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Introduzione

Da quando fu costruito il primo computer, l’uomo ha cominciato ad apprez-

zarne ed esplorarne le potenzialità. In questo contesto risultò naturale la nascita

della disciplina della complessità computazionale, la quale si occupa di studiare

quante risorse in termini di spazio e di tempo i vari problemi dell’informatica

necessitino per la loro soluzione. Fu cos̀ı che ebbero origine le prime classi di

complessità che riunivano i problemi in base alla loro complessità (temporale

e spaziale). La complessità strutturale nacque poi con l’obiettivo di analizzare

le relazioni e i contenimenti tra le varie classi di complessità.

In questo breve elaborato presenteremo una famiglia di classi di complessità

temporale, la gerarchia polinomiale, vedremo alcune sue curiose ed interes-

santi proprietà ed esamineremo alcuni problemi nati dalla teoria dei giochi coo-

perativi e collocabili proprio in tale famiglia. Il primo capitolo sarà una rapida

introduzione alla teoria della complessità computazionale, mentre nei successivi

entreremo nel cuore dei vari argomenti: il secondo sarà incentrato appunto sulla

gerarchia polinomiale (si faccia particolare attenzione alle sue caratteristiche pe-

culiari, che la legano a doppio filo al famoso problema del millennio P vs NP);

il terzo ed ultimo capitolo tratterà di teoria dei giochi cooperativi e in esso ci

concentreremo sui concetti di Bargaining Set1 e di Kernel1 di un gioco a grafo

e vedremo come la computazione di tali concetti di soluzione sia classificabile

proprio nella gerarchia polinomiale.

Per approfondimenti e chiarimenti si tenga sempre presente la bibliografia

al termine.

1Ho scelto di usare la lingua italiana per la maggior parte dei termini dell’elaborato, ad

eccezione di questi due, per la loro rilevanza nella letteratura, e pochi altri. Gli acronimi sono

invece in gran parte calcati dall’inglese.
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Capitolo 1

Nozioni di base

In questo primo capitolo introduciamo brevemente gli strumenti di base per

studiare la complessità strutturale, vale a dire le Macchine di Turing (T.M.) e

la teoria dei linguaggi.

1.1 Stringhe, problemi, linguaggi

Definizione 1.1.1. 1. Un ALFABETO è un qualunque insieme finito e

non vuoto. Di solito denoteremo un alfabeto con la lettera greca maiuscola

Σ.

2. L’alfabeto Σ = {0, 1} viene detto BINARIO.

3. Un SIMBOLO (o lettera) è un elemento di un alfabeto.

4. Dato un alfabeto Σ, una STRINGA (o parola) su Σ è una sequenza finita

di simboli di Σ. Denoteremo una stringa con la lettera w generalmente.

5. La stringa vuota ε è l’unica parola che consiste di zero lettere di Σ.

6. Data una stringa w, la sua LUNGHEZZA (o taglia) è il numero di

elementi di cui è composta. La denotiamo |w|.

7. Date due parole v e w su Σ, si definisce la CONCATENAZIONE di

v e w, denotata con v · w, come la parola z che consiste dei simboli di v

nello stesso ordine seguita dai simboli di w nello stesso ordine.

Definizione 1.1.2. Data una parola w su Σ e un naturale n, definiamo wn

induttivamente come:




w0 = ε

wn+1 = w · wn per ogni n ≥ 0.

1
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Definizione 1.1.3. L’insieme di tutte le parole su un alfabeto Σ verrà denotato

Σ∗.

Definizione 1.1.4. Dato un alfabeto Σ, un LINGUAGGIO su Σ è un sot-

toinsieme di Σ∗. Chiamiamo CLASSE qualunque collezione di linguaggi.

Definizione 1.1.5. Dato un linguaggio L di alfabeto Σ, ilCOMPLEMENTO

di L è denotato L̄ ed è definito con la seguente differenza insiemistica:

L̄ := Σ∗ \ L

Più in generale sono definite in modo usuale le operazioni insiemistiche tra classi

e linguaggi (unione, intersezione. . . ).

La locuzione “Decidere un linguaggio” significa mettere a punto un al-

goritmo che riceve in input stringhe e risponde SI o NO in tempo finito con il

seguente criterio: viene risposto SI se e solo se la stringa di input appartiene al

linguaggio e viene risposto NO in caso contrario.

Definizione 1.1.6. Un PROBLEMA DI DECISIONE in informatica è una

funzione che associa ad ogni stringa di un alfabeto Σ uno e un solo valore tra 0

e 1. Un PROBLEMA DI LINGUAGGIO è un problema di decisione in cui

l’obiettivo è stabilire se ogni stringa w di Σ∗ appartiene a un certo linguaggio

L o meno (con L ⊆ Σ∗).

Lemma 1. Ogni problema di decisione può essere rappresentato con un pro-

blema di linguaggio.

Dimostrazione. Semplice verifica: sia f : Σ∗ −→ {0, 1} un problema di decisio-

ne. Poniamo Lf={w ∈ Σ∗ | f(w) = 1}. Chiaramente risolvere il problema f

equivale a rispondere alla domanda w ∈ Lf .

Questo permette di studiare pù uniformemente tutti i problemi di decisione

trattandoli come problemi di linguaggio, il che ha grossi vantaggi, soprattutto

in termini di formalizzazione e modellizzazione di algoritmi per risolverli, come

vedremo nel prossimo paragrafo. In particolare useremo come sinonimi le parole

“problema” e “linguaggio”.
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1.2 Macchine di Turing deterministiche e tra-

sduttori

Il formalismo più usato per modellizzare algoritmi è quello delle Macchi-

ne di Turing, che ora presentiamo per completezza e uniformità di notazione.

Intuitivamente una macchina di Turing (TM) è un apparecchio che consiste di:

1. un insieme finito di stati interni;

2. uno o più NASTRI DI LAVORO semi-infiniti, suddivisi in CELLE,

ognuno dei quali munito di una TESTINA che si può muovere a destra o

a sinistra, leggere le celle del nastro - una per volta - ed anche sovrascrivere

simboli;

3. un ulteriore nastro speciale con corrispondente testina, detto NASTRO

DI INPUT, che invece è di sola lettura.

Il termine “semi-infinito” per indicare un nastro significa che quest’ultimo non

ha una cella più a destra (in tale direzione non termina), ma ha una cella più

a sinistra: se la testina si trova su di essa, non può muoversi ulteriormente a

sinistra.

Una macchina M comincia il suo calcolo su una stringa w con il nastro di

input contenente w (un simbolo in ogni cella, in ordine, a partire dalla cella più

a sinistra) e con un simbolo speciale detto “Blank” (b) in tutte le celle rima-

nenti. Anche tutte le celle dei nastri di lavoro contengono b all’inizio. In ogni

istante la macchina si trova in uno degli stati. La macchina è in grado di leggere

i simboli delle celle su cui si trova la testina di ciascun nastro di lavoro, riscri-

vere su tali celle nuovi simboli (sovrascrivendo i precedenti), muovere ciascuna

testina a destra o a sinistra e cambiare il proprio stato interno. Tutte queste

operazioni vengono effettuate in blocco, formano uno STEP e sono univoca-

mente determinate dalla FUNZIONE DI TRANSIZIONE della macchina,

la quale dipende dallo stato interno della macchina e dai simboli letti sui nastri.

Si noti che il nastro di input può essere letto ma non sovrascritto.

Appena una macchina riceve un input, si assume che il suo stato interno sia lo

stato iniziale q0. Dopodiché essa procede applicando la funzione di transizione,

step dopo step, finché possibile: ogni qualvolta la funzione di transizione non è

definita, la macchina si ferma. Se alla fine degli step la macchina si trova in uno

stato accettante, diremo che M accetta la stringa w, altrimenti M rifiuta w. Si

tenga presente che esistono due modi per rifiutare: o la macchina si ferma in

uno stato non accettante o non si ferma affatto, continuando a fare infiniti step

uno dopo l’altro.
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Vediamo una definizione più formale:

Definizione 1.2.1. Una MACCHINA DI TURING DETERMINISTI-

CA M a k nastri è una 5-upla

M = (Q, q0, F,Σ, δ) dove:

1. Q è un insieme finito degli stati interni;

2. q0 ∈ Q è lo stato iniziale;

3. F ⊆ Q è insieme degli stati accettanti;

4. Σ è alfabeto di input e di nastro;

5. δ : Q×Σk −→ Q×Σk−1×{R,N,L}k è una funzione (spesso parziale): la

funzione di transizione della macchina M . Situazioni di calcolo in cui la

funzione di transizione non è definita indicano che la macchina si blocca

in tal punto. In caso contrario, il risultato della funzione di transizione si

interpreta come segue: la prima componente è il nuovo stato, la seconda

sono i k−1 simboli da sovrascrivere ordinatamente nei nastri di lavoro e la

terza componente indica il movimento che ciascuno dei k nastri esegue (R

significa a destra di una cella, N significa nessun movimento e L significa

a sinistra di una cella se possibile, altrimenti nessun movimento).

Definizione 1.2.2. Data una macchina di Turing M , una CONFIGURA-

ZIONE per M è una descrizione del calcolo in un certo istante di tempo: essa

include il contenuto dei nastri, la posizione di ciascuna testina e lo stato in cui la

macchina si trova. SeM ha k nastri, una configurazione perM è una k+1-upla

(q, x1, . . . , xk)

dove q è lo stato corrente di M e per ogni j ∈ {1, . . . , k}, xj ∈ Σ∗#Σ∗ rappre-

senta il contenuto del j-esimo nastro. Il simbolo # (non lettera di Σ), indica la

posizione della testina e per convenzione precede il simbolo che la testina legge

in tale istante. Tutti i simboli dei nastri infiniti che non compaiono in xj sono

assunti b.

Definizione 1.2.3. La CONFIGURAZIONE INIZIALE di una macchina

M sulla stringa w è (q0,#w,#, · · · ,#).

Definizione 1.2.4. Una CONFIGURAZIONE ACCETTANTE è una

configurazione il cui stato è accettante.



1.2 Macchine di Turing deterministiche e trasduttori 5

Definizione 1.2.5. Data una macchina di Turing M e una stringa di input w,

una COMPUTAZIONE PARZIALE di M su w è una sequenza (finita o

meno) di configurazioni di M in cui ogni step tra una configurazione e l’altra

obbedisce alla funzione di transizione diM . Una COMPUTAZIONE diM su

w è una computazione parziale che inizia con la configurazione iniziale di M su

w e termina con una configurazione in cui nessuno step può essere eseguito. Una

computazione viene detta ACCETTANTE se termina in una configurazione

accettante: in tal caso l’input viene accettato da M .

Definizione 1.2.6. Il LINGUAGGIO di una macchina di Turing determini-

stica M è l’insieme delle parole accettate da M e viene denotato L(M). Spes-

so useremo le espressioni linguaggio “accettato” da una macchina di Turing e

linguaggio “deciso” da una TM in modo equivalente1.

Talvolta vorremmo usare TM per calcolare funzioni. Possiamo ottenere que-

sto risultato aggiungendo alla macchina di Turing un NASTRO DI OUT-

PUT, con la condizione che esso sia di sola scrittura (vale a dire che la testina

può solo scrivere simboli e muoversi verso destra o stare ferma, non “leggere”

simboli o spostarsi a sinistra). Una tale macchina è detta TRASDUTTORE.

Dato un trasduttore M , la funzione f che esso calcola è definita su L(M) in

questo modo:

f : L(M) −→ Σ∗

per ogni w ∈ L(M), f(w) è la parola che compare nel nastro di output quando

M termina la computazione di w. I concetti di configurazione e computazione

per i trasduttori sono quelli per macchine di Turing normali, con l’aggiunta del

contenuto del nastro di output.

Esistono molte varianti di macchine di Turing, alcune delle quali le intro-

duciamo nei prossimi paragrafi. Inoltre esistono svariati altri modelli di calcolo

(ń-calcolo, funzioni ricorsive, sistemi combinatori di Post, algoritmi normali di

Markov...) tutti equivalenti alla TM: una tale abbondanza suggerisce che le mac-

chine di Turing corrispondano al più naturale e intuitivo concetto di “algoritmo”.

Di qui in avanti sarà dunque assunto il seguente fondamentale assioma:

Tesi di Church-Turing. Qualunque algoritmo può essere descritto da una

macchina di Turing.

1Ai nostri fini tali parole sono usate come sinonimi: in letteratura, soprattutto in teoria

della decidibilità, essi sono termini distinti.
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Osservazione. Il modello di computazione dato dalla macchina di Turing non è

facile da padroneggiare: presentare algoritmi sotto forma di TM è spesso arduo

e comporta un grosso sacrificio in intellegibilità, al pari di lavorare con il codice

di macchina di un computer. Per questa ragione ci appelleremo alla Tesi di

Church-Turing e descriveremo di volta in volta il funzionamento di una TM non

con complessi grafi orientati ed etichettati o artifici simili, ma con uno pseudo-

codice di alto livello molto più comprensibile al lettore, o addirittura con una

semplice descrizione del funzionamento.

1.3 Macchine non deterministiche

Nella sezione 1.2, ogni step (o passo) di una macchina è completamente de-

terminato dalla configurazione precedente: lo stato e i simboli letti dalle testine

fissano lo step successivo. Ora alleggeriamo questa condizione ottenendo mac-

chine non deterministiche, le cui “prossime mosse” possono essere decise tra

alcune possibilità.

Definizione 1.3.1. Una macchina d Turing M NON DETERMINISTICA

a k nastri è una 5-upla

M = (Q, q0, F,Σ, δ)

dove tutti gli elementi sono identici al caso deterministico tranne che la funzione

di transizione, la quale ora è data da: δ : Q×Σk −→ Q×Σk−1×P
(
{R,N,L}k

)
,

dove per ogni insieme A, P(A) indica il suo insieme delle parti.

Le definizioni ed osservazioni fatte per il caso deterministico rimangono inal-

terate, tuttavia ora su un certo input w non vi è un’unica computazione possi-

bile, ma un insieme. Occorre dunque modificare la condizione di accettazione:

Definizione 1.3.2. Un input w viene accettato da una macchina non determi-

nistica M se e solo se esiste una computazione di M su w che termina con uno

stato accettante.

Osservazione. Si noti come non sia davvero utile permettere a una macchina

non deterministica di avere un numero di possibili nuove configurazioni mag-

giore di due: infatti una scelta tra k possibilità equivale a ⌈log k⌉ scelte tra

due possibili vie. Pertanto senza perdere di generalità possiamo assumere che

|δ(q, a)| ≤ 2 per ogni (q, a) ∈ Q× Σk.

In questo modo l’insieme di tutte le possibili computazioni di una TM non

deterministica su una stringa di input w può essere rappresentato da un albero
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binario, detto ALBERO DI COMPUTAZIONE. La sua radice è la confi-

gurazione iniziale di M su w e induttivamente i figli di ciascun nodo c saranno

le configurazioni che possono essere raggiunte da c in un passo applicando la

funzione di transizione diM . Le foglie dell’albero saranno tutte le possibili con-

figurazioni finali. Per definizione, un input è accettato se e solo se vi è almeno

una foglia accettante nell’albero di computazione di tale input.

In altre parole una macchina non deterministica accetta “se ha un modo di

accettare”.

Osservazione. Un modo usuale per costruire una macchina non deterministica

che svolga un certo calcolo è quello comunemente detto di “guess and check”.

Esso consiste nell’identificare l’elemento chiave (o gli elementi chiave) per risol-

vere il problema e fare in modo che il non determinismo della macchina lo faccia

“comparire” sul nastro: dopodichè gli step successivi dovranno essere studiati

per verificare che ciò che è stato indovinato sul nastro sia corretto. Se nessuno

tra tutti i possibili “guess” è stato valutato come corretto, la macchina rifiuta

perché non ha trovato un modo per accettare.

Ad esempio per stabilire se un certo numero abbia divisori non banali, basta

considerare la macchina non deterministica M seguente:

ricevuta in input una stringa binaria,

• scrive sul nastro non deterministicamente dei caratteri binari (il non de-

terminismo si evidenzia quando la macchina ha la duplice possibilità di

scrivere oppure di passare allo stato successivo);

• controlla che ciò che è stato scritto sul nastro sia compreso tra 2 e l’input

e divida la stringa in input (assumiamo che nella macchina sia presente

una subroutine che lo faccia, che non approfondiamo);

• in caso di risposta affermativa, la macchina accetta la stringa poiché ha

trovato un divisore non banale;

• in caso di risposta negativa, la macchina si ferma e rifiuta.

Vediamo ora che rapporto c’è tra le macchine deterministiche e quelle non

deterministiche.

Lemma 2. È possibile codificare in linguaggio binario la funzione di transizione

di una qualunque macchina di Turing. In particolare qualunque TM può essere

indicata con un numero naturale (la stringa binaria della sua codifica) e dunque

esiste solo una quantità al più numerabile di algoritmi.
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D’ora in avanti parleremo senza specificare indifferentemente di TM e delle

loro codifiche binarie: a quale delle due faremo riferimento sarà di volta in

volta chiaro dal contesto. Questo discorso ha conseguenze importanti, che ora

andiamo solo a richiamare:

1. è possibile passare in input una macchina di Turing a un’altra;

2. esiste una macchina UNIVERSALE che prende in input coppie (mac-

china M -stringa w) e risponde esattamente come la macchina M avrebbe

risposto su w impiegando un numero di step quadratico. Si dice che la

macchina universale è in grado di simulare altre macchine;

3. è possibile simulare una TM non deterministica con una deterministi-

ca performando un numero di passi esponenziale, esplorando l’albero di

computazione livello per livello alla ricerca di configurazioni accettanti.

1.4 Macchine ad oracolo

Andiamo ora a definire macchine di Turing capaci di operare grazie a un

aiuto esterno.

Una macchina a oracoloM? è una TM che ha la capacità speciale di poter in-

terpellare un ORACOLO - altro non è che un linguaggio fissato - riguardo una

stringa, ottenendo istantaneamente risposta SI o NO in base all’appartenenza o

meno di tale stringa all’oracolo e traendo cos̀ı informazioni utili per la computa-

zione. La struttura e funzione di transizione della macchina è indipendente da

quale linguaggio-oracolo si scelga (chiaramente il linguaggio globalmente accet-

tato dalla macchina varierà). Quando si indica una macchina a oracolo senza

aver specificato l’oracolo, detto anche oracle set, si usa la notazione M?. Vice-

versa se l’oracle set è stato dichiarato come il linguaggio L si indica ML. Più

precisamente il concetto si può formalizzare come segue:

Definizione 1.4.1. Una MACCHINA A ORACOLO M? con oracle set

L è una macchina di Turing (deterministica o meno) dotata di un nasto ulte-

riore, detto NASTRO D’ORACOLO, di sola scrittura, e di 3 stati specifici

(q?, qyes, qno) il cui funzionamento è il seguente:

1. ML funziona come una normale macchina di Turing, purché non transisca

nello stato q?;

2. quando ML transisce nello stato q?, il contenuto (una certa stringa v) del

nastro d’oracolo viene istantaneamente cancellato e ML transisce nello

stato qyes se v ∈ L, qno in caso contrario;
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3. ML non può transire verso gli stati qyes e qno in modo diverso da quello

descritto al punto precedente.

Si noti come una qualunque TM normale è di fatto una macchina a oracolo

con oracle set vuoto (equivalentemente, che non passa mai per lo stato q?).

Operativamente, possiamo pensare a macchine a oracolo come a macchine di

Turing capaci di aiutare il proprio calcolo affidandosi una routine esterna che

agisce istantaneamente. Pertanto potrà verificarsi che ci riferiremo al “calcolo

portato avanti dall’oracolo” o simili: in tutti i casi tale computazione ausiliaria

si assume richiedere un solo step.

Osservazione. Una macchina a oracolo può decidere qualunque linguaggio L

in un numero di passi lineare (nella lunghezza dell’input): basta considerare la

macchina che ha come oracle set proprio quel linguaggio L e non fa altro che

copiare la stringa in input sul nastro d’oracolo e avere qyes come unico stato

accettante.

1.5 Richiami di complessità

Vediamo come il formalismo delle macchine di Turing ci permetta di definire

con facilità le classi di complessità temporali e spaziali.

Mentre N indica il celebre insieme dei numeri naturali (a partire da 0), indichia-

mo con N∗ := N \ {0}.
In questo paragrafo a meno che diversamente specificato le funzioni saranno

N −→ N∗ ed assumeremo che le macchine di Turing abbiano un solo nastro di

lavoro, per snellire le definizioni.

Definizione 1.5.1. Sia f una funzione. Diciamo che una macchina di Turing

M (deterministica o meno) ha RUNNING TIME f se esiste c ∈ R tale che

per ogni stringa w ∈ L(M) (eccetto al più un numero finito di stringhe), M

calcola w in non più di c · f(|w|) passi. Indichiamo con

DTIME(f)={L | esiste una TM deterministica che decide L con running time

f}
NTIME(f)={L | esiste una TM non deterministica che decide L con running

time f}

Definizione 1.5.2. Si chiama classe (temporale) POLINOMIALE DETER-

MINISTICA la seguente collezione di problemi:

P =
⋃

c≥1

DTIME(nc)
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Si chiama classe (temporale)POLINOMIALE NON DETERMINISTICA

la seguente collezione di problemi:

NP =
⋃

c≥1

NTIME(nc)

Molti celebri problemi sui grafi si trovano in NP (colorazione di grafi, cicli

hamiltoniani, problema del commesso viaggiatore...), ma anche problemi di lo-

gica (soddisfacibilità di forme normali congiuntive, SAT) ed il loro studio è una

prima interessante applicazione della teoria della complessità strutturale.

Osservazione. P ⊆ NP poiché qualunque TM deterministica è in particolare

non deterministica. Si ritiene che sia P ⊊ NP nonostante non esista una prova

formale al riguardo. Tale problema aperto è uno dei sette celebri “Problemi del

Millennio” per la risoluzione di ciascuno dei quali è istituito un premio da un

milione di dollari. Viene comunemente detto problema P vs NP . Torneremo

sulla questione dopo aver mostrato alcune proprietà della gerarchia polinomiale.

Definizione 1.5.3. Si definisce

co-NP := {L | L̄ ∈ NP}

ed è abbastanza facile vedere che P ⊆ co-NP .

Definizione 1.5.4. Più in generale, data una classe di complessità C, si defini-
sce:

co-C := {L | L̄ ∈ C}.

Definizione 1.5.5. Indichiamo con FP la classe di funzioni tra stringhe che

possono essere calcolate da un trasduttore in tempo polinomiale.

Definizione 1.5.6. Sia f una funzione. Diciamo che una macchina di Turing

M (deterministica o meno) ha RUNNING SPACE f se esiste c ∈ R tale che

per ogni stringa w ∈ L(M) (eccetto al più un numero finito di stringhe), M

non usa più di c · f(|w|) celle distinte nel nastro di lavoro durante il calcolo.

Indichiamo con

DSPACE(f)={L | esiste una TM deterministica che decide L con running

space f}
NSPACE(f)={L | esiste una TM non deterministica che decide L con

running space f}

Definizione 1.5.7. Si chiama classe (spaziale) POLINOMIALE DETER-

MINISTICA la seguente collezione di problemi:

PSPACE :=
⋃

c≥1

DSPACE(nc)
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Osservazione. P ⊆ PSPACE. Infatti se una TM compie un numero di step

polinomiale nella taglia dell’input, chiaramente essa potrà utilizzare al più un

numero di celle ancora polinomiale nella taglia dell’input.

Un risultato classico della complessità strutturale è il seguente, che useremo e

generalizzeremo nel prossimo capitolo (all’interno della Proposizione 3):

Lemma 3. NP ⊆ PSPACE.

Dimostrazione. Al termine di tutte le definizioni di questo capitolo, possiamo

affemare che un linguaggio L è in NP se esiste una macchina non deterministica

NL tale che per ogni stringa w ∈ L, l’albero di computazione di NL su w esibisce

una foglia accettante a profondità polinomiale in |w| e per ogni w /∈ L, tutti

i rami2 dell’albero di computazione di NL su w terminano con configurazioni

non accettanti di profondità polinomiale in |w|. Inoltre si noti che ciascuna

configurazione possibile di NL su w ha taglia polinomiale in |w|. In particolare

descrivere uno dei possibili rami di computazione di NL su w (dalla confingu-

razione iniziale a quella finale, passando per al più una quantità polinomiale di

scelte binarie) genera una successione di configurazioni di lunghezza complessi-

vamente polinomiale nella taglia dell’input.

La macchina deterministicaM simulerà NL sfruttando questo fatto ed esploran-

do l’albero di computazione di NL su w ramo per ramo, cancellando di volta in

volta il suo nastro e sfruttando dei contatori che tengano traccia della profondità

e di quale dei possibili3 rami sia esplorato. Siano dunque L ∈ NP un linguag-

gio ed NL una macchina che decide L con le caratteristiche appena descritte e

dimostriamo che è possibile simulare NL con una macchina deterministica M

che usa un numero di celle distinte polinomiale.

Data una stringa w, |w| = n, sappiamo che esiste un polinomio p(n) tale che la

profondità della configurazione accettante di NL su w è profonda p(n) oppure

tutti i rami dell’albero di computazione di NL su w sono non accettanti ed han-

no profondità minore o uguale di p(n).

Si consideri la macchina deterministica M che calcola w nel modo seguente:

1. M tiene sempre sul nastro la configurazione iniziale ID0 di NL su w ed

azzera il contatore;

2Per evitare fraintendimenti, ricordiamo che qui usiamo il termine “ramo” per indicare un

qualunque “cammino radice-foglia”
3Si noti che il numero di possibili rami di calcolo di NL su w è al più O(2p(n)) per un

qualche polinomio p(n), dove n = |w|. Tuttavia, il numero di rami in questione non è rilevante

ai nostri fini poiché siamo interessati alle celle distinte utilizzate da M , non al tempo impiegato

per la simulazione.
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2. induttivamente, M legge l’ultima configurazione scritta sul suo nastro,

simula una configurazione di NL ad essa successiva e la scrive sul nastro;

3. M aggiorna il contatore aumentandolo di 1 (il contatore della profondità

simulazione);

4. M ripete gli step 2 e 3 finché il contatore non raggiunge la quantità

p(n): se non può performare il punto 2 torna al punto 1), poiché si trova

sicuramente su un ramo non accettante);

5. quando il contatore raggiunge p(n), M valuta se la configurazione scritta

sul nastro è accettante per NL oppure no: in caso di risposta affermativa,

M accetta la stringa w.

A meno di aggiungere un ulteriore contatore che permetta di numerare i rami e

di simularne sempre di nuovi4, possiamo costruireM in modo tale che quandoM

tale contatore superi la quantità O(p(n)), essa rifiuti w. Una simile macchinaM

è sicuramente deterministica, decide L ed usa nel suo funzionamento un numero

di celle non più che polinomiale nella taglia dell’input.

Pertanto, NP ⊆ PSPACE.

4Si noti come la taglia di un tale contatore è polinomiale in n.



Capitolo 2

La gerarchia polinomiale

Definiamo ora gli ultimi concetti chiave per comprendere e studiare la gerar-

chia polinomiale. Le dimostrazioni che seguiranno saranno talvolta discorsive

con alcune verifiche lasciate al lettore.

2.1 Problemi completi e riduzioni

D’ora in avanti assumiamo che i linguaggi di cui trattiamo siano defniti su un

alfabeto binario. È facile esercizio mostrare che tale assunzione non è restrittiva

in quanto qualunque alfabeto Σ = {a1, · · · , an} può essere codificato (lettera per
lettera) in binario. In informatica esistono diversi tipi di riduzione: presentiamo

qui i più utili al nostro scopo.

Definizione 2.1.1. Dati due linguaggi A e B, una RIDUZIONE POLINO-

MIALE da A a B è una funzione f : {0, 1}∗ −→ {0, 1}∗ tale che:

1. f è calcolabile da un trasduttore in tempo polinomiale (f ∈ FP );

2. per ogni stringa w ∈ {0, 1}∗, w ∈ A ⇐⇒ f(w) ∈ B, ossia f trasforma

istanze del linguaggio di partenza in istanze del linguaggio di arrivo e

non-istanze in non-istanze. In tal caso scriviamo A ≤p B.

Definizione 2.1.2. Dati due linguaggi A e B, si dice che A è TURING RI-

DUCIBILE su B se esiste una macchina a oracoloM? che accetta A con oracle

set B. In tal caso si scrive A ≤T B.

Lemma 4 (Transitività delle riduzioni polinomiali). Siano A,B,C linguaggi.

Se A ≤p B e B ≤p C, allora A ≤p C.

13
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Dimostrazione. Sia f1 riduzione polinomiale da A a B calcolata dal trasduttore

M1 con running time il polinomio p1. Analogamente, sia f2 riduzione polino-

miale da B a C calcolata dal trasduttore M2 con running time il polinomio p2.

Consideriamo la funzione f2 ◦ f1 e mostriamo che è riduzione polinomiale da A

a C. Per ogni w ∈ {0, 1}∗, w ∈ A ⇐⇒ f2 ◦ f1(w) ∈ C per proprietà di f1 e f2.

Inoltre, f2 ◦ f1 è calcolabile in tempo polinomiale poichè il numero di step che

performa (nella taglia del suo input w) è limitato a meno di una costante da un

polinomio di grado pari al prodotto del grado di p1 con quello di p2, ancora per

proprietà di f1 ed f2.

Definizione 2.1.3. Sia C una classe di complessità e L un linguaggio. Si

dice che L è C-HARD se per ogni A ∈ C vale A ≤p L. Diciamo che L è

C-COMPLETO se:




L è C−hard

L ∈ C.

Corollario 1. Sia C una classe di complessità. Siano A un linguaggio C-hard e

B un linguaggio tale che A ≤p B. Allora anche B è C-hard.

Dimostrazione. Semplice verifica: sia L ∈ C un linguaggio. Per ipotesi, L ≤p A

ed A ≤p B: per la transitività delle riduzioni polinomiali anche L ≤p B e quindi

B è C-hard.

Osservazione. I problemi citati per NP nel capitolo precedente (colorazione

di grafi, cicli hamiltoniani, problema del commesso viaggiatore, SAT) sono tutti

NP -completi. Storicamente la completezza è stata provata in modo diretto solo

per il problema SAT, e poi il corollario precedente e le riduzioni polinomiali

hanno esteso la hardness a tutti gli altri.

Più in generale esistono problemi completi anche per PSPACE e le altre classi

che abbiamo nominato (e nomineremo).

Definizione 2.1.4. Data una classe di complessità C e una collezione qualunque

di linguaggi D, indichiamo con CD la classe di linguaggi decidibili da macchine

a oracolo M? che hanno complessità C e oracle set in D.

2.2 La gerarchia polinomiale

La GERARCHIA POLINOMIALE è la struttura formata dalle classi

Σp
k,Π

p
k e ∆p

k per ogni k ≥ 0, dove:
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



Σp
0 = Πp

0 = ∆p
0 = P

Σp
k+1 = NPΣp

k per ogni k ≥ 0

Πp
k+1 = (co-NP )Σ

p
k per ogni k ≥ 0

∆p
k+1 = PΣp

k per ogni k ≥ 0.

Si definisce poi

PH =
⋃

k≥0

Σp
k

In letteratura si è soliti usare l’apice p per distinguere la gerarchia polinomiale

da altre gerarchie (quella esponenziale ad esempio).

Osservazione. Si presti attenzione alla differenza tra (co-NP )Σ
p
k e co-(NPΣp

k):

le parentesi svolgono un ruolo fondamentale per distinguere classi diverse. In

ogni caso, la seguente Proposizione tra le altre cose caratterizza Πp
k identifican-

dolo con co-Σp
k e snellendo cos̀ı la notazione.

Proposizione 1. Per ogni k ≥ 0 valgono le seguenti:

1. ∆p
1 = P ;

2. Πp
k = co-Σp

k;

3. Σp
k+1 = NPΠp

k ;

4. ∆p
k+1 = PΠp

k ;

5. Σp
k+1 = NP∆p

k+1 ;

6. Πp
k+1 = (co-NP )∆

p
k+1

Dimostrazione. 1) Per definizione, ∆p
1 = PP = {L | L può essere deciso da una

TM deterministica polinomiale con oracolo in P}. La transitività delle riduzioni

polinomiali mostra che avere un oracolo (cioè una subroutine istantanea) per

decidere stringhe che possono essere decise in tempo polinomiale deterministico

all’interno di una macchina polinomiale deterministica non dà un vero e proprio

vantaggio in termini di numero di passi (esso rimarrà in ogni caso polinomiale),

da cui PP = P e quindi possiamo concludere.

2) Il caso k = 0 è facile perchè co-P = P (banalmente il complemento di un

linguaggio si decide con la stessa TM che decide il linguaggio, scambiando gli

stati accettanti con quelli non accettanti) . D’altra parte, L ∈ Πp
k ⇐⇒

⇐⇒ L ∈ (co-NP )Σ
p
k−1

(*)⇐=⇒ L̄ ∈ NPΣp
k−1 ⇐⇒ L̄ ∈ Σp

k ⇐⇒ L ∈ co-Σp
k,
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dove in tutte le equivalenze abbiamo usato le definizioni, tranne che in (∗).
Quest’ultima è però giustificata dal fatto che L ∈ co-NP ⇐⇒ L̄ ∈ NP e

l’accesso all’oracolo non cambia il ragionamento.

3) Siano A ∈ Σp
k+1 e ML una TM polinomiale non deterministica che decide

A con L ∈ Σp
k. Consideriamo la macchina M̃L̄ (con oracle set L̄) in cui M̃ è

identica a M ma con gli stati qyes e qno invertiti rispetto ad essa. M̃ è ancora

polinomiale non deterministica , M̃L̄ decide A e ciò sancisce che A ∈ NPΠp
k . Il

viceversa è analogo.

4) Come al punto 3).

5) Σp
k+1 ⊆ NP∆p

k+1 poiché Σp
k ⊆ ∆p

k+1. Viceversa, siano L un linguaggio in

∆p
k+1 e M0 una qualunque TM deterministica polinomiale che accetta L con un

oracolo in Σp
k. Per qualunque macchina M1 (non deterministica e polinomiale)

che usa L come oracolo, si costruisca la macchina M2 la quale:

• è programmata come M1 ogni volta che M1 non si trova nello stato q?;

• ogni volta che M1 transisce nello stato q? ed ha sul nastro d’oracolo una

certa stringa v, M2 simula passo dopo passo la subroutine deterministi-

ca M0 su v e, in accordo con la risposta ottenuta da questa simulazio-

ne, si sposta nello stato qyes o qno, cancella v dal nastro e prosegue la

computazione come avrebbe fatto M1.

Dato che M1 era non deterministica e polinomiale, anche M2 lo è. Tuttavia

l’oracolo diM2 è in Σp
k, non più in ∆p

k+1. Questo prova che NP∆p
k+1 ⊆ NPΣp

k =

Σp
k+1, cioè l’inclusione che rimaneva.

6) Come al punto 5).

Proposizione 2. Per ogni k ≥ 0 valgono le seguenti:

1. ∆p
k è chiuso sotto complementazione;

2. P∆p
k = ∆p

k, cioè ∆p
k è chiuso sotto polinomiale Turing-riducibilità;

3. Σp
k ∪Πp

k ⊆ ∆p
k+1;

4. ∆p
k ⊆ Σp

k ∩Πp
k;

5. tutte le classi della gerarchia polinomiale sono chiuse sotto riduzione po-

linomiale, ossia se C ∈ {Σp
k,Π

p
k,∆

p
k | k ≥ 0} e B è un linguaggio di C, si

ha sempre: A ≤p B ⇒ A ∈ C;

6. se Σp
k ⊆ Πp

k oppure Πp
k ⊆ Σp

k allora Σp
k = Πp

k.
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Dimostrazione. 1) Vediamo il caso k ̸= 0: il caso k = 0 segue lo stesso ragiona-

mento ma senza oracoli coinvolti. Siano L ∈ ∆p
k e M macchina deterministica

polinomiale che accetta L con oracolo in Σp
k−1. Consideriamo la macchina M̃

ottenuta scambiando gli stati accettanti di M con quelli non accettanti e per il

resto uguale a M . Essa accetta L̄ ed è ancora polinomiale deterministica, da

cui L̄ ∈ ∆p
k.

2) Per induzione su k: il caso base k = 0 è già stato visto nella Proposizione 1.

Per quanto riguarda il passo induttivo, basta mostrare che P∆p
k ⊆ ∆p

k poiché

l’altra inclusione è ovvia. Sia A ∈ PΣp
k−1 oracolo per una TM M0 determi-

nistica polinomiale che accetta un certo linguaggio di P∆p
k . Sia M1 macchina

polinomiale deterministica che accetta A usando un oracolo in Σp
k−1. Si consi-

deri la macchina M2 che simula M0 ogni volta che M0 non si trova nello stato

q? e che simula M1 quando M0 fa domande all’oracolo: M2 sarà polinomiale

deterministica perché M0 ed M1 lo sono; inoltre M2 ha lo stesso oracolo di M1,

che è in Σp
k−1. Quindi ogni linguaggio di P∆p

k è anche in ∆p
k, il che conclude.

Quest’ultimo ragionamento del passo induttivo è simile a quello proposto nel

punto 5) della Proposizione 1, ma più semplice perché le macchine in questione

sono deterministiche.

3) Σp
k ⊆ ∆p

k+1 direttamente per definizione. D’altra parte, sia L ∈ Πp
k: allora

L̄ ∈ Σp
k ⊆ ∆p

k+1 e dato che vale la 1), anche L ∈ ∆p
k+1.

4) ∆p
k ⊆ Σp

k chiaro per definizione. Inoltre, sia L ∈ ∆p
k: allora anche L̄ ∈ ∆p

k da

cui L̄ ∈ Σp
k ⇐⇒ L ∈ co-Σp

k = Πp
k, il che prova che ∆p

k ⊆ Πp
k.

5) Dimostriamo solo il caso C = Σp
k. Sia f riduzione polinomiale da A a B cal-

colata dal trasduttore M0, con B ∈ Σp
k. Sia M1 macchina di Turing polinomiale

non deterministica con oracolo in Σp
k−1 che accetta B. La macchina che simula

prima M0 e poi è identica a M1 è polinomiale non deterministica, sfrutta un

oracolo in Σp
k−1 e accetta A. Pertanto A ∈ Σp

k.

6) Facile: vediamo solo nel caso in cui Σp
k ⊆ Πp

k. Per ogni linguaggio L, si ha

L ∈ Πp
k ⇐⇒ L̄ ∈ Σp

k da cui L̄ ∈ Πp
k e quindi anche L ∈ Σp

k. Cioè vale Π
p
k ⊆ Σp

k,

che è l’altro contenimento.

Osservazione. Dalla proposizione precedente segue facilmente che

PH =
⋃

k≥0

Σp
k =

⋃

k≥0

Πp
k =

⋃

k≥0

∆p
k.

Inoltre valgono i seguenti contenimenti:

P ⊆ Σp
k ∪Πp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ∩Πp
k+1 ⊆ · · · ⊆ PH
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Non è chiaro se questi contenimenti siano stretti o meno, cos̀ı come se la gerar-

chia polinomiale sia composta da infinite classi oppure no: rimangono problemi

aperti di cui tratteremo brevemente tra poco (si osservi anche la Figura 2.1).

Proposizione 3. PH ⊆ PSPACE.

Dimostrazione. Mostriamo per induzione su k che Σp
k ⊆ PSPACE: da ciò se-

gue facilmente la tesi. Il caso base è già stato visto nella parte finale del capitolo

precedente.

Supponiamo ora che Σp
k ⊆ PSPACE: allora chiaramente avremo anche Σp

k+1 =

NPΣp
k ⊆ NPPSPACE . Per concludere ci basta dimostrare che NPPSPACE ⊆

PSPACE. Tuttavia tale contenimento è facile conseguenza della dimostrazione

del Lemma 3. Infatti, dato un linguaggio L accettato da una macchina poli-

nomiale non deterministica N - che sfrutta un oracolo A ∈ PSPACE - esso

può essere deciso da una macchina M deterministica che simula N nel modo

descritto nel Lemma 3 ogni qualvolta N non si trova nello stato q? e che simula

il decisore per A per avere le risposte dell’oracolo ogni volta che N si trova nello

stato q?. Una tale M è deterministica poiché il decisore di A lo è, accetta L

e usa un numero di celle al più polinomiale nella taglia dell’input in quanto

A ∈ PSPACE (quindi il suo decisore di volta in volta usa una quantità di celle

ancora non più che polinomiale nella taglia dell’input).

2.3 Relazioni con altre classi

Vediamo infine come si può utilizzare la gerarchia polinomiale per dedurre

alcune proprietà sorprendenti, legate anche alla questione P vs NP .

Definizione 2.3.1. Sia i ≥ 1. Diciamo che la gerarchia polinomiale COLLAS-

SA AL LIVELLO i-ESIMO se:

Σp
i+1 = Σp

i .

Si nota che in tal caso:

Σp
i+2 = NPΣp

i+1 = NPΣp
i = Σp

i+1 = Σp
i

e che quindi anche Σp
i+k = Σp

i per ogni k ≥ 0.

Proposizione 4. Se la gerarchia collassa al livello i-esimo allora per ogni k ≥ 0:

1. Πp
i+k = Πp

i ;

2. ∆p
i+k = ∆p

i ;
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3. Σp
i+k = Πp

i+k = ∆p
i+k = Σp

i , cioè tutte le classi superiori collassano su Σp
i .

Dimostrazione. 1) Πp
i+k = co-Σp

i+k = co-Σp
i = Πp

i per ogni k ≥ 0.

2) Per induzione su k, con caso base ovvio. Sia k ∈ N∗ fissato e supponiamo che

∆p
i+j = ∆p

i per ogni j < k. Si ha che:

∆p
i+k = PΣp

i+k−1 = PΣp
i = ∆p

i+1 = ∆p
i

dove abbiamo usato il collassamento al livello i-esimo e l’ipotesi induttiva, ri-

spettivamente, nelle ultime uguaglianze.

3) Procediamo per gradi. Dalle proprietà dei contenimenti:

Σp
i ∪Πp

i ⊆ ∆p
i+1 ⊆ Σp

i+1 ∩Πp
i+1 = Σp

i ∩Πp
i

da cui ricaviamo che Πp
i = Σp

i . Pertanto anche Σp
i+k = Πp

i+k = Σp
i per ogni

k ≥ 0. D’altra parte vale ∆p
i+1 ⊆ Σp

i+1 ∩ Πp
i+1 = Σp

i e quindi anche ∆p
i+1 = Σp

i

e usando il punto 2) possiamo concludere.

Osservazione. Il prossimo risultato rappresenta una sorta di “implicazione

opposta” alla Proposizione 4 e la sua dimostrazione supera gli obiettivi della

trattazione, in quanto sfrutta la caratterizzazione della gerarchia polinomiale

attraverso TM alternanti.

Lemma 5. Se per qualche i ≥ 1 vale Σp
i = Πp

i allora la gerarchia collassa al

livello i-esimo.

Corollario 2. Se esiste un k tale che Σp
k ̸= P allora P ̸= NP .

Dimostrazione. Dimostriamo che se P = NP allora per ogni k vale Σp
k = P. Se

P = NP , allora Σp
1 = NPP = PP = P = Σp

0 e Πp
1 = co-Σp

1 = co-P = P da cui

vale il Lemma 5 e possiamo concludere.

Corollario 3. Si verificano due casi: o per tutti i k ≥ 0 vale Σp
k ̸= Σp

k+1 oppure

la gerarchia polinomiale collassa a un qualche livello.

Dimostrazione. Già visto di fatto: si dimostra che se non vale uno scenario vale

necessariamente l’altro, il che è facile conseguenza dei corollari visti finora.

Corollario 4. Se PH = PSPACE allora la gerarchia polinomiale collassa a

un qualche livello.

Dimostrazione. Sia L un problema PSPACE-completo. Dato che

PH = PSPACE, L ∈ PH e quindi esiste un certo k ≥ 0 tale che L ∈ Σp
k. Dato

che L è completo, qualunque linguaggio di PSPACE si può ridurre polinomial-

mente a L, in Σp
k: in particolare tutti i problemi di Πp

k si possono ridurre ad L;
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Figura 2.1: Rappresentazione visiva dei contenimenti della gerarchia polinomiale

dato che Σp
k è chiuso sotto riduzioni polinomiali, Πp

k ⊆ Σp
k da cui Πp

k = Σp
k e la

gerarchia collassa al livello k.

Corollario 5. Se esiste un linguaggio L che sia PH-completo, allora la gerarchia

collassa a qualche livello.

Dimostrazione. Dato che L ∈ PH, esiste k ≥ 0 tale che L ∈ Σp
k e si ragiona

come nel Corollario 4.

Osservazione. I corollari di questa sezione hanno conseguenze dirette sul pro-

blema P vs NP ed anzi sono di fatto implicazioni che lo risolvono direttamente.

La motivazione risiede nelle Proposizioni 2 e 3: la gerarchia polinomiale infatti

costituisce una serie di classi intermedie tra P , NP e PSPACE - come un vero

e proprio cuscinetto senza il comfort del quale gli strati P ed NP = Σp
1 vanno

a coincidere. Si guardi la Figura 2.1 per avere un’intuizione visiva.

2.4 Problemi completi per la gerarchia polino-

miale

Presentiamo ora una serie di problemi che vengono dal mondo della logica

booleana e che si può dimostrare essere completi per la gerarchia polinomiale.

Definizione 2.4.1. Una VARIABILE BOOLEANA è un simbolo formale

cui possiamo associare un solo valore di verità 0 oppure 1 (“falso” o “vero”,

rispettivamente).
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Definizione 2.4.2. Sia X un insieme numerabile di variabili booleane. La

famiglia delle FORMULE BOOLEANE su X si definisce induttivamente

come:

1. 0 e 1 sono formule booleane dette costanti booleane;

2. per ogni variabile booleana x ∈ X, x è una formula booleana;

3. se F1 e F2 sono formule booleane, allora (F1 ∧F2), (F1 ∨F2) e ¬(F1) sono

formule booleane;

Poi, la classe delle FORMULE BOOLEANE QUANTIFICATE su X è

definita da due ulteriori regole:

4. qualunque formula booleana è una formula booleana quantificata;

5. se x ∈ X e F è una formula booleana quantificata, allora ∃xF e ∀xF sono

formule booleane quantificate

I simboli ∧,∨,¬ sono detti connettivi booleani e svolgono il ruolo rispet-

tivamente di “e”, “o” e “non”, che si usano comunemente, ed in tal modo si

pronunciano. Invece i simboli ∀, ∃ sono detti rispettivamente quantificatore

universale e quantificatore esistenziale. Spesso ometteremo le parentesi tonde

quando scriveremo formule booleane.

Definizione 2.4.3. Data una formula booleana quantificata, una variabile in

essa presente ma che non è accompagnata da un quantificatore viene detta

LIBERA.

Definizione 2.4.4. Sia F una formula booleana quantificata su X, x ∈ X e

a ∈ X ∪ {0, 1}. Indicheremo con F |x=a la formula ottenuta sostituendo con a

ogni occorrenza libera di x in F .

Definizione 2.4.5. Un ASSEGNAMENTO booleano è una funzione

w : X −→ {0, 1}. Data una formula booleana quantificata F e un assegnamento

w, il VALORE DI VERITÀ di F , indicato w(F ), è cos̀ı definito:

1. w(F ) = 0 se F = 0;

2. w(F ) = 1 se F = 1;

3. w(F ) = w(x) se F = x, con x ∈ X;

4. w(F ) = max{w(F1), w(F2)} se F = (F1 ∨ F2);
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5. w(F ) = min{w(F1), w(F2)} se F = (F1 ∧ F2);

6. w(F ) = 1− w(F1) se F = ¬F1;

7. w(F ) = max{w(F1|x=0), w(F1|x=1)} se F = ∃xF1;

8. w(F ) = min{w(F1|x=0), w(F1|x=1)} se F = ∀xF1;

Definizione 2.4.6. Data una formula F ed un assegnamento w, diciamo che

w SODDISFA F se w(F ) = 1. Una formula si dice SODDISFACIBILE se

esiste un assegnamento che la soddisfa.

Definizione 2.4.7. Date due formule booleane quantificate F1 ed F2, dicia-

mo che esse sono EQUIVALENTI se per qualunque assegnamento w si ha

w(F1) = w(F2).

Definizione 2.4.8. Un LETTERALE è una formula booleana data da una va-

riabile booleana o dalla negazione di una variabile booleana. UnaCLAUSOLA

è una disgiunzione di letterali.

Quindi una clausola ha la forma C = l1 ∨ l2 ∨ · · · ∨ ln dove li è una variabile

booleana xk oppure la sua negazione ¬xk.

Definizione 2.4.9. Una formula booleana è in FORMA NORMALE CON-

GIUNTIVA (CNF) se è congiunzione di clausole.

Esempio. La formula

φ = (x1 ∨ ¬x3) ∧ x2

è una formula booleana CNF costituita da due clausole, la prima data da due

letterali, la seconda composta da solo uno di essi. Essa è soddisfacibile, ad

esempio tramite l’assegnamento che associa ad x1 e ad x2 il valore 1 (e agisce

arbitrariamente sulle altre variabili di X).

È facile vedere che qualunque formula booleana di variabili x1, . . . , xn può

essere codificata in linguaggio binario: basta prendere l’alfabeto

Σ = {x1, . . . , xn,¬,∨,∧, (, “vero”, “falso”, )}

e mapparlo nel linguaggio binario, lettera per lettera. Il linguaggio di tutte le for-

mule booleane soddisfacibili è indicato SAT ed è il primo esempio di linguaggio

NP -completo storicamente trovato. In simboli:

SAT={φ | φ è una formula booleana soddisfacibile}.

Indicheremo anche:
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CNF={φ | φ è una formula booleana CNF soddisfacibile}.
3CNF={φ | φ è una CNF e ogni sua clausola contiene al più 3 letterali}.

Problemi completi per le varie classi della gerarchia polinomiale saranno genera-

lizzazioni di SAT, in cui sono presenti più “set” di variabili booleane quantificate.

Si considerino k famiglie diverse di variabili booleane:

(x1,1, . . . , x1,n1), . . . , (xk,1, . . . , xk,nk
);

le denoteremo rispettivamente con i vettori x1, . . . ,xk.

Cominciamo con problemi completi per le classi Σp
k, con k ≥ 1.

Fissiamo k ≥ 1. Un problema Σp
k-completo è dato dallo stabilire quali formule

booleane nelle variabili x1, . . . ,xk a quantificatori alternati siano soddisfacibili:

QSATk = {φ = φ(x1, . . . ,xk) | φ è una formula booleana ed

∃x1∀x2 . . . Qkxkφ(x1, . . . ,xk) è soddisfacibile}

dove Qk =




∃ se k dispari

∀ se k pari

Ad esempio QSAT1 = ∃SAT = SAT oppure QSAT2 = ∃∀SAT e cos̀ı via...

Esempio. Eliminando i doppi indici, nel caso k = 2 possiamo considerare la

formula φ = φ(x1, x2, y1, y2, y3) data da:

φ = (x1 ∨ y1 ∨ ¬y3) ∧ (¬x2 ∨ y2) ∧ x1 ∧ ¬x2.

Essa è un’istanza positiva di QSAT2: infatti assegnando a x1 il valore 1 e ad

x2 il valore 0, comunque siano assegnate le variabili y1, y2, y3, si otterrà sempre

che φ è soddisfatta. Si noti anche che φ è una 3CNF.

Problemi Πp
k-completi sono molto simili: si tratta sempre di quantificare

formule booleane in maniera alternata ma a partire da ∀.

NQSATk = {φ = φ(x1, . . . ,xk) | φ è una formula booleana e

∀x1∃x2 . . . Qkxkφ(x1, . . . ,xk) è soddisfacibile}

dove Qk =




∃ se k pari

∀ se k dispari
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Ad esempio NQSAT1={formule booleane soddisfatte per qualunque asse-

gnamento, cioè quelle che sono dette tautologie}, NQSAT2 = ∀∃SAT e cos̀ı

via...

Problemi ∆p
k-completi sono invece di natura diversa, in quanto si vanno a

collocare “a metà” tra i problemi precedenti; ne incontreremo uno molto famoso

nella sezione 3.6.



Capitolo 3

I giochi cooperativi

3.1 Introduzione alla teoria dei giochi

La teoria dei giochi è una disciplina che studia modelli matematici di

interazione strategica tra agenti intelligenti. Nata negli anni Quaranta, si è svi-

luppata soprattutto in campo economico e politico, oltre che matematico. Nelle

prossime pagine cercheremo di dare più spessore alla definizione e introdurremo

concetti che ci saranno utili nel resto della trattazione.

La teoria dei giochi è molto vasta ma ha alcuni elementi comuni:

1. ogni gioco coinvolge un numero finito N di giocatori o individui, i quali

spesso non sono persone ma entità qualunque (aziende, corporazioni, ma

anche Stati e quindi talvolta ci riferiremo ad essi con il nome di “agenti”)

che assumeremo sempre intelligenti (o razionali), cioè i quali non solo

conoscono tutte le regole del gioco, ma soprattutto perseguono l’obiettivo

di vincere, o comunque ottenere il maggior vantaggio (o pay-off) possibile;

2. la mossa (o l’insieme di mosse) che un individuo intende eseguire viene

chiamata strategia : in dipendenza delle strategie adottate dai vari gio-

catori, ciascuno di essi riceve un pay-off, che noi assumeremo un numero

reale; esso sarà positivo se la strategia seguita dall’agente lo avrà in qualche

misura avvicinato alla vittoria e negativo in caso contrario;

3. matematicamente, il pay-off per ciascun giocatore sarà l’output di una

funzione, la funzione di pay-off ;

4. il risultato del gioco sarà completamente determinato dalla sequenza delle

strategie adottate dai vari individui.

25



26 3. I giochi cooperativi

Esistono moltissimi tipi di giochi, ciascuno modellizzato in maniera differen-

te. Qui ci concentreremo sui “giochi cooperativi ad utilità trasferibile”.

Definizione 3.1.1. Un GIOCO COOPERATIVO è un gioco in cui agli

individui è permesso (ed anzi spesso consigliato) associarsi in coalizioni per

migliorare il proprio pay-off, rispetto che agendo in autonomia. Si dice che un

gioco cooperativo è ad UTILITÀ TRASFERIBILE (TU) se i beni ottenuti

in queste coalizioni possono essere distribuiti liberamente tra i vari giocatori,

senza alcuna restrizione.

D’ora in avanti quando useremo il termine “gioco” intenderemo sempre “gio-

co cooperativo ad utilità trasferibile”.

Un gioco di questo tipo può essere modellizzato come una coppia G = (N, ν),

dove N è un insieme finito di giocatori e ν è una funzione (talvolta parzia-

le) ν : P(N) −→ R che associa a possibili coalizioni di individui S ⊆ N una

certa quantità ν(S) ∈ R, che i giocatori in S ottengono in forza della loro

collaborazione.

Dato un gioco G = (N, ν), la teoria dei giochi cooperativi TU si è svilup-

pata alla ricerca di vettori di pay-off (o allocazioni) (xi)i∈N che specificano la

distribuzione del valore totale a ciascun giocatore in modo che vengano rispec-

chiati in qualche misura concetti di equità o giustizia (e che cos̀ı possano essere

il più possibile accontentati i giocatori, in relazione al “potere contrattuale” di

ognuno).

Definizione 3.1.2. Dato un gioco G = (N, ν) ed un’allocazione (xi)i∈N , si dice

che essa è EFFICIENTE se

∑

i∈N

xi = ν(N).

Definizione 3.1.3. Dato un gioco G = (N, ν) ed un’allocazione (xi)i∈N , di-

ciamo che essa è INDIVIDUALMENTE RAZIONALE se xi ≥ ν({i}) per
ogni i ∈ N .

Denoteremo con X(G) l’insieme di tutte le possibili allocazioni efficienti e

individualmente razionali di un gioco G.
Chiaramente, X(G) è un insieme infinito e per questo motivo sono stati definiti

diversi concetti di soluzione per un gioco G, come le allocazioni che abbiano

le caratteristiche per soddisfare più giocatori possibili.

Incontreremo alcuni concetti di soluzione nelle prossime sezioni.

Osservazione. Si noti come nella rappresentazione proposta dei giochi coope-

rativi, il valore reale ν = ν(S) non dipenda dalla strategia seguita dai giocatori,
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ma solo dalle coalizioni tra di essi. Questo modello rende lo studio dei giochi

cooperativi assai diverso da quello dei giochi strategici (senza cooperazioni, in

cui il pay-off sarà funzione delle strategie seguite dai vari giocatori e che dunque

si è soliti studiare per mezzo di grafi etichettati con mosse e contromosse).

3.2 Rappresentazione delle informazioni e gio-

chi compatti

Dal punto di vista informatico ci si è presto resi conto di un problema non

banale, legato alla rappresentazione della funzione di pay-off ν per un gioco

G in un computer. Infatti, operativamente listare i valori {ν(S) | S ⊆ N} è

esponenziale in |N |, dato che |P(N)| = 2|N |. Ne segue che la rappresentazione

di un gioco G “esplode” all’aumentare del numero di giocatori e ciò impedisce

di trovare algoritmi veloci per la ricerca di allocazioni ottimali: effettivamente,

come abbiamo visto, in complessità strutturale si lega sempre l’esecuzione di un

algoritmo alla taglia del suo input e se quest’ultima è enorme, anche algoritmi

polinomiali risultano computazionalmente non sostenibili. In questo contesto si

è quindi cercato di trovare modi per rappresentare giochi e funzioni ν in maniera

più concisa: giochi cooperativi in cui metodi per ottenere ciò sono stati trovati

sono detti giochi compatti. Si noti come non tutti i giochi cooperativi sono

compatti, ma lo studio di rappresentazioni di giochi è in continuo sviluppo.

Nel proseguimento ci concentreremo su giochi compatti che ammettano un

tipo di rappresentazione con grafi pesati, cioè su giochi a grafo.

Definizione 3.2.1. Dato un gioco G = (N, ν) a grafo, le ricchezze guadagnate

da coalizioni in un insieme di N individui sono definite basandosi su un grafo

pesato non orientato G = ((N,E), w) i cui vertici sono i giocatori N del gioco,

esiste un arco in E che collega due giocatori a e b di N se e solo se è fornito il

valore ν({a, b}) e la lista w : E −→ R associa ad ogni arco e ∈ E il suo peso, dato

dal valore reale ν({vertici di e}). La ricchezza generata dalla generica coalizione

S ⊆ N è definita come la somma dei pesi degli archi i cui vertici sono in S.

In un gioco a grafo, il peso associato alla coalizione di un solo giocatore è 0 a

meno che non sia fornito un arco pesato che entra ed esce dal nodo chiamato

come quel giocatore.

Esempio. Si consideri il gioco a grafo rappresentato in Figura 3.1 con giocatori

{a, b, c, d}. È semplice vedere che la coalizione {a, b, c} guadagna una ricchezza

ν({a, b, c}) = 2+2+1 = 5, mentre la coalizione {a, b, d} guadagna una ricchezza

ν({a, b, d}) = 2 + 3 − 1 = 4. Si noti anche come il grafo codifichi 24 possibili
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Figura 3.1: un esempio di gioco a grafo

coalizioni con 5 soli pesi: più in generale questa rappresentazione permette di

usare O(n2) pesi per 2n coalizioni differenti.

Osservazione. Nonostante possa sembrare assai efficace, questa rappresenta-

zione di giochi a grafo nasconde non pochi tranelli. Uno di questi è la sua

limitata espressività, dato che non è difficile mostrare che essa non permette di

descrivere giochi in cui ad esempio gruppi di giocatori S hanno guadagno 1 se

e solo se |S| > |N |
2 .

3.3 Il Bargaining Set

Vediamo ora un famoso concetto di soluzione per giochi cooperativi TU dato

dall’insieme delle allocazioni in cui nessun giocatore possa “obiettare” alcunchè

riguardo alla distribuzione delle ricchezze.

Definizione 3.3.1. Sia G = (N, ν) un gioco e S ⊆ N una coalizione. In-

dichiamo con RS lo spazio vettoriale reale |S|-dimensionale, le cui coordinate

sono etichettate con gli elementi di S (dato un vettore x ∈ RS , xi denota la

componente associata al giocatore i ∈ S). Un vettore x ∈ RS viene detto

S-FATTIBILE se: ∑

i∈S

xi = ν(S).

Denoteremo spesso con x(S) il membro di sinistra dell’equazione precedente.

Definizione 3.3.2. Sia G = (N, ν) un gioco, x ∈ X(G) un’allocazione e sia

S ⊆ N una coalizione. Sia y ∈ RS un vettore di pay-off per giocatori di S che

sia S-fattibile. Diciamo che la coppia (y, S) costituisce un’OBIEZIONE del

giocatore i verso il giocatore j rispetto all’allocazione x se:
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



i ∈ S

j /∈ S

yk > xk per ogni k ∈ S

In pratica i ha un’obiezione verso j se riesce a proporre una coalizione S che

include i ma non j e una ripartizione di beni in cui ogni individuo di S guadagna

di più rispetto all’allocazione x.

Direttamente per definizione, se i ha un’obiezione (y, S) contro j, anche tutti

gli individui di S ce l’hanno.

Definizione 3.3.3. Data un’obiezione (y, S) del giocatore i verso il giocatore

j rispetto all’allocazione x, una CONTRO-OBIEZIONE di j verso i è una

coppia (z, T ) dove T è una coalizione, z un vettore di RT T -fattibile tali che:




j ∈ T

i /∈ T

zk ≥ xk per ogni k ∈ T \ S
zk ≥ yk per ogni k ∈ T ∩ S

Quindi una contro-obiezione è un argomento ragionevole che j trova per minare

l’autorevolezza della ripartizione proposta da i.

Definizione 3.3.4. Diremo che un’obiezione è GIUSTIFICABILE se non ne

esistono contro-obiezioni.

Definizione 3.3.5. IlBARGAINING SET di un gioco G = (N, ν) è l’insieme

di tutte le allocazioni per le quali non vi è alcuna obiezione giustificata tra

giocatori. Lo indichiamo B(G).

Esempio. Consideriamo il gioco cooperativo TU G = (N, ν) in cui N={a, b, c},
ν({a}) = ν({b}) = ν({c}) = 0, ν({a, b}) = 20, ν({a, c}) = 30, ν({b, c}) = 40 e

ν({a, b, c}) = 42.

Focalizziamoci sull’allocazione x = (xa, xb, xc) = (8, 10, 24). Un’obiezione di c

verso a rispetto ad x è ad esempio ((12, 28), {b, c}), cui a può contro-obiettare

con ((8, 12), {a, b}).
Un’altra obiezione di c verso a può essere ((14, 26), {b, c}). Tuttavia in questo

caso a non può controbattere: infatti, la coalizione {a, b} riceve 20 di pay-off e

ciò non basta per organizzare una contro-obiezione, in quanto a ha bisogno di

almeno 8 per sé e almeno 14 per b. Quindi x /∈ B(G).
Vediamo ora l’allocazione y = (ya, yb, yc) = (4, 14, 24). Può a avere obiezio-

ni giustificate verso c rispetto ad y? Prima di tutto notiamo che per avere



30 3. I giochi cooperativi

un’obiezione un’obiezione contro c, a deve formare la coalizione {a, b}. Sia

((αa, αb), {a, b}) obiezione di a contro c, con




αa + αb = 20

αa ≥ 4

αb ≥ 14

(3.1)

Allora c può sempre contro-obiettare con ((βb, βc), {b, c}) scegliendo ad esempio:


βb = αb

βc = 40− βb
; per costruzione vale βb + βc = 40, βb ≥ αb e se fosse βc < 24:

40− βb < 24 ⇐⇒ 40− αb < 24 ⇐⇒ αb > 16

e quest’ultima contrasta con la (3.1).

Si mostra in modo analogo che a non può avere obiezioni giustificate neanche

contro b rispetto ad y e nemmeno b contro c. Quindi y ∈ B(G).

3.4 Complessità del Bargaining Set

In questa sezione mostriamo che il problema di decidere se un determinato

vettore di pay-off sia nel Bargaining Set di un gioco a grafo sia Πp
2-hard. Nel-

lo specifico useremo il corollario 1 del Capitolo 2, mostrando che il problema

completo NQSAT2 si riduce ad esso. Formuliamo più precisamente il problema:

Definizione 3.4.1. Il linguaggio BARGAINING SET (BS) consiste delle

coppie (G, x) dove G = (N, ν) è un gioco a grafo ed x ∈ B(G).

Ricordando come funziona una riduzione tra problemi, quello che faremo

sarà fornire una trasformazione polinomiale che trasformi formule booleane in

coppie (gioco a grafo, reso attraverso il suo grafo associato-allocazione) tale che

la formula è ∀∃-soddisfacibile se e solo se l’allocazione si trova nel Bargaining

Set del gioco.

Usando le note proprietà logiche distributive, associative e di De Moivre

è possibile dimostrare che lo studio delle CNF sia senza perdita di generalità

equivalente a quello delle generiche formule booleane:

Lemma 6. Qualunque formula booleana può essere resa come CNF ed anche

come 3CNF in modo equivalente, sfruttando una trasformazione polinomiale.

Inoltre è facile notare direttamente per definizione che se una formula φ è

equivalente a una formula ψ allora anche ∀φ e ∃φ sono rispettivamente equi-
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valenti a ∀ψ e ∃ψ. In particolare non è restrittivo supporre che le istanze di

NQSAT2 siano formule

φ = φ(α,β)

tali che ∀α∃βφ(α,β) è soddisfacibile, dove (si noti il grassetto)α = (α1, . . . , αn),

β = (β1, . . . , βr) e φ è congiunzione di m clausole contenenti ciascuna tre o me-

no letterali. Questa notazione ci accompagnerà per il resto del paragrafo.

Nel seguito supponiamo di aver fissato una codifica dei simboli delle variabili

booleane α e β e dei connettivi ¬,∨,∧, cos̀ı come le parentesi “(” e “)”, in

modo tale che ogni stringa binaria sia interpretabile come una sequenza di tali

simboli e che sequenze che indicano “formule mal formate” siano individuabili

facilmente.

Per procedere più speditamente utilizziamo uno stratagemma, vale a dire sele-

zioniamo un sotto-linguaggio di NQSAT2, dato da formule modificate

φ = φ(α,β), in cui:

1. il numero di variabili quantificate esistenzialmente è almeno superiore a

quello di variabili quantificate universalmente (ossia r ≥ n);

2. le prime 2n clausole abbiano la seguente forma, a meno di riordinarle:

(α1 ∨ ¬β1) ∧ (¬α1 ∨ β1) ∧ · · · ∧ (αn ∨ ¬βn) ∧ (¬αn ∨ βn); (3.2)

3. le ultime m− 2n clausole, comprendano solo le variabili βk (non le αk) e

ciascuna contenga al più 3 letterali;

in particolare, per ogni k ∈ {1, . . . , n} la variabile αk è contenuta in sole

due clausole, che indicheremo rispettivamente ci(k) e cī(k), ed assumeremo

che compaia negata in cī(k).

Indicheremo con MNQSAT2 (M di “Modified”) il linguaggio

MNQSAT2 := {φ = φ(α,β) | φ è una formula modificata}

Osservazione. Il linguaggioMNQSAT2 è contenuto strettamente inNQSAT2,

poiché la struttura delle sue formule è alquanto specifica (ad esempio la formula

φ(α1, α2, β1) = (α1∨α2∨¬β1) appartiene alla seconda classe ma non la prima).

Si noti anche che la richiesta 2) delle formule modificate equivale alla richiesta

che valga αk ⇐⇒ βk per ogni k, in modo che la 3) sia una richiesta facilmente

assolvibile, sostituendo i letterali αk con i corrispondenti βk.

È possibile dimostrare che il problema MNQSAT2 ha la stessa complessità

di NQSAT2. In altre parole, le assunzioni che si fanno sulle formule modificate

non rendono “più semplice” il problema, ma danno semplicemente una forma

comune alle espressioni booleane, consentendoci di studiarle meglio:
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Lemma 7. Il linguaggio MNQSAT2 è Πp
2-completo.

Vediamo nello specifico la riduzione da MNQSAT2 a BARGAINING SET.

La descrizione del grafo che segue è perlopiù discorsiva (e a mio parere meno

oscura di una descrizione matematica): si tenga presente la Figura 3.2 per

avere un esempio tangibile della costruzione.

Per ogni formula φ = φ(α,β), costruiamo il grafo pesato BS(φ) in questo modo:

BS(φ) = ((NBS , EBS), w)

dove:

• l’insieme dei giocatori (vertici) NBS è costituito da un vertice per ogni

clausola cj della formula, un vertice per ogni letterale li,j della formula

(al variare di i ∈ {1, 2, . . . , r} - numero della variabile - e j ∈ {1, . . . ,m} -

numero della clausola), e due ulteriori vertici (a e b);

• l’insieme degli archi EBS include tre tipi di archi:

1. archi positivi: un arco di peso 1 che collega il vertice-clausola cj

ad ogni vertice-letterale presente in cj (al più tre archi di questo

tipo per ogni j ∈ {1, . . . ,m}); un arco di peso 1 che collega b ad

ogni nodo-letterale di tipo αi,j o ¬αi,j (cioè le variabili quantificate

universalmente);

2. archi negativi: un arco di peso−m−1 che collega ciascuna coppia di

nodi-letterali distinti della stessa clausola cj ; un arco di peso −m−1

che collega b ad ogni nodo-letterale di tipo βi,j oppure ¬βi,j (cioè le

variabili quantificate esistenzialmente); un arco di peso −m − 1 che

collega b ad ogni nodo-clausola cj ; un arco di peso −m−1 che collega

nodi-letterali di clausole diverse in cui uno è il negato dell’altro;

3. arco di normalizzazione: γ è l’arco che collega a e b di peso

w(γ) = n+m− 1−
∑

e∈EBS |e̸=γ

w(e)

• l’allocazione x che viene considerata è poi quella che assegna m ad a, n−1

a b e 0 ad ogni altro giocatore (si tratta di un’allocazione efficiente poiché

per costruzione la somma dei pesi sugli archi del grafo è proprio n+m−1).

Si noti come la taglia della codifica di BS(φ) e del peso dei suoi archi è

polinomiale nel numero di variabili e di clausole di φ (cioè nella taglia di φ),
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Figura 3.2: la costruzione di BS(φ) nel caso specifico φ = (α1 ∨ ¬β1) ∧ (¬α1 ∨
∨β1) ∧ (α2 ∨ ¬β2) ∧ (¬α2 ∨ β2) ∧ (β1 ∨ ¬β2 ∨ β3)

il che significa che è possibile costruire BS(φ) da φ con un trasduttore polino-

miale. Possiamo inoltre supporre che le formule booleane “mal formate” siano

riconosciute e mandate in una non-istanza di BS.

In altre parole, la funzione tra stringhe φ 7→ BS(φ) è calcolabile in tempo

polinomiale e sarà la nostra riduzione.

Il compito ora è quello di mostrare che se la formula φ è ∀∃-soddisfacibile,
la coppia (BS(φ),x) è istanza di BARGAINING SET e viceversa.

Per farlo occorrono una serie di risultati preliminari tecnici.

Lemma 8. Sia BS(φ) = ((NBS , EBS), w) il gioco a grafo associato alla formula

φ, di arco di normalizzazione γ = {a, b}. Poniamo D = maxγ⊈S⊆NBS
ν(S) la

massima ricchezza ottenibile da coalizioni S di giocatori che non comprendono

entrambi i giocatori a e b. Allora:

1. m ≥ 2n;

2. D ≤ m;

3. D + w(e) < 0 per ogni arco negativo e ∈ EBS ;
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4. w(γ) > 2m.

Dimostrazione. 1) Dalle caratteristiche delle formule modificate.

2) Direttamente per costruzione, ricordando come si calcola il valore di una

coalizione in un gioco a grafo. Si noti infatti come vi siano molti più archi

negativi rispetto a quelli positivi1 e che il peso dato ai primi è −m − 1, molto

più influente del peso 1.

3) Sia e ∈ EBS un arco negativo. Direttamente dalla 2) si ha:

D + w(e) ≤ m−m− 1 = −1 < 0.

4) Dato che EBS contiene più archi negativi che positivi, sicuramente la somma

dei pesi degli archi di EBS (escludendo γ) sarà minore o uguale del peso di un

arco negativo: ∑

e∈EBS |e̸=γ

w(e) ≤ −m− 1

da cui anche

w(γ) = n− 1 +m−
∑

e∈EBS |e̸=γ

w(e) ≥ n− 1 +m+m+ 1 = n+ 2m > 2m.

Proposizione 5. Sia BS(φ) = ((NBS , EBS), w) il gioco a grafo associato alla

formula φ e x l’allocazione già descritta. Valgono le seguenti:

1. Nessun giocatore ha alcuna obiezione giustificata rispetto ad x contro un

giocatore-clausola o letterale.

2. Nessun giocatore ha alcuna obiezione giustificata rispetto ad x contro b.

3. Nessun giocatore tranne b ha alcuna obiezione giustificata rispetto ad x

contro a.

Dimostrazione. 1) Vediamo il caso di obiezione contro un giocatore-clausola cj :

il caso di obiezione contro un giocatore-letterale è identico. Sia data un’obiezione

contro cj : dato che cj in x riceve 0 ed è tale che ν({cj}) = 0, egli potrà sempre

contro-obiettare con ({cj}, 0).
2) Sia p ∈ NBS un giocatore che vuole obiettare contro b tramite la coalizione

S.

Osserviamo che non si può avere ν(S) < 0. Infatti, l’obiezione di p dovrebbe

comprendere un vettore y ∈ RS tale che yk > xk per ogni k ∈ S: in particolare

1Un rapido conteggio mostra che il numero di archi positivi è al più 3m mentre il numero

degli archi negativi è almeno 4m.
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anche ν(S) = y(S) > x(S), ma x(S) ≥ 0 per costruzione di x e questo sarebbe

assurdo.

Per il Lemma 8, S non può dunque contenere alcun arco negativo. Questo

comporta che per ogni k ∈ {1, . . . , n} si abbia |S ∩ {αk,i(k),¬αk,̄i(k)}| ≤ 1 (se

infatti fosse {αk,i(k),¬αk,̄i(k)} ⊆ S, in S dovrebbe apparire anche l’arco negativo

che le collega).

Consideriamo allora la coalizione T ⊆ {b} ∪ ⋃n
k=1{αk,i(k),¬αk,̄i(k)} tale che

|T | = n + 1, T ∩ S = ∅ e |T ∩ {αk,i(k),¬αk,̄i(k)}| = 1 per ogni k: un tale T

esiste per le considerazioni viste finora. Esso soddisfa anche che ν(T ) = n e

x(T ) = xb = n− 1.

Si consideri poi il vettore z ∈ RT tale che zb = xb = n − 1 e zq = 1
n > xq = 0

per ogni q ∈ T, q ̸= b. Per costruzione, z è T -fattibile e (z, T ) è una contro-

obiezione all’obiezione di p verso b.

3) Supponiamo che un giocatore p ̸= b abbia un’obiezione (y, S) contro a rispetto

ad x. Dato che a /∈ S, l’arco γ non sarà in S da cui per il Lemma 8 vale

ν(S) ≤ m. (3.3)

Consideriamo la coalizione T = {a, b} ed il vettore z che assegna m ad a e

w(γ)−m a b. Un tale z è chiaramente T -fattibile e si nota che (z, T ) è contro-

obiezione a quella sollevata da p. Infatti, za = xa e ci sono due casi:

• se b ∈ S allora zb = w(γ)−m > m ≥ yb dove abbiamo usato il Lemma 8

nella disuguaglianza stretta e la (3.3) nell’altra;

• se b /∈ S allora zb = w(γ)−m > m ≥ 2n > n−1 = xb dove abbiamo usato

due volte il Lemma 8.

In ogni caso possiamo concludere.

Alla luce delle proprietà appena viste, possiamo limitare la nostra attenzione

alle obiezioni di b contro a.

Sia dunque (y, S) un’obiezione di b contro a rispetto ad x. Per definizione

devono valere: 


yb > xb = n− 1

yq > 0 = xq ∀q ∈ S, q ̸= b
(3.4)

Inoltre, y è S-fattibile e quindi anche y(S) = ν(S) > n − 1. Sappiamo dal

Lemma 8 che affinché valga ν(S) > n− 1 ≥ 0, S non deve contenere alcun arco

negativo. Ricordiamo anche che per definizione b ∈ S ed a /∈ S: data la costru-

zione di BS(φ), l’unica possibilità che rimane è che S contenga esattamente un
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giocatore per ogni variabile quantificata universalmente.

Quindi S dev’essere tale che:





|S ∩ {αk,i(k),¬αk,̄i(k)}| = 1 per ogni k ∈ {1, . . . , n}
|S| = n+ 1

ν(S) = n > n− 1

dove le ultime due uguaglianze seguono dalla prima.

Questo ci permette di migliorare la (3.4) ottenendo:




y(S) = n

yb > xb = n− 1

yq > 0 = xq ∀q ∈ S, q ̸= b

(3.5)

Osservazione. Si noti che le caratteristiche di S identificano uno e un solo

assegnamento per le variabili α, dato da:

σS(αk)=




0 se αk,i(k) ∈ S

1 se αk,i(k) /∈ S

Si noti come l’assegnamento σS sia “invertito” rispetto a come intuitivamen-

te sarebbe più naturale definirlo: questo elemento sarà fondamentale in seguito.

Viceversa, dato un assegnamento σ per le variabili αk, esiste un unico S costi-

tuito da:

S = {b} ∪
⋃

k∈I1

{αk,i(k)} ∪
⋃

k∈I2

{¬αk,̄i(k)}

dove I1 = {i ∈ {1, . . . , n} | σ(αi) = 0} ed I2 = {i ∈ {1, . . . , n} | σ(αi) = 1}. In

altre parole, le obiezioni (y, S) di b contro a rispetto ad x devono rispettare la

(3.5) e sono in corrispondenza biunivoca con i possibili assegnamenti di verità

per le variabili quantificate universalmente.

Per concludere la dimostrazione della Πp
2-hardness non rimane che dimostrare

che φ è ∀∃-soddisfacibile ⇐⇒ x ∈ B(BS(φ)).

Teorema 1. φ è ∀∃-soddisfacibile ⇐⇒ x ∈ B(BS(φ)).

Dimostrazione. ⇒) Sia (y, S) obiezione di b contro a rispetto ad x e mostriamo

che non è giustificata. Sia σS assegnamento per le variabili α associato ad S.

Poniamo σ assegnamento che estende σS e soddisfa φ (esso esiste poiché per

definizione di ∀∃-soddisfacibilità, qualunque sia assegnamento per le αk - com-

preso σS - esiste un assegnamento per le βk che renda φ vera).

Basandoci su σ, consideriamo la coalizione T tale che valgano le seguenti:



T = {a} ∪ {c1, . . . , cm} ∪ {li,j | li,j è letterale della clausola cj reso vero da σ}
T ∩ S = ∅
|T | = 2m+ 1
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Un tale T esiste poiché la terza condizione insieme alla prima sono facilmente

assolvibili dal fatto che σ soddisfa φ (in particolare ogni clausola ha almeno un

letterale vero secondo σ), mentre la seconda è rispettata grazie alla costruzione

contro-intuitiva di σS . Si nota che ν(T ) = m poiché una tale coalizione contiene

solo m archi di peso 1 dati dagli archi clausola-letterale.

Si consideri poi il vettore z ∈ RT tale che za = xa = m = ν(T ) e zq = xq = 0

per ogni q ∈ T, q ̸= a. Per costruzione, (z, T ) è contro-obiezione ad (y, S), da

cui x ∈ B(BS(φ)).
⇐) Dimostriamo che se φ è non ∀∃-soddisfacibile allora x /∈ B(BS(φ)), cioè esi-
ste un’obiezione giustificata di b contro a rispetto ad x. Sia σ un assegnamento

per le variabili α tale che non sia possibile avere φ(α,β) soddisfatta in alcun

modo. Sia (y, S) un’obiezione di b contro a tale che σS = σ e notiamo che essa è

giustificata. Infatti, supponiamo per assurdo che ne esista una contro-obiezione

(z, T ): dato che a ∈ T \ S, deve valere za ≥ xa = m. Per il Lemma 8 si nota

che ciò implica za = m. Infatti, proprio m è la massima ricchezza ottenibile

da coalizioni che non comprendono sia a sia b e deve valere anche zq ≥ 0 per

ogni q ∈ T \ S, q ̸= a e zq > yq ≥ 0 per ogni q ∈ T ∩ S per definizione di

contro-obiezione: non resta che la possibilità che sia T ∩ S = ∅, zq = 0 per ogni

q ∈ T, q ̸= a e za = m.

In particolare quindi deve valere ν(T ) =
∑

i∈T zi = m, il che caratterizza T in

maniera molto precisa. Infatti, per il Lemma 8, T non può contenere alcun ar-

co negativo, non contiene b e deve averem archi positivi: l’unica possibilità è che

T = {a} ∪ {c1, . . . , cm} ∪
⋃

(i,j)∈I

{li,j}

dove i letterali {li,j} che T contiene sono esattamente uno per ogni clausola

e non si può verificare che letterali dati dalla negazione l’uno dell’altro siano

entrambi in T (altrimenti in T dovrebbe ricadere anche l’arco negativo che li

unisce). Ciò comporta che T codifichi un assegnamento σT per le variabili α e

β dato da:

σT (αk) =




1 se αk,i(k) ∈ T

0 se ¬αk,̄i(k) ∈ T
; σT (βk) =




1 se ∃j ∈ {1, . . . ,m}|βk,j ∈ T

0 se ∃j ∈ {1, . . . ,m}|¬βk,j ∈ T

(mentre σT per le variabili βk eventualmente non specificate può essere definito

arbitrariamente).

Si nota che σT soddisfa φ(α,β) poiché vi è un letterale vero secondo esso in ogni

clausola cj di φ. Inoltre, se indichiamo con σα
T la restrizione di σT alle variabili

α, dato che si ha T∩S = ∅, vale anche σα
T = σS per la costruzione controintuitiva
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di σS . Tuttavia questo è assurdo in quanto possiamo ricavare σ = σα
T e proprio

σ era l’assegnamento che non poteva in alcun modo ∀∃-soddisfare φ. Quindi

la contro-obiezione (z, T ) non può esistere e (y, S) è obiezione giustificata di b

contro a rispetto a x.

Corollario 6. Il problema BARGAINING SET è Πp
2-hard per giochi a grafo.

Osservazione. Si può poi dimostrare che il problema BARGAINING SET per

giochi a grafo è in Πp
2, da cui segue immediatamente la sua Πp

2-completezza.

3.5 Il Kernel

In questa sezione introduciamo un altro famoso concetto di soluzione per

giochi cooperativi TU: il kernel.

Definizione 3.5.1. Dato un gioco G = (N, ν) e dati due giocatori distinti i e j

in N , denotiamo con Ii,j l’insieme di tutte le possibili coalizioni che contengono

l’individuo i ma non j.

Definizione 3.5.2. Dato un gioco G = (N, ν), una coalizione S ed un’alloca-

zione x ∈ X(G), chiamiamo ECCESSO di S rispetto ad x il valore reale

e(S, x) := ν(S)− x(S)

Chiamiamo poi SURPLUS del giocatore i sul giocatore j rispetto all’alloca-

zione x la quantità

si,j(x) := maxS∈Ii,j e(S, x) = maxS∈Ii,j (ν(S)− x(S))

Intuitivamente esso rappresenta il più alto pay-off che il giocatore i può guad-

gnare (o il minimo che egli può perdere, nel caso si parli di valori negativi)

senza la cooperazione di j. In particolare, i ha più “potere contrattuale” di j

se si,j(x) > sj,i(x).

Chiaramente, j può non sentirsi minacciato da questa situazione se ad esem-

pio si ha che ν({j}) = xj in quanto in tal caso è in grado di ottenere lo stesso

pay-off lavorando “senza coalizioni”, in autonomia.

Definizione 3.5.3. Diciamo che il giocatore i HA PIÙ PESO del giocatore

j se:




si,j(x) > sj,i(x)

xj > ν({j})

Il kernel di un gioco è proprio l’insieme di tutte le allocazioni in cui nessun

giocatore ha più peso degli altri:
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Definizione 3.5.4. Il KERNEL di un gioco G = (N, ν) cooperativo TU è

dato da:

K(G) := {x ∈ X(G)|si,j(x) > sj,i(x) ⇒ xj = ν({j}), ∀i, j ∈ N, i ̸= j}

Esempio. Riprendiamo l’esempio del gioco cooperativo TU G = (N, ν) in cui

N={a, b, c}, ν({a}) = ν({b}) = ν({c}) = 0, ν({a, b}) = 20, ν({a, c}) = 30,

ν({b, c}) = 40 e ν({a, b, c}) = 42.

L’allocazione xa = 4, xb = 14 e xc = 24, che era nel Bargaining Set del gioco,

si trova anche nel suo kernel. Infatti essa è efficiente, individualmente razionale

ed ogni giocatore riceve un pay-off strettamente maggiore di quello che otter-

rebbe agendo da solo. Pertanto, affinchè x ∈ K(G) non deve verificarsi mai che

si,j(x) > sj,i(x), il che si dà in quanto si,j(x) = 2 ∀i, j ∈ N, i ̸= j.

3.6 Complessità del Kernel

Vediamo ora com’è possibile che il problema di stabilire se una certa alloca-

zione si trovi o meno nel kernel di un gioco a grafo sia ∆p
2-completo.

In questa sezione, a meno che non diversamente specificato, ci concentreremo

su formule booleane soddisfacibili: i linguaggi ammessi saranno contenuti nella

grande famiglia delle formule booleane soddisfacibili che è SAT.

Definizione 3.6.1. Indichiamo con IN-KERNEL il seguente problema:

IN-KERNEL = {(G, x)| G è un gioco a grafo ed x ∈ K(G)}

Per mostrare la ∆p
2-hardness sfrutteremo una riduzione polinomiale da un

celebre problema ∆p
2-completo, che ora introduciamo.

Osservazione. Data una formula 3CNF φ = φ(α) con α = (α1, . . . , αn) vetto-

re di variabili booleane ordinate secondo gli indici crescenti, e dato un assegna-

mento σ per le variabili α, è naturale associare a σ un vettore n-dimensionale la

cui coordinata i-esima è 0 (rispettivamente 1) se e solo se σ(αi) = 0 (rispettiva-

mente 1). Interpretando tali vettori come stringhe binarie, è possibile costruire

un ordinamento tra tutti i possibili assegnamenti per le variabili, al cui vertice vi

è l’assegnamento massimo (1,1,. . . ,1) e alla cui base quello minimo, (0,0,. . . ,0),

che dà falso a tutte le variabili.

Definizione 3.6.2. Data una formula 3CNF φ = φ(α) con α = (α1, ..., αn)

vettore di variabili booleane ordinate secondo gli indici crescenti, il problema
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FIRSTMAX-SAT è dato dallo stabilire se l’assegnamento massimo che soddi-

sfa φ assegna vero ad α1, la prima variabile dell’ordine - la meno significativa2:

FIRSTMAX-SAT={φ = φ(α)| φ è una 3CNF e l’assegnamento massimo che

soddisfa φ assegna vero ad α1}.

Non è restrittivo supporre che qualunque formula di FIRSTMAX-SAT con-

tenga almeno una clausola con almeno due letterali (in caso contrario si pos-

sono inserire alcune variabili ausiliarie sfruttando le equivalenze della logica

booleana).

Lemma 9. FIRSTMAX-SAT è un problema ∆p
2-completo.

Nelle prossime righe vediamo come costruire una riduzione polinomiale da

FIRSTMAX-SAT a IN-KERNEL: l’obiettivo ancora una volta è quello di tra-

sformare una formula 3CNF φ = φ(α) con α = (α1, . . . , αn) con φ = c1∧· · ·∧cm
in un grafo pesato K(φ) = ((NK , EK), w) tale che:

• l’insieme dei vertici NK è dato da un giocatore-variabile αi per ogni i ∈
{1, . . . , n}, un giocatore-clausola cj per ogni j ∈ {1, . . . ,m} ed un giocatore

letterale li,j (con li,j = αi,j o li,j = ¬αi,j) per ogni letterale li in cj ; inoltre

vi sono due giocatori ulteriori, a e b;

• l’insieme degli archi EK consiste di archi di tre tipi:

1. archi positivi: un arco di peso 2n+3 che collega ogni nodo-clausola

cj ad ogni nodo-letterale li,j che compare in cj ; un arco che collega

b al nodo-variabile αi di peso 2i per ogni i ∈ {1, . . . , n}; un arco che

collega a al nodo-variabile αi di peso 2i per ogni i ∈ {2, . . . , n}; un
arco che collega a alla variabile α1 di peso 21 + 20, ossia 3;

2. archi negativi: un arco di peso −2n+m+7 che collega ogni coppia di

nodi-letterali distinti della stessa clausola; un arco di peso −2n+m+7

che collega nodi-letterali che in clausole diverse sono uno il negato

dell’altro; un arco di peso −2n+m+7 che collega il nodo-variabile αi

al nodo-letterale ¬αi,j per ogni variabile αi che compare negata nella

clausola cj ;

2Nella letteratura spesso lo stesso linguaggio è definito senza la richiesta di avere formule

soddisfacibili: la nostra variazione, che ne identifica un sotto-linguaggio, rimane della stessa

complessità ∆p
2. Dato che ci siamo ristretti al panorama delle formule soddisfacibili, il com-

plementare del nostro linguaggio FIRSTMAX-SAT sarà costituito da formule soddisfacibili

per cui l’assegnamento massimo soddisfacente non assegna vero ad α1.
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Figura 3.3: la costruzione di K(φ) nel caso specifico di φ = (α1 ∨ α2 ∨ ¬α3) ∧
∧(α1 ∨ ¬α2) ∧ (¬α1 ∨ α3).

3. arco di normalizzazione: γ è l’arco che collega a e b di peso

w(γ) = 1−
∑

e∈EK |e̸=γ

w(e)

• l’allocazione x che si considera è poi quella che assegna 1 ad a e 0 ad ogni

altro giocatore (si noti che risulta efficiente poiché la somma dei pesi di

tutti gli archi è proprio 1 per costruzione).

Si osserva che la taglia di K(φ) è polinomiale nel numero di clausole e va-

riabili che costituiscono φ (cioè nella taglia di φ). Inoltre, anche la taglia dei

pesi sugli archi di K(φ) è polinomiale in n ed m. In altre parole, la funzione

che associa φ 7→ K(φ) è calcolabile da un trasduttore in tempo polinomiale.

Un buon modo per vedere la costruzione esplicita è la Figura 3.3.

Quello che dobbiamo mostrare è che l’assegnamento massimo che soddisfi φ

assegna vero ad α1 se e solo se x ∈ K(G). Ancora una volta per farlo sfruttiamo

la costruzione e una serie di risultati preliminari.

Lemma 10. Sia K(φ) = ((NK , EK), w) il gioco a grafo associato alla 3CNF φ,

di arco di normalizzazione γ ed x l’allocazione già presentata. Poniamo
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D = maxγ⊈S⊆NK
ν(S) la massima ricchezza ottenibile da coalizioni S di gioca-

tori che non comprendono entrambi i giocatori a e b. Allora:

1. w(γ) ≥ D + 1;

2. D + w(e) < 0, per ogni arco negativo e ∈ EK ;

3. per ogni giocatore i /∈ {a, b}, si ha maxS∈Ii,ae(S, x) ≤ maxS∈Ia,ie(S, x).

Dimostrazione. 1) Poniamo P la somma dei pesi di tutti gli archi positivi in

EK . Un semplice conteggio permette di avere la seguente:

P ≤ 3 ·m ·2n+3+2 ·
n∑

i=1

2i+20 ≤ 2n+m+5+

n∑

i=0

2i+1 ≤ 2n+m+5+2n+2 ≤ 2n+m+6

dove nella seconda maggiorazione abbiamo usato che 3m ≤ 2m+2, la quale è

verificabile graficamente per ogni m ∈ R. In particolare si ha 2P ≤ 2n+m+7.

Dato che φ contiene almeno un arco negativo (φ ha almeno una clausola con due

letterali), vale che w(γ) = 1−∑
e∈EK |e̸=γ w(e) ≥ 1−P+2n+m+7 ≥ 1−P+2P =

1 + P ≥ D + 1, il che prova la 1).

2) Segue dal punto precedente, in quanto per ogni arco negativo e ∈ EK si ha:

w(e) = −2n+m+7 ≤ −2P < −D, dove la disuguaglianza stretta è frutto del

fatto che sia P sia D sono quantità strettamente positive tali che P ≥ D.

3) Siano i /∈ {a, b} e S ∈ Ii,a. Si consideri la coalizione T = {a, b} ∈ Ia,i. Si ha:
e(T, x) = ν(T ) − x(T ) = ν({a, b}) − 1 = w(γ) − 1 ≥ D per la prima parte ed

anche e(S, x) = ν(S)− x(S) = ν(S) ≤ D per definizione, da cui vale a maggior

ragione la stima richiesta.

Dato il grafo K(φ) = ((NK , EK), w) associato alla formula φ, si nota che

a è l’unico giocatore che riceve nell’allocazione x una ricchezza superiore al

valore di pay-off della propria coalizione-singoletto. La definizione di Kernel

garantisce dunque che x ∈ K(G) se e solo se per ogni giocatore i ∈ N, i ̸= a,

valga si,a(x) ≤ sa,i(x); ossia sostituendo le definizioni:

x ∈ K(G) ⇐⇒ maxS∈Ii,a
e(S, x) ≤ maxS∈Ia,i

e(S, x).

Il Lemma 10 permette di restringere ulteriormente il campo:

x ∈ K(G) ⇐⇒ maxS∈Ib,a
e(S, x) ≤ maxS∈Ia,b

e(S, x) (3.6)

Quello che facciamo ora è caratterizzare entrambi i membri della disuguaglianza

nella (3.6) attraverso assegnamenti che soddisfano φ.

A tal fine, per ogni assegnamento σ per le variabili αk, denotiamo con σ |= φ il

fatto che σ soddisfi φ.
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Proposizione 6. Nelle stesse notazioni si hanno le seguenti:

1. maxS∈Ib,a
e(S, x) = m · 2n+3 +maxσ|=φ

∑
σ(αi)=1 2i;

2. maxS∈Ia,b
e(S, x) = m·2n+3+maxσ|=φ

(
|{α1|σ(α1) = 1}|+∑

σ(αi)=1 2i
)
−

−1

Dimostrazione. 1) Prima di tutto notiamo che per definizione il valore

maxS∈Ib,a
e(S, x) è esattamente maxS∈Ib,a

ν(S). Indichiamo con S∗ una coa-

lizione di Ib,a che ottiene massimo pay-off. Dato che ν({b}) = 0 e {b} ∈ Ib,a,
sicuramente deve valere anche ν(S∗) ≥ 0: per il Lemma 10, S∗ non deve conte-

nere alcun arco negativo. Possiamo dunque porre C = {giocatori-clausola cj |
esattamente un letterale li,j si trova in S∗}, sfruttando il fatto che non ci posso-

no essere più letterali della stessa clausola in S∗ (vi sarebbe infatti anche l’arco

che li collega in tal caso). Dato che non ci sono archi negativi che hanno estremi

in nodi clausola, possiamo supporre che tutti i nodi-clausola cj si trovino in S∗

(tra di essi, quelli di C avranno un nodo-letterale in S∗, quelli fuori da C invece

no). Abbiamo che:

ν(S∗) = |C| · 2n+3 +
∑

αi∈S∗
2i per costruzione di K(φ). Poniamo σ̂ il seguente

assegnamento di verità:

σ̂(αi) =




1 se ∃j ∈ {1, . . . ,m}| αi,j ∈ S∗

0 se ∃j ∈ {1, . . . ,m}| ¬αi,j ∈ S∗
Dato che S∗ non ha archi negativi, σ̂ è sicuramente coerente e soddisfa tutte le

clausole di φ i cui giocatori si trovano in C. Si tenga presente che σ̂ può trattarsi

di un assegnamento parziale. Si osserva che se un vertice-letterale ¬αi,j ∈ S∗,

allora necessariamente αi /∈ S∗ per non avere archi negativi in S∗; viceversa se

αi,j ∈ S∗ (e quindi ¬αi,j /∈ S∗) dovrà essere αi ∈ S∗ dato che S∗ realizza la

massima ricchezza. Possiamo dunque considerare un nuovo assegnamento, σS∗ :

σS∗(αi) =




1 se αi ∈ S∗

0 se αi /∈ S∗
ed esso sicuramente coincide con σ̂ nelle variabili in cui quest’ultimo è definito.

Si ricorda ora che φ è soddisfacibile e in tal caso è facile vedere che |C| = m, da

cui ν(S∗) = m · 2n+3 +
∑

αi∈S∗
2i. Allora, σS∗ è assegnamento che soddisfa φ e

quindi ν(S∗) = m · 2n+3 +
∑

αi|σS∗ (αi)=1 2
i ≤ m · 2n+3 +maxσ|=φ

∑
σ(αi)=1 2i.

Concludiamo la dimostrazione mostrando che tale disuguaglianza non può esse-

re stretta. Supponiamo per assurdo che esista un assegnamento σ̄ che soddisfi

φ e tale che ν(S∗) < m · 2n+3 +
∑

αi|σ̄S∗ (αi)=1 2
i. Basandoci su σ̄ possiamo

costruire la coalizione S̄ tale che:

• {b} ∪ {c1, . . . , cm} ⊆ S̄;
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• αi ∈ S̄ per ogni variabile αi tale che σ̄(αi) = 1;

• esattamente un letterale li,j che è reso vero da σ̄ si trova in S̄ per ogni

clausola cj ;

• nessun altro giocatore si trova in S̄.

Tale coalizione avrebbe valore superiore a quello di S∗ per costruzione, il che

sarebbe assurdo.

2) Si procede come al punto precedente: le poche differenze sono nel fatto che

per ogni S ∈ Ia,b si ha x(S) = 1 (non più 0), ed i pesi associati agli archi, i

quali dipendono dal valore di verità che si dà ad α1, il che giustifica la presenza

dell’addendo |{α1|σ(α1) = 1}| in funzione dell’assegnamento σ.

Possiamo riscrivere alla luce di ciò la disuguaglianza nella (3.6) come:

1 + maxσ|=φ

∑

αi|σ(αi)=1

2i ≤ maxσ|=φ


 ∑

αi|σ(αi)=1

2i + (|{α1|σ(α1) = 1}




e quindi concludere che:

x ∈ K(G) ⇐⇒ α1 è vera nell’assegnamento massimo che soddisfa φ, da cui:

Corollario 7. Il problema IN-KERNEL è ∆p
2-hard.

Passiamo ora a dimostrare che IN-KERNEL è un problema in ∆p
2, cioè che

ne esiste un solutore deterministico polinomiale che sfrutta un oracolo in NP .

Proposizione 7. In un gioco a grafo G = (N, ν), il calcolo del valore associato

a una coalizione S ⊆ N è polinomiale nella taglia del gioco stesso.

Dimostrazione. Ricordiamo che il modo più comune per codificare in binario

un grafo pesato è quello di listare ordinatamente tutti i vertici (eventualmente

rinominandoli) e successivamente elencare coppie di vertici (per indicare l’arco

che collega tali vertici) ed infine listare una serie di stringhe binarie (che costi-

tuiscono, ordinatamente, il peso degli archi del grafo).

Dopo questa premessa, il risultato è semplice. Sia S ⊆ N una coalizione. Consi-

deriamo il seguente algoritmo, che agisce direttamente sulla stringa che codifica

il grafo:

• si eliminano tutti i vertici;
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• si eliminano tutti gli archi (compresi del loro peso) che hanno almeno uno

dei vertici fuori da S;

• si sommano i pesi rimanenti.

Dato che tutte le operazioni descritte sono polinomiali nella taglia dell’input,

l’algoritmo proposto sarà polinomiale e permette di calcolare il peso della coa-

lizione S. In altre parole, il calcolo ν(S) è in FP .

Teorema 2. Il problema IN-KERNEL è ∆p
2-completo.

Dimostrazione. Rimane solo da mostrare l’appartenza del problema alla classe

∆p
2. Per prima cosa osserviamo che dato un gioco a grafo G = (N, ν), le opera-

zioni che permettono di controllare se un vettore x ∈ RN sia un’allocazione per

G sono polinomiali deterministiche per la Proposizione 7 in quanto esse sono

date da:

1. calcolare il valore ν({i}) per ogni i ∈ N ;

2. controllare che sia ν({i}) ≤ xi per ogni i ∈ N ;

3. calcolare che valga
∑

i∈N xi = ν(N).

Dopo aver stabilito che x ∈ X(G), occorre controllare che per ogni coppia di

giocatori distinti i e j tali che ν({j}) < xj , valga si,j(x) ≤ sj,i(x). Per il calcolo

di si,j(x) possiamo procedere come segue:

• si pone A la somma di tutti i pesi positivi sugli archi del grafo (0 in caso

non ce ne siano) e B la somma di tutti i pesi negativi sugli archi del grafo

(0 in caso non ce ne siano);

• si effettua una ricerca binaria di estremi A e B, la quale viene coa-

diuvata da un oracolo che, per ