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Introduction

The thesis lies within the field of Diophantine approximation, which aims to

study how well elements of a number field can be approximated by rational num-

bers or by elements of simpler subfields. This approach, originally developed in the

study of Diophantine equations, has made it possible to deepen the understanding

of the interactions between the arithmetic properties of numbers and the structures

of number fields. To address such problems it is essential to analyze the properties

of absolute values on number fields, through which one can define the notion of

distance between two elements, as well as the “height” of an element, understood

informally as a measure of its arithmetic size and complexity. This perspective natu-

rally leads to the study of algebraic varieties and curves, with particular attention to

elliptic curves, which provide a privileged setting in which Diophantine techniques

can be applied effectively. We will see how elliptic curves are endowed with a group

structure, which will be essential in determining properties related to height and

distances defined on the curve. Finally, the analysis culminates in Siegel’s Theo-

rem, which provides a fundamental result concerning the finite number of integral

points on elliptic curves defined over number fields. The thesis aims to illustrate how

the ideas of Diophantine approximation, combined with geometric and arithmetic

tools, lead to concrete results in the understanding of integral solutions of algebraic

equations.
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Chapter 1

Preliminary notions

In this chapter we gathers the fundamental concepts and theoretical tools nec-

essary for the development of the main results of the thesis. We will remark what

is a number field and the basic properties that it has, standard properties of the

Galois group, what is an algebraic closure of a field and some facts about the ring

of integers of a field. Then we will also see what is an affine space and a projective

space over a field, necessary tools that will be used to introduce varieties and curves.

1.1 Fields

In this section we summarize some of the basic definitions and facts about fields

that we will use throughout all the thesis. We give particular attentions to number

fields, finite extension of the rational numbers, which will be the main object of

interest.

Definition 1.1.1. Let K be a field. An element β is called algebraic over K if

there exists K ⊆ L extension of field such that β ∈ L and it is possible to find a

polynomial f ∈ K[x] such that f(β) = 0 . β is transcendental over K if it is not

algebraic. We call algebraic (transcendental) number an element β that is algebraic

(transcendental) over Q.

Definition 1.1.2. Let K be a field and β algebraic over K. Then q ∈ K[x] is the

minimal polynomial of β over K if q(β) = 0 and q is a monic polynomial of

least degree among all polynomials F ∈ K[x] such that F (β) = 0.

The fact that this polynomial has minimal degree and is monic ensures that it

is unique.
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Definition 1.1.3. Let β algebraic over Q and f ∈ Q[x] its minimal polynomial;

we define the degree of β as deg β = deg f . Suppose deg β = n and consider

β = β1, . . . , βn ∈ C all complex roots of f ; these are called conjugates of β.

Notice that:

f(x) =
n∏

i=1

(x− βi)

Remark 1.1.4. If β is an algebraic number and q(x) = xn + r1x
n−1 + . . . + rn his

minimal polynomial, with ri ∈ Q (and r0 = 1). We can suppose ri = ai/bi with

ai, bi ∈ Z; then we can multiply this polynomial by B = lcm(b1, . . . , bn) and get

riB ∈ Z . If d = gcd(r1B, . . . , rnB), we get f(x) := B
d
g(x) = c0x

n + c1x
n−1 + cn,

with ci = riB/d ∈ Z and gcd(c0, . . . , cn) = 1. f is called the primitive minimal

polynomial for β.

Definition 1.1.5. Let K a number field , [K : Q] = n. σ : K ↪→ C is an embedding

of K in C if σ is a field homomorphism and σ(q) = q for all q ∈ Q.

Notice that, if β ∈ K such that K = Q[β], called primitive element for K,

then an embedding σ is uniquely determined by the image of β.

Proposition 1.1.6. If K number field, suppose [K : Q] = n , β ∈ K such that

K = Q[β] and f minimal polynomial for β and β = β1, . . . , βn conjugates of β.

Then there are exactly n distinct embeddings corresponding to the roots of f , more

precisely, there is exactly an embedding sending β 7→ βi for all i.

If an embedding sends β in a real root, then its image in contained in R and

we call it a real embedding. Otherwise, there will be two distinct embeddings σ, σ̄

corresponding to complex conjugates root. The notation is justified from the fact

that σ(x) = σ̄(x) for all x ∈ K.

Definition 1.1.7. Let K a field. We say that K is algebraically closed if every

non constant polynomial f ∈ K[x] has at least a root in K.

Example 1.1.8. R is not algebraically closed, because the polynomial x2+1 has no

real roots. The fundamental theorem of algebra says that C is algebraically closed.

Definition 1.1.9. Let K be a field. An algebraic closure of K is a field L that

contains K and it is algebraically closed.

It can be proved that an algebraic closure of a field K always exists and that is

unique up up to an isomorphism that fixes K. We will usually denote the algebraic

closure K̄. Note that the algebraic closure of K is exactly the set of all algebraic

elements over K.
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Example 1.1.10. C is the algebraic closure of R. Q̄ is the set of all algebraic

elements over Q. Note that Q̄ ⊂ C.

Then we define the norm function for an algebraic field extension.

Definition 1.1.11. Let L/K be a finite extension. Then, for all α ∈ L, we can

consider the linear map

mα : L→ L, mα(x) = α · x

Then, we define:

NmL/K(α) := det(mα)

Next we see some properties about this norm.

Proposition 1.1.12. Let L/K be a finite extension, [L : K] = n. Then :

• NmL/K(αβ) = NmL/K(α) · NmL/K(β), for all α, β ∈ L;

• NmL/K(α) = 0 ⇐⇒ α = 0;

• If L/K/Q finite extension, NmL/K(α) =
∏
σ(α), where the product is for

every embedding of L in C fixing K.

Example 1.1.13. Consider K = Q[
√
d] with d ∈ Z square free, [K : Q] = 2. Then

NmK/Q(a+ b
√
d) = σ1(a+ b

√
d) · σ2(a+ b

√
d) = a2 − db2

where we wrote α ∈ Q[
√
d] as a+ b

√
d, with a, b ∈ Q.

1.2 Affine and Projective spaces

In this section we just give the definitions of Affine spaces and Projective spaces.

We will see later that a variety is a subset of this spaces.

Definition 1.2.1 (Affine space). An Affine n-space over K is :

An = An(K̄) = {P = (x1, . . . , xn) : xi ∈ K̄}.

The set of K-rational points of An is

An(K) = {P = (x1, . . . , xn) : xi ∈ K}.
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We can image an affine space as a n- dimensional vector space. Then, defining

an equivalence relation on an affine space, we can define a projective space. We can

image it as the set of all ”lines” in the affine space.

Definition 1.2.2. Given a field K, we can define Pn(K) n-dimensional projective

space as

Pn(K) := (An+1\{0})/ ∼

where (x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ there exists λ ∈ K× : yi = λxi for all

i = 0, ..., n. We will usually denote an element of Pn(K) by [x0, ..., xn].

1.3 Rings

In this section, we quickly review some facts about rings, such as prime ideals,

which will be needed when introducing curves. We then define and examine the

properties of the ring of integers of a field. Studying the ring of integers forms the

foundation of number theory, but the proofs of certain results are far from trivial,

so we limit ourselves to the statements only. Readers who wish to explore this topic

further can consult J.S. Milne’s notes ”Algebraic Number Theory” [4].

Definition 1.3.1. Given a commutative ring (A,+, ·), we say that I ⊆ A is an

Ideal of A if it is an additive subgroup and for all x ∈ I, for all a ∈ A, ax ∈ I.

An ideal I is prime if I ̸= A and the following is true for all x, y ∈ A:

xy ∈ I =⇒ x ∈ I or y ∈ I

Let x ∈ I, then we define (x) := {ax : a ∈ A} to be the ideal generated by x.

Example 1.3.2. An ideal {0} ̸= I ⊂ Z is prime if and only if I = (p) = pZ for

some prime p. If 0 ̸= f ∈ K[x] irreducible over K, then (f) is a prime ideal.

Definition 1.3.3. An ideal I ⊊ A is a maximal ideal if there is no ideal J ̸= A

such that I ⊂ J .

It can be easily proved that a maximal ideal is always prime.

Definition 1.3.4. A ring A is a local ring if A has a unique maximal ideal m.

Next we state a result about local rings that we will use later.

Proposition 1.3.5. Let A local ring with maximal ideal m, then A\m corresponds

to the units of the ring.
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Before giving some examples, let’s give a useful definition:

Definition 1.3.6. Let A be a domain. We can define its fraction field as:

Frac(A) :=
{a
b
: a, b ∈ A, b ̸= 0

}
where a/b is an equivalence class of A× (A\{0}) and we define operations between

fractions as usual.

Obviously the fraction field is a field. Moreover, it’s the smallest field containing

the ring A.

Example 1.3.7. Let p ⊂ A be a prime ideal, then

Ap :=
{a
b
∈ Frac(A) : b ̸∈ p

}
is a local ring with maximal ideal pAp. This ring is called the localization of A at

p.To see an easy example, take:

Z(p) =
{a
b
: a, b ∈ Z, b ̸≡ 0 mod (p)

}
where p is a prime.

Definition 1.3.8. A ring A is said to be a discrete valuation ring if it is local

and its unique maximal ideal is principal.

For a discrete valuation ring, it is easy to see that any non zero ideal is a power

of its unique maximal ideal. Then it is easy to see that, if we consider K = Frac(A),

then for all x ∈ K×, x = u ·πn, where u invertible in A,π is a generator of the unique

maximal ideal and n ∈ Z. Then we can define a function:

v : K× −→ Z v(x) := n

This function is called discrete valuation. Then we introduce the ring of integers of

a number field.

Definition 1.3.9. Let K be a number field. We say that α ∈ K is integral over A,

where A ⊂ K ring if there exists f ∈ A[x] monic polynomial such that f(α) = 0.

Then we define the ring of integers of K as

OK := {x ∈ K : x is integral over Z}.
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The ring of integers of a field is very important to understand properties of the

field. For example it can be proved that a ringK is the fraction field of OK . Another

non trivial fact is that the ring of integers is finitely generated as a Z- module, namely

there exists ω1, . . . , ωn ∈ OK such that all x ∈ OK is a linear combination of the

ωi-s.

Example 1.3.10. As expected,the ring of integers of Q is Z. The ring of integers

of a quadratic extension of Q, say K = Q[
√
d], with d ∈ Z square-free has ring of

integers equals to

OK = Z[
√
d] if d ≡ 2, 3 mod 4;

OK = Z[(1 +
√
d)/2] if d ≡ 1 mod 4.

It can be also proven that OK is integrally closed, i.e. if an element of K is

integral over OK then it is in OK and that every prime ideal of the ring of integers

is maximal. This properties ensures that OK is a Dedeking Domain. Then every

localization (OK)p at some prime ideal p is discrete valuation ring. We denote vp

the discrete valuation associated to (OK)p. Then we state a useful theorem, that

it is true for all Dedeking’s domain but we see its application only for the ring of

integers:

Theorem 1.3.11. Let K be a field and OK its ring of integers. Then for all proper

non zero ideal a ⊂ OK can be written in the form:

a =
n∏

i=1

prii

where pi ⊂ OK distinct prime ideals and n, ri ∈ Z, n, ri > 0 for all i. All pi-s and

ri-s are uniquely determined.

Remark 1.3.12. Let x ∈ K× and consider xOK = {xα : α ∈ OK}. Since K is the

fraction field of OK , there exists a, b ∈ OK , b ̸= 0 , such that x = a/b. Since a.b can

be written as product of powers of prime ideals, we can say that

(x) =
n∏

i=1

pni

with ni ∈ Z. (x) is what is called a fractional ideal. In this case, we can easily

prove that vp(x) = ni ∈ Z.

Thanks to this remark we can characterize the ring of integers in terms of all vp:
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Proposition 1.3.13. Let K be a field and OK its ring of integers. Then:

OK = {x ∈ K : vp(x) ≥ 0 forall p primeideal}

Proof. Given x ∈ OK , since OK ⊂ (OK)p for all p prime ideal, then it must be

vp(x) ≥ 0. Conversely, suppose x has vp(x) ≥ 0 for all prime ideals. From what we

have seen in the last remark, since (x) can be written as :

(x) =
n∏

i=1

pvp(x)

The hypothesis on x, implies that (x) ⊂ OK , then x ∈ OK .

Definition 1.3.14. Let K be a field and S a finite set of prime ideals of OK. We

define the ring of S-integers as :

OK,S := {x ∈ K : vp(x) ≥ 0, forall p ̸∈ S}

Example 1.3.15. If S = M∞
K , OK,S = OK . Note that OK ⊂ OK,S. In general ,

taking the ring of S-integers means to take elements from the ring of integers and

allow them to have denominators that are product of elements in the primes in S.

For example, for K = Q, S = {p1, . . . , pn} finite set of prime numbers, then

OQ,S = Z
[
1

p1
, . . . ,

1

pn

]





Chapter 2

Diophantine approximation

In this chapter we introduce the fundamental concepts of Diophantine approx-

imation. Historically, the problem arose in the study of solutions of Diophantine

equations, and aims to understand how well an algebraic number can be approx-

imated by a rational number. We will present the main results related to this

problem, and then show that the problem can be generalized to an arbitrary num-

ber field, thanks to the introduction of the concepts of absolute value, which allows

us to measure how close two elements are, and of height, which allows us to measure

the quality of the approximation in terms of the ‘complexity’ of the approximating

elements. Finally, we will present Roth’s theorem, which represents the best possible

result in this area.

2.1 Classical results on Diophantine approxima-

tion

We formally introduce the problem of Diophantine approximation, as well as

a notion of height for rational numbers, and then we review historically the main

theorems that have contributed to the field of Diophantine approximation. We will

also see how some of these results can be used to determine how many solutions there

are for Diophantine equations and, more generally, the close connection between

Diophantine equations and Diophantine approximation.

Definition 2.1.1 (Height of a rational number). Let r ∈ Q. If r = p/q, with

gcd(p, q) = 1 , we define

H(r) := max(|p|, |q|).

9
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Definition 2.1.2 (Mahler measure). Let β be an algebraic number and q(x) =

a0x
d + a1x

d−1 + . . . + ad = a0
∏d

i=1(x − βi) be the primitive minimal polynomial of

β = β1 . The Mahler Measure of β is defined as

M(β) := a0

d∏
i=1

max(1, |βi|)

One of the first results on the diophantine approximation of algebraic numbers

was given by Dirichlet and Liouville.

Theorem 2.1.3 (Dirichlet, 1842). Let β be an algebraic number, then the inequality∣∣∣∣β − p

q

∣∣∣∣ ≤ 1

q2
(2.1.1)

has infinitely many integer solutions (p, q) ∈ Z2

Proof. Let N ∈ N and let’s consider θn := {nβ} = nβ − ⌊nβ⌋ ∈ [0, 1) for n ∈
0, 1, . . . , N . We can now divide [0, 1) into N subintervals of length 1/N . So, since

there are N+1 terms and N subintervals, according to the pigeonhole principle,

∃i, j ∈ 0, . . . , N, i < j such that |θj − θi| < 1/N . If q := j − i ≤ N and p :=

⌊jβ⌋ − ⌊iβ⌋, we get |θj − θi| = |qβ − p| < 1/N . This implies:∣∣∣∣β − p

q

∣∣∣∣ < 1

Nq
≤ 1

q2

The second inequality is true because N ≥ q. For each N , we choose a solution for

which |β−p/q| is minimal. Then choose a natural number N0 and take the solution

p0/q0 following the above procedure. By induction, suppose we have pn/qn solution

to the inequality; then by choosingN > |pn/qn−β|−1, we can take pn+1/qn+1 solution

different from the others. In fact:∣∣∣∣β − pn+1

qn+1

∣∣∣∣ ≤ 1

Nqn+1

<

∣∣∣∣β − pn
qn

∣∣∣∣ q−1
n+1

Then pn+1/qn+1 must be different from the previous solutions. We proved that

∀n ∈ N,∃(pn, qn) ∈ Z2 different solutions to (2.1.1).

