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Introduzione

Il presente elaborato mira ad analizzare la classe di complessità del pro-

blema DUAL. Il problema della dualità degli ipergrafi DUAL è un problema

di decisione, definito come segue:

Definizione 0.0.1 (DUAL). Siano G e H due ipergrafi. Un’istanza I =

⟨G,H⟩ appartiene al problema della dualità degli ipergrafi, DUAL, se e solo

se G e H sono ipergrafi duali.

Il problema della dualità degli ipergrafi, e alcune sue varianti, trova nu-

merose applicazioni pratiche in svariati settori, dalla biologia computazionale

[1] [2] al data mining e al machine learning [3].

La nostra trattazione si concentrerà sul collocamento del problema com-

plementare DUAL all’interno della classe di complessità GC(log2(n),TC0).

L’elaborato è suddiviso nei seguenti capitoli:

• Capitolo 1: Classi di complessità

Introduciamo il modello di Macchina di Turing deterministica e non

deterministica, definiamo le classi di complessità temporale e spaziale

e forniamo un approfondimento sul principale risultato di complessità

di questo elaborato.

• Capitolo 2: Concetti preliminari

Vengono affrontate le prime definizioni riguardanti le istanze del pro-

blema e le loro proprietà. Si introducono i concetti fondamentali di

dualità, transversal e new transversal di un ipergrafo.

i



ii INTRODUZIONE

• Capitolo 3: Decomposizione di DUAL

In questo capitolo ci concentriamo sulla struttura del problema, per

permettere la sua semplificazione. Concretamente, vengono introdot-

ti il concetto di assegnamento parziale (σ), albero degli assegnamenti

(T (G,H)) e estensioni di assegnamenti, essenziali per la ricerca di un

new transversal.

• Capitolo 4: Algoritmo

Il fulcro della trattazione si concentra in questo capitolo, il quale ana-

lizza l’algoritmo ND-NotDUAL, una procedura non deterministica di

guess and check, per la risoluzione di DUAL. Tale algoritmo è stato ori-

ginariamente proposto e sviluppato da Georg Gottlob e Enrico Malizia

nell’articolo Achieving New Upper Bounds for the Hypergraph Duality

Problem through Logic[4].
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Capitolo 1

Classi di complessità

Per studiare la classe di complessità di un problema è necessario, innan-

zitutto, introdurre alcune basi di Informatica Teorica. Il presente capitolo

fornisce, pertanto, le definizioni essenziali che permetteranno di comprende-

re a pieno la trattazione algoritmica e la formalizzazione del risultato finale,

ovvero la dimostrazione che DUAL appartiene alla classe GC(log2(n),TC0).

1.1 Macchina di Turing

La Macchina di Turing è un modello matematico astratto di calcolo, idea-

to da Alan Turing nel 1936, che formalizza il concetto intuitivo di algoritmo.

A differenza di un automa a stati finiti, la Macchina di Turing dispone di

una memoria illimitata. Questa risorsa le conferisce un potere computazio-

nale notevolmente superiore, rendendola il modello matematico più accurato

di un computer general purpose. Per questo motivo, il potere di calcolo del-

la Macchina di Turing è ritenuto equivalente a quello di qualsiasi computer

esistente.

Il modello della Macchina di Turing utilizza un nastro infinito come sua

memoria illimitata. Essa possiede una testina che può leggere e scrivere

simboli e muoversi lungo il nastro. Inizialmente il nastro contiene solo la

stringa di input ed è vuoto ovunque altrove. Se la macchina ha bisogno
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2 1. Classi di complessità

di immagazzinare informazioni, può scrivere queste informazioni sul nastro.

Per leggere le informazioni che ha scritto, la macchina può muovere la sua

testina su di esse. La macchina continua a calcolare finché non decide di

produrre un output. Gli output accept e reject si ottengono entrando in stati

di accettazione e di rifiuto designati. Se non entra in uno stato di accettazione

o di rifiuto, continuerà all’infinito, senza mai fermarsi.

Definizione 1.1.1 (Macchina di Turing deterministica). Una Macchina di

Turing si indica con M = ⟨Q,Σ,Γ, δ, q0, qacc, qrej⟩, tale che:

• Q è un insieme finito di stati della macchina.

• Σ è l’alfabeto di input (non contenente il simbolo di blank, ⊔).

• Γ è l’alfabeto del nastro, con ⊔ ∈ Γ e Σ ⊆ Γ.

• δ : Q × Γ → Q × Γ × {L,R} è la funzione di transizione, dove

L e R indicano lo spostamento verso sinistra e destra della testina,

rispettivamente.

• q0 ∈ Q è lo stato iniziale.

• qacc ∈ Q è lo stato di accettazione.

• qrej ∈ Q è lo stato di rifiuto.

In una Macchina di Turing deterministica, lo stato corrente della macchi-

na e i simboli scansionati dalla testina sul nastro determinano inequivoca-

bilmente lo stato successivo della macchina e il movimento della testina. Al

contrario, una Macchina di Turing non deterministica può procedere, durante

la sua esecuzione, seguendo diverse possibilità.

Definizione 1.1.2 (Macchina di Turing non deterministica). Una Macchina

di Turing non deterministica si indica con M = ⟨Q,Σ,Γ, δ, q0, qacc, qrej⟩, tale
che:

• Q è un insieme finito di stati della macchina.
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• Σ è l’alfabeto di input (non contenente il simbolo di blank, ⊔).

• Γ è l’alfabeto del nastro, con ⊔ ∈ Γ e Σ ⊆ Γ.

• δ : Q × Γ → P(Q × Γ × {L,R}) è la funzione di transizione, dove

L e R indicano lo spostamento verso sinistra e destra della testina,

rispettivamente, e P indica l’insieme delle parti.

• q0 ∈ Q è lo stato iniziale.

• qacc ∈ Q è lo stato di accettazione.

• qrej ∈ Q è lo stato di rifiuto.

Definizione 1.1.3 (Linguaggio). Sia Σ un insieme di simboli, che chiame-

remo alfabeto. Una parola sull’alfabeto Σ è una concatenazione di zero o

più simboli provenienti da Σ. Indichiamo con Σ∗ l’insieme delle parole, di

qualsiasi lunghezza, sull’alfabeto Σ. Sia L ⊆ Σ, allora diciamo che L è un

linguaggio.

Ogni problema di decisione è un linguaggio.

Definizione 1.1.4. Diciamo che una Macchina di Turing M decide un lin-

guaggio L se ∀w ∈ L, la computazione di M su w termina in uno stato

accettante, e ∀w /∈ L, la computazione di M su w termina in uno stato

rifiutante.

Una Macchina di Turing non deterministica termina in uno stato accet-

tante se esiste almeno un branch di computazione che termina in uno stato

accettante.

Definizione 1.1.5 (Computation time). Siano M una Macchina di Turing

e w una stringa in input per M . Il computation time di M su w è il numero

di passi che M esegue prima di arrestarsi su w. Se M è non deterministi-

ca, il computation time di M su w è dato dalla lunghezza del branch di

computazione più lungo.
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Definizione 1.1.6 (Time function). Diciamo che una funzione t : N→ N è

una time function se è crescente e strettamente positiva.

Sia w una stringa. Da ora in poi, indicheremo con ∥w∥ la taglia di w.

Definizione 1.1.7 (Running time). Sia t : N → N una time function. Una

Macchina di Turing M si dice che ha running time t(n) se per ogni stringa w,

a parte un numero finito, il computation time di M su w non eccede t(∥w∥).

Definizione 1.1.8 (Classe di complessità temporale). Sia t : N→ N una ti-

me function. Definiamo la classe di complessità (temporale) DTIME(t(n)) =

{L | L è un linguaggio e ∃M Macchina di Turing deterministica che decide

L tale che il running time di M è O(t(n))}.

Definizione 1.1.9 (Computation space). Siano M una Macchina di Turing

e w una stringa in input per M . Il computation space di M su w è il numero

di celle distinte viste da M sul worktape mentre processa w. Se M è non

deterministica, il computation space di M su w è dato dal massimo numero

di celle viste da M .

Definizione 1.1.10 (Space function). Diciamo che una funzione s : N→ N
è una space function se è crescente e strettamente positiva.

Definizione 1.1.11 (Running space). Sia s : N → N una space function.

Una Macchina di Turing M si dice che ha running space s(n) se per ogni

stringa w, a parte un numero finito, il computation space di M su w non

eccede s(∥w∥).

Definizione 1.1.12 (Classe di complessità spaziale). Sia s : N→ N una spa-

ce function. Definiamo la classe di complessità (spaziale) DSPACE(s(n)) =

{L | L è un linguaggio e ∃M Macchina di Turing deterministica che decide

L tale che il running space di M è O(s(n))}.
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1.2 Classe GC(log2(n),TC0)

La procedura di guess and check è il modo in cui possiamo pensare al

funzionamento di una Macchina di Turing non deterministica durante la

risoluzione di un problema di decisione.

