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Introduzione

Verso la metà del XIX secolo, la geometria si sviluppò in una direzione com-
pletamente nuova, dando vita a quella che oggi è conosciuta come topologia.
Questa branca della matematica si occupa di studiare le proprietà delle fi-
gure geometriche che rimangono invariate anche quando tali figure vengono
sottoposte a deformazioni così profonde da alterarne completamente le ca-
ratteristiche metriche. Nel 1895 il matematico Henri Poincaré pubblicò un
articolo intitolato “Analysis Situs”, in cui impiegava idee provenienti dall’al-
gebra astratta per affrontare problemi di natura topologica, gettando così
le basi della moderna topologia algebrica. Tra i suoi numerosi contribu-
ti, introdusse la nozione di gruppo fondamentale, uno strumento essenziale
per distinguere spazi topologici dal punto di vista omotopico. Nel 1935 il
matematico Witold Hurewicz propose una generalizzazione del gruppo fon-
damentale, definendo i gruppi di omotopia di ordine superiore, segnando così
l’inizio della teoria dell’omotopia. I gruppi di omotopia di ordine superiore
permettono di classificare completamente i complessi CW (particolari spazi
topologici) a meno di omotopia.
L’obiettivo di questa tesi è quello di approfondire alcuni concetti e strumenti
fondamentali legati proprio alla teoria dell’omotopia, a partire dallo studio
dei gruppi di omotopia, che introduciamo e analizziamo nel Capitolo 1. Suc-
cessivamente, nel Capitolo 2 presentiamo il concetto di fibrato, oggetto che
generalizza in modo naturale la nozione di rivestimento. Tra i vari esempi
di fibrati considerati, uno dei più celebri è la fibrazione di Hopf (Esempio
2.12), introdotta da Heinz Hopf nel 1931. Questo risultato fu particolar-
mente pionieristico, poiché mostra l’esistenza di mappe omotopicamente non
banali tra sfere di dimensioni diverse, mettendo così in evidenza un fatto a
priori sorprendente: dato uno spazio topologico di dimensione n, i gruppi
di omotopia di ordine k > n possono essere non banali (questo fatto non
è vero ad esempio per i gruppi di omologia). Proseguendo, nel Capitolo 3
introduciamo il concetto di fibrazione, una generalizzazione del fibrato da un
punto di vista omotopico, sviluppata dal matematico Jean-Pierre Serre. Le
fibrazioni si distinguono per la capacità di conservare informazioni omotopi-
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ii INTRODUZIONE

che essenziali, anche in assenza della struttura locale di prodotto tipica dei
fibrati. Una domanda naturale è se una qualunque mappa continua possa
essere considerata una fibrazione. Nel rispondere affermativamente (a meno
di omotopia) a questo interrogativo, nella Sezione 3.2 introduciamo e stu-
diamo oggetti fondamentali come lo spazio dei cammini e lo spazio dei lacci.
Infine, nel Capitolo 4 mostriamo come le fibrazioni permettono di ricostruire
il tipo di omotopia di un complesso CW arbitrario a partire dai suoi grup-
pi di omotopia. Tale procedura induttiva che consiste nel formare prodotti
“intrecciati” di spazi di Eilenberg–MacLane è nota come torre di Postnikov,
in onore del matematico Mikhail Postnikov nel 1951. Il risultato principale
della tesi consiste nello stabilire quando esiste una torre di Postnikov. Una
risposta completa è contenuta nel seguente teorema:

Teorema (Teorema 4.25). Un complesso CW connesso X ammette una torre
di Postnikov di fibrazioni principali se e solo se π1(X) agisce banalmente su
πn(X) per ogni n > 1.

La tesi si conclude con la dimostrazione di un risultato analogo (Teorema
4.28) per le torri di Moore-Postnikov e alcune applicazioni delle torri di
Postnikov.

Struttura della tesi
La tesi è suddivisa in cinque capitoli. Il Capitolo 0 raccoglie alcune definizio-
ni preliminari di topologia che saranno utilizzate in seguito. Nel Capitolo 1
vengono introdotti i gruppi di omotopia tramite due definizioni (Definizione
1.1 e Sezione 1.1.1). Dopo aver osservato che le due definizioni sono equiva-
lenti, studiamo i gruppi di omotopia da un punto di vista funtoriale (Sezione
1.3) e il rapporto con i rivestimenti (Sezione 1.4). Il capitolo si conclude con
la definizione dei gruppi di omotopia relativi e la successione esatta lunga di
omotopia relativa ad essi associata. Nel Capitolo 2 vengono presentate varie
proprietà di sollevamento e la successione esatta lunga in omotopia associata
(Teorema 2.4). Successivamente vengono introdotti i fibrati tramite nume-
rosi esempi e il loro rapporto con la proprietà di sollevamento studiata in
precedenza. Nel Capitolo 3 vengono definite le fibrazioni in generale. Inoltre
vengono introdotti lo spazio dei cammini, la fibra omotopica e lo spazio dei
lacci. Questa sezione (Sezione 3.2) si conclude osservando cosa succede se si
itera la costruzione dello spazio dei lacci. Nel Capitolo 4, vengono enunciati
alcuni teoremi preliminari che servono per introdurre le torri di Postnikov
e studiarné l’esistenza. In seguito, vengono descritte brevemente le torri di
Moore-Postnikov e la tesi si conclude con l’enunciato di alcuni risultati che
usano in modo centrale le torri di Postnikov in combinazione ad altre nozioni.
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Capitolo 0

Preliminari

Questo capitolo raccoglie alcune definizioni preliminari che verranno utiliz-
zate nelle sezioni successive. Sebbene molti di questi concetti siano noti, li
presentiamo qui per fissare notazioni e per delineare i prerequisiti assunti.
Iniziamo col dire che in generale indicheremo con il termine mappa una
funzione continua. Abbiamo quindi le seguenti definizioni:

Definizione A (Mappa di coppie). Siano X, Y spazi topologici con A ⊂ X
e B ⊂ Y . Una funzione continua f : (X,A) → (Y,B) con f(A) ⊂ B viene
chiamata mappa di coppie.

In modo analogo posso definire una mappa di triple. Diamo ora la definizione
di omotopia tra funzioni :

Definizione B (Omotopia tra mappe). Siano f0, f1 : X → Y due mappe.
Si dice che sono omotope se esiste F : X × [0, 1] → Y continua, tale che
F (x, 0) = f0(x) e F (x, 1) = f1(x). Scriviamo f0 ≃ f1

Osserviamo che la funzione F definisce una famiglia di funzioni ft : X → Y
indicizzate da t ∈ [0, 1]. Dunque prendere la famiglia o la funzione F è
esattamente la stessa cosa e useremo quello che conviene di più a secon-
da del contesto. Abbiamo anche una versione particolare della definizione
precedente:

Definizione C (Omotopia tra mappe relativa ad un sottospazio). Siano
f0, f1 : X → Y due mappe e A ⊂ X. Si dice che sono omotope relativamente
ad A se esiste F : X → Y omotopia tra funzioni tale che F (x, t) = f0(x) =
f1(x) per ogni x ∈ A e per ogni t ∈ [0, 1].

Sempre in quest’ambito abbiamo altre definizioni:
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2 0. Preliminari

Definizione D (Equivalenza omotopica). Una mappa f : X → Y è chiamata
equivalenza omotopica se esiste una mappa g : Y → X tale che f ◦ g ≃ IdY

e g ◦ f ≃ IdX . In questo caso diciamo che X e Y sono omotopi o che hanno
lo stesso tipo di omotopia.

Definizione E (Retrazione per deformazione). Una retrazione per deforma-
zione di uno spazio topologico X su un suo sottospazio A è una mappa con-
tinua R : X× [0, 1] → X tale che R(x, 0) = IdX per ogni x ∈ X, R(X, 1) = A
e infine R(x, t) = x per ogni x ∈ A e t ∈ [0, 1].

Introduciamo brevemente la definizione di rivestimento:

Definizione F (Rivestimento). Un rivestimento di uno spazio topologico X
è uno spazio topologico Y con una mappa p : Y → X tale che per ogni x ∈ X,
esiste un intorno U (chiamato aperto banalizzante) tale che:

p−1(U) =
⊔
i∈I

Ũi, p|Ũi
: Ũi → U omeomorfismi.

Il numero di fogli, sopra x ∈ X, di un rivestimento p : Y → X è |p−1(x)| ≤
|X̃|.

Spieghiamo che cos’è un complesso CW :

Definizione G (Complesso CW). Uno spazio topologico X costruito nel
seguente modo è un complesso CW :

1. Iniziamo con un insieme discreto di punti X0, dove i punti sono visti
come 0-celle.

2. Induttivamente, costruiamo l’n-scheletro Xn a partire da Xn−1 atta-
cando le n-celle Dn

α tramite le mappe di attaccamento ϕα : S
n−1 →

Xn−1. Questo significa che Xn è il quoziente dell’unione disgiunta
Xn−1 ⊔α D

n
α con una collezione di n-dischi Dn

α sotto l’identificazione
x ∼ ϕα(x), con x ∈ ∂Dn

α.

3. Il processo può terminare dopo un numero finito di passi prendendo
X = Xn per un qualche n <∞, oppure continuare all’infinito ponendo
X = ∪nX

n. In quest’ultimo caso a X viene data la topologia debole:
A ⊂ X è aperto (o chiuso) se e solo se A ∩ Xn è aperto (o chiuso) in
Xn per ogni n.

Concludiamo con la topologia compatto-aperta:
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Definizione H (Topologia compatto-aperta). La topologia compatto-aperta
su un insieme XY (ossia delle mappe f : Y → X) è la topologia data dalla
prebase consistente negli insiemi M(K,U) di mappe che portano insiemi
compatti K ⊂ Y in insiemi aperti U ∈ X.

Una base di XY consiste nell’insieme di mappe che portano un numero finito
di insiemi compatti Ki ⊂ Y in insiemi aperti Ui ⊂ X.





Capitolo 1

I gruppi di omotopia

I gruppi di omotopia di uno spazio topologico puntato generalizzano l’idea
del gruppo fondamentale. In questo capitolo ne diamo la definizione, insieme
a dei risultati che saranno utili nel corso della discussione. Per ulteriori ap-
profondimenti è possibile far riferimento al libro di Hatcher [Hat02, Capitolo
4.1], che è la fonte principale per la realizzazione di questa tesi, oppure anche
al libro di Tammo Tom Dieck [tD08, Capitolo 6].

1.1 Definizione e proprietà principali
Indichiamo con In il cubo n-dimensionale, o in altri termini il prodotto car-
tesiano di n copie dell’intervallo I = [0, 1]. Il bordo ∂In è il sottospazio di In
dato dai punti che hanno almeno una coordinata uguale a 0 o a 1.

Definizione 1.1 (Gruppi di omotopia). Sia X uno spazio topologico e sia
x0 ∈ X un punto. Si definisce l’n-esimo gruppo di omotopia πn(X, x0) l’in-
sieme delle classi di omotopie di mappe di coppie f : (In, ∂In) → (X, x0) tali
che le omotopie ft soddisfino ft(∂In) = x0 per ogni t ∈ [0, 1].

Osservazione 1.2. La definizione precedente include anche il caso n = 0.
Infatti I0 è un punto e ∂I0 = ∅, quindi π0(X, x0) non è altro che l’insieme
delle componenti connesse, spesso indicato anche solo con π0(X). Tuttavia
in questo caso non c’è un modo naturale per definire un gruppo, cosa invece
possibile per n ≥ 1 come vedremo fra poco.

I gruppi di omotopia si chiamano così perché per n ≥ 1 è possibile definire
una struttura di gruppo su πn(X, x0). Per farlo introduciamo la seguente
operazione:

(f ∗ g)(s1, s2, . . . , sn) =
{
f(2s1, s2, . . . , sn), s1 ∈ [0, 1/2]

g(2s1 − 1, s2, . . . , sn), s1 ∈ [1/2, 1]

5
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dove f, g : (In, ∂In) → (X, x0) sono mappe di coppie.

Osservazione 1.3. Per n = 1 il gruppo πn(X, x0) coincide con il gruppo
fondamentale.

Gli stessi argomenti che si usano per mostrare che π1(X, x0) è un grup-
po continuano a valere anche per n ≥ 2, in quanto nella definizione viene
coinvolta solo la prima componente. Dunque si ha:

Proposizione 1.4. L’insieme (πn(X, x0), ∗), dotato della legge di composi-
zione ∗ è un gruppo per n ≥ 1, il cui elemento neutro è dato dalla mappa
costante in x0, e l’inverso di un suo elemento [f ] è dato da −[f ] = [−f ],
dove −f(s1, s2, . . . , sn) = f(1− s1, s2, . . . , sn).

A differenza del gruppo fondamentale, i gruppi di omotopia di ordine
n ≥ 2 sono sempre abeliani.

Teorema 1.5. Il gruppo πn(X, x0) è abeliano per ogni n ≥ 2.

Dimostrazione. Osserviamo che, data una mappa f : (In, ∂In) → (X, x0),
possiamo definire una nuova mappa h : (In, ∂In) → (X, x0) tale che h(x) =
f(r(x)) per ogni x ∈ A, dove la funzione r : A → In è un omeomorfismo su
un sottocubo A ⊊ In, e h(x) = x0 per ogni x ∈ In \ A. Dunque è evidente
che f e h sono omotope relativamente a ∂In, in quanto h è ottenuta da f
“restringendo” il suo dominio.
Dimostriamo ora che f ∗ g ≃ g ∗ f . Possiamo pensare al dominio di f ∗ g
come nella Figura 1.1 sottostante. Per quanto appena detto, “restringiamo”
il dominio di f e g a due sottocubi, in modo da creare spazio per invertire la
loro posizione lasciandolo disgiunti. Una volta fatto questo, riallarghiamo i
domini e otteniamo g ∗ f .

f g f g
f 

g
g f g f _~_~_~_~

Figura 1.1

Osservazione 1.6. Spesso viene utilizzata la notazione additiva + al posto di
∗ per trattare il caso n ≥ 2.