So, we proved that there exist infinitely many pairs of integers x, y such that

|β − x
y
| ≤ |y|−2. For such solutions, we have |yβ − x| ≤ |y|−1 ≤ 1, because y ∈ Z,

then |x| ≤ |βy|+ 1 ≤ (|β|+ 1)|y|. Writing r = x/y we can deduce that ∃c(β) > 0 ,

c(β) = (|β|+ 1)2 such that

|β − r| ≤ c(β)H(r)−2 for infinitely many r ∈ Q. (2.1.2)
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This is true because 1/y2 ≤ c(β)/H(r)2 ; this can be verified easily.

Below I report the theorem but with an alternative proof with respect to Liouville,

took from [6], Theorem 6.1 .

Theorem 2.1.4 (Liouville, 1851). If β is an algebraic number, then there is a

computable number c(β) > 0 such that

|β − r| ≥ c(β)H(r)−deg(β) (2.1.3)

is true ∀r ∈ Q, r ̸= β

Proof. Let’s consider q(x) primitive minimal polynomial of β and P (X,Y ) = Y dq(X/Y ) =

a0
∏d

i=1(X − βiY ). Let r = x/y, (x, y) ∈ Z2, gcd(x, y) = 1 and r ̸= β, then

|P (x, y)|
2d−1M(β)H(r)d

def
=

a0
∏d

i=1(x− βiy)

2d−1a0
∏d

i=1max(1, |βi|)(max(|x|, |y|))

=
|x− βy|

max(1, β) ·max(|x|, |y|)
·

d∏
i=2

|x− βiy|
2max(1, |βi|) ·max(|x|, |y|)

We can easily see that the last productory is ≤ 1, because |x− βiy| ≤ |x|+ |βiy|, so
we can split it in two fractions, both ≤ 1/2, for all i; also

|x− βy|
max(1, β) ·max(|x|, |y|)

≤ |β − x

y
|

because the denominator is ≥ |y|. Then we get

|P (x, y)|
2d−1M(β)H(r)d

≤
∣∣∣∣β − x

y

∣∣∣∣
Since r ̸= β, |P (x, y)| ≥ 1. Together with the inequality above, this implies (2.1.3)

with c(β) := 21−dM(β)−1.

One of the central problems in Diophantine approximation is to obtain improve-

ments of (2.1.3). More precisely the problem is whether ∃τ < d and ∃c(β, τ) > 0

such that

|β − r| ≥ c(β, τ)H(r)−τ ∀r ∈ Q (2.1.4)

By Dirichlet’s theorem, precisely in equation 2.1.2, we proved that there exist in-

finitely many rationals r ∈ Q such that |β − r| ≤ c(β)H(r)−2. This shows that

it’s impossible to put τ < 2 in (2.1.4). In particular, for rationals and quadratic

numbers (deg(β) = 1 or 2), Liouville’s Theorem gives the best possible result.
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Proposition 2.1.5. Let β be a real algebraic number of deg(β) ≥ 3 and m > 2, m ∈
R. Then they are equivalent:

1. ∀τ > m,∃c(β, τ) > 0 such that (2.1.4) is true

2. ∀τ > m,∀C > 0 the inequality

|β − r| ≤ CH(r)−τ (2.1.5)

has only finitely many solutions r ∈ Q

Proof. (1. =⇒ 2.)

Let τ, δ > m, δ > τ , then , by contradiction, let’s suppose that (2.1.5) has infinitely

many rational solutions, then ∃{rn} ∈ Q, with H(rn)
n→+∞−→ ∞ ( if H(rn) were

limited, then we would have only finitely choices for different rn). With (1), we get

c(β, τ)H(rn)
−τ ≤ |β − rn| ≤ CH(rn)

−δ,

this implies c(β, τ) ≤ CH(rn)
τ−δ → 0 as n→ ∞ , but this contradicts c(β, τ) > 0.

(2. =⇒ 1.)

Let τ > m and

c(β, τ) := inf
r∈Q

H(r)τ |β − r|.

By contradiction, if it were c(β, τ) = 0 then ∃{rn}n∈N ∈ Q all distinct, such that

H(rn)
τ |β−rn| → 0. So ∃n̄ > 0 such that |β−rn| ≤ CH(r)−τ , ∀n ≥ n̄, but this gives

infinitely many rationals solutions to (2), so it is a contradiction. Then it must be

c(β, τ) > 0 and c(β, τ) ≤ H(r)τ |β − r|, ∀r ∈ Q.

Theorem 2.1.6 (Thue’s theorem). If β is an algebraic number, with deg(β) > 1

(i.e. β irrational), and τ > deg(β)/2 + 1, then the inequality:

|β − r| ≤ H(r)−τ

has only finitely many rational solutions r ∈ Q.

Corollary 2.1.7. Let P ∈ Z[x, y] be an homogeneous polynomial of degree d ≥ 3

irreducible over Z. If m ∈ Z, then equation P (x, y) = m has finitely many integer

solutions (x, y) ∈ Z2.

Proof. Let P (x, y) ∈ Z[x, y] be an homogeneous polynomial of degree d ≥ 3, irre-

ducible over Z, m ∈ Z. Suppose (x, y) ∈ Z2 solution to P (x, y) = m. Let r := x/y
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and let τ > d/2 + 1. By proposition (2.1.5), we can assume an equivalent form of

Thue’s theorem, i.e. if β is an algebraic number, τ > d/2+1, ∃c(β, τ) > 0 such that

|β − r| ≥ c(β, τ)H(r)−τ ∀r ∈ Q (2.1.6)

Now, if y = 0 then P (x, 0) = a0x
d = m has a maximum of d roots in C .We can

repeat the argument for solutions (0, y). Then we can consider solutions (x, y) with

x, y ̸= 0.

We prove the inequality only for pairs of integers(x, y) with |y| ≥ |x|, so |y| ≥ H(r)

(it is y = H(r) if and only if gcd(x, y) = 1). Then the inequality can be deduced

for pairs (x, y) with |x| > |y| by interchanging x and y and repeating the argument

below.

Let p(X) := P (X, 1), p ∈ Z[x]. p is irreducible over Z with degree ≥ 3. We can

write p(x) = a0
∏n

i=1(x−βi). Note that, as p is irreducible , the βi-s are all distinct.

Using the homogeneity of P once again, we have P (x, y) = ydp(r), then

P (x, y) = m ⇐⇒ a0y
d

d∏
i=1

(r − βi) = m.

Now let r = x/y, j ∈ 1, ..., d such that |βj − r| = mini |βi − r|. Note that ∀i ̸= j we

have

|βj − βi| ≤ |βj − r|+ |r − βi| ≤ 2|βi − r|.

then |βi−r| ≥ 1
2
|βj−βi|. Using this inequality, the assumption |y| ≥ |x| and (2.1.6),

we get

|m| = |yd||a0|
d∏

i=1

|r − βi| ≥ |a0|

(∏
i̸=j

1

2
|βj − βi|

)
c(βj, τ)H(r)d−τ

Calling C := |a0|c(βj, τ)
∏

i̸=j
1
2
|βj − βi|, we can see that C > 0, because a0 ̸= 0,

c(βj, τ) > 0, and being the βi-s all distinct, the productory isn’t 0. Therefore C

does not depend on x and y. So we get:

H(r) ≤
(
|m|
C

) 1
d−τ

Where we chose d/2+1 < τ < d; such τ exists because d ≥ 3. In other words, H(r)

is bounded, and this implies that we have limited choices for x and y, so finitely

many solutions.

Remark 2.1.8. This result stands in sharp contrast with the case deg(P ) = 2, in

which it is possible to have an infinite number of solutions. For example, Pell’s
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equation x2 − Dy2 = 1 has infinite many solutions if D ∈ Z not a perfect square.

Hence, we can deduce an important fact: considering the equation xn − Dyn = 1,

with D ∈ Z, n ≥ 2, and (x, y) ∈ Z2 is a solution then(
x

y

)n

−D =
1

yn
,

i.e. x/y is a good approximation of the n-th root of D. So, the results above tell us

that every square root can be approximated by infinitely many rational numbers,

but this property does not hold for cubic, quartic, and higher roots.

2.2 Absolute values for fields

Here we define formally what an absolute value is, see how an absolute value

define a distance and then a topology, and we will ask how many absolute values

that induce different topologies on K there are. We will see that the answer is

strictly related to the algebraic property of a number field. We will report only

the theorems and fundamental properties that we will use later, leaving aside more

technical details or advanced developments that go beyond the main focus of this

discussion.

Definition 2.2.1. Let K be a field, | · | : K → R is an absolute value for K if

• |x| > 0, ∀x ∈ K× and |0| = 0;

• |xy| = |x||y|,∀x, y ∈ K;

• |x+ y| ≤ |x|+ |y|,∀x, y ∈ K (triangle inequality).

Therefore, if the stronger condition |x+ y| ≤ max(|x|, |y|), called ultrametric in-

equality or strong triangle inequality, holds for all x, y ∈ K, then | · | is called

non-archimedean absolute value. If it does not satisfy the ultrametric inequal-

ity, then the absolute value is called Archimedean.

We can remark that | · | is a group homomorphism K× to R+(multiplicative

group). This implies that on every finite field K can be defined only the triv-

ial absolute value,because v(K×) is a finite multiplicative subgroup of R+, then

v(K×) = {1}.

Definition 2.2.2. If | · | nonarchimeden absolute value, we can also define v(x) :=

−log|x| (log with base e > 1 for some real e. v is an additive valuation,i.e. it’s
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true that v(xy) = v(x)+ v(y) and v(x+ y) ≥ min(v(x), v(y)). An additive valuation

is discrete if v(K×) = Z. We formally define v(0) := ∞.

Example 2.2.3. 1. For every field K we can define the trivial absolute value

|x| = 1, ∀x ∈ K× and |0| = 0. It is obviously non-archimedean.

2. For C, the standard euclidean norm |z| =
√
(ℜz)2 + (ℑz)2 is archimedean.

3. If K number field and σ : K ↪→ C embedding, then |x| = |σ(x)| is an absolute

value.

4. In Q, for every p prime we define ordp(x) = r if x = a
b
pr, with r ∈ Z and

p ∤ ab. Then if e ∈ R, e > 1, |x|p := e− ordp(x) is a non-archimedean absolute

value, called p-adic absolute value. If e = p , we call | · |p the normalized

absolute value; in this case vp(x) = ordp(x). We can generalize to K, taking

ord : K× → Z discrete valuation and set |x| = e− ord(x)

Remark 2.2.4. An absolute value onK defines a distance function d(x, y) = |x−y|,
so we can consider the topology associated with the metric d on K. Therefore it

seems natural to ask the following question: when do two absolute values induce

the same topology on K?

Proposition 2.2.5. Let | · |1, | · |2 be absolute values on K. The following conditions

are equivalent:

1. | · |1 and | · |2 defines the same topology on K.

2. ∃c > 0 such that |x|1 = |x|c2, ∀x ∈ K.

If one of these two is true we say that | · |1 and | · |2 are equivalent and write

| · |1 ∼ | · |2.

Definition 2.2.6. For a field K, we can define MK :={ |·| nontrivial absolute value
on K}/∼. Therefore we can define M∞

K ⊂MK to be the set of archimedean absolute

values and M0
K ⊂ MK to be the set of non-archimedean ones. The elements of MK

are called places ( or primes of K ). Notice that MK =M0
k ⊔M∞

k .

Example 2.2.7. If K = Q, there is a theorem of Ostrowski (see [4] Theorem 7.12)

that tells us that

MQ = {| · |∞} ∪ {| · |p with p prime },

where | · |∞ is the standard absolute value on Q.
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Theorem 2.2.8 (Product formula for Q). For all x ∈ Q different than 0:∏
v∈MQ

|x|v = 1

Proof. If we set π(x) :=
∏

v∈MQ
|x|v, we notice that π is multiplicative, then if suffices

to show that π(−1) = 1 (that it’s trivial) and π(p) = 1 for every prime p. From the

example v = p , with p prime or v = ∞ . We have |p|p = 1/p, |p|q = 1 for every

prime q ̸= p and |p|∞ = p, then π(p) = 1.

Now we can ask if it is possible to extend this result to a number field K and

the answer is ”yes”, up to slightly modifying this formula. To do this we need to

know how absolute values extends to an extension of K. If we have w, v places

respectively of L and K, L extension of K, we say that w divides v and write w|v
if | · |w restricted to K is equal to | · |v. Then we introduce complete fields in respect

to an absolute value.

Definition 2.2.9. Let K be a field and v ∈ MK. A sequence (an)n∈N ∈ K is said

to be a Cauchy sequence if , for all ε > 0, there exists nε ∈ N such that:

|an − am|v < ε, for alln,m > nε.

K is said to be complete if every Cauchy sequence has a limit in K,i.e. it exists

r ∈ Q such that:

lim
n→∞

|an − r|v = 0

Note that, if we consider v ∈M0
K , then it suffices to have |an+1− an|v < ε for all

n > nε to prove that a sequence is Cauchy, thanks to the ultrametric inequality.

Example 2.2.10. By its definition, R is complete in respect to the standard absolute

value, while Q isn’t complete. Moreover, Q isn’t complete in respect to every p-adic

absolute value. A way to prove this is to consider the sequence (an) defined as a0 = 1

and

an+1 = an −
a2n − p

2an
.

It is a Cauchy sequence, in fact

|an+1 − an|p ≤ |a2n − p|p ≤ p−n n→∞−−−→ 0.

If it had a rational limit x ∈ Q, then , by continuity, it should hold x2 = p, then we

get a contradiction.
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Now it would naturally arise to ask whether it is possible, by extending the field

and the absolute value, to obtain a complete field.

Definition 2.2.11. Let K be a field and v ∈ MK. A completion of K is a field

K̂ with w ∈ MK̂, and an embedding i : K ↪→ K̂, such that w|v, K̂ is complete in

respect to w and the following property holds:

If L is another field with w′ ∈ML, w
′|v, then there exists a unique homomorphism:

ϕ : K̂ −→ L

such that ϕ ◦ i = idK, preserving the absolute value, i.e. w′(ϕ(x)) = w(x), for all

x ∈ K̂.

It can be proven that it is always possible to find a completion and it is unique up

to field isomorphism. It is also possible to consider the completion as a field exten-

sion, identifying K as a subfield of K̂ through i. We usually denote the completion

of K in respect to v ∈MK as Kv.

Example 2.2.12. R is the completion of Q in respect to the standard absolute

value. The completion of Q in respect to a p-adic absolute value can be described

as :

Qp =

{
∞∑

n=n0

anp
n : an, n0 ∈ Z, 0 ≤ an < p

}
.

To verify this equality, one must show that every series written in that form, called

the p-adic expansion of α ∈ Qp, converges in Qp and that every α ∈ Qp has a

unique p-adic expansion. Therefore, for α =
∑∞

n=n0
anp

n it must be vp(α) = n0.

Theorem 2.2.13. Let K be a number field, then there is exactly one place v ∈MK:

1. for each prime ideal p, when v ∈M0
K;

2. for each σ : K ↪→ R real embedding;

3. for each σ, σ̄ : K ↪→ C pair of conjugate complex embeddings.

This theorem allows us to completely characterize classes of equivalence of ab-

solute values on a field K:

• to p ⊂ OK corresponds vp(x), discrete additive valuation associated to (OK)p,

defined in I.1.2. ;

• to σ : K ↪→ R corresponds |x|σ = |σ(x)| ;
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• to σ, σ̄ : K ↪→ C corresponds |x|σ = |σ(x)| = |σ̄(x)|.

Where in the last two, we consider the standard absolute value for R and C. Showing
the correspondence between prime ideals and non-archimedean absolute values is

rather involved; therefore, we shall omit its proof. Instead, we will illustrate how to

establish the correspondence between archimedean absolute values and embeddings.

Before seeing this, we first see a useful result.

Proposition 2.2.14.

Let L/K be a finite separable extension. If K is complete in respect to v ∈MK, this

absolute value extends uniquely to w ∈ML and we have the following equality:

|α|[L:K]
w = |NmL/K(α)|v (2.2.1)

for all α ∈ L.

Note that this theorem implies that a non archimedean absolute value can only

extend to a non archimedean absolute value, and the same holds for archimedean

ones. Then we can reinterpret a characterization of the ring of integers, proposition

1.3.13, and the ring of S-integers , as follows

Corollary 2.2.15. Let K be a number field, OK its ring of integers and M∞
K ⊂

S ⊂MK, S finite set. Then:

OK = {x ∈ K : v(x) ≥ 0, for all v ∈M0
K}

OK,S = {x ∈ K : v(x) ≥ 0 for all v ̸∈ S}

Note that, thanks to Theorem 2.2.13 , the number of archimedean absolute values

corresponds to the number of embeddings , then it is finite for a number field.

Remark 2.2.16. If we let L/K be a finite separable extension , say L = K[α],

and we consider | · |v in K, an extension | · |w in L (then w|v), we can complete K

respect to v and L in respect to w and obtain Lw and Kv. By construction, Lw is

an extension of Kv . More precisely Lw = Kv[α], since Kv[α] is complete (In respect

to unique extension v) and contains L. If we take f ∈ K[x] minimal polynomial for

α, we can consider thanks to the natural inclusion i : K ↪→ Kv, f ∈ Kv[x]. Then

the minimal polynomial of α in Kv[x] must divide f . We get

[Lw : Kv] ≤ [L : K] <∞

Thanks to this remark we can give a powerful definition:
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Definition 2.2.17 (Local degree). Let K/Q be a finite extension, w, v places of,

respectively, K and Q, such that w|v. We define the local degree at w the following

natural number:

nw := [Kw : Qv].

Remark 2.2.18. If v|∞, then Q∞ = R and Kv is a finite complete extension

of R, then Kv
∼= R or Kv

∼= C, then nw = 1 or 2,respectively. If we consider

j : K → Kv natural map and i : Kv → R (or C) topological isomorphism, then

|x|v = |j(x)|v = |i(j(x))|. Notice that σ := i ◦ j : K → R (or C) is an embedding.

Conversely, two embeddings σ1, σ2 defines the same place in K if and only if they

are real and equal or complex conjugates. This follows easily from the definition

of equivalent places. In particular there are exactly r1 + r2 absolute values in MK

extending standard absolute value, where r1 = #{σ : K ↪→ R embedding} and

r2 = #{σ, σ̄ : K ↪→ C} pair of conjugates embeddings}. Therefore, we see that∑
w|∞

nw = r1 + 2r2 = [K : Q] (2.2.2)

Actually this is a specific case of the formula (2.2.5) that we state in the next

proposition. In addition to this one, in the next proposition we present other im-

portant properties that will be used to prove the product formula for K.

Proposition 2.2.19. Let L/K be a finite separable field extension, α ∈ L, v ∈MK,

then:

• v extends to finitely many places w in L. Therefore:

NmL/K(α) =
∏

w∈ML,w|v

NmLw/Kv(α) (2.2.3)

• From the previous results it follows easily that:∏
w∈ML,w|v

|α|nw
w = |NmL/K(α)|v (2.2.4)

• if L/K/Q is a finite separable extension, then∑
w∈ML,w|v

nw = [L : K]nv (2.2.5)

Proof. We don’t prove (2.2.3), but using it and (2.2.1) we can prove (2.2.4) and

(2.2.5): SinceKv is complete, |α|nw
w = |NmLw/Kv(α)|v , then

∏
w|v |α|nw

w =
∏

w|v |NmLw/Kv(α)|v =
|NmL/K(α)|v. Then (2.2.3) is true ∀α ∈ L, in particular if α ∈ K× we have

NmL/K(α) = α[L:K] and
∏

w|v |α|nw
w = |α|

∑
nw

v . Putting these 3 together we see

that |α|[L:K]nv
v = |α|

∑
nw

v . From here (2.2.5) follows.
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Now we are ready to state and prove the following theorem:

Theorem 2.2.20 (Product formula for K number field). Let K be a number field.

Then, for all α ∈ K, α ̸= 0, we have∏
w∈MK

|α|nw
w = 1. (2.2.6)

Proof.

∏
w∈MK

|α|nw
w =

∏
v∈MQ

 ∏
w∈MK ,w|v

|α|nw
w

 (2.2.3)
=

∏
v∈MQ

|NmL/K(α)|v = 1

Where the last equality comes from the product formula for Q, since, by definition,

NmL/K(α) ∈ Q.

2.3 Heights

Now we are ready to define the concept of Height for any number field K. To do

this we will use projective space. It is not necessary to do this but it will be needed

later for define heights also on curves. We will see how the height over a number

field K is defined via the absolute values on K, and we will derive many properties

of the height from those of the absolute values. We will also introduce the definition

of the absolute height, which makes it possible to measure the height of an algebraic

number, thus removing the dependence of the height on the number field. It will be

crucial to see that the set of elements whose height is bounded by a given constant

is finite. This property is in fact at the heart of Roth’s proof of his theorem.

Definition 2.3.1 (Height for Pn(K)). Let K be a number field. For every P ∈
Pn(K), P = [x0, . . . , xn] we set

HK(P ) :=
∏

v∈MK

max(|x0|v, . . . , |xn|v)nv

We call this object the Height of P relative to K.

Next we see that the height is well defined and some basic properties.

Proposition 2.3.2. let K be a number field, P ∈ Pn(K), then the following prop-

erties are true:

1. HK(P ) does not depends on the choice of coordinates for P .
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2. for every P , HK(P ) ≥ 1.

3. If L/K finite separable extension,

HL(P ) = HK(P )
[L:K]

Proof. 1) For λ ∈ K×,∏
v∈MK

max
i

(|λxi|v)nv =
∏

v∈MK

|λ|nv
v

∏
v∈MK

max
i

(|xi|v)nv

Then 1 follows from the product formula (2.2.6), indeed λ ∈ K× implies
∏

v∈MK
|λ|nv

v =

1.

2) It is trivial, because , since it can’t be that every coordinates of P is 0, it is always

possible to choose homogeneous coordinates for P such that one of the coordinates

is 1. Then every factors defining the height of P is at least 1.

3)

HL(P ) =
∏

w∈ML

max
i

(|xi|w)nw =
∏

v∈MK

∏
w∈MK ,w|v

max
i

(|xi|v)nw

=
∏

v∈MK

max
i

(|xi|v)[L:K]nv = HK(P )
[L:K],

where in the first equality we use only the definition, in the second we use an

equivalent way of viewing the product, and we replace w with v since xi is in K;

then we use (2.2.3) and again the definition.

Remark 2.3.3 (Height in Pn(Q)). The projective n-dimensional space over Q has a

very good property: for every P ∈ Pn(Q), we can choose homogeneous coordinates

for P, x0, . . . , xn such that xi ∈ Z and gcd(xi) = 1. This is easy to see since from

rational coordinates we can multiply them all to the least common denominator to

turn them into integers and then divide by the greatest common divisor of those

integers. With this choice, if v ∈ M0
Q, |xi|v ≤ 1 and and it must hold for at least

one index i, |xi|v = 1 (otherwise there will be a common factor for all the xi-s), then

maxi |xi|v = 1. Hence, using the definition for HQ, we get

HQ(P ) = max(|x0|∞, . . . , |xn|∞)

We can observe that for every constant C > 0, the set:

{P ∈ Pn(Q)|HQ(P ) ≤ C}

is finite. That’s because every index xi can assume only 2C +1 values, then the set

has a maximum of (2C + 1)n elements. An important fact , more difficult to prove,

is that this result is true also for K number field.



22 Diophantine approximation

Now we are finally ready to define the height of a point in an algebraic closure

of Q, i.e. of overy algebraic number over Q.

Definition 2.3.4. For P ∈ Pn(Q̄) , chosen a number field K such that P ∈ Pn(K)

we set the absolute height of P as H(P ) := HK(P )
1/[K:Q]. For x ∈ Q̄, H(x) :=

H([x, 1]). Similarly for a field K, HK(x) := HK([x, 1]).

Remark 2.3.5. • The absolute height is well defined thanks to propostion (2.3.2)

point 3 and the tower law, indeed if L/K/Q separable finite extension:

HL(P )
1/[L:Q] = HK(P )

[L:K]/[L:Q] = HK(P )
1/[K:Q].

• Our initial definition of the height for Q is coherent with this definition, indeed

if r = p/q

H(r) = HQ([p/q, 1]) = max(|p|∞, |q|∞).

Example 2.3.6. Taking α = n
√
k, k ∈ Z, k square-free, we choose K = Q[α], α ∈ K.

Since k square-free, xn−k is irreducible inQ, then it must be the minimal polynomial

of α and [K : Q] = 1. Then

H(α) = HK([α, 1]) =
∏

v∈MK

max(1, |α|v)nv .

Note that |α|nv = | n
√
k|nv = |k|v for the multiplicative property of absolute values,

then |α|v = |k|1/nv ∀v ∈ MK . If v ∈ M0
K , v|p for some prime p; since k ∈ Z, we

have that |k|v = |k|p ≤ 1, then ∀v ∈ M0
K , max(1, |α|v) = 1. If v ∈ M∞

K , v|∞ and

|α|v = |k|1/n, then we have:

H(α) =
∏
v|∞

(|k|1/n)nv = (|k|1/n)
∑

v|∞ nv

From (2.2.2) we know that the exponent is equal to [K : Q] = n, then H(α) = |k|.

As we said before, an important result we would like to have is that the set of

elements of K with bounded height is a finite set. This result would allow us, given

a problem in which one seeks solutions in Q̄ (or Pn(Q̄), to search for an upper bound

on the height of a solution; if such a bound is found, then the problem has a finite

number of solutions.

Proposition 2.3.7. Let P ∈ Pn(Q̄) and σ ∈ Gal(Q̄/Q). Then

H(P ) = H(P σ) (2.3.1)
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Proof. Let K/Q such that P is defined in Pn(K); then σ gives an isomorphism

σ : K → Kσ , also σ likewise identifies the absolute values of K and Kσ :

σ :MK

∼=−→MKσ , v → vσ

Then, fixed v ∈ MK sigma gives also an isomorphism between Kv and Kσ
vσ . So the

local degrees satisfies nv = nvσ . Also if x ∈ K, |xσ|vσ = |x|v. Putting all together:

HKσ(P σ) =
∏

w∈MKσ

max
i

|xσi |nw
w =

∏
v∈MK

max
i

|xi|nvσ

vσ =
∏

v∈MK

max
i

|xi|nv
v = HK(P )

Since [K : Q] = [Kσ : Q], we have the desired result.

Proposition 2.3.8. Let f(x) = a0x
n+a1x

n−1+. . .+ad = a0
∏d

i=1(x−αj) polynomial

in Q̄[x], then:

H([a0, . . . , ad]) ≤ 2d−1

d∏
i=1

H(αj) (2.3.2)

We do not give the proof of this fact, as it involves a lot of calculations.

Theorem 2.3.9. Let K/Q finite separable extension, C > 0 a constant. Then

{P ∈ Pn(K) : HK(P ) ≤ C} (2.3.3)

is a finite set of points.

Proof. Let P = [x0, . . . , xn] ∈ Pn(K) . Easily we have:

HK(P ) =
∏

v∈MK

max
i

|xi|nv
v ≥ max

i

∏
v∈Mk

max(|xi|v, 1)nv = max
i
HK(xi)

Thus it suffices to prove that the set {α ∈ K : HK(α) ≤ C} is finite. In fact, if this

were true, then HK(P ) ≤ C =⇒ HK(xi) ≤ C for all i, but then we can choose

every coordinate xi in finitely many way and therefore there would be only finitely

many points P . Suppose α ∈ K with HK(α) ≤ C, we can then take the minimal

polynomial for α, call it f(x) = xd + a1x
d−1 + . . .+ ad. Notice that d ≤ [K : Q]. If

α = α1, . . . , αd are the conjugates of α, for (2.3.2) we have:

H([1, a1, . . . , ad]) ≤ 2d−1

d∏
i=1

H(αi) = 2d−1H(α)d

Where the equality comes from (2.3.1). Now, since ai ∈ Q, H([1, a1, . . . , ad]) =

HQ([1, a1, . . . , ad]) and H(α) = HK(α)
1/[K:Q], we have:

HQ([1, a0, . . . , ad]) ≤ 2d−1HK(α)
d/[K:Q] ≤ 2dCd/[K:Q]
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From what we have already seen in the example (2.3.3), this fact implies that there

are finitely many possibilities for the ai-s , and therefore for f . Since f has at most

[K : Q] roots , from this finite set of polynomials , each of them contributes to our

set with at most d elements, then our set must be finite.

2.4 Roth’s theorem

Finally, we have all the necessary tools to generalize the concept of approximation

of algebraic numbers, over a field K rather than only over Q, using rationals (which

will now be elements of the field). With these tools it is possible to reinterpret

Liouville’s and Thue’s theorems in a field K, and moreover we will state Roth’s

theorem. To do all this, we first give the following definition:

Definition 2.4.1 (Approximation exponent). Let K be a number field , v ∈ MK

and τ : N → R+. We say that K has approximation exponent τ (in respect to

v) if the following property holds true:

Let α ∈ K̄, d = [K[α] : K] and choose one of the extensions of v in K[α], which we

still call v. Then, for all C > 0, the inequality:

|α− x|v ≤ CHK(x)
−τ(d) (2.4.1)

has only finitely many solutions.

Example 2.4.2. Liouville (2.1.3) says that Q has approximation exponent τ(d) = d

in respect to the standard absolute value.

Thue (2.1.5) says that Q has approximation exponent τ(d) = d/2 + 1 + ε for all

ε > 0 in respect to the standard absolute value.

Theorem 2.4.3 (Roth’s Theorem). For every ε > 0, every number field K of

degree d has approximation exponent:

τ(d) = 2 + ε.

The proof does not require very deep results, but the details required are lenghty.

We only describe how the proof proceeds.

Sketch of the proof of Roth’s Theorem. Fixed α ∈ K̄, through elementary estimates

and the pigeonhole principle, one can construct a polynomial P (X1, . . . , Xm) ∈
OK [X1, . . . , Xm] that vanishes of high order at (α, . . . , α) with controlled degree and
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coefficients with controlled heights. Then we proceed by contradiction, supposing

there are infinitely many different xi ∈ K such that inequality 2.4.1 with τ(d) = 2+ε

holds. Using Taylor expansion, we can prove that |P (x1, . . . , xm)|v is fairy small.

Then, one must prove a non vanishing result, namely Roth’s Lemma. This result

says that a polynomial that vanishes to (x1, . . . , xm) such that the height of this

element is fairly increasing, depending on m and the degree of the polynomial, then

P cannot vanish to high order at (x1, . . . , xm). This part is the most delicate of the

proof. Indeed, Thue did not have this result at his disposal, but a weaker one, which

led him to prove a weaker version of Roth’s theorem. Once we have this results,

making assumption on the rate of growth of the height of xi, using Roth’s Lemma,

we can prove that there is a low order partial derivative such that, calculated at

(x1, . . . , xm), is different from 0. We call this element z and we can prove that |z|v is
fairly small, from what we said earlier. On the other hand, using product formula,

we can prove that |z|v ≥ HK(z)
−1. Using another bound for HK(z)

−1, we obtain a

contradiction for |z|v, which would be both too small and too large.





Chapter 3

Introduction to Curves

The study of curves constitutes a natural point of contact between algebra, geom-

etry, and number theory. Historically, curves arise as the zero sets of polynomials in

two variables, but their importance goes far beyond this elementary viewpoint: they

provide the natural setting for understanding deep geometric phenomena through

purely algebraic tools. In this chapter we introduce the fundamental notions related

to algebraic curves, with the aim of developing a rigorous language that allows us

to describe their properties. The main purpose of this discussion is to prepare the

ground for the introduction of the genus of a curve, a fundamental invariant. We

will then study divisors and differentials associated with the curve, and the Rie-

mann–Roch theorem, which will illustrate a relation between these objects and will

allow us to define the genus.

3.1 Varieties

We briefly recall the notion of an algebraic variety, both in the affine and projec-

tive setting. This provides the basic geometric framework in which curves naturally

arise and allows us to fix the language and notation that will be used throughout

the chapter.

Given a fieldK and its algebraic closure K̄, from each ideal I ⊂ K̄[X] = K̄[X1, . . . , Xn]

we associate the set:

VI = {P ∈ An : f(P ) = 0 for all f ∈ I}.

Definition 3.1.1. V ⊂ An is an algebraic set if there exists I ⊂ K̄[X] such that

V = VI . In this case, such an ideal is called ideal of V and:

I(V ) = {f ∈ K̄[X] : f(P ) = 0 for all P ∈ An}

27
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V is said to be defined over K if I(V ) can be generated by polynomials in K[X];

in this case we write V/K and define I(V/K) := I(V ) ∩K[X].

Definition 3.1.2. Let V ⊂ An be an algebraic set with ideal I(V ). V is a variety

if I(V ) is a prime ideal of K̄[X].

Definition 3.1.3. If V/K is a variety, we define the set of K-rational points

of V as follows

V (K) = V ∩ An(K).

If OK,S ring of S integers for some finite S ⊂MK, we can similarly define the set

of S-integral points of V :

V (OK,S) := V ∩ An(OK,S)

Notice that An is a variety, because I(V ) = (0) is a prime ideal.

In this thesis we will always consider variety in A2, usually defined over K, which

ideal is generated by only one polynomial f ∈ K[X] irreducible. In this case we will

write:

V : f(x, y) = 0 (a)

This is a notation meaning V = {(x, y) ∈ K̄ : f(x, y) = 0}. An interesting

and very complicated problem concerning this objects is to determine the set of K-

integral points V (K).

Definition 3.1.4. Let V/K be a variety. We define affine coordinate ring of

V/K as:

K[V ] :=
K[X]

I(V/K)

We define also the function field of V/K its fraction field K(V ) := Frac(K[V ]).

Similarly are defined K̄[V ] and K̄(V ), replacing K with K̄.

Next we want to define a notion of dimension for a variety ; we notice that K̄(V )

is an extension of K̄ but it may not be algebraic, so we have to define the concept

of ”transcendence degree” for a trascendence field extension.

Definition 3.1.5. Let L/K field extension. We say that S = {x1, . . . , xn} ⊂ L is

algebraically independent over K, if

∀P ∈ K[X1, . . . , Xn]\{0}, P (s1, . . . , sn) ̸= 0

L/K is a finite transcendental extension if ∃S = {s1, . . . , sn} ⊂ L non empty

algebraically independent such that L is an algebraic extension of K(s1, . . . , sn). In
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this case that n is unique and it is called the transcendental degree of L/K.

Notice that if S is empty, then n = 0 and L/K is an algebraic extension.

Definition 3.1.6 (Dimension of a variety and Curve). Let V be a variety. We

define its dimension as the transcendental degree of K̄(V ) over K̄. V is a curve if

its dimension is equal to 1.

Example 3.1.7. The dimension of An is n because K̄(An) = K̄(x1, . . . , xn). Then

if V variety defined by a non constant polynomial f , V : f(x1, . . . , xn) = 0, then

dim(V ) = n− 1.

Then the objects we are interested in are curves. We will usually denote curves

by C.

Remark 3.1.8. Notice that we can give all these definitions replacing An(K) with

Pn(K). Then V ⊂ Pn(K) makes sense when V is generated by homogeneous polyno-

mials, in fact f(P ) = 0 does not depend on the choice of homogeneous coordinates

for P . In this case V is called projective variety. There is a very close connection

between varieties and projective varieties. In fact, given a variety, one can uniquely

associate a projective variety to it by “homogenizing” the polynomials in its ideal.

This process is done like this: Let f(x1, . . . , xn) polynomial of degree d, we can

homogenize it adding one variable obtaining :

f ∗(x1, . . . , xn+1) = xdn+1f

(
x0
xn+1

, . . . ,
xn
xn+1

)
.

This remark leads us to give the following definition.

Definition 3.1.9. Let V ⊂ An be a variety. We define the projective closure

of V as V̄ ⊂ Pn by his ideal I(V̄ ) = {f ∗(X) : f ∈ I(V )}. Notice that to every

P̄ = [x0, . . . , xn+1] ∈ V̄ with xn+1 ̸= 0 corresponds a unique point in V , namely

P = (x0/xn+1, . . . , xn/xn+1). Points in V̄ with xn+1 = 0 are called points at

infinity.

Usually, given a variety V is useful to consider its projective closure, because

it may be easier to deal with homogeneous polynomials, for example to determine

V (K).

Example 3.1.10. Consider

C : x2 + y2 = p
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where p is a prime, p ̸≡ 1 mod (4). We want to determine V (Q). If we consider

C̄ : x2+y2 = pz2; suppose P ∈ C̄(Q), it is possible to find homogeneous coordinates

x, y, z such that x, y, z ∈ Z and gcd(x, y, z) = 1, then x2 ≡ −y2 mod(p). Since p ̸≡ 1

mod 4, −1 is not a square mod(p), then it must be x ≡ y ≡ 0 mod (p). Then it

must be , from the equation, that 3|z , in contradiction with gcd(x, y, z) = 1. Then

C(Q) = ∅.

Definition 3.1.11. Let V/K be a variety, V : f(x1, . . . , xn) = 0. P ∈ V is a

singularity for V if ∂f
∂xi

(P ) = 0 for all i = 1, . . . , n. If V does not have singularities

is said to be smooth.

Definition 3.1.12. Let C/K be a curve and P ∈ C a smooth point. The Local ring

of C at P is K[X]P = {F ∈ K(C) : F (X) = f(x)/g(x) and g(P ) ̸= 0}. f ∈ K(C)

is regular at P if f ∈ K[C]P . Therefore MP := {f ∈ K[C] : f(P ) = 0} is the

maximal ideal of the local ring. For d ∈ N, Md
P = ⟨f1 . . . fd : fi ∈ MP ⟩ . The

valuation on this ring is given by:

ordP : K[C]P −→ N ∪ {∞}
f 7−→ max(d ∈ Z : f ∈Md

P ).

Since K(C) is the fraction field of K[C] we can extend the valuation at P to

K(C) in the following way:

Definition 3.1.13. Let C/K be a curve and P a smooth point. We define the order

of f at P as

ordP : K(C) −→ Z ∪ {∞}
F = f/g 7−→ ordP (f)− ordP (g)

We call a uniformizer of C at P any function t ∈ K(C) with ordP (t) = 1, i.e. a

generator for MP . Also if ordP (f) ≥ 0, f is said to be regular at P ; if ordP (f) > 0,

f has a zero at P ; else ordP (f) < 0, f has a pole at P .

Remark 3.1.14. Notice that if t, t′ uniformizers at P, then they are generators for

MP , then ∃u ∈ K[V ]P such that t′ = ut. But u ̸∈ MP , otherwise t
′ = ut ∈ M2

P

contradicts the fact that t′ is a generator for MP . Then u ∈ K[V ]P\MP , that it’s

the group units for K[V ]P , so u invertible.

Notice that the definition of MP can be given also for varieties. Next we give a

proposition that would be useful to calculate orders.

Proposition 3.1.15. Let V/K be a variety and P ∈ V a smooth point. Then:

dimK MP/M
2
P = dimV.
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Example 3.1.16. Consider

C : y2 = x3 + x

and P = (0, 0) ∈ C. P is a smooth point. Notice that MP is surely generated by

the polynomials X,Y ∈ K(C), then ordP (X) and ordP (Y ) are greater or equal to 1.

NowM2
P is generated by X2, Y 2, XY , but in K(C) we have X = Y 2−X2 ·X ∈M2

P ,

then MP/M
2
P is generated by only Y . Observe that in M2

P/M
3
P , X ≡ Y 2 ̸= 0

mod M3
P . From what we observed follows that:

ordP (Y ) = 1; ordP (X) = 2.

Below we give the definition of morphism between varieties. We will use only

morphisms between curves, but it is useful to see the most general definition possible.

We divide it into several parts.

Definition 3.1.17. Let V1, V2 ⊂ Pn(K̄) varieties defined over K. A rational

map (defined over K) from V1 to V2 is a map of the form ϕ = [f0, . . . , fn] with

fi ∈ K(V1), not necessarily defined at every point of V1, but if fi is regular at P for

all i, then ϕ(P ) ∈ V2. We say that ϕ is regular at P if there exists g ∈ K(V1) such

that gfi is regular at P and [(gf1)(P ), . . . , (gfn)(P )] ∈ V2. In this case we define

ϕ(P ) := [(gf0)(P ), . . . , (gfn)(P )].

Definition 3.1.18. Let V1, V2 ⊂ Pn(K̄) and ϕ : V1 → V2 rational map. ϕ is a

morphism if it is regular at every point of V1. Then ϕ can be defined for all point

P ∈ V1. We say that ϕ is an isomorphism if there exists a morphism ψ : V2 → V1

such that ϕ ◦ ψ and ψ ◦ ϕ are identities.

Example 3.1.19. Let V : X2 + Y 2 = Z2, V ⊂ P2(K). Consider

ϕ : V → P1; ϕ([X,Y, Z]) = [X + Z, Y ].

We can see that ϕ is regular at every P , except possibly at points of V such that

X+Z = Y = 0. The only point with this property is [1, 0,−1]. Take g ∈ K(V ), g =

X − Z. We have that:

[(X+Z)(X−Z), Y (X−Z)] = [X2−Z2, Y (X−Z)] = [−Y 2, Y (X−Z)] = [−Y,X−Z].

where we used that X2−Z2 ≡ −Y 2 in K[V ]. Then ϕ([1, 0,−1]) = [0, 2] = [0, 1] and

ϕ is a morphism. One can also prove that ϕ is an isomorphism.
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3.2 Maps between curves

We could generalize and define a morphism between varieties of projective space

of different dimensions. It’s not hard to do, but since we are mainly interested in

elliptic curves and we will see them as subset of P2, is not necessary. Let’s note

some properties of maps between curves.

Proposition 3.2.1. Let C be a curve and V a variety. If C is smooth and ϕ : C →
V rational map, then ϕ is a morphism.

Proof. Suppose ϕ = [f0, . . . , fn], with fi ∈ K(C) and P ∈ C. Choose t ∈ K(C)

uniformizer at P , then if n = mini(ordP (fi)), then:

ordP (t
−nfi) ≥ 0, ordP (t

−nfj) = 0 for some j.

Then t−nfi is regular at P for all i and t−nfj(P ) ̸= 0.

Proposition 3.2.2. Let ϕ : C1 → C2 be a morphism between curves, then ϕ is

constant or surjective.

Proof.

We will use this fact later.

Remark 3.2.3. Let C/K be a smooth curve and f ∈ K̄(C). Then we can define a

rational map, that we also call f , in this way:

f : C −→ P1

P 7−→ [f(P ), 1]

By proposition (3.2.1), f is a morphism. Following the proof , we can give f an

explicit form f(P ) = [f(P ), 1] if f is regular at P , otherwise f(P ) = [1 : 0]. Con-

versely if we have a rational map, ϕ : C → P1, ϕ = [f, g] and f, g ∈ K̄(C), then or

g = 0 then ϕ = [1 : 0] constant map, otherwise ϕ corresponds to the map defined by

f/g . We can repeat this argument replacing K and K̄, then there is a one to one

correspondence between K(C) ∪ {∞} and rational maps C to P1 defined over K.

Proposition 3.2.4. Let C be a smooth curve, then f ∈ K̄(C), f ̸= 0 has finitely

many zeros and poles.

Proof. Suppose f ∈ K̄[C] and f ̸= 0 and f non constant (this case is trivial). We

first prove that f has finitely many zeros. We can consider K̄[f ] ⊂ K̄[C]. Since
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f ̸∈ K̄ and K̄ algebraically closed, then K̄[f ] has trascendental degree equal to 1

and K̄[C]/K̄[f ] is a finite algebraic extension. If we consider B to be the integral

closure of K̄[f ] in K̄[C], then it is not hard to see that B is a Dedeking domain.

Then we can consider the ideal (f) in B , using Theorem 1.3.11, we get

(f)B = pe11 · · · penn

where n <∞ and each ideal pi corresponds to zeros of f . Then f must have finitely

many zeros. Now, taking F ∈ K̄(C), F = f/g where f, g ∈ K̄[C], zeros of F

corresponds to the zeros of f and poles of F corresponds to zeros of g, then the

conclusion follows from what was shown above.

Notice that, given C1/K,C2/K curves defined over K, and a non constant map

ϕ : C1 → C2 we can induce an injection :

ϕ∗ : K(C2) → K(C1), ϕ∗(f) := f ◦ ϕ.

Then, since ϕ∗ is injective , K(C1) is an extension of the field ϕ∗(K(C2)) and we

can easily see that ϕ∗ fixes K.

Proposition 3.2.5. Let ϕ : C1 → C2 be a non constant morphism of curves defined

over K, then:

[K(C1) : ϕ
∗(K(C2))] <∞.

Proof. By definition K(C1) and K(C2) are finitely generated extension fields of

transcendence degree 1 of K, then also ϕ∗(K(C2)) have this property. Then it must

be that this extension if algebraic and finite.

Definition 3.2.6. Let ϕ : C1 → C2 be a non-constant morphism of curves defined

over K. We define its degree to be deg ϕ := [K(C1) : ϕ
∗(K(C2))]. If ϕ is constant,

we set deg ϕ = 0. We say that ϕ is separable (or inseparable) if the extension

K(C1)/ϕ
∗(K(C2)) have the correspondent property and define degs(ϕ) and degi(ϕ)

to be the separable and inseparable degree of the extension.

Remark 3.2.7. We don’t see all details, but a morphism of degree 1 between smooth

curves is an isomorphism. This can be proved using proposition (3.2.1) and the fact

that given i : K(C2) → K(C1) injection fixing K , then there exists a unique

ϕ : C1 → C2 morphism such that ϕ∗ = i. This is why we have called this function

ϕ∗.
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Definition 3.2.8 (Ramification index). Let ϕ : C1 → C2 be a non-constant mor-

phism of smooth curves and P ∈ C1. We define the ramification index of ϕ at P

as :

eϕ(P ) := ordP (ϕ
∗(tϕ(P ))) = ordP (tϕ(P ) ◦ ϕ),

where tϕ(P ) ∈ K(C2) is a uniformizer at ϕ(P ). Note that eϕ(P ) ≥ 1. We say that ϕ

ramifies at P if eϕ(P ) > 1. Therefore, ϕ is unramified if, for all P ∈ C1, we have

eϕ(P ) = 1.

From remark (3.1.14), we see that the ramification index does not depend on the

choice of the uniformizer, indeed if t, t′ uniformizers at ϕ(P ) , ∃u ∈ K(C2) invertible

such that t′ = ut, then

ordP (ϕ
∗(t′)) = ordP (ϕ

∗(u)ϕ∗(t)) = ordp(ϕ
∗(u)) + ordP (ϕ

∗(t)) = ordP (ϕ
∗(t)),

where we used the fact that ϕ∗ is an homomorphism of fields, then ϕ∗(u) must be

invertible. This fact implies that ordP (ϕ
∗(u)) = 0.

Proposition 3.2.9. Let ϕ : C1 → C2 be a non-constant map between smooth curves,

then

• for all Q ∈ C2 ,
∑

P∈ϕ−1(Q) eϕ(P ) = deg ϕ;

• For all but finitely many Q ∈ C2, #ϕ
−1(Q) = degs ϕ.

Observe that this two properties implies that if ϕ separable map, then it has

finitely many ramification points. In fact, in this case #ϕ−1(Q) =
∑

P∈ϕ−1(Q) eϕ(P )

implies eϕ(P ) = 1 for all but finitely many Q ∈ C2, then all points P ∈ ϕ−1(Q) are

unramified.

Example 3.2.10. Let ϕ : P1 → P1, ϕ([X : Y ]) = [Xn : Y n] for some n ∈ Z, n ≥ 2.

In affine coordinates, say t = X/Y , we can describe this map as ϕ(t) = tn. For

P = 0, we can choose tϕ(P ) = t, then

eϕ(P ) = ordP (t
n) = n

We get the same result for P = ∞, considering tϕ(P ) = s = 1/t. For P = a ̸= 0,∞,

we can choose tϕ(a) = t− a and see that

eϕ(P ) = 1.

We notice that what we have found is consistent with the last proposition; indeed

for P ̸= 0,∞, we have #ϕ−1(P ) = deg ϕ = n, while for P = 0 or P = ∞, ϕ−1(P )

has only one point, but the first point of the last proposition is satisfied.
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3.3 Divisors and differentials

Now let us give an introduction to divisors and differentials. Divisors allow us

to encode algebraically the distribution of zeros and poles of rational functions,

while differentials provide a tool to study finer properties of the curve, such as its

fundamental invariants. These concepts will form the basis for the definition of

genus and for the application of the Riemann–Roch theorem.

Definition 3.3.1. Let C be a smooth curve, then we define Div(C) as a free abelian

group generated by points of C. Then

Div(C) :=

{
D =

∑
P∈C

nP (P ) : nP ∈ Z, np = 0 for all but finitely many P ∈ C

}

If D ∈ Div(C), then we define its degree as degD :=
∑

P∈C1
np ∈ Z. We can also

define :

div : K̄(C)∗ −→ Div(C)

f 7−→
∑

P∈C ordP (f)(P )

Note that the map div is well defined thanks to proposition (3.2.4), and it is

also an homomorphism of groups, because ordP is an additive valuation. Then

the following is true for all f, g ∈ K̄(C): div(fg) = div(f) + div(g). Thanks to

this property, we can define an equivalence relation ∼ on Div(C) as follows: if

D1, D2 ∈ Div(C), D1 ∼ D2 if ∃f ∈ K̄(C), such that D1 −D2 = div(f). If D ∼ 0,

we say that D is principal.

Definition 3.3.2. Let C a smooth curve, then we define its Picard group (or

divisor class group) as Pic(C) := Div(C)/ ∼ .

Definition 3.3.3. Given ϕ : C1 → C2 map between smooth curves, we can induce:

ϕ∗ : Div(C2) → Div(C1) ϕ((Q)) =
∑

P∈ϕ−1(Q) eϕ(P )(P )

and extends by Z-linearity to all divisors.

Notice that we have the same notation ϕ∗ for two different functions , one between

divisors and one between function fields. Then we give some useful properties of

divisors:

Proposition 3.3.4. Let ϕ : C1 → C2 be a map between smooth curves, then:

a) deg(ϕ∗(D)) = deg(ϕ) deg(D);
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b) ϕ∗(div(f)) = div(ϕ∗(f));

c) for all f ∈ K̄(C1)
∗, deg(div(f)) = 0.

Proof. a) Since deg : Div(C2) → Z and ϕ∗ are both Z-linear, it suffices to prove this

only for D = (Q), for some point Q ∈ C2. By definition:

deg(ϕ∗(Q)) =
∑

P∈ϕ−1(Q)

eϕ(P ) = deg(ϕ)

where the last equality comes from proposition (3.2.9).

b) By linearity, it suffices to prove that ordP (ϕ
∗(f)) = eϕ(P ) ordϕ(P )(f). Take a

uniformizer tϕ(P ) at ϕ(P ), then we can suppose f = utmϕ(P ), where m = ordϕ(P )(f)

and u invertible, then

ordP (ϕ
∗(f)) = ordP (ϕ

∗(utmϕ(P ))) = m ordP (ϕ
∗(tϕ(P )).

The last element is equal, by definitions, to eϕ(P ) ordϕ(P )(f).

c) Recall that, if f ∈ K̄(C1)
∗, we defined f : C → P1 . Identifying P1 ∼= K̄ ∪ {∞},

so that [0 : 1] corresponds to 0 and [1 : 0] to ∞, we obatin directly from definitions:

div(f) =
∑
P∈C1

ordP (f)(P ) =
∑

P∈f−1(0)

ef (P )(P )−
∑

P∈f−1(∞)

ef (P )(P ) = f ∗((0)−(∞)).

Then we get deg(div(f)) = deg(f ∗((0)− (∞)) = deg f(1− 1) = 0 using a).

This proposition tells us that ifD ∈ Div(C) principal divisor, deg(D) = deg(div(f)) =

0, for some f ∈ K̄(C1). Then we can define Div0(C) := {D ∈ Div(C) : deg(D) = 0}
and notice that the set of principal divisor is a subgroup of Div0(C). Then we can

define Pic0(C) := Div0(C)/ ∼. The first two points tell us that ϕ∗ sends divisors of

degree 0 in divisors of degree 0 (a) and principal divisors to principal divisors, then

ϕ∗ induces a well defined map between Pic0(C2) to Pic0(C1). Next, we talk a bit

about differentials:

Definition 3.3.5. Let C be a smooth curve, the space of differential forms on

C, is

ΩC := {df : f ∈ K̄(C)}

where we want the usual relations, for all f, g ∈ K̄(C):

• d(f + g) = df + dg;

• d(fg) = df · g + f · dg;
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• dα = 0 for all α ∈ K̄.

With this definition, we can prove that ΩC is a K̄(C) vector space of dimension

1, generated by any uniformizer t. Then, for every ω ∈ ΩC , chosen a uniformizer t,

there must exists a unique g ∈ K̄(C), such that:

ω = g · dt.

We can also prove that, if f ∈ K̄(C) is regular at P , t uniformizer at P , then df/dt

is regular at P . It is easy to define all these things also for functions in K̄(C).

Definition 3.3.6. Let ω ∈ ΩC, P ∈ C and tP uniformizer at P , then we can define

ordP (ω) := ordP (ω/dt). Also div(ω) :=
∑

P∈C ordP (ω/dtP )(P ) ∈ Div(C). For a

divisor D ∈ Div(C), we say that D is canonical if there exists ω ∈ ΩC such that

D = div(ω).

Observe that the first definition does not depend on the choice of the uniformizer:

let t, t′ be two uniformizers at P , then we have ω = g · dt = g′ · dt′:

ordP (ω/dt
′) = ordP (ω/dt) + ordP (dt/dt

′)

but ordP (dt/dt
′) = 0 because t, t′ are regular at P , then dt/dt′ and dt′/dt are both

regular at P and this can happen only if ordP (dt/dt
′) = 0.

3.4 The genus of a curve

Now we are ready to define the genus of a curve. We will introduce the notion

of ordering among divisors, and thanks to this we can construct vector spaces as-

sociated with each divisor. Finally, the Riemann–Roch theorem provides a formula

relating the dimension of these vector spaces to the divisors that define them, show-

ing how the dimension of a vector space associated with a canonical divisor does not

depend on the divisor itself. This last invariant will be the definition of the genus.

Definition 3.4.1. Let D1, D2 ∈ Div(C). If D1 =
∑

P∈C nP (P ), we say that D1 is

positive and write D1 ≥ 0, if nP ≥ 0 for all P ∈ C. Also D1 ≤ D2 if D2 −D1 ≥ 0.

We define

L(D) := {f ∈ K̄(C)∗ : div(f) ≥ -D} ∪ {0}.

This notation is useful to summarize informations about poles and zeros of a

function f , for example: f ∈ L(n(P ) − (Q)) tells us that f has a pole of order at



38 Introduction to Curves

most n in P and a zero at Q. Notice also that L(D) is a K̄-vector space. This is

easy to see, because div(f1 + f2) ≥ min(div(f1), div(f2)) and div(λf1) = div(f1) are

true for all f1, f2 ∈ K̄(C) and λ ∈ K̄∗.

Definition 3.4.2. Let D ∈ Div(C), then ℓ(D) := dimK̄ L(D).

Remark 3.4.3. We want to prove that ℓ(D) < ∞. It is easy to see that , if

f ∈ L(D)\{0}, then, from proposition 3.3.4.c:

0 = deg(div(f)) ≥ − degD.

Then, if degD < 0, L(D) = {0} and ℓ(D) = 0. Observe also that L(0) = K̄ and

ℓ(0) = 1. This comes from the fact that div(f) ≥ 0 implies that f has no poles,

but then f cannot have any zeros in order to respect deg(div(f)) = 0. This implies

f ∈ K̄.

Lastly, if degD > 0, we can prove that ℓ(D) ≤ degD+1. First, suppose D = n(P ),

for some point P and n > 0; then div(f) ≥ −n(P ) implies that ordP (f) ≥ −n and

f regular at all other points. We know that ℓ(0) = 1, then by induction, we can

suppose ℓ(n(P )) ≤ n+1 and prove that ℓ((n+1)(P )) ≤ n+2. Suppose there exists

f, g ∈ L((n + 1)(P ))/L(n(P )) linearly independent, then f, g have poles at P of

order −n− 1 and no other zeros. Then ϕ := f/g is such that ordP ϕ = 0. If we take

λ = ϕ(P ), then h := f − λg is such that ordP (h) > −n− 1 and h ∈ L(n(P )), then
f = λg. This implies ℓ((n+ 1)(P )) ≤ ℓ(n(P )) + 1 ≤ n+ 2.

We are finally ready to state, but don’t prove, the Riemann-Roch theorem.

Theorem 3.4.4 (Riemann-Roch theorem). Let C be a smooth curve and KC ∈
Div(C) canonical divisor on C and D ∈ Div(C). Then there exists a unique g(C) =

g ∈ Z, g ≥ 0, depending only on C, that we call the genus of C such that:

ℓ(D)− ℓ(KC −D) = deg(D)− g + 1.

Corollary 3.4.5. Let C be a smooth curve and KC ∈ Div(C) canonical divisor on

C. Then

a) g = ℓ(KC);

b) degKC = 2g − 2;

c) if degD > 2g − 2, then :

ℓ(D) = degD + 1− g.
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Proof. a) This comes directly from the Riemann-Roch theorem with D = 0 and the

fact that ℓ(0) = 1.

b) We use (a) and Riemann-Roch theorem with D = KC and we get that degKC =

2g − 2.

c) Using b), we get that, if degD > 2g − 2, deg(KC −D) < 0, and from a previous

remark , this implies ℓ(KC − D) = 0. Applying again Riemann-Roch theorem we

finish the proof.

Example 3.4.6 (Genus of P1). We are gonna prove that the genus of P1(K) is

equal to 0. We can take t ∈ K(P1) coordinate function, i.e. t([X,Y ] = X/Y and

t([1, 0]) = ∞ (a bijection P1(K) ∼= K ∪∞). Now we can see that ∀α ∈ K, t − α is

a uniformizer at P = [x, y] if α = x/y, then ordP (dt) = ordP (d(t − α)) = 0. Else

P = [1 : 0] = ∞, then ordP (dt) = ordP (−t2d(1/t)) = −2, because 1/t uniformizer

at ∞. Then:

div(dt) = −2(∞) deg(div(dt)) = −2

Then, from the fact that if ω ∈ ΩC , there exists g ∈ K(C) such that ω = g · dt, we
have div(ω) = div(g)+div(dt), taking the degree:

deg(div(ω)) = deg(div(ω)) = −2

Using Corollary.3.4.5.b, we get g(P1(K)) = 0.

Then we can give a theorem that gives a relation between the genus of two curves

if there is a non constant separable map linking them:

Theorem 3.4.7 (Hurwitz). Let ϕ : C1 → C2, be a non-constant separable map

between smooth curves defined over K, with g1, g2 being, respectively, the genus of

C1 and C2. If one of the following is true:

• char(K) = 0

• char(K) = p > 0 and p does not divide eϕ(P ) for all P ∈ C1

We then have the following formula :

2g1 − 2 = (deg ϕ)(2g2 − 2) +
∑
P∈C

(eϕ(P )− 1).

Example 3.4.8 (Genus of an elliptic curve). We want to use this theorem to de-

termine the genus of a curve C defined as follows:

C : y2 = f(x) = a0x
3 + a1x

2 + a2x+ a3
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where f ∈ K[x] for some field K with char(K) ̸= 2, and suppose f(x) has distinct

roots, i.e. gcd(f, f ′) = 1. P0 = (x0, y0) ∈ C singularity for C if and only if

2y0 = f ′(x0) = 0

But then (since 2 ̸= 0), y0 = 0 and x0 would be a double root of f , then C must be

non singular.

Notice that there is only one point at infinity O = [0, 1, 0], in fact homogenizing

and put z = 0, it must be x = 0. Then we can define ϕ : C → P1, ϕ(x, y) = x and

sending O to [1, 0] = ∞ ∈ P1. Notice that ϕ is separable , then deg ϕ = #ϕ−1(x)

for all but finitely many x. It is clear that for a generic x0 ∈ K, y2 = f(x0) has two

solutions, then deg ϕ = 2. Also a point is of ramification if and only if ϕ−1(x0) has

only one point, because
∑

P∈ϕ−1(x0)
eϕ(P ) = 2 . In that case, x0 is a root of f or

x0 = ∞. Then ϕ has exactly 4 ramification points with ramification index 2. Using

Hurwitz’s theorem 3.4.7 we get:

2g(C)− 2 = 2(2 · 0− 2) + 4 = 0 =⇒ g(C) = 1.



Chapter 4

Elliptic curves

Finally we can introduce Elliptic curves. We will begin by providing the defini-

tion of an elliptic curve as a non-singular curve of genus one equipped with a base

point, and we will illustrate its representation via the Weierstrass equation. Next,

we will introduce the group structure on elliptic curves, which allows us to define a

law of addition between points, and we will discuss the main properties of isogenies,

i.e. group morphisms between elliptic curves. We will then consider heights on

elliptic curves, and finally, using Roth’s theorem, we will show how these notions

allow us to prove Siegel’s theorem, which ensures that an elliptic curve defined over

a number field has only a finite number of integral points.

4.1 Weierstrass equation

In this section, we see how every elliptic curve can be described by a Weierstrass

equation. We then consider the inverse problem, that is, when a curve defined

by a Weierstrass equation is an elliptic curve, introducing the discriminant and

j-invariant.

Definition 4.1.1 (Elliptic curve). An Elliptic curve is a pair (E,O), where E/K

is a non singular curve of genus 1 and O ∈ E. There exists x, y ∈ K(E), called

such that the map ϕ : E → P2(K̄), ϕ = [x, y, 1] gives an isomorphism between E/K

and a curve C ∈ P2, given by a Weierstrass equation:

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (4.1.1)

where ai ∈ K and ϕ(O) = [0, 1, 0].

41
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We will consider an elliptic curve to be a curve given by a Weierstrass equation

with base point [0, 1, 0]. However, we will often write it in its non-homogeneous

form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (4.1.2)

keeping in mind that [0, 1, 0] is the only point at infinity. Now we need to focus on a

problem, namely when a Weierstrass equation gives a singular curve or not, because

we would like to consider only non singular curves. Before doing this, let’s analyze

a Weierstrass equation more closely.

Remark 4.1.2. Suppose char(K̄) ̸= 2, 3 and let E elliptic curve given by a Weier-

strass equation of the form (4.1.2). Then the substitution

y −→ 1

2
(y − a1x− a3)

gives an equation of the form:

E : y2 = 4x3 + b2x
2 + 2b4x+ b6

where we have defined b2 = a1 + 4a4 , b4 = 2a4 + a1a3 , b6 = a23 + 4a6.

Another substitution of the form:

(x, y) −→
(
x− 3b2

36
,
y

108

)
gives the simpler equation:

E : y2 = x3 − 27c4x− 54c6

where c4 = b22 − 24b4 , c6 = −b32 + 36b2b4 − 216b6. We can also define b8 = a1a
2
6 +

4a2a6−a1a3a4+a2a
2
3−a24. This tell us that if we are in characteristic different than

2 and 3, we can find A,B ∈ K such that our elliptic curve E/K has the form:

E : y2 = x3 + Ax+B (4.1.3)

All these quantities we have defined along the way are useful for the next definition

of a quantity related to the elliptic curve and its properties.

Definition 4.1.3. Let E be an elliptic curve given by a Weierstrass equation (4.1.2),

we define the discriminant of E the following:

∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6

When ∆ ̸= 0, we can also define the j- invariant j := c34/∆.
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This definition might seem like a tedious and useless computation, but in reality

calculating this discriminant will allow us to determine immediately whether a curve

is singular or not. Meanwhile, the j-invariant will be used to compare two curves,

which will be isomorphic if and only if they have the same j-invariant. Moreover,

∆ and j have a simpler and more compact form in the case of the simpler equation

(4.1.3):

∆ = −16(4A3 + 27B2), j = −1728 (4A)3

∆

Remark 4.1.4. We may ask how ∆ and j behave if we change coordinates of

a Weierstrass equation, and also when a change of coordinate effectively gives us

another Weierstrass equation (and fixes the point at infinity [0 : 1 : 0]. One can

prove that the change of variables

x′ = u2x+ r, y′ = u3y + u2sy + t (4.1.4)

where u, r, s, t ∈ K̄, u ̸= 0 fixes [0, 1, 0] and, calling ∆′, j′, respectively, the discrimi-

nant and the j-invariant of the new Weierstrass equation, u12∆′ = ∆ and c′4 = u4c4.

∆ ̸= 0 implies ∆′ ̸= 0, so in that case j′ = j. This requires a lot of calculations so

we don’t see the proof; an important thing is that actually only this type of change

of coordinates preserves the Weierstrass form. If one have this result , then it’s clear

why the j-invariant is called like this.

Remark 4.1.5 (Singular points of E). P = (x, y) is a singular point for E if P ∈ E

and , if f(x, y) = y2 + a1xy+ a3y− x3 − a2x
2 − a4x− a6,

∂f
∂x
(x, y) = ∂f

∂y
(x, y) = 0. It

follows that there are α, β ∈ K̄ such that the Taylor expansion of f(x, y) at P has

the form:

f(x, y)− f(x0, y0) = ((y − y0)− α(x− x0))((y − y0)− β(x− x0))− (x− x0)
3

with y − y0 = α(x− x0) and y − y0 = β(x− x0) tangent lines at P .

Definition 4.1.6. Let E elliptic curve, P ∈ E a singular point and α, β ∈ K̄

obtained as in (4.1.5). Then :

• P is a node if α ̸= β; in this case there exists two distinct tangent lines at P ;

• P is a cusp if α = β; in this case there is only one tangent line at P .

The names ”node” and ”cusp” derive from their geometric visualization. Here I

report an example:
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x

y

y2 = x3, P = (0, 0) cusp

x

y

y2 = x3 + x2, P = (0, 0) node

Proposition 4.1.7. Let E/K elliptic curve with Weierstrass equation (4.1.2). Then

1. E is singular ⇐⇒ ∆ = 0;

2. E has a node ⇐⇒ ∆ = 0 and c4 ̸= 0;

3. E has a cusp ⇐⇒ ∆ = 0 and c4 = 0.

Proof. Firstly, we show that the point at infinity O = [0, 1, 0] is never singular. If

E has Weierstrass equation in homogeneous form:

E : F (X, Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3 = 0

Then ∂F
∂Z

(O) = 1 ̸= 0, then O isn’t a singular point. Now suppose E with Weierstrass

equation non homogeneous (4.1.2) singular at P0 = (x0, y0), then the substitution

x = x′ + x0 and y = y′ + y0 leaves ∆ and c4 invariant (as we have seen in Re-

mark.4.1.4), so without loss of generality we can suppose P = (0, 0). Then :

a6 = f(0, 0) = 0, a4 =
∂f
∂x
(0, 0) = 0, a3 =

∂f
∂y
(0, 0) = 0.

so E has equation of the form:

E : y2 + a1xy − x3 − a2x
2 = 0

Calculating the discriminant and c4 ,we get ∆ = 0 and c4 = (a21 + 4a2)
2. By

definition, P is a node (respectively a cusp) if the quadratic form y2 + a1xy − a2x
2

has distinct factors (respectively equal), which occurs if and only if its discriminant

is different than 0 ( respectively equal to 0), but the discriminant is (a21+4a2). This

proves the ”if” part of 1), 2) and 3). It remains to prove that E non singular implies
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∆ ̸= 0. To simplify the computation, we assume char(K̄) ̸= 2, then we can consider

E with Weierstrass equation y2 = 4x3 + b2x
2 + 2b4x + b6. P = (x0, y0) is singular

for E if

2y0 = 12x20 + 2b2x0 + 2b4 = 0

Since 2 ̸= 0, it must be y0 = 0 . Then P = (x0, 0) and x0 is a double root of the

cubic polynomial 4x3 + b2x
2 + 2b4x + b6; this occurs only if its discriminant, which

is equal to 16∆ (from Remark.4.1.4), is 0. This completes the proof.

Proposition 4.1.8. Let E/K,E ′/K be elliptic curves with j(E), j(E ′) their j-

invariant. Then E and E ′ are isomorphic if and only if j(E) = j(E ′).

Proof. If E and E ′ are isomorphic, then there exists a change of coordinates of the

Weierstrass equation for E that gives the equation for E ′, then from Remark(4.1.4)

they have same j- invariant. Conversely, suppose char(K̄) ≥ 5 , then there exists

A,B,A′, B′ ∈ K such that

E : y2 = x3 + Ax+B; E ′ : y′2 = x′3 + A′x′ +B.

Having the same j- invariant means that:

(4A)3

4A3 + 27B2
=

(4A′)3

4A′3 + 27B′2

From this we obtain:

A3B′2 = A′3B2.

If we find a change of coordinates (x, y) → (u3x′, u2y′2), u ∈ K̄, such that the

equation defining E becomes the equation of E ′ we finish. Consider three cases:

• A = 0, then j(E) = j(E ′) = 0 and B ̸= 0 (the case A = B = 0 leads us

to a curve of the form y2 = x3 which is singular, then not an elliptic curve).

It must be that A′ = 0 and B′ ̸= 0. In this case we have an isomorphism if

u = (B/B′)1/6;

• B = 0 , then j(E) = j(E ′) = 1728 and A ̸= 0, that implies B′ = 0 and A′ ̸= 0.

We can take u = (A/A′)1/4;

• AB ̸= 0, then we have A′B′ ̸= 0, since if one of them were 0, then both of

them would be 0. We can take u = (A/A′)1/4 = (B/B′)1/6.
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Now we have an effectively computable method to determine whether a Weierstrass

equation defines an elliptic curve — namely, compute the discriminant and check

that it is nonzero — and a method to compare two Weierstrass equations to see

whether they define isomorphic elliptic curve. Another important fact is that “there

are many different elliptic curves”; that is, given j0 ∈ K,one can find a curve with

j-invariant equal to j0. We do not show this formally (although it reduces to simple

calculations), but the curve

E : y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728

have j−invariant equals to j0. Notice that the cases j0 = 0, 1728 are special cases

not covered from this equation (if j0 = 0 its discriminant is 0, then it isn’t an elliptic

curve). Looking at the last proof , these cases correspond ,respectively, to curves

E : y2 = x3 + Ax+B with A = 0 and B = 0.

4.2 Group Law and Isogenies

In this chapter we will see how to define a group structure on an elliptic curve and

how this structure can help us determine the K-rational points of the curve. We

will also study isogenies, which are morphisms between elliptic curves. We will then

examine the properties that distinguish elliptic curves from other curves and how

these properties can be used to understand their arithmetic and geometric structure.

Definition 4.2.1 (Group Law). Given E elliptic curve, with O = [0, 1, 0] point at

infinity. We can define a group law in this way. Let P,Q ∈ E and take the line L

through P and Q ( if P = Q we define L as the tangent line of the curve at P ) ; L

intersects E in another point, call it R. Then take the line L′ through O and R . L′

intersects our curve E at R,O and another point, that we call P ⊕Q.

Note that this definition use the fact that we have an equation of degree 3, so the

intersection between a line L ⊂ P2 and the curve consists of three points , not

necessarily distinct. We give next a geometric visualization of how this operation

works:
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P

Q

R

P ⊕Q

x

y

E : y2 = x3 + 1

Proposition 4.2.2. Let E be an elliptic curve and ⊕ : E×E → E defined as above.

So the following are true:

a) If L line and L ∩ E consists of three points P,Q,R not necessarily distinct,

then

(P ⊕Q)⊕R = O

b) P ⊕O = P for every P ∈ E

c) P ⊕Q = Q⊕ P , for every Q,P ∈ E

d) for P ∈ E, there exists ⊖P ∈ E such that P ⊕ (⊖P ) = O

e) Let P,Q,R ∈ E then (P ⊕Q)⊕R = P ⊕ (Q⊕R)

Proof. a) It is obvious by construction, because P ⊕ Q gives us a point that is on

the line through R and O, then we sum that point to R and obtain O.

b) From definition, if Q = O, we have that L and L′ are the same. Then L intersects

E at P,O,R and L′ at R,O, P ⊕O, then P ⊕O = P .

c) It is clear by definition.

d) From a), we can take the line though P and O intersects R then:

O = (P ⊕O)⊕R = P ⊕R

Then ⊖P = R,

e) The geometric proof requires to verify a lot of different cases . One can also give

explicit formulas for sum and verify by calculations. We skip this part.
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Remark 4.2.3. This theorem tells us that (E,⊕) is an abelian group with identity

element O. From now on, to easy notation, we will denote the operation ⊕ simply

with +.

Having this structure of group on an elliptic curve helps us to study them , in

particular to try to determine the set of K rational points E(K). In fact , letting

E with Weierstrass equation with non homogeneous coordinates (4.1.2) , P1 =

(x1, y1), P2 = (x2, y2) ∈ E, one can give an explicit formula for calculate coordinates

of P +Q and −Q, namely:

−P0 = (x0,−y0 − a1x0 − a3);

P1 + P2 = (λ2 + a1λ− a2 − x1 − x2,−(λ+ a1)x3 − ν − a3)
(4.2.1)

where x3 is the first coordinate of P + Q and λ and ν are functions depending on

x1, x2, y1, y2 if P ̸= Q and also on ai, with i = 1, . . . , 6. If E/K , from this formulas

,even if we don’t have an explicit one for P + Q, we can easily see that E(K) is

a subgroup of E, because starting from points with coordinates in K, we obtain

coordinates of P + Q with operations in K. We can see this also geometrically, in

fact λ and ν are defined in such a way that y = λx+ ν is the line through P and Q.

Another important fact that we will use later is that the operations + and − defines

morphisms. Next we give the definition of even function for an elliptic curve, that

will be used later.

Definition 4.2.4. Let E/K be an elliptic curve, f ∈ K(E) is said to be an even

function if f(P ) = f(−P ), for all P ∈ K(C)

Example 4.2.5. Let f = x ∈ K(E) the x-coordinate function. x is an even func-

tion, because we have seen in equation 4.2.1 that P and −P have the same x-

coordinates.

Let’s see another property of the x-coordinate and y-coordinate for an elliptic curve.

Proposition 4.2.6. Let E elliptic curve, and consider x, y ∈ K(E) respectively x

and y coordinate, then

a) O is the only pole for x, with ordO(x) = −2;

b) O is the only pole for y with ordO(y) = −3.

Proof. As we have seen , to the function x ∈ K(E) is associated a morphism ϕx :

E → P1, such that ϕx(P ) = [x(P ), 1], and ϕx(P ) = [1 : 0] = ∞ if P is a pole for
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x. But consider E in its homogeneous form, x = X/Z, then P is a pole for x if

P is a point at infinity, then it must be P = O, because O is the only point at

infinity. Now deg ϕx = [K(E) : K(P1)] = [K(x, y) : K(x)], but now , the weierstrass

equation defining E, tells us that y is a root of a degree 2 polynomial in K(x), then

deg ϕx = 2. Then we can use the first point of Proposition 3.2.9 with Q = O to get

that

eϕx(O) = 2 = − ordO(x)

This proves a). Using the same type of argument for y, we get deg ϕy = 3 and then

ordO(y) = −3.

Now we define isogenies, that are particular map between elliptic curves.

Definition 4.2.7. Let E1, E2 be elliptic curves . ϕ : E1 → E2 is an isogeny if

ϕ is a morphism and ϕ(O) = O. If ϕ non-constant , we say that E1 and E2 are

isogenous.

It follows from proposition (3.2.2) that ϕ(E1) = {O} or ϕ(E1) = E2. Next we see

that an isogeny respects the group law; before doing that, let’s see that (Pic(E),+),

where ”+” is the natural operation of summing two divisors (actually class of divi-

sors), is isomorphic to (E,⊕) as groups.

Proposition 4.2.8. Let E elliptic curve, then there exists a map ψ : E −→ Pic0(E)

bijection of sets.

Proof. We can define this function as :

ϕ : E −→ Pic0(E)

P 7−→ [(P )− (O)]
(4.2.2)

where [(P )−(O)] means the class of that divisor. Now we prove that ϕ is a bijection.

It is an injection , because if ψ(P ) = ψ(Q), then (P ) ∼ (Q), then ∃f ∈ K(C) such

that div(f) = (P ) − (Q). But then f ∈ L((Q)). From Riemann-Roch theorem,

precisely Corollary (3.4.5.c), ℓ((Q)) = 1, then f must be a constant and f(P ) = 0

implies f = 0 and P = Q. To prove that it is surjective, we have to prove that

∀D ∈ Div0(E) there exists a point P ∈ E such that D ∼ (P ) − (O). Reapplying

Corollary (3.4.5.c) to D + (O), that is a divisor of degree 1, we get:

ℓ(D + (O)) = dimK̄ L(D + (O)) = 1



50 Elliptic curves

We can choose f ∈ L(D + (O)) non zero, then we know that :

div(f) ≥ −D − (O) deg(div(f)) = 0

Then there exists P ∈ E such that div(f) = −D − (O) + (P ), which means that

D ∼ (P )− (O).

Proposition 4.2.9. Let ψ : E −→ Pic0(E) defined as in the proof of last proposition

(4.2.2), then ψ(P +Q) = ψ(P )+ψ(Q) for all P,Q ∈ E, in other words ψ is a group

isomorphism.

Proof. Fixed P,Q ∈ E, take, ,as in the definition of group law L : f(X, Y, Z) =

αX + βY + γZ = 0 line through P and Q and a third point R, L′ : f ′(X, Y, Z) =

α′X + β′Y + γ′Z = 0 line through R, O and P + Q. Then, since the line Z = 0

intersects O with multiplicity 3, we have:

div(f/Z) = (P ) + (Q) + (R)− 3(O), div(f ′/Z) = (R) + (P +Q)− 2(O)

Then:

div(f ′/f) = (P +Q)− (P )− (Q) + (O)

This means that (P +Q)− (P )− (Q) + (O) ∼ 0 ; in terms of image through ψ:

ψ(P +Q)− ψ(P )− ψ(Q) = 0

Proposition 4.2.10. Let ϕ : E1 → E2 be an isogeny, then if P,Q ∈ E1

ϕ(P +Q) = ϕ(P ) + ϕ(Q)

Proof. If we take ϕ∗ : Div0(E1) → Div0(E2) defined by (P ) → (ϕ(P )) and then

extending by Z-linearity, we can see that this map is well defined and sends principal

divisors to principal divisors, then we can quotient and obtain a map ϕ∗ : Pic
0(E1) →

Pic0(E2) and this is an homomorphism (in respect to ”+” for classes of divisors). By

last proposition , there exists ψi : Ei → Pic0(Ei) group isomorphisms for i = 1, 2,

then ϕ = ψ−1
2 ◦ ϕ∗ ◦ ψ1, in other words ϕ is a composition of homomorphisms.

From this proposition follows the fact that an isomorphism of elliptic curves E1, E2

(an injective isogeny) gives a group isomorphism between E1(K) and E2(K). Now

that our curve has a structure of group we may ask if there are points with finite or

infinite order, then we give next definition:
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Definition 4.2.11. For P ∈ E and m ∈ Z, we define the point [m]P as :

• if m = 0, [0]P := O

• if m > 0, [m]P := P + P + . . .+ P , m times

• if m < 0, [m]P := −P − P − . . .− P , |m| times

Notice that [m] : E → E is a morphism and also an isogeny (O is clearly sent

in itself). One can prove that ∀m ̸= 0 the map [m] is nonconstant, then it is

surjective. So we can also define the m-torsion group as E[m] := ker([m]) =

{P ∈ E : [m]P = O} and the torsion group as the set of all elements of finite order:

Etors :=
⋃
m∈Z

E[m].

If E is defined over K, then Etors(K) is the set of points of finite order in E(K).

Next we want to prove that E[m] is a finite group .

Proposition 4.2.12. Let ϕ : E1 → E2 be a non-zero isogeny. Then kerϕ = ϕ−1(O)

is a finite group of E1.

Proof. It is a subgroup thanks to proposition (4.2.10) and it is finite because, from

proposition (3.2.9) :

# kerϕ = #ϕ−1(O) ≤
∑

P∈ϕ−1(O)

eϕ(P ) = deg ϕ

In particular, from this proposition follows that E[m] = ker[m] is a finite group

of order at most deg[m]. We don’t see the details, but we can characterize E[m]

for all m ∈ Z\{0}. This can be done by proving that [m] is separable and that

deg[m] = m2 and from this deduce that #E[m] = m2 . Moreover if char(K̄) = 0

or p = char(K) > 0 and p ∤ m, E[m] ∼= (Z/mZ)2, otherwise E[pe] = {O} or

E[pe] = Z/peZ for all e = 1, 2, . . .. It is not the main goal of this thesis, but this

results helps to determine Etors(K), because E(K)[m] is a subgroup of E[m]; then

knowing the structure of E[m] reduces possibilities for E(K)[m]. Next, we give a

lemma that would be useful later.

Lemma 4.2.13. Let E be an elliptic curve and m ∈ Z, m ≥ 2. Then, for R ∈ E,

there are exactly m2 solutions to

[m]P = R

for P ∈ E.
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Proof. Notice that, from what we said early, [m] : E → E has #ker[m] = #E[m] =

m2. Since

τ−R : E → E τ(P ) = P −R

is an isomorphism, then τ−R ◦ [m] has a kernel of exactly m2 elements. But P ∈
ker(τR ◦ [m]) if and only if

[m]P = R.

4.3 Height for elliptic curves

In this section, we will focus on the concept of height on elliptic curves. We will

begin by illustrating how to define the height of a point by choosing an element

in the function field of the curve, starting from the absolute height already defined

over Q̄. Next, we will see how to relate the group structure to heights, connecting

the height of the sum of two points to the heights of the individual points. These

properties will be central in the proof of Siegel’s theorem.

Definition 4.3.1. In Pn(Q̄), we can define the absolute logarithmic height as

h : Pn(Q̄) −→ R
P 7−→ log(H(P ))

where H is the absolute height, already defined in Definition 2.3.4.

This new definition will be useful to have an ”addition behavior” and not a multi-

plicative one, so it will simplify a little bit. Therefore it doesn’t change much the

properties of H. Notice that, from Proposition 2.3.2.b, we have H(P ) ≥ 1 and then

h(P ) ≥ 0 for all P ∈ Pn(Q̄). Now, we want to extend the concept of height to an

elliptic curve. Recalling the fact that every element f of the function field K̄(C)

determines a surjective morphism, also called f , such that f : E → P1. We can use

this to give the next definition:

Definition 4.3.2. Let E be an elliptic curve, f ∈ K̄(E) non-constant function. We

define the height on E (relative to f) as

hf (P ) := h(f(P )).

Observe that, fixed f ∈ K̄(E), if P is a pole or a zero for f , then hf (P ) = 0. That

is because f(P ) = [0, 1], if P is a zero ,and f(P ) = [1, 0] if P is a pole for f , but
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H([1, 0]) = H([0, 1]) = HQ([1, 0]) = max(|0|, |1|) = 1, then hf (P ) = 0. Next we

see that the finiteness result of Proposition 2.3.9 holds true also for the height on

elliptic curve.

Proposition 4.3.3. Let E/K be an elliptic curve , f ∈ K̄(E) non-constant , and

C > 0 a real constant, then

{P ∈ K(E) : hf (P ) ≤ C}

is a finite set.

Proof. We know that f maps point of E(K) to point of P1(K), and an element

of P1(K) can only have finitely many preimages, otherwise it would be possible to

define a nonzero g ∈ K(C) with infinitely many zeros. We can see that f maps the

set {P ∈ K(E) : hf (P ) ≤ C} in

{Q ∈ P1(K) : H(Q) ≤ eC} (4.3.1)

The condition H(Q) ≤ eC , since Q ∈ P1(K), is equivalent to

HK(Q) ≤ e[K:Q]C .

Then we know that the set in (4.3.1) is finite, from Proposition 2.3.9. Since for every

point of this set there are only finitely many preimages, we get what we wanted to

prove.

We recall the standard definition of O(1) for real- valued functions:

If f, g real valued functions, then f = g + O(1) if there exists C1, C2 ∈ R such that

for all P :

C1 ≤ f(P )− g(P ) ≤ C2

Then we give a property for heights that would be useful later to prove Siegel’s

theorem. We do not prove it because the proof is very long and full of explicit

calculations.

Proposition 4.3.4. Let E/K be an elliptic curve, f ∈ K(E) even function, i.e.

f(P ) = f(−P ) for all P ∈ E(K). Then, for all P,Q ∈ E(K̄), we have:

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1),

where O(1) depend only on E and f and not on the points P,Q.

Corollary 4.3.5. Let E/K be an elliptic curve, f ∈ K(E) even function.
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a) Let Q ∈ E(K̄), then for all P ∈ E(K̄)

hf (P +Q) ≤ 2hf (P ) +O(1)

where O(1) depends only on E, f and Q.

b) Let m ∈ Z, then
hf ([m]P ) = m2hf (P ) +O(1)

for all P ∈ E(K̄), where O(1) depends only on E, f and m.

Proof. a) From the previos proposition, since hf (P −Q) ≥ 0 we get that a) is true.

b) Notice that for m = 0, 1, the result is trivial. Then we can use induction to finish

the proof. Suppose the formula holds true for m ∈ Z and m − 1, we prove it for

m+ 1. We use previous proposition with [m]P and P , then we get:

hf ([m+ 1]P ) = −hf ([m− 1]P ) + 2hf ([m]P ) + 2hf (P ) +O(1)

= −(m− 1)2hf (P ) + 2hf (P )(m
2 + 1) +O(1)

= (m+ 1)2hf (P ) +O(1).

4.4 Mordell-Weil Theorem

In this section, we will present a sketch of the proof of the Mordell–Weil theorem

in its strong form, starting from the weak form. We will show how the properties

of heights on the rational points of an elliptic curve, together with the descent

procedure, allow one to pass from the weak result to the strong form. We first

stating its weak form.

Theorem 4.4.1 (Weak Mordell-Weil Theorem). Let K be a number field, and E/K

an elliptic curve defined over K, then for all m ∈ Z, m ≥ 2 we have that:

E(K)/mE(K)

is a finite group.

Only through the tools defined in these theses it is difficult to prove this theorem,

which requires precise properties and a function called the “Kummer pairing.” If one

wishes to see the proof, one can read chapter VIII.1 of the book ”The Arithmetic of

Elliptic Curves” of Joseph H. Silverman [1]. Then we can state its stronger form.
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Theorem 4.4.2 (Mordell-Weil Theorem). Let E/K be an elliptic curve defined over

K number field. Then E(K) is finitely generated.

Since E(K) is abelian and finitely generated, by the classification theorem of these

groups, we have

E(K) ∼= Etors(K)× Zr

with r ∈ Z, r ≥ 0, called the rank of an elliptic curve.

Now we state a key theorem, which holds for any abelian group and is the key to

the proof of the Mordell-Weil Theorem.

Theorem 4.4.3 (Descent procedure). Let A an abelian group, and suppose there

exists a function h : A→ R with the following properties:

a) Let Q ∈ A, then there exists a constant C1 depending only on A,Q such that:

h(P +Q) ≤ 2h(P ) + C1

for all P ∈ A

b) There exists m ∈ Z,m ≥ 2 and a constant C2 depending only on A, such that:

h(mP ) ≤ m2h(P )− C2

for all P ∈ A.

c) For any constant C > 0, the set

{P ∈ A : h(P ) ≤ C}

is a finite set.

d) for the same integer m of b), suppose A/mA is a finite group. If we have all

these properties, then A is finitely generated.

This theorem is not very hard to prove, but we don’t see its proof here. Then we

see how the Mordell-Weil theorem can be proved using all the tools we have.

Proof (of Mordell-Weil Theorem 4.4.2). Let f ∈ K(E) be a non-constant even

function, for example f = x, where x is the first coordinate function. Now let’see

that the height function hf : E(K) → R satisfies all the required properties to apply

the descent procedure theorem 4.4.3.

Properties a) and b), for m = 2, are exactly a) and b) of the corollary 4.3.5 ap-

plying the definition of O(1). c) is exactly the proposition 4.3.3, while d) is the

Weak Mordell-Weil theorem 4.4.1 applied for m = 2. Then we can apply descent

procedure theorem and conclude that E(K) is finitely generated.





Chapter 5

Diophantine Approximation on

Curves

In this chapter, we will finally see how the methods of Diophantine approximation

and its results, in particular Roth’s theorem, can be reinterpreted on elliptic curves.

Starting from the fundamental definition of distance on curves, we will illustrate how

to combine these notions with the properties of the group of points of an elliptic curve

to obtain finiteness results. In particular, we will show how these techniques allow us

to prove Siegel’s theorem, which states that the number of S-integral solutions on an

elliptic curve defined over a number field is finite, thus directly linking Diophantine

approximation with classical arithmetic problems on curves.

5.1 Distances on curves

Firstly, we must introduce the notion of the distance between two points on a curve,

defined in terms of the image of one point under a uniformizer at the other. Then

we will consider certain useful limits in the v-adic topology, which will allow us to

understand how a morphism changes the distance between two points and how to

reinterpret Roth’s theorem in this setting. Note that everything we discuss in this

section holds for all curves, not just elliptic ones. We begin with a lemma.

Lemma 5.1.1. Let C/K be a smooth curve defined over K, with genus g, and let

e ∈ Z, e ≥ g + 1. For every Q ∈ C, there exists a function tQ ∈ K(C) such that

• Q is a zero for tQ with ordQ(tQ) ≥ e;

• Q is the only zero for tQ.

57
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Proof. From Riemann-Roch theorem 3.4.4, then since e(Q) is a divisor of degree e,

fixing KC a canonical divisor, we have:

ℓ(e(Q)) = e+ 1− g + ℓ(KC −D) ≥ 2

Then there must exists a non constant f ∈ L(e(Q)), but this means that f has

a pole at Q of order at least e and no other poles. Take tQ := 1/f finishes the

proof.

