√

det(< Ji(t), Jj(t) >)ij dt dvoln−1

Therefore (3.3) becomes:

Vol(M) =

∫
SpM

dvoln−1

∫ r

0

√
det(< Ji(t), Jj(t) >)ij dt (3.4)

Of course, this procedure is applied to the calculation of the volume of

any subset N of M .

In particular, we can write explicitly the volume of a metric ball Bρ(p) of

radius ρ centred at p into M . If ρ is small enough, the exponential map is

a diffeomorphism, see Proposition 1.2.20, and we don’t have to cut out any

set of measure zero.
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This time the map θ is defined on (0, ρ)× SpM .

Hence, going through the same steps as before, we end up with

Vol(Bρ(q)) =

∫
SpM

dvoln−1

∫ ρ

0

tn−1
√

det(< Ji(t), Jj(t) >)ij dt (3.5)

3.2 Volume of the unit n−sphere

Let Sn be the unit n−dimensional sphere and let p ∈ Sn. Then let

{E1(t), . . . , En(t)} parallel vector fields along the geodesic cv with v ∈ SpM
such that Ei(0) = ei with {e1, . . . , en} a basis for TpS

n. Since geodesics on

Sn are great circles, Jacobi fields on Sn are given by

Ji(t) = sin t · Ei(t)

Therefore, by (3.4) we have

Vol(Sn) =

∫
Sn−1

dvoln−1

∫ π

0

(sin t)n−1 = Vol(Sn−1)

∫ π

0

(sin t)n−1 (3.6)

where dvoln−1 is the Riemannian measure on Sn−1.

Although this formula will be useful later, it is not the right approach to

carry on the calculation.

A nicer way to calculate the volume of Sn is to observe that the Rieman-

nian measure on Sn is the measure induced by the Euclidean one on Rn+1,

dvoln+1 = tndt dvoln, where dvoln denotes the Riemannian measure on Sn,

and to use the Gamma function

Γ(x) =

∫ ∞
0

e−ttx−1 dt

We have that(∫
R
e−t

2

dt
)n+1

=

∫
Rn
e−|x|

2

dvoln+1 =

∫
Sn
dvoln

∫ ∞
0

e−t
2

tn dt =
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= Vol(Sn)

∫ ∞
0

e−t
2

tn dt = Vol(Sn)
Γ(n+1

2
)

2

From analysis we know that∫
R
e−t

2

=
√
π =⇒

(∫
R
e−t

2

dt
)n+1

= π
n+1
2

Therefore we get

Vol(Sn) =
2π

n+1
2

Γ(n+1
2

)
(3.7)

Moreover using (3.5), the volume of a metric ball Bρ(p) ⊂ Sn of radius ρ

centred at p is given by:

Vol(Bρ(p)) =

∫
Sn−1

dvoln−1

∫ ρ

0

(sin t)n−1 dt = Vol(Sn−1)

∫ ρ

0

(sin t)n−1 dt

(3.8)

3.3 Volume comparison theorems

In this section we introduce some comparison theorems about volumes.

The key point is the hypothesis on the curvature, sectional curvature or

Ricci curvature according to the case, which has to be bounded from below

for the Ricci curvature or above for the sectional curvature. In fact, these

two different bounds lead to different, even opposite, conclusions.

Let (M, g) and (M̃, g̃) be two n−dimensional Riemannian manifolds and

let p ∈ M and p̃ ∈ M̃ . Then let cv be the geodesic such that cv(0) = p and

c′v(0) = v ∈ SpM . Let cv(T ) be the first conjugate point of p along cv.

We keep the notation of Section 3.1 and we set

j(t, v) =
√

det(gij(expp tv)) and Θ(t, v) = tn−1j(t, v)

We observe that Θ(t, v) =
√

det(< Ji(t), Jj(t) >)ij.
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Now let I : TpM −→ Tp̃M̃ be a linear isometry and let c̃ṽ be the normal

geodesic such that c̃ṽ(0) = p̃ and c̃′ṽ(0) = ṽ = I(v). We denote by c̃ṽ(T̃ ) the

first cut point of p̃ along c̃ṽ. Moreover, for i = 1, . . . , n−1 let J̃i(t) be Jacobi

fields on M̃ along ṽ given by J̃i(0) = 0 and J̃ ′(0) = I(ei).

Again, we set

j̃(t, ṽ) =
√

det(g̃ij(expp̃ tṽ)) and Θ̃(t, ṽ) = tn−1j̃(t, ṽ)

Theorem 3.3.1 (Bishop’s Comparison Theorem I). Let M and M̃ be two

n−dimensional Riemannian manifolds with sectional curvature KM(Σ) and

KM̃(Σ̃) respectively. Suppose that for any 2−planes Σ̃ ⊂ Tc̃ṽ(t)M̃ , Σ ⊂
Tcv(t)M and for t ∈ [0, T̃ ] we have KM̃(Σ̃) ≥ KM(Σ). Then

∂

∂t

(Θ(t, v)

Θ̃(t, ṽ)

)
≥ 0

∂

∂t

(j(t, v)

j̃(t, ṽ)

)
≥ 0 (3.9)

for all t ∈ [0, T̃ ).

From here it follows that

Θ(t, v) ≥ Θ̃(t, ṽ) j(t, v) ≥ j̃(t, ṽ) (3.10)

for all t ∈ [0, T̃ ].

Further if equality holds for τ < T̃ , then equality holds for all t ∈ [0, τ ]

and it follows that K(t) = K̃(t) and ‖Ji(t)‖ = ‖J̃i(t)‖.

Proof. Let

A(t) = (< Ji(t), Jj(t) >)i,j=1,...,n and Ã(t) = (< J̃i(t), J̃j(t) >)i,j=1,...,n.

We observe that

∂

∂t

(Θ(t, v)

Θ̃(t, ṽ)

)
=
(√detA(t)

det Ã(t)

)′
Developing the derivative, we note that to prove (3.9) it is enough to

show (detA(t)

det Ã(t)

)′
=

det Ã(detA)′ − (detA)(det Ã)′

(det Ã)2
≥ 0 (3.11)

Let B(t) = A∗(t)A(t), where A∗(t) is the adjoint of A(t).
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From now on we drop the argument of the matrices A and B to simplify

the notation.

Then, detB = (detA)2.

We have:

(log detA)′ =
1

2
(log detB)′ =

=
1

2
tr(B−1B′) =

1

2

∑
j

< Ji(t), J
′
i(t) >

‖Ji(t)‖
≥

≥ 1

2

∑
j

< J̃i(t), J̃
′
i(t) >

‖J̃i(t)‖
= (log det Ã)′

where the inequality follows from the Rauch Comparison Theorem.

Therefore

(detA)′

detA
= (log detA)′ ≥ (log det Ã)′ =

det Ã

det Ã

Hence:

det Ã(detA)′ − (detA) det Ã ≥ 0

which implies (3.11).

Now (3.10) follows noticing that since the two derivatives are non-negative,

then the functions are incresing on [0, T̃ ].

We drop the case of equality because it can be easily handled.

Remark 3.3.2. If M̃ has constant sectional k, then

Θ̃(t, ṽ) = tn−1sn−1
k (t), sk(t)


sin(
√
kt) k > 0

t k = 0

sinh(
√
−kt) k < 0

Hence, for a manifold M with sectional curvature KM(Σ) ≤ k for all

t ∈ [0, T̃ ], we have

∂

∂t

( Θ(t, v)

tn−1sn−1
k (t)

)
≥ 0

∂

∂t

( j(t, v)

sn−1
k (t)

)
≥ 0

for all t ∈ [0, T̃ ) and

Θ(t, v) ≥ tn−1sn−1
k (t) j(t, v) ≥ sn−1

k (t)

for all t ∈ [0, T̃ ].
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As a consequence we have an inequality on the volume of the metric balls.

Proposition 3.3.3 ([Sak], Corollary 3.2, part (1), p. 155). Let M and M̃

two Riemannian manifold with sectional curvature as in Theorem 3.3.1 and

let Br(p) and Br(p̃) be metric balls in M and M̃ respectively. Then

Vol(Br(p̃)) ≤ Vol(Br(p))

Moreover equality holds if and only if Br(p) is isometric to Br(p̃).

We state the analogous comparison theorem considering the Ricci curva-

ture.

Theorem 3.3.4 (Bishop’s Comparison Theorem II,[Sak], Theorem 3.1, part

(2), p. 154). Let Mk be an Riemannian manifold of dimension n with con-

stant sectional curvature k. Suppose that M is a Riemannian manifold with

Ricci curvature such that Ric(v) ≥ (n− 1)k for all v ∈ SM . Then

∂

∂t

( Θ(t, v)

tn−1sn−1
k (t)

)
≤ 0

∂

∂t

( j(t, v)

sn−1
k (t)

)
≤ 0 (3.12)

for all t ∈ [0, T ).

Therefore we have

Θ(t, v) ≤ tn−1sn−1
k (t) j(t, v) ≤ sn−1

k (t) (3.13)

for all t ∈ [0, T ].

Moreover if equality holds for some τ ∈ [0, T ) then equality holds for all

t ∈ [0, τ ] and we have Ji(t) = sk(t)Ei(t) for i = 1, . . . , n where Ei(t) are

parallel vector fields along γ.

We do not give the proof of this theorem because it does not involve any

other geometric method but it is based on rewriting (3.12) to get

∂tΘ(t, v)

Θ(t, v)
≤ (tsk(t))

′

tsk(t)
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and defining two functions satisfied by the LHS and the RHS to be com-

pared to get the claim.

Also in this case we have a consequence on the volume of the metric balls.

Proposition 3.3.5 ([Sak], Corollary 3.2, part (2), p. 155). Let M be an

n−dimensional Riemannian manifold and Mk be the n−dimensional Rie-

mannian manifold with constant sectional curvature k. Suppose that the Ricci

curvature of M is such that Ric(v) ≥ (n − 1)k for all v ∈ SM . Let Br(p)

be the metric ball in M and Bk
r be the metric ball in Mk with radius r and

independent of the centre. Then

Vol(Br(p)) ≤ Vol(Bk
r )





Chapter 4

The Laplacian

In the first three chapters we recalled and introduced basic concepts to

work with a Riemannian manifold. Now we turn to the study of an operator,

the Laplacian, for C∞ functions on a Riemannian manifold.

We already know that the Laplacian is defined as ∆ f = −
∑n

i=1
∂2f
∂x2i

for

functions f ∈ C∞(Rn). The minus sign is to make it a positive operator in

spectral geometry.

Our aim is to transfer this operator on a Riemannian contest, giving

a general understanding of how it can be calculated and in what kind of

problems it is involved.

We begin with the main definitions in Section 4.1 to carry on with the

well-known Divergence Theorem and Green’s Formula in Section 4.2. We

conclude with eigenvalue problems and main facts about eigenvalues of the

Laplacian in Section 4.3.

For all the proofs we refer to [Cha1], unless differently specified.

4.1 First definitions

Definition 4.1.1. Let M be a Riemannian manifold and f be a smooth

function on M , i.e. f ∈ C∞(M). We define the gradient of f , ∇f , as the

43
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vector field such that for any X ∈ X (M)

< ∇f(p), X(p) >= X(f)(p)

To avoid confusion with the notation used for the gradient and the one

used for the Levi-Civita connection, from now on we shall denote the Levi-

Civita connection with D.

Definition 4.1.2. Let M be an n−dimensional Riemannian manifold and

let X be a vector field on M . We define the divergence of X as follows:

divX = trDX =
n∑
i=1

< DEiX,Ei >

where E1, . . . , En is an orthonormal frame.

The divergence of a vector field has the following properties. For every

function f and vector fields X, Y on M :

i) div(X + Y ) = divX + div Y

ii) div(fX) = f(divX)+ < ∇f,X >

Definition 4.1.3. Let M be a Riemannian manifold and let f ∈ C∞(M).

We define the Laplacian of f as the function

∆f = − div(∇f) = − tr(D∇f) = −
n∑
i=1

< DEi∇f, Ei >

where E1, . . . , En is an orthonormal frame.

For f, h maps on M the following properties hold:

i) ∆ (f + h) = ∆ f + ∆h

ii) div(h(∇f)) = −h(∆ f)+ < ∇f,∇h >

iii) ∆ (fh) = h(∆ f)− 2 < ∇f,∇h > +f(∆h)
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The divergence and (henceforth) the Laplacian can be expressed in local

coordinate.

Let U be an open set in M , ψ : U −→ Rn be a chart on M and{
∂
∂x1
, . . . , ∂

∂xn

}
be a an orthonormal basis of TpM at the point p ∈ U . The

Riemannian metric g on M is given by the matrix:

G = (gjk), gjk =<
∂

∂xj
,
∂

∂xk
>

and its inverse is

G−1 = (gjk), gjk = g−1
jk

Consequently the vector fields ∇f and X are locally given by:

∇f =
n∑

j,k=1

(
gjk

∂f

∂xj

) ∂

∂xk
(4.1)

X =
n∑
i=1

αi
∂

∂xj
(4.2)

Hence, we have (see [Cha1, p. 5ff] for the complete calculation):

divX =
1√

detG

n∑
i=1

∂

∂xi

(
αi
√

detG
)

(4.3)

and

∆f = − 1√
detG

n∑
j,k=1

∂

∂xj

(
gjk
√

detG
∂f

∂xk

)
(4.4)

4.2 Divergence Theorem and Green’s Formula

Here we state two important integral theorems, the Divergence Theorem

and the Green Formula.

For their proofs we refer to [Sak, Theorem 5.11, p. 71] and [Sak, Corollary

5.13, p. 73], respectively.
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Theorem 4.2.1 (Divergence Theorem). (i) Let X be a C1 vector field on

a Riemannian manifold M with compact support on M , then∫
M

(divX) dvoln = 0 (4.5)

(ii) Let X be a C1 vector field on M with compact support on M . Then∫
M

(divX) dvoln =

∫
∂M

< X, ν > dvoln−1 (4.6)

where dvoln−1 denotes the measure on ∂M induced by the Riemannian

measure on M and ν denotes the outward unit normal.

Theorem 4.2.2 (Green’s Formula). (i) Let h ∈ C1, f ∈ C2 be two maps

on M such that h(∇f) has compact support on M . Then∫
M

{−h∆ f+ < ∇h,∇f >} dvoln = 0 (4.7)

Moreover, if we suppose h ∈ C2 and both f, h with compact support,

then ∫
M

{h∆ f − f∆h} dvoln = 0 (4.8)

(ii) Let h ∈ C1(M), f ∈ C2(M) such that h(∇f) has compact support on

M . Then∫
M

{−h∆ f+ < ∇h,∇f >} dvoln =

∫
∂M

h(νf) dvoln−1 (4.9)

Moreover if we assume h ∈ C2(M) and both f, h with compact support

on M , then∫
M

{−h∆ f + f∆h} dvoln =

∫
∂M

{h(νf)− f(νh)} dvoln−1 (4.10)

where dvoln−1 denotes the measure on ∂M induced by the Riemannian

measure on M and ν denotes the outward unit normal.
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4.3 Eigenvalue problems

Considering the Laplacian of a function f , we are interesting in its eigen-

vales. This problem is known as the eigenvalue problem.

According to the conditions on the boundary of the manifold we talk

about Dirichlet or Neumann eigenvalue problem.

Dirichlet Eigenvalue Problem: letM be a compact, connected, n−dimensional

Riemannian manifold with ∂M 6= ∅ and let f ∈ C2(M) ∩ C0(M). We

want to find all the real number λ such that{
∆f = λf on M

f = 0 on ∂M
(4.11)

Neumann Eigenvalue Problem: letM be a compact, connected, n−dimensional

Riemannian manifold with ∂M 6= ∅ and let f ∈ C2(M) ∩ C1(M). We

want to find all the real number λ such that{
∆f = λf on M

νf = 0 on ∂M
(4.12)

where ν is the outward normal vector field on ∂M .

The numbers λ are called eigenvalues of the Laplacian, the vector spaces

of the solutions to (4.11) and (4.12) are called eigenspaces and the functions

f are called eigenfunctions. Moreover the set of all eigenvalues on a manifold

M is called the spectrum of M .

4.3.1 Basic facts about the eigenvalues of the Lapla-

cian

We now give some basics results about the eigenvalues of a manifold which

will be useful in the next chapters.

First of all we introduce the space L2(M) for functions on a Riemannian

manifold M which we equip with an inner product.
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Definition 4.3.1. Let M be an Riemannian manifold of dimension n. The

space L2(M) is the Hilbert space given by all the function f on M such that∫
M

|f |2 dvoln < +∞

with the inner product

(f, g) =

∫
M

fg dvoln

We remark that the norm of a function f ∈ L2(M) is

‖f‖2 = (f, f)

Definition 4.3.2. A function f is admissible for the Dirichlet eigenvalue

problem if it belongs to the completion of C∞ function compactly supported

on M . It is admissible for the Neumann eigenvalue problem if it belongs to

the completion of the space {f ∈ C∞(M) |
∫
M
|f |2 + |∇f |2 dvoln < +∞}.

Theorem 4.3.3 ([Cha1] Theorem 1, p. 8). For both the Dirichlet and Neu-

mann eigenvalue problems, the set of all the eigenvalues can be arranged in

the following sequence:

0 ≤ λ1 < λ2 < . . . < λn < . . .

converging to +∞ and each associated eigenspace is finite dimensional.

Moreover, eigenspaces belonging to distinct eigenvalues are orthogonal in

L2(M) and L2(M) is the direct sum of all the eigenspaces.

Furthermore, each eigenfunction is C∞ on M .

The reason of this theorem is all in the application of Green’s Formula. In

fact, taking φ an eigenfunction relative to the eigenvalue λ and using Green’s

Formula (4.7) or (4.9) according to the case, with f = h = φ,we get

λ = ‖φ‖−1

∫
M

|∇φ|2dvoln ≥ 0 (4.13)

Therefore, if λ is zero the eigenfunction has to be a constant function.

Considering the first eigenvalue for the Durichlet eigenvalue problem, λ1,



4.3 Eigenvalue problems 49

from (4.5) we have λ1 > 0. While for the Neumann eigenvalue problem we

get λ1 = 0.

The orthogonality is a consequence of Green’s Formula as well.

We consider φ and ψ two eigenfunctions related to the eigenvalues λk and

λj respectively and we apply Green’s Formula (4.8) or (4.10) according to

the case, with φ = f and ψ = h, we have

0 =

∫
M

{φ∆ψ − ψ∆φ} dvoln = (λj − λk)
∫
M

φψ dvoln

from which orthogonality follows.

4.3.2 Rayleigh quotient

We will see in the next chapters that the first non trivial eigenvalue of

the Laplacian can be bounded according to the hypothesis on the curvature

Here we just provide an upper bound using the Rayleigh quotient.

Definition 4.3.4. Let M be a Riemannian manifold and let f ∈ C∞(M).

We define the Rayleigh quotient as follow:

R(f) =

∫
M
‖∇f‖2 dvoln∫
M
f 2 dvoln

The following theorem holds.

Theorem 4.3.5. Let M be a connected Riemannian manifold with compact

closure and nonempty piecewise C∞ boundary and consider the eigenvalues

λ1 ≤ λ2 ≤ . . . , of the Dirichlet eigenvalue problem. Then, for any non-

vanishing admissible function f for this problem we have:

λ1 ≤ R(f)

with equality if and only if f is an eigenfunction of λ1.

For the proof and further investigations we refer to [Cha1, Section 5,

Chapter 1]





Chapter 5

The first eigenvalue of the

Laplacian

In this chapter we look at how we can bound the first eigenvalue of the

Laplacian.

The first result we discuss is Lichnerowicz’ Theorem. This theorem is

similar to Bonnet-Myers Theorem stated in Section 2.3: the hypothesis on

the curvature is the same but the diameter is replaced by the first eigenvalue

of the Laplacian λ1, and we obtain a lower bound instead of an upper one.

Therefore, λ1 contains information about the geometry of the manifold itself.

This is also confirmed by the fact that when the inequality becomes sharp,

the manifold is homeomorphic to the n−dimensional sphere and, vice versa,

if the manifold is homeomorphic to the sphere, the equality is an inequality

indeed.

In a second step we drop the condition on the curvature and we show

that for a compact Riemannian manifold λ1 can be bounded from below by

Cheeger’s constant.

We start with the complete calculation of the spectrum of the round

sphere of radius r in Section 5.1: it will be useful to understand the equality

case in Lichnerowicz’ Theorem. In Section 5.2 we state and prove Bochner’s

Formula, the main ingredient of the proof of the Lichnerowicz’ Theorem
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which is stated and proved in Section 5.3. Finally, in Section 5.4 we give the

definition of Cheeger’s constant and we state Cheeger’s Inequality.

5.1 The spectrum of Sn and Snr

Let Sn = {x ∈ Rn+1 | |x|2 = 1} be the n−dimensional unit sphere.

The calculation of its spectrum is made up of two parts.

First of all we express the Laplacian on Rn+1 in spherical coordinates and

we apply this expression to an homogeneous harmonic polynomial obtaining

a formula for the eigenvalues of Sn.

Secondly, we prove that the eigenvalues obtained are all the eigenvalues

of Sn showing that the homogeneous harmonic polynomials restricted to Sn

are dense in L2(Sn).

Lemma 5.1.1. The Laplacian of a C∞ function F on Rn+1 in spherical

coordinates is given by

∆Rn+1F =
1

r2
∆Sn(F |Sn)− ∂2F

∂r2
− n

r

∂F

∂r
(5.1)

Proof. We consider spherical coordinates in Rn+1, i.e ∀x ∈ Rn+1, x = rξ

with r ∈ (0,+∞) and ξ ∈ Sn.

Let ϕ = (y1, . . . , yn) : U −→ Rn be a chart on Sn whose associated

Riemannian metric is H = (hij).

A chart on an open cone C in Rn+1 is given by

ψ = (r, z1, . . . , zn) : C −→ Rn+1, ψ(rξ) = rϕ(ξ)

We construct the Riemannian metric G = (gij) associated to ψ.

We have that
∂

∂r
= ξ

∂

∂zi
= r

∂

∂yi

Therefore:

<
∂

∂r
,
∂

∂r
>= 1

<
∂

∂zi
,
∂

∂r
>= r <

∂

∂yi
, ξ >= 0
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<
∂

∂zi
,
∂

∂zj
>= r2 <

∂

∂yi
,
∂

∂yj
>

and the elements of G are

grr = 1 grj = 0 gij = r2hij ∀i, j = 1, . . . , n

and √
detG = rn

√
detH

Now, let F ∈ C∞(Rn+1), we have

∆Rn+1F = − 1√
detG

[∑
i,j

( ∂

∂yj

(
gij
√

detG
∂F

∂yi

))
+

∂

∂r

(
grr
√

detG
∂F

∂r

)]
=

= − 1

rn
√

detH

[∑
i,j

∂

∂zj

(
rn−2hij

√
detH

∂F

∂zi

)
+

∂

∂r

(
rn
√

detH
∂F

∂r

)]
=

= − 1

r2
√

detH

∑
i,j

∂

∂zj

(
hij
√

detH
∂F

∂zi

∣∣∣
Sn

)
− 1

rn
∂

∂r

(
rn
∂F

∂r

)
=

=
1

r2
∆Sn(F |Sn)− ∂2F

∂r2
− n

r

∂F

∂r

We choose a function F (x) = rkF̂ (ξ). For this function we have

∆Rn+1F = r−2∆Sn(rkF̂ (ξ))− k(k − 1)rk−2F̂ (ξ)− nkrk−2F̂ (ξ)

that is

∆Rn+1F = rk−2∆SnF̂ − [k(k − 1 + n)rk−2]F̂ (5.2)

If F is an harmonic polynomial of degree k, i.e its Laplacian vanishes,

then F̂ is an eigenfunction of ∆Sn of the eigenvalue k(k − 1 + n).

Now let

Pk := {
∑
|I|=k

aIx
I | aI constants and x ∈ Rn+1}
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Hk := {
∑
|I|=k

aIx
I ∈ Pk |∆Rn+1

(∑
|I|=k

aIx
I
)

= 0}

Namely, Pk is the vector space of the homogeneous polynomial in Rn+1

and Hk ⊂ Pk is the subspace of the harmonic homogeneous polynomial in

Rn+1.

Further, we denote with P̃k and H̃k the restriction to Sn of Pk and Hk

respectively.

We show that
⊕∞

k=1 H̃k is dense in L2(Sn). In order to do so, we introduce

an inner product on
⊕∞

k=1 P̃k by

(P,Q) :=

∫
Sn
P̃ Q̃ dvoln (5.3)

Lemma 5.1.2. With respect to the inner product (5.3) we have the following

orthogonal decompositions:

Pk = H2k ⊕ r2H2k−2 ⊕ . . .⊕ r2kH0

P2k+1 = H2k+1 ⊕ r2H2k−1 ⊕ . . .⊕ r2kH1

Proof. We note first that H0 = P0 contains all the constant functions and

H1 = P1 contains all the homogeneous linear polynomial of degree 1.

Secondly, we point out that it is enough to prove

Pk+2 = Hk+2 ⊕ r2Pk for k = 0, 1, 2, . . . (5.4)

We proceed by induction.

Let k = 0, picking up a P ∈ H2 we have:

(P, r2) =

∫
Sn
P̃ dvoln =

1

2(n− 1)

∫
Sn

∆P̃ dvoln = 0

Since P is arbitrary, it means that H2 ⊥ r2P0.

We have H2 ⊕ r2P0 ⊂ P2.

On the other hand, if P ∈ P2 and P ⊥ r2P0, then
∫
Sn
P̃ dvoln = (P, r2) = 0.

Moreover, by (5.2) we get

∆̃Rn+1P = ∆SnP̃ − 2(n+ 1)P̃
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Integration over Sn gives∫
Sn

∆̃Rn+1P dvoln = 0

Since ∆̃Rn+1P ∈ P0, i.e. it is a constant, and its integral is zero, it must

be zero itself. Therefore P is homogeneous and P ∈ H2.

Hence, P2 ⊂ H2 ⊕ r2P0.

Therefore we have proved P2 = H2 ⊕ r2P0.

Now we suppose (5.4) holds up to k− 1, we prove it for k. The argument

follows the same steps as for k = 0.

We have:

Pk = Hk⊕ r2Pk−2 = H⊕ r2Hk−2⊕ r4Pk−4 = . . . = Hk⊕ r2Hk−2⊕ . . .⊕ rkH0

If P ∈ Hk+2 and Q ∈ Hk−2l where l = 0, . . . , k
2
, we have the following:

(P, r2l+2Q) =

∫
Sn
P̃ Q̃ dvoln

∆SnP̃ = (k + 2)(n+ k + 1)P̃

∆SnQ̃ = (k − 2l)(n+ k − 2l − 1)Q̃

We get:

(∆Rn+1P,Q) =

∫
Sn

∆̃Rn+1PQ̃ dvoln =

= (k + 2)(n+ k + 1)

∫
Sn
P̃ Q̃ dvoln = (k + 2)(n+ k + 1)(P, r2l+2Q)

and

(P,∆Rn+1Q) =

∫
Sn
P̃ ∆̃Rn+1Q dvoln =

= (k− 2l)(n+ k− 2l− 1)

∫
Sn
P̃ Q̃ dvoln = (k− 2l)(n+ k− 2l− 1)(P, r2l+2Q)

Hence

(P, r2l+2Q) =
(k − 2l)(n+ k − 2l − 1)

(k + 2)(n+ k + 1)
(P, r2l+2Q) =⇒ (P, r2l+2Q) = 0

This means that Hk+2 ⊥ r2Pk, since P and Q are arbitrary.
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Then, Pk+2 ⊃ Hk+2 ⊕ r2Pk.
On the other hand, if P ∈ Pk+2 and P ⊥ r2Pk, for any Q ∈ Hk−2l,

l = 0, . . . , k
2
, we have

(∆Rn+1P, r2l+2Q) =

∫
Sn

∆SnP̃ Q̃ dvoln − (k + 2)(n+ k + 1)

∫
Sn
P̃ Q̃ dvoln =

=

∫
Sn
P̃∆SnQ̃ dvoln = (k − 2l)(n+ k − 2l − 1)(P, r2l+2Q) = 0

where the first equality comes from (5.2).

This means that ∆RnP̃ ⊥ r2Pk and, since it is an element of Pk, it has

to be zero. Therefore P ∈ Hk+2.

Hence, we have proved that Pk+2 ⊂ Hk+2 ⊕ r2Pk.
Finally we have Pk+2 = Hk+2 ⊕ r2Pk, which concludes the proof.

With the above decompositions we have the following equality

∞⊕
k=1

H̃k =
∞⊕
k=1

P̃k

and the RHS has the following properties:

i) it contains constant functions, in fact they are in H̃0;

ii) there exists a P ∈
⊕∞

k=1 H̃k such that P (p) 6= P (q) for p 6= q, in fact

we may choose it as a polynomial of degree one.

By Stone-Weierstrass Theorem (see [Hew-Str, Proposition 7.30, p. 95])

we have that
⊕∞

k=1 H̃k is dense in C∞(Sn) and so in L2(Sn). Then we can

state the following.

Proposition 5.1.3. The eigenvalues of the eigenvalue Dirichlet problem on

the n−dimensional sphere of radius one are given by

λk = k(n+ k − 1) for k = 0, 1, 2, . . .

Moreover the eigenspace of λk is H̃k and its multiplicity is(
n+ k

k

)
−
(
n+ k − 2

k − 2

)
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Proof. The formula for the eigenvalues of Sn and the fact that their eigenspaces

are the H̃ks come from the discussion above. We just need to check their

multiplicity which is equal to the dimension of the eigenspace.

We have:

dim H̃k = dimHk = dimPk − dimPk−2 =

(
n+ k

k

)
−
(
n+ k − 2

k − 2

)

Now we look at the spectrum of Snr = {x ∈ Rn+1 | |x|2 = r} the

n−dimensional sphere of radius r.

Proposition 5.1.4. The eigenvalues of the eigenvalue Dirichlet problem on

the n−dimensional sphere of radius r are given by

λk =
1

r2
k(n+ k − 1) for k = 0, 1, 2, . . .

The proof comes applying the following scaling argument to the previous

discussion.

Lemma 5.1.5. Let Sn and Snr be the n−dimensional sphere of radius 1

and r respectively, and let g be the Riemannian metric on Sn and g̃ be the

Riemannian metric on Snr respectively. Then the two metrics are related in

the following way:

g̃ij = r2gij
√

det g̃ = rn
√

det g

Proof. Let U and V be two open set in Sn and Snr respectively. Then let φ

be a chart on Sn and ϕ be a chart on Snr , i.e.

φ = (x1, . . . , xn) : U −→ Rn, ξ 7−→ φ(ξ)

ϕ = (y1, . . . , yn) : V −→ Rn, η := rξ 7−→ ϕ(η) := rφ(ξ)

We have:
∂

∂yi
= r

∂

∂xi
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This implies the following relations:

<
∂

∂yi
,
∂

∂yj
>= r2 <

∂

∂xi
,
∂

∂xj
> =⇒ g̃ij = r2gij

g̃ = r2g =⇒
√

det g̃ = rn
√

det g

as we claimed.

Therefore we have:

∆(Snr ,g̃) = − 1

rn
√

det g

∑
ij

∂

∂xi

(
r−2gijrn

√
det g

∂

∂xj

)
=

1

r2
∆(Sn,g)

and equations (5.1) and (5.2) become:

∆Rn+1F = ∆Snr (F |Snr )− ∂2F

∂r2
− n

r

∂F

∂r

∆Rn+1F = rk∆Snr F̂ − [k(k − 1 + n)rk−2]F̂

and going again through the proof of Lemma 5.1.2 considering Snr instead of

Sn we get the result.

5.2 Bochner’s Formula

We state Bochner’s Formula in the following way:

Theorem 5.2.1 (Bochner’s Formula). Let (M, g) be a complete Riemannian

manifold. Then for any f ∈ C∞(M) we have

−1

2
∆(‖∇f‖2) = ‖Hess f‖2− < ∇f,∇(∆f) > + Ric(∇f) (5.5)

The proof is postponed since first we need to understand the meaning of

‖Hess f‖2.

We start with the following definition.
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Definition 5.2.2. Let M be a Riemannian manifold and f ∈ C∞(M). We

define the Hessian of f as

Hess f(X, Y ) =< DX∇f, Y >= (5.6)

= X(Y f)− < ∇f,DXY > (5.7)

Remark 5.2.3. The Hessian of a function f can also be defined in a tensorial

manner as the second covariant derivative in X and Y of the function f , i.e.

Hess f(X, Y ) = D2
X,Y f .

Lemma 5.2.4. Let M be a Riemannian manifold and let f ∈ C∞(M). The

Hessian of f , Hess f , is symmetric.

Proof.

Hess f(X, Y ) = X(Y (f))− < ∇f,DXY >=

= X(Y (f))− < ∇f,DYX > − < ∇f, [X, Y ] >=

= X(Y (f))− < ∇f,DYX > −[X, Y ](f) =

= Y (X(f))− < ∇f,DYX >=

= Hess f(Y,X)

Definition 5.2.5. Let M be a n−dimensional Riemannian manifold and

f ∈ C∞(M). The norm of Hess f is defined as follows:

‖Hess f‖ =

√√√√ n∑
i=1

< DEi∇f,DEi∇f >

where E1, . . . , En is an orthonormal frame.

Remark 5.2.6. This definition is independent of the choice of the orthonormal

frame.
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Remark 5.2.7. We observe that

∆f = − tr(Hess f) = −
n∑
i=1

Hess f(Ei, Ei)

where E1, . . . , En is an orthonormal frame.

Now we are ready to prove (5.5).