Nonostante i gruppi di omotopia di ordine superiore siano abeliani, questo
non facilita calcolarli. In generale sono più difficili da determinare rispetto al
gruppo fondamentale o ai gruppi di omologia, per il fatto che, né il teorema di
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Van Kampen, né l’escissione, funzionano in questi casi. Consideriamo alcuni
esempi:

Esempio 1.7. Calcoliamo i gruppi di omotopia di un punto {pt}. In questo
caso ogni mappa In → {pt} è costante, e si ha πn(X, x0) = 1 per ogni n ≥ 0.

Esempio 1.8. Prendiamo uno spazio topologico X contraibile. SiaR : X×I →
X la retrazione per deformazione ad x0 ∈ X e sia f un rappresentante di una
classe di omotopia in πn(X, x0). Allora R′ : In×I → X, R′(x, t) = R(f(x), t)
è un’omotopia tra f e la mappa costante in x0. Dunque otteniamo che anche
in questo caso tutti i gruppi di omotopia sono banali.

Osservazione 1.9. Mostreremo che i gruppi di omotopia di ordine supe-
riore sono invarianti omotopici. Dunque il risultato ottenuto nell’esempio
precedente seguiva direttamente dall’Esempio 1.7

1.1.1 Definizione alternativa

Osserviamo che le mappe (In, ∂In) → (X, x0) possono essere reinterpretate
come mappe (In/∂In, ∂In/∂In) → (X, x0), dove In/∂In ∼= Sn e ∂In/∂In =:
s0. Questo ci permette di fornire una descrizione alternativa delle classi
di omotopia. Infatti siano h, h′ : (In, ∂In) → (X, x0) due mappe omoto-
pe, allora esiste un’omotopia H : In × I → X tra h e h′. Per costruzione
∃!h̃, h̃′ : (Sn, s0) → (X, x0) mappe tali che

(In, ∂In) (X, x0)

(Sn, s0)

h,h′

h̃,h̃′

commuti. Similmente, definiamo H̃ : In/∂In × I → X, H̃([x], t) = H(x, t) e
mostriamo che è un omotopia tra h̃ e h̃′. Si ha:

H̃([x], 0) = H(x, 0) = h(x) = h̃([x])

e in modo analogo, H̃(x, 1) = h̃′([x]).
Dunque avremmo potuto definire πn(X, x0) come le classi di omotopie di
mappe di coppie (Sn, s0) → (X, x0). Useremo entrambe le definizioni a
seconda di quello che conviene.

Osservazione 1.10. In questa interpretazione dei gruppi di omotopia, l’ope-
razione f ∗ g è la composizione di una funzione Sn → Sn ∨ Sn che collassa
l’equatore ad un punto, con la funzione f ∨ g : Sn ∨ Sn → Sn che applica f
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e g sulla rispettiva sfera.

Si osservi inoltre che per n ≥ 2 l’interpre-
tazione dell’abelianità è banale, infatti è
come se “rovesciassimo Sn ∨ Sn ”.

f

g

x0

Figura 1.2

1.2 Relazione tra punti base

Consideriamo ora uno spazio topologico X connesso per archi. Nel caso
del gruppo fondamentale sappiamo che una scelta differente del punto base
x1 ̸= x0 produce sempre un gruppo isomorfo π1(X, x1) ∼= π1(X, x0), ossia è
ben definita la classe di isomorfismo π1(X). Lo stesso fenomeno accade nel
caso n ≥ 2.

Consideriamo un cammino γ : I → X tale che γ(0) = x0 e γ(1) = x1. Sia
f : (In, ∂In) → (X, x1) definiamo una nuova mappa γf : (In, ∂In) → (X, x0)
ottenuta nel seguente modo: restringiamo il dominio di f ad un sottocubo
concentrico di In, poi inseriamo γ in ogni segmento radiale nello spazio tra i
due cubi, come nella Figura 1.3.

f x1

x0

x0

x0

x0

x1

x1

x1

Figura 1.3: Punto di vista
dei cubi.

X

x1 x0

x1

f

γ

Figura 1.4: Punto di vista delle sfere.
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Proposizione 1.11. Sia X uno spazio topologico connesso per archi e sia
x0 ∈ X. Allora πn(X, x0) è isomorfo a πn(X, x1), per ogni x1 ∈ X, n ≥ 2.

Dimostrazione. Definiamo βγ : πn(X, x1) → πn(X, x0), βγ([f ]) = [γf ], dove
γ è un cammino da x0 a x1 e γf è la funzione costruita prima. Mostriamo
che è un isomorfismo ben definito.
- Buona definizione: Ricordando come abbiamo definito la mappa γf , è
immediato verificare che se γ ≃ γ′ relativamente a I, allora βγ = βγ′ . Inoltre
è ovvio anche che se [f ] = [f ′] allora [γf ] = [γf ′].
- Omomorfismo: mostriamo che γ(f + g) ≃ γf + γg. Deformiamo f e g,
in modo tale che siano, rispettivamente nella metà di destra, e in quella di
sinistra di In, costanti su x1. Le nuove funzioni le indichiamo f + 0 e 0 + g.
Tramite la seguente omotopia:

ht(s1, s2, . . . , sn) =

{
γ(f + 0)((2− t)s1, s2, . . . , sn), s1 ∈ [0, 1/2]

γ(0 + g)((2− t)s1 + t− 1, s2, . . . , sn), s1 ∈ [1/2, 1]

si ha γ(f + g) ≃ γ(f + 0) + γ(g + 0) ≃ γf + γg, dove l’ultima omotopia è
ovvia.
- Inversa: per concludere che è un isomorfismo, osserviamo che (γη)f ≃
γ(ηf) e 1f ≃ f . Ora è facile verificare che βγ è l’inversa di βγ, dove γ =
γ(1− s) è il cammino inverso.

Osservazione 1.12. Dal momento che βγη = βγβη, possiamo definire un omo-
morfismo di gruppi tra π1(X, x0) e Aut(πn(X, x0)) dato da [γ] 7→ βγ. Questo
omomorfismo definisce un’azione di π1 sui πn, dove ogni elemento [γ] di π1
agisce come un automorfismo su πn: ([γ], [f ]) 7→ [γf ].

1.3 Il funtore πn
Analizziamo la questione da un punto di vista funtoriale.

Proposizione 1.13. πn è un funtore covariante dalla categoria Top∗ (degli
spazi topologici puntati) alla categoria Grp (dei gruppi).

Dimostrazione. Consideriamo una mappa f : (X, x0) → (Y, y0), alla quale
associamo πn(f) : πn(X, x0) → πn(Y, y0), [g] 7→ [f ◦ g]. Questa funzione
è ben definita sulle classi di omotopia, dato che se g ≃ g′, allora esiste
F un’omotopia fra g e g′ e quindi f ◦ F fornisce l’omotopia fra f ◦ g e
f ◦ g′ cercata. Il fatto che πn(f) sia un omomorfismo di gruppi segue dalla
definizione dell’operazione data. Infine, πn(IdX) = Idπn(X,x0), e πn(f ◦ g) =
πn(f) ◦ πn(g).
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Osservazione 1.14. Se due mappe ϕ, ψ sono omotope tramite F : X×I → Y ,
allora πn(ϕ) = πn(ψ). Infatti abbiamo [ϕ ◦ f ] = [ψ ◦ f ] come testimoniato
dall’omotopia

F ′ : In × I → Y , F ′(x, t) = F (f(x), t).

Osservazione 1.15. Un’equivalenza omotopica (X, x0) ≃ (Y, y0) induce un
isomorfismo su tutti i gruppi di omotopia. Infatti, se f ◦ g ≃ IdX allora
πn(f) ◦ πn(g) = πn(f ◦ g) = πn(IdX). Analogamente per g ◦ f ≃ IdY .

1.4 Rivestimenti e gruppi di omotopia

I gruppi di omotopia di ordine superiore si comportano bene rispetto ai
rivestimenti. Vale infatti il seguente risultato:

Proposizione 1.16. Ogni rivestimento p : (Y, y0) → (X, x0), induce un
isomorfismo πn(p) : πn(Y, y0) → πn(X, x0), per ogni n ≥ 2.

Dimostrazione. La suriettività segue dalla semplice connessione di Sn e dalla
proprietà di sollevamento delle mappe [Hat02, Proposizione 1.33], la quale
implica che ogni mappa (Sn, s0) → (X, x0) si solleva a (Y, y0).

Per l’iniettività consideriamo [g̃] ∈ kerπn(p), quindi πn(p)([g̃]) = [p ◦ g̃] =
[cx0 ], dove cx0 indica la mappa costante in x0. Dunque p ◦ g̃ ≃ cx0 relati-
vamente a ∂In tramite F : In × I → X. Per la proprietà di sollevamen-
to delle omotopie [Hat02, Proposizione 1.30], solleviamo F ad un’omotopia
F̃ : In × I → Y , a partire da g̃. Abbiamo che la restrizione di F̃ a una qual-
siasi faccia di In × I, esclusa In × {0}, è un sollevamento della restrizione
di p ◦ F̃ = cx0 alla stessa faccia. In particolare, per unicità dei sollevamenti,
questo è esattamente cy0 . Dunque F̃ è un’omotopia tra g̃ e cy0 , ossia g̃ è
banale in πn(Y, y0).

F: F:X Y
C C

g

x y0 0~

~g~°p

Figura 1.5: Caso n = 2. L’esterno del cubo è rappresentato in blu per
indicare le zone dove le funzioni F , F̃ , sono costanti rispettivamente su x0,
y0. Da qui si nota l’omotopia cercata.
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Osservazione 1.17. In particolare, facendo riferimento all’Esempio 1.8, un
qualsiasi spazio topologico con rivestimento universale contraibile ha i gruppi
di ordine superiore banali.

Esempio 1.18. Sapendo che il rivestimento universale di S1 è R, con la mappa
f : R → S1, f(t) = e2πit, conosciamo ora tutti i gruppi di omotopia di S1:

πn(X) =

{
Z, n = 1

0, n ̸= 1

L’esempio precedente mostra che S1 ha tutti i gruppi di omotopia banali
tranne nel caso n = 1. Spazi di questo tipo vengono detti spazi K(G, 1), in
questo caso G = Z. Più in generale, vale la seguente definizione:

Definizione 1.19 (Spazio di Eilenberg-Maclane). Uno spazio topologico X
avente solo l’n-esimo gruppo di omotopia non banale, e isomorfo a G, è detto
spazio di Eilenberg-Maclane K(G, n).

Utilizzeremo anche la notazione K(π, n) al posto di K(G, n) per indicare
che l’n-esimo gruppo di omotopia è l’unico non banale, e per non specificare
il gruppo G a cui è isomorfo.

1.5 I gruppi di omotopia relativi

Possiamo generalizzare quanto appena visto studiando i gruppi di omotopia
relativi πn(X,A, x0) per una coppia (X,A) con punto base x0 ∈ A.
Identifichiamo In−1 come la faccia di In data dai punti la cui ultima coor-
dinata sia uguale a 0 e Jn−1 come la chiusura di ∂In − In−1, ossia l’unione
delle restanti facce di In.

Definizione 1.20 (Gruppi di omotopia relativi). Sia n ≥ 1. Si definisce
n-esimo gruppo di omotopia relativo πn(X,A, x0) con x0 ∈ A, come l’insieme
della classi di omotopie di mappe di triple (In, ∂In, Jn−1) → (X,A, x0) tali
che le omotopie ft soddisfino ft(∂In) ⊂ A e ft(Jn−1) = x0 per ogni t ∈ [0, 1].

Osservazione 1.21. Non c’è un modo preciso per definire π0(X,A, x0), quindi
lo lasciamo indefinito.

Analogamente a prima, vogliamo definire una struttura di gruppo su que-
sti insiemi. L’operazione sarà definita dalla stessa formula del caso πn(X, x0),
però ora la coordinata sn avrà un ruolo diverso e questo porterà ad alcune
differenze.
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Osservazione 1.22. Per n = 1 non ab-
biamo un modo naturale per definire un
gruppo. Poiché in questo caso I = [0, 1],
I0 = {0}, J0 = {1}, quindi π1(X,A, x0)
sono le classi di omotopie di cammini in
X da un punto qualunque in A al punto
fissato x0 tali che gli estremi dei cammini
restino in A durante l’omotopia.

X

A
x0

Figura 1.6

Osservazione 1.23. Per n = 2 è un gruppo mentre per n ≥ 3 è un gruppo
abeliano. Per approfondire questo fatto si può far riferimento al libro di
Rotman [Rot88, Corollario 11.44]
Anche in questo caso c’è una definizione alternativa, ottenuta collassando
Jn−1 ad un punto. Possiamo vedere πn(X,A, x0) come l’insieme delle classi
di omotopie di mappe (Dn, Sn−1, s0) → (X,A, x0). Da questo punto di vista,
l’operazione è data da c : Dn → Dn∨Dn che collassaDn−1 ⊂ Dn ad un punto.

Ora diamo una formulazione utile e chiarificatrice di cosa voglia dire che
un elemento di πn(X,A, x0) è banale.

Proposizione 1.24 (Criterio di compressione). Una mappa di triple
f : (Dn, Sn−1, s0) → (X,A, x0) rappresenta zero in πn(X,A, x0) se e soltanto
se f ≃ g relativamente a Sn−1 e g(Dn) ⊂ A.

Dimostrazione. (⇐) : Dalle ipotesi segue che [f ] = [g] in πn(X,A, x0). Inol-
tre [g] = 0 per via dell’omotopia ottenuta componendo g con la retrazione
per deformazione di Dn in s0.
(⇒) : Abbiamo [f ] = 0 attraverso l’omotopia F : Dn×I → X. Consideriamo
ora una mappa H : Dn×I → Dn×I definita in modo che per ogni t, Dn×{t}
sia omeomorfo a Dn × {t} ∪ Sn−1 × [0, t] (mandando ∂Dn × {t} omeomor-
ficamente in Sn−1 × {0}). Allora F ◦ H ci dà un’omotopia relativamente a
Sn−1 tra f e una mappa dal disco Dn con immagine contenuta interamente
in A (ossia g := F ◦H|Dn×{1}). Si confronti Figura 1.7.

F X=H

D  ×{t}n D  ×{t} U S    ×[0,t]n n-1

Figura 1.7: Caso n = 2. Si può os-
servare che F ◦ H è un’omotopia re-
lativa a Sn−1 poiché F ◦ H(x, t) =
F ◦H(x, s),∀x ∈ ∂Dn,∀s, t ∈ [0, 1].
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Osservazione 1.25. Come nel caso assoluto, data una mappa ϕ : (X,A, x0) →
(X,B, x0) questa induce un omomorfismo πn(ϕ) sui gruppi di omotopia re-
lativi per n ≥ 2. Continuano a valere πn(ϕ ◦ ψ) = πn(ϕ) ◦ πn(ψ), πn(IdX) =
Idπn(X,A,x0) e l’Osservazione 1.14.

Osservazione 1.26. Considerando A = {x0}, πn(X, x0, x0) = πn(X, x0). Dun-
que i gruppi di omotopia assoluti sono un caso particolare di quelli relativi.

Ora enunciamo un risultato importante legato ai gruppi di omotopia rela-
tivi. Prima di tutto, ricordiamo che una successione A f−→ B

g−→ C è esatta in
B, se Im(f) = ker(g). Consideriamo gli omomorfismi indotti dalle inclusioni
i : (A, x0) → (X, x0), j : (X, x0, x0) → (X,A, x0). Inoltre definiamo δ come la
funzione indotta restringendo le mappe (In, ∂In, Jn−1) → (X,A, x0) a In−1.
Quest’ultima è chiamata bordo ed è un omomorfismo quando n > 1.

Teorema 1.27. La successione lunga

· · · → πn(A, x0)
πn(i)−−−→ πn(X, x0)

πn(j)−−−→ πn(X,A, x0)
δ−→ πn−1(A, x0) → · · ·

· · · → π0(X, x0)

è esatta.

Dimostrazione. Per dimostrarlo, deriviamo la successione esatta lunga di una
tripla (X,A,B, x0) con x0 ∈ B ⊂ A ⊂ X:

· · · → πn(A,B, x0)
i∗−→ πn(X,B, x0)

j∗−→ πn(X,A, x0)
δ−→ πn−1(A,B, x0) → · · ·

· · · → π1(X,A, x0)

Quando B = x0 ci riduciamo alla successione esatta lunga per una coppia,
con l’unica differenza che quella che vogliamo mostrare prosegue con altri due
passi. Nonostante in quest’ultimi non sia definita una struttura di gruppo,
si può verificare facilmente che l’esattezza continua a valere.

Esattezza in πn(X,B, x0): Osserviamo che la composizione j∗i∗ è zero dal
momento che ogni mappa (In, ∂In, Jn−1) → (A,B, x0) rappresenta zero in
πn(X,A, x0) per la Proposizione 1.24. Per vedere invece che ker j∗ ⊂ Im i∗,
consideriamo un rappresentante f : (In, ∂In, Jn−1) → (X,B, x0) dello zero in
πn(X,A, x0). Allora sempre per il Criterio di Compressione (Proposizione
1.24), f è omotopa relativamente a ∂In ad una mappa con immagine in A,
dunque [f ] ∈ πn(X,B, x0) è nell’immagine di i∗.

Esattezza in πn(X,A, x0): La composizione δj∗ è zero dal momento che la
restrizione di una mappa (In, ∂In, Jn−1) → (X,B, x0) a In−1 ha immagine
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in B, dunque per la Proposizione 1.24 rappresenta zero in πn−1(A,B, x0).
Viceversa, supponiamo che la restrizione di f : (In, ∂In, Jn−1) → (X,A, x0)
a In−1 rappresenti zero in πn−1(A,B, x0). Allora f |In−1 è omotopa ad una
mappa con immagine in B attraverso un’omotopia F : In−1× I → A relativa
∂In−1. Possiamo aggiungere F a f come in Figura 1.8 e otteniamo una nuova
mappa (In, ∂In, Jn−1) → (X,B, x0) che vista in (X,A, x0) è evidentemente
omotopa a f . Dunque [f ] ∈ Im j∗.

Esattezza in πn(A,B, x0): La composizione i∗δ è zero dal momento che la
restrizione di una mappa f : (In+1, ∂In+1, Jn) → (X,A, x0) a In è omotopa
relativamente ∂In ad una mappa costante attraverso f stessa. Viceversa,
sia F un’omotopia fra f : (In, ∂In, Jn−1) → (A,B, x0) e la mappa costante,
attraverso mappe (In, ∂In, Jn−1) → (X,B, x0). Sia g = F |In−1×I definita
come nella prima immagine della Figura 1.9. Riparametrizziamo l’n-esima e
l’(n+1)-esima coordinata come nella seconda immagine, così facendo abbia-
mo una funzione che ha immagine tramite δ data da f “aumentata” da g. In
maniera analoga a quanto detto nell’esattezza di πn(X,B, x0), aumentare f
con g dà poi lo stesso elemento in πn(A,B, x0).

A

f

F

x0

x0

x0x0

x0

B

x0 x0

x0 x0 x0f

f gg

Figura 1.8

A

f

F

x0

x0

x0x0

x0

B

x0 x0

x0 x0 x0f

f gg

Figura 1.9



Capitolo 2

I fibrati

Una “successione esatta corta di spazi” A ↪→ X → X/A induce una successio-
ne esatta lunga in omologia, ma questo non avviene per i gruppi di omotopia
visto che non soddisfano l’escissione. Tuttavia, come vedremo fra poco, esiste
una “successione esatta corta di spazi” che dà origine a una successione esatta
lunga in omotopia. Questa sorta di “successione esatta corta” F → E

p−→ B
è chiamata fibrato.

2.1 La successione esatta lunga in omotopia
Iniziamo col definire le proprietà che ci porteranno alla successione esatta
lunga dei gruppi di omotopia.

Definizione 2.1 (Proprietà di estensione dei sollevamenti). Sia Z uno spazio
topologico e A ⊂ Z. Si dice che la coppia (Z,A) possiede la proprietà di
estensione dei sollevamenti se, data una mappa E → B, per ogni mappa
Z → B, esiste un sollevamento Z → E che estende un sollevamento dato
A→ E.

A E

Z B

Se consideriamo (Z,A) = (X × I,X × {0}) con X spazio topologico,
otteniamo un caso particolare della proprietà precedente. Infatti, vale la
seguente definizione:

Definizione 2.2 (Proprietà di sollevamento delle omotopie). Si dice che una
mappa p : E → B ha la proprietà di sollevamento delle omotopie rispetto
a uno spazio topologico X se, data un’omotopia gt : X → B e una mappa

15
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g̃0 : X → E tale che p ◦ g̃0 = g0, allora esiste un’omotopia g̃t : X → E che
solleva gt, ossia p ◦ g̃t = gt

Osserviamo ora un’ultima proprietà che segue sempre dalla Definizione
2.1. In particolare, se consideriamo la proprietà di estensione dei sollevamenti
per la coppia (X × I,X × {0} ∪ A × I), si ottiene una forma relativa della
precedente definizione:

Definizione 2.3 (Proprietà di sollevamento delle omotopie per una coppia).
Si dice che una mappa p : E → B ha la proprietà di sollevamento delle
omotopie per una coppia (X,A) se ogni omotopia gt : X → B si solleva ad
un’omotopia g̃t : X → E a partire da un sollevamento dato g̃0 e estendendo
un sollevamento dato g̃t : A→ E.

A E

X B

g̃t|A

p
g̃t

gt

Teorema 2.4. Sia p : E → B una mappa con la proprietà di sollevamento
delle omotopie rispetto ai dischi Dk per ogni k ≥ 0, e siano b0 ∈ B e x0 ∈
F := p−1(b0). Allora la mappa p∗ : πn(E,F, x0) → πn(B, b0) è un isomorfismo
per ogni n ≥ 1. Inoltre, se B è connesso per archi, allora si ha la seguente
successione esatta lunga

· · · → πn(F, x0) → πn(E, x0)
p∗−→ πn(B, b0) → πn−1(F, x0) → · · ·

· · · → π0(E, x0) → 0

Osservazione 2.5. La proprietà di sollevamento delle omotopie per i dischi
Dk è equivalente alla proprietà di sollevamento delle omotopie per la coppia
(Dk, ∂Dk), questo perché sono entrambi casi particolari della Definizione 2.1
e le coppie (Dk×I,Dk×{0}), (Dk×I,Dk×{0}∪∂Dk×I) sono omeomorfe.
Inoltre, la proprietà di sollevamento delle omotopie per dischi è equivalente
alla proprietà di sollevamento delle omotopie per ogni coppia di complessi
CW (X,A). Per induzione sullo scheletro di X, è sufficiente costruire g̃t
su una cella di X \ A alla volta. Componendo con la mappa caratteristica
ϕ : Dk → X di una cella otteniamo la riduzione al caso (Dk, ∂Dk). Una
mappa p : E → B che soddisfa la proprietà di sollevamento delle omotopie
rispetto ai dischi è talvolta chiamata fibrazione di Serre.

Dimostrazione. Mostriamo che p∗ è suriettiva. Sia f : (In, ∂In) → (B, b0)
un rappresentante di un elemento in πn(B, b0). La mappa costante in x0
fornisce un sollevamento di f a E sul sottospazio Jn−1 ⊂ In. La proprietà
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di sollevamento delle omotopie per la coppia (In−1, ∂In−1) estende f ad un
sollevamento f̃ : In → E tale che f̃(∂In) ⊂ F , dal momento che f(∂In) = b0.
Allora f̃ rappresenta un elemento di πn(E,F, x0) con p∗([f̃ ]) = [f ] visto che
p ◦ f̃ = f .
Mostriamo che p∗ è iniettiva. Siano f̃0, f̃1 : (In, ∂In, Jn−1) → (E,F, x0) tali
che p∗([f̃0]) = p∗([f̃1]). Sia G : (In × I, ∂In × I) → (B, b0) un’omotopia tra
p ◦ f̃0 e p ◦ f̃1. Abbiamo un sollevamento parziale G̃ dato da f̃0 su In × {0},
f̃1 su In × {1} e la mappa costante in x0 su Jn−1 × I. Una volta permutate
le ultime due coordinate di In × I, la proprietà di sollevamento relativa del-
le omotopie ci dà un sollevamento G̃ : In × I → E. Questa è un’omotopia
f̃t : (I

n, ∂In, Jn−1) → (E,F, x0) da f̃0 a f̃1. Dunque p∗ è iniettiva.
Per l’ultima tesi del teorema sostituiamo πn(B, b0) al posto di πn(E,F, x0)
nella successione esatta lunga per la coppia (E,F ) del Teorema 1.27. Al-
lora la mappa πn(E, x0) → πn(E,F, x0) nella successione esatta diventa la
composizione πn(E, x0) → πn(E,F, x0)

p∗−→ πn(B, b0), che non è altro che
πn(p) : πn(E, x0) → πn(B, b0). Infine, lo 0 al termine della successione, che
corrisponde alla suriettività di π0(F, x0) → π0(E, x0), segue dal fatto che B
sia connesso per archi. Infatti, un qualsiasi cammino in E da un punto arbi-
trario x ∈ E ad un punto in F può essere ottenuto sollevando un cammino
in B da p(x) a b0.

2.2 Definizione di fibrato

Diamo la definizione di fibrato, e vediamo successivamente degli esempi.

Definizione 2.6 (Fibrato). Una struttura di fibrato su uno spazio E, con
fibra F , consiste in una proiezione p : E → B tale che ogni punto di B abbia
un intorno U per il quale esiste un omeomorfismo h : p−1(U) → U × F che
faccia commutare il seguente diagramma:

p−1(U) U × F

U

p

h

p1

dove p1 : U × F → U è la proiezione sul primo fattore.

Osservazione 2.7. La commutatività del diagramma significa che h manda
ogni fibra Fb = p−1(b) omeomorficamente sulla coppia {b} × F . Dunque
le fibre Fb sono organizzate localmente come nel prodotto B × F , ma non
necessariamente globalmente. Una mappa h come sopra è chiamata una
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trivializzazione locale del fibrato. Dal momento che h(x) = (p(x), h′(x)), h è
determinata dalla seconda coordinata, ossia una mappa h′ : p−1(U) → F che
è un omeomorfismo su ogni fibra Fb.

