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Introduzione

Negli ultimi decenni, la disponibilita sempre crescente di dati, favorita dallo svi-
luppo di sistemi automatici di raccolta e archiviazione, ha reso indispensabile
lo sviluppo e I'impiego di tecniche statistiche e numeriche in grado di estrarre
informazione utile da insiemi di dati sempre piu vasti e complessi.

In questo contesto si inserisce il Data Mining, disciplina che analizza grandi
moli di dati, per estrarne informazione.

Con il termine ‘informazione’ si intende il risultato di un processo di trasforma-
zione, interpretazione ed estrazione dei dati, dove questi ultimi, originariamente
grezzi e privi di un significato immediatamente evidente, vengono elaborati per
rivelare pattern, tendenze o correlazioni.

L’analisi di dati e la ricerca di modelli o regolarita ¢ sempre stata effettuata;
ma € solo negli ultimi anni che sono stati sviluppati strumenti computazionali
capaci di esplorare strutture anche molto complesse.

Tra le strategie piu diffuse di analisi di dati rientrano:
o (Caratterizzazione) Si determinano proprieta comuni di gruppi di dati;
e (Discriminanza) Si confrontano caratteristiche diverse tra gruppi di dati;

e (Appartenenza) Si riconoscono nuovi dati come membri di determinati

gruppi.

In numerosi campi applicativi, dalla biologia alla finanza, dalle scienze sociali
allo sport, I'analisi multivariata e i metodi di riduzione dimensionale rappresen-
tano ormai strumenti fondamentali per interpretare fenomeni caratterizzati da

molte variabili tra loro correlate.

11



iv

INDICE

Tra le tecniche maggiormente utilizzate rivestono un ruolo centrale I’Analisi
delle Componenti Principali, che permette di sintetizzare la variabilita del da-
taset riducendo il numero di variabili mediante la costruzione di nuove direzioni
dominanti, e le tecniche di clustering, che permettono di riconoscere similarita
o dissimilarita tra osservazioni o variabili e che mirano a individuare gruppi
omogenei all’interno e disomogenei all’esterno.

La finalita di questa tesi é duplice.

Da un lato presentare teoricamente gli strumenti utilizzati: nel secondo capi-
tolo si introduce 'algoritmo di PCA, le metodologie di scelta delle componenti
principali e la loro interpretazione grafica; nel terzo capitolo si analizzano le
tecniche di clustering, concentrandosi in particolare sul Complete Linkage per
i metodi gerarchici e sulle K-medie per quelli non gerarchici, con relative inter-
pretazioni grafiche.

Dall’altro lato applicare questi strumenti: nel quarto capitolo viene fatta un’a-
nalisi su un dataset reale relativo al nuoto agonistico, fornito da un dottorando
del Dipartimento di Scienze per la Qualita della Vita. 11 dataset analizzato
comprende un ampio insieme di variabili antropometriche e prestative, rilevate
su nuotatori e nuotatrici di eta, proporzioni fisiche e stili di nuoto piu efficaci
differenti e, dal momento in cui non tutti i soggetti presentano dati completi,
I’analisi viene svolta in due fasi: su un dataset ristretto, ottenuto selezionando
solo gli individui con tutte le variabili nello stile libero disponibili; sul dataset
completo, affrontando il problema dei dati mancanti con metodi adeguati.
L’obiettivo complessivo ¢ quindi quello di mostrare come tecniche dell’analisi
numerica, della statistica multivariata e del data mining possano essere efficace-
mente utilizzate per comprendere fenomeni complessi, rivelare strutture interne
ai dati e supportare interpretazioni coerenti in un contesto reale e applicativo,

come quello del nuoto agonistico.



Capitolo 1

Nozioni Preliminari

1.1 Le matrici

Definizione 1.1.1. Dato un campo R, si definisce lo spazio dei vettori colonna

come l'insieme 1 cui elementi sono successioni in colonna di n numeri di R:

¢ \
ai
R" = ai,ag,...,a, € R
a
L \" J

Definizione 1.1.2. Presi m,n, numeri interi positivi, una matrice m x n a

coefficienti in R € un insieme di mn elementi di R disposti in questo modo:

@13 A2 - dip

Q21 Q22 -+ Q2pn
A=

Am1 Am2 **° Amnp

dove m rappresenta il numero di righe e n il numero di colonne.

In questa tesi considereremo come campo quello dei numeri reali R e denoteremo
quindi con R™*" lo spazio delle matrici a coefficienti reali con m righe e n

colonne e con R™ lo spazio dei vettori colonna a coefficienti reali.
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Definizione 1.1.3. La trasposizione di un vettore v € R™ ¢é 'operazione di

scambio delle sue righe con le sue colonne:

T
V11

V21
. = \V11 V21 - Um1)-

Um1

Definizione 1.1.4. Una matrice A € R™" si dice diagonale se é nulla al di

fuori della diagonale principale: a;; =0 Vi # j.

Definizione 1.1.5. La matrice identita [ é la matrice diagonale con tutti i

coefficienti sulla diagonale principale uguali a 1.

Definizione 1.1.6. Data A € R™"*" la traccia di A é la somma dei suoi elementi

diagonali: tr(A) = Z @i

i=1
Definizione 1.1.7. Una matrice A € R™*" si dice invertibile o non singolare
se esiste A™1 € M, (K) tale che A™'A=AA"' = I.

Osservazione 1.1.1. Se A € M, (K) ¢ invertibile, allora anche A” ¢ invertibile

con inversa (A7) = (47T,
Definizione 1.1.8. Una matrice A € R™" gi dice simmetrica se A = AT

Definizione 1.1.9. Data una matrice A € R"*"la forma bilineare associata ad
A ¢ Iapplicazione 34 : R® x R® — R tale che S4(z,y) = 2TAY, x,y € R

Definizione 1.1.10. Una matrice A € R™ " si dice semidefinita positiva se
2T Ar >0 Va € R"; si dice definita positiva se 27 Az >0 Vo € R™\ {0}.

Definizione 1.1.11. Una matrice quadrata A € R™*" si dice ortogonale se
AT A = AAT =1, cioé se A ¢ invertibile e AT = A7

Definizione 1.1.12. Una funzione [-||: R" — R ¢ una norma vettoriale se, per

ogni z,y € R", soddisfa le seguenti proprieta:



1.1 Le matrici

L. ||z]|> 0 e |jz||=0 <= z =0, dove 0 indica il vettore nullo;
2. lax|= laf-|z]] Vo eR;
3. (disuguaglianza triangolare) ||z + y||< ||z||+|ly]|-

Definizione 1.1.13. La norma-p vettoriale ¢ definita come:

[2]lp= (Z\wi!”)

In particolare si hanno le seguenti norme:

3=

Ve e R"p>1.

e (Norma-1 o del modulo) ||z||1= Z|xz| Ve € R

i=1

e (Norma-2 o euclidea) ||x||2=

n
Z z? Ve R"
i—1

e (Norma-oc o del massimo) ||z||cc= miax|xi] Ve € R".

Definizione 1.1.14. Una funzione ||-||: R""*" — R ¢ una norma di matrice se,

per ogni A, B € R™*" soddisfa le seguenti proprieta:

L. |Al[>0e ||A]|=0 < A =0, dove 0 indica la matrice nulla;
2. laAf= lal-[A]l Vo e R;

3. |4+ Bl < [|All+[IBI];

4 |AB[I< [[A[IB]l,  da cui [A™[[< [|A]™,¥m € N.

La definizione puo essere generalizzata al caso rettangolare, con le opportune

modifiche sulle dimensioni delle matrici.

Definizione 1.1.15. La norma-p matriciale indotta dalla norma.p vettoriale é
definita come:

A
—“ 2l = max ||Az||, VAeR™".
o£zeR™ ||z, ll]lp=1

1A=
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Definizione 1.1.16. La norma di Frobenius & definita come:

| Al p:= <Z|aij|2) VA e R™".

ihj

Proposizione 1.1.1. Alcune proprieta delle norme di matrice sono:
L A= AT], VAeR™™;
2. Se ||| € una norma matriciale indotta, allora ||Ax||< ||A|| ||z||, Vz € R"™;

3. Se ||-|| & una norma matriciale indotta, allora ||I||= 1 dove I indica la

matrice identita; e per una qualsiasi norma matriciale vale ||I]|> 1;

1
4. |ATH> —=, VA& R™" matrice invertibile;
1A]]

5. ||A|lp=tr(A*A)z, VA€ R™";

6. Per ogni U,V € C™" unitarie ||[UAV*||p= || A||r, A€ R™™;

n

7. Se D = diag(oy,...,0,) € R™" allora | D||p= (Z o2)2;
i=1
8. Se A € R™™ ¢ non singolare allora, per ogni norma indotta, si ha che

1
min ||Az||= )
|IxH=1H H A=

1.2 1l problema agli autovalori

Definizione 1.2.1. Sia A € R™"™ un autovettore & un vettore non nullo
x € C" tale che Az = Az con A € C autovalore di A. Inoltre, la coppia (A, )

viene detta autocoppia di A.
Definizione 1.2.2. Sia A € R™"*" si definisce spettro di A 'insieme:

spec(A) = A(A) := {X € C| X autovalore di A}.



1.2 Il problema agli autovalori

Definizione 1.2.3. Sia A € R"*", si definisce raggio spettrale di A:
p(A) == max{|A|| A € A(A)}
e misura la massima distanza di A(A) dall’origine.

Definizione 1.2.4. Sia A € R™ " simmetrica, si definisce quoziente di Ray-

T
. xeR"\ {0}
\ {0}

In questo caso il quoziente di Rayleight ¢ reale.

leight il rapporto

Definizione 1.2.5. Una matrice A € R™*" si dice diagonalizzabile se ¢ simile a

una matrice diagonale, ovvero se esiste una matrice P € R"*") invertibile tale
che PD = AP; D e R™" diagonale.

Definizione 1.2.6. Una matrice A € R™*" si dice normale se soddisfa:
ATA = AAT.

Proposizione 1.2.1. Per una matrice A € R™"™ wvalgono le sequenti decompo-
$1210M4%:
o Se A ¢ simmetrica, A = QAQT con Q € R™™ ortogonale,
A =diag(Ay, ..., \n) € R dove Ay, ..., A\, sono gli autovalori di A;

o Se A ¢ normale, A = QDQT con Q € R™" ortogonale,
D e R™" diagonale;

e Se A non ¢ diagonalizzabile, & sempre possibile scrivere la decomposizione
di Schur: A = QRQT con Q € R™™ ortogonale e R triangolare superiore

avente sulla diagonale gli autovalori di A.

Data la matrice A € R™*" il problema degli autovalori consiste nel calcolo della
coppia (A, x) con A € C e 0# x € R" tale che Ax = \x.
Questo problema é non lineare, quindi non ci sono in generale algoritmi “diretti”

per la sua risoluzione.

Osservazione 1.2.1. Dopo l'introduzione della definizione di autovalore € possi-

bile riscrivere alcune caratterizzazioni:
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e Una matrice A € R™" ¢ non invertibile o singolare se e solo se 0 € A(A);

e Se A € R™™ ¢ diagonale, i suoi elementi diagonali coincidono con i suoi

autovalori e gli autovettori relativi sono la base canonica;

e Se A € A(A), allora A™! € A(A™1), ma lautovettore relativo rimane lo

stesso;

e Sia A € R™" simmetrica, allora A ha solo autovalori reali;

n

e Il determinante di A € R™" soddisfa det(A) = H i

i=1
e La traccia di A € R™*" soddisfa tr(A) = Z i
i=1

e Se A € R™" ¢& simmetrica e definita positiva, allora \; > 0 Vi. Se
¢ semidefinita positiva \; > 0 Vi (ugualmente se definita negativa e

semidefinita negativa).

Teorema 1.2.1 (Rayleight-Ritz). Sia A € R™" simmetrica, \y < ... < A\,

autovalori di A, vale:

<\ V0 # v € R™.

Inoltre i valori di \y e \, vengono effettivamente raggiunti rispettivamente per

V= Tpmin €V = Tmaz, 0vVETO lautovettore pit piccolo e quello piu grande:

at Ax . al Ax
Amaz = Ap, = INax > Amin = A1 = min -
z#A0 x'Xx z#0 xtx
Dimostrazione. A simmetrica si decompone: A = XAX” con X = [z1,...,2,] €

R™™ ortogonale e A = diag(\y,...,A,) € R™™.

T T T T Z)\i|wi|2
A XAX A —
SiaO#veR",valeU vt R :

vTo VT X XTo wlw — jw|?
Essendo ||w||= ||v|| perché X ortogonale,
n n

si ha Z/\z|wz|2§ Amaa: Z|wz|2§ /\ma:tHwHQ: )‘ma$||v||2~

i=1 i=1




1.2 Il problema agli autovalori

Avendo ordinato gli autovalori in ordine decrescente, allora \,,.. = A,

T
vt Av

e si puo concludere: <\, V0 # v e R™.
vy

Conti analoghi permettono di ottenere l'altra disuguaglianza. O]

Corollario 1.2.1. Siano A = XAXT, A\ < ... <\, autovalori di A,
X = [z1,...,2,] € R™™ ortogonale, A = diag(A1,...,\,) € R™" e sia (A, x1)

T Az

la pit piccola autocoppia di A; allora min ——— = Ay.

0#zxlzy xtXx
Dimostrazione. Sia z 1L 2y = ol2 =0 e, definendo q = X"z, siha ||xH— llqll-
Quindi #"Az = ZA |4 ¢il*= ZA ¢l ail’> X Z\ql aul’= Ao Z!qi q*=

i>1 i>1 i=1

Mozl
L’inf di 7 Az viene raggiunto e si ha il min. m

Osservazione 1.2.2. 1l risultato del corollario si pud generalizzare:

. xT Ax
min

0#xLlxy,...,xp_1 .TT,I

=Xy k=2,...,n.






Capitolo 2

Analisi delle componenti principali

2.1 Elementi di statistica descrittiva

multivariata

In genere, con il termine statistica si intende la disciplina che studia le tecniche
per la raccolta dei dati e la loro elaborazione, in modo da ottenere il pitl elevato
numero di informazioni in riferimento al fenomeno in studio. Quando si raccol-
gono informazioni in riferimento ad un certo fenomeno, ci si trova ad avere a che
fare con una mole notevole di dati grezzi, di conseguenza, il primo problema che
ci si trova ad affrontare ¢ quello di sintetizzare la massa di dati grezzi in pochi
numeri o indicatori particolarmente informativi, utilizzando metodiche grafiche
o numeriche che siano in grado di descrivere la massa di dati senza alterarne il
senso complessivo. Questa parte della statistica € nota con il nome di statistica

descrittiva.

Definizione 2.1.1. Si dice matrice dei dati la matrice X € R"*P, dove n sono

le osservazioni e p le variabili.
Definizione 2.1.2. Sia X € R"*P matrice dei dati, si dice media campionaria
. . 1 ¢ .
il vettore riga 7 = [7y,...,7,] € R dove 7; = —Z%i Vi=1,...,péla
n
j=1

media campionaria degli elementi della ¢-esima colonna di X, cioé dell’z-esima

variabile.
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Definizione 2.1.3. Sia X € R™*? matrice dei dati, si dice matrice di covarian-

za campionaria la matrice S € RP*P:

S11 S12 " Sip
n
S12 S22 -+ Sy 1 a B .
S=1. . . A Sik:mg (zji — i) (v — ) 1 <4,k <p.
: : S sy
Sip S2p tt Spp

Osservazione 2.1.1. La matrice di covarianza campionaria é un indice di disper-
sione, ovvero una misura statistica che descrive quanto i dati in un campione
sono sparsi attorno a un valore centrale: la media.

Il coefficiente s;;, ¢ grande se entrambe x;;, x;; sono dispersive.

Definizione 2.1.4. Sia S € RP*P la matrice di covarianza campionaria, la
p

varianza totale campionaria ¢ data da: tr(S) := Z Sii-
i=1

Osservazione 2.1.2. La varianza totale campionaria non ¢ molto indicativa

perché non tiene conto della covarianza tra variabili.

Definizione 2.1.5. Sia X € R"*P matrice dei dati, si dice matrice di correla-

zione campionaria la matrice R € RP*P:

1 Tz - Tip
T2 Tog -+ Tgp Sik .
R = y  Tik = 1 < 1, k < p
\/ SiiSkk
Fip Top =+ Tpp

Osservazione 2.1.3. La matrice di correlazione campionaria ¢ una matrice sim-
metrica semidefinita positiva e adimensionale che coglie solo la variabilita lineare
dei dati.

La correlazione tra due variabili ¢ un numero appartenente all’intervallo [—1, 1]
ed ¢ positiva quando al crescere di una variabile I'altra cresce; negativa quando

al crescere di una variabile Paltra cala.
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Definizione 2.1.6. Sia X € R™*?P matrice dei dati, R € RP*P matrice di corre-

lazione campionaria e {(\;, v;) }i=1,..., autocoppie di R; il rapporto di variabilita

¢ definito come: rv € R? tale che rv; = Z Ar € rappresenta I'importanza
k<i

tr(R)

dei primi ¢ autovalori rispetto a tutti.

2.2 Componenti principali di un campione di da-

ti

La Principal Component Analysis (PCA) & una tecnica di apprendimento non
supervisionato utilizzata nella moderna analisi di dati e riguardante diversi cam-
pi di ricerca: dalle neuroscienze alla computer graphic.

E un metodo relativamente semplice per l’estrazione di informazioni rilevanti
da dati di difficile interpretazione; 'idea alla base della PCA é di ridurre la
dimensionalita del dataset, mantenendo quanta pit varianza possibile nei dati.
La riduzione viene fatta passando da un set di variabili di dimensione n X p a
un nuovo set di variabili di dimensione n x k con k << p latenti (ovvero non
misurabili), non correlate tra loro e ordinate in modo che le prime mantengano
la maggior parte della varianza presente in tutte le variabili originali.

In altre parole, I'obiettivo della PCA & trovare una base vettoriale alternativa
{v1,...,y,}, combinazione lineare della base originale {x1,...,x,}, che meglio
esprima le proprietd del data set, filtrando il rumore e rivelando la struttura

prima dei dati.

Sia X = [z1,...,x,] € R™? matrice dei dati, S € RP*P matrice di covarianza,
A1 > ... > )\, > 0 autovalori della matrice di covarianza e R € RP*P matrice
di correlazione, lo scopo ¢ determinare A = [ay,...,a,] € R™? matrice dei

coeflicienti tale che Y = XA con Y = [y1,...,y,] € R"*?, con {y1,...,y,} non
correlate (covarianza nulla) e che massimizzino la variabilita che ognuna delle

p variabili ha nel campione considerato.
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Le p colonne di Y sono combinazione lineare delle p colonne di X:

’
Y1 = X(Zl = x1a11 + To@19 + ...+ TpQip

Y2 = XCL2 = T1Q91 + Talog + ...+ TpQop

[ U = Xay = T1ap1 + Taapy + ... + Tpayp

con varianza campionaria var(y;) = az»TS a; Yi=1,...,p e covarianza campio-
naria cov(y;,y;) = aj Sa; Yi,j=1,...,p,i # j.

La prima componente principale & y; = Xay, che massimizza var(y,) = al Sa,.
La seconda componente principale & yo = Xas, che massimizza var(ys) = a3 Sas
e risulta ortogonale in senso di covarianza a y;, ossia soddisfa cov(yi,ys) =
al Say = 0.

E, in generale, la i-esima componente principale ¢ y; = Xa;, che massimizza
var(y;) = aj Sa; e risulta ortogonale in senso di covarianza a y;, con k < i, ossia
soddisfa cov(yy, i) = ai Sa; =0 Yk < i.

Trovare a; che massimizzi la varianza campionaria, significa trovare:

max  al Sa;.
a1€R,||a1||=1

Per il Teorema tale massimo @ il pit grande autovalore A; della matrice di
covarianza, ottenuto scegliendo a; come primo autovettore di S.

Trovare a, che massimizzi la varianza campionaria, sotto il vincolo che la
seconda componente principale 35 sia non correlata a y;, significa trovare:

max a3 Say | al Sag =0
a2€R,[jaz(=1

cioé, unendo queste due condizioni, trovare:

max a3 Sas.
a2€R,||az||=1,Xa> 1 Xaq

Per il Corollario si & osservato che tale massimo ¢ il pit grande autovalore
escluso A\ (ovvero ) della matrice di covarianza, ottenuto scegliendo ay come
secondo autovettore di S.

Iterando questo ragionamento, si determina a,, osservando che A =V con V =
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[v1,...,v,] matrice degli autovettori della matrice di covarianza relativi agli

autovalori \; > ... > A\, > 0.

Proposizione 2.2.1. Data S € RP*P matrice di covarianza e (A, v1), ..., (Ap, vp)
autocoppie di S tali che \y > ... > X\, > 0; definendo le componenti principali

yi = Xa; = Xv; come sopra, allora:
1. (Varianza campionaria) var(y;) = A, Vi=1,...,p;

2. (Covarianza campionaria) cov(yx,y;) =0 Vi #k;

P
3. (Varianza totale campionaria) Z Ai-

i=1
Dimostrazione. Sia y; = Xa; con a; € RP,||a;||= 1, ricordando che la i-esima

componente principale € stata ottenuta scegliendo a; = v; con v; autovettore di .S,
1. var(y;) = al Sa; = vl Sv; = v (\v;) = Mi(vlvy) = Ni;

2. cov(yr,y;) = aiSa; = v{Sv; = vl (A\v;) = Ni(vliv;) = 0, perche gli

autovettori di S formano una base ortonormale;

3. per il sesto punto dell’Osservazione [1.2.1} la traccia della matrice S & pari

alla somma dei suoi autovalori.
O

Osservazione 2.2.1. Le componenti principali costruite da S e da R non sono

uguali, in generale pero sara chiaro dal contesto quale matrice viene utilizzata.

2.3 Componenti principali per un campione con

dati standardizzati

Quando i dati del campione presentano unita di misura o ordini di grandezza
differenti, procedendo con le componenti principali ottenute dalla matrice di

covarianza ’analisi puo diventare fuorviante.
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2. Analisi delle componenti principali

La covarianza, infatti, dipende direttamente dalle unita di misura: variabili con
varianza elevata (perché espresse in unita grandi o perché numericamente molto
pit disperse) contribuiscono in modo sproporzionato al valore del quoziente di
Rayleigh. Poiché la PCA seleziona le direzioni che massimizzano la varianza,
le variabili con valori numerici assoluti maggiori tendono automaticamente a
dominare la costruzione delle componenti principali, anche quando non rappre-
sentano la relazione statistica piu rilevante nel dataset.

Per evitare 'insorgere di queste problematiche, si applica la standardizzazione,
che rende confrontabili tutte le variabili e consente alle componenti principali
di descrivere in modo piil fedele le relazioni presenti nei dati.

Al posto della matrice di dati X € R™P si utilizzera Z € R™*P tale che:

[T1; — X4
S11
To; — T;

Zi = (.%l — l_’l'T)Di

[N
I
[N}
| [N}
~
I
\.P—‘
=

con D = diag(s11,. .., Spp)-

Osservazione 2.3.1. Ogni variabile standardizzata z; soddisfa:

o (Varianza campionaria) var(z;) = 1;

e (Media campionaria) z; = 0;

Sk

V SkkSii

e (Covarianza campionaria) cov(zg, z;) = = .

Definendo la matrice media X € R™*? tale che ogni riga ¢ della forma 7y, . . ., T,;
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7 7 7 1 0O --- 0
Tl — X1 Ti2 — T2 - Tip — Tp 511
_ 1 3721*3_31 1‘22*%2 .Igp*(f‘p 0 ;22 0
Z=(X-X)D2= =
= = 1
Tpl — T1 Tpo — To Tnp — Tp 0 0 Ve
T11— 21 Tip — o T1p — Xp
S11 VS22 Spp_
To1 — X1 Ta2 — T2 Top — Tp
= Vv S11 522 Spp
Tn1 — jl Tn2 — EZ znp - jp
V511 V522 Spp

A questo punto la matrice di covarianza sara uguale alla matrice di correlazione
S =
n _

Le componenti principali, in questo caso, saranno combinazioni lineari delle p

1ZTZ , € quindi anche le sue autocoppie.

colonne di Z.

Proposizione 2.3.1. Data R € RP*P matrice di correlazione e (A1, v1), ..., (Ap, Up)
autocoppie di R tali che \y > ... > X\, > 0; definendo le componenti principali

yi = Xa; = Xv; come sopra, allora:
1. (Varianza campionaria) var(y;) =X, Yi=1,...,p;

2. (Covarianza campionaria) cov(yg,y;) =0 Vi # k;

P
3. (Varianza totale campionaria) Z A
i=1

2.4 Scelta delle componenti principali

Dal momento in cui la matrice delle componenti principali ¢ data da:

. Z € R™P matrice dei dati standardizzati,
Y =27V con

V € RP*P matrice degli autovettori della matrice di correlazione;

ogni elemento v;; della matrice V' dice quanto la variabile originaria standardiz-

zata z; contribuisca alla componente principale y;.
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2. Analisi delle componenti principali

Come gia osservato precedentemente, ciascuna componente principale puo es-
sere interpretata come una combinazione lineare delle variabili iniziali orientata
lungo una direzione che massimizza la variabilita spiegata.

Essendo ogni componente principale associata a una direzione che massimizza
la variabilita residua del dataset, le componenti possono essere naturalmente
ordinate in base alla quantita di varianza che spiegano. E proprio da questa
struttura gerarchica che discende 'obiettivo principale della PCA, ovvero quello
di sintetizzare p variabili in un numero k£ di variabili, con k£ << p in modo da
avere una minima perdita di informazione con una grossa riduzione di dati.
Non vi ¢ una procedura standard poiché ci sono molteplici fattori da tenere
in considerazione per fare questa scelta. I metodi pitt comuni e che verranno

illustrati e utilizzati in questa tesi sono tre:

1. (Valutazione grafica) Si traccia il grafico degli autovalori di S o R, pre-
cedentemente messi in ordine decrescente, e si cerca il "gomito", ovve-
ro il cambio di pendenza oltre il quale 'incremento di varianza diventa

marginale.

2. (Percentuale di varianza spiegata) Si scelgono le prime k componenti prin-
cipali che spiegano almeno il 60-80% della varianza totale del dataset, ov-
vero si calcola il vettore rapporto di variabilita e si sceglie il numero di

componenti di rv maggiori di una certa soglia 0.6-0.8;

3. (Autovalori maggiori della media) Si scelgono i k autovettori (o compo-
nenti principali) corrispondenti ai k autovalori maggiori della media degli

autovalori stessi (se 1 dati sono standardizzati la media degli autovalori é

1).

2.5 Interpretazione grafica

Per comprendere appieno le trasformazioni effettuate dall’algoritmo PCA e per
interpretarne correttamente i risultati, un ruolo centrale ¢ svolto dalla rappre-

sentazione grafica dei dati. L’osservazione dei grafici di dispersione, infatti,
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consente di cogliere aspetti strutturali che non emergerebbero dal solo esame
matriciale o numerico, poiché permette di localizzare casi anomali o al contrario
identificare zone con maggior concentrazione di dati.

Utile é analizzare tre principali tipi di grafici:

1. (Tra due variabili originali) 1 grafici di dispersione costruiti tra le varia-
bili originali, consentono una prima valutazione della struttura interna
del dataset prima di qualsiasi trasformazione, permettendo di individuare
correlazioni lineari tra coppie di variabili, ridondanze tra misure, pattern
non lineari, outlier (o osservazioni anomale) che si presentano come punti

isolati e cluster naturali gia presenti nello spazio.

2. (Tra una variabile originale e una componente principale) 1 grafici che
mettono in relazione le variabili originali con le componenti principali,
consentono di interpretare meglio le nuove coordinate ottenute tramite
PCA. Da questo tipo di grafico si puo intuire quanto ogni variabile con-
tribuisce a una particolare componente principale, in altre parole, quanto
una variabile originale sia ben rappresentata in una specifica componente.
In generale, se le nubi di punti appaiono inclinate o orientate, si ha una
forte rappresentazione della relazione fra le variabili; al contrario, nubi
prevalentemente orizzontali o verticali indicano una rappresentazione de-
bole. Questo passaggio é essenziale per assegnare un significato concreto

alle componenti principali.

3. (Tra due componenti principali) Gli scatter plot costruiti nello spazio delle
componenti principali (ad esempio grafici 2D tra PC1-PC2 o grafici 3D
tra PC1-PC2-PC3) sono gli strumenti grafici pin utilizzati nell'interpreta-
zione pratica della PCA, infatti, le componenti principali sono ortogonali
e non correlate, oltre a conservare la quota massima possibile di varianza
del dataset. Questi grafici consentono di visualizzare cluster, individuare
outlier e confrontare differenze tra sottogruppi di dati. La visualizzazione
nello spazio PC1-PC2, oppure in quello PC1-PC2-PC3, costituisce quindi
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2. Analisi delle componenti principali

un efficace riassunto della struttura dei dati e una base solida per analisi

successive, come le tecniche di clustering.



Capitolo 3
Clustering

Il clustering ¢ un processo di raggruppamento di elementi simili, rispetto a de-
terminate caratteristiche, in un insieme di dati. L’obiettivo é individuare una
struttura nei dati tale per cui gli oggetti appartenenti allo stesso cluster risultino
simili tra loro, ma dissimili da oggetti appartenenti a cluster differenti. Poiché i
risultati dipendono sia dall’obiettivo dell’indagine che dal contesto applicativo,
¢ necessario scegliere con attenzione la procedura di raggruppamento e la di-
stanza piu adatta per il tipo di dati presi in esame. Questo processo puo essere
applicato in molti ambiti per aiutare a identificare pattern di raggruppamento

e a suddividere le osservazioni in sottogruppi con caratteristiche simili.

3.1 Misure di dissimilarita e distanza

Un primo metodo per formare o separare gruppi di oggetti ¢ quello dei criteri

di somiglianza o dissimilarita.

Definizione 3.1.1. Date p variabili binarie, si definisce la tabella di contingen-

za:
1 0 totali
1 a b a+b a frequenza 1 — 1; d frequenza 0 — 0;
0 c d c+d b frequenza 1 — 0; ¢ frequenza 0 — 1.
totali |a+c¢ b+d|p=a+b+c+d

19
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3. Clustering

Definizione 3.1.2. Sia X un insieme qualunque, una funzione s : X x X — R
si dice coefficiente di similarita su X se, per ogni P, () € X valgono almeno le

seguenti proprieta:

1. (Simmetria) s(P,Q) = s(Q, P);

2. (Non negativita) d(P, Q) > 0;

3. (Massima similarita sull’identita) d(P, P) = max s;

4. (Monotonicita crescente) s(P,Q) /7

5. (Normalizzazione) 0 < d(P,Q) < 1 (non sempre da soddisfare).

Definizione 3.1.3. Alcuni esempi di coefficienti di similarita sono:

o 5(P,Q) = % stabilisce che P, () sono simili quando entrambi sono 1;

d
o (Simple matching) s(P, Q) = ot stabilisce che P, () sono simili quando
p
hanno entrambi lo stesso peso;
e (Coefficiente Jaccard) s(P,Q) = ﬁ attribuisce peso nullo al ter-
mine 0 — 0;
e (Coefficiente Sorensen-Dice) s(P, Q) = ST attribuisce peso doppio
al termine 1 — 1;
2 d
e (Coefficiente Sokal-Sneath) s(P,Q) = 2 +((cli)+—|—l>)+c attribuisce peso
doppio ai termini 1 —1 e 0 — 0;
(Coefficiente Rogers-Tanimoto) s(P,Q) atd ttribui
e (Cocfficiente Rogers-Tanimoto) s = attribuisce
J ’ 2b+c)+a+d

peso doppio ai termini 1 —0e 0 — 1;

Definizione 3.1.4. Sia X un insieme qualunque, una funzione d : X x X — R

si dice distanza su X se, per ogni P, (), R € X valgono le seguenti proprieta:

1. (Simmetria) d(P,Q) = d(Q, P);
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2. (Non negativita) d(P, Q) > 0;
3. (Identita degli indiscernibili) d(P,Q) =0 < P = Q;
4. (Disuguaglianza triangolare) d(P, Q) < d(P, R) + d(R, Q).

Definizione 3.1.5. Siano z,y € RP ¢ possibile definire le seguenti misure di

distanza:

e (Distanza euclidea) d(z,y) = \/(x — )Tz —y);

P
(Distanza cityblock) d(x,y) = Z\Iz —uil;
i—1

ety
0 lyll”
(Distanza Mahalanobis o statistica) d(z,y) = \/(x — y)TS—(x — y),

S matrice di covarianza;

(Distanza cosine) d(z,y) =1 —

p
(Distanza di Minkowsky) d(z,y) = (Z:|xZ - yi\m)%.

i=1

Osservazione 3.1.1. Esistono due tipologie di distanze:

o "within" the group, che indica quanto sono vicine le osservazioni all’interno
di un gruppo, consente di valutarne la coesione e di verificare se una

diversa scelta di raggruppamento potrebbe risultare pit appropriata;

o "between” the groups, che indica quanto sono distanti tra loro i gruppi.

3.2 Metodi gerarchici

I metodi gerarchici di clustering sono una categoria di metodi di analisi multiva-
riata che costruiscono un dendrogramma, ovvero un diagramma ad albero, per
rappresentare come le osservazioni o le variabili si uniscono progressivamente in
gruppi, senza richiedere a priori il numero di cluster.

Questo gruppo di metodi & ulteriormente suddivisibile in base all’approccio che

viene adottato:
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e (Metodi agglomerativi) Si parte da n cluster singoli, uno per ciascuna
osservazione (¢ possibile farlo anche con le variabili) e a ogni passo si
uniscono i due gruppi pit simili secondo un criterio di distanza fissato
all’inizio. Il processo continua finché tutte le osservazioni formano un

unico cluster.

e (Metodi divisivi) Si parte da un unico cluster contenente tutte le osserva-
zioni (& possibile farlo anche con le variabili) e lo si suddivide iterativa-

mente in gruppi pit piccoli.

Algoritmo 3.2.1. La tipica procedura in un metodo gerarchico agglomerativo

¢ la sequente:
1. Siinizia con n gruppi e una matrice simmetrica D € R™™ delle distanze;

2. Si determina la coppia di elementi u, v pit vicini (in termini della distanza

scelta) e si forma poi il gruppo (u,v);

3. Si aggiorna D, la quale diventera (n — 1) x (n — 1), sostituendo alle due
righe di w e v una sola riga con le distanze del gruppetto (u,v) dagli alti

oggetti;
4. Si ripetono tutti i passaggi a partire dal punto 2, fino a quando D € RY*!,

Tra i metodi gerarchici agglomerativi si possono trovare quelli di connessione o

linkage che, in base al tipo di distanza, vengono suddivisi in:

e (Single Linkage) La distanza tra due cluster ¢ la minima distanza tra i

rispettivi elementi;

o (Complete Linkage) La distanza tra due cluster ¢ la massima distanza tra

1 rispettivi elementi;

e (Average Linkage) La distanza tra due cluster é la media delle distanze

tra i rispettivi elementi.
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Osservazione 3.2.1. Alcune proprieta dei metodi agglomerativi sono:

e [l livello a cui avviene il raggruppamento ¢ importante perché evidenzia

I’effettiva distanza di un elemento dal cluster in cui viene inserito;

e Se la matrice delle distanze D ha minimi uguali con indici diversi, si

raggruppano i cluster separatamente:

0 9 3 6 11
9 0 7 2 10
es: D=13 7 0 9 , mind,;; =2
6 2 9 0
11 10 2 8
i=5,j=3=(3,5) gruppo
si hanno due possibilita A

i=4,j =2= (4,2) gruppo;

e Se D ha minimi uguali con indici in comune, si raggruppano solo gli oggetti

con la stessa distanza:

0 9 3 6 11
9 0 2 5 10
es: D=3 2 09 2|, mind;; =2

6 5 9 0
11 10 2 8

. Q. 1=0,7=3

si hanno due possibilita ma dso = 10

1=3,5 =2

= (3,5)V(3,2) gruppo, ma non (2, 3,5);
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3. Clustering

e i cluster e i dendrogrammi rimangono inalterati se si usano distanze che

mantengono lo stesso ordine.

Definizione 3.2.1. Un dendrogramma ¢ un diagramma ad albero che rappre-
senta visivamente la disposizione dei cluster prodotti dal clustering gerarchico.
E uno strumento cruciale in statistica, analisi dei dati e data science; in partico-
lare quando si ha a che fare con dataset complessi che richiedono I'identificazione
di relazioni tra vari punti dati.

Sull’asse delle ascisse del seguente grafico si trovano le osservazioni, mentre
sull’asse delle ordinate la distanza. Un aspetto rilevante consiste nell’effettua-
re un taglio orizzontale, a una certa distanza fissata, in modo da individuare

chiaramente i gruppi che emergono dalla struttura gerarchica.

0.00+

33337

Similarity

55.57

100.00

ﬁgﬁ% A ehnll

M 15 4 12 19 2 4 17 20 18 5 & 7 13 16
Observations

3.3 Metodi non gerarchici

I metodi di clustering non gerarchici, chiamati anche metodi di partizione, sono
algoritmi di apprendimento non supervisionato che dividono un insieme di dati
in un numero predefinito k£ di gruppi.

A differenza dei metodi gerarchici non creano una struttura ad albero, ma suddi-

vidono direttamente lo spazio in modo che gli elementi appartenenti allo stesso
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cluster siano il pitu possibile simili tra loro, mentre quelli appartenenti a cluster
diversi siano il pit possibile dissimili.

Un possibile approccio per ottenere questo risultato potrebbe consistere nell’e-
lencare tutti i possibili raggruppamenti in &£ gruppi costruibili con i dati di par-
tenza, e scegliere come migliore soluzione, quella che ottimizza un determinato
criterio predefinito. Sfortunatamente un tale approccio diventerebbe rapida-
mente inapplicabile, specialmente per grandi dataset, poiché richiederebbe una
quantita enorme di tempo macchina e di spazio di memoria. Di conseguenza
tutte le tecniche di clustering disponibili sono iterative e operano solo su un
numero molto ristretto di enumerazioni.

Di questo gruppo di metodi fa parte 1'algoritmo delle K-medie, che opera cate-
gorizzando i punti dati in k£ cluster sulla base di una misura di distanza mate-
matica dal centro di ogni cluster.

L’obiettivo ¢ minimizzare la somma delle distanze tra i punti dati e i cluster asse-
k

gnati: SSE = Z Z |zi—p|?, dove C; ¢ il cluster j-esimo e p; il suo centroide.

J=1 CCZ'ECJ'
Un valore k piu alto indica cluster piu piccoli con maggiori dettagli, mentre un

valore k piu basso si traduce in cluster pitt grandi con meno dettagli.

Definizione 3.3.1. Si dice centroide di un gruppo o cluster la media (come nel

caso di K-medie) o la mediana di tutti i punti all’interno del cluster.
Algoritmo 3.3.1. La tipica procedura per il metodo delle K-medie é la sequente:

1. Si suddividono gli oggetti in k gruppi, con k dato in input, e si calcola (in

termini della distanza scelta) il centroide di ognuno di essi;
2. Si calcola, per ogni osservazione, la distanza dai centroidi di ogni gruppo;
3. Si riposiziona ogni oggetto nel cluster con centroide pit vicino;

4. Si ricalcolano 1 centroidi dei cluster che hanno acquisito o perso almeno

un oggetto,

5. Si ripetono tutti i passaggi a partire dal punto 2, fino a quando nessun

oggetto cambia pit cluster.
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3. Clustering

Per rappresentare graficamente i risultati di questo metodo é possibile fare un
plot delle prime 2 o 3 componenti principali ottenute con la PCA, evidenziando

con diversi colori i gruppi ricavati e con delle x i centroidi di ogni gruppo.

Osservazione 3.3.1. Per verificare la stabilita del risultato bisognera applicare
piu volte 'algoritmo cambiando 'inizializzazione, ovvero il parametro k oppure

il tipo di distanza usata.

Osservazione 3.3.2. Il problema della determinazione del valore di k da fornire in
input puo essere risolto utilizzando il grafico a gomito, che mostra I’andamento
dell’errore quadratico totale ("within-cluster sum of squares" - SSFE), al variare
di k.

Questo valore misura quanto i punti sono vicini al centroide del proprio cluster:
valori piti bassi indicano una migliore coesione interna.

Aumentando k, SSFE tende a diminuire; ’obiettivo é trovare un punto oltre il
quale I'incremento di k£ non porta un miglioramento significativo: questo punto

¢ chiamato “gomito”.

Osservazione 3.3.3. Sebbene l'algoritmo delle K-medie sia uno degli algoritmi
di clustering piu diffusi per la sua semplicita e velocita, non ¢ sempre la scelta
migliore a causa della sua pesantezza e lentezza nell’adattarsi ad una grande
mole di dati. Infatti ha una complessita computazionale O(r -n -k -i-p) che
cresce linearmente con n (numero di osservazioni), k& (numero di cluster), i
(numero di iterazioni), r (numero di riavvii) e p (numero di variabili), quindi
su dataset molto grandi puo risultare computazionalmente costoso, soprattutto

senza ottimizzazioni.
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3.4 Confronto tra metodi

Caratteristica

Gerarchico Agglomerativo
(Complete Linkage)

K-medie

Tipo di algoritmo

Input richiesti

Struttura prodotta

Forma dei cluster

Sensibilita agli outlier

Costo computazionale

Interpretazione

Stabilita della soluzione

Deterministico;
costruisce una gerarchia di fusione tra cluster

Non richiede il numero di cluster a priori;
usa solo la matrice delle distanze
Dendrogramma multilivello
Cluster di forme arbitrarie
Moderata (complete ¢ pit robusto di single)
Elevato: O(n?)

Molto intuitiva via dendrogramma

Alta stabilita

Stocastico;
la soluzione dipende dall’inizializzazione

Richiede a priori il numero di cluster k
Partizione unica in k gruppi
Cluster compatti e sferici
Alta: gli outlier influenzano i centroidi
Piu efficiente: circa O(n - k - p) per iterazione,
senza considerare i riavii

Meno intuitiva ad alte dimensioni

Bassa stabilita (richiede pin riavvii)







Capitolo 4

Applicazione a un dataset

4.1 Presentazione del dataset

I dati analizzati in questa tesi sono stati forniti da Vittorio Coloretti, dottorando

presso il Dipartimento di Scienze per la Qualita della Vita (Unibo). Tale dataset

¢ costituito da un campione di 73 individui, per ciascuno dei quali sono state

raccolte 47 tra variabili antropometriche e prestative relative ai quattro diversi

stili del nuoto.

Sesso (M=0/F=1) dati prestativi

dati antropometrici

Eta (anni)

Altezza (c¢cm)

Peso (kg)

Altezza in stream (cm)
Distanza biacromiale (¢m)

Larghezza delle spalle in stream (c¢m)

BMI (kg/cm?)

29

PB sui 50 metri (s)
Punti FINA relativi a quel personale
Ft (N)

Vinax (m/s)

Fp (N)

Ka (N)

Kp (N)

Kcin

SR Vmax (cicli/min)
SL Vmax (m)

SR Ft (cicli/min)
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4. Applicazione a un dataset

Definizione 4.1.1. La distanza biacromiale ¢ la distanza in linea retta tra i
due acromion, ossia due processi ossei della scapola che formano la parte piu

alta e posteriore delle spalle, collegandosi alla clavicole.

Definizione 4.1.2. La posizione di "streamline" (o semplicemente "stream"),
nel nuoto, & una posizione del corpo idrodinamica e affusolata assunta durante
le fasi subacquee come a seguito di partenza o virate, per minimizzare 1’attrito
e massimizzare la velocita. Si ottiene allineando braccia, tronco e gambe, con
le braccia unite sopra la testa e i gomiti stretti intorno alle orecchie: il corpo ¢

il piu possibile orizzontale con la testa allineata.

Definizione 4.1.3. Il BMI o Indice di Massa Corporea ¢ un valore che indica
il rapporto tra il peso e 'altezza di una persona, calcolato dividendo il peso in
chilogrammi per il quadrato dell’altezza in metri. Non ¢ utile a valutare la quan-
tita di grasso, ma fornisce una rapida e generale stima dello stato nutrizionale,

classificando il peso come sottopeso, normopeso, sovrappeso o obeso.

Definizione 4.1.4. I punti FINA sono un sistema di valutazione, per confron-
tare le prestazioni nel nuoto, che assegna un punteggio piu alto a chi si avvicina
o supera i tempi base stabiliti annualmente da World Aquatics. Il punteggio di-
pende dal tempo ottenuto rispetto a un tempo di base prestabilito, che € basato

sui record mondiali piu recenti e si differenzia tra vasca corta e vasca lunga.

Definizione 4.1.5. La forza propulsiva (Fp) ¢é la forza generata dal nuotatore

per vincere la resistenza idrodinamica e produrre avanzamento.

Definizione 4.1.6. La forza al full tethered (Ft) ¢ la massima forza propulsiva
che il nuotatore ¢ in grado di esprimere durante una nuotata stazionaria, cio¢

vincolata a un punto fisso tramite un cavo.

Definizione 4.1.7. In generale il drag rappresenta la forza di resistenza che il
fluido esercita sul corpo che si muove al suo interno e tende a crescere all’au-
mentare della forza propulsiva e della velocita.

Nel nuotatore agiscono diversi tipi di drag:
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e (Drag attivo - Ka) Resistenza idrodinamica che il nuotatore incontra men-
tre si muove per generare propulsione, influenzata da tecnica, posizione

del corpo,turbolenze e movimenti di braccia e gambe.

e (Drag passivo - Kp) Resistenza idrodinamica sull’atleta immobile in posi-
zione streamline, determinata principalmente da forma, superficie frontale

e profilo del corpo.

e (Drag cinetico - Kcin) Resistenza creata dalle turbolenze generate dal
movimento degli arti, dipendente da variazioni posturali e dal modo in

cui i segmenti attraversano il fluido. Esso é la somma tra Ka e Kp.

Definizione 4.1.8. Il ciclo di bracciata nel nuoto é la sequenza completa di
movimenti che una singola mano compie dall’entrata in acqua fino al suo succes-
sivo rientro. Si suddivide in quattro fasi principali: appoggio/presa, trazione,
spinta e recupero. A stile libero e a dorso un ciclo equivale a due bracciate,

mentre a rana e delfino a una bracciata.

Definizione 4.1.9. La frequenza di bracciata (SR) ¢ il numero di cicli di

bracciata completati in un minuto (o un altro intervallo di tempo prestabilito).

Definizione 4.1.10. L’ampiezza di bracciata (SL) ¢ la distanza coperta da
un ciclo completo di bracciata (dall’ingresso della mano in acqua all’ingresso

successivo della stessa mano).

Il dataset considerato, di dimensioni 73 x 47, presenta diversi valori mancanti.
La gestione di questi valori rappresenta una delle problematiche pit rilevanti e,
al tempo stesso, pitl delicate nell’ambito della statistica applicata e dell’analisi
di dati (si vedano [4] e [3]).

Si parla di dati mancanti quando uno o piu valori all’interno di un set di dati
non risultano disponibili o, in altre parole, quando, per una determinata va-
riabile o osservazione, 'informazione attesa non é presente. Le cause possono
essere molteplici: errori nella fase di raccolta o digitalizzazione dei dati, risposte

omesse nei questionari o nei sondaggi, malfunzionamenti di strumenti o sensori



32

4. Applicazione a un dataset

durante la registrazione di misure, perdita accidentale o danneggiamento di ar-
chivi informatici, rifiuto di partecipazione da parte dei soggetti o incapacita di
completare la procedura sperimentale.

Qualunque sia la motivazione, la presenza di valori mancanti pudé compromet-
tere in modo significativo la qualita delle analisi statistiche successive, influen-
zando la bonta delle stime, la validita delle inferenze, la generalizzabilita dei
risultati e la capacita predittiva dei modelli.

La letteratura classifica i meccanismi di generazione della mancanza in tre

principali categorie:

o (MCAR — Missing Completely At Random) La mancanza avviene in modo
completamente casuale, senza alcuna relazione con le variabili osservate

né con i valori mancanti stessi.

e (MAR - Missing At Random) La probabilita che un valore sia mancante
dipende dai valori osservati di altre variabili, ma non dai valori mancanti

stessi.

o (MNAR - Missing Not At Random) La mancanza dipende direttamen-
te dal valore non osservato, cosa che rende MNAR il meccanismo piu

complesso e problematico.
Oltre al meccanismo, i dati mancanti possono essere caratterizzati da:

e (Tasso di mancanza) Proporzione di celle mancanti sul totale del dataset.
Si considera in genere mancanza lieve se inferiore al 10%, moderata tra
10% e 25%, elevata tra 25% e 50% e eccessiva oltre il 50%.

e (Modello di mancanza) Descrive la distribuzione dei valori mancanti nelle
variabili e puo essere categorizzato come univariato (mancano dati in una
sola variabile), multivariato (mancano dati in piu variabili), monotono
(mancano dati in una direzione del dataset), non monotono e connesso (i
dati completi sono raggiungibili tramite movimenti orizzontali o verticali

all’interno di un dataset tabulare).
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Le strategie per affrontare il problema dei dati mancanti si articolano in tre
grandi classi di metodi: eliminazione, imputazione e apprendimento della rap-
presentazione.

I metodi di eliminazione rappresentano l’approccio pitt semplice e immediato
e si suddividono ulteriormente in metodi di eliminazione listwise, che rimuovo-
no tutte le osservazioni le cui righe di variabili contengono almeno un valore
mancante, e metodi di eliminazione pairwise, che escludono le osservazioni a cui
mancano alcuni dati solo durante ’analisi che le comprende. Questi approcci
sono validi solo se i dati sono MCAR e il tasso di mancanza é contenuto.

I metodi di imputazione si propongono di sostituire i valori mancanti con sti-
me plausibili, preservando la struttura multivariata del dataset e si dividono in
metodi di imputazione singola, multipla e basata su decomposizione.

Nel caso di imputazione singola, le stime possono essere ottenute tramite regole
statistiche, ad esempio media, mediana o moda dei valori non mancanti della
colonna; tramite modelli di regressione lineare o logistica; tramite sostituzione
con valori non mancanti, ad esempio il valore dell’osservazione precedente o suc-
cessiva (LOCF o NOBC) o il valore del vicino pitl prossimo in base alla distanza
scelta (KNN); tramite modelli probabilistici, ad esempio 1’algorito iterativo EM,
che stima i valori mancanti massimizzando la funzione di verosimiglianza sot-
to uno specifico modello probabilistico; oppure tramite modelli predittivi, ad
esempio alberi decisionali e foreste casuali. Quando la quantita di dati man-
canti cresce, 'imputazione singola puo risultare insufficiente. In questi casi
vengono utilizzate tecniche di imputazione multipla, nelle quali si generano pit
versioni complete del dataset, ciascuna con imputazioni leggermente differenti,
e si combinano i risultati per ottenere stime robuste. Nel caso di imputazione
basata su decomposizione, si utilizzano versioni modificate dell’algoritmo PCA
o della SVD per stimare i valori mancanti in base alle componenti principali o
alle strutture latenti identificate.