Proof of Theorem 5.2.1. Fix a point p ∈M and consider a local orthonormal

frame E1, . . . , En such that < Ei, Ej >= δij and DEiEj(p) = 0 for all i and

j. The following calculation is carried out at the point p.

−1
2
∆(‖∇f‖2) = 1

2
tr(Hess f‖∇f‖2)

= 1
2

∑n
i=1 Hess ‖∇f‖2(Ei, Ei)=

= 1
2

∑n
i=1Ei(Ei(< ∇f,∇f >))− < ∇(‖∇f‖2), DEiEi >= (by (5.7))

= 1
2

∑n
i=1Ei(Ei(< ∇f,∇f >)) = (because DEiEi = 0)

=
∑n

i=1 Ei(< DEi∇f,∇f >) = (by the Riemannian property)

=
∑n

i=1 Ei(Hess f(Ei,∇f)) = (by (5.6))

=
∑n

i=1Ei(Hess f(∇f, Ei)) = (by the simmetry of the Hessian)

=
∑n

i=0Ei(< D∇f∇f, Ei >) = (by (5.6))

=
∑n

i=1 < DEiD∇f∇f, Ei > − < D∇f∇f,DEiEi >= (by the Riemannian property)

=
∑n

i=1 < DEiD∇f∇f, Ei >= (by DEiEi = 0)

=
n∑
i=1

< R(∇f, Ei)∇f, Ei > +
n∑
i=1

< D∇fDEi∇f, Ei > +
n∑
i=1

< D[Ei,∇f ]∇f, Ei >
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We analyse each term on its own.

The first sum is
n∑
i=1

< R(∇f, Ei)∇f, Ei >= Ric(∇f)

For the second sum, by the Riemannian property, we have

n∑
i=1

< D∇fDEi∇f, Ei >=
n∑
i=1

∇f(< DEi∇f, Ei >)− < DEi∇f,D∇fEi >

Since ∇f =
∑n

i=1 Ei(f)Ei, we have at p

D∇fEi =
n∑
j=1

Ej(f)DEjEi = 0 (5.8)

Therefore < DEi∇f,D∇fEi >= 0.

On the other hand:

∑n
i=1∇f(< DEi∇f, Ei >) = ∇f

(∑n
i=1 < DEi∇f, Ei >

)
=

∇f
(∑n

i=1 Hess f(Ei, Ei)
)

= (by (5.6))

= ∇f(tr Hess f) = −(∇f)(∆f) =

= − < ∇(∆f),∇f >= − < ∇f,∇(∆f) >

Therefore
n∑
i=1

< D∇fDEi∇f, Ei >= − < ∇f,∇(∆f) >

For the third sum we have

∑n
i=1 < D[Ei,∇f ]∇f, Ei >=

∑n
i=1 Hess f([Ei,∇f ], Ei) =
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=
∑n

i=1 < DDEi∇f∇f, Ei > − < DD∇fEi∇f, Ei >=

=
∑n

i=1 < DDEi∇f∇f, Ei >= (by (5.8))

=
∑n

i=1 Hess f(DEi∇f, Ei) =

∑n
i=1 Hess f(Ei, DEi∇f) = (by the simmetry of the Hessian)

=
∑n

i=1 < DEi∇f,DEi∇f >= ‖Hess f‖2

Therefore we get

−1

2
∆(‖∇f‖2) = ‖Hess f‖2− < ∇f,∇(∆f) > + Ric(∇f)

5.3 Lichnerowicz’ Theorem

We can now state and prove Lichnerowicz’ Theorem

Theorem 5.3.1 (Lichnerowicz’ Theorem). Let M be a complete Riemannian

manifold of dimension n such that Ric(u) ≥ (n − 1)δ for all u ∈ SM and

δ > 0 constant. Then, M is compact and for the first eigenvalue of the

Laplacian we have

λ1(M) ≥ nδ

Proof. We first note that the compactness of M comes from Bonnet-Myers

Theorem, so we just need to care about the estimate of λ1(M).

Let f be an eigenfunction of ∆ relative to the eigenvalue λ1, that is,

∆ f = λ1f .

Substituting this expression of the Laplacian in Bochner’s Formula (5.5),

we have

−1

2
∆(‖∇f‖2) = ‖Hess f‖2 − λ1‖∇f‖2 + Ric(∇f) (5.9)



5.3 Lichnerowicz’ Theorem 63

For Ric(∇f) we have the following inequality

Ric(∇f) ≥ ‖∇f‖2(n− 1)δ (5.10)

In fact, setting v = ∇f
‖∇f‖ , we have ‖v‖2 = 1 and

Ric(∇f) = Ric(‖∇f‖v) =
n∑
i=1

< R(Ei, ‖∇f‖v)‖∇f‖v, Ei >=

=
n∑
i=1

‖∇f‖2 < R(Ei, v)v, Ei >= ‖∇f‖2 Ric(v) ≥ ‖∇f‖2(n− 1)δ

Moreover, for ‖Hess f‖2 it holds that

‖Hess f‖2 ≥ (tr Hess f)2

n
(5.11)

In fact:

(tr Hess f)2 =
( n∑
i=1

< DEi∇f, Ei >
)2

≤
( n∑
i=1

‖DEi∇f‖ · ‖Ei‖
)2

≤

≤ n
n∑
i=1

‖DEi∇f‖2 ≤ n
n∑
i=1

< DEi∇f,DEi∇f >= n‖Hess f‖2

where the second inequality is due to
(∑n

i=1 ai

)2

≤ n
∑n

i=1 a
2
i .

We also note that, since ∆f = λ1f , we get

‖Hess f‖2 ≥ (tr Hess f)2

n
=

(∆f)2

n
=
λ2

1f
2

n
(5.12)

Applying (5.10) and (5.12) to (5.9) we have the following inequality

−1

2
∆(‖∇f‖2) ≥ λ2

1f
2

n
− λ1‖∇f‖2 = (n− 1)‖∇f‖2

Integration over M gives∫
M

−1

2
∆(‖∇f‖2) dvoln ≥

∫
M

λ2
1f

2

n
+ [−λ1 + (n− 1)δ]‖∇f‖2 dvoln (5.13)

By the Divergence Theorem (see Theorem 4.2.1) we have∫
M

−1

2
∆(‖∇f‖2) dvoln =

1

2

∫
M

div
(
∇(‖∇f‖2)

)
dvoln = 0
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Therefore, from (5.13) we obtain

[λ1 − (n− 1)δ]

∫
M

‖∇f‖2 dvoln ≥
∫
M

λ2
1f

2

n
dvoln

and it follows that

[λ1 − (n− 1)δ]R(f) ≥ λ2
1

n

where R(f) is the Rayleigh quotient of the eigenfunction f which is equal

to the first eigenvalue (see Theorem 4.3.5).

Then

[λ1 − (n− 1)δ] ≥ λ1

n
=⇒ λ1(1− 1

n
) ≥ (n− 1)δ =⇒ λ1 ≥ nδ

Remark 5.3.2. The statement of this theorem is optimal since equality is

obtained in the case of the n−dimensional round sphere (see Section 5.1).

This remark can be restate in the following proposition.

Proposition 5.3.3. Let M be a complete n−dimensional Riemannian man-

ifold such that Ric(u) ≥ (n− 1)δ for all u ∈ SM and δ > 0 constant. If M

is isometric to Snr then λ1(M) = n
r2

.

Indeed, we also have the following rigidity result.

Proposition 5.3.4. Let M be a complete n−dimensional Riemannian man-

ifold such that Ric(u) ≥ (n − 1)δ for all u ∈ SM and δ > 0 constant. If

λ1(M) = n
r2

then M is isometric to Snr .

The idea of the proof is to show that with these hypothesis the manifold

has maximal diameter, i.e diam(M) = π√
δ
, and then to use Obata-Toponogov

Theorem which states that if M is a manifold as in Proposition 5.3.4 and

its diameter is exactly π√
δ

then it is isometric to Snr (for the proof of Obata-

Toponogov Theorem we refer to [Cha1, p. 83] and for a complete proof of

Proposition 5.3.4 we refer to [Sak, p. 275ff]).
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5.4 Cheeger’s Inequality

In this section we look at another possible bound for λ1 when the Rieman-

nian manifold is complete and we do not have assumptions on the curvature.

Definition 5.4.1. Let M be a complete Riemannian manifold.

If M is compact, we define Cheeger’s constant as

hc(M) = inf
S

{ Voln−1(S)

min{Voln(M1),Voln(M2)}

}
where S runs all over the (n − 1)−dimensional compact submanifolds

that divides M into two disjoint submanifolds M1,M2 whose boundary

is S.

If M is non compact, we define

hc(M) = inf
S

{Voln−1(S)

Voln(M1)

}
where S runs through all smooth boundary of all open submanifold M1

with compact closure.

Cheeger’s constant is used to bound from below the first eigenvalue of

the Laplacian for a compact Riemannian manifold and the proof of this fact

is based on the Co-Area Formula.

Theorem 5.4.2 (Co-Area Formula, [Cha1], Theorem 1, p. 86). Let M be a

compact Riemannian manifold with boundary and let f ∈ L1
1(M). Then for

any non-negative measurable function g on M we have∫
M

g dvoln =

∫ +∞

−∞

(∫
{f=t}

g

‖∇f‖
dvoln−1

)
dt

We can now prove Cheeger’s Inequality.

Theorem 5.4.3 (Cheeger’s Inequality). Let M be a compact Riemannian

manifold. We have

λ1(M) ≥ 1

4
hc(M)2 (5.14)
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Proof. Let f be an eigenfunction of λ1(M).

We have that ∇(f 2) = 2f∇f and, by Cauchy-Schwartz Inequality, we

obtain

(∫
M
‖∇(f 2)‖ dvoln∫
M
f 2 dvoln

)2

=

( ∫
M
‖2f∇f‖ dvoln

)2( ∫
M
f 2 dvoln

)2 ≤

≤ 4

∫
M
f 2 dvoln ·

∫
M
‖∇f‖2 dvoln( ∫

M
f 2 dvoln

)2 = 4

∫
M
‖∇f‖2 dvoln∫
M
f 2 dvoln

(5.15)

Moreover, it holds that ∆f = λ1f and so f∆f = λ1f
2. Integration by

parts gives ∫
M

‖∇f‖2 dvoln =

∫
M

f∆f dvoln = λ1

∫
M

f 2 dvoln (5.16)

where the first equality is Green’s Formula (see Theorem 4.2.2)

Combining equations (5.15) and (5.16) we conclude

λ1 ≥
1

4

(∫
M
‖∇(f 2)‖ dvoln∫
M
f 2 dvoln

)
(5.17)

By the Co-Area Formula we have:∫
M

‖∇(f 2)‖ dvoln =

∫ +∞

0

(∫
{f2=t}

1 dvoln−1

)
dt =

=

∫ +∞

0

Voln−1({f 2 = t}) dt =

∫ +∞

0

Voln−1({f 2 = t})
Voln({f 2 ≥ t})

Voln({f 2 ≥ t}) dt ≥

≥ inf
t

Voln−1({f 2 = t})
Voln({f 2 ≥ t})

∫ +∞

0

Voln({f 2 ≥ t}) dt ≥ hc(M)

∫ +∞

0

Voln({f 2 ≥ t}) dt

Now, we set V (t) = Voln({f 2 ≥ t}). Integrating by parts and again using

the Co-Area Formula we have∫ +∞

0

V (t) dt = tV (t)|+∞0 −
∫ +∞

0

tV ′(t) dt =

∫ +∞

0

t
(
−
∫
{f2≥t}

1 dvoln

)
dt =

=

∫ +∞

0

t
(
−
∫
{f=t}

1

‖∇f‖
dvoln

)
dt =

∫ +∞

0

∫
{f2=t}

f 2

‖∇f‖
dvoln dt =

∫
M

f 2 dvoln
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Therefore we obtain∫
M

‖∇(f 2)‖ dvoln ≥ hc(M)

∫
M

f 2 dvoln (5.18)

By equations (5.17) and (5.18) we get

λ1(M) ≥ 1

4
h2
c(M)

Now, since f as an eigenfunction of λ1, the submanifold S = {x|f(x) = 0}
divides M into two n−dimensional submanifolds M1 = {x|f(x) ≥ 0} and

M2 = {x|f(x) ≤ 0} whose boundary is S, since f is non constant because λ1

is non-trivial.

Let hc(M1), hc(M2), hc(M) denote Cheeger’s constants of the manifolds

M1,M2,M respectively. For M1 and M2 equation (5.14) holds.

We suppose that Voln(M1) ≤ Voln(M2), then hc(M1) ≥ hc(M).

Since λ1(M) ≥ 1
4
h2
c(M1), it holds again that λ1(M) ≥ 1

4
h2
c(M).

A consequence of Cheeger’s Inequality is Mc Kean’s Inequality.

Theorem 5.4.4 (Mc Kean’s Inequality). Let (M, g) be a complete, simply

connected n−dimensional Riemannian manifold, all of whose sectional cur-

vatures are less than or equal to k < 0, then we have

λ1(M) ≥ −(n− 1)2k

4

Proof. We consider p ∈ M and let t(q) = d(p, q) where q is another point of

M .

By equation (4.4), the Laplacian of the function t is given by:

∆t = − 1√
detG

[∑
α,β

∂

∂α

(
gα,β
√

detG∂βt
)

+
∂

∂t

(
gtt
√

detG∂tt
)]

where α and β are radial directions and there are no mixed term because

of Gauss Lemma (see p. 16).

Since gtt = 1, ∂βt = 0 and ∂tt = 1, the above equation becomes

∆t = − 1√
detG

∂t(
√

detG) (5.19)
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We want to get a bound for ∆t using Theorem 3.3.1, hence

0 ≤ ∂t

(√detG

sn−1
k

)
=
∂t(
√

detG)sn−1
k − (n− 1)sn−2

k ∂t(sk)
√

detG

s
2(n−1)
k

=

=
∂t(
√

detG)

sn−1
k

− (n− 1)
∂t(sk)

√
detG

snk

where sk is defined in Remark 3.3.2.

That is,
∂t(
√

detG)√
detG

≥ (n− 1)
∂t(sk)

sk
(5.20)

Since k is negative, sk = 1√
−k sinh(t

√
−k), therefore

(n− 1)
∂t(sk)

sk
= (n− 1)

√
−k coth(t

√
−k) (5.21)

From (5.19), (5.20) and (5.21) we obtain

−∆t ≥ (n− 1)
√
−k coth(t

√
−k) ≥ (n− 1)

√
−k

where the last inequality is because of the behaviour of coth.

Hence, for all submanifolds Ω in M with smooth boundary we have

(n−1)
√
−kVoln(Ω) ≤

∫
Ω

−∆t dvoln =

∫
∂Ω

< ∇t, ν > dvoln−1 ≤ Voln−1(∂Ω)

where the equality is obtained by the Theorem 4.2.1 (Divergence Theo-

rem).

Therefore,
Voln−1(∂Ω)

Voln(Ω)
≥ (n− 1)

√
−k

which implies

hc(M) ≥ (n− 1)
√
−k (5.22)

Now, by Cheeger’s Inequality and (5.22)

λ1(M) ≥ −1

4
(n− 1)2k
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This inequality can be used to prove that Cheeger’s Inequality is sharp

when we deal with manifolds with negative constant sectional curvature.

However, if one works with positive sectional curvature, Cheeger’s Inequality

is not sharp.

In fact, let M be a manifold with constant sectional curvature −1 with

geodesic disk of radius δ denoted byD−1(δ) having lowest Dirichlet eigenvalue

λ−1(δ), then:

(n− 1)2

4
≤ 1

4
h2
c(D−1(δ)) ≤ λ−1(δ) ≤ (n− 1)2

4
+ o(δ)

for δ → ∞. Here the first inequality follows from taking the square of

(5.22), the second inequality is Mc Kean’s Inequality and the last inequality

follows from the bottom of the spectrum of the hyperbolic plane for which

we refer to [Cha1, p.46].





Chapter 6

The isoperimetric profile

6.1 Definitions and examples

We begin giving the definition of the isoperimetric profile and presenting

the isoperimetric profile of the unit sphere of dimension n.

Definition 6.1.1. Let M be a compact, n−dimensional Riemannian man-

ifold and let β ∈ (0, 1). We define the isoperimetric profile of M as the

function β 7−→ hM(β) such that

hM(β) = inf
D⊂M

{Voln−1(∂D)

Voln(D)
| Voln(D) = β Voln(M)

}
Remark 6.1.2. Let β′ = 1 − β. We note that Voln(D) = β Voln(M) implies

that Voln(Dc) = β′Voln(M) and ∂D = ∂Dc. Therefore we conclude:

hM(β) = hM(1− β)

Remark 6.1.3. If M is a closed Riemannian manifold, the isoperimetric profile

and Cheeger’s constant are related by the following

hc(M) = inf
β∈(0, 1

2
]
h(β)

The isoperimetric profile can not be easy to calculate if we haven’t clues

about what kind of domains we have to take into account to get the infimum,

but with well-known manifolds can become easy. As an example we present

the isoperimetric profile of the unit sphere Sn.