La struttura di fibrato è determinata dalla mappa p : E → B, ma spesso
scriviamo esplicitamente la fibra F → E → B. Lo spazio B è chiamato
spazio base, mentre E è lo spazio totale.
Esempio 2.8. Un fibrato con uno spazio discreto come fibra, è un rivesti-
mento. Viceversa, un rivestimento con il numero di fogli sopra un qualunque
punto costante (per esempio un rivestimento sopra uno spazio base connesso),
è un fibrato con fibra discreta.
Esempio 2.9. Dalla definizione si verifica immediatamente che il prodotto
di spazi topologici, dotato della proiezione su una delle due componenti è
un fibrato. Dunque S1 × I → S1, il cilindro con la proiezione sulla prima
componente, o S1 × S1 → S1, il toro, sono esempi di fibrati banali.
Esempio 2.10. Il nastro di Möbius è un fibrato non banale con spazio base
S1 e fibra un intervallo. In particolare, sia E il quoziente di I × [−1, 1]
attraverso la relazione di equivalenza (0, v) ∼ (1,−v) come nella Figura 2.1,
con p : E → S1 indotta al quoziente dalla proiezione I× [−1, 1] → I. Dunque
la fibra è [−1, 1].

I

[-1,1]

Figura 2.1: A sinistra la realizzazione del nastro di Möbius come quoziente
del rettangolo. A destra il nastro con in evidenza le fibre.

Incollando insieme due copie di E usando come mappa di attacamento l’i-
dentità sul bordo circolare dei due nastri di Möbius, otteniamo la bottiglia
di Klein, come nella Figura 2.2.

Figura 2.2: La realizzazione della bot-
tiglia di Klein come attaccamento di
due copie del nastro di Möbius.
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In altri termini, consideriamo un cilindro I×S1 e incolliamo {0}×S1, {1}×S1

con orientazione opposta. Ragionando in modo analogo a prima, otteniamo
un fibrato su S1 con fibra S1.

Esempio 2.11. Gli spazi proiettivi danno luogo a fibrati in modo naturale. Nel
caso reale possiamo considerare il rivestimento dato dalla proiezione Sn →
RPn, che sappiamo essere un fibrato in RPn con fibra S0 dall’Esempio 2.8.
L’analogo di questo in ambito complesso è dato dal fibrato S1 → S2n+1 →
CPn, dove S2n+1 è la sfera unitaria in Cn+1 e CPn è definito come il quoziente
di S2n+1 attraverso la relazione data da (z0, · · · , zn) ∼ λ(z0, · · · , zn) per λ ∈
S1 ⊂ C. La proiezione p : S2n+1 → CPn manda (z0, · · · , zn) nella sua classe
di equivalenza [z0 : · · · : zn], dunque le fibre sono copie di S1. Mostriamo
che la proprietà di trivialità locale dei fibrati è soddisfatta: sia Ui ⊂ CPn

l’insieme delle classi [z0 : · · · : zn] con zi ̸= 0 e definiamo la mappa

hi : p
−1(Ui) → Ui × S1, hi(z0, · · · , zn) = ([z0, · · · , zn], zi/|zi|)

la quale porta fibre in fibre ed è un omeomorfismo con inversa data da
([z0, · · · , zn], λ) 7→ λ|zi|z−1i (z0, · · · , zn).

Esempio 2.12. Il caso n = 1 dell’esempio precedente è particolarmente inte-
ressante visto che CP1 ∼= S2 e il fibrato diventa S1 → S3 → S2 con fibra, spa-
zio totale e spazio base tutte sfere. Questo è conosciuto come fibrato di Hopf
(o “fibrazione di Hopf ”) e lo possiamo descrivere esplicitamente. Possiamo
considerare che la proiezione S3 → S2 mandi (z0, z1) in z0/z1 ∈ C∪{∞} ∼= S2.
Passando in coordinate polari abbiamo:

p(r0e
iθ0 , r1e

iθ1) = (r0/r1)e
i(θ0−θ1) con r20 + r21 = 1

Per un certo ρ = r0/r1 ∈ (0,∞) fissato, gli angoli θ0 e θ1 variano indipen-
dentemente su S1, quindi i punti (r0eiθ0 , r1eiθ1) formano un toro Tρ ⊂ S3.
Variando ρ, questa unione disgiunta di tori Tρ riempe S3, se includiamo an-
che i casi limite T0 e T∞ dove il raggio r0 e r1 sono zero, facendo degenerare i
tori T0 e T∞ in dei cerchi. Quest’ultimi sono i cerchi unitari in ciascun fattore
C di C2. Attraverso la proiezione stereografica di S3 fatta dal punto (0, 1) in
R3, corrispondono al cerchio unitario nel piano xy e all’asse z. Inoltre ogni
toro Tρ è unione di fibre circolari, ciascuna descritta dalla coppia (θ0, θ1) tale
che θ0 − θ1 sia costante.
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Figura 2.3: I tori Tρ sono posizionati come in
figura.

Figura 2.4: Uno dei to-
ri decomposto in fibre
circolari.

2.2.1 La proprietà di sollevamento nei fibrati

Vogliamo analizzare come i fibrati si comportano rispetto alla proprietà di
sollevamento delle omotopie.

Proposizione 2.13. Un fibrato p : E → B ha la proprietà di sollevamento
delle omotopie rispetto ad ogni coppia di complessi CW (X,A).

Dimostrazione. Dall’Osservazione 2.5 sappiamo che la proprietà di solleva-
mento delle omotopie per coppie CW è equivalente a quella per dischi o cubi.
Sia G : In × I → B, G(x, t) = gt(x) l’omotopia che vogliamo sollevare, a
partire da un sollevamento dato g̃0 di g0. Scegliamo un ricoprimento aperto
{Uα} di B con trivializzazioni locali date da hα : p

−1(Uα) → Uα × F . Per
compattezza di In × I possiamo suddividere In in sottocubi C e I in in-
tervalli Ij = [tj, tj+1] tali che ogni prodotto C × Ij è mappato da G in un
singolo Uα. Possiamo assumere per induzione su n che g̃t sia già costruita
sopra ∂C per ogni sottocubo C. Per estendere g̃t su C possiamo procede-
re per passi, costruendo il sollevamento per t in ogni intervallo successivo
Ij. Questo in effetti ci porta al caso in cui non è necessaria nessuna divi-
sione di In × I, dunque G mappa In × I in un singolo Uα. Allora abbiamo
G̃(In×{0}∪∂In×I) ⊂ p−1(Uα), e componendo G̃ con la trivializzazione locale
hα ci porta al caso del prodotto Uα×F . In questo caso la prima coordinata di
un sollevamento g̃t è solo gt, mentre la seconda dobbiamo costruirla. Quest’ul-
tima può essere ottenuta dalla composizione In×I → In×{0}∪∂In×I → F ,
dove la prima mappa è una retrazione, e la seconda mappa è data da g̃0 e
quello che avevamo in precedenza per induzione.
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Esempio 2.14. Applicando la precedente proposizione e il Teorema 2.4 ad un
rivestimento p : E → B con E e B connessi per archi e fibra discreta, si ot-
tiene una successione esatta lunga che porta alla Proposizione 1.16, la quale
affermava che πn(p) : πn(E) → πn(B) fosse un isomorfismo per n ≥ 2. Otte-
niamo anche una successione esatta corta 0 → π1(E) → π1(B) → π0(F ) →
0, coerente con la teoria dei rivestimenti, in particolare con i seguenti ri-
sultati [Hat02, Proposizioni 1.31,1.32]. Infatti quest’ultime affermano che
π1(p) : π1(E) → π1(F ) sia iniettiva e che la fibra F possa essere identificata,
tramite la proprietà di sollevamento dei cammini, con l’insieme delle classi
laterali di π1(p)(π1(E)) in π1(B).

Esempio 2.15. La successione esatta lunga descritta nel Teorema 2.4 per
il fibrato di Hopf S1 → S3 → S2 dà gli isomorfismi π2(S2) ∼= π1(S

1) e
πn(S

3) ∼= πn(S
2) per ogni n ≥ 3. Considerando il risultato [Hat02, Corollario

4.25], che afferma che πn(Sn) ≃ Z, si ottiene che π3(S2) ∼= Z. In particolare
questo gruppo è generato dalla classe di omotopia corrispondente alla mappa
di Hopf S3 → S2.





Capitolo 3

Le fibrazioni

In questo capitolo vogliamo studiare le fibrazioni, che in un certo senso
possono essere pensate come un analogo dei fibrati da un punto di vista
omotopico.

3.1 Introduzione alle fibrazioni

Innanzitutto, spieghiamo che cosa si intende con il termine fibrazione, e
vediamo le principali differenze dai fibrati.

Definizione 3.1 (Fibrazione). Una fibrazione è una mappa p : E → B che
ha la proprietà di sollevamento delle omotopie (Definizione 2.2) rispetto ad
ogni spazio topologico X.

Osservazione 3.2. Si eredita la notazione dai fibrati, dunque E è lo spazio
totale mentre B è lo spazio base.

Esempio 3.3. Una proiezione B × F → F è una fibrazione dal momento che
possiamo scegliere sollevamenti della forma g̃t(x) = (gt(x), h(x)), a partire
da g̃0(x) = (g0(x), h(x)) dato.

In un fibrato tutte le fibre sono omeomorfe per definizione, questo però
non è detto si verifichi per le fibrazioni, come mostra il seguente controesem-
pio:

Esempio 3.4. Sia E il triangolo 2-dimensionale in R2 con vertici (0, 0), (0, 1)
e (1, 0):

E = {(x, y) ∈ R2 : x ∈ [0, 1], 0 ≤ y ≤ 1− x}.

23
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Mostriamo che la mappa p : E → [0, 1], de-
finita da p(x, y) = x, è una fibrazione, ma le
sue fibre non sono tutte omeomorfe.

0 1

1

E

X

Y

Figura 3.1: L’insieme de-
scritto precedentemente.

1. Sia X uno spazio topologico e G : X × I → I, G(x, t) = gt(x) l’omo-
topia che vogliamo sollevare a partire dal sollevamento dato g̃0 di g0.
Abbiamo il seguente diagramma commutativo:

X E

X × I I,

i

g̃0

p

G

i.e. G ◦ i = p ◦ g̃0, con i : X → X × I, i(x) = (x, 0). Allora possiamo
definire il sollevamento di G come:

G̃ : X × I → E, G̃(x, t) = (G(x, t),min{1−G(x, t), q(g̃0(x))})

dove q : E → I, q(x, y) = y. La funzione è ben posta perché il minimo
sul secondo fattore ci garantisce che l’immagine sia contenuta in E.
Inoltre assicura che sia effettivamente un sollevamento a partire da g̃0.
Dunque p è una fibrazione.

2. Mostriamo che almeno due fibre non sono omeomorfe. Per farlo consi-
deriamo {0}, {1} ∈ I. Si ha:

p−1({0}) = {0} × [0, 1] ∼= [0, 1] ≇ {(1, 0)} = p−1({1}).

Osservazione 3.5. Nell’esempio precedente le fibre non sono omeomorfe, ma
si può verificare facilmente che hanno lo stesso tipo di omotopia. In realtà
questa proprietà vale in generale per tutte le fibre di una fibrazione sulla
stessa componente connessa.

Proposizione 3.6. Sia p : E → B una fibrazione, allora le fibre Fb =
p−1(b) su ciascuna componente connessa di B, sono tutte omotopicamente
equivalenti.



3.1 Introduzione alle fibrazioni 25

Dimostrazione. Un cammino γ : I → B dà origine a un’omotopia gt : Fγ(0) →
B con gt(Fγ(0)) = γ(t). L’inclusione Fγ(0) ↪→ E fornisce un sollevamento g̃0,
dunque per la proprietà di sollevamento delle omotopie abbiamo un’omotopia
g̃t : Fγ(0) → E con g̃t(Fγ(0)) ⊂ Fγ(t) per ogni t. In particolare, g̃1 definisce
una mappa Lγ : Fγ(0) → Fγ(1). Studiamo ora le proprietà della funzione che
associa γ 7→ Lγ:
(a) Se γ ≃ γ′ relativamente ∂I, allora Lγ ≃ Lγ′ . In particolare la classe di

omotopia di Lγ è indipendente dalla scelta del sollevamento g̃t di gt.
(b) Per una concatenazione di cammini γ ∗ γ′, Lγ∗γ′ è omotopo alla compo-

sizione Lγ ◦ Lγ′ .
Da queste affermazioni segue che Lγ è un’equivalenza omotopica con inversa
omotopica data da Lγ̄, dove γ̄ è il cammino inverso di γ. Prima di dimostrare
le affermazioni precedenti, osserviamo che una fibrazione ha la proprietà di
sollevamento delle omotopie per una coppia (X×I,X×∂I), perché le coppie
(I × I, I × {0} ∪ ∂I × I) e (I × I, I × {0}) sono omeomorfe, e restano tali
quando si prende il prodotto per X.
Iniziamo col dimostrare (a): sia α : I × I → B,α(s, t), un’omotopia tra
α(0, t) = γ(t) e α(1, t) = γ′(t) relativa a ∂I. Questa determina una famiglia
gst : Fγ(0) → B con gst(Fγ(0)) = α(s, t). Siano g̃0,t e g̃1,t i sollevamenti che
definiscono Lγ = g̃0,1 e Lγ′ = g̃1,1, e sia g̃s,0 l’inclusione Fγ(0) ↪→ E per ogni s.
Definiamo Gt(x, s) : Fγ(0)×I → B, Gt(x, s) = gst(x) e applichiamo la proprie-
tà di sollevamento delle omotopie relativa alla coppia (Fγ(0) × I, Fγ(0) × ∂I).
Otteniamo un sollevamento G̃t(x, s) := g̃st, e considerando t = 1 otteniamo
un’omotopia tra g̃0,1 e g̃1,1, ossia tra Lγ e Lγ′ .
Analizziamo ora l’indipendenza della classe di omotopia di Lγ per la scelta
di un sollevamento. Sia g̃1,t come prima e sia f̃0,t un sollevamento diverso
da g̃0,t. Il sollevamento f̃0,t definisce una funzione L̄γ. Seguendo lo stesso
ragionamento di prima si ottiene:

L̄γ = f̃0,1 ≃ g̃1,1 ≃ g̃0,1 = Lγ

da cui si ha la tesi. Analogamente per una scelta differente di g̃1,t.
Per quanto riguarda (b): se consideriamo che g̃t e g̃′t definiscono, rispettiva-
mente, Lγ e Lγ′ , allora abbiamo un sollevamento f̃t che definisce Lγ∗γ′ :

f̃t =

{
g̃2t, 0 ≤ t ≤ 1/2

g̃′2t−1Lγ, 1/2 ≤ t ≤ 1

e considerando la funzione ottenuta per t = 1 concludiamo.