I metodi di apprendimento della rappresentazione sono invece tecniche pit sofi-
sticate, introdotte con I’evoluzione dell’intrelligenza artificiale, che si basano su

reti neurali profonde, autoencoder o modelli probabilistici latenti, apprendendo
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automaticamente strutture e relazioni complesse nei dati grezzi poi utilizzate
per migliorare la qualita e I’accuratezza delle imputazioni.

Ai fini dell’analisi presentata in questa tesi, risulta fondamentale comprendere
come gestire I'incompletezza del dataset nell’ambito della PCA.

Diversi approcci sono stati proposti nel tempo per risolvere questo problema,
come 'imputazione basata su SVD (I-SVD), in cui le voci mancanti vengono
riempite e aggiornate a ogni iterazione della SVD fino alla convergenza, e 'a-
dattamento dell’algoritmo Nonlinear Iterative Partial Least Squares (NIPALS),
in grado di saltare le voci mancanti durante la stima dei minimi quadrati di
scores e loadings. Tuttavia, sono state segnalate alcune limitazioni per entram-
bi gli approcci: la convergenza dell’algoritmo I-SVD puo essere molto lenta per
set di dati con un’alta percentuale di missings e, quando si utilizza NIPALS, le
proprieta di ortogonalita tra scores e loadings potrebbero essere perse.

Per risolvere questi problemi, ¢ possibile utilizzare un algoritmo denominato
Orthogonalized-Alternating Least Squares (O-ALS), ovvero un algoritmo di
minimi quadrati alternati che stima scores e loadings, soggetti al vincolo di
ortogonalizzazione di Gram-Schmid (si vedano [2] per un’analisi completa sugli
approcci da usare nella PCA con valori mancanti e [1] per un confronto tra i
tre metodi appena citati).

L’algoritmo O-ALS inizia con una stima, solitamente casuale o basata su una
prima approssimazione, della matrice dei loadings e successivamente procede in

modo iterativo secondo uno schema alternato (alternating scheme):

e stima riga per riga della matrice di loadings con i minimi quadrati, appli-
cando a ogni colonna della matrice stessa il vincolo di ortogonalizzazione
di Gram-Schmidt;

e stima colonna per colonna della matrice di scores con i minimi quadrati,
applicando a ogni riga della matrice stessa il vincolo di ortogonalizzazione
di Gram-Schmidt;

€ prosegue fino a convergenza.
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[’analisi ¢ stata condotta inizialmente su un sottoinsieme di 42 individui per
i quali sono presenti sia le variabili antropometriche sia quelle prestative nello

stile libero. Il dataset considerato ha quindi dimensione 42 x 19.

sesso eta(anni) alt.(cm) peso(kg) alt.stream(cm) dist.biac.(cm) larg.spal.stream(ecm) BMI(kg/cm?)

sl 0 22 177 73 243 36 35 23.3
s2 0 19 177 70 240 37 38 22.3
s3 0 22 180 78 248 35 37 24.1
s4 0 20 190 87 263 41 40 24.1
sb 0 22 183 76 250 39 39 22.7
s6 0 21 178 83 246 37 39 26.2
s7 1 18 169 55 228 32 31 19.3
s8 1 21 161 56 219 33 35 21.6
s9 1 13 163 55 224 31 34 20.7
s10 1 15 163 54 225 31 32 20.3
s11 1 18 162 57 222 31 33 21.7
sl2 1 16 160 55 225 33 32 21.5
s13 0 14 176 69 240 34 33 22.3
sl4 1 13 149 39 205 31 33 17.6
s15 0 27 185 83 256 37 40 24.3
s16 0 16 181 74 243 35 38 22.6
s17 1 13 171 53 229 32 34 18.1
s18 1 13 165 60 232 35 32 22.0
s19 1 14 164 60 222 32 32 22.3
s20 1 18 168 60 234 32 36 21.3
s21 1 18 168 61 227 36 36 21.6
s22 1 23 178 72 243 36 38 22.7
s23 1 23 177 68 238 35 33 21.7
s24 1 21 173 63 234 36 34 21.0
26 1 23 182 70 249 37 35 21.1
s26 1 18 175 65 237 35 34 21.2
s27 0 18 187 76 258 38 35 21.7
s28 1 18 165 60 222 33 36 22.0
s29 1 15 165 56 229 33 33 20.6
s30 1 20 169 63 227 32 32 22.1
s31 1 20 170 58 233 32 35 20.1
s32 1 24 161 57 220 32 33 22.0
s33 0 19 183 75 244 36 38 22.4
s34 0 23 183 90 247 38 39 26.9
s35 0 20 181 69 251 36 35 21.1
s36 1 20 169 62 223 32 34 21.7
s37 0 24 168 63 229 34 37 22.3
s38 0 22 189 73 261 38 36 20.4
s40 0O 21 193 81 265 39 37 21.7
s41 0 26 181 78 253 37 37 23.8
sb3 0 27 184 73 256 38 34 21.6
sb8 1 25 172 63 231 31 36 21.3
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PB50(s) FINApoints Ft(N) Vmax(m/s) Fp(N) Ka(kg/m) Kp(kg/m) Kcin SRvmax(cicli/min) SLvmax(m) SRFt(cicli/min)

sl 24.76 539 148.9 1.82 142.8 43.6 22.8 1.91 58.0 1.88 59.4
s2 25.08 519 134.8 1.81 134.8 43.0 23.7 1.81 59.5 1.83 54.7
s3 24.65 547 158.8 1.81 147.5 48.9 29.8 1.64 53.7 2.02 53.5
s4 24.10 585 192.0 1.73 178.5 56.6 29.7 1.91 54.0 1.92 56.2
85 24.32 569 180.7 1.92 153.5 47.9 26.3 1.82 57.1 2.02 60.0
s6 25.34 503 169.2 1.71 152.7 58.0 27.1 2.14 52.5 1.95 51.9
s7 28.00 549 105.5 1.58 95.3 40.4 21.3 1.90 58.6 1.62 62.8
s8 28.50 520 94.9 1.45 88.1 45.0 21.7 2.07 57.3 1.52 55.8
s9 29.65 462 96.1 1.58 94.9 40.9 27.4 1.49 54.4 1.74 48.7
s10  32.49 337 101.0 1.59 91.1 39.2 20.0 1.96 56.0 1.70 57.0
s11  26.52 646 113.0 1.68 107.5 39.2 20.6 1.90 57.4 1.76 67.0
s12 26.13 675 116.1 1.64 113.8 41.7 20.2 2.06 57.0 1.73 57.6
s13  23.83 600 159.5 1.85 157.1 45.5 32.1 1.42 65.8 1.69 61.9
sl4  30.75 414 86.6 1.54 83.4 38.7 17.6 2.20 53.1 1.74 55.3
s15  23.20 656 191.8 1.82 180.1 55.0 24.5 2.24 61.9 1.76 60.7
s16  23.59 624 166.4 1.84 147.5 45.8 28.2 1.62 56.2 1.96 55.4
s17  26.30 662 128.7 1.70 115.1 42.6 20.8 2.05 57.0 1.79 62.2
s18  28.71 509 106.9 1.59 99.6 42.9 23.1 1.86 56.8 1.68 51.5
s19  28.06 545 103.8 1.57 99.9 43.4 22.4 1.94 54.9 1.72 54.1
s20  25.81 701 108.6 1.58 102.4 42.4 23.1 1.84 52.0 1.82 54.6
s21  27.41 585 126.2 1.61 122.1 49.8 21.5 2.32 54.1 1.79 53.6
s22 2477 793 122.9 1.67 108.3 45.6 24.9 1.83 51.6 1.94 49.8
s23  26.99 613 89.2 1.63 89.0 35.7 24.5 1.46 58.5 1.67 55.0
s24  27.70 567 96.7 1.70 91.4 34.6 22.3 1.55 58.7 1.74 55.3
s25  28.00 549 88.9 1.66 92.0 35.1 24.2 1.45 53.2 1.87 49.1
s26  27.96 551 107.1 1.64 103.0 42.0 17.4 2.41 56.2 1.75 52.6
s27  24.83 535 155.3 1.81 144.0 46.8 23.5 1.99 53.0 2.05 53.1
s28  27.28 593 89.8 1.55 95.5 36.8 19.8 1.86 52.2 1.78 52.5
s29  26.46 650 107.5 1.68 93.5 36.7 17.5 2.10 55.6 1.81 52.0
s30  26.41 654 120.8 1.61 102.2 44.4 23.1 1.92 50.2 1.92 50.5
s31  29.52 468 91.4 1.53 89.3 41.6 22.9 1.82 46.5 1.97 45.6
s32  26.43 653 109.1 1.64 109.0 42.2 22.3 1.89 58.6 1.68 59.1
s33  22.92 680 180.1 1.91 160.8 46.3 22.9 2.02 62.2 1.84 60.1
s34 23.50 631 174.3 1.87 175.5 50.9 25.3 2.01 59.1 1.90 60.3
s35  26.00 466 125.7 1.71 103.2 38.3 25.0 1.53 55.2 1.86 53.6
s36  28.27 533 91.7 1.53 92.8 40.9 23.2 1.76 52.9 1.74 48.0
s37  26.97 417 103.2 1.61 102.9 42.5 22.3 1.91 57.0 1.69 60.0
s38  23.20 656 164.5 1.83 1477 46.3 23.8 1.95 52.9 2.08 52.8
s40  23.80 608 163.1 1.85 148.0 45.6 26.6 1.71 54.9 2.02 59.0
s41  24.10 585 160.2 1.86 160.4 46.1 28.0 1.65 62.0 1.80 61.6
s53  24.50 557 134.6 1.80 131.7 40.6 24.2 1.68 52.6 2.05 52.5
s58  27.20 599 105.3 1.58 93.0 40.1 23.0 1.74 52.8 1.80 50.9

Dapprima ¢ stata calcolata la matrice di correlazione per valutare le relazioni
lineari tra le variabili e successivamente applicata la Principal Component Ana-

lysis (PCA) allo scopo di ridurre la dimensionalita del dataset e individuare le
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componenti principali maggiormente rappresentative.

In seguito, i risultati ottenuti sono stati impiegati per eseguire un’analisi di clu-
stering mediante algoritmi di tipo Complete Linkage e K-medie, con ’obiettivo
di individuare possibili raggruppamenti omogenei tra i soggetti.

Per evitare che I'unica variabile binaria del dataset (il sesso) influenzasse 1’ana-
lisi, I'intera procedura é stata ripetuta separando i dati per sesso. Sono stati
quindi analizzati distintamente i sottoinsiemi uomini e donne, applicando in
ciascun caso le fasi di calcolo delle correlazioni, PCA e clustering.

Infine il dataset ¢ stato anche suddiviso per tipologia di variabili: dati antro-
pometrici e dati prestativi (stile libero). Le strutture di cluster ottenute nei
due casi sono state confrontate per evidenziare differenze o somiglianze tra la

configurazione antropometrica e quella prestativa dei soggetti.

4.2.1 Analisi della matrice di correlazione

Dopo aver standardizzato i dati € stata calcolata la matrice di correlazione

associata. In rosso sono evidenziati i valori di alta correlazione, in blu di bassa

correlazione.
2
§ g E oy

3 §E 2 g [ £ £ =

i . 5 3 E3 3 2§ = |3 =2 g T

s H = 2 % = 8% m a T T = & X 3 X I ] &
Sesso 1.0000-0.3792-0.7484-0.7887-0.7675-0.7268 -0.6535-0.5593|0.7612 0.0303 -0.8422-0.8336-0.8472-0.5827-0.6200 0.1282-0.3148-0.5555-0.3072
eta  -0.3792 1.0000 0.5109 0.5642 0.4966 0.4597 0.4864 0.4689}0.4339 0.2005 0.2792 0.3003 0.3132 0.2141 0.2548 -0.1435 0.0165 0.2924 0.0362
altezza -0.7484 0.5109 1.0000 0.8996 0.9692 0.8557 0.6406 0.4684}0.7564 0.2580 0.7503 0.7701 0.7303 0.4690 0.6052-0.2406 0.1019 0.6884 0.0548
peso -0.7887 0.5642 0.8996 1.0000 0.8829 0.8466 0.7562 0.8019 0.78751 0.2559 0.8216 0.7546 0.8380 0.6647 0.6775-0.1432 0.1766 0.5991 0.1077

altezza stream

-0.7675 0.4866 0.9692 0.8829 1.0000 0.8768 0.6115 0.4701

0.7403 0.2153 0.7577 0.7663 0.7397 0.4859 0.6083 -0.2255 0.0827 0.7030 0.0540

distbiac.  -0.7268 0.4597 0.8557 0.8466 0.8768 1.0000 0.6617 0.5312£0.6779 0.1550 0.7187 0.7152 0.7273 0.5260 0.4845 -0.0558 0.1465 0.5879 0.0743
larg.spal.stream  -0.6535 0.4864 0.6406 0.7562 0.6115 0.6617 1.0000 0.6311}0.6284 0.2008 0.6974 0.5413 0.6998 0.6765 0.4865 0.0706 0.0421 0.4930 0.0616
BMI__ -0.5593 0.4689 0.4684 0.8019 0.4701 0.5312 0.6311 1.000040.5752 0.1979 0.6148 0.4673 0.6730 0.6768 0.5551-0.0029 0.2195 0.2653 0.1186

PB50 0.7612-0.4339-0.7564-0.7874-0.7403-0.6779-0.6284-0.5752(1.0000 -0.6178-0.8439-0.8385-0.8405-0.5591-0.5488 0.0805-0.3276-0.5528-0.3470
FINApoints  0.0303 0.2005 0.2580 0.2559 0.2153 0.1550 0.2008 0.1979}0.6178 1.0000 0.3047 0.3005 0.2863 0.1729 0.0869 0.0558 0.1252 0.1943 0.1799
Ft  -0.84220.2792 0.7503 0.8216 0.7577 0.7187 0.6974 0.61480.8439 0.3047 1.0000 0.8620 0.9747 0.8043 0.6061 0.0964 0.3339 0.5659 0.3858

Vmax  -0.8336 0.3003 0.7701 0.7546 0.7663 0.7152 0.5413 0.4673}0.8385 0.3005 0.8620 1.0000 0.8571 0.4407 0.5312-0.1533 0.4568 0.5936 0.4211

Fp  -0.84720.3132 0.7303 0.8380 0.7397 0.7273 0.6998 0.6730}0.8405 0.2863 0.9747 0.8571 1.0000 0.7984 0.6219 0.0781 0.3915 0.5099 0.4083

Ka  -0.58270.2141 0.4690 0.6647 0.4859 0.5260 0.6765 0.6768{0.5591 0.1729 0.8043 0.4407 0.7984 1.0000 0.5196 0.3684 0.0923 0.3625 0.1704

Kp  -0.62000.2548 0.6052 0.6775 0.6083 0.4845 0.4865 0.5551}0.5488 0.0869 0.6061 0.5312 0.6219 0.5196 1.0000-0.5907 0.1819 0.3826 0.0463

Kein 0.1282-0.1435-0.2406-0.1432-0.2255-0.0558 0.0706 -0.0029/0.0805 0.0558 0.0964 -0.1533 0.0781 0.3684 -0.5907 1.0000-0.0676-0.1031 0.1233
SRvmax  -0.3148 0.0165 0.1019 0.1766 0.0827 0.1465 0.0421 0.21950.3276 0.1252 0.3339 0.4568 0.3915 0.0923 0.1819-0.0676 1.0000 -0.4432 0.7433
SLvmax  -0.5555 0.2924 0.6884 0.5991 0.7030 0.5879 0.4930 0.2653-0.5528 0.1943 0.5659 0.5936 0.5099 0.3625 0.3826 -0.1031-0.4432 1.0000 -0.2497

SR Ft

Osservando la matrice di correlazione, emergono alcune relazioni lineari marca-

-0.3072 0.0362 0.0548 0.1077 0.0540 0.0743 0.0616 0.1186

te tra le variabili.

(0.3470 0.1799 0.3858 0.4211 0.4083 0.1704 0.0463 0.1233 0.7433-0.2497 1.0000
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Le variabili antropometriche mostrano in generale correlazione positiva ed eleva-
ta, a conferma del fatto che le grandezze corporee tendono a crescere in maniera
proporzionale. Ad esempio la correlazione tra ‘altezza’ e ‘peso’ é pari a 0.8996
e addirittura quella tra ‘altezza’ e ‘altezza in stream’ raggiunge un valore di
0.9692.

Un altro aspetto interessante da osservare riguarda la variabile ’sesso’ che, in
accordo con quanto ci si aspetterebbe, risulta essere negativamente correlata
con tutte le variabili antropometriche. Infatti, assumendo la codifica binaria
O=uomo e 1=donna, una correlazione negativa implica che nel passaggio da
0 a 1, i valori di ‘altezza’, ‘peso’, ‘altezza in stream’, ‘distanza biacromiale’,
‘larghezza spalle in stream’ e ‘BMI’ tendano a diminuire. In altre parole, nel
campione analizzato, le donne presentano mediamente valori inferiori rispet-
to agli uomini per queste caratteristiche fisiche. Anche rispetto alle variabili
prestative il ’sesso’ mostra correlazioni negative, confermando che gli uomini
ottengono mediamente prestazioni migliori, ovvero nuotano piti velocemente.
Fanno eccezione la variabile ‘PB sui 50 metri’, con cui la correlazione ¢ positiva
(0.7612) poiché gli uomini nuotano tempi pit bassi e le variabili ‘FINA points’
e ‘Kein’, le cui correlazioni con il “sesso’ risultano essere deboli (rispettivamente
0.0303 e 0.1282), non fornendo quindi informazioni significative.

Osservando ora le variabili prestative si possono notare alcuni gruppi con cor-
relazioni significative, coerenti con 'andamento generale delle performance.

In particolare ‘PB sui 50 metri’ e ‘Vmax’ mostrano una forte correlazione nega-
tiva (-0.8385), in linea con il fatto che tempi minori corrispondono a velocita
maggiori; il gruppo di variabili composto da ‘Fp’, ‘Ft’, ‘Vmax’ risulta essere ben
correlato positivamente, indicando che queste tre variabili tendono ad aumen-
tare insieme.

Di particolare interesse ¢ anche I’analisi delle tre variabili di 'drag’ (quello attivo
(Ka), quello passivo, (Kp), e quello cinetico (Kcin)), che si notano (in parti-
colare Ka e Kp) avere una forte correlazione positiva con la ’forza al tethered’
(Ft) e con la ’forza propulsiva’ (Fp), coerentemente con 1’aspetto biomeccanico

del nuoto. Inoltre é possibile notare che nel campione considerato, i soggetti
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pit alti (ka-altezza: 0.4690, kp-altezza: 0.6052) e pesanti (ka-peso: 0.6647,
kp-peso: 0.6775) hanno un maggior drag, ovvero sono soggetti a una maggio-
re resistenza idrodinamica. Questo aspetto & ulteriormente evidenziato dalle
correlazioni negative elevate tra ‘Ka’ e ‘Kp’ con il 'sesso’ (ka-sesso: -0.5827,
kp-sesso: -0.6200), che indicano come i soggetti maschili tendano ad avere un
‘drag’ generalmente maggiore rispetto a quelli femminili.

Altra correlazione incrociata interessante tra variabili antropometriche e pre-
stative € quella tra soggetti alti e pesanti e soggetti con ’forza propulsiva’ e 've-
locita massima’ maggiori (altezza-Fp: 0.7303, altezza-Vmax: 0.7701 e peso-Fp:
0.8380, peso-Vmax: 0.7546), evidenziando come la maggiore massa corporea si
associ spesso a una maggiore potenza nonostante la resistenza idrodinamica sia
maggiore.

Infine si evidenzia una correlazione negativa moderata (-0.4432) tra le variabili
‘SR vmax’ e ‘SL vmax’, a conferma del fatto che un aumento della frequenza

di bracciata comporta una riduzione della lunghezza della stessa.

4.2.2 Grafici di dispersione tra le variabili iniziali

Si procede ora all’esame dettagliato di alcuni grafici di dispersione tra le varia-

bili, analizzandone le principali caratteristiche.
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Figura 4.1: Relazione tra ’altezza’ e ’altezza in stream’
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In Figura[d.1]si ossserva che la correlazione tra le due variabili (0.9692) ¢ diretta
o positiva, cio¢ all’aumentare di una anche l'altra aumenta, e forte. Si nota
infatti che 'andamento dei punti rappresentati é approssimabile a una retta
crescente. Individui piu alti tendono ad avere anche una maggiore estensione del
corpo nella posizione di scivolamento (“streamline”). Emerge che I'osservazione
s14 ¢ distante dal resto dei punti. Cio sta a indicare un comportamento anomalo,
confermato dai dati presi in esame: il soggetto € una donna con eta molto minore

rispetto al resto del campione e con misurazioni conseguentemente basse.

r & b
<13

s

©2
53

e 2%

Sesso

Figura 4.2: Relazione tra ’sesso’ e forza propulsiva’

In Figura si osserva che la correlazione tra queste due variabili (-0.8472) ¢é
inversa o negativa, cioé all’aumentare della variabile sesso diminuisce la forza
propulsiva, e forte. Essendo la variabile sesso binaria (0=uomini, 1=donne),
passando da 0 a 1, ovvero da uomo a donna, la forza propulsiva tende a di-
minuire. Nel grafico si osservano infatti due gruppi distinti di punti: quelli
con ascissa minore (uomini) presentano valori di forza propulsiva mediamente
pit elevati (ordinata maggiore), mentre quelli con ascissa maggiore (donne) si
collocano su valori inferiori (ordinata minore). Questo andamento conferma la
differenza di forza muscolare tra i due sessi, gia nota in letteratura per quanto

riguarda la produzione di forza in acqua.
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Figura 4.3: Relazione tra ’drag attivo’ e ’frequenza di bracciata’

In Figura si osserva che la correlazione tra queste due variabili (0.0923) ¢
diretta o positiva e debole. Cio significa che, pur esistendo una leggera tendenza
all’aumento della frequenza di bracciata con l'aumentare del drag attivo, la
relazione € poco significativa. Il grafico mostra infatti una nuvola di punti
diffusa e priva di una direzione predominante, indice del fatto che la frequenza
di bracciata non dipende in modo lineare dal drag attivo, ma & probabilmente
influenzata da altri fattori biomeccanici o tecnici (ad esempio la coordinazione

o la potenza specifica degli arti superiori).

4.2.3 Analisi delle componenti principali

La presenza di numerosi valori elevati, evidenziati in rosso nella matrice di cor-
relazione Figura [£.2.1] ¢ segnale che molte variabili sono fortemente correlate
tra loro. Si parla in questo caso di ridondanza informativa. Questa espressione
sta ad indicare che due o piu variabili portano informazioni molto simili tra loro,
ovvero la loro variazione viene in gran parte spiegata da un’unica “direzione”.
Nel contesto dell’analisi di dati, il fatto di avere ridondanza informativa rende
I’analisi pit complessa, sprecando capacita computazionale e ostacolando 1'in-
terpretazione; cio giustifica I'uso della PCA.

Dopo aver standardizzato il dataset, vengono calcolati la matrice di correlazio-

ne e i suoi autovettori e autovalori, per poi dedurre le componenti principali.
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[n,pl=size(X) % n=42 (numero righe), p=19 (numero colonne)
Z = zscore(X); % Z
R = corr(Z); 5 R
[V,D] = eig(R); % V é la matrice 19x19 con gli autovettori di R

la matrice 42x19 dei dati standardizzati

(ol

la matrice 19x19 di correlazione di Z

(ol

% D é& la matrice diagonale 19x19 che sulla

% diagonale ha i relativi autovalori di R
lambda=diag(D); % metto gli autovalori in un vettore colonna
[lambda_sorted,idx]=sort(lambda, ’descend’) ;

% ordino gli autovalori in ordine decrescente

% e metto in memoria gli indici
V=vV(:,idx); % ordino le colonne di V in modo coerente

Y=Z*V % matrice delle componenti principali

Attraverso 1 tre metodi descritti in Sezione si deduce il numero necessario

delle componenti principali.

1. (Valutazione grafica)

valore autovalori
»
T
|

0 2 4 6 8 10 12 14 16 18 20
indici autovalori

Figura 4.4: Distribuzione degli autovalori ordinati della matrice di correlazione
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2. (Percentuale di varianza spiegata)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

rup 0.5409 0.6627 0.7498 0.8144 0.8706 0.9168 0.9400 0.9571 0.9729 0.9828 0.9894 0.9957 0.9972 0.9986 0.9995 0.9997 0.9999 1.0000 1.0000

3. (Autovalori maggiori della media)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A 10.2768 2.3146 1.6544 1.2269 1.0680 0.8778 0.4408 0.3263 0.2986 0.1883 0.1266 0.1182 0.0298 0.0257 0.0172 0.0046 0.0035 0.0012 0.0005

L’analisi congiunta di questi 3 metodi, permette di prendere anche solo le prime
3 componenti, rappresentando in questo modo il 75% della varianza.

Si guardano ora le componenti principali (colonne di V') per capire quali variabili
rappresentano maggiormente, ovvero si cercano i valori piu alti in modulo di

ciascun autovettore v;.

v, v, v, v v, v

1 2 3 4 5 6
sesso -0.2743 0.0426 0.0836 -0.2104 0.2044 -0.1366
eta 0.1573 0.1430 -0.0435 -0.1368 0.5426 0.5398
altezza 0.2777 0.1634 -0.1188 -0.1132 -0.0954 0.1491
peso 0.2973 0.0846 -0.0021 0.0561 0.1484 0.0503
altezza stream 0.2774 0.1689 -0.1094 -0.0791 -0.1341 0.1576
dist.biac. 0.2651 0.1078 0.0067 0.0027 -0.0919 0.2744
larg.spal.stream 0.2426 0.0764 0.2110 0.1097 0.1855 0.0558
BMI 0.2211 -0.0392 0.1284 0.2383 0.4746 -0.1133
PB 50 -0.2775 0.1006 0.0171 0.3063 -0.0256 0.1229
FINApoints 0.0979 -0.1125 0.0940 -0.7334 0.2642 -0.3607
Ft 0.2903 -0.1337 0.1158 0.0328 -0.1693 -0.1296
Vmax 0.2716 -0.1293 -0.1484 -0.1291 -0.2692 0.0418
Fp 0.2913 -0.1592 0.0948 0.0713 -0.0992 -0.1040
Ka 0.2222 -0.0792 0.4020 0.26686 0.0693 -0.2622
Kp 0.2166 0.0868 -0.3108 0.2750 0.1394 -0.4618
Kcin -0.0322 -0.1973 0.7040 -0.0347 -0.1365 0.2168
SR vmax 0.0820 -0.5542 -0.2777 0.0601 0.0693 0.1206
SL vmax 0.1999 0.3728 0.0928 -0.1889 -0.3343 -0.0744
SR Ft 0.0784 -0.5611 -0.1039 -0.0645 -0.0754 0.1597

Figura 4.5: Rappresentazione delle prime sei colonne di V'

Dalla Figura [£.5] si nota che la prima componente principale é associata so-
prattutto a ’sesso’, 'altezza’, 'peso’, 'altezza in stream’, 'PB sui 50°, 'Ft” e 'Fp’,
rappresentando cosi tutte le “dimensioni”: categoriale, antropomentrica e pre-
stativa; la seconda componente principale € associata soprattutto a 'SR vmax’,

'SL vmax’ e 'SR Ft’, rappresentando cosi la “dimensione” prestativa relativa alla
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bracciata; la terza componente principale & associata soprattutto a 'Ka’, 'Kp’
e 'Kcin’, rappresentando cosi la “dimensione” prestativa relativa alla resistenza
idrodinamica.

Quest’ultima osservazione, si pud dedurre anche analizzando alcuni grafici di

disperione tra le prime tre componenti principali e le variabili originarie stan-

dardizzate.
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Figura 4.7: Relazione tra la seconda Figura 4.9: Relazione tra la terza com-

componente principale e 'SR Ft’ ponente principale e "Kcin’
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In Figura [4.6] in Figura e in Figura Pandamento dei punti & appros-
simabile a una retta crescente, a conferma del fatto che la prima componente
principale rappresenta bene la 'forza propulsiva’ (vi3; = 0.2913) e il "peso’
(v41 = 0.2973) e che la terza componente principale rappresenta bene il 'drag
cinetico’ (vi63 = 0.7040).

In Figura[1.7], invece, 'andamento dei punti ¢ approssimabile a una retta decre-
scente, a conferma del fatto che la seconda componente principale rappresenta

bene la 'frequenza di bracciata al full tethered’, ma é inversamente proporzionale
a essa (vigo = —0.5611).
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Figura 4.10: Grafico delle prime due componenti principali

In Figura ¢ mostrato il grafico 2D dei dati. Piu precisamente sulle ascisse
é rappresentata la prima componente principale y; e sulle ordinate la seconda
Y2, le quali complessivamente spiegano il 66.27% della varianza totale.

Si nota come la distribuzione dei punti sia abbastanza diffusa e priva di rag-
gruppamenti netti, nonostante siano abbastanza distinguibili il gruppo delle
donne da quello degli uomini, evidenziati con colori differenti. Cio indica che
Y1, Yo riescono a rappresentare in maniera abbastanza efficiente I'informazione
del dataset, ma che le differenze tra i soggetti si distribuiscono in modo continuo

senza formare sottogruppi omogenei o cluster separati.



46

4. Applicazione a un dataset

6

2 %21 4
522

i %31 I 57538 e 5B

s28 820 3 5
0

w58 529 <53 =40

o 514536 B 8 s12 .Sszﬂii 1 33
= 525 %18 537 17
3 & <10 «35 532 - 41
w24 ST
3 %523
e
4 = 513
3\‘:\ —
2 \-,\\ e 6
1 - e 4
0 s 2
T = o
S = 2

Figura 4.11: Grafico delle prime tre componenti principali

In Figura 4.11] ¢ mostrato il grafico 3D dei dati. Piu precisamente sugli as-
si vengono rappresentate le prime tre componenti principali yi, yo, y3, le quali
complessivamente spiegano il 74.98% della varianza totale. L’aggiunta di y3
consente di migliorare la separabilita visiva di alcune osservazioni e cogliere ul-
teriori sfumature di variabilita legate a caratteristiche secondarie. Tuttavia la
distribuzione continua a non mostrare una netta suddivisione in gruppi distinti
nonostante siano abbastanza distinguibili il gruppo delle donne da quello degli

uomini, evidenziati con colori differenti.

Quest’analisi grafica suggerisce che la variabilitad in questo dataset é progressi-
va, cioé le differenze tra i soggetti considerati derivano da combinazioni di piil

caratteristiche che si intrecciano lungo diverse “direzioni” della varianza.

4.2.4 Complete linkage

Ai fini dell’analisi con Complete Linkage, introdotto nella Sezione [3.2] sono
state utilizzate quattro distanze differenti quali Euclidea, Cityblock, Cosine e
Mahalanobis (viste nella Definizione [3.1.5)), in quanto la forma e la scala del

dendrogramma dipendono fortemente dal tipo di metrica adottata.
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1. (EUCLIDEA) Questa distanza ¢ in generale la scelta pit solida e accurata

su dati standardizzati.
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Figura 4.12: Dendrogramma per osservazioni con distanza euclidea

In Figura[4.12]si nota che la struttura del dendrogramma ¢ ben bilanciata:
le altezze di fusione aumentano gradualmente, segno che la similarita tra
soggetti € lineare. I gruppi risultano compatti e interpretabili. Si distin-
guono 3—4 cluster principali, separati a livelli di distanza attorno a 8-10,

che si articolano ulteriormente in 7-8 sottogruppi, separati attorno a 5-6.

2. (CITYBLOCK) Questa distanza ¢ meno sensibile a outlier o a singole
variabili con varianza elevata, in quanto pone uguale enfasi su tutte le

coordinate.
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Figura 4.13: Dendrogramma per osservazioni con distanza cityblock
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In Figura [£.13]si nota che la struttura del dendrogramma ¢ simile a quella
euclidea: le altezze di fusione sono pitt omogenee, segno che 1'uso di que-
sta distanza ha ridotto l'effetto di soggetti “estremi”. 1 gruppi risultano
leggermente pitu equilibrati. Si distinguono 3—4 cluster principali, separati
a livelli di distanza attorno a 25-30, che si articolano ulteriormente in 7

sottogruppi, attorno a 20.

. (COSINE) Questa distanza valuta la direzione piuttosto che la magnitu-

dine (due soggetti con le stesse proporzioni risulteranno vicini).
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Figura 4.14: Dendrogramma per osservazioni con distanza cosine

In Figura si nota che la struttura del dendrogramma é molto diversa
da quella euclidea: le altezze di fusione sono molto piu basse, segno che
questa distanza valuta I’angolo tra i profili e non le differenze assolute.
I piccoli gruppi sono numerosi e si uniscono tardi e alcuni gruppi sono
separati o ricombinati rispetto ai precedenti. Si distinguono 3-4 cluster
principali, separati a livelli di distanza attorno a 1.2-1.4, che si articolano

ulteriormente in 10 sottogruppi attorno a 0.8.

. (MAHALANOBIS) Questa distanza ¢ teoricamente piu raffinata dell’eu-

clidea e in grado di eliminare la ridondanza tra variabili correlate, ma
instabile nel momento in cui ci sono variabili fortemente correlate (come

nel nostro caso).
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Figura 4.15: Dendrogramma per osservazioni con distanza Mahalanobis

In Figura si nota che la struttura del dendrogramma ¢ irregolare e
schiacciata: le altezze di fusione sono molto simili tra loro senza che ci
siano chiari salti, segno che la matrice di covarianza ¢ molto correlata. Si
distinguono 6-7 cluster principali, separati a livelli di distanza attorno a

7.5, che si articolano ulteriormente in 28 sottogruppi attorno a 5.

4.2.5 K-medie

Ai fini dell’analisi con K-medie, introdotto nella Sezione come nel Complete
Linkage, sono importanti le scelte di inizializzazione dell’algoritmo.

Per individuare il numero di ‘Replicates’=riavvii da fare per garantire una mag-
gior precisione del risultato, si stampa in Matlab una tabella Replicates-SSE piu
bassa e si cerca di capire quanto cambia quest’ultima se si aumenta il numero
di riavvii. Si ottiene che il numero ottimale di riavii é 20 e si fissa.

Altro parametro da inizializzare é il numero di gruppi da ottenere che, coeren-
temente con i risultati ottenuti dal Complete Linkage, viene fissato a 4 e 8.
Per quanto riguarda la distanza per identificare i gruppi, sono state considerate

SqEuclidean, Cityblock e Cosine.

Definizione 4.2.1. La distanza SqEuclidean ¢ definita come:

d(z,y) = (x —y)"(z —y) Vao,y R
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1. SQEUCLIDEAN - 4 CLUSTER

groupl

s7,88,89,510,s11,
s12,814,s17,s18,519,
s21,826,529,32,837

group2

s4,56,515,s34

group3

s1,s2,83,85,513,516,827,
$33,835,838,540,541,853

group4

$20,822,523,524,525,
$28,830,531,836,858

o

9]

yi

I cluster sono ben compatti e separati e le frontiere appaiono regolari.

Questa risulta essere la soluzione pit stabile e interpretabile e coincide in

gran parte con i gruppi del Complete Linkage euclideo.

2. SQEUCLIDEAN - 8§ CLUSTER

groupl s21,s26
group?2 s7,s11,812,517,832
group3 $22,827,538,340,853
group4 s10,s14
groupo s4,56,515,834
s1,s2,83,s9,
group6 s13,816,s33,s41
$8,89,518,519,520,528,
group? $29,830,831,836,537,858
group8 $23,524,525,835

Cluster 1 o]

o
Cluster 2
O Custer3
Cluster 4
O Cluster 5 o
23 Cluster 6 o
O Custer? o P |
) Cluster8 = )Q‘ X od
1| X  Cluster Centroid ¢
g X
Yo ép = Q
00
o *x
X X o o
At o
S %
o
at
4 .
-8 il -4 -2 0 2 4 6

[’aumento da 4 a 8 gruppi porta a una suddivisione coerente dei cluster

originari: i grandi gruppi si spezzano in sottogruppi interni piti piccoli ma

compatti, ben distinti lungo la prima e la seconda componente principa-

le. La distribuzione dei centroidi ¢ equilibrata, segno che la partizione ¢

numericamente stabile.
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3. CITYBLOCK - 4 CLUSTER

s7,88,89,510,s11,
s12,514,517,s18,s19,
s20,521,526,528,529,

groupl s30,831,s32,536,837,558
s1,s82,813,s15,
group?2 $33,834,541
group3 $22,523,824,525,835
s3,54,85,56,516,
group4 $27,838,540,3853

O Cluster3

X Cluster Centroid

Cluster 1
Cluster 2

Cluster 4

yi

4 6

La struttura ¢ simile all’euclidea ma con cluster leggermente pit equili-

brati (alcune osservazioni cambiano gruppo). Le frontiere sono piu “ret-

tangolari” (spezzate e pin ortogonali rispetto agli assi) e le fusioni tra

cluster centrali avvengono a distanze minori.

Essendo questa distanza

meno sensibile ai valori anomali, considera le differenze coordinate senza

amplificare i picchi.

4. CITYBLOCK - 8 CLUSTER

XOO0O00 000

O

groupl s31
520,521,522,528,
group?2 $30,836,837,358
group3 s7,s11,812,517,529,532
group4  s8,89,510,514,s18,519
groupo s4,35,86,515,334
groupb6 $3,827,838,540,853
group7?  $23,824,525,526,835
group8 sl1,s2,s13,516,s33,s41

L’aumento da 4 a 8 gruppi porta a una struttura piu granulare, suddivi-

dendo i cluster principali in sottogruppi piu piccoli e compatti. Questa

scelta non modifica sostanzialmente la struttura generale dei dati, ma si
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notano alcuni confini meno netti, dovuti al fatto che alcuni centroidi sono
pitl vicini tra loro. Inoltre, il numero di membri per gruppo risulta essere

pitt uniforme ed emergono alcuni gruppi con pochissimi elementi.