71
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Isoperimetric profile of Sn

By the Spherical Isoperimetric Inequality (see [Sak, Subsection 1.1, Chap-

ter 6]) we know that the infimum of the isoperimetric profile is realized by a

metric ball of radius r inside the sphere.

We start analysing two low dimensional cases, n = 2, 3, and then we turn

to the general case.

Let B be a ball of radius r inside the unit n−sphere.

• Dimension n = 2

By equations (3.7) and (3.8) we have:

Vol2(S2) = 4π

Vol2(B) = 2π(1− cos r)

Vol1(∂B) = Vol1(S1) sin r = 2π sin r.

We require that B has given volume Vol2(B) = β4π. Hence:

Vol1(∂B)

Vol2(B)
=

sin r

2β

The radius r has to be calculated according to the volume required for

B solving

4βπ = 2π(1− cos r) =⇒ r = arccos(1− 2β)

Therefore:

hS2(β) =
sin(arccos(1− 2β)

2β
=

√
1− cos2(arccos(1− 2β))

2β
=

=

√
(1− 2β)2

2β
=

√
β − 1

β

• Dimension n = 3

As before:

Vol3(S3) = π2
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Vol3(B) = Vol2(S2)
∫ r

0
(sin t)2dt = 4π( r

2
− sin 2r

4
)

Vol2(∂B) = (sin r)24π

Requiring that B has given volume Vol3(B) = βπ2, the isoperimetric

profile is

hS3(β) =
4(sin r)2

βπ

In this case the radius r is given solving βπ2 = 4π( r
2
− sin 2r

4
)

• General case

Referring to the formulas we recalled at the beginning, we have

hSn(β) =
(sin r)n−1Γ(n+1

2
)

2β
√
π Γ(n

2
)

where r is given solving β
√
π Γ(n+1

2
) = Γ(n

2
)
∫ r

0
(sin t)n−1dt and Γ(·)

denotes the Gamma function.

6.2 A comparison theorem for the isoperi-

metric profile

The aim of this section is to show that the isoperimetric profile of the

unit sphere of dimension n is a lower bound for the isoperimetric profile of

any other manifold with the same dimension and Ricci curvature bounded

from below by a positive constant.

The proof of this claim involves different results and it is based on a

calculation of volume which uses hypersurfaces immersed in the manifold

and on a comparison theorem similar to the Bishop’s Comparison Theorems.

We start by giving all the necessary notions that we will use to prove all

the results.



74 6.2 A comparison theorem for the isoperimetric profile

6.2.1 Basic definitions for submanifolds

Isometric immersions

Let M be Riemannian manifold of dimension n and let N ⊂ M be a

submanifold of dimension k < n isometrically immersed in M , i.e. there

exists the inclusion map f : N −→ M such that given the metric g on M ,

metric g̃ on N is defined via g̃(v1, v2) = g(Df(p)(v1), Df(p)(v2)).

For each p ∈ N we have TpM = TpN ⊕ (TpN)⊥ where (TpN)⊥ is the

orthogonal complement of TpN in TpM . Therefore, any vector v ∈ TpM is

written as v = vT + vN where vT ∈ TpN is called tangent component and

vN ∈ (TpN)⊥ is called normal component.

Let ∇, ∇̃ be the Levi-Civita connections on M and N respectively and

let X, Y be vector fields on N with extensions X,Y on M . ∇̃ and ∇ satisfy

∇̃XY = (∇XY )T .

Definition 6.2.1. Let X, Y be vector fields on N and let X,Y be their

extensions on M . We define the map

B : X (N)×X (N) −→ X (N)⊥, B(X, Y ) = ∇XY − ∇̃XY = (∇XY )N

where X (N)⊥ is the set of all vector fields normal to N .

Remark 6.2.2. The map B is bilinear and symmetric.

Definition 6.2.3. Let p ∈ N and let v ∈ (TpN)⊥. We define the map

Hv : TpN × TpN −→ R such that Hv(w1, w2) =< B(w1, w2), v >

The second fundamental form of N is given by

IIv(w) = Hv(w,w)

Definition 6.2.4. Let p ∈ N and let v ∈ (TpN)⊥. We define the shape

operator of N as the map

Sv : TpN −→ TpN such that < Sv(w), u >=< B(w, u), v >
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We point out that Sv is a symmetric linear operator and it can also be

described by

Sv(w) = −(∇WV )T (6.1)

where W is an extension of w on M and V is an extension of v normal

to N .

Definition 6.2.5. We define the mean curvature vector of N as

H =
1

k

n−k∑
i=1

(trSEi)Ei

where {E1, . . . , En−k} is a local orthonormal frame of (TN)⊥, that is

H(p) ∈ (TpN)⊥ for all p ∈ N .

If N is an hypersurface of M , i.e dimN = n−1, then the mean curvature

is given by

η =
1

n− 1
(trSν) =

1

n− 1

n−1∑
i=1

< Sν(ei), ei >

with ν the outward unit normal and {e1, . . . , en−1} an orthonormal basis for

TpN . In this case H = ην.

Remark 6.2.6. Since Sν is a symmetric operator, it can be diagonalized, that

is Sν = diag(λ1, . . . , λn−1) where λi are the eigenvalues. Therefore the mean

curvature can also be written as

η =
1

n− 1

n−1∑
i=1

λi (6.2)

Normal exponential map, N−Jacobi fields and focal points

Keeping the same notation of the previous subsection, we now look at

Jacobi fields associated to each submanifold N .

Let F : (−ε, ε) × [0, T ] −→ M be a geodesic variation of the geodesic

cv : [0, T ] −→ M with cv(0) = p ∈ N and c′v(0) = v ∈ (TpN)⊥ such that

for all s ∈ (−ε, ε), the curve α(s) = F (s, 0) is into N and A(s) = ∂F
∂t

(s, 0) ∈
(Tα(s)N)⊥ (see Fig. 6.1).
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The variational vector field J(t) = ∂F
∂s

(t, 0) is a Jacobi field along cv.

Moreover J(t) satisfies the initial conditions

J(0) ∈ TpN J ′(0) + Sv(J(0)) ∈ (TpN)⊥ (6.3)

In fact, the variation can be expressed as F (s, t) = expα(s) tA(s) and, by

the Symmetry Lemma ([DoC, Lemma 3.4, p. 68]), easy consequence of the

torsion freeness of ∇, we have

J ′(t) =
D

dt

∣∣∣
t

∂F

∂s

∣∣∣
s=0

(s, t) =
D

ds

∣∣∣
s=0

∂F

∂t
(s, t)

At t = 0 we get

J ′(0) =
D

ds

∣∣∣
s=0

∂F

∂t

∣∣∣
t=0

(s, t) = ∇α′(0)A(s) = (∇α′(0)A(s))T + (∇α′(0)A(s))N

Since −(∇α′(0)A(s))T = Sv(α
′(0)) = Sv(J(0)), we get

J ′(0) + Sv(J(0)) = J ′(0)− (∇α′(0)A(s))T = (∇α′(0)A(s))N ∈ (TpN)⊥

On the other hand, any Jacobi fields satisfying (6.3) arises from such a

variation (see [DoC, Lemma 4.1, p. 227]).

N

A(0) = c′v(0)
α(s)

cv

A(s)

Figure 6.1: The variation F

These Jacobi fields are also called N−Jacobi fields.
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There is an analogous version of conjugate points for N−Jacobi fields:

focal points.

Definition 6.2.7. Let N be a submanifold of a Riemannian manifold M . A

point q ∈M is a focal point of N if there exists a geodesic cv : [0, T ] −→M

such that cv(0) = p ∈ N , cv(T ) = q and c′v(0) ∈ (TpN)⊥ and a non zero

N−Jacobi field satisfying J(T ) = 0.

Moreover, as the Jacobi fields are linked to the exponential map, the

N−Jacobi fields are linked to the normal exponential map.

Let (TN)⊥ =
⋃
p∈N(TpN)⊥ be the normal tangent bundle.

We define (TM)N =
⋃
p∈N TpM .

We have the decomposition (TM)N = TN ⊕ (TN)⊥. The exponential

map can be seen as a map exp : (TM)N = TN ⊕ (TN)⊥ −→ M with

exp(p, v) = expp v.

We define the normal exponential map as the exponential map restricted

to the normal tangent bundle, that is

exp⊥ : (TN)⊥ −→M

We have the following results identifying the tangent space Tw(TN)⊥,

w ∈ (TqN)⊥, with vectors in TqN ⊕ (TqN)⊥ as described in [Sak, p. 58]

Lemma 6.2.8. Let N ⊂ M be a submanifold of a Riemannian manifold

M . If J(t) is an N−Jacobi field such that J(0) = v ∈ TpN and J ′(0) +

Sw(v) = u ∈ (TpN)⊥, then D exp⊥(tw)(v, tu) where (v, tu) is an element in

Ttw(TN)⊥.

Proposition 6.2.9 ([DoC], Proposition 4.4, p. 231). The point q ∈ M is a

focal point of N if and only if it is a critical value of exp⊥.

To conclude this subsection we introduce the index form for an N−Jacobi

field J(t).
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Definition 6.2.10. The index form of an N−Jacobi field J(t) along the

geodesic cv : [0, T ] −→ M , with cv(0) = p ∈ N and c′v(0) = v ∈ (TpN)⊥, at

the point t ∈ [0, T ] is given by

It(J, J) =< J(0),−Sv(J(0)) > +

∫ t

0

‖J ′(s)‖2− < R(J ′, c′v)c
′
v, J

′ > (s) ds

Remark 6.2.11. Since J(t) is defined by the initial conditions J(0) ∈ TpN

and J ′(0) + Sv(J(0)) = w ∈ (TpN)⊥, we have:

< J(0),−Sv(J(0)) >=< J(0), J ′(0)− w >=< J(0), J ′(0) >

Therefore

It(J, J) =< J(0), J ′(0) > +

∫ t

0

‖J ′(s)‖2− < R(J ′, c′v)c
′
v, J

′ > (s) ds (6.4)

Remark 6.2.12. The index form can also be expressed as

It(J, J) =< J(t), J ′(t) > (6.5)

In fact:

It(J, J) =< J ′(0), J(0) > +

∫ t

0

‖J ′(s)‖2− < R(J, c′v)c
′
v, J > (s)ds =

=< J ′(0), J(0) > +

∫ t

0

(< J ′, J >)′(s)− < J ′′, J > (s)+ < J ′′, J > (s)ds =

=< J ′(0), J(0) > − < J ′(0), J(0) > + < J ′(t), J(t) >=< J ′(t), J(t) >

We can compare the index form of a piecewise C∞ vector field X along a

geodesic with no focal points of N and such that X(0) ∈ N with the index

form of an N−Jacobi field Y along the same geodesic.

Lemma 6.2.13 ([Sak], Lemma 2.10, p. 95). Let cv : [0, T ] −→ M be a

geodesic such that cv(0) = p ∈ N and c′v(0) = v ∈ (TpN)⊥ with no focal points

of N on cv([0, T ]). For any piecewise C∞ vector field X along a geodesic cv

with X(0) ∈ TpN there exists a unique N−Jacobi field Y along cv satisfying

conditions (6.3) with Y (T ) = X(T ). Moreover It(Y, Y ) ≤ It(X,X). Equality

holds if and only if Y = X.
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6.2.2 Heintze-Karcher Inequality

Here we show how we can use the fact that N ⊂ M is a submanifold of

M to calculate the volume of M .

The idea is to use the inverse of the normal exponential map as a co-

ordinate chart on M and to split the Riemannian measure on M into the

Riemannian measure on N and (TpN)⊥ for all p ∈ N .

Since from now on we deal with hypersurfaces of a Riemannian manifold

M , we restrict to the case N ⊂ M submanifold of dimension n− 1. For the

general case we refer to [Cha2, Section 6, Chapter 3].

The following statements can be proved with the same arguments used

for the exponential map (see [Cha2, Section 6, Chapter 3] or [Sak, p. 59ff]).

i) There exists an open neighbourhood U of (TN)⊥ on which the normal

exponential map is a diffeomorphism onto an open set of M .

ii) (Gauss Lemma) Let cw : [0, T ] −→ M be a geodesic normal to N

such that cw(0) = p and c′w(0) = w ∈ (TpN)⊥ and let (w, u) ∈
Tw(TN)⊥. We have that D exp⊥(tw)(0, tw) = tc′w(t) and in particular

‖D exp⊥(w)(0, w)‖ = ‖w‖.

Moreover < D exp⊥(tw)(v, tu), c′w(t) >=< u,w > t.

iii) Let w ∈ (TpN)⊥ and suppose the normal exponential map is defined

on an open neighbourhood U of {tw | 0 ≤ t ≤ T} ∈ (TN)⊥, the

same introduced in i). For any curve ϕ in U starting from N and

ending at Tw, we set γ(t) = exp⊥ ϕ(t) and we have l(cw) ≤ l(γ) where

cw(t) : [0, T ] −→ M is the geodesic normal to N such that cw(0) = p

and c′w(0) = w ∈ (TpN)⊥.

iv) Suppose that N is a closed submanifold. Then for any q ∈ exp⊥(U)

there exists a unique minimal geodesic c parametrized by arc-length

from a point of N to q that realizes the distance d(q,N).
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Now, since the normal exponential map is a diffeomorphism, its inverse

can be used as a coordinate chart on M .

The Riemannian measure on M can be written in a suitable neighbour-

hood of N , as

dvoln =
√

det gij ◦ exp⊥(tν)dtdvoln−1

where ν is a smooth normal frame along N and t is the coordinate that

represents the signed distance from N .

Furthermore, the square root of this determinant can be calculated in

terms of N−Jacobi fields.

In fact, let {e1, . . . , en−1} be an orthonormal basis for TpN and let Ji(t)

for i = 1, . . . n−1 be N−Jacobi fields along the geodesic cν(t) with cν(0) = p

and c′ν(0) = ν perpendicular to N such that

Ji(0) = ei J ′i(0) = −Sν(ei) (6.6)

for all i = 1, . . . , n− 1.

Note that {e1, . . . , en−1} can be chosen as the eigenvectors of Sν , in which

case J ′i(0) = −λiei where λi are the eigenvalues of Sν .

Then √
det gij ◦ exp⊥(tν) =

√
det(< Ji(t), Jj(t) >)i,j=1,...,n−1

Therefore, in case N is connected we have (see [Cha2, p. 144]):

Voln(M) =

∫
M

dvoln =

∫
N

dvoln−1(p)

∫ r(νp)

−r(−νp)

√
det(< Ji(t), Jj(t) >)i,j=1,...,n−1dt

(6.7)

where r(νp) is the first focal distance in direction νp = ν(p) for all p ∈ N .

If N is the connected boundary of M and −ν is the inward unit vector

field, then (6.7) can be replaced by

Voln(M) =

∫
M

dvoln =

∫
N

dvoln−1(p)

∫ r(−νp)

0

√
det(< Ji(t), Jj(t) >)i,j=1,...,n−1dt

(6.8)
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Remark 6.2.14. If M has constant sectional curvature δ > 0, then there is

an explicit formula for the volume of M .

Let N be an hypersurface of M , the N−Jacobi fields satisfying the initial

conditions Ji(0) = ei and J ′i(0) = −λiei, with {e1, . . . , en} orthonormal basis

for TpN , are given by:

Ji(t) =
(

cos(
√
δt)− λi√

δ
sin(
√
δt)
)
Ei(t)

with {E1(t), . . . , En−1(t)} an orthonormal frame such that Ei(0) = ei for

all i.

Hence:√
det(< Ji(t), Jj(t) >)i,j=1,...,n−1 =

n−1∏
i=1

(
cos(
√
δt)− λi√

δ
sin(
√
δt)
)

and equation (6.7) becomes

Voln(M) =

∫
N

dvoln−1

∫ r(νp)

−r(−νp)

n−1∏
i=1

(
cos(
√
δt)− λi√

δ
sin(
√
δt)
)
dt (6.9)

Now we can state Heintze and Karcher inequality which gives us a bound

for the integrand function in the formula for the volume of M .

Proposition 6.2.15. Let M be a Riemannian manifold of dimension n with

connected boundary N and with Ric(v) ≥ (n− 1) for all v ∈ SM . Then, let

η ∈ R be a constant such that the mean curvature of N satisfies the trace

condition trS−ν ≥ −η(n−1), where −ν is the inward unit normal. Then for

t ≤ t0, with t0 the first focal distance of N in direction −ν, we have√
detD exp⊥(t(−ν)) ≤ (cos t+ η sin t)n−1 (6.10)

Moreover, the first zero of the LHS function (first focal distance of N in

direction −ν) does not occur before the first zero of the RHS function.