Sorge naturale chiedersi se le fibrazioni soddisfano un analogo omotopico
della proprietà di trivialità locale dei fibrati. Innanzitutto, osserviamo che
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per una fibrazione p : E → B, per qualsiasi sottospazio A ⊂ B, la restrizione
p|A : p−1(A) → A è una fibrazione. Dunque ci si può domandare se per
ogni punto di B, esiste un intorno U , tale che la fibrazione p−1(U) → U è
equivalente, sotto un certo aspetto, ad una proiezione U×F → U . La nozione
naturale di equivalenza tra le fibrazioni è definita nel modo seguente:

Definizione 3.7. Siano p1 : E1 → B e p2 : E2 → B fibrazioni. Si dice che una
mappa f : E1 → E2 preserva le fibre se p1 = p2◦f , oppure, equivalentemente,
se f(p−11 (b)) ⊂ p−12 (b) per ogni b ∈ B.

Definizione 3.8 (Equivalenza omotopica fibrata). Una mappa che preserva
le fibre f : E1 → E2 è un’equivalenza omotopica a fibre se esiste una mappa
che preserva le fibre g : E2 → E1, tale che entrambe le composizioni f ◦ g e
g ◦ f sono omotope all’identità, attraverso mappe che preservano le fibre.

Osservazione 3.9. Un’equivalenza omotopica fibrata può essere interpretata
come una famiglia di equivalenze omotopiche corrispondenti alle fibre di E1

e E2.
Vogliamo dimostrare che p : E → B è localmente omotopicamente banale

in modo fibrato, come descritto in precedenza, qualora B sia localmente
contraibile. Per procedere, come prima cosa dobbiamo discutere un altro
concetto di base:

Definizione 3.10 (Fibrazione indotta). Consideriamo una fibrazione
p : E → B e una mappa f : A→ B. Si chiama fibrazione indotta (o “pullback
fibration”) la mappa f ∗(E) → A tale che il seguente diagramma commuti:

f ∗(E) E

A B,

p

f

dove f ∗(E) = {(a, e) ∈ A × E|f(a) = p(e)} e le mappe senza nome sono le
proiezioni su A ed E rispettivamente.

Osservazione 3.11. La proprietà di sollevamento delle omotopie continua a
valere per la mappa f ∗(E) → A visto che un’omotopia gt : X → A dà la
prima coordinata di un sollevamento g̃t : X → f ∗(E), mentre la seconda
coordinata corrisponde al sollevamento ad E della composizione f◦gt. Quindi
(g̃t, f̃ ◦ gt) : X → f ∗(E) è un sollevamento di gt : X → A.

Proposizione 3.12. Data una fibrazione p : E → B e un’omotopia ft : A→
B, si ha che le fibrazioni indotte f ∗0 (E) → A e f ∗1 (E) → A sono omotopica-
mente equivalenti in modo fibrato.
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Dimostrazione. Scriviamo l’omotopia ft come F : A× I → B. La fibrazione
F ∗(E) → A × I estende le fibrazione f ∗0 (E) → A e f ∗1 (E) → A prenden-
do A × {0} e A × {1}. Dunque è sufficiente provare che per una fibrazione
p : E → B × I, per ogni s ∈ [0, 1], le fibrazioni ottenute restringendosi a
Es := p−1(B × {s}) → B sono tutte omotopicamente equivalenti in modo
fibrato.
Procediamo in modo simile a quanto fatto nella dimostrazione della Pro-
posizione 3.6. Un cammino γ : I → I dà origine a una mappa che pre-
serva le fibre Lγ : Eγ(0) → Eγ(1), la quale è ottenuta sollevando l’omotopia
gt : Eγ(0) → B × I, gt(x) = (p(x), γ(t)), a partire dall’inclusione Eγ(0) ↪→ E.
Come nella Proposizione 3.6, si mostra che valgono le due proprietà (a) e (b),
osservando che in (a) l’omotopia Lγ ≃ Lγ′ preserva le fibre poiché è ottenuta
sollevando un’omotopia ht : Eγ(0)×I → B×I della forma ht(x, u) = (p(x),−).
Da (a) e (b) segue che Lγ è un’equivalenza omotopica fibrata con inversa
omotopica data da Lγ̄.

Corollario 3.13. Una fibrazione p : E → B con spazio base B contraibile è
omotopicamente equivalente in modo fibrato alla fibrazione prodotto B×F →
B, dove F è una fibra di p.

Dimostrazione. La fibrazione indotta su E → B lungo l’identità B → B è
E → B stessa, mentre la fibrazione indotta lungo una mappa costanteB → B
è il prodotto B × F . La tesi segue usando il fatto che B sia contraibile e la
proposizione precedente.

3.2 Lo spazio dei cammini
Esiste un modo per rendere una mappa qualsiasi, una fibrazione. Data una
mappa f : A → B, sia Ef lo spazio dato dalle coppie (a, γ), dove a ∈ A e
γ : I → B un cammino in B con γ(0) = f(a). Dotiamo Ef con la topologia
indotta come sottospazio dalla topologia compatto-aperta di A×BI , con BI

lo spazio delle mappe I → B.

Proposizione 3.14. La mappa p : Ef → B, p(a, γ) = γ(1) è una fibrazione.

Dimostrazione. La continuità di p segue considerando la composizione di
funzioni:

Ef → I ×BI → B, (a, γ) 7→ (1, γ) 7→ γ(1)

dove la continuità dell’ultima mappa segue dal risultato classico sulla topolo-
gia compatto-aperta che afferma che la mappa di valutazione è continua[Hat02,
Proposizione A.14, punto (a)].
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Verifichiamo che è una fibrazione. Sia gt : X → B e sia g̃0 : X → Ef un sol-
levamento dato di g0, che scriviamo come g̃0(x) = (h(x), γx) con h : X → A
e γx : I → B. Definiamo il sollevamento g̃t : X → Ef , g̃t(x) = (h(x), γx ∗
g[0,t](x)), con la seconda coordinata uguale al cammino γx concatenato al
cammino tracciato da gs(x), tenendo fisso x e variando 0 ≤ s ≤ t. La concate-
nazione di cammini è ben definita dal momento che g0(x) = p◦ g̃0(x) = γx(1).
Per verificare che l’omotopia g̃t è continua, la consideriamo come mappa
X×I → Ef ⊂ A×BI e applichiamo una proprietà della topologia compatto-
aperta [Hat02, Proposizione A.14, punto (b)]. Quest’ultima afferma che la
continuità della mappa X × I → A × BI è equivalente alla continuità della
mappa associata X × I × I → A×B.

Possiamo identificare A con il sottospazio di Ef dato dalle coppie (a, γ)
con γ il cammino costante in f(a). Inoltre, Ef si retrae per deformazione
su questo sottospazio restringendo progressivamente tutti i cammini γ a sot-
tocammini sempre più brevi. La mappa Ef → B si restringe a f quando
considerata sui punti del sottospazio A, di conseguenza abbiamo fattorizzato
una mappa arbitraria f : A → B nella composizione A ↪→ Ef → B, data da
un’equivalenza omotopica e una fibrazione. Possiamo anche pensare a questa
costruzione come ad un modo per estendere f ad una fibrazione Ef → B,
allargando il domininio A di f ad uno spazio omotopicamente equivalente ad
A.

Definizione 3.15 (Fibra omotopica). La fibra Ff di Ef → B è chiamata
fibra omotopica di f . Essa consiste in tutte le coppie (a, γ) con a ∈ A e γ un
cammino in B da f(a) ad un punto base fissato b0 ∈ B.

Prendiamo in esame il caso in cui f : A → B sia l’inclusione, allora Ef è
lo spazio dei cammini in B che iniziano dai punti di A. In questa situazio-
ne, una mappa ϕ : (I i+1, ∂I i+1, J i) → (B,A, x0) si può reinterpretare come
una mappa ϕ′ : (I i, ∂I i) → (Ff , γ0), dove γ0 è il cammino costante in x0 e
Ff ⊂ Ef è la fibra omotopica su x0 (si osservi che per comodità di scrittura
identifichiamo γ0 ≡ (x0, γ0) ∈ Ff ). Dimostriamo questo fatto. Per prima
cosa identifichiamo I i+1 ≡ I i× I, e indichiamo l’ultimo parametro con t ∈ I.
Per ogni punto x ∈ I i, definiamo il cammino:

ωx : I → B, ωx(t) := ϕ(x, t).

Dunque per ogni x, abbiamo un cammino in B dal punto iniziale ϕ(x, 0) ∈ A
a quello finale ϕ(x, 1) = x0, visto che (x, 0) ∈ ∂I i+1 e (x, 1) ∈ J i. Quindi è
sufficiente porre:

ϕ′ : (I i, ∂I i) → (Ff , γ0), ϕ′(x) = ωx.
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Si verifica facilmente che per ogni x ∈ ∂I i, ϕ′(x) = γ0, visto che x =
(· · · , i, · · · ) con la i-esima posizione uguale a 0 o 1 e quindi abbiamo (x, t) ∈
J i e (x, t)

ϕ7−→ x0, per ogni t ∈ I. Il ragionamento precedente mostra che il
gruppo πi+1(B,A, x0) può essere identificato con πi(Ff , γ0). Da questo segue
che la successione esatta lunga per la coppia (B,A) data dalla Proposizione
1.27 coincide con quella data dalla fibrazione Ef → B della Proposizione 2.4.
Un esempio notevole si ha quando f è l’inclusione di un punto b0 in B, ossia
f : {b0} → B. In tal caso, lo spazio Ef coincide lo spazio dei cammini PB
in B con punto iniziale b0, e la proiezione p : PB → B manda ogni cammino
nel suo punto di arrivo. La fibra p−1(b0) è chiamata lo spazio dei lacci ΩB e
consiste in tutti i lacci in B con punto base b0. Dal fatto che PB è contraibile,
troncando progressivamente i cammini, si ha il seguente risultato:

Proposizione 3.16. Sia f : {x0} ↪→ X l’inclusione di x0 ∈ X. Allora
πn(X, x0) ≃ πn−1(ΩX, x0) per ogni n.

Dimostrazione. Consideriamo la successione esatta lunga della Proposizione
2.4 data dalla fibrazione PX → X. Abbiamo:

· · · → πn(PX, x0) → πn(X, x0) → πn−1(ΩX, x0) → πn−1(PX, x0) → · · ·
e segue la tesi, visto che πk(PX, x0) è banale per ogni k.

Se la costruzione della fibrazione f 7→ Ef è applicata ad una mappa
p : E → B, che è già una fibrazione, ci si potrebbe aspettare che la fibrazione
risultante Ep → B sia strettamente correlata a quella originale. Infatti vale
il seguente risultato:

Proposizione 3.17. Se p : E → B è una fibrazione, allora l’inclusione
i : E ↪→ Ep è un’equivalenza omotopica. Inoltre, le fibre omotopiche di p
sono tutte omotopicamente equivalenti alle fibre originali.

Dimostrazione. Applichiamo la proprietà di sollevamento delle omotopie al-
l’omotopia gt : Ep → B, gt(e, γ) = γ(t), a partire da g̃0(e, γ) = e. Il
sollevamento ottenuto g̃t : Ep → E è la prima coordinata dell’omotopia
ht : Ep → Ep, la cui seconda coordinata è la restrizione del cammino γ al-
l’intervallo [t, 1]. Dal momento che i punti finali di ciascun cammino γ non
cambiano, ht è una mappa che preserva le fibre. Dunque, abbiamo:

h0 = IdEp , h1(Ep) ⊂ E e ht(E) ⊂ E,

per ogni t, con la solita identificazione di E come sottospazio di Ep. Conclu-
diamo osservando che i ◦ h1 ≃ IdEp attraverso l’omotopia ht, e h1 ◦ i ≃ IdE

tramite l’omotopia ht|E ristretta ad E. Quindi i è un’equivalenza omotopica
fibrata.
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Abbiamo osservato che lo spazio dei lacci appare come fibra di una fibra-
zione PB → B, con spazio totale contraibile. Presentiamo ora una sorta di
risultato duale.

Definizione 3.18 (Equivalenza omotopica debole). Si dice che una map-
pa f : X → Y è un’equivalenza omotopica debole, se induce isomorfismi
πn(f) : πn(X, x0)

∼=−→ πn(Y, f(x0)) per ogni n e per qualsiasi scelta del punto
base x0.

Proposizione 3.19. Se F → E → B è una fibrazione o un fibrato con E
contraibile, allora esiste un’equivalenza omotopica debole F → ΩB.

Dimostrazione. Sia R : E × I → E una retrazione per deformazione di E su
x0 ∈ E, e consideriamo p ◦R : E × I → B. Allora, per ogni x ∈ E, abbiamo
γx : I → B, γx(t) = p(R(x, t)) un cammino in B da p(x) a p(x0). Si ottiene
così una mappa E → PB, x 7→ γ̄x, la quale, se composta con la fibrazione
PB → B, è p. Restringendo questa mappa ne otteniamo un’altra F → ΩB,
dove F = p−1(b0). Inoltre, il seguente diagramma commuta:

F E B

ΩB PB B

p

Notiamo in particolare che la successione esatta lunga relativa a F → E → B
è mappata in quella data da ΩB → PB → B. Dal Lemma Dei Cinque
[Hat02, The Five-Lemma], e dalla contraibilità di E e PB, segue che F → ΩB
è un’equivalenza omotopica debole.

Studiamo ora cosa accade quando si itera il processo di creazione di fi-
bre omotopiche. Data una fibrazione p : E → B con fibra F = p−1(b0),
sappiamo che l’inclusione di F nella fibra omotopica Fp è un’equivalenza
omotopica. L’inclusione F ↪→ E si estende ad una mappa i : Fp → E,
i(e, γ) = e. Dimostriamo che i è una fibrazione. Consideriamo la fibrazione
indotta p1 : p∗(PB) → E, lungo p, dalla fibrazione PB → B. Sia l’omotopia
gt : X → E l’omotopia che vogliamo sollevare a partire da un sollevamento
dato g̃0 di g0. Possiamo costruire il diagramma commutativo sottostante:

p∗(PB) Fp

X E E

p1

h

i
g̃t

gt IdE
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dove h : p∗(PB) → Fp manda la coppia (e, γ) in (e, γ̄), mentre g̃t : X →
p∗(PB) è dato dalla proprietà di sollevamento delle omotopie rispetto alla
fibrazione p1. Abbiamo così dimostrato che i è una fibrazione.
Questo ci consente di iterare la procedura, prendendo la fibra omotopica Fi

associata alla fibrazione i con la relativa mappa verso Fp. Otteniamo così la
prima riga del seguente diagramma:

· · · Fj Fi Fp E B

· · · ΩE ΩB F E B

j i p

≃

Ωp

≃ ≃

p

La fibra effettiva di i su un punto e0 ∈ p−1(b0) consiste nelle coppie (e0, γ)
dove γ è un laccio in B con punto base b0. Quindi la fibra è ΩB per definizione
e l’inclusione ΩB ↪→ Fi è un’equivalenza omotopica. Nella seconda riga
del diagramma, la mappa ΩB → F è la composizione delle mappe ΩB ↪→
Fi → Fp → F , dove l’ultima mappa è l’inversa omotopica nell’inclusione
F ↪→ Fp, dunque il quadrato in questione nel diagramma contiene mappe che
commutano a meno di omotopia. La fibra omotopica Fi consiste nelle coppie
(γ, η), dove η è un cammino in E che termina in e0 e γ è un cammino in B che
parte da p(η(0)) e finisce in b0. Un’inversa omotopica per l’inclusione ΩB ↪→
Fi è data dalla retrazione Fi → ΩB che manda (γ, η) nel laccio ottenuto
componendo il cammino inverso di p ◦ η con γ. Questa costruzione può
essere iterata un numero indefinito di volte, ottenendo così una successione
di fibrazioni conosciuta come successione di Puppe:

· · · → Ω2B → ΩF → ΩE → ΩB → F → E → B

dove due qualunque mappe consecutive formano una fibrazione, a meno di
un’equivalenza omotopica, e tutte le le mappe a sinistra sono ottenute ap-
plicando il funtore Ω. Quest’ultimo in particolare è definito nel seguente
modo:

Ω : Top∗ −→ Top∗
(X, x0) 7−→ (ΩX, γx0)

e
f : (X, x0) → (Y, y0) 7−→ Ω(f) : (ΩX, γx0) −→ (ΩY, γy0)

γ 7−→ (f ◦ γ)
Concludiamo osservando che la successione esatta lunga per una qualsiasi
fibrazione nella sequenza, coincide con la successione esatta lunga per F →
E → B da un certo indice in poi.





Capitolo 4

Applicazioni

Data una successione di gruppi di omotopia, è possibile trovare uno spazio
topologico che la realizzi? É necessario imporre delle condizioni sulla suc-
cessione? Ci sono dei modi per realizzare degli spazi di Eilenberg-Maclane?
Questi interrogativi si possono riassumere nel chiedersi se esistano strumenti
per costruire spazi a partire da proprietà omotopiche assegnate. Queste so-
no le domande con cui il matematico Brayton Gray nel suo libro introduce
le torri di Postnikov [Gra75, Capitolo 17], che definiremo e studieremo in
quest’ultimo capitolo della tesi.

4.1 Alcuni concetti preliminari

Iniziamo richiamando alcuni concetti di carattere generale.

4.1.1 Il teorema di Whitehead

I complessi CW sono costruiti usando le mappe di attaccamento, le quali
hanno come dominio delle sfere. Di conseguenza è intuibile che i gruppi di
omotopia dei complessi CW forniscano molte informazioni. Rimandiamo al
libro di Hatcher per una dimostrazione [Hat02, Teorema 4.5].

Teorema 4.1 (Teorema di Whitehead). Se f : X → Y è un’equivalenza
omotopica debole tra complessi CW, allora f è un’equivalenza omotopica.
Inoltre, se f è l’inclusione di un sottocomplesso X ↪→ Y , allora X è un
retratto per deformazione di Y .

Esempio 4.2. Consideriamo un complesso CW con tutti i gruppi di omotopia
banali. Allora il suo tipo di omotopia è quello di un punto, poiché se pren-
diamo l’inclusione di una 0-cella nel complesso, abbiamo che questa induce
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un isomorfismo su tutti i gruppi di omotopia. Dunque per il Teorema 4.1, il
complesso si retrae per deformazioni sulla 0-cella.

Diamo ora un altro risultato utile per l’introduzione alle torri di Postni-
kov.

Lemma 4.3 (Lemma di estensione). Data una coppia di complessi CW
(X,A) e una mappa f : A → Y con Y connesso per archi, si ha che f si
estende ad una mappa F : X → Y se πn−1(Y ) = 0 per ogni n tale che X \A
abbia almeno una cella di dimensione n.

Dimostrazione. Assumiamo induttivamente che f sia estesa sopra l’(n −
1)-scheletro. Allora l’estensione sopra una n-cella esiste se e solo se la
composizione della mappa di attaccamento della cella Sn−1 → Xn−1 con
f : Xn−1 → Y è omotopa alla mappa costante. Questa condizione è verificata
se πn−1(Y ) = 0.

4.1.2 L’approssimazione cellulare

Presa una mappa tra complessi CW risulta talvolta conveniente richiedere
che le celle vengano mandate in celle della stessa dimensione o inferiore. Una
mappa f : X → Y , che soddisfa f(Xn) ⊂ Y n per ogni n, è chiamata mappa
cellulare. Un risultato chiave in teoria dell’omotopia è l’approssimazione
cellulare che afferma che una mappa arbitraria tra complessi CW può sempre
essere deformata in una mappa cellulare:

Teorema 4.4 (Approssimazione cellulare). Ogni mappa f : X → Y tra com-
plessi CW è omotopa ad una mappa cellulare. Inoltre, se f era già cellulare
su un sottocomplesso A ⊂ X, l’omotopia può essere scelta in modo che sia
stazionaria su A.

Per la dimostrazione rimandiamo il lettore al libro di Hatcher [Hat02,
Teorema 4.8]. Otteniamo così il seguente corollario:

Corollario 4.5. Per ogni coppia di interi 0 ≤ n < k abbiamo πn(Sk) = 0.

Dimostrazione. Se consideriamo Sn e Sk con la loro classica struttura di
complesso CW, ossia composte da una 0-cella ed una cella di dimensione
massima, con le 0-celle come punti base, allora ogni mappa che preserva il
punto base Sn → Sk è omotopa ad una mappa cellulare. Visto che in Sk

l’unica cella che ha dimensione minore di n è la 0-cella, abbiamo che la mappa
cellulare deve essere costante.
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Ogni mappa di coppie f : (X,A) → (Y,B) di complessi CW può essere
deformata attraverso mappe di coppie (X,A) → (Y,B) ad una mappa cel-
lulare. Infatti, per il Teorema 4.4 deformiamo la restrizione f |A : A → B ad
una mappa cellulare, successivamente estendiamo questo ad un omotopia di
f su tutto X, e infine deformiamo la mappa ottenuta per renderla cellulare,
mantendendola stazionaria su A.

4.1.3 L’approssimazione CW

L’obiettivo di questa sezione è mostrare che ogni spazio topologico è de-
bolmente omotopicamente equivalente a un complesso CW. Per prima cosa
diamo una definizione che generalizza l’idea di semplicemente connesso.

Definizione 4.6 (n-connesso). Uno spazio topologico X con punto base
x0 ∈ X è detto n-connesso se πi(X, x0) = 0 per ogni 0 ≤ i ≤ n.

Osservazione 4.7. La nozione di 0-connesso equivale a dire che X è connesso
per archi, così come 1-connesso equivale al fatto che X sia semplicemente
connesso. Inoltre, visto che n-connesso implica 0-connesso, la scelta del punto
base è irrilevante.

Esiste anche una versione relativa della precedente definizione:

Definizione 4.8 (Coppia n-connessa). Una coppia (X,A) è detta n-connessa
se πi(X,A, x0) = 0 per ogni x0 ∈ A, e per ogni 1 ≤ i ≤ n.

Osservazione 4.9. Esiste anche una definizione per il caso i = 0, nonostante
non abbiamo definito i gruppi di omotopia relativi π0. In questo caso diciamo
che è n-connesso se ogni mappa (D0, ∂D0) → (X,A) è omotopa relativamen-
te a ∂D0 ad una mappa D0 → A. Questo equivale a richiedere che ogni
componente connessa di X contenga punti in A, dal momento che D0 è un
punto e ∂D0 è l’insieme vuoto.

Ora introduciamo cosa vuol dire approssimazione CW :

Definizione 4.10 (Approssimazione CW). Sia X uno spazio topologico e
Z un complesso CW. Il dato di Z e di un’equivalenza omotopica debole
f : Z → X è detto approssimazione CW di X.

L’idea rimane quella di riuscire a lavorare con spazi più semplici, come i
complessi CW, dove, per esempio, è possibile argomentare guardando cella
per cella. A questo proposito sarà utile considerare anche versione semplifica-
te per quanto riguarda le coppie (X,A), richiedendo che godano di proprietà
omotopiche migliori. Questo motiva la seguente definizione:
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Definizione 4.11 (Modello CW n-connesso per una coppia). Sia A ̸= ∅ un
complesso CW e supponiamo di avere una coppia (X,A). Un modello CW
n-connesso per la coppia (X,A) è il dato di una coppia di complessi CW
n-connessa (Z,A) e di una mappa f : Z → X tale che la restrizione f |A sia
l’identità, πi(f) : πi(Z) → πi(X) sia un isomorfismo per i > n, ed iniettiva
per i = n.

Osservazione 4.12. La definizione appena data si riduce a quella precedente
quando consideriamo n = 0 e A è definito scegliendo un punto in ciascuna
componente connessa. In questo caso π0 : π0(Z) → π0(X) è suriettiva, oltre
che iniettiva.

Concludiamo con un fatto dimostrato da Hatcher [Hat02, Corollario 4.19]

Proposizione 4.13. Un modello CW n-connesso per la coppia (X,A) è
unico a meno di un’equivalenza omotopica relativa ad A. In particolare, le
approssimazioni CW di spazi sono uniche a meno di un’equivalenza omoto-
pica.

4.1.4 Il Teorema di Hurewicz

Enunciamo un ultimo risultato importante in topologia algebrica che lega i
gruppi di omotopia a quelli di omologia:

Teorema 4.14 (Teorema di Hurewicz). Se uno spazio topologico X è (n−1)-
connesso, n ≥ 2, allora H̃i(X) = 0 per 0 ≤ i < n e πn(X) ∼= Hn(X). Se una
coppia (X,A) è (n − 1)-connessa, n ≥ 2, con A semplicemente connesso e
non vuoto, allora Hi(X,A) = 0 per 0 ≤ i < n e πn(X,A) ∼= Hn(X,A). Qui
H̃i indica l’omologia ridotta.

In realtà siamo interessati a una versione più generale del caso relativo di
quella appena enunciata. Definiamo π′n(X,A, x0) come il gruppo ottenuto da
πn(X,A, x0) quozientando per il sottogruppo generato da tutti gli elementi
della forma [γ] · [f ] − [f ], con [γ] ∈ π1(A, x0) e [f ] ∈ πn(X,A, x0). Nel
caso n = 2, quando il gruppo non è detto che sia abeliano, consideriamo il
sottogruppo normale generato dagli elementi di quella forma.

Teorema 4.15 (Teorema di Hurewicz generale). Siano X,A ̸= ∅ spazi topo-
logici connessi per archi e sia n ≥ 2 un intero. Se la coppia (X,A) è (n−1)-
connessa allora la funzione h′ : π′n(X,A, x0) → Hn(X,A) è un isomorfismo e
Hi(X,A) = 0 per 0 ≤ i < n.

La funzione h′ è indotta sui gruppi quozienti precedentemente definiti
dalla funzione h : πn(X,A, x0) → Hn(X,A) chiamata mappa di Hurewicz. Se
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consideriamo πn(X,A, x0) per n > 0 come l’insieme delle classi di omotopia
di mappe f : (Dn, ∂Dn, s0) → (X,A, x0), la mappa di Hurewicz è definita
come h([f ]) = Hn(f)(α) dove α è un generatore fissato di Hn(D

n, ∂Dn) ∼= Z,
e Hn(f) : Hn(D

n, ∂Dn) → Hn(X,A) è la funzione indotta da f sui gruppi
di omologia. La funzione h è un omomorfismo quando n > 1, ossia quando
abbiamo una struttura di gruppo su πn(X,A, x0).
Per le dimostrazione di questi teoremi e ulteriori approfondimenti si consulti
il libro di Hatcher [Hat02, Sezione 4.2].