5. COSINE - J CLUSTER
s7,88,510,s11,512,

s14,517,818,s19, "
groupl s21,526,529,s32 "
59,520,522,528, 2 = .
group2 s30,s31,536,858 1 %3
a9 )$< (o]
s1,s2,83,s4,85,56, el e R o |[°
$13,815,516,827,833, ¢ o & o]
oroup3  $34,538,540,841,553 2 -3 B b
groupd 23,824,525 35,537 ) S S e

y1
Il grafico mostra cluster piu vicini i cui centroidi distano meno rispetto

alle precedenti figure: questo perché gli angoli tra vettori sono general-
mente piccoli. Alcuni individui che nei precedenti modelli appartenevano
a gruppi distinti vengono qui accorpati in maniera differente in quanto

ricombinati per similitudine di “pattern”.

6. COSINE - 8§ CLUSTER
s3,54,56,516,522,

groupl $27,838,540,853

group?2 s7,811,812,817,832

group3 s37 s 3 Sl“i i
s1.52.55 513, 8B

1M % i gcmroyd Oq 1

group4 ss15,833,s34,841 » ; O% % | .. o
= & O @ X

group5  $20,528,530,831,536,558 e

group6 $23,524,825,535 0

group?  $8,89,510,514,518,519,529 ' o

group8 521,526
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[’aumento da 4 a 8 gruppi porta a una una forte densita centrale: i cen-
troidi sono vicini e i cluster risultano pitt numerosi e meno separati nel

piano, cio¢ meno chiari visivamente.

Osservazione 4.2.1. Nel complesso, la distanza SqEuclidean rimane la scelta pit
coerente e stabile per rappresentare la struttura globale del dataset.

La distanza Cityblock conferma la robustezza dei risultati e riduce I'influenza
di osservazioni anomale.

La distanza Cosine offre invece una prospettiva complementare, utile per indi-

viduare pattern di proporzionalita tra le variabili.

Osservazione 4.2.2. Per eliminare 'influenza dell’unica variabile binaria del da-
taset (il sesso), l'intera procedura é stata ripetuta dividendo per sesso. Sono
stati quindi analizzati separatamente i sottoinsiemi donne e uomini (calcolo cor-
relazioni, analisi delle componenti principali e clustering con Complete Linkage
e K-medie).

La varianza totale risulta essere distribuita in un numero maggiore di componen-
ti per le donne e minore per gli uomini. Questo indica che il gruppo femminile
presenta una struttura pit complessa, dove le caratteristiche antropometriche e
prestative non sono dominanti su un’unica direzione di variazione, ma si distri-
buiscono su piu fattori. Cio ¢ confermato dai grafici 2D delle osservazioni che

hanno sugli assi le prime due componenti principali.
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Figura 4.16: Grafico delle prime due Figura 4.17: Grafico delle prime due

componenti principali per donne componenti principali per uomini
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In Figura [£.16] i punti sono dispersi, indicando assenza di sottogruppi ben se-
parabili. La nube ¢ pill concentrata e meno varia lungo la prima componente
principale, mentre pitt uniforme lungo la seconda. Le prime due componenti,
che sembrano spiegare variabilita differenti, spiegano il 54.03% della varianza.
In Figura [£.17)i punti si dispongono piu orientati lungo una retta decrescente.
La nube ¢ piu larga sulla prima componente principale (che raccoglie una quota
maggiore di varianza), mentre pitt contenuta sulla seconda. Le prime due com-
ponenti spiegano il 58.58% della varianza.

Aggiungendo una componente principale sia per le donne che per gli uomini, la
varianza spiegata sale rispettivamente a 67.48% e a 74.52%.

Procedendo con l'analisi con Complete Linkage con distanza Euclidea, rivela-
tasi la pitt informativa per la tipologia di dati presi in esame, si conferma una
struttura piu frammentata per le donne e una piu coerente per gli uomini, in
linea con le differenze di varianza spiegata, evidenziate precedentemente. Si no-
ta che, negli uomini, le aggregazioni avvengono a distanze di fusione maggiori,

suggerendo la presenza di cluster pit separati.

Mfﬁii%gﬁmﬂﬁi

Figura 4.18: Dendrogramma per os- Figura 4.19: Dendrogramma per os-
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servazioni per donne servazioni per uomini

Sia in Figura 4.18| che in Figura si distinguono 4-5 cluster principali, sepa-
rati a livelli di distanza attorno a 8.

Si conclude con l'analisi con K-medie con distanza SqEuclidean, mantenen-
do a 20 il numero di riavvii e fissando, coerentemente con l'osservazione dei
dendrogrammi precedenti, a 5 il numero di gruppi. Ancora una volta viene

confermata una maggiore eterogeneita interna nel gruppo femminile, intuibile
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dalla disposizione meno compatta dei punti e da confini tra gruppi piu sfumati
in Figura [£.20, Si evidenzia inoltre, in Figura [£.21] che i centroidi risultano

essere pill ben distinti.
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Figura 4.20: Osservazioni delle donne Figura 4.21: Osservazioni degli uomini
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Osservazione 4.2.3. Si procede separando le variabili antropometriche da quelle
prestative, al fine di verificare se le differenze osservate tra uomini e donne deri-
vino principalmente da fattori antropometrici, prestativi o da una combinazione
dei due.

Dall’analisi condotta si evince che, per il gruppo femminile del dataset preso
in considerazione, le prestazioni derivano da una combinazione piu articolata
di fattori morfologici e biomeccanici, mentre negli uomini prevale un modello
prestativo pitl lineare e omogeneo.

La struttura dei dendrogrammi con distanza Euclidea risulta pit ramificata e
graduale per quanto riguarda le donne e compatta con alcune separazioni piu
marcate a distanza maggiore, per quanto riguarda gli uomini.

Andando a rifare I’analisi di Complete Linkage con distanza Cosine, si pud no-
tare come le donne risultano avere, invece, alcuni pattern e proporzioni simili.
I risultati ottenuti dall’algoritmo di Complete Linkage vegono confermati da
quelli ottenuti con le K-medie: per le donne i confini tra i cluster non sono netti

con distanza SqEuclidean e, invece, meglio delineati con distanza Cosine. Al
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contrario, gli uomini confermano essere distinti in gruppi meglio definiti, con

centroidi pitl separati.

4.3 Analisi con dataset completo

Nonostante i dati disponibili non risultino completi per tutti i soggetti, si puo
procedere ad un’analisi analoga alla precedente, adottando le dovute accortezze
(vedi Sezione . In questo caso si tengono gia divisi i soggetti in base al sesso.
Le matrici dei dati saranno quindi: D € R2™47 per le donne e U € R**47 per
gli uomini.

Siccome il livello di incompletezza delle due matrici risulta essere particolarmen-
te elevato, prima di procedere con I’analisi, ¢ necessario filtrare i dati eliminando
righe e colonne con una percentuale di dati mancanti maggiori del 40% della

totalita fino ad ottenere due matrici: D € R23X47 ¢ 7 € R1°%21,

Per entrambe le matrici si sceglie di adottare come metodo di imputazione dei
dati la PCA con algoritmo ALS, inizializzando k£ con un valore appartenente
all’intervallo [2,p — 1] e uguale circa al 30% di p.

L’algoritmo restituisce:
e coef f1; s € RP* matrice di loadings;
e scorears € R™* matrice di scores;
o muars € R™! vettore delle medie usate nella PCA.

Questi tre elementi consentono di ricostruire la matrice dei dati imputata:

T
Zimp = Scorears * coef farq +muars.

Una volta ricostruita la matrice dei dati, dopo averla standardizzata, si procede

ad un’analisi mediante PCA classica, applicando un procedimento analogo a
quello mostrato nello Script [4.2.3]
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Figura 4.22: Varianza cumulata spie- Figura 4.23: Grafico delle prime due
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Figura 4.24: Varianza cumulata spie- Figura 4.25: Grafico delle prime due

gata per gli uomini componenti principali per gli uomini

Sia in Figura [£.22) che in Figura [£.24] viene evidenziata una crescita molto ra-
pida della varianza cumulata spiegata, al crescere del numero di componenti
principali. Nel dataset femminile sono necessarie 5 componenti principali per
superare la soglia del 70% di varianza spiegata; mentre in quello maschile lo
stesso livello informativo viene raggiunto con sole 3 componenti, indicando una
struttura pitt compatta nello spazio delle variabili. Questa differenza suggerisce
che il gruppo maschile presenti pattern pitl coerenti e correlati tra le variabili,
tali da poter essere riassunti in modo piu efficiente da un numero ridotto di

componenti principali; al contrario del gruppo femminile, che sembra caratte-
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rizzato da una maggiore eterogeneita interna.

Osservando i grafici delle prime due componenti principali si evidenziano alcune
differenze tra donne e uomini. La Figura[4.23| mostra una buona dispersione dei
punti nello spazio bidimensionale, senza sovrapposizioni strette o appiattimenti
lungo un asse. Non emergono cluster netti, ma si osservano piccoli sottogruppi
con profili simili (ad esempio s11, 812, s17 oppure s9, s31, s36) oltre a soggetti a
distanza maggiore dal nucleo centrale del gruppo (ad esempio s14 oppure s22).
La Figura [4.25 mostra invece una maggiore dispersione dei punti lungo PC1
rispetto a PC2. Non emergono cluster definiti ma, pit che nel caso femminile,
si notano soggetti fuori centro, ovvero potenziali outlier.

Ai fini dell’analisi con Complete Linkage, introdotto nella Sezione [3.2] ¢ stata

utilizzata solo la distanza Euclidea.
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Figura 4.26: Dendrogramma per osservazioni per donne

In Figura [£.20] si osserva una struttura piuttosto articolata, con numerose fusio-
ni che avvengono a quote relativamente alte di distanza. Due coppie di soggetti
(s28, 836 e s23, s24) vengono unite molto precocemente rispetto al resto del-
le osservazioni, suggerendo una forte similarita tra i due soggetti della coppia.

Procedendo verso I'alto, le fusioni diventano pit eterogenee. Si pud notare ad
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esempio che s11, s12 e s14 si uniscono solo ad alte distanze, suggerendo che tali
soggetti siano pit distanti dal resto del gruppo e possano rappresentare valori

atipici.

Figura 4.27: Dendrogramma per osservazioni per uomini

In Figura si osserva una struttura piu compatta e meno frammentata ri-
spetto a quella in Figura [£.26] con fusioni progressive che avvengono a quote
piu contenute rispetto al caso femminile, che indica una maggiore omogeneita
del gruppo. Due coppie di soggetti (s1, s2 e s15, s34) vengono unite prima
rispetto al resto delle osservazioni, suggerendo una forte similarita tra i due
soggetti della coppia. Solo nelle fasi finali si evidenziano individui pit distanti,
tra cui s13 e la coppia formata da sb e s7, suggerendo che tali soggetti possano
rappresentare valori atipici.

In sintesi, il Complete Linkage euclideo evidenzia una maggiore eterogeneita
nelle donne e una struttura pit compatta negli uomini, in piena coerenza con
quanto osservato precedentemente.

Per quanto riguarda l’analisi con K-medie, introdotta della Sezione [3.3] si ini-
zializza a 20 il numero di riavvii, a 4 il numero di cluster e come distanza si

considera SqFuclidean, coerentemente con 1’analisi con Complete Linkage.
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In Figura si osserva una distribuzione non perfettamente compatta e dif-
ferenze di densita interna tra i gruppi, coerenti con la maggiore variabilita
riscontrata nel dataset femminile. I Cluster 1 e 4 includono un insieme di sog-
getti omogenei; il Cluster 2 contiene soggetti piuttosto dispersi lungo PC1 e il
Cluster 3 contiene casi anomali e distanti rispetto al resto del campione.

In Figura si osserva una distribuzione piu raccolta lungo PC2, con suddi-
visione pitl netta tra i gruppi. I Cluster 1 e 4 includono un insieme di soggetti
omogenei; il Cluster 2 contiene soggetti localizzati a PC1 positivi, con s6 spo-
stato rispetto agli altri tre elementi del gruppo e il Cluster 3 contiene solo s13
che, avendo una coordinata in PC2 elevata, risulta essere un potenziale outlier.
I risultati ottenuti con K-medie appaiono complementari a quelli derivanti dal
Complete Linkage.

In conclusione: le donne presentano una variabilita pitt ampia, visibile nel grafi-
co di disperione PC1-PC2 (Figura, nelle fusioni tardive del dendrogramma
(Figura e nei cluster parzialmente sovrapposti ottenuti da K-medie (Fi-
gura ; gli uomini mostrano una struttura pitt compatta e regolare, con
cluster piu definiti e stabili in entrambi i metodi, coerenti con una riduzione
dimensionale piu efficiente (Figura .
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