Durante la fase di guess, la macchina sfrutta il suo non determinismo per

indovinare un potenziale certificato o testimone dell’appartenenza di un’i-

stanza I al problema di decisione studiato. Concettualmente, la macchi-

na esplora simultaneamente tutti i branch di computazione per estrarre, se

esiste, un tale certificato.

Successivamente, la macchina dovrà eseguire dei controlli su tale certifi-

cato per verificarne la validità. Pertanto, inizia la fase di check, durante la

quale la macchina agisce deterministicamente.

Definizione 1.2.1. La classe di complessità GC(f(n), C) contiene tutti i

problemi di decisione che dopo un guess di O(f(n)) bits può essere deciso

(check) dentro la classe di complessità C.

Quando trattiamo della classe GC(log2(n),TC0), facciamo riferimento al-

la versione uniforme in tempo logaritmico della classe TC0. In breve, la classe

TC0 è la classe dei problemi di decisione, risolvibili da circuiti booleani, tale

che: la profondità del circuito è limitata da una costante k, indipendente-

mente dalla dimensione dell’input (n); il numero totale di porte (gates) nel

circuito è limitato da un polinomio nella dimensione dell’input (n); le porte

utilizzate possono essere le porte AND, OR e NOT, ma, soprattutto, possono

anche includere porte a soglia o MAJORITY. Queste ultime sono dei conta-

tori che per far passare ‘il segnale’ è sufficiente verificare che la maggioranza

degli input sia True, o che comunque superino almeno una certa soglia.

La verifica dell’appartenenza della fase di check dell’algoritmo, propo-

sto in questo elaborato, alla classe TC0 si basa sulla seguente equivalen-

za: qualsiasi problema di decisione che può essere risolto da un circuito

TC0 (uniforme in tempo logaritmico) può essere descritto da una formula

FO(COUNT), e viceversa. Con FO(COUNT) indichiamo la logica del primo
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ordine con quantificatori di conteggio (“∃!n”). FO(COUNT) è costituita da

due domini: uno contenente oggetti usati per interpretare solo valori nume-

rici, e l’altro contenente tutti gli altri oggetti. Concretamente, la formula

Φ(n, x) = (∃!nx)(φ(x)) significa che esistono esattamente n oggetti x che

soddisfano la proprietà φ. La variabile x spazia sugli oggetti del dominio

non numerico ed è vincolata dal quantificatore di conteggio ∃!n, mentre la

variabile n spazia sugli oggetti del dominio numerico, libera dal quantificatore

di conteggio.



Capitolo 2

Concetti preliminari

In questo capitolo si introducono alcune definizioni e risultati fondamen-

tali per la comprensione del problema DUAL.

2.1 Prime definizioni

Definizione 2.1.1 (Ipergrafo). Un ipergrafo G è definito come una coppia

⟨V,E⟩, dove V è l’insieme finito dei vertici, o nodi, di G ed E è la famiglia

degli iperarchi di G, ossia l’insieme formato da sottoinsiemi non vuoti di V .

Formalmente, E ⊆ 2V .

Nella presente trattazione, spesso si identificherà un ipergrafo G con la

sua famiglia di iperarchi (o, più semplicemente, archi) E, i quali a loro volta

sono sottoinsiemi di V , l’insieme dei vertici. Pertanto, con la notazione g ∈ G
si intenderà g ∈ E.

Da ora in poi assumeremo anche che, data un’istanza I = ⟨G,H⟩ di
DUAL, gli ipergrafi G e H siano definiti sullo stesso insieme di vertici V .

Indicheremo con |G| il numero di archi di un ipergrafo e con ∥G∥ la taglia

di un ipergrafo, intesa come il numero di bits necessari a rappresentare G.
Data un’istanza I = ⟨G,H⟩ di DUAL, indicheremo con N = ∥G∥ + ∥H∥ la
taglia di I.

7



8 2. Concetti preliminari

Definizione 2.1.2 (Ipergrafo semplice). Sia G = ⟨V,E⟩ un ipergrafo. Si dice

che G è semplice (o Sperner) se ∀ g,h ∈ G, coppia di archi distinti, g ̸⊂h ∧ h

̸⊂ g. Ovvero, non esiste un arco di G che sia sottoinsieme proprio di un altro

arco di G.

Definizione 2.1.3 (Transversal). Siano G = ⟨V,E⟩ un ipergrafo e T ⊆ V

un sottoinsieme di vertici. Si dice che T è un transversal di G se ∀ g ∈ G,
T ∩ g ̸= ∅.

Intuitivamente è un insieme di vertici di G che interseca tutti gli archi di

G.

Definizione 2.1.4 (Transversal minimale). Un transversal T di un ipergrafo

G si dice minimale se ∄T ′ ⊊ T tale che T ′ è un transversal di G.

Definizione 2.1.5 (Duale). Sia G un ipergrafo. Chiamiamo duale di G, e lo
indichiamo con tr(G), l’insieme di tutti i transversal minimali di G.

Osserviamo che tr(G) è una famiglia di sottoinsiemi di V i cui elementi

sono i transversal minimali di G. Questa famiglia costituisce essa stessa un

ipergrafo definito sull’insieme di vertici V . Di seguito mostriamo un esempio

di un ipergrafo e il suo duale.

Figura 2.1: Un ipergrafo G e il suo duale H = tr(G).
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Lemma 2.1.6 (Proprietà di simmetria della dualità). Siano G e H due

ipergrafi semplici definiti sullo stesso insieme di vertici. Allora:

H = tr(G) ⇐⇒ G = tr(H)

In tal caso, diciamo che G e H sono duali.

Definizione 2.1.7 (Vertici critici). Dati un ipergrafo G = ⟨V,E⟩ e un insieme

di vertici T , un vertice v ∈ T si dice critico in T (rispetto a G) se ∃ g ∈ G
tale che g ∩ T = {v}. Si dice che g è testimone della criticità di v in T .

Definizione 2.1.8 (Independent set). Dato un ipergrafo G = ⟨V,E⟩, si dice
che S ⊆ V è un independent set di G se ∀g ∈ G, g ̸⊂ S.

Definizione 2.1.9 (New transversal). Siano G e H due ipergrafi definiti

sullo stesso insieme di vertici V . Un insieme di vertici T ⊆ V si dice un new

transversal di G rispetto a H se T è un transversal di G e T è un independent

set di H.

2.2 Proprietà dei transversal

Lemma 2.2.1. Siano G un ipergrafo e T ⊆ V un transversal di G. Allora,

T è un transversal minimale di G se e solo se ∀v ∈ T , v è un vertice critico

in T .

Dimostrazione. Se ∅ ∈ G (arco vuoto), allora non esiste alcun transversal di

G. Se G = ∅, l’unico transversal minimale di G è l’insieme vuoto, per cui

nessun vertice appartiene a T . Consideriamo ora il caso in cui G contiene

solo archi non vuoti.

(⇒) Sia T un transversal minimale di G. Supponiamo per assurdo che

esista un vertice v ∈ T non critico. Allora, ∀g ∈ G tale che v ∈ g ∩ T ,

|g∩T | ≥ 2. Definiamo ora T ′ = T \{v}. Osserviamo che ∀g ∈ G, |g∩T ′| ≥ 1.

Pertanto, l’insieme T ′ ⊂ T è un transversal di G, ma T è minimale per ipotesi,

dunque siamo giunti a un assurdo.
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(⇐) Supponiamo che ∀v ∈ T , v sia un vertice critico in T . Consideriamo

un qualsiasi sottoinsieme proprio T ′ ⊂ T e sia v ∈ T \ T ′ un vertice. Poiché

v è critico, ∃gv ∈ G tale che T ∩ gv = {v}. Di conseguenza, T ′ ∩ gv = ∅.
Ciò implica che T ′ non è un transversal di G. Pertanto, T deve essere un

transversal minimale di G.

Dato un insieme di vertici T ⊆ V , indicheremo con T = V \ T il suo

complementare.

Lemma 2.2.2. Siano G e H due ipergrafi. Un insieme di vertici T ⊆ V è

un new transversal di G rispetto a H se e solo se T è un new transversal di

H rispetto a G.

Dimostrazione. Un ipergrafo che contiene un arco vuoto non può avere né

un transversal né un independent set. Se almeno uno tra G e H contiene un

arco vuoto, l’affermazione è vera.

Supponiamo ora che G e H non contengano archi vuoti. Se T è un new

transversal di G rispetto a H, allora T è un independent set di H. Per

definizione, ∀h ∈ H,∃v ∈ h \ T . Pertanto, v ∈ T . Riassumendo, ∀h ∈
H,∃v ∈ h ∩ T , dunque T è un transversal di H.

Se T non fosse un independent set di G allora esisterebbe g ∈ G tale

che g ⊆ T . Ciò implicherebbe che g ∩ T = ∅, il che è assurdo perchè T è

un tansversal di G. In conclusione, T è un new transversal di G rispetto a

H. Per mostrare l’implicazione opposta dell’enunciato è sufficiente invertire

i ruoli di G e H.

Definizione 2.2.3 (Proprietà d’intersezione). Diciamo che due ipergrafi G
e H soddisfano la proprietà d’intersezione se ∀g ∈ G, ∀h ∈ H, g ∩ h ̸= ∅.

Questa proprietà implica che ogni arco di G è un transversal di H e,

viceversa, ogni arco di H è un transversal di G.

Lemma 2.2.4. Siano G e H due ipergrafi. Allora, G e H sono duali se e solo

se G e H sono semplici, soddisfano la proprietà di intersezione e non esiste T

new transversal di G rispetto a H.
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Dimostrazione. (⇒)

• (Semplicità) Supponiamo per assurdo che G non sia semplice. Allora

∃g, g′ ∈ G tali che g ⊊ g′.

Se g è un transversal di H, allora g′ non è un transversal minimale di

H. Ciò è assurdo perchè, per definizione di dualità, ogni arco di G è

deve essere un transversal minimale di H.

Se g non è un transversal di H, allo stesso modo otteniamo una con-

traddizione.

Pertanto, se G e H sono duali allora sono semplici.

• (Proprietà d’intersezione) Supponiamo per assurdo che esistano g ∈ G
e h ∈ H tali che g ∩ h = ∅. Ciò implica che g non è un transversal di

H, che è assurdo perchè G e H sono duali.

• (New transversal) Se almeno uno tra G e H contiene un arco vuoto,

allora non ammette transversal o independet set. In tal caso, non esiste

un new transversal di G rispetto a H, o viceversa.

Se almeno uno tra G e H è un ipergrafo vuoto, allora l’altro dovrà

contenere un arco vuoto, per la loro dualità. Come prima, non potrà

esistere un new transversal di G rispetto a H.

Consideriamo ora il caso in cui G e H contengono solo archi non vuoti.

Supponiamo per assurdo che esista T new transversal di G rispetto aH.
Assumiamo, senza perdere di generalità, che T sia minimale. Poiché T

è un independent set diH, ∀h ∈ H, h ̸= T . Pertanto, T è un transversal

minimale di G ma non un arco di H. Questo è assurdo perchè G e H
sono duali.

(⇐) Per dimostrare la dualità di G eH analizziamo i seguenti casi distinti:

• (Caso 1) Supponiamo che ∅ ∈ G: Per ipotesi G è semplice, dunque

G = {∅} (G contiene solo l’arco vuoto). Per la proprietà d’intersezione,

ogni arco di H interseca ogni arco di G, perciò H = ∅ (H non contiene
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nessun arco). Osserviamo che non può esistere un new transversal di

G rispetto a H e che G e H sono banalmente duali. Si ottiene lo stesso

risultato supponendo che ∅ ∈ H.

• (Caso 2) Supponiamo che G = ∅: Se, per assurdo, ∅ /∈ H, allora l’arco

vuoto è un transversal di G e un independent set di H. Questa è una

contraddizione poiché, per ipotesi, non esiste un new transversal di G
rispetto a H. Pertanto, se G = ∅ allora ∅ ∈ H, e ci riconduciamo cos̀ı

al Caso 1. Si ottiene lo stesso risultato supponendo che H = ∅.

• (Caso 3) Supponiamo che sia G che H contengano solo archi non vuoti:

Vogliamo mostrare che ogni transversal minimale di G è un arco di

H. Sia T un transversal minimale di G. Poiché non esiste un new

transversal di G rispetto a H, T non è un independent set di H. Allora,
∃h ∈ H tale che h ⊆ T . Per la proprietà d’intersezione, tutti gli archi di

H sono transversal di G, quindi anche h è un transversal di G. Poiché
h ⊆ T e T è minimale, allora h = T . Pertanto, tr(G) ⊆ H. Per

semplicità di H, si ottiene l’uguaglianza tr(G) = H.



Capitolo 3

Decomposizione di DUAL

L’obiettivo primario di questo capitolo è delineare la strategia algoritmica

volta a riconoscere le istanze-NO di DUAL. Data un’istanza I = ⟨G,H⟩ di
DUAL, la non dualità di G e H è verificata se almeno una delle tre condizioni

descritte nel Lemma 2.2.4 non è soddisfatta:

1. Almeno uno dei due ipergrafi, G o H, non è semplice.

2. G e H non soddisfano la proprietà di intersezione.

3. Esiste un new transversal T di G rispetto a H (o viceversa).

La verifica delle prime due condizioni è computazionalmente immediata. La

difficoltà del problema risiede, pertanto, nella dimostrazione dell’esistenza di

un new transversal, il che rappresenta il fulcro della trattazione.

L’obiettivo è dunque costruire un insieme di vertici T ⊆ V tale che T è

un transversal di G (T interseca tutti gli archi di G) e T è un independent

set di H (nessun arco di H è contenuto dentro T ). A tal fine, la strategia

adottata consiste nella progressiva valutazione dei vertici v ∈ V . Partendo

da T = ∅, a ogni passaggio, includeremo in o escluderemo da T un vertice di

V . Concretamente, partizioneremo l’insieme dei vertici V in tre sottoinsiemi:

1. In = {vertici inclusi nel candidato a new transversal T}

2. Ex = {vertici esclusi dal candidato a new transversal T}

13



14 3. Decomposizione di DUAL

3. Free = {vertici liberi, che non sono ancora stati valutati}

3.1 Assegnamenti e istanze ridotte di DUAL

Formalizziamo ora questi concetti.

Definizione 3.1.1 (Assegnamento e vertici liberi). Sia I = ⟨G,H⟩ un’istanza
di DUAL e sia V l’insieme dei vertici su cui G e H sono definiti. Un assegna-

mento σ = ⟨In,Ex⟩ è una coppia di sottoinsiemi di V , tale che In∩Ex = ∅.
Diciamo che un vertice v ∈ V è libero rispetto a un assegnamento σ se

v /∈ In ∧ v /∈ Ex e scriviamo Free = V \ (In ∪ Ex).

Definizione 3.1.2 (Estensione). Siano σ1 = ⟨In1, Ex1⟩ e σ2 = ⟨In2, Ex2⟩
due assegnamenti relativi a un insieme di vertici V . Se In1 ∩ Ex2 = ∅ ∧
In2 ∩ Ex1 = ∅, allora indichiamo con σ1 + σ2 = ⟨In1 ∪ In2, Ex1 ∪ Ex2⟩
l’estensione di σ1 con σ2. In generale, si dice che σ1 = ⟨In1, Ex1⟩ è estensione
di σ2 = ⟨In2, Ex2⟩ se In2 ⊆ In1∧Ex2 ⊆ Ex1, e in tal caso scriviamo σ2 ⊑ σ1.

Definizione 3.1.3 (Coerenza di un assegnamento). Siano I = ⟨G,H⟩ un’i-
stanza di DUAL e T un new transversal di G rispetto a H. Diciamo che un

assegnamento σ = ⟨In,Ex⟩ è coerente con T se In ⊆ T e T∩Ex = ∅. Questa

condizione può essere espressa in modo equivalente come In ⊆ T ⊆ V \ Ex.

Gli algoritmi proposti in letteratura per il problema DUAL si basano

sull’estensione sequenziale di un assegnamento parziale σ = ⟨In,Ex⟩, defi-
nito sull’insieme dei vertici V . Ciascuna di tali estensioni induce una nuova

istanza ridotta del problema DUAL, sulla quale l’algoritmo viene invocato in

modo ricorsivo.

Questa strategia è efficace in quanto la dimensione dell’istanza del pro-

blema si riduce progressivamente:

1. L’atto di includere vertici, inserendoli in In, incrementa il numero di

archi di G che intersecano il transversal in costruzione. Di conseguen-

za, tali archi di G non necessitano di essere considerati ulteriormente

nell’istanza ridotta.
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2. Simmetricamente, l’atto di escludere vertici, inserendoli in Ex, incre-

menta il numero di archi di H che sono certamente non contenuti

nel transversal T in costruzione. Come prima, tali archi di H non

necessitano di essere più considerati nell’istanza ridotta.

Le seguenti definizioni sono cruciali per la comprensione della definizione

rigorosa di istanza ridotta di DUAL.