4.2 Le torri di Postnikov

Una torre di Postnikov per uno spazio topologico X con-
nesso per archi è un diagramma commutativo come quello
a destra, tale che:

1. La mappa X → Xn induce isomorfismi sui gruppi di
omotopia πi per ogni 0 ≤ i ≤ n.

2. πi(Xn) = 0 per ogni i > n.

...

X3

X2

X X1

Esempio 4.16. Sia X uno spazio topologico K(G, n) (e.g. S1 = K(Z, 1)).
Allora una torre di Postnikov per X è data da:

Xi =

{
X, i ≥ n

∗, altrimenti

dove la mappa X → Xi è data dall’identità, o dalla mappa costante nel punto
∗.

In generale andremo a trattare solo il caso in cui lo spazio topologico X è
un complesso CW connesso poiché in questo caso la torre di Postnikov esiste
sempre. Infatti, consideriamo celle di dimensione n+2 e utilizziamo le mappe
cellulari Sn+1 → X che generano πn+1(X) come mappe di attaccamento
ad X. Osserviamo che una mappa f è omotopa alla mappa costante in
πn+1(X) se e solo se f si estende al disco, ossia se e solo se esiste una mappa
F : Dn+1 → X tale che F |Sn+1 = f . Dunque lo spazio che otteniamo ha
πn+1 banale. Allora ripetiamo il processo, attaccando celle di dimensione
n + 3 e otteniamo uno spazio con πn+2 banale. Iterando un numero infinito
di volte otteniamo il risultato, ossia uno spazio topologico Xn che soddisfa la
definizione. Infatti, l’inclusione X ↪→ Xn si estende ad una mappa Xn+1 →
Xn grazie al Lemma di Estensione 4.3, dal momento che Xn+1 è ottenuto da
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X attaccando celle di dimensione uguale o maggiore a n + 3 e πi(Xn) = 0
per i > n. Gli spazi Xn possono essere pensati come troncature di X, le
quali forniscono approssimazioni migliori al crescere di n. Infine osserviamo
che la torre di Postnikov per un complesso CW connesso è unica a meno di
equivalenze omotopiche, come testimoniato dalla Proposizione 4.13.

Se trasformiamo la mappa Xn → Xn−1 in una fibrazione, guardando alla
successione esatta lunga del Teorema 2.4, ci accorgiamo che la sua fibra Fn

è un K(πnX,n):

πi+1(Xn) → πi+1(Xn−1) → πi(Fn) → πi(Xn) → πi(Xn−1)

Possiamo sostituire ogni mappa Xn → Xn−1 con
una fibrazione X ′n → X ′n−1, partendo da X2 → X1

e proseguendo in dimensioni superiori. Per il pas-
so induttivo, possiamo rimpiazzare la composizione
Xn → Xn−1 ↪→ X ′n−1 con una fibrazione X ′n → X ′n−1
che fa commutare il diagramma a destra.

Xn X ′n

Xn−1 X ′n−1

Dunque possiamo richiedere che una torre di Postnikov soddisfi anche la
seguente condizione:

3. La mappa Xn → Xn−1 è una fibrazione con fibra un K(πnX,n).

Nella misura in cui le fibrazioni possono essere pensate come prodotti “in-
trecciati”, a meno di un’equivalenza omotopica, gli spazi Xn di una torre
di Postnikov possono essere pensati come prodotti “intrecciati” di spazi di
Eilenberg-Maclane K(πnX,n).
Per molti scopi si può sostituire il complesso CW X con uno degli Xn co-
struiti, per esempio se si è interessati all’omotopia o omologia in dimensione
al più n. Tuttavia, per determinare completamente l’omotopia di X dalla
sua torre di Postnikov, è necessario una sorta di limite.

Definizione 4.17 (Limite inverso di una successione di spazi topologici).
Data una successione di mappe · · · → X2 → X1, definiamo il limite inverso
lim
←−

Xn come il sottospazio dello spazio prodotto
∏

nXn, dato dalle sequenze
di punti xn ∈ Xn, tale che xn viene mappato in xn−1 tramite la mappa
Xn → Xn−1.

Abbiamo inoltre una corrispondente nozione algebrica:

Definizione 4.18 (Limite inverso di una successione di gruppi). Data una
successione di omomorfismi di gruppi · · · → G2 → G1, definiamo il limite
inverso lim

←−
Gn come il sottogruppo del gruppo prodotto

∏
nGn, dato dalle

successione di elementi gn ∈ Gn, tale che gn viene mappato in gn−1 tramite
l’omomorfismo Gn → Gn−1.
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Proposizione 4.19. Per una successione arbitraria di fibrazioni

· · · → X2 → X1,

la mappa naturale λ : πi(lim←−
Xn) → lim

←−
πi(Xn) è suriettiva. Inoltre, λ è

iniettiva se le mappe πi+1(Xn) → πi+1(Xn−1) sono suriettive per n sufficien-
temente grande.

Dimostrazione. Scegliamo un rappresentante per un elemento di lim
←−

πi(Xn),

dato dalle mappe fn : (Si, s0) → (Xn, xn). Sappiamo che la mappa di proie-
zione pn : Xn → Xn−1 porta [fn] in [fn−1] e consideriamo l’omotopia H : Si×
I → Xn−1 tra pn◦fn e fn−1. Visto che pn è una fibrazione, possiamo applicare
la proprietà di sollevamento delle omotopie 2.2, ottenendo così un’omotopia
H̃ : Si × I → Xn. In particolare vale pn(H̃(x, 1)) = H(x, 1) = fn−1, dove
H̃(x, 1) =: f ′n−1 è omotopo tramite H̃ alla mappa fn. Dunque possiamo so-
stituire la mappa di partenza fn con una mappa omotopa, che fissa s0, tale
che pn ◦ fn = fn−1. Procedendo induttivamente per al variare di n ≥ 2,
otteniamo che la relazione vale per ogni n, e questo ci dà la suriettività di λ.
Prima di trattare l’iniettività, ricordiamo la definizione di sottinsieme cofi-
nale.

Definizione 4.20 (Sottinsieme cofinale). Sia (I,≤) un insieme parzialmente
ordinato. Un sottinsieme J ⊂ I si dice cofinale in I se per ogni i ∈ I, ∃j ∈ J
tale che i ≤ j.

Osserviamo che preso un sottoinsieme di indici cofinale, il limite inverso
resta invariato. Di conseguenza anche eliminando un numero finito di ter-
mini alla fine della successione di spazi o gruppi otteniamo lo stesso limite
inverso. Possiamo quindi assumere che le mappe πi+1(Xn) → πi+1(Xn−1)
siano suriettive per ogni n. Consideriamo un rappresentante di πi(lim←− Xn)

dato dalla mappa f : Si → lim
←−

Xn, e supponiamo venga mandato da λ nel-
l’elemento neutro di lim

←−
πi(Xn). La funzione relativa all’n-esima coordinata

di f , fn : Si → Xn, deve essere anche’essa omotopa ad una mappa costante.
Dunque si estende ad una funzione Fn : D

i+1 → Xn. Abbiamo che per i punti
di Si vale pn ◦Fn = Fn−1, quindi possiamo pensare a pn ◦Fn e Fn−1 come alle
restrizione ai due emisferi di Si+1 di una mappa gn−1 : Si+1 → Xn−1. Possia-
mo sfruttare la suriettività di πi+1(Xn) → πi+1(Xn−1) per riscegliere Fn in
modo tale che pn ◦Fn ≃ Fn−1 relativamente a Si. Questo equivale a dire che
gn−1 è omotopa ad una mappa costante. Analogamente a quanto fatto nella
dimostrazione della suriettività, sfruttiamo la proprietà di sollevamento delle
omotopie per la coppia (Di+1, Si) e otteniamo pn ◦ Fn = Fn−1. Procedendo
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per induzione su n ≥ 2. Osserviamo che f : Si → lim
←−

Xn è omotopa ad una
mappa costante. Abbiamo così mostrato che λ è iniettiva.

Otteniamo direttamente il seguente corollario:

Corollario 4.21. Per la torre di Postnikov di un complesso CW connesso X,
la mappa naturale X → lim

←−
Xn è un’equivalenza omotopica debole. Dunque

X è un’approssimazione CW di lim
←−

Xn.

Dimostrazione. La composizione πi(X) → πi(lim←−
Xn)

λ−→ lim
←−

πi(Xn) è un
isomorfismo, dal momento che πi(X) → πi(Xn) è un isomorfismo per n
sufficientemente grande.

Abbiamo visto come decomporre un complesso CW connesso X nei ter-
mini della sua torre di Postnikov. Ora consideriamo il processo inverso.
Vogliamo costruire la torre a partire da uno spazio topologico X1 di tipo
K(π, 1), costruendo induttivamente Xn a partire da Xn−1. L’ideale sarebbe
che la fibrazione K(π.n) → Xn → Xn−1 si estendesse a destra ad un altro
termine, in modo da formare una successione di fibrazioni del tipo:

K(π, n) → Xn → Xn−1 → K(π, n+ 1). (*)

In questo caso Xn sarebbe la fibra omotopica di una mappa Xn−1 → K(π, n+
1).
Osservazione 4.22. La tesi non tratta di teoria della coomologia, ma un ri-
sultato di Hatcher [Hat02, Teorema 4.57] afferma che le classi di omotopia di
mappe del tipo Xn−1 → K(π, n + 1) sono in corrispondenza biunivoca con
gli elementi di Hn+1(Xn−1; π).
Come già osservato nel Capitolo 3 la fibra omotopica di una mappa Xn−1 →
K(π, n + 1) è la stessa cosa, a meno di invertire il verso di percorrenza
dei cammini, del pullback della fibrazione dei cammini PK(π, n + 1) →
K(π, n + 1), e il suo tipo di omotopia dipende solo dalla classe di omotopia
della mappa Xn−1 → K(π, n+ 1), come indicato dalla Proposizione 3.12.
Osservazione 4.23. L’ultimo termine nella successione di fibrazioni (*) non
può essere nient’altro che uno spazio K(π, n+ 1). Infatti, lo spazio dei lacci
di un complesso CW è omotopicamente equivalente ad un complesso CW.
Questa è una conseguenza di un teorema di Milnor [Mil59], il quale afferma
che la fibra omotopica di una mappa arbitraria tra complessi CW ha lo stesso
tipo di omotopia di un complesso CW. Allora, per la Proposizione 3.16, si
ha πn+1(K(π, n + 1)) ∼= πn(ΩK(π, n + 1)) e per il Teorema di Whitehead
4.1 otteniamo che lo spazio dei lacci ha lo stesso tipo di omotopia del primo
termine della successione, ossia K(π, n).
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Diamo ora una definizione generale che sarà utile a breve:

Definizione 4.24 (Fibrazione principale). Una fibrazione F → E → B si
dice principale se esiste un diagramma commutativo

F E B

ΩB′ F ′ E ′ B′

dove la seconda riga è una successione di fibrazioni e le mappe verticali sono
equivalenze omotopiche deboli.

Nel contesto descritto sopra:

K(π, n) Xn Xn−1

ΩK(π, n+ 1) Xn Xn−1 K(π, n+ 1)

Dunque se tutte le fibrazioni in una torre di Postnikov per X sono principali,
allora abbiamo il seguente diagramma:

...

K(π3X, 3) X3 K(π4X, 5)

K(π2X, 2) X2 K(π3X, 4)

K(π1X, 1) = X1 K(π2X, 3)

k3

k2

k1

dove ogniXn+1 è, a meno di un’equivalenza omotopica, la fibra omotopica del-
la mappa kn : Xn → K(πn+1, n+2). La mappa kn, per quanto detto in prece-
denza nell’Osservazione 4.22, è equivalente ad una classe inHn+2(Xn; πn+1X)
chiamata l’n-esimo k-invariante di X. Da un punto di vista intuitivo, queste
classi coomologiche possono essere viste come delle regole per costruire indut-
tivamente X a partire dagli spazi di Eilenberg-Maclane. Per esempio, se tutti
i kn sono la funzione costante, X è solo lo spazio prodotto dei K(πnX,n), e
nel caso generale X è una sorta di prodotto “intrecciato” dei K(πnX,n). La
costruzione effettiva di uno spazio a partire dai suoi k-invarianti è in genere
un procedimento troppo macchinoso per essere eseguito concretamente. Tut-
tavia, come strumento teorico, tale procedimento può rivelarsi estremamente
utile. Il risultato seguente ci dice quando questo strumento è disponibile:
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Teorema 4.25. Un complesso CW connesso X ammette una torre di Post-
nikov di fibrazioni principali se e solo se π1(X) agisce banalmente su πn(X)
per ogni n > 1.

Osserviamo che nella definizione di fibrazione principale, la mappa F →
ΩB′ esiste automaticamente ed è un’equivalenza omotopica debole per ipo-
tesi. Pertanto, capire se una fibrazione è principale si riduce al seguente
problema:

Problema 4.26. Data una mappa A→ X, esiste una
fibrazione F → E → B e un diagramma commutativo
come quello a destra tale che le mappe verticali siano
equivalenze omotopiche deboli?

A X

F E

Nel problema precedente possiamo rimpiazzare A e X con complessi CW
attraverso l’approssimazione CW, e cambiare la mappa risultante f : A→ X
in un’inclusione attraverso il cilindro mappante, dove quest’ultimo è il quo-
ziente di (A× I)⊔X ottenuto identificando i punti (a, 1) ∈ A× I con i punti
f(a) ∈ X. In generale il cilindro mappante Mf si retrae per deformazione sul
sottospazio X muovendo i punti (x, t) lungo il segmento {x} × I ⊂ Mf fino
al punto finale f(x) ∈ X. L’inclusione segue dall’identificazione di A con il
sottospazio A × {0} ⊂ Mf . La questione quindi diventa capire quando una
coppia di complessi CW (X,A) è equivalente ad una coppia (E,F ), ossia ca-
pire quando esiste una fibrazione F → E → B e una mappa (X,A) → (E,F ),
per le quali entrambe le mappe X → E e A→ F sono equivalenze omotopi-
che deboli. In generale la risposta sarà raramente affermativa, dal momento
che la fibra omotopica di A ↪→ X dovrebbe avere lo stesso tipo di omotopia
debole di uno spazio dei lacci, che è una condizione molto restrittiva. Tutta-
via, nella situazione di una torre di Postnikov, la fibra omotopica è proprio un
K(π, n) con π abeliano dato che n ≥ 2, e dunque ha lo stesso tipo di omoto-
pia di uno spazio dei lacci. Tuttavia, dobbiamo anche richiedere che: l’azione
di π1(A) su πn(X,A) sia banale per n ≥ 1. Questo è equivalente a richiedere
che l’azione di π1(F ) su πn(E,F ) sia banale. Mostriamo che ciò è sempre
vero per le fibrazioni. Tramite l’isomorfismo πn : πn(E,F, x0) → πn(B, x0)
un elemento γα−α, con γ ∈ π1(F ) e α ∈ πn(E,F, x0), viene mappato nell’e-
lemento π1(p)(γ)πn(α)−πn(α) che è zero, perché π1(p) appartiene al gruppo
banale π1(x0)=0.
Nel capitolo precedente, subito dopo la Definizione 3.15, abbiamo visto che i
gruppi di omotopia relativi πn(X,A) sono sempre isomorfi al gruppo di omo-
topia πn−1 della fibra omotopica dell’inclusione A ↪→ X. Quindi, quando la
fibra omotopica è un K(π, n), l’unico gruppo di omotopia relativo non ba-
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nale è πn+1(X,A) ∼= π. In questa situazione, la condizione necessaria legata
all’azione banale è anche sufficiente:

Lemma 4.27. Sia (X,A) una coppia di complessi CW con X e A entrambi
connessi, tali che la fibra omotopica dell’inclusione A ↪→ X sia un K(π, n)
con n ≥ 1. Allora esiste una fibrazione F → E → B e una mappa di coppie
(X,A) → (E,F ), che induce le equivalenze omotopiche deboli X → E e
A→ F , se e solo se l’azione di π1(A) su πn+1(X,A) è banale.

Dimostrazione. Per quanto detto in precedenza, rimane da dimostrare solo
che la condizione sull’azione del π1(A) su πn+1(X,A) sia sufficiente. Ab-
biamo già osservato che i gruppi πi(X,A) sono tutti zero, fatta eccezione
per πn+1(X,A) ∼= π. Se l’azione di π1(A) su πn+1(X,A) è banale, il Teo-
rema di Hurewicz 4.15 ci dà l’isomorfismo πn+1(X,A) ∼= Hn+1(X,A). Dal
momento che (X,A) è n-connesso, possiamo assumere che A contenga l’n-
scheletro di X, dunque X/A è n-connesso e il Teorema di Hurewicz generale
4.14 ci dà l’isomorfismo πn+1(X/A) ∼= Hn(X/A). Quindi la mappa quo-
ziente X → X/A induce un isomorfismo πn+1(X,A) ∼= πn+1(X/A), visto
che l’affermazione analoga per i gruppi di omologia è vera. Abbiamo che
πn+1(X/A) ∼= π, e possiamo costruire un K(π, n + 1) a partire da X/A at-
taccando celle di dimensione maggiore o uguale a n + 3. Questo ci porta al
seguente diagramma:

A X X/A

Fk Ek K(π, n+ 1)

k
≃

dove le mappe verticali sono inclusioni, e la riga in basso è ottenuta conver-
tendo la mappa k in una fibrazione. La mappa A→ Fk è un’equivalenza omo-
topica debole, come possiamo osservare dal Lemma Dei Cinque [Hat02, The
Five-Lemma] applicato alla mappa tra la successione esatta lunga dei gruppi
di omotopia per la coppia (X,A) e quella per (Ek, Fk), calcolate tramite i
Teoremi 1.27 e 2.4. Gli unici gruppi di omotopia relativa non banali sono per
entrambi πn+1, i quali si mappano isomorficamente in πn+1(K(π, n+1)).

Abbiamo ora tutti gli strumenti per dimostrare il Teorema 4.25.

Dimostrazione. Per il Lemma 4.27, tutto quello che dobbiamo fare è identi-
ficare l’azione di π1(X) su πn(X) con l’azione di π1(Xn) su πn(Xn−1, Xn) per
n ≥ 2, dove Xn → Xn−1 è interpretata come una mappa di inclusione. Dalla
successione esatta

0 = πn+1(Xn−1) → πn+1(Xn−1, Xn)
∂−→ πn(Xn) → πn(Xn−1) = 0
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abbiamo un isomorfismo πn+1(Xn−1, Xn) ∼= πn(Xn) che rispetta l’azione di
π1(Xn). Inoltre, la mappa X → Xn induce isomorfismi sui π1 e sui πn,
dunque possiamo concludere.

4.3 Le torri di Moore-Postnikov

Consideriamo una generalizzazione delle torri di Postnikov, in cui si parte da
una mappa f : X → Y tra spazi topologici connessi per archi e non da un
singolo spazio come in precedenza. Una torre di Moore-Postnikov per f è un
diagramma commutativo come il seguente:

...

Z3

Z2

X Z1 Y

dove ogni composizione X → Zn → Y è omotopa ad f , e tale che:

(1) La mappa X → Zn induce un isomorfismo sui πi per i < n e una mappa
suriettiva per i = n.

(2) La mappa Zn → Y induce un isomorfismo su πi per i > n e una mappa
iniettiva per i = n.

(3) La mappa Zn+1 → Zn è una fibrazione con fibra un K(πn(F ), n) dove
F è la fibra omotopica di f .

Una torre di Moore-Postnikov si riduce al caso di una torre di Postnikov
quando prendiamo Y come un punto e scegliamo Xn = Zn+1. Scartiamo lo
spazio Z1 perché ha tutti i gruppi di omotopia banali, dato che πn(Z1) ∼=
πn(Y ) = 0 per ogni n ≥ 1.

Teorema 4.28. Ogni mappa f : X → Y tra complessi CW ammette una tor-
re di Moore-Postnikov, che è unica a meno di equivalenza omotopica. Una
torre di Moore-Postnikov di fibrazioni principali esiste se e solo se π1(X) agi-
sce banalmente su πn(Mf , X) per ogni n > 1, dove Mf è il cilindro mappante
di f .
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Dimostrazione. Per la dimostrazione dell’esistenza e dell’unicità di un dia-
gramma che soddisfa le proprietà (1) e (2) della definizione, rimandiamo il
lettore a dei risultati classici che possono essere trovati nel libro di Hatcher
[Hat02, Proposizioni 4.13, 4.18] applicati alla coppia (Mf , X). Con questo
diagramma, possiamo procedere come nel caso delle torri di Postnikov, so-
stituendo ogni mappa Zn → Zn−1 con una fibrazione omotopicamente equi-
valente, iniziando con Z2 → Z1 e scalando verso l’alto la torre. Possiamo
applicare la proprietà di sollevamento delle omotopie per rendere i triango-
li nella metà di sinistra strettamente commutativi. Dopo questi passaggi, i
triangoli nella metà di destra commutano a meno di omotopia. Per renderli
strettamente commutativi possiamo rimpiazzare ogni mappa verso Y con la
composizione che passa da Z1. Per vedere che le fibre di mappe Zn+1 → Zn

sono spazi di Eilenberg-Maclane, come nella condizione (3), consideriamo due
livelli successivi della torre:

Zn+1

X Y.

Zn

Possiamo assumere che le mappe Zn+1 → Zn siano inclusioni considerando
i cilindri di mappa, prima quello di X → Zn+1, poi della nuova mappa
Zn+1 → Zn, e infine della nuova mappa Zn → Y . Dal triangolo commutativo
di sinistra del diagramma otteniamo che Zn+1 → Zn è un isomorfismo sui
πi per ogni i < n e una suriezione per i = n, dunque πi(Zn, Zn+1) = 0
per i < n + 1. Similmente, il triangolo di destra dà πi(Zn, Zn+1) = 0 per
i > n+ 1. Per mostrare che πn+1(Zn, Zn+1) ∼= πn+1(Y,X) usiamo il seguente
diagramma:

πn+1(Zn+1) πn+1(Zn) πn+1(Zn, Zn+1) πn(Zn+1) πn(Zn)

πn+1(Zn+1) πn+1(Y ) πn+1(Y, Zn+1) πn(Zn+1) πn(Y )

πn+1(X) πn+1(Y ) πn+1(Y,X) πn(X) πn(Y )

= ∼= =

= ∼= =

La mappa verticale in alto a destra è iniettiva, mentre quella in basso a
sinistra è suriettiva. Dunque per il Lemma Dei Cinque [Hat02, The Five-
Lemma] le due mappe verticali sono isomorfismi. Dal momento che la fibra
omotopica di un’inclusione A ↪→ B ha i πi uguali a πi+1(B,A), vediamo che
la condizione (3) è soddisfatta.
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L’affermazione riguardo a una torre principale di fibrazioni può essere ottenu-
ta come un’applicazione del Lemma 4.27. Come abbiamo visto in precedenza,
esiste un isomorfismo πn+1(Y,X) ∼= πn+1(Zn, Zn+1) che rispetta l’azione di
π1(X) ∼= π1(Zn+1), e perciò il lemma ci dà il risultato.

4.4 Applicazioni
Concludiamo la tesi con alcuni risultati in cui le torri di Postnikov sono
centrali.
In topologia algebrica è comune incontrare situazioni in cui si vuole sollevare o
estendere una mappa. Un esempio incontrato precedentemente è la proprietà
di sollevamento delle omotopie. Nella forma più semplice, le domande relative
all’estensione e ai sollevamenti possono essere riformulate in uno dei seguenti
modi:

Problema 4.29 (Il problema dell’estensione). Date
una coppia di complessi CW (W,A) e una mappa A→
X, questa si estende ad una mappa W → X?

A X

W

Problema 4.30 (Il problema del sollevamento). Date
una fibrazione X → Y e una mappa W → Y , esiste
un sollevamento W → X?

X

W Y

Per far sì che il problema dei sollevamenti includa casistiche come la proprie-
tà di sollevamento delle omotopie, lo generalizziamo ad una forma relativa:

Problema 4.31 (Il problema del sollevamento rela-
tivo). Date una coppia di complessi CW (W,A), una
fibrazione X → Y , e una mappa W → Y , esiste un
sollevamento W → X che estende un sollevamento
dato su A?

A X

W Y

Ovviamente, ci possiamo ridurre al caso assoluto se prendiamo A = ∅. In
realtà la forma appena enunciata include anche il problema dell’estensione di
una mappa, che otteniamo scegliendo Y uguale ad un punto. Le condizioni
che abbiamo messo, per quanto restrittive, sono spesso verificate in molti casi
interessanti. Si potrebbero eliminare tali richieste, ma questo porterebbe ad
una difficoltà maggiore. Lo strumento della topologia algebrica che si occupa
di trovare una soluzione a questi problemi è chiamato teoria dell’ostruzio-
ne e fa riferimento ad una procedura per definire una successione di classi
di coomologia che misurano l’ostruzione a trovare una soluzione ai problemi
precedenti. Ci sono due modi per sviluppare la teoria, praticamente identici:
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il primo si occupa di costruire il sollevamento o l’estensione su una cella di
W per volta, procedendo induttivamente sullo scheletro di W . Il secondo
può essere più difficile, ma ha il vantaggio che diventa un’applicazione quasi
banale delle torri di Postnikov per il problema dell’estensione, e delle tor-
ri di Moore-Postnikov per quello dei sollevamenti. Per un introduzione più
dettagliata all’argomento si consulti il libro di Hatcher [Hat02, Sezione 4.3,
Obstruction Theory].

Come abbiamo spiegato nella tesi un problema centrale in topologia con-
siste nel calcolo dei gruppi di omotopia. Tuttavia ad oggi non si conosce
nessun complesso CW finito, semplicemente connesso e non contraibile di cui
sappiamo calcolare tutti i suoi gruppi di omotopia [Ale12]. Per questo un
problema classico che affascina ed ha affascinato da sempre i matematici è lo
studio dei gruppi di omotopia delle sfere Sn per n ≥ 2. Utilizzando la teoria
delle sequenze spettrali [McC01], che non trattiamo nella tesi, ed applicando
la teoria delle torri di Postnikov che abbiamo discusso, uno può provare i
seguenti teoremi:

Teorema 4.32. Consideriamo le sfere 2-dimensionali allora vale: π4(S2) ∼=
Z/2Z.

Similmente otteniamo:

Teorema 4.33. Se X è un complesso CW finito, che è connesso, sempli-
cemente connesso e non contraibile, allora πi(X) contiene un sottogruppo
isomorfo a Z o a Z/2Z per infiniti indici i.

Questo teorema ci mostra effettivamente perché sia così difficile trovare un
complesso CW X finito, semplicemente connesso e non contraibile di cui si
conoscono tutti i πn. Infatti questo avrà infiniti gruppi di omotopia di ordine
superiore da studiare.
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