Proof. We compare M with a Riemannian manifold M of dimension n with

constant sectional curvature 1. In M we pick up a submanifold N of dimen-

sion (n − 1) and totally umbilic with trS−ν = −η(n − 1), where −ν is the

inward unit normal of N .
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We observe that the manifold M is the unit n−dimensional sphere and

the submanifold N is the boundary of a metric ball inside the sphere.

Let {e1, . . . , en−1} be an orthonormal basis for TpN and let {J1(t), . . . , Jn−1(t)}
be N−Jacobi fields along c(t) = exp⊥(t(−ν)), with c(0) = p and c′(0) = −ν,

perpendicular to N and satisfying Ji(0) = ei and J ′i(0) = −S−ν(ei) for all

i = 1, . . . , n− 1.

These N−Jacobi fields describe the normal exponential map on M , so√
detD exp⊥(t(−ν)) =

√
det(< Ji(t), Jj(t) >)i,j=1,...,n−1 (6.11)

In the same way let {e1, . . . , en−1} be an orthonormal basis for TpN and

let {J1(t), . . . , Jn−1(t)} be N−Jacobi fields along c(t) = exp⊥(t(−ν)), with

c(0) = p and c′(0) = ν , perpendicular to N and satisfying J i(0) = ei and

J
′
i(0) = −S−ν(ei) for all i = 1, . . . , n− 1.

In particular, setting λi for i = 1, . . . , n−1 the eigenvalues of Sν , we have

that −λi for i = 1, . . . , n− 1 are the eigenvalues of S−ν .

Since N is totally umbilic, all λi agree and are equal to η.

Choosing ei as the eigenvectors of Sν we have J
′
i(0) = λiei = ηei for all

i = 1, . . . , n− 1.

Moreover, by Remark 6.2.14 we have

J i(t) = (cos t+ λi sin t)Ei(t) = (cos t+ η sin t)Ei(t)

providing {E1, . . . , En−1} parallel vector fields along c with Ei(0) = ei for

all i = 1, . . . , n− 1.

Again, these orthogonal Jacobi fields describe the normal exponential

map. Therefore√
detD exp⊥(t(−ν)) =

√
det(< J i(t), J j(t) >)i,j=1,...,n−1 (6.12)

In particular,√
det(< J i(t), J j(t) >)i=1,...,n−1 =

n−1∏
k=1

(cos t+ λk sin t) = (cos t+ η sin t)n−1

(6.13)
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Therefore, to prove the theorem we need to show that√
det(< Ji(t), Jj(t) >)i,j=1,...,n−1 ≤

√
det(< J i(t), J j(t) >)i,j=1,...,n−1 (6.14)

Indeed, setting

f(t) =
√

detA(t) with A(t) = (< Ji(t), Jj(t) >)i,j=1,...,n−1

f(t) =
√

detB(t) with B(t) = (< J i(t), J j(t) >)i,j=1,...,n−1

it is enough to show

(log f)′(t) ≤ (log f)′(t) for t ≤ t0 (6.15)

where t0 is the first focal distance of N in direction −ν.

In fact, if it holds we have

log f(t̃)− log f(0) =

∫ t̃

0

(log f)′(t)dt ≤
∫ t̃

0

(log f)′(t)dt = log f(t̃)− log f(0)

with t̃ ≤ t0.

By the initial condition log f(0) = log f(0) = 1, we have

log f(t̃) ≤ log f(t̃) =⇒ f(t̃) ≤ f(t̃)

and using equations (6.11), (6.12) and (6.13) we finish the proof.

To prove equation (6.15) we proceed as follow.

(log f)′(t) =
(

log
√

detA(t)
)′

=
(detA(t))′

2 detA(t)
=

=
detA(t) · tr

(
A−1(t)A′(t)

)
2 detA(t)

=
1

2
tr
(
A−1(t)A′(t)

)
(6.16)

With the same computation

(log f)′(t) =
1

2
tr
(
B−1(t)B′(t)

)
(6.17)

We note that (log f)′ and (log f)′ does not change if we choose instead

of Ji (respectively J i) a set of (n− 1) linearly independent N−Jacobi fields

(respectively N−Jacobi fields).
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In fact, if Y1(t), . . . , Yn−1(t) are such that Yi(t) =
∑n−1

l=1 ailJl(t) with ail

elements of a (n− 1)× (n− 1) matrix with constant coefficients, then

det(< Yi(t), Yj(t) >)i,j=1,...,n−1 = (det(aij)i,j=1,...,n−1)2 det(< Ji(t), Jj(t) >)i,j=1,...,n−1 =

= (det(aij)i,j=1,...,n−1)2 detA(t)

Let fY (t) =
√

det(< Ji(t), Jj(t) >)i,j=1,...,n−1.

We have fY (t) = | det(aij)i,j=1,...,n−1|f(t).

Therefore (log fY )′(t) =
(

log(| det(aij)i,j=1,...,n−1|)+log f
)′

(t) = (log f)′(t).

We fix t̂ ∈ [0, T ] and we choose the J is to be orthonormal at t̂, then

B(t̂) = I and B′(t̂) = (< J
′
i(t̂), J j(t̂) > + < J i(t̂), J

′
j(t̂) >)i,j=1,...,n−1.

Equation (6.17) becomes

(log f)′(t̂) =
n−1∑
i=1

< J
′
i(t̂), J i(t̂) >=

n−1∑
i=1

It̂(J i, J i)

where the last equality comes from (6.5).

In the same manner, i.e. choosing the Jis to be orthonormal at t̂, we get

(log f)′(t̂) =
n−1∑
i=1

< J ′i(t̂), Ji(t̂) >=
n−1∑
i=1

It̂(Ji, Ji)

It remains to show that

n−1∑
i=1

It̂(Ji, Ji) ≤
n−1∑
i=1

It̂(J i, J i) (6.18)

We define a linear isometry

it̂p : TpM −→ TpM

such that

it̂p(c
′(0)) = c′(0) it̂p(TpN) = TpN (P c

t̂ ◦ i
t̂
p ◦ P c

−t̂)(J i(t̂)) = Ji(t̂)

Here P c
t̂

and P c
−t̂ denotes the parallel transport along the curve c from 0

to t̂ and along the curve c from t̂ to 0 respectively.
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For i = 1, . . . , n− 1 and for 0 ≤ s ≤ t̂, we define vector fields Wi(s) along

c as

Wi(s) = (P c
s ◦ it̂p ◦ P c

−s)(J i(s))

Each Wi(s) satisfies

Wi(t̂) = Ji(t̂) and ‖Wi(s)‖ = ‖J i(s)‖, ‖W ′
i (s)‖ = ‖J ′i(s)‖ ∀ s ∈ [0, t̂]

By Lemma 6.2.13 we have

It̂(Ji, Ji) ≤ It̂(Wi,Wi) ∀ i = 1, . . . , n− 1

Therefore
n−1∑
i=1

It̂(Ji, Ji) ≤
n−1∑
i=1

It̂(Wi,Wi)

To conclude the proof of (6.18) it remains to prove that

n−1∑
i=1

It̂(Wi,Wi) ≤
n−1∑
i=1

It̂(J i, J i) (6.19)

Since Wi(s) are orthonormal up to a common factor and using the trace

assumption, we conclude

n−1∑
i=1

< Wi(0), Sν(Wi(0)) > ≤
n−1∑
i=1

< J i(0), Sν(J i(0)) >

Further
n−1∑
i=1

‖W ′
i (s)‖2 =

n−1∑
i=1

‖J ′i(s)‖2

and

n−1∑
i=1

∫ t̂

0

< R(Wi, c
′)c′,Wi > (s) ds =

∫ t̂

0

n−1∑
i=1

< R(Wi, c
′)c′,Wi > (s) ds =

=

∫ t̂

0

RicM(c′)‖Wi(s)‖2 ds ≥
∫ t̂

0

RicM(c′)‖J i(s)‖2 ds =
n−1∑
i=1

∫ t̂

0

< R(J i, c
′)c′, J i > (s) ds

We obtain

n−1∑
i=1

< Wi(0), Sν(Wi(0)) > +

∫ t̂

0

‖W ′
i (s)‖− < R(Wi, c

′)c′,Wi > (s) ds ≤
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≤
n−1∑
i=1

< J i(0), Sν(J i(0)) > +

∫ t̂

0

‖J ′i(s)‖− < R(J i, c
′)c′, J i > (s) ds

which means
n−1∑
i=1

It̂(Wi,Wi) =
n−1∑
i=1

It̂(J i, J i)

Since (6.19) is proved, then the proof of the initial inequality is finished.

Concerning the first zero, we observe that the two functions in (6.10)

start from the same point and the first derivative of the LHS function is less

than the one of the RHS function. Therefore the first zero of the LHS cannt

occur before the first zero of the RHS.

Remark 6.2.16. If we had worked with the outward unit normal ν, we would

have ended up with the following inequality√
detD exp⊥(tν) ≤ (cos t− η sin t)n−1 (6.20)

6.2.3 Variational formula for area and volume

Here we work out another important step for our final goal. We present

and prove the variational formulas for area and volume stating a condition

for a domain inside a manifold to have constant mean curvature.

Let D be a domain inside a Riemannian manifold M of dimension n with

smooth boundary ∂D and let ν be the outward unit normal vector field to

∂D. We set ν(p) = νp. For a C∞ function u on ∂D with compact support,

we consider αt(p) = exp⊥(tu(p)νp) and ∂Dt = {αt(p) | p ∈ ∂D}.
∂Dt is a variation of ∂D and we consider Dt, the corresponding domain

with boundary ∂Dt.

It is clear that ∂D0 = ∂D and D0 = D.

Proposition 6.2.17. In the above situation we have

d

dt

∣∣∣
t=0

Voln(Dt) =

∫
∂D

u dvoln−1 (6.21)
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d

dt

∣∣∣
t=0

Voln−1(∂Dt) = −(n− 1)

∫
∂D

η(p)u(p)dvoln−1 (6.22)

where η(p) is the mean curvature vector of ∂D at p ∈ ∂D.

Proof. Let {e1, . . . , en−1} be an orthonormal basis of Tp∂D and let {J1(t), . . . , Jn−1(t)}
be ∂D−Jacobi fields along the geodesic cνp(tu(p)) perpendicular to ∂D and

such that Ji(0) = ei and J ′i(0) = −Sνp(ei).
Denoting by dvoln−1,t the Riemannian measure of ∂Dt with respect to the

induced metric at cνp(tu(p)), we have

dvoln−1,t =
√

det(< Ji(tu(p)), Jj(tu(p)) >)ij=1,...,n−1dvoln−1

Hence

Voln(Dt) =

∫
Dt

dvoln,t = Voln(D)+

∫
∂D

∫ tu(p)

0

√
det(< Ji(s), Jj(s) >)ijds dvoln−1

and

Voln−1(∂Dt) =

∫
∂Dt

dvoln−1,t =

∫
∂D

√
det(< Ji(tu(p)), Jj(tu(p)) >)ijdvoln−1

Therefore

d

dt

∣∣∣
t=0

Voln(Dt) =

∫
∂D

u
√

det(< Ji(0), Jj(0)) >)ijdvoln−1 =

∫
∂D

u dvoln−1

which proves (6.21).

Taking the derivative of the (n− 1) volume of ∂Dt we have

d

dt

∣∣∣
t=0

Voln−1(∂Dt) =

∫
∂D

d

dt

∣∣∣
t=0

√
det(< Ji(tu(p)), Jj(tu(p)) >)ijdvoln−1

(6.23)

and we need to calculate the derivative inside the integral.

We set A(t) = (< Ji(t), Jj(t) >)i,j=1,...,n−1, then

d

dt

∣∣∣
t=0

√
detA(t) =

1

2
tr(A−1(0)A′(0)) (6.24)

Now,

A(0) = I so A−1(0) = I and
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A′(0) = (< J ′i(0), Jj(0) > + < Ji(0), J ′j(0) >)i,j=1,...,n−1

For the initial conditions of these ∂D−Jacobi fields we have

A′(0) = (−2 < Sνp(ei), ej >)i,j=1,...,n−1

Hence, equation (6.24) becomes

d

dt

∣∣∣
t=0

√
detA(t) = −

n−1∑
i=1

< Sνp(ei), ei >= −η(p)(n− 1)

and substituting this expression into (6.23) we conclude

d

dt

∣∣∣
t=0

Voln−1(∂Dt) = −(n− 1)

∫
∂D

η(p)u(p)dvoln−1

which gives us (6.22).

As a consequence we have the following corollary.

Corollary 6.2.18. Assume the same situation of the previous proposition.

If ∂D minimizes the (n − 1)−dimensional volume among all the (n − 1)−
dimensional submanifolds of M that are smooth boundaries of domains with

the same volume as that of D, then ∂D has constant mean curvature.

Proof. The minimizing assumption implies

0 =
d

dt

∣∣∣
t=0

Voln−1(∂Dt) =

∫
∂D

η(p)u(p)dvoln−1

for all u ∈ C∞(∂D) satisfying∫
∂D

u(p)dvoln−1 = 0 (6.25)

We choose

u = η − 1

Voln−1(∂D)

∫
∂D

η dvoln−1

We observe that this choice of u satisfies (6.25), in fact∫
∂D

udvoln−1 =

∫
∂D

ηdvoln−1 −
1

Voln−1(∂D)
Voln−1(∂D)

∫
∂D

η(p)dvoln−1 = 0
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Now we consider

u2 = η2 − 2

Voln−1(∂D)
η

∫
∂D

ηdvoln−1 +
( 1

Voln ∂D

∫
∂D

ηdvoln−1

)2

and ∫
∂D

u2dvoln−1 =

∫
∂D

η2dvoln−1 −
1

Voln−1(∂D)

(
ηdvoln−1

)2

By the Cauchy-Schwartz Inequality:

0 =
(∫

∂D

u · 1dvoln−1

)2

≤ Voln−1(∂D)

∫
∂D

u2dvoln−1 =

= Voln−1(∂D)
[ ∫

∂D

η2dvoln−1 −
1

Voln−1(∂D)

(∫
∂D

ηdvoln−1

)2]
=

= Voln−1(∂D)
[ ∫

∂D

η2dvoln−1−
1

Voln−1(∂D)

∫
∂D

η
(∫

∂D

ηdvoln−1

)
dvoln−1

]
=

= Voln−1(∂D)

∫
∂D

u(p)η(p)dvoln−1 = 0

Therefore the Cauchy-Schwartz Inequality is an equality indeed. This

means that the function u is a multiple of 1, i.e. it is constant. Since its

integral over ∂D is zero, u = 0.

Hence:

0 = η − 1

Voln−1(∂D)

∫
∂D

ηdvoln−1 =⇒ η =
1

Voln−1(∂D)

∫
∂D

ηdvoln−1

This means that η is constant.

6.2.4 Estimating the isoperimetric profile

At this point we have all the ingredients to prove the main result. As a

warm up, we deal with the volume of a metric ball of radius r, Br, into the

unit n−sphere and discuss this situation in detail.

First of all, we calculate the mean curvature η and the shape operator of

∂Br.

By Corollary 6.2.18 we know that η is constant.
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We take the variation αt(p) = exp⊥(tνp), for all p ∈ ∂Br, which takes

∂Br to ∂Br+t. Then by equation (6.22) of Proposition 6.2.17 we have

d

dt

∣∣∣
t=0

Voln−1(∂Br+t) = −(n− 1)ηVoln−1(∂Br)

Moreover

d

dt

∣∣∣
t=0

Voln−1(∂Br+t) =
d

dt

∣∣∣
t=0

(sin r)n−1 Voln(Sn) = (n−1)(sin r)n−2 cos rVoln(Sn)

and

−(n− 1)ηVoln−1(∂Br) = −(n− 1)η(sin r)n−1 Voln(Sn)

using formula (3.8).

Combining the last two formulas we obtain η = − cot r.

We note that, using the inward unit normal instead, we would end up

with η = cot r.

Now we turn to the shape operator, finding an explicit expression for

Sν(v) with v ∈ Tp∂Br.

We first consider the case n = 2 (see Fig. 6.2), since it can easily be

extended to arbitrary dimensions.

∂Br
Br

ν(t)

sin r

z

x

y

γ′(t)

Figure 6.2: S2
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We have that Sν(v) = −(∇vN)⊥ by equation (6.1), with N a local exten-

sion of ν in Br which is also a local extension in S2.

We parametrize S2 by ϕ−1(x1, x2) = (sinx1 sinx2, sinx1 cosx2, cosx1)

with x1 ∈ [0, π] and x2 ∈ [−π, π].

A curve in ∂Br is given by γ(t) = (sin r sin t, sin r cos t, cos r) = ϕ−1(r, t)

and γ′(t) = (sin r cos t,− sin r sin t, 0) = ∂
∂x2

∣∣
γ(t)

and ‖γ′(t)‖ = sin r.

The unit outward normal vector of Br in S2 is given by

ν(t) = (cos r sin t, cos r cos t,− sin r) = ∂
∂x1

∣∣
γ(t)

and the extension N takes the

same form.