Now we can use this lemma to define a distance function , depending on a fixed

absolute value in K, on a curve.

Definition 5.1.2. Let C/K be a smooth curve, v ∈ MK and a point Q ∈ C(Kv)

and choose tQ ∈ K(C) as in the previous lemma. Then we can define the v-adic

distance from P to tQ , for all point P ∈ C(Kv) as

dv(P, tQ) := min
(
|tQ(P )|1/ev , 1

)
.

Where if P is a pole at tQ, we set |tQ(P )| = ∞ to have dv(P, tQ) = 1. Also, for

P ∈ C(Kv) , we say that P approaches Q in the v-adic topology and write

P −→
v
Q, if dv(P,Q) → 0.

Remark 5.1.3. For our purposes, we will write dv(P,Q) to mean dv(P, tQ), where

we choose some tQ. Actually, if we fix a point P , the value of dv(P,Q) depend on

the choice of the function tQ. Since we will use dv , fixed a point Q and see how dv

behave where we take points that approach to Q, this will not be a problem for the

next theorem.

Proposition 5.1.4. Let Q ∈ C(Kv) and F ∈ Kv(C) that vanishes at Q, then the

limit:

lim
P−→

v
Q

log |F (P )|v
log dv(P,Q)

= ordQ(F )

then the limit does not depend on the choice of tQ used to define dv.

Proof. Choose a function tQ to define dv(P,Q) and define e := ordQ(tQ) ≥ 1, f =

ordQ(F ) ≥ 1. We can take ϕ := F e/tfQ and this function has ordQ(ϕ) = ef − ef = 0

. Since ϕ doesn’t have poles, because if P ̸= Q pole, it would be a zero for tQ, but

this isn’t possible for its definition. Then |ϕ(P )|v <∞ as P approaches Q. We can

also suppose , since P approaches Q that dv(P, tQ) < 1. We get

lim
P−→

v
Q

log |F (P )|v
log dv(P,Q)

= lim
P−→

v
Q

log |ϕ(P )|1/ev + log |tQ(P )|f/ev

log |tQ(P )|1/ev

= f + lim
P−→

v
Q

log |ϕ(P )|v
log |tQ(P )|v

= f
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Now we see a property of the distance functions:

Lemma 5.1.5. Let C/K be a smooth curve and suppose f ∈ K(C) such that

div(f) = n1(Q1) + . . .+ nr(Qr).

Replacing K with an extension such that Qi ∈ K(C) and let v ∈MK, we have

logmin(|f(P )|v, 1) =
r∑

i=1

nidv(Pi, Q) +O(1)

for all P ∈ C(Kv). Here O(1) depends only on f

Proof. We have the expression of div(f) that tells us that Qi-s are the only zeros

for f of order ni. Then we can suppose

f = α ·
r∏

i=1

tni
Qi

· u

where α ∈ Kv and tQi
uniformizers at Qi, and u ∈ C(Kv) invertible. Then it must

be that |u(P )|v = 1 for all P ∈ Kv(C). Then , doing some computation, we get

logmin(|f(P )|v, 1) =
r∑

i=1

nidv(P,Qi) +O(1).

Next we see how maps between curves change the distance between points:

Proposition 5.1.6. Let ϕ : C1 → C2 be a non-constant map defined over K and v

an absolute value for K. Let Q ∈ C1(Kv) and eϕ(Q) its ramification index. Then

lim
P−→

v
Q

log dv(ϕ(P ), ϕ(Q))

log dv(P,Q)
= eϕ(Q)

Proof. Let tQ ∈ Kv(C1) function to define dv(P,Q) and tϕ(Q) ∈ Kv(C2) to define

dv(ϕ(P ), ϕ(Q)), respectively with order e1, e2 ≥ 1 at Q. From the definition of

ramification index:

ordQ(tϕ(Q) ◦ ϕ) = eϕ(Q) ordϕ(Q) tϕ(Q) = eϕ(Q)e2.

Similarly to the previous proposition, we can take

f :=
(tϕ(Q) ◦ ϕ)e1

t
eϕ(Q)e2
Q

∈ Kv(C1).
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This is a function of order zero at Q, then |f(P )|v < ∞ as P approaches Q. We

finally get

lim
P−→

v
Q

log dv(ϕ(P ), ϕ(Q))

log(dv(P,Q))
= lim

P−→
v

Q
eϕ(Q) +

log |f(P )|v
log |tQ(P )|1/e1v

= eϕ(Q).

In the next proposition we can reinterpret Roth’s theorem in terms of distance

function, a result that will allow us to transfer this statement into the setting of

functions between curves and height functions, and which will be essential in the

proof of Siegel’s Theorem.

Proposition 5.1.7. Let C/K be a curve defined over K, v ∈ MK ,f ∈ K(C) non

constant function and Q ∈ C(K). Then

lim inf
P−→

v
Q

log dv(P,Q)

logHK(f(P ))
≥ −2.

Proof. Noticing that HK((1/f)(P )) = HK(f(P )), we can replace f with 1/f in

order to have Q not a pole for f . Then the function f − f(Q) ∈ K(C) certainly has

a zero at Q; call e ≥ 1 its order at Q. Then for Proposition 5.1.4, we have:

lim inf
P−→

v
Q

log |f(P )− f(Q)|v
log dv(P,Q)

= e

Next, we use this fact into our limit:

lim inf
P−→

v
Q

log dv(P,Q)

logHK(f(P ))
=

1

e
lim inf
P−→

v
Q

log |f(P )− f(Q)|v
logHK(f(P ))

=

=
1

e
lim inf
P−→

v
Q

(
log(HK(f(P ))

τ |f(P )− f(Q)|v)
logHK(f(P ))

− τ

)
We can take τ = 2 + ε, for any ε > 0, then from Roth’s theorem 2.4.3, we know

that:

HK(f(P ))
τ |f(P )− f(Q)|v ≥ 1

for almost all P ∈ K(C). Using this inequality into our limit we get

lim inf
P−→

v
Q

log dv(P,Q)

logHK(f(P ))
≥ −τ

e
≥ −(2 + ε).

Here we used e ≥ 1. Since the inequality holds for all ε > 0, taking the limit as

ε→ 0, we get the desired result.
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Remark 5.1.8. We can see the limit in the previous theorem in another way. Notice

that, chosen f ∈ K(E),

hf (P ) = h(f(P )) = logH(f(P )) =
1

[K : Q]
logHK(f(P )).

If we suppose P ∈ E(K), the previous limit can be written as:

lim inf
P−→

v
Q

log dv(P,Q)

hf (P )
≥ −2[K : Q].

5.2 Siegel’s theorem and consequences

We are finally ready to state and prove Siegel’s theorem. This theorem then tells us

that as a point on the curve becomes “large” relative to the chosen height function,

its distance to any fixed point becomes negligible compared to that height. Next,

we will examine two consequences of Siegel’s theorem. The first, which was largely

anticipated earlier in the thesis, concerns the finiteness of S-integer points on a curve,

while the second reinterprets this result in the case of rational points, showing that

if one considers an infinite sequence of rational points on an elliptic curve and looks

at their x-coordinates, then the numerator and denominator of x will tend to have

the same number of digits.

Theorem 5.2.1 (Siegel’s Theorem). Let E/K be an elliptic curve, v ∈ MK,

suppose that #E(K) = ∞, fix Q ∈ E(K) and f ∈ K(E) non-constant even function.

Then,

lim
P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
= 0.

Proof. Let’s choose a sequence of points Pi ∈ E(K) such that:

lim
i→∞

log dv(Pi, Q)

hf (Pi)
= L = lim inf

P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )

Since dv(Pi, Q) ≤ 1 and hf (Pi) ≥ 0 for all Pi, it must be L ≤ 0. Then it suffices

to prove that L ≥ 0. Notice also that, if it is not true that Pi −→
v
Q, the thesis is

trivial, because in that case dv(Pi, Q) is bounded away from 0 , that implies that

log dv(Pi, Q) is bounded away from infinity. This means that L must be 0. So we can

suppose Pi −→
v
Q. Take m ∈ Z, m ≥ 2, by the weak Mordell-Weil Theorem 4.4.1, we

have that E(K)/mE(K) is finite. By the pigeon principle, there are infinitely many

Pi-s in one of the classes of E(K)/mE(K). By replacing {Pi} with a subsequence,
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which does not change the limit, we can assume [Pi] = [R], where R ∈ E(K), in

other words

Pi = [m]P ′
i +R

where P ′
i ∈ E(K) , for all i ∈ N. Now , since we have Pi −→

v
Q, it must be that

[m]P ′
i −→

v
Q − R. This implies that the sequence P ′

i approaches v-adically at least

one of the m2 solutions Q′ to [m]Q′ = Q − R (using Lemma 4.2.13). Again, by

replacing {P ′
i} by a subsequence, we can assume

P ′
i −→

v
Q′, Q = [m]Q′ +R.

Define ϕ : E → E as ϕ(P ) = [m]P + R, since [m] is non constant, also ϕ is. Then

we can apply Proposition 5.1.6, we get:

lim
i→∞

log dv(Pi, Q)

log dv(P ′
i , Q

′)
= eϕ(Q

′) := e ≥ 1

Let’s relate the height of Pi and P
′
i , using Proposition 4.3.5 a) and b):

m2hf (P
′
i ) = hf ([m]P ′

i ) +O(1) = hf (Pi −R) +O(1) ≤ 2hf (Pi) +O(1)

Notice also that

hf (P
′
i ) = hf (Pi −R) ≥ 1

2
hf (Pi) +O(1).

Again by using Proposition 4.3.5.a. Since as i → ∞, hf (Pi) → ∞, it must be that

also hf (P
′
i )

i→∞−−−→ ∞. Now, using the last three facts, we get:

L = lim
i→∞

log dv(Pi, Q)

hf (Pi)
≥ lim

i→∞

e log dv(P
′
i , Q

′)
1
2
m2hf (P ′

i ) +O(1)
=

2e

m2
lim
i→∞

log dv(P
′
i , Q

′)

hf (P ′
i )

Where we inverted the inequality due to the fact that the term ”log dv” are negative.

Now we know that P ′
i −→

v
Q′ and P ′

i ∈ E(K), then we can use the result of Dio-

phantine approximation, Theorem 5.1.7, precisely, we use what we saw in Remark

5.1.8:

lim
i→∞

log dv(P
′
i , Q

′)

hf (P ′
i )

≥ −2[K : Q]

Finally, we get

L ≥ −4e[K : Q]

m2
.

Since we took m as an arbitrary integer, then L ≥ 0, which finishes the proof.

We proved this theorem only for even function, but it can be proved for every

function f ∈ K(E). Thanks to this theorem, various finiteness results for solutions

to different problems can be shown; we focus on one in particular, namely the

following:
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Corollary 5.2.2. Let E/K be an elliptic curve, S ⊂ MK a finite set containing

all archimedean absolute values, so M∞
K ⊂ S ⊂ MK and let RS be the ring of S-

integers. Then

{P ∈ E(K) : x(P ) ∈ RS}

is a finite set.

Proof. By contradiction, suppose there is a sequence {Pi}i∈N of distinct points, all

points with x(Pi) ∈ RS. By definition, we have:

hx(Pi) =
1

[K : Q]
logHK(x(Pi)) =

1

[K : Q]

∑
v∈S

log(max(1, |x(Pi)|nv
v ))

where we take the sum only for v ∈ S, because if v ̸∈ S we have |x(Pi)|v ≤ 1 and

then the part of the sum for v ̸∈ S is equal to 0. Since S is finite, we can find a v̄ ∈ S

such that log(max(1, |x(Pi)|nv̄
v̄ )) maximized among all v ∈ S for infinitely many i.

Then we can take a subsequence, call it again {Pi}i∈N, such that:

hx(Pi) ≤ #S log(max(1, |x(Pi)|v̄))

where we used that nv̄ ≤ [K : Q] (see Remark 2.2.16). Notice that it must be that,

since Pi are all distinct, Proposition 4.3.3 implies that |x(Pi)|v̄
i→∞−−−→ ∞. We know

from Proposition 4.2.6, that 1/x is a function with only zero O of order 2, then we

can see that, by the definition of v̄-adic distance:

dv̄(Pi, O) = min
(
|x(Pi)|−1/2

v̄ , 1
) i→∞−−−→ 0.

Then , for i sufficiently large:

− log(dv̄(Pi, O))

hx(Pi)
≥ 1

2#S

but this contradicts Siegel’s theorem 5.2.1 since the first term must tend to 0 as

i→ ∞.

From this corollary, it easily follows that all the points with S-integral coordinates

are finite. this finiteness result is striking because, in general, the number of points

on a curve with coordinates in a given field K can be infinite, but if we restrict to

S-integral points, they are always finite in number. Note that, having used Roth’s

theorem, this result is also ineffective: we only know that the S-integral points of

an elliptic curve are finite, but we cannot give an estimate of how many there are.
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Notice also that this result slightly improved what we had in Corollary 2.1.7: taking

K = Q and a weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ Q, then there are finitely many solutions (x, y) ∈ Z2 (taking S = {∞}).
This result says also that if we allow x, y ∈ Z[1/p1, . . . , 1/pr], where pi finitely

distinct primes, then there are finitely many solutions. Now we remark how we can

restate Siegel’s theorem 5.2.1 with K = Q.

Corollary 5.2.3. Let E/Q be an elliptic curve with x, y Weierstrass coordinates for

E and suppose #E(Q) = ∞. Suppose {Pi}i∈N ∈ E(Q) in order of non decreasing

height, for the height hx. If x(Pi) = ai/bi, ai, bi ∈ Z, we have

lim
i→∞

log |ai|∞
log |bi|∞

= 1.

Proof. Let v = ∞ and assume {Pi}i∈N as in the hypotheses; then from the definitions

we have

log dv(Pi, O) = logmin
(
|1/x(Pi)|

1
2 , 1
)
= 1

2
logmin

(∣∣∣ biai ∣∣∣ , 1) ;
hx(Pi) = h(ai/bi) = logmax(|ai|, |bi|).

where we used that O is the only pole for x of order 2. Next, using Siegel’s Theorem

with K = Q, Q = O, S = {∞}, we get:

2 lim
i→∞

log dv(Pi, O)

hx(Pi)
= lim

i→∞

min(log(|bi/ai|, 0)
log(max(|ai|, |bi|))

= 0

Then we can use Lemma 5.1.5, suppose that Q1 and Q2 are the two zeros for x (note

that the case Q1 = Q2 is allowed), and we get:

logmin(|x(P )|v, 1) = dv(P,Q1) + dv(P,Q2) +O(1)

for all P ∈ E(Q). Then we obtain:

lim
i→∞

min(log |ai/bi|, 0)
log(max(|ai|, |bi|))

= lim
i→∞

logmin(|x(Pi)|, 1)
hx(Pi)

=

= lim
i→∞

dv(Pi, Q1) + dv(Pi, Q2) +O(1)

hx(Pi)
= 0.

Where in the last inequality we used Siegel’s Theorem 5.2.1 and the fact that O(1)

doesn’t depend on Pi. Putting together the two limits we wrote, we prove the

thesis.
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