Definizione 3.1.4. Siano G un ipergrafo e S un insieme di vertici. Allora

definiamo i seguenti ipergrafi:

1. GS = ⟨S, {g ∈ G | g ⊆ S}⟩

2. GS = ⟨S,min({g ∩ S | g ∈ G})⟩

In questo contesto min(H), con H ipergrafo, indica l’insieme degli archi

minimali di H. Formalmente min(H) = {h ∈ H | ∄h′ ∈ H tale che h′ ⊆ h}

Definizione 3.1.5 (Istanza ridotta relativa a un assegnamento). Siano I =

⟨G,H⟩ un’istanza di DUAL e σ = ⟨In,Ex⟩ un assegnamento. Allora definia-

mo l’istanza ridotta derivata da I e indotta da σ come:

Iσ = ⟨G(σ),H(σ)⟩ =
〈(
GV \In

)V \(In∪Ex)
,
(
HV \Ex

)V \(In∪Ex)
〉

Si osserva che sia G(σ) che H(σ) sono ipergrafi semplici e che se G e H
sono definiti sullo stesso insieme di vertici, allora anche G(σ) e H(σ) saranno
definiti sullo stesso insieme di vertici.

Lemma 3.1.6. Due ipergrafi G e H sono duali se e solo se G e H sono

semplici, soddisfano la proprietà di intersezione e, per ogni assegnamento σ,

G(σ) e H(σ) sono duali.

Definizione 3.1.7 (Assegnamento ricoprente). Sia σ = ⟨In,Ex⟩ un asse-

gnamento. Se ∃h ∈ H tale che h ⊆ In o ∃g ∈ G tale che g ⊆ Ex, allora si

dice che In e Ex sono ricoprenti, rispettivamente. Se almeno uno tra In e

Ex è ricoprente, allora si dice che σ è un assegnamento ricoprente.
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Intuitivamente, durante la costruzione del candidato a new transversal,

possiamo evitare di esplorare assegnamenti ricoprenti:

1. (Ex ricoprente) Se ∃g ∈ G tale che g ⊆ Ex, allora T ∩ g = ∅, dove T è

il candidato a new transversal associato all’assegnamento σ. Dunque,

T non soddisfa la condizione di transversal di G e, pertanto, non può

essere un new transversal di G rispetto a H.

2. (In ricoprente) Se ∃h ∈ H tale che h ⊆ In, allora, per definizione, T

non può essere un independent set di H e, di conseguenza, neanche un

new transversal di G rispetto a H.

3.2 Albero degli assegnamenti

La strategia algoritmica di decomposizione ricorsiva in istanze ridotte di

DUAL consiste nell’esplorazione di specifiche estensioni degli assegnamen-

ti parziali. L’insieme degli assegnamenti considerati durante l’esecuzione

ricorsiva può essere analizzato efficacemente tramite una struttura ad al-

bero. Concettualmente, assoceremo un nodo a ogni assegnamento parziale

esplorato e collegheremo due nodi se i loro assegnamenti sono uno la diretta

estensione dell’altro.

In termini rigorosi, data un’istanza I = ⟨G,H⟩ di DUAL in input, l’al-

bero degli assegnamenti T (G,H) = ⟨N,A, r, σ, l⟩ associato a I è definito nel

seguente modo:

• N è l’insieme dei nodi.

• σ è la funzione che a ogni nodo assegna un’etichetta.

• A è l’insieme degli archi.

• l è la funzione che a ogni arco assegna un’etichetta.

• La radice r di T è etichettata con l’assegnamento vuoto, σϵ = ⟨∅, ∅⟩.
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• Ogni nodo p di T è etichettato con un assegnamento σp = ⟨Inp, Exp⟩.

• Un nodo p di T ha un figlio q se esiste un’estensione diretta da σp a σq.

• Un arco (p, q) (collega il nodo p al nodo q) è etichettato col tipo di

estensione utilizzato per passare da σp a σq.

• Le foglie di T sono tutti i nodi di T privi di vertici liberi (Freep = ∅)
o il cui assegnamento è ricoprente.

Definizione 3.2.1 (Cammino). Un cammino Π = (l1, l2, . . . , lk) in T (G,H)
identifica il percorso univoco che, partendo dalla radice dell’albero, raggiun-

ge un nodo specifico tramite la catena di archi con etichette l1, l2, . . . , lk.

Indichiamo con N (Π) il nodo finale del cammino Π.

Ai fini del nostro lavoro, l’analisi di ciascun nodo p, caratterizzato dall’as-

segnamento σp = ⟨Inp, Exp⟩, non richiede l’esplicita costruzione dell’istan-

za ridotta Ip = ⟨G(σp),H(σp)⟩. Prediligiamo, invece, l’utilizzo diretto dei

seguenti insiemi:

• SepG,H(σp) = {g ∈ G | g ∩ Inp = ∅}, l’insieme di tutti gli archi di G
separati da σp;

• ComG,H(σp) = {h ∈ H | h ∩ Exp = ∅}, l’insieme di tutti gli archi di H
compatibili con σp.

Con abuso di notazione, quando gli ipergrafi G e H sono inequivocabil-

mente determinati dal contesto, SepG,H(σp) e ComG,H(σp) verranno indicati

semplicemente con Sep(σp) e Com(σp).

3.3 Estensioni di assegnamenti

Per determinare l’esistenza di un new transversal di G, l’approccio al-

goritmico non può permettersi di esplorare esaustivamente tutte le possibili

estensioni d’assegnamento parziale σ = ⟨In,Ex⟩, poiché comporterebbe una



18 3. Decomposizione di DUAL

complessità computazionale di ordine esponenziale. La trattazione si con-

centrerà, dunque, sull’applicazione di due specifiche tipologie di estensione

d’assegnamento.

Definizione 3.3.1 (Estensioni ammissibili). Sia T (G,H) l’albero degli as-

segnamenti associato a un’istanza I = ⟨G,H⟩ di DUAL. Sia p un nodo di

T , tale che p non sia una foglia, e sia σp = ⟨Inp, Exp⟩ l’assegnamento asso-

ciato. Indichiamo con Freep l’insieme dei vertici liberi non ancora esplorati

dall’assegnamento. Allora p ha esattamente i seguenti figli:

• (Estensione di tipo 1): ∀v ∈ Freep, p ha un figlio q tale che σq =

σp + ⟨∅, {v}⟩. L’arco che connette p a q è etichettato con −v.

• (Estensione di tipo 2): ∀g ∈ Sep(σp), ∀v ∈ g tale che v ∈ Freep, p ha

un figlio q tale che σq = σp + ⟨{v}, g \ {v}⟩. L’arco che connette p a q

è etichettato con (v, g).

Lemma 3.3.2. Sia T (G,H) l’albero degli assegnamenti associato a un’istan-

za I = ⟨G,H⟩ di DUAL e sia Π = (l1, l2, . . . , lk) un cammino in T (G,H).
Allora:

σN (Π) = ⟨
⋃

(v,g)∈Π

{v},

( ⋃
−v∈Π

{v}

)
∪

 ⋃
(v,g)∈Π

(g \ {v})

⟩.



Capitolo 4

Algoritmo

In questo capitolo descriveremo nel dettaglio l’algoritmo ND-NotDUAL,

una procedura non deterministica impiegata per la risoluzione del problema

DUAL, ossia la verifica della non dualità tra due ipergrafi G e H.
Di seguito, presentiamo alcune definizioni preliminari cruciali per la com-

prensione dell’algoritmo.

Definizione 4.0.1 (Insieme di etichette). Sia T (G,H) l’albero degli assegna-
menti associato a un’istanza I = ⟨G,H⟩ di DUAL. Definiamo LG = {−v |
v ∈ V } ∪ {(v, g) | g ∈ G ∧ v ∈ g}, come la famiglia di tutte le possibili

estensioni di assegnamento. Chiamiamo insieme di etichette un sottoinsieme

Σ di LG.

Definizione 4.0.2. Sia T (G,H) l’albero degli assegnamenti associato a un’i-

stanza I = ⟨G,H⟩ di DUAL. Definiamo l’insieme:

Llog(G,H) = {Σ | Σ ⊆ LG ∧ 0 ≤ |Σ| ≤ ⌊log |H|⌋+ 1}

Sia ora Σ ∈ Llog(G,H). Indichiamo l’insieme dei vertici inclusi ed esclusi,

tramite le estensioni d’assegnamento contenute dentro Σ, con:

In(Σ) =
⋃

(v,g)∈Σ

{v}

Ex(Σ) =

( ⋃
−v∈Σ

{v}

)
∪

 ⋃
(v,g)∈Σ

(g \ {v})


19
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Infine, definiamo σ(Σ) = ⟨In(Σ), Ex(Σ)⟩, l’assegnamento associato a Σ.

Definizione 4.0.3 (Consistenza). Sia Σ ∈ Llog(G,H). Diciamo che Σ è

consistente se In(Σ) ∩ Ex(Σ) = ∅.

Il problema DUAL, data un’istanza I = ⟨G,H⟩, consiste nello stabilire

la non dualità di G e H. Come evidenziato nel Capitolo 3, l’ostacolo com-

putazionale risiede nella dimostrazione dell’esistenza di un new transversal

T di G rispetto a H. Per ovviare a questo problema adottiamo un principio

fondamentale stabilito dal Lemma 4.1.7: L’esistenza di un new transversal

T è equivalente all’esistenza di un insieme di etichette Σ ∈ Llog(G,H) che

conduca a un testimone doppio della non-dualità di G e H (concetto, definito

successivamente, che garantisce la non dualità di G e H).
L’algoritmo non deterministico ND-NotDUAL implementa direttamente

questa equivalenza, riconducendo il problema di ricerca a una procedura di

guess and check :

• Guess : La fase iniziale consiste nella scelta non deterministica di un

insieme di etichette Σ, il cui ruolo è quello di rappresentare un cammino

logaritmico all’interno di T (G,H).

• Check : La fase di verifica è strutturata in una serie di controlli de-

terministici volti a verificare le precondizioni su G e H (semplicità e

proprietà d’intersezione), garantire la validità e la consistenza dell’in-

sieme di etichette Σ scelto e, infine, confermare l’individuazione del

testimone doppio della non dualità di G e H.
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Algorithm 1 ND-NotDUAL

1: procedure ND-NotDual(G,H)
2: Σ← guess(un insieme di etichette da Llog(G,H))
3: if ¬CHECK-SIMPLE-AND-INTERSECTION(G,H) then
4: return accept;

5: end if

6: if ¬CHECK-CONSISTENCY(G,Σ) then
7: return reject;

8: end if

9: if CHECK-AUG-DOUBLEWITNESS(G,H,Σ) then
10: return accept;

11: end if

12: return reject;

13: end procedure

L’algoritmo termina in uno stato accettante (return accept) se I = ⟨G,H⟩
è un’istanza-SI di DUAL. Ciò può avvenire in due modi:

1. Linea 4: Si verifica il fallimento di una delle due precondizioni su G o

H (semplicità o proprietà d’intersezione).

2. Linea 10: Il cammino Σ scelto supera tutti i controlli intermedi e con-

duce a un assegnamento che risulta essere un testimone doppio della

non dualità di G e H.

L’algoritmo, invece, rifiuta l’istanza I = ⟨G,H⟩ (return reject) in due

scenari:

1. Linea 7: Si verifica il fallimento della proprietà di consistenza dell’insie-

me di etichette Σ, il che genera un assegnamento associato incoerente

(In(Σ) ∩ Ex(Σ) ̸= ∅).

2. Linea 12: Tutti i controlli falliscono, ovvero: le precondizioni sono

soddisfatte, il cammino è consistente, ma non conduce a un testimone
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doppio. Questo significa che l’insieme di etichette Σ scelto non genera

il testimone cercato. Poiché l’algoritmo è non deterministico, affinché

DUAL termini in uno stato accettante, è sufficiente che esista almeno

un insieme di etichette Σ che porti all’accettazione finale.

4.1 Guess

La porzione non deterministica dell’algoritmo ND-NotDUAL è intera-

mente contenuta nella Linea 2:

Σ← guess(un insieme di etichette da Llog(G,H))

Per comprendere appieno la validità di questa scelta, formalizziamo ora

alcuni concetti introdotti nel paragrafo precedente.

Definizione 4.1.1. Siano G e H due ipergrafi e σ = ⟨In,Ex⟩ un assegna-

mento. Diciamo che σ è testimone dell’esistenza di un new transversal di G
rispetto a H se In è un new transversal di G rispetto a H o se Ex è un new

transversal di H rispetto a G.
Se In è un new transversal di G rispetto a H e Ex è un new transversal

di H rispetto a G, allora si dice che σ è un testimone doppio dell’esistenza di

un new transversal di G rispetto a H.
Quindi diciamo che σ è testimone della non dualità di G e H.

L’individuazione di un assegnamento σ, che soddisfi la condizione di testi-

mone doppio, permette all’algoritmo di terminare in uno stato accettante. La

ricerca di tale testimone avviene attraverso l’estensione di assegnamenti par-

ziali all’interno di T (G,H). Il seguente lemma è fondamentale per garantire

che, se un transversal T esiste, la strategia di estensione basata sull’inclusione

di vertici critici sia sempre percorribile e coerente con T .

Lemma 4.1.2. Siano G e H due ipergrafi, T un new transversal minimale

di G rispetto a H e σ = ⟨In,Ex⟩ un assegnamento coerente con T . Allora

∀v ∈ Freeσ ∩ T,∃g ∈ Sep(σ) tale che v ∈ g e σ + ⟨{v}, g \ {v}⟩ è coerente

con T .
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Dimostrazione. Sia v ∈ Freeσ∩T . Applicando il Lemma 2.2.1, la minimalità

di T implica che v è un vertice critico in T . Quindi ∃g ∈ G tale che g∩T = {v}
e, dato che v /∈ In, si ha che g ∈ Sep(σ). Allora σ+ ⟨{v}, g \ {v}⟩ è coerente
con T .

Il successo dell’algoritmo non dipende solo dalla possibilità di estendere

l’assegnamento (come garantito dal Lemma 4.1.2), ma dalla capacità di con-

vergere rapidamente verso il testimone T . Per garantire questa convergenza

veloce, si sfrutta il principio formalizzato nel seguente lemma.

Lemma 4.1.3. Siano G e H due ipergrafi che soddisfano la proprietà d’in-

tersezione. Siano σ un assegnamento non ricoprente e v ∈ Freeσ. Definiamo:

εCom(σ)
v =

|{h ∈ Com(σ) | v ∈ h}|
|Com(σ)|

(4.1)

Allora:

|Com(σ + ⟨∅, {v}⟩)| =
(
1− εCom(σ)

v

)
· |Com(σ)| (4.2)

Sia ora g ∈ Sep(σ) tale che v ∈ g, allora:

|Com(σ + ⟨{v}, g \ {v}⟩)| ≤ εCom(σ)
v · |Com(σ)| (4.3)

Dimostrazione. Equazione (4.2):

|Com(σ + ⟨∅, {v}⟩)| = |Com(σ)| − |{h ∈ Com(σ) | v ∈ h}| =

=
(
1− |{h ∈ Com(σ) | v ∈ h}|

|Com(σ)|
) · |Com(σ)| =

(
1− εCom(σ)

v

)
· |Com(σ)|

Equazione (4.3):

Definiamo i seguenti insiemi:

K{v} = {h ∈ Com(σ) | h ∩ g = {v}}

K[v] = {h ∈ Com(σ) | h ∩ g ∋ v}

Allora:

K{v} ⊆ K[v] ⇒ |K{v}| ≤ |K[v]| = |{h ∈ Com(σ) | v ∈ h}| = εCom(σ)
v · |Com(σ)|
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Ora basta mostrare che K{v} = Com(σ + ⟨{v}, g \ {v}⟩). Dato che G e H
soddisfano la proprietà d’intersezione e Com(σ + ⟨{v}, g \ {v}⟩) ⊆ H, allora
ogni arco di Com(σ + ⟨{v}, g \ {v}⟩) interseca g. Allora:

g \ {v} ⊆ Exσ ⇒ ∀h ∈ Com(σ + ⟨{v}, g \ {v}⟩), h ∩ g = {v}

Quindi K{v} = Com(σ + ⟨{v}, g \ {v}⟩).

Mostriamo, di seguito, come l’esclusione di v (Estensione di Tipo 1, Eq.

4.2) o l’inclusione critica di v (Estensione di Tipo 2, Eq. 4.3) ci permetta di

ridurre la cardinalità di Com(σ) di almeno la metà.

• (Estensione di Tipo 1) Se v appartiene ad almeno la metà degli archi

di Com(σ), allora ε
Com(σ)
v ≥ 1

2
. Dunque, applicando un’estensione di

tipo 1, si ottiene:

|Com(σ + ⟨∅, {v}⟩)| =
(
1− εCom(σ)

v

)
· |Com(σ)| ≤ |Com(σ)|

2

• (Estensione di Tipo 2) Alternativamente, se v appartiene a meno della

metà degli archi di Com(σ), allora ε
Com(σ)
v ≤ 1

2
. Dunque, applicando

un’estensione di tipo 2, si ottiene:

|Com(σ + ⟨{v}, G \ {v}⟩)| ≤ εCom(σ)
v · |Com(σ)| ≤ |Com(σ)|

2

Al fine di massimizzare l’efficacia di questa proprietà, analizzeremo la

frequenza dei vertici liberi per decidere se l’estensione più efficiente sia l’in-

clusione o l’esclusione.

Definizione 4.1.4 (Vertici frequenti). Sia σ un assegnamento. Un vertice

v ∈ Freeσ si dice frequente in σ se v è contenuto in almeno la metà degli archi

di Com(σ). In caso contrario, diciamo che v è infrequente in σ. Indicheremo

con FreqG,H(σ) e InfreqG,H(σ) gli insiemi dei vertici frequenti e infrequenti,

rispettivamente.

Come per SepG,H(σp) e ComG,H(σp), quando gli ipergrafi G e H so-

no inequivocabilmente determinati dal contesto, FreqG,H(σ) e InfreqG,H(σ)

verranno indicati semplicemente con Freq(σ) e Infreq(σ).
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Definizione 4.1.5 (Vertici convenienti). Sia σ un assegnamento coerente con

un new transversal minimale T di G, tale che Com(σ) ̸= ∅. Sia v ∈ Freeσ.

Se v ∈ Freq(σ) ∧ v /∈ T , allora diciamo che v è un vertice conveniente da

escludere. Viceversa, se v ∈ Infreq(σ) ∩ T diciamo che è conveniente da

includere. In entrambi i casi, diremo che v è un vertice conveniente.

Abbiamo dunque descritto una strategia per la scelta delle estensioni d’as-

segnamento σ = ⟨In,Ex⟩ da adottare a ogni passaggio ricorsivo. Lo scopo

primario di questa strategia è convergere rapidamente a un new transversal

T di G rispetto a H. Durante questo processo, l’algoritmo può raggiungere

un assegnamento σ, testimone della non dualità di G e H, e in tal caso si

arresta.

Tuttavia, in assenza di vertici convenienti, le uniche assegnazioni coerenti

con un new transversal T devono soddisfare:

• v ∈ Freq(σ)⇒ v ∈ In.

• v ∈ Infreq(σ)⇒ v ∈ Ex.

Definizione 4.1.6 (Assegnamento aumentato). Sia σ = ⟨In,Ex⟩ un asse-

gnamento. Definiamo σ+ = ⟨In∪Freq(σ), Ex∪ Infreq(σ)⟩ come l’assegna-

mento aumentato di σ.

I seguenti lemmi formalizzano il risultato cardine della sezione Guess.

Lemma 4.1.7. Siano G e H due ipergrafi che soddisfano la proprietà d’nter-

sezione. Allora esiste T new transversal di G rispetto a H ⇐⇒ esiste p nodo

di T (G,H), a profondità al più ⌊log |H|⌋ + 1, tale che σ+
p sia un testimone

doppio della non dualità di G e H.

Dimostrazione. (⇒) Sia T un new transversal minimale di G rispetto a H.
L’assegnamento vuoto σϵ, associato alla radice di T (G,H), è chiaramente

coerente con T . Sia p un nodo di T (G,H) tale che σp sia coerente con T ,

Com(σp) ̸= ∅ e σp sia estendibile tramite un vertice conveniente. Sia σq

tale estensione d’assegnamento, tramite vertice conveniente. Osserviamo che
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esiste un nodo q in T (G,H), figlio di p, tale che l’assegnamento associato a

q sia σq. Ciò è garantito dal fatto che T (G,H) rappresenta tutte le possibili

estensioni d’assegnamento ammissibili.

Induttivamente, a partire dalla radice, costruiamo una sequenza di nodi

s = (p0, p1, . . . , pk) di lunghezza massimale, dove ogni nodo pi è ottenuto

estendendo σpi−1
tramite l’inclusione o l’esclusione di un vertice conveniente

coerente con T . Per il Lemma 4.1.3, ogni estensione conveniente dimezza

|Com(σ)|. Poiché |Com(σϵ)| ≤ |H|, la lunghezza k della sequenza è limitata:

k ≤ ⌊log |H|⌋+ 1.

Per dimostrare che σ+
pk

è un testimone doppio della non dualità di G e H
dobbiamo analizzare due casi distinti:

1. Com(σpk) = ∅: Ciò implica che Expk interseca ogni arco di H, quindi
Expk è un transversal di H per definizione. Per la coerenza di σpk

con T , si ha che Expk ∩ T = ∅. Dato che T interseca tutti gli archi

di G, Expk non potrà contenere nessun arco di G, dunque Expk è un

independente set di G.

Otteniamo cos̀ı che Expk è un new transversal di H rispetto a G.

Osserviamo che:

Com(σpk) = ∅ ⇒ Freq(σpk) = Freepk

Allora:

σ+
pk

= ⟨Inpk∪Freq(σpk), Expk∪Infreq(σpk)⟩ = ⟨Inpk∪Freq(σpk), Expk⟩

= ⟨Expk , Expk⟩

Pertanto, dal il Lemma 2.2.2, si ha che Expk è un new transversal di G
rispetto a H, quindi σ+

pk
è un testimone doppio della non dualità di G

e H.

2. Com(σpk) ̸= ∅: Poiché la sequenza non può essere estesa ulteriormente,

non ci sono vertici convenienti in σpk rispetto al transversal T .
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Nel caso in cui Sep(σpk) ̸= ∅, allora l’assenza di vertici convenienti,

combinata con la coerenza di σpk con T , impone che Freq(σpk) ⊆ T ∧
Infreq(σpk) ⊆ T . Si ottiene dunque che:

σ+
pk

= ⟨Inpk ∪ Freq(σpk), Expk ∪ Infreq(σpk)⟩ = ⟨T, T ⟩.

Quindi σ+
pk

è un testimone doppio della non dualità di G e H.

Tuttavia, se Sep(σpk) = ∅, allora significa che Inpk interseca tutti gli

archi di G, dunque è un transversal di G. Dato che T è un transversal

minimale e, per coerenza di σpk con T , Inpk ⊆ T , allora Inpk = T .

Sia v ∈ Freeσpk
, allora v ∈ (T \ Expk). Se per assurdo v ∈ Freq(σpk)

allora v sarebbe stato un vertice facile da escludere, ma dato che una

tale estensione non è stata eseguita, significa che v ∈ Infreq(σpk).

Allora:

σ+
pk

= ⟨Inpk ∪ Freq(σpk), Expk ∪ Infreq(σpk)⟩ =

= ⟨Inpk , Expk ∪ Infreq(σpk)⟩ = ⟨Inpk , Inpk⟩ = ⟨T, T ⟩

Come prima, otteniamo che σ+
pk

è un testimone doppio della non dualità

di G e H.

(⇐) Se esiste un tale nodo p di T (G,H), allora, per definizione di testimone

doppio, esiste un new transversal di G rispetto a H.

Il Lemma 4.1.8 dimostra come l’ordine con cui le etichette compaiono nel

cammino non deterministico Π è ininfluente. Solo l’insieme delle etichette Σ

è determinante per la generazione finale del testimone aumentato σ(Σ)+.

Lemma 4.1.8. Siano G e H due ipergrafi che soddisfano la proprietà d’n-

tersezione. Allora esiste T new transversal di G rispetto a H ⇐⇒ esiste

Σ ∈ Llog(G,H) consistente tale che σ(Σ)+ è un testimone doppio della non

dualità di G e H.



28 4. Algoritmo

Dimostrazione. (⇒) Sia T un new transversal di G rispetto a H. Per il

lemma precedente, l’esistenza di T equivale all’esistenza di un cammino Π

in T (G,H) di lunghezza limitata k ≤ ⌊log |H|⌋ + 1, tale che l’assegnamento

aumentato σ(Π)+ sia un testimone doppio. Definiamo ora ΣΠ come l’insieme

delle etichette contenute in Π, ignorandone l’ordine. Poiché la lunghezza di

Π è limitata logaritmicamente, ΣΠ appartiene a Llog(G,H).
Si ha che σ(ΣΠ)+ = σ(Π)+. Infatti gli insiemi di vertici inclusi (In) ed

esclusi (Ex) generati da un assegnamento σ dipendono solo dalle etichette

presenti e non dal loro ordine di applicazione.

Poiché Π è un cammino in T (G,H), σ(Π) è per definizione un assegnamen-

to consistente. La relazione σ(ΣΠ) = σ(Π) garantisce quindi che l’insieme ΣΠ

sia consistente. Infine, poiché σ(Π)+ è un testimone doppio, anche σ(ΣΠ)+

risulta esserlo.

(⇐) Se esiste un tale insieme di etichette Σ, allora, per definizione di

testimone doppio, esiste un new transversal di G rispetto a H.

4.2 Check

La fase di verifica (Check) richiede che i concetti matematici discussi

(ipergrafi e assegnamenti) siano espressi in FO(COUNT). Sia I = ⟨G,H⟩
un’istanza di DUAL. L’approccio adottato consiste, dunque, nell’associa-

re all’istanza I una struttura relazionale A⟨G,H⟩. L’universo A⟨G,H⟩ della

struttura A⟨G,H⟩ è costituito da oggetti che rappresentano tutti gli elementi

dell’istanza:

A⟨G,H⟩ = {ov | v ∈ V } ∪ {og | g ∈ G} ∪ {oh | h ∈ H} ∪ {oG, oH}

dove sono inclusi:

• Un oggetto ov per ogni vertice v ∈ V .

• Un oggetto og per ogni arco g ∈ G e un oggetto oh per ogni arco h ∈ H.

• Due oggetti distinti, oG e oH, per rappresentare globalmente i due

ipergrafi.
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Le relazioni che utilizzeremo sono le seguenti:

• V ertex(x) è una relazione unaria. Significa che l’oggetto x è un vertice.

Possiamo esprimere questa relazione nel seguente modo:

v ∈ V ≡ V ertex(v)

• Hyp(x) è una relazione unaria. Significa che l’oggetto x è un ipergrafo.

• EdgeOf(x, y) è una relazione binaria. Significa che l’oggetto x è un arco

dell’oggetto y, il quale rappresenta un ipergrafo. Possiamo esprimere la

relazione di appartenenza di un arco a un ipergrafo nel seguente modo:

g ∈ G ≡ Hyp(oG) ∧ EdgeOf(g, oG)

h ∈ H ≡ Hyp(oH) ∧ EdgeOf(h, oH)

• In(x, y) è una relazione binaria. Significa che l’oggetto x è un vertice

che appartiene all’oggetto y, il quale rappresenta un arco. Possiamo

esprimere questa relazione nel seguente modo:

v ∈ g ≡ In(v, g)

Tuttavia, l’algoritmo ND-NotDUAL esegue dei controlli deterministici

non solo su ipergrafi, ma anche su insiemi di etichette. Dunque, dobbiamo

esprimere tramite la logica del primo ordine anche l’insieme di etichette Σ,

scelto non deterministicamente.

Per definizione Σ è costituito da etichette associate alle due tipologie di

estensione d’assegnamento. Pertanto, descriviamo le seguenti relazioni:

• S1(x) è una relazione unaria. Significa che l’oggetto x è un vertice tale

che −x ∈ Σ. Possiamo esprimere questa relazione nel seguente modo:

−v ∈ Σ ≡ S1(v)
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• S2(x, y) è una relazione binaria. Significa che l’oggetto x è un vertice

e l’oggetto y è un arco, tali che (x, y) ∈ Σ. Possiamo esprimere questa

relazione nel seguente modo:

(v, g) ∈ Σ ≡ S2(v, g)

Dedicheremo i seguenti paragrafi alla spiegazione di tutti i controlli de-

terministici presenti all’interno dell’algoritmo ND-NotDUAL.

CHECK SEMPLICITÀ e PROPRIETÀ D’INTERSEZIONE Il pri-

mo controllo eseguito nell’algoritmo è la verifica CHECK-SIMPLE-AND

-INTERSECTION(G,H) (Linea 3). Nel caso in cui ritorni False, l’algo-

ritmo si arresta in uno stato accettante, il che significa che I = ⟨G,H⟩ è
un’istanza-SI si DUAL.

I seguenti lemmi mostrano come esprimere i concetti di semplicità e

proprietà d’intersezione di ipergrafi in FO(COUNT).

Lemma 4.2.1. Sia G un ipergrafo. Decidere se G è semplice è esprimibile in

FO(COUNT).

Dimostrazione. Ricordiamo che un ipergrafo G è semplice se non esiste un

arco di G che sia sottoinsieme proprio di un altro arco di G.

simple(x) ≡ Hyp(x) ∧ (∀g, h)
(
(g ∈ x ∧ h ∈ x ∧ g ̸= h)→ (∃v)

(v ∈ V ∧ v ∈ g ∧ ¬(v ∈ h))
)

Lemma 4.2.2. Siano G e H due ipergrafi. Decidere se G e H soddisfano la

proprietà d’intersezione è esprimibile in FO(COUNT).

Dimostrazione. Ricordiamo che due ipergrafi G e H soddisfano la proprietà

d’intersezione se ∀g ∈ G, ∀h ∈ H, g ∩ h ̸= ∅.

intersection-property ≡ (∀g, h)
(
(g ∈ G ∧ h ∈ H)→

(∃v)(v ∈ V ∧ v ∈ g ∧ v ∈ h)
)
.
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CHECK CONSISTENZA Il secondo controllo CHECK

-CONSISTENCY(G,Σ) (Linea 6) ha la funzione di verificare che il cammino

Σ selezionato non generi un assegnamento incoerente. Pertanto, l’algoritmo

rifiuta i guess non consistenti.

Definizione 4.2.3 (Congruenza). Diciamo che l’insieme di etichette Σ scel-

to non deterministicamente è congruente se, per ogni oggetto x per cui la

relazione unaria S1(x) è soddisfatta, l’oggetto x deve rappresentare effetti-

vamente un vertice (quindi V ertex(x) è True), e, per ogni coppia di oggetti

(x, y) per cui la relazione binaria S2(x, y) è soddisfatta, l’oggetto x deve rap-

presentare effettivamente un vertice appartenente all’oggetto y, il quale deve

rappresentare un arco di G (quindi V ertex(x), EdgeOf(y,G) e In(x, y) sono
True).

Lemma 4.2.4. Siano G e H due ipergrafi e sia Σ un insieme di etichette

di T (G,H). Decidere la congruenza e la consistenza di Σ è esprimibile in

FO(COUNT).

Dimostrazione. La seguente espressione indica la proprietà di congreunza di

Σ:

congruentGuess ≡ (∀v)(S1(v)→ v ∈ V )∧

(∀w, g)(S2(w, g)→ w ∈ V ∧ g ∈ G ∧ w ∈ g)

Ricordiamo che Σ è consistente se In(Σ) ∩ Ex(Σ) = ∅. Al fine di stabilire

la consistenza di Σ, si formalizza inizialmente la condizione di inconsistenza

per un vertice generico v, per poi successivamente verificarla per ogni vertice

appartenente all’insieme V .

inconsistent(w) ≡ w ∈ V ∧ (∃g)(S2(w, g) ∧ (S1(w)∨

(∃v, h)(S2(v, h) ∧ v ̸= w ∧ w ∈ h)))

consistentGuess ≡ (∀v)(v ∈ V → ¬inconsistent(v))
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CHECK TESTIMONE DOPPIO Dopo aver superato i controlli di con-

gruenza e consistenza di Σ, l’algoritmo procede alla verifica finale tramite

CHECK-AUG-DOUBLEWITNESS(G,H,Σ) (Linea 9). In questa fase, l’al-

goritmo determina se l’assegnamento aumentato σ(Σ)+, generato dall’insie-

me di etichette Σ, costituisce effettivamente un testimone doppio della non

dualità di G e H.
La verifica si basa sul seguente lemma, che fornisce un criterio necessario

e sufficiente per riconoscere un testimone doppio in termini degli insiemi

Sep(σ) e Com(σ):

Lemma 4.2.5. Siano G e H due ipergrafi e σ = ⟨In,Ex⟩ un assegnamento.

Allora σ è testimone doppio della non dualità di G e H se e solo se

Sep(σ) = ∅ ∧ Com(σ) = ∅ (4.4)

Lemma 4.2.6. Siano G e H due ipergrafi e sia Σ un insieme di etichette di

T (G,H). Decidere se σ(Σ)+ è testimone doppio della non dualità di G e H
è esprimibile in FO(COUNT).

Dimostrazione. Sfruttando l’equivalenza imposta dal lemma precedente, è

sufficiente dimostrare che la condizione (4.4) è esprimibile con FO(COUNT).

Sia σ(Σ) = ⟨In(Σ), Ex(Σ)⟩ l’assegnamento associato a Σ. Le seguenti for-

mule valutano l’appartenenza di un vertice a In(Σ) e Ex(Σ):

I-guess(v) ≡ v ∈ V ∧ (∃g)(S2(v, g))

E-guess(v) ≡ v ∈ V ∧ (S1(v) ∨ (∃w, g)(S2(w, g) ∧ w ̸= v ∧ v ∈ g)).

Definiamo ora le seguenti relazioni:

• PLUS(x, y, z) è una relazione ternaria. Rappresenta la somma e risulta

True se x+ y = z.

• SUCC(x, y) è una relazione binaria. Risulta True se l’oggetto y è

l’immediato successore dell’oggetto x.
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Per rappresentare il concetto di frequenza di un vertice v in σ(Σ), dob-

biamo verificare che v appartenga ad almeno la metà degli archi di Com(σ).

La seguente formula risulta True se y = ⌈x
2
⌉:

half(x, y) ≡ PLUS(y, y, x) ∨ (∃z)(PLUS(y, y, z) ∧ SUCC(x, z)).

In ordine, le seguenti formule verificano: che un arco appartenga ad Com(Σ),

il numero di archi di Com(Σ), il numero di archi di Com(Σ) che contengono

un vertice v e che un vertice v sia frequente in σ(Σ).

com(h) ≡ h ∈ H ∧ (∀v)((v ∈ V ∧ v ∈ h)→ ¬E-guess(v))

count-com(n) ≡ (∃!nh)(h ∈ H ∧ com(h))

count-com-inc(v, n) ≡ v ∈ V ∧ (∃!nh)(h ∈ H ∧ com(h) ∧ v ∈ h)

freq(v) ≡ v ∈ V ∧ ¬I-guess(v) ∧ ¬E-guess(v)∧

(∃n,m, o)(count-com(n)∧count-com-inc(v,m)∧half(n, o)∧(o = m∨o < m)).