Therefore, setting v = γ′(t), we have

∇vN = ∇γ′(t)N = ∇ ∂
∂x2

∣∣
γ(t)

∂

∂x1

= Γ2
21

∂

∂x2

|γ(t) = cot r · γ′(t) = cot r · v

and so Sν(v) = − cot r · v. Therefore S−ν(v) = cot r · v.

If n > 2, a similar calculation yields Sν(v) = − cot r · v again.

Now we can consider the volume of Br. The metric ball Br inherits the

metric on Sn, so it has constant sectional curvature δ = 1.

We take p ∈ ∂Br and we consider the unit inward normal −ν. The

∂Br−Jacobi fields {Ji(t), . . . , Jn−1(t)} along the geodesic c−ν(t) = exp⊥(t(−ν))

with c−ν(0) = p and c′−ν(0) = −ν and perpendicular to ∂Br are defined by

the initial conditions Ji(0) = ei and J ′i(0) = −S−ν(ei) = Sν(ei) for all i with

{e1, . . . , en−1} an orthonormal basis of Tp∂Br.

By Remark 6.2.14, these Jacobi fields are

Ji(t) = (cos t− cot r · sin t)Ei(t)

for all i with {Ei(t), . . . , En−1(t)} an orthonormal frame of {e1, . . . , en−1}.
Moreover√
det gij ◦ exp⊥(tν) =

√
det(< Ji(t), Jj(t) >ij) = (cos t− cot r · sin t)n−1

so the volume of the ball is given by

Voln(Br) =

∫
∂Br

∫ r

0

(cos t−cot r·sin t)n−1dt = Voln−1(∂Br)

∫ r

0

(cos t−cot r·sin t)n−1dt

(6.26)
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where r is the first focal distance in direction −ν which is equal to the radius

of Br. Moreover, it is also the first zero of the integrand function.

After this explicit calculation for the metric ball in S2, we now turn to

the estimate of the isoperimetric profile.

Theorem 6.2.19. Let M be an connected complete Riemannian manifold of

dimension n with Ric(v) ≥ (n − 1) for all v ∈ SM and let Sn be the unit

n−dimensional sphere. Then

hM(β) ≥ hSn(β)

Proof. Using deep results of Geometric Measure Theory, there exists a do-

main D ⊂M such that

i) Voln(D) = β Voln(M) with β ∈ (0, 1];

ii) its boundary, ∂D, minimizes the volume among all the domains with

same volume of D.

This means that the isoperimetric profile of M is given by

hM(β) =
Voln−1(∂D)

Voln(M)
(6.27)

Unfortunately, ‘these result of Geometric Measure Theory are very hard

to locate and to find in an handy form’1. The reader can refer to [Mor] for a

firts introduction to the subject.

By its properties, ∂D has constant mean curvature (see Corollary 6.2.18)

−η since we choose to work with the inward unit normal.

We now calculate the volume of D and regard ∂D as an hypersurface

isometrically immersed in D. Choosing an orthonormal basis {e1, . . . , en−1}
of Tp∂D and {J1(t), . . . , Jn−1(t)} ∂D−Jacobi fields along c(t) = exp⊥(t(−ν))

1M. Berger, A panoramic view of Riemannian Geometry, Springer, 2003, p. 320
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such that Ji(0) = ei and J ′i(0) = −S−ν(ei) = λiei for all i = 1, . . . , n − 1

where λi are the eigenvalues of the shape operator Sν , we have:

Voln(D) =

∫
∂D

∫ t1

0

√
det(< Ji(t), Jj(t) >)i,j=1,...,n−1dt dvoln−1 (6.28)

where dvoln−1 is the Riemannian mesure on ∂D induced by D and t1 is

the first focal distance of ∂D in direction −ν
Using Proposition 6.2.15, we have that√

det(< Ji(t), Jj(t) >)i,j=1,...,n−1 ≤ (cos t−(−η) sin t)n−1 = (cos t+η sin t)n−1

and t1 ≤ t0 with t0 the first zero of the RHS function.

Therefore (6.28) becomes:

Voln(D) ≤
∫
∂D

∫ t0

0

(cos t+η sin t)n−1dt dvoln−1 = Voln−1(∂D)

∫ t0

0

(cos t+η sin t)n−1

(6.29)

Now we turn to the case of the sphere Sn. As we did for M when we

chose D, we are able to find a ball Br ⊂ Sn of radius r with given volume

Voln(Br) = β Voln(Sn) and whose boundary minimizes the volume among

all the domain with the same volume of Br, that is, the isoperimetric profile

of Sn is realized by

hSn(β) =
Voln−1(∂Br)

Voln(Sn)
(6.30)

Further, ∂Br has constant mean curvature that we denote by −η∗, again

choosing the inward unit normal.

Looking at the volume of Br we have that:

Voln(Br) = Voln−1(∂Br)

∫ r

0

(cos t+ η∗ sin t)n−1dt (6.31)

We first assume that η < η∗.

Clearly, (cos t+ η sin t)n−1 < (cos t+ η∗ sin t)n−1, for all t ≤ t0.

Moreover, t0 does not occur before the first zero of the RHS, which is r,

the radius of the metric ball.

Hence, equation (6.29) becomes:

Voln(D) ≤ Voln−1(∂D)

∫ r

0

(cos t+ η∗ sin t)n−1dt (6.32)
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Therefore:

Voln(D)

Voln−1(∂D)
≤
∫ r

0

(cos t+ η∗ sin t)n−1dt =
Voln(Br)

Voln−1(∂Br)
(6.33)

Which implies
Voln−1(∂D)

Voln(D)
≥ Voln−1(∂Br)

Voln(Br)
(6.34)

Recalling that Voln(D) = β Voln(M) and Voln(Br) = β Voln(Sn), we obtain:

Voln(∂D)

β Voln(M)
≥ Voln−1(∂Br)

β Voln(Sn)
(6.35)

which implies

hM(β) ≥ hSn(β)

On the other hand, if η ≥ η∗, we look at Dc and Bc
r, the complements of

D and Br in M and Sn respectively.

We note that Voln(Dc) = (1−β) Voln(M) and Voln(Bc
r) = (1−β) Voln(Sn).

Furthermore, the unit normals point in the opposite direction, so now the

mean curvatures are η and η∗ respectively.

Looking at the volume and imitating equations (6.29) and (6.31) we get

Voln(Dc) = Voln−1(∂Dc)

∫ t′0

0

(cos t− η sin t)n−1dt dvoln−1 =

= Voln−1(∂D)

∫ t′0

0

(cos t− η sin t)n−1dt (6.36)

where t′0 is the first zero of the integrand function, and

Voln(Br) = Voln−1(∂Bc
r)

∫ π−r

0

(cos t− η∗ sin t)n−1dt. (6.37)

Again we have (cos t− η sin t)n−1 ≤ (cos t− η∗ sin t)n−1 and t′0 ≤ π − r.
Hence

Voln(Dc) ≤ Voln−1(∂D)

∫ π−r

0

(cos t− η∗ sin t)n−1dt, (6.38)

and, therefore

Voln−1(∂D)

(1− β) Voln(M)
=

Voln−1(∂D)

Voln(Dc)
≥ Voln−1(∂Br)

Voln(Bc
r)

=
Voln−1(∂Br)

(1− β) Voln(Sn)
(6.39)
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which implies

hM(1− β) ≥ hSn(1− β)

and, by Remark 6.1.2, we have again

hM(β) ≥ hSn(β)

Remark 6.2.20. If M is a closed Riemannian manifold, this result implies

the same inequality involving Cheeger’s constants of M and Sn via Remark

6.1.3.





Chapter 7

The Sphere Theorem

In all the previous chapters, the guideline was analysing the consequences

of a lower bound of the Ricci curvature on the geometry of a manifold. In

particular, we found some conditions for which we have isometry between

the n−sphere and a Riemannian manifold of dimension n.

Now, we want to weaken the condition on the curvature to know when

the manifold is at least homoeomorphic with the n−sphere.

The answer is in the Sphere Theorem stating that when the sectional

curvature K of a complete, simply connected n−dimensional manifold is

such that 1
4
< K ≤ 1, then it is homeomorphic to the n−sphere.

Here we prove this theorem and we discuss the case of Pn(C), the complex

projective plane, showing that the lower bound of the sectional curvature

cannot be weakened.

Since the proof involves a deeper knowledge about the cut locus and

the injectivity radius, Section 7.1 and 7.2 are dedicated to some important

properties of the cut locus and the estimate of the injectivity radius in even

dimension respectively, while in Section 7.3 we give the proof of the Sphere

Theorem along with the discussion of Pn(C).

All the manifolds we consider in this chapter are complete and the geodesics

are arc-length parametrized, unless stated otherwise.
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7.1 Some properties of the cut locus

We start giving a characterization of cut points.

Proposition 7.1.1. Let M be a Riemannian manifold and γ : [0, T ] −→M

be a geodesic on M . Suppose that γ(t0), t0 ∈ [0, T ], is the cut point of

p = γ(0) along γ. Then one of the following holds true:

i) γ(t0) is the first conjugate point of γ(0) along γ;

ii) there exists a geodesic σ 6= γ from p to γ(t0) such that l(γ) = l(σ).

Conversely if (i) or (ii) holds, then there exists τ ∈ [0, t0] such that γ(τ) is

the cut point of p along γ.

Proof. Let t0 ∈ [0, T ] as in the hypothesis and let {t0 + εi}i∈I be a sequence

such that εi > 0 for all i and εi → 0 as i → +∞. Then let {σi}i∈I be a

sequence of minimal geodesics joining p to γ(t0+εi) and let {σ′i(0)}i∈I ∈ TpM
be the sequence of the corresponding tangent vectors.

Each σ′i(0) is contained in the unit ball SpM . Since SpM is compact and

taking a subsequence if necessary, we can suppose that {σ′i(0)}i∈I converges

to v, where v is the tangent vector at the point p of the geodesic σv. By

continuity σv is a minimal geodesic joining p and γ(t0).

In fact, γ is minimal up to γ(t0) while each σi is minimal up to γ(t0 + εi),

so σi(t0 + δi) = γ(t0 + εi) for 0 ≤ δi < εi. By continuity, for i→∞ we have

σv(t0) = limi→∞ σi(t0 + δi) = γ(t0) and, hence, l(σv) = l(γ) = t0.

If σv 6= γ then (ii) is satisfied.

Otherwise, if σv = γ then (i) holds.

To prove this last claim we show that t0γ
′(0) is a singular point of D expp.

It will follow that γ(t0) is the first conjugate point of p (see Proposition 2.4.6).

Working by contradiction we suppose that t0γ
′(0) is not a singular point

of D expp. Hence, choosing an open neighbourhood U of t0γ
′(0), D expp is a

local isomorphism and, therefore, a local diffeomorphism on U (Fig. 7.1).
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Since γ(t0 + εi) = σi(t0 + δi) for δi < εi and taking εi small enough such

that (t0 + δi)σ
′
i(0) belongs to U , we have

expp(t0 + εi)γ
′(0) = γ(t0 + εi) = σi(t0 + δi) = expp(t0 + δi)σ

′
i(0)

Hence, for i large enough

(t0 + εi)γ
′(0) = (t0 + δi)σ

′
i(0)

which means

γ′(0) = σ′i(0) and εi = δi

Therefore the cut point of p along γ is t0 + εi and no longer t0, which is

a contradiction.

$p$

TpM

γ′(0)

σi(0)

(t0 + δi)σ
′(0)

t0γ
′(0)

M
γ(t0 + εi) = σi(t0 + δi)

γ(t0)

(t0 + εi)γ
′(0)

Figure 7.1: case σv = γ

Conversely, we first suppose that condition (i) holds. Since a geodesic

does not minimize the distance after the first conjugate point (see Proposition

2.4.7), the cut point of p along γ occurs at latest at γ(t0). Hence there exists

a point τ ∈ [0, t0] such that γ(τ) is the cut point of p along γ.

Now we suppose that condition (i) does not hold but condition (ii) does.

Let ε > 0 such that expγ(t0) is a diffeomorphism in a neighbourhood U ′ of

t0γ(0) ∈ Tγ(t0)M and let σ(t0 − ε) and γ(t0 + ε) belong to expp(U
′) = V .
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Further, let τ be the unique minimal geodesic joining σ(t0− ε) and γ(t0 + ε)

(Fig. 7.2). The curve given by the union of σ from p to σ(t0 + ε) and τ has

arc length strictly less then t0−ε. Therefore the cut point of p along γ occurs

at γ(τ) with τ ≤ t0.

p

σ

γ γ(t0)

τ

σ(t0 − ε)

γ(t0 + ε)

Figure 7.2: case when condition (ii) holds

For a better understanding we present two examples: the n−sphere and

the flat torus.

Example 7.1.2. Let Sn be the n-dimensional sphere and let p ∈ Sn. The

cut locus of p is −p, its antipodal point. In this case both (i) and (ii) occur.

In fact −p is the first conjugate point of p and two different minimal

geodesics between p and −p can be found rolling down on opposite side.

Figure 7.3: cut locus of the sphere

Example 7.1.3. Let T n be the flat torus, i.e. T n = Rn/Zn. In this case the

torus has the same Riemannian metric of Rn and the geodesics are straight

lines. For example the cut locus of the point A is made up of the edges of
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the square. This time only situation (ii) can occur. In fact, identifying Rn

with TpT
n, the Riemannian covering f : Rn −→ T n, f(t) = p + tv coincides

with the exponential map. Moreover, taking the geodesic cv : [0, 1] −→ T n

with cv(0) = p and c′v(0) = v, we know that D expp(v)(w) = J(1) with

J : [0, 1]→ T n the unique Jacobi field along cv with J(0) = 0 and J ′(0) = w.

In this case we have a geodesic variation F (s, t) = expp(t(v+sw)) = t(v+sw)

because of the above identification and J(t) = ∂F
∂s

(0, t) = tw. But we never

get a t0 6= 0 for which J(t0) = 0.

Figure 7.4: cut locus of the flat torus at the point A

As consequences of Proposition 7.1.1 we have the following corollaries.

Corollary 7.1.4. Let M be a Riemannian manifold and let γ : [0, T ] −→M

be a geodesic on M . If q is the cut point of p along γ, then p is the cut point

of q along −γ.

In particular q ∈ Cm(p) if and only if p ∈ Cm(q).

Proof. If q is the cut point of p along γ then either q is the conjugate point of p

along γ or there exists a geodesic σ different from γ with l(σ) = l(γ) = d(p, q).

Considering the geodesic −γ, we get that either p is conjugate to q or

there exists a geodesic σ̃ different form −γ and with the same length. In

particular σ̃ = −σ. In both cases the cut point of q along −γ occurs at latest

at p.

Hence p is the cut point of q along −γ and p ∈ Cm(p).

Exchanging the roles of p and q, we have that if p ∈ Cm(p) then q ∈ Cm(p)

and the proof is complete.
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Corollary 7.1.5. Let M be a Riemannian manifold and let p and q points

in M . If q ∈ M\Cm(p) then there exists a unique minimal geodesic joining

p and q.

Proof. We can always find a minimal geodesic γ joining p and q, moreover

by Proposition 7.1.1, neither q is the first conjugate point of p along γ, nor

there exists a geodesic σ different from γ which is distance realizing as well.

Therefore the minimal geodesic between p and q is unique.

It follows that the exponential map is injective on an open ball centred

at p with radius r = d(p, Cm(p)).

Moreover, M\Cm(p) is homeomorphic to an euclidean ball through the

exponential map.

With this characterization of cut points in mind, we turn to the analysis

of the function f which maps a point p ∈ M to its cut value along a chosen

geodesic. In particular, we show it is continuous and, as a consequence, we

get the compactness of the cut locus.

Proposition 7.1.6. Let M be a Riemannian manifold and γ : [0, T ] −→M

be a geodesic on M with γ(0) = p ∈ M and γ′(0) = v ∈ SpM . The function

f , defined as

f : SM → R ∪∞

f(p, v) =

{
t0, if γ(t0) is the cut point of p along γ;

∞, if the cut point along γ does not exist.
(7.1)

is continuous.

Proof. Let {γ′i(0)}i∈I be a sequence in SM . Since it is compact, γ′i(0)→ γ′(0)

as i→ +∞. Therefore the sequence {γi(0)}i∈I in M converges to γ(0).

Then let γi(t
i
0) and γ(t0) be the cut points of γi(0) and γ(0) along γi and

γ respectively with ti0, t0 ∈ R ∪∞.

To prove the continuity of the function f we show that limi→∞ t
i
0 = t0,

that is

lim sup
i→∞

ti0 = lim inf
i→∞

ti0 = t0
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First we prove that lim supi→∞ t
i
0 ≤ t0.

If t0 =∞ there is nothing to prove. Hence suppose t0 <∞ and let ε > 0

small enough.

There not exist infinitely many j such that t0 +ε < tj0 otherwise we would

have d(γj(0), γj(t0 + ε)) = t0 + ε and so d(γ(0), γ(t0 + ε)) = t0 + ε, by the

continuity of the distance function, which contradicts the definition of γ(t0).

Therefore

lim sup
i→∞

ti0 ≤ t0 + ε

and for ε→ 0,

lim sup
i→∞

ti0 ≤ t0

Now set t = lim infi→∞ t
i
0. We have

t = lim inf
i→∞

ti0 ≤ lim sup
i→∞

ti0 ≤ t0

We show that t ≥ t0 to complete the proof.

If t =∞ there is nothing to prove, so we take t <∞ and we consider the

subsequence {tj0}j∈J of {ti0}i∈I which converges to t. We can either suppose

that for all tj0, γj(t
j
0) is conjugate to γj(0) along γj or not all of them are

conjugate to γj(0) along γj.

In the first case, by continuity, γ(t) is conjugate to γ(0) because the

limiting point of conjugate points is a conjugate point as well. Hence t ≥ t0.

In the second case, by Proposition 7.1.1 there exists a geodesic σj 6= γj

such that σj(0) = γj(0), σj(t
j
0) = γj(t

j
0) and l(σj) = l(γj). We suppose that

the sequence of σjs converges to σ, where σ is a geodesic joining γ(0) and

γ(t).

If σ 6= γ, then t0 ≤ t by Proposition 7.1.1.

If σ = γ we show that γ(t) is conjugate to γ(0) arguing as in Proposition

7.1.1. Hence t ≥ t0.

Now the claim follows.

Corollary 7.1.7. Let M be a Riemannian manifold. For all p ∈M the cut

locus at p, Cm(p), is closed. In particular if M is compact, then Cm(p) is

compact.
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Proof. It is clear that

Cm(p) = {γ(t) | t = f(p, γ′(0)) <∞}

Now, if q is an accumulation point of Cm(p), there exists a sequence

{γj(tj)}j∈J with tj = f(p, γ′j(0)) such that γj(tj)→ q as j →∞.

Since SM is compact, we have γ′j(0) → v ∈ SM as j → ∞ (choosing a

subsequence if needed).

Let γ be the geodesic with γ(0) = p ad γ′(0) = v.

We have:

q = lim
j→∞

γj(tj) = lim
j→∞

γj(f(p, γ′(0))) = lim
j→∞

expp(f(p, γ′j(0))γ′j(0)) =

= expp(f(p, v)v) = γ(f(p, v)) ∈ Cm(p).

Therefore Cm(p) is closed.

Since M is compact, it is closed and bounded and since Cm(p) ⊂M , then

Cm(p) is bounded too. Therefore it is compact.

We end this section with a proposition similar in spirit to Proposition

7.1.1.

Proposition 7.1.8. Let M be a Riemannian manifold and p ∈M . Suppose

there exists a point q ∈ Cm(p) which realizes the distance from p to Cm(p).

Then:

i) either there exists a minimal geodesic γ from p to q along which q is

conjugate to p;

ii) or there exists exactly two minimal geodesic γ and σ from p to q with

γ′(l) = −σ′(l) and l = d(p, q).

Proof. Let γ : [0, l]→M be a minimal geodesic joining p and q.

By Proposition 7.1.1 either q is conjugate to p along γ or there exists a

geodesic σ 6= γ joining p and q such that l(σ) = l(γ).

In the first case condition (i) holds.
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If q is not conjugate to p we show that condition (ii) holds (see Fig. 7.5).

Working by contradiction we suppose γ′(l) 6= −σ′(l).
We claim it is always possible to find a w ∈ TqM such that

< w, γ′(l) >< 0 and < w, σ′(0) >< 0

In fact, the angle α between γ′(l) and σ′(l) is smaller than π, so the angle

β = 2π−α is bigger than π. Then it is always possible to find a w such that

the angles between w and γ′(l) and between w and σ′(l) are equal to β
2
.

Therefore, cos β
2
< 0 and since < w, γ′(l) >= ‖w‖ · ‖γ′(l)‖ cos β

2
, and the

same holds for σ′(l), we have the claim.

Now let c : (−ε, ε) −→M be a curve such that c(0) = q and c′(0) = w.

Since q is not conjugate to p there exists an open neighbourhood U ⊂ TpM

of lγ′(0) on which the exponential map expp is a diffeomorphism.

Let c̃ : (−ε, ε) −→ U be a curve such that expp c̃(s) = c(s), s ∈ (−ε, ε).
The function γs(t) = expp

(
t
l
c̃(s)

)
is a variation of γ.

In fact,

γ0(t) = expp

(t
l
c̃(0)

)
= expp

(t
l
lγ′(0)

)
= expp(tγ

′(0)) = γ(t)

Let X(t) = ∂
∂s

(γs(t))
∣∣
s=0

= ∂
∂s

(
expp

(
t
l
c̃(s)

))∣∣
s=0

be the variational vector

field of γs(t).

We have the following:∫ l
0
< X(t), D

dt
γ′(t) > dt = 0 since γ is a geodesic;

< X(0), γ′(0) >= 0 because γs(0) = expp 0p = p for all s, that is, the

variation leaves p invariant.

X(l) = ∂
∂s

∣∣
s=0

(expp c̃(s)) = c′(0) = w

Applying the formula of first variation of length (2.3)we have

d

ds

∣∣∣
s=0

l(γs(t)) =< w, γ′(0) >< 0
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Going through the same argument using σ we get the same, i.e.

d

ds

∣∣∣
s=0

l(σs(t)) =< w, σ′(0) >< 0

Hence for s > 0 small enough we have l(γs) < l(γ) and l(σs) < l(σ).

Now we suppose l(γs) = l(σs).

We note that σs(l) = c(s) = γs(l) and, by Proposition 7.1.1, γs(l) = c(s)

is the cut point of p.

Since d(p, γs(l)) = l(γs) < d(p, Cm(p)) for all s, then q = c(0) = γ0(l)

does not realize the distance between p and Cm(p), which is a contradiction.

Instead, if l(γs) < l(σs), then σs is not minimal so there exists a cut point

σs(t) with t < l of p along σs. But this is again a contradiction to the same

fact.

The case l(γs) > l(σs) is similar.

TpM

U

lγ′(0)

c̃

p

q

M

γ

σ

c

σs

γs

w

0p

Figure 7.5: case when condition (ii) holds
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7.2 The estimate of the injectivity radius

Here we prove the estimate of the injectivity radius which is bounded

from below by π. The proof is given in the even dimensional case.

First of all we need some preliminary results.

Lemma 7.2.1. Let M be a compact Riemannian manifold. Then there exist

two points p, q ∈M with q ∈ Cm(p) such that d(p, q) = i(M).

Proof. Since SM is compact and the function f in (7.1) is continuous, then

f(SM) ∈ (R ∪∞) is compact. Hence f admits a minimum.

Let γ : [0, l] −→M be a geodesic joining γ(0) = x ∈M with its first cut

point along γ and such that γ′(0) = v ∈ SxM . We have:

i(M) = inf
x∈M

d(x,Cm(x)) = inf
x∈M

inf
γ
l(γ) = inf

x∈M,v∈SxM
f(x, v) = min

x∈M,v∈SxM
f(x, v) =

= f(p, w) = d(p, Cm(p)) = inf
y∈Cm(p)

d(p, y) = d(p, q)

where the last inequality is because Cm(p) is compact (see Corollary 7.1.7)

and the distance function is continuous.

Proposition 7.2.2. If the sectional curvature of a complete Riemannian

manifold M is such that 0 < Kmin ≤ K ≤ Kmax with Kmin, Kmax constants,

then one of the following holds:

i)

i(M) ≥ π√
Kmax

ii) there exists a closed geodesic γ in M , whose length is less than or equal

to the length of any other closed geodesic on M , which is such that

i(M) =
1

2
l(γ)

Proof. Since M is complete, then M is compact by Hopf-Rinow Theorem

and by Lemma 7.2.1, there exists two point p ∈M and q ∈ Cm(p) such that

d(p, q) = i(M).
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First we suppose that q is conjugate to p, then by Proposition 2.4.9,

i(M) = d(p, q) ≥ π√
Kmax

So condition (i) holds.

Now we suppose that p and q are not conjugate. In this case there exist

two minimal geodesics µ and σ joining p and q such that µ′(l) = −σ′(l) where

l = d(p, q).

On the other hand, since q ∈ Cm(p), then p ∈ Cm(q). Hence p realizes

the distance from q to Cm(q) and so µ′(0) = −σ′(0).

Therefore, µ and σ form a closed geodesic γ and

i(M) =
1

2
l(γ)

that is, condition (ii) holds.

Now, we are in position to prove the estimate of the injectivity radius.

Proposition 7.2.3. Let M be a compact, orientable, even dimensional Rie-

mannian manifold. If its sectional curvature K satisfies 0 < K ≤ 1, then

i(M) ≥ π

Proof. By Lemma 7.2.1 there exist two points p ∈ M and q ∈ Cm(p) in M

such that d(p, q) = i(M).

Working by contradiction we suppose that d(p, q) < π.

If p and q are conjugate points then by Proposition 2.4.9, d(p, q) ≥ π and

we have a contradiction.

Therefore, we suppose that p and q are not conjugate. There exist two

minimal geodesics γ1 and γ2 from p to q such that γ′1(l) = −γ′2(l) with

l = d(p, q).

Their union gives a closed geodesic γ with l(γ) = 2i(M) < 2π.

We consider the parallel transport Pγ : TpM → TpM along γ. Pγ pre-

serves the orientation and the orthogonal complement of γ′(0) = γ′(l) in TpM

is invariant under the parallel transport. In fact, Pγ can be consider as an
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element in SO(n−1) with n−1 odd and since each matrix in SO(k), k odd,

has an invariant eigenvector, Pγ leaves invariant a vector w orthogonal to γ′.

Let F be a variation of γ with variational vector field X(t) = ∂F
∂s

such

that X(0) = X(l) = w and X(t) parallel along γ.

Now:

‖D
dt
X‖2 = 0 since X is parallel along γ,

< D
ds

∣∣
s=0

∂F
∂s

(s, l), γ′(l) > − < D
ds

∣∣
s=0

∂F
∂s

(s, 0), γ′(0) >= 0.

Therefore, by the formula of second variation of energy (2.6) we have

E ′′w(0) = −
∫ l

0

< R(X, γ′)γ′, X > dt

It follows that

E ′′w(0) < 0

In fact

0 < K(span{X(t), γ′(t)}) =
< R(X(t), γ′(t))γ′(t), X(t) >

‖X(t)‖2
≤ 1

That is, < R(X, γ′)γ′, X > positive, so its integral with the negative sign

is negative. Moreover, E ′w(0) = 0 (see (2.5)) because γ is a geodesic and

< X(0), γ′(0) >=< X(l), γ′(l) >.

Therefore, the closed geodesic γ is a maximum for energy and for length

because of (2.1).

Hence it is possible to find a variation through regular closed curves γs(t)

of γ with s ∈ [0, ε] such that l(γs) < l(γ) ∀s 6= 0.

Let qs be a point at maximum distance from γs(0).

Since d(γs(0), qs) < d(p, q), there exists a unique minimal geodesic σs

joining qs = σs(0) and γs(0) and lims→0 σs(0) = q because q is the unique

point of γ at maximum distance from p (Fig. 7.6). Moreover, since TM is

locally compact, there exists a vector v ∈ TqM accumulation point of σ′s(0)

for all s.

By continuity, the curve σs(t) = expq tv joins q and p and it is minimal.
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q

γ

σs

σ′
s(0)

p
qs

γs(0)

Figure 7.6: the variation σs

Now let σs,t be the minimal geodesic joining γs(0) and γs(t) close to qs

(Fig. 7.7). It turns that σs,t(τ) with t ∈ (t − ε, t + ε), τ ∈ [0, l] where

t = 1
2
l(γs) and γs(t) = qs is a variation of σs.

In fact, fixing s ∈ [0, ε], σs,t joins γs(0) and γs(t) = qs (Fig. 7.7). Since

both σs and σs,t are the unique minimal geodesics between σs(0) and qs, they

must coincide.

We remark that this variation leaves the end point γs(0) invariant, also

its variational vector field is X(τ) = ∂
∂t

∣∣
t=t
σs,t. Moreover:

X(0) =
∂

∂t

∣∣∣
t=t
σs,t(0) =

∂

∂t

∣∣∣
t=t
γs(t) = γ′s(t), X(l) =

∂

∂t

∣∣∣
t=t
σs,t(l) = 0.

Applying the first formula of variation of energy(2.5) we get

d

dt

∣∣∣
t=t
E(σs,t) = − < γ′s(t), σ

′
s(0) >

Since σs,t is a variation of geodesics, it minimizes the energy (see Lemma

2.2.2), i.e d
dt

∣∣
t=t
E(σs,t) = 0 and we end up with

< γ′s(t), σ
′
s(0) >= 0

Hence, for all s ∈ [0, ε], σ′s(0) is orthogonal to γ′s in qs. It follows that

σ′w(0) is orthogonal to γ′ in q.
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Therefore we have three minimal geodesics between p and q and this is a

contradiction according to Proposition 7.1.8.

σs(t1)

σs(t2)

qs

σs(t3)

σs

γs(0)

σs2

σs1

σs3

Figure 7.7: the variation σs,t

7.3 The Sphere Theorem

Keeping in mind the lower bound for the injectivity radius, we can start

the proof of the Sphere Theorem. It follows from a geometrical argument

based on the fact that the manifold M can be covered by two open balls

homeomorphic to the two hemispheres of the sphere.

We begin with some lemmas to show how we can cover a manifold with

two metric balls.

Lemma 7.3.1. Let M be a compact Riemannian manifold and let p and q

be points of M such that d(p, q) = diam(M). Then for all w ∈ TpM there

exists a minimal geodesic γ from p = γ(0) to q with < γ′(0), w >≥ 0.

Proof. Let λ(t) = expp tw, i.e. λ′(0) = w, and let γt : [0, l] → M be a

minimal geodesic between γt(0) = λ(t) and γt(l) = q.

First we suppose that for all n ∈ N there exists a tn such that

< γ′tn(0), λ′(tn) >≥ 0 for all 0 ≤ tn ≤
1

n
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Taking a subsequence if necessary, we get that γtn converges to a minimal

geodesic γ such that

0 ≤< γ′(0), λ′(0) >=< γ′(0), w >

and the proof would be concluded in this case.

As a second case we suppose that there exists an n ∈ N such that

< γ′t(0), λ′(0) >< 0 for all 0 ≤ t ≤ 1

n

We work by contradiction using the inequality just stated.

We consider V ⊂ Tλ(t)M on which expλ(t) is a diffeomorphism. We set

U = expλ(t) V ⊂ M an open neighbourhood of λ(t) and we take q0 ∈ U a

point of γt. Then let σs be a minimal geodesic from q0 to λ(s), s ∈ (t−ε, t+ε)
and ε > 0 small enough (Fig. 7.8).

For s = t, σt = γt. So σ′t = −γ′t at λ(t).

Moreover it turns that σs : (t − ε, t + ε) × [0, t] → M , where t is such

that γt(t) = q0, is a variation of σt which leaves q0 invariant. Hence, the

variational vector field X(τ) = ∂
∂s

∣∣
s=t
σs(τ) is zero for τ = 0.

We have that

X(t) = ∂
∂s

∣∣
s=t
σs(t) = ∂

∂s

∣∣
s=t
γs(0) = ∂

∂s
λ(s) = λ′(t),

< X(0), σ′t(0) >= 0,

∫ t
0
< X(t), D

ds
σs(t) > dt = 0.

Applying the first formula of variation of length (2.3) we get

d

ds

∣∣∣
s=t
l(σs) =< X(t), σ′t(t) >= − < λ′(t), γt(0) >> 0

Hence, for all s < t and close to t, we have that l(σs) < l(σt). Therefore

d(q0, λ(s)) < d(q0, λ(t))

and

d(q, λ(s)) < d(q, q0) + d(q0, λ(s)) < d(q, q0) + d(q0, λ(t)) = d(q, λ(t))
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Moreover, since p is at maximum distance form q, we have

d(q, λ(s)) < d(q, λ(t)) ≤ d(q, p) = d(q, λ(0))

Now, t can move towards zero and it can be as close to zero as we want.

In this case, it can happen that s takes value zero and we would end up with

d(q, λ(0)) < d(q, λ(0))

which is a contradiction.

$p$

λ λ(s)

σs

q0

λ(t)

U

γt

q

Figure 7.8: situation of Lemma 7.3.1

From now on, the dimension n of the manifold is always even.

Lemma 7.3.2. Let M be a n−dimensional, compact, simply connected Rie-

mannian manifold whose sectional curvature K satisfies 1
4
< δ ≤ K ≤ 1 and

let p, q ∈M such that diam(M) = d(p, q). Then

M = Bρ(p)
⋃

Bρ(q)

where Bρ(p) ⊂M is such that Bρ(p) = exppBρ(0p) and π
2
√
δ
< ρ < π

Proof. From Proposition 7.2.3, i(M) ≥ π.
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Therefore, for π
2
√
δ
< ρ < π, Bρ(p) is diffeomorphic to an Euclidean ball

through the exponential map because it does not contain points of the cut

locus of p.

We set Bρ(p) = exppBρ(0p) and the same holds for Bρ(q).

We work by contradiction and we suppose that there exists a point x ∈M
which is contained neither in Bρ(p) nor in Bρ(q), namely, d(p, x) ≥ ρ and

d(q, x) ≥ ρ. In particular we can assume

d(p, x) ≥ d(q, x) ≥ ρ

The minimal geodesic between q and x intersects ∂Bρ(q), the boundary

of Bρ(q), in q′ and q′ 6∈ Bρ(p) because otherwise we would have

d(x, q′) > d(x,Bρ(p)) ≥ d(x,Bρ(q)) = d(x, q′)

which is a contradiction.

Moreover, the minimal geodesic from q to p intersects ∂Bρ(q) in a point

q′′ which lies inside Bρ(p).

In fact, d(p, q) = diam(M) ≤ π√
δ
< 2ρ by Bonnet-Myers Theorem and

we have

d(p, q′′) = d(p, q)− d(q, q′′) < 2ρ− ρ = ρ

Now, since Bρ(q) is homeomorphic to an Euclidean ball, ∂Bρ(q) is path

connected and we can move from q′′ ∈ Bρ(p) to q′ /∈ Bρ(p) along a curve on

∂Bρ(q). At some point this curve has to hit ∂Bρ(p), therefore there exists

r0 ∈ ∂Bρ(p) ∩ ∂Bρ(q) such that

d(r0, p) = d(r0, q) = ρ

Let λ be a minimal geodesic joining p to r0.

By Lemma 7.3.1 there exists a minimal geodesic γ from p to q such that

< γ′(0), λ′(0) >≥ 0.

Let s be a point of γ such that d(p, s) = ρ (see Fig 7.3).

We compare M with the n−sphere Sn of constant curvature δ.

We observe that the angle ^r0ps is less than or equal to π
2
.
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Since d(p, s) = d(p, r0) = ρ, by Proposition 2.4.10 we can conclude

d(r0, s) ≤
π

2
√
δ
< ρ

Furthermore, there exists a point s0 in the interior of Bρ(p) such that

d(r0, γ) = d(r0, s0) because d(r0, p) = d(r0, q) = ρ and d(r0, s) < ρ with

s ∈ γ (see Fig. 7.3).

s

p

λ

s0

q

γ

Bρ(p)

Bρ(q)

Figure 7.9: spherical triangle between r0, p and s

The minimal geodesic from r0 to s0 is orthogonal to γ, hence

d(r0, s0) ≤ π

2
√
δ

Since d(p, q) ≤ π√
δ
, then

either d(p, s0) ≤ π

2
√
δ

or d(q, s0) ≤ π

2
√
δ

In the first case we have

d(r0, s0) ≤ π

2
√
δ

and ^ps0r0 =
π

2

Then, again by Proposition 2.4.10, we conclude that

d(p, r0) ≤ π

2
√
δ
< ρ
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which is a contradiction since d(p, r0) = ρ.

The second case leads to contradiction using the same argument.

Lemma 7.3.3. Let M be a compact, simply connected Riemannian mani-

fold of dimension n with sectional curvature K such that 1
4
< δ ≤ K ≤ 1.

Let p, q ∈ M be two points such that diam(M) = d(p, q) and let M =

Bρ(p)
⋃
Bρ(q) where Bρ(p) ⊂ M with π

2
√
δ
< ρ < π. Then, on each geodesic

of length ρ starting from p there exists a unique point m such that

d(p,m) = d(q,m) < ρ

Similarly, on each geodesic starting from q there exists a unique point n

equidistant from p and q.

Proof. Let γ(s) be a geodesic such that γ(0) = p and we consider the function

f(s) = d(q, γ(s))− d(p, γ(s))

Since d is continuous, f is continuous and we observe that f(0) = d(p, q) > 0.

Let s0 ∈ M be a point such that γ(s0) is the cut point of p along γ. By

Proposition 7.2.3 we have i(M) ≥ π, hence

d(p, γ(s0)) ≥ π > ρ

Consequently, since M is covered by two balls of radius ρ we have

d(q, γ(s0)) < ρ

Then:

f(s0) = d(q, γ(s0))− d(p, γ(s0)) < ρ− ρ = 0

Therefore there exists a point s1 ∈ (0, s0) such that f(s1) = 0, that is,

d(q, γ(s1)) = d(p, γ(s1)).

From here it follows the existence of a point m setting m = γ(s1).

To prove the uniqueness we work by contradiction and we take two points

m1 6= m2 on γ both equidistant from p and q. We can assume that m1 is

between p and m2.
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We have:

d(q,m2) = d(p,m2) = d(p,m1) + d(m1,m2) = d(q,m1) + d(m1,m2)

Let σ1 be the unique (we are inside the injectivity radius) minimal geodesic

between q and m1.

By the equality above σ1 coincides with γ, hence q belongs to γ.

Since d(p,m1) = d(q,m1), d(p,m2) = d(q,m2) and m1 6= m2 we conclude

that p = q, which is a contradiction.

The case for the point q follows in the same way.

Remark 7.3.4. Since the point m is unique on each geodesic γ with γ(0) = p,

it depends continuously on the initial direction γ′(0).

These lemmas are the final ingredients to present the proof of the Sphere

Theorem which follows easily by a direct construction of the homeomorphism.

Theorem 7.3.5 (Sphere Theorem). Let M be a compact, simply connected

Riemannian manifold of even dimension such that its sectional curvature K

satisfies 0 < 1
4
< δ ≤ K ≤ 1, then M is homeomorphic to a sphere.

Proof. Let p, q ∈M be two points such that diam(M) = d(p, q).

Let D1 and D2 be two subsets of M formed by all geodesic segments pm

and qn with m and n points as in Lemma 7.3.3.

By Remark 7.3.4 and the compactness of M , we conclude that D1 and

D2 are closed subsets.

We claim that

M = D1 ∪D2 (7.2)

and

∂D1 = ∂D2 = D1 ∩D2 (7.3)

We start showing (7.2).

Obviously D1 ∪D2 ⊂M , then we just need to show the other inclusion.

Let r ∈ M , as shown in the proof of Lemma 7.3.2, either d(p, r) < ρ or

d(q, r) < ρ.
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We consider the first case, the second being analogous.

Since d(p, Cm(p)) ≥ i(M) ≥ π > ρ there exists a unique minimal geodesic

γ between p and r and, by Lemma 7.3.3, there exists a unique point m along

γ such that d(p,m) = d(q,m) < ρ.

If d(p, r) < d(q, r), then r ∈ pm, hence r ∈ D1.

If d(p, r) = d(q, r), by the uniqueness of m, r = m and so r ∈ ∂D1.

If d(p, r) > d(q, r) then r ∈ qn where n is the unique point along γ

minimal geodesic between q and r equidistant from p and q, hence r ∈ D2.

Therefore if r ∈M then r ∈ D1 ∪D2, i.e M ⊂ D1 ∪D2 and so (7.2) holds.

Now we prove (7.3).

If r ∈ ∂D1 ⊂ D1 then d(p, r) = d(q, r) and so, r = m = n using the

previous argument. Therefore r ∈ ∂D2 ⊂ D2 and ∂D1 ⊂ ∂D2. In particular

r ∈ D1 ∩D2.

Swapping D1 and D2 we work in the same way and we have that ∂D2 ⊂
∂D1. Hence r ∈ ∂D1 = ∂D2 ⊂ D1 ∩D2.

Now if r ∈ D1 ∩D2, with the same argument, r = m = n and r ∈ ∂D1 =

∂D2, therefore (7.3) holds.

We are now ready to define the homeomorphism between Sn and M .

Let ϕ : Sn →M .

Let N,S ∈ Sn be the north pole and the south pole of the sphere, respec-

tively.

We set ϕ(N) = p and ϕ(S) = q.

Then we choose a linear isometry I : TNS
n → TpM

n.

For each point e in the equator E relative to N we consider the geodesic

γ(s), 0 ≤ s ≤ π, given by γ(0) = N and γ(π
2
) = e.

Let m ∈ M be a point as in Lemma 7.3.3 on the geodesic starting from

p with initial tangent vector I(γ′(0)) = w.

We define:{
ϕ(γ(s)) = expp

(
s 2
π
d(p,m)(w)

)
0 < s ≤ π

2

ϕ(γ(s)) = expq
(
(2− 2s

π
)d(q,m)v

)
π
2
≤ s < π
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where v is the unit tangent vector at q of the unique minimal geodesic from

q to m (see Fig. 7.10).

S

e e′

Sn

M

ϕ

p

w

γ′(0)

N

Figure 7.10: homeomorphism between M and Sn

With this definition it is easy to see that the closed northern hemisphere,

the closed southern hemisphere and the equator E are mapped bijectively

onto D1, D2 and ∂D1 = ∂D2 = D1 ∩D2 respectively.

Now by uniqueness of the points m and n as in Lemma 7.3.3, ϕ is con-

tinuous.

Further, ϕ is surjective because M = D1 ∪D2 and it is injective because

D1 ∩D2 = ∂D1 = ∂D2 = ϕ(E). Therefore ϕ is a bijection.

Finally, since ϕ is a continuous bijection between a compact and an Haus-

dorff space, it is a homeomorphism.

We want to remark that the hypothesis on the curvature is fundamental

and it can not be weakened.

In fact, as soon as δ = 1
4

the theorem is no longer valid.

This is because the key point of the argument is Lemma 7.3.2 where we

suppose π
2
√
δ
< ρ < π. Clearly, if δ = 1

4
we have a contradiction since we

would end up with π < ρ < π.
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Therefore, the real question is why we need such a bound for ρ.

The upper bound is due to the estimate of the injectivity radius i(M) ≥
π. In fact, to make all the proofs work, we need to be strictly inside the

injectivity radius to consider the exponential map as a diffeomorphism and

have the existence and uniqueness of minimal geodesics between two points,

which is the basic assumption of every proof.

The lower bound is due to the Bonnet-Myers Theorem. In fact, since M

is compact, diamM ≤ π√
δ
. Moreover we must have diamM < diamBρ(p) +

diamBρ(q) = 2ρ, where the inequality is strict because metric balls are open

in M and to cover it completely they have to overlap a little bit. Therefore

it is required ρ > π
2
√
δ
.

As a concrete example we discuss the case of Pn(C).

It is compact because it is the quotient space of Sn which is compact.

It is also simply connected, in fact it is path-connected (it comes from

being the quotient space of Sn) and its fundamental group is zero. The

calculation of the fundamental group is done using the long exact sequence

generated by the Hopf fibration f : Sn −→ Pn(C) according to [Hat, Theorem

4.41, p. 376] and taking into account the homotopy groups of the sphere. It

seems that Pn(C) is a suitable space to apply the Sphere Theorem but its

sectional curvature is 1
4
≤ K < 1 (see Section 2.1.1) and the theorem is no

longer valid.

This statement can be confirmed looking at their homotopy groups (see

[Hat, Corollary 2.14, p. 114] and [Hat, p.140])

Hk(S
n) =

{
Z k = n

0 otherwise
Hk(Pn(C)) =

{
Z k even

0 otherwise

If there were a homeomorphism between the two spaces it would induce

an isomorphism between the homology groups in each dimension which is

not possible in this case.



Conclusion and further

developments

In this work we analysed how the assumption of positive Ricci curvature

of a Riemannian manifold (M, g) leads to a comparison of geometric/spectral

invariants with the round sphere in the same dimension.

The dissertation is mostly self-contained. We like to mention that some of

the results discussed are restrictions of more general arguments. For example

the comparison theorem in Section 6.2.2 can be extended to arbitrary dimen-

sion and the hypothesis on the curvature can be modified to obtain related

results. For this general results we address the reader to the original articles

quoted in the bibliography. We also like to mention that the estimate of the

isoperimetric profile has implications on the first eigenvalue of the Laplacian

since Lichnerowicz’ Theorem is obtained as a corollary and improved in the

case M not isometric to the sphere (see [Ber-Bes-Gal]). This fact supports

the statement that the first eigenvalue of the Laplacian contains information

about the geometry of the manifold.

The Sphere Theorem and its original argument open up a variety of re-

search fields.

First of all, we can consider the case when the sectional curvature K is

such that 1
4
≤ K ≤ 1 instead of a strict lower bound. In this case Berger

proved that the manifold is either homeomorphic to Sn or isometric to a

symmetric space ([Br, Thereom 1.1, p. 6]). One can also look at manifolds

with sectional curvature K ≥ 1, in which case Grove and Shiohama proved

121
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that, under the additional hypothesis of dimension bigger than or equal to

4 and diameter strictly bigger than π
2

, the manifold is homeomorphich to

Sn ([Br, Theorem 1.15, p. 8]). Other authors consider assumptions on the

Riemannian curvature tensor rather than on the curvature itself.

However, the most interesting question is when one can substitute the

property ‘homeomorphic’ with ‘diffeomorphic’. The natural question is:

‘Are there differentiable manifolds that are homeomorphic but not diffeo-

morphic?’. The answer is ‘yes, the exotic sphere’.

This question is known as the ‘Differentiable Sphere Theorem’ and the

most striking result is by S. Brendle and R. Shoen in 2007 when they proved

the following.

Theorem 1 [Br, Theorem 1.23, p. 14]. Let (M, g) be a compact Rie-

mannian manifold of dimension n ≥ 4. Suppose that R(ξ, η, ξ̃, η̃) > 0

for all p ∈ M and for all linearly independent vectors in TC
p M such that

g(ξ, ξ)g(η, η) − g(ξ, η)2 = 0. Then M is diffeomorphic to a spherical space

form.

A space form is a complete Riemannian manifold with constant sectional

curvature. If it is spherical, the sectional curvature is 1.

The consequence is:

Corollary 1 [Br, Corollary 1.24, p. 14]. Let (M, g) be a compact Rieman-

nian manifold of dimension n ≥ 4 and strictly 1
4
−pinched in the pointwise

sense. Then M is diffeomorphich to spherical space form.

Here, a strictly α−pinched manifold in the pointwise sense is a manifold

such that for all p ∈ M the sectional curvatures of any 2−planes Σ1,Σ2 ∈
TpM satisfies 0 < αK(Σ1) < K(Σ2).

Weakening the condition on the curvature assumption they obtained a

rigidity result.

Theorem 2 [Br, Theorem 1.25, p. 14]. Let (M, g) be a compact Rieman-

nian manifold of dimension n ≥ 4 and weakly 1
4
−pinched in the pointwise

sense. Then M is either diffeomorphich to spherical space form or isometric
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to a locally symmetric space.

Again, a weakly α−pinched manifold in the pointwise sense is a manifold

such that for all p ∈ M the sectional curvatures of any 2−planes Σ1,Σ2 ∈
TpM satisfies 0 ≤ αK(Σ1) <≤ (Σ2).

The main technique in the proofs of these theorems is the Ricci flow.

This flow was first introduced by Hamilton in the 80s with the aim of finding

canonical metrics. It connects PDEs with dynamical systems and it describes

how a one parameter family of Riemannian metrics g(t), with t ∈ [0, T ) on

M , evolves with the help of the Ricci tensor. Namely, g(t) is a solution to

the Ricci flow if it satisfies ∂
∂t
g(t) = −2 Ricg(t).

If M is an Eistein manifold (i.e. it is has constant Ricci tensor), then the

geometry of M does not change except for rescaling.

Since its introduction, it has been used with great success, for example

in Perelman’s solution of the Poincarè conjecture, and various convergence

theorems have been established.

These results can also be used in the proof of the Differentiable Sphere

Theorem.

The first achievement was made by Hamilton when he proved that a

compact three-manifold with positive Ricci curvature is diffeomorphic to a

spherical space form (see [Br, Theorem 1.22, p. 13]) and a more general

result in dimension bigger than or equal to 3 with some extra conditions.

(see [Br, Theorem 5.23, p. 65]).

The proof of Theorem 1 consists of two parts: first we need to show the

existence of a suitable set of algebraic tensors, then we use the results of

Hamilton. Corollary 1 is obtained showing that the hypothesis of Theorem 1

are satisfied when the manifold is strictly 1
4
−pinched ([Br, Proposition 8.13

and Corollary 8.14, p. 116ff]).

Instead, the rigidity result follows from the classification of weakly 1
4
−pinched

manifolds, derived from different convergence results (see [Br, Section 9.8, p.

149ff]).

As one can see, the Ricci flow technique is a very powerful tool to approach
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deep open questions in Riemannian Geometry. Of course, what we explain

it is just a hint of how they work and can be used and we did not mention

many important facts like the existence and uniqueness of the solution or

the evolution of the connections and tensors under the Ricci flow. Also,

we did not mention what is behind the construction of the set of algebraic

tensors. Nevertheless, we hope the reader may be inspired by these hints and

we recommend the surveys [Br] and [Br-Sh] for further investigations in this

direction.
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