Ora, le due formule successive eseguono un controllo sui vertici, per

verificare se appartengono ai vertici inclusi ed esclusi, rispettivamente, di

σ(Σ)+:

I-aug(v) ≡ v ∈ V ∧ (I-guess(v) ∨ freq(v))

E-aug(v) ≡ v ∈ V ∧ (E-guess(v) ∨ ¬freq(v))

Infine, esprimiamo in FO(COUNT) la condizione (4.4), verificando prima

l’appartenenza di un arco agli insiemi Sep(σ(Σ)+) e Com(σ(Σ)+)

sep-aug(g) ≡ g ∈ G ∧ (∀v)((v ∈ V ∧ v ∈ g)→ ¬I-aug(v))

com-aug(h) ≡ h ∈ H ∧ (∀v)((v ∈ V ∧ v ∈ h)→ ¬E-aug(v))

CheckGuessAugDoubleWitness ≡ (∀g)(g ∈ G → ¬sep-aug(g))∧

(∀h)(h ∈ H → ¬com-aug(h))



34 4. Algoritmo

4.3 Correttezza algoritmica e risultati di com-

plessità

Per concludere, mostriamo la correttezza dell’algoritmo ND-NotDUAL

e il risultato fondamentale di complessità del problema DUAL, dal quale

seguono immediatamente due corollari.

Teorema 4.3.1. Sia I = ⟨G,H⟩ un’istanza di DUAL. Allora, l’istanza I
appartiene al linguaggio DUAL se e solo se esiste un ramo di computazione

dell’algoritmo ND-NotDUAL(G,H) che termina in uno stato accettante.

Dimostrazione. (⇐) Assumiamo che esista un ramo di computazione dell’al-

goritmo ND-NotDUAL(G,H) che termini in uno stato accettante. L’accet-

tazione può avvenire esclusivamente in due punti dell’algoritmo:

1. Linea 4: Significa che la verifica CHECK-SIMPLE-AND-

INTERSECTION è fallita. Cioè, o G e/o H non sono semplici, oppure

G e H non soddisfano la proprietà di intersezione. Per il Lemma 2.2.3,

si conclude che G e H sono non duali.

2. Linea 10: Significa che i controlli precedenti sono stati superati, quindi

l’insieme di etichette Σ scelto non deterministicamente è risultato con-

sistente. Il successo del controllo CHECK-AUG-DOUBLEWITNESS

alla Linea 9 implica che l’assegnamento aumentato σ(Σ)+ è un testimo-

ne doppio della non dualità di G e H. Per il Lemma 4.1.8, l’esistenza di

tale Σ è equivalente all’esistenza di un new transversal T di G rispetto

a H. Tramite il Lemma 2.2.3, l’esistenza di un new transversal implica

che G e H non sono duali.

In entrambi i casi, l’accettazione da parte dell’algoritmo implica la non

dualità dell’istanza, il che significa che I = ⟨G,H⟩ un’istanza di DUAL.

(⇒) Supponiamo che I = ⟨G,H⟩ sia un’istanza-SI di DUAL. Per il

Lemma 2.2.3, se G e H non sono duali, allora si verifica uno dei seguenti

scenari:
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1. Almeno uno tra G e H non è un ipergrafo semplice: l’algoritmo ricono-

sce tale condizione alla Linea 3, tramite il controllo ¬CHECK-SIMPLE

-AND-INTERSECTION(G,H), terminando in uno stato accettante.

2. G e H non soddisfano la proprietà d’intersezione: come nel punto pre-

cedente, l’algoritmo riconosce tale condizione alla Linea 3, terminando

in uno stato accettante.

3. Esiste un new transversal T di G rispetto a H: dal Lemma 4.1.8, questa

condizione è equivalente all’esistenza di un insieme di etichette consi-

stente Σ ∈ Llog(G,H) tale che l’assegnamento aumentato σ(Σ)+ sia

un testimone doppio della non dualità di G e H. Poiché l’algoritmo

ND-NotDUAL è non deterministico, abbiamo la garanzia che possa

scegliere (o indovinare) non deterministicamente tale Σ alla Linea 2.

Pertanto, tale ramo di computazione raggiungerà la Linea 9, superando

i controlli precedenti e terminando in uno stato accettante.

Abbiamo, dunque, dimostrato che in ogni caso di non dualità esiste un ramo

computazionale in cui l’algoritmo termina in uno stato accettante.

Teorema 4.3.2. DUAL ∈ GC(log2(N),TC0)

Dimostrazione. La dimostrazione si basa sulla scomposizione dell’Algoritmo

ND-NotDUAL nelle sue componenti deterministica (Check) e non determi-

nistica (Guess):

• (Check ∈ TC0) Nel capitolo Check abbiamo mostrato che tutti i con-

trolli deterministici presenti nell’algoritmo ND-NotDUAL sono esprimi-

bili in logica del primo ordine con operatori di conteggio (FO(COUNT)).

Quindi, la fase di verifica deterministica appartiene a TC0.

• (Guess ∈ O(log2N)) La fase non deterministica (Linea 2) richiede di

indovinare l’insieme di etichette Σ ∈ Llog(G,H). Dobbiamo dimostrare

che la dimensione totale di questo guess è limitata da O(log2N) bits.
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Supponiamo che G e H non siano duali. Se G e H non sono semplici o

non soddisfano la proprietà d’intersezione, allora l’algoritmo riconosce

direttamente G e H come non duali, ignorando l’insieme di etichette Σ

e, di conseguenza, anche quanti bits sono necessari al Guess.

Alternativamente, se G e H soddisfano entrambe le precondizioni di

semplicità e proprietà d’intersezione, allora esiste un new transversal T

di G rispetto a H. Dal Lemma 4.1.8, esiste Σ ∈ Llog(G,H) consistente
tale che σ(Σ)+ è un testimone doppio della non dualità di G e H.
Poiché avevamo indicato con N = ∥G∥ + ∥H∥ la taglia dell’istanza

I = ⟨G,H⟩, allora |Σ| ∈ O(logN). Ogni elemento di Σ è un’etichetta

associata a un’estensione d’assegnamento, rappresentata da un vertice

o da una coppia vertice arco. Dato che O(logN) bits sono sufficienti a

rappresentare vertici e archi di un ipergrafo, anche ogni etichetta di Σ

è rappresentabile con O(logN) bits.

In conclusione, sono necessari solo O(log2N) bits per rappresentare

correttamente Σ.

Quindi DUAL ∈ GC(log2(N),TC0).

Corollario 4.3.3. DUAL ∈ GC(log2(N),LOGSPACE)

Dimostrazione. Deriva direttamente dell’inclusione nota

TC0 ⊆ LOGSPACE

Corollario 4.3.4. DUAL ∈ DSPACE[log2(N)]

Dimostrazione.

DUAL ∈ GC(log2(N),LOGSPACE) ⊆ DSPACE[log2(N)]

La chiusura di DSPACE[log2(N)] rispetto al passaggio al complementare

implica che DUAL ∈ DSPACE[log2(N)].



Conclusioni

Il presente elaborato ha avuto come obiettivo l’analisi e la collocazione

formale del problema DUAL all’interno della classe GC(log2(n),TC0). Per

dimostrare questo risultato, è stata adottata una procedura basata sul mo-

dello di calcolo non deterministico, nota come guess and check, formalizzato

nell’algoritmo ND-NotDUAL.

Il problema DUAL stabilisce se un ipergrafo H non sia il duale di un

ipergrafo G. L’attenzione dell’elaborato è rivolta alla ricerca di un new

transversal, condizione sufficiente alla non dualità. Tuttavia, l’algoritmo

ND-NotDUAL non cerca concretamente un new transversal, ma una pro-

va della sua esistenza, ovvero un testimone doppio della non dualità di G e

H.
La prima fase non deterministica consiste nella scelta di un certificato di

prova Σ, un insieme di etichette di piccola dimensione. Abbiamo dimostrato

che il guess totale richiede soltanto O(log2(N)) bits di memoria.

La seconda fase deterministica esegue una serie di controlli volti alla ve-

rifica che almeno una delle tre condizioni del Lemma 2.2.4 fallisca. Si è

dimostrato che tutti questi controlli possono essere espressi in logica del pri-

mo ordine con quantificatori di conteggio (FO(COUNT)). Ciò permette di

collocare la fase di check nella classe TC0.

Unendo questi due risultati, si ottiene la classificazione finale del problema

DUAL, collocandolo in GC(log2(n),TC0).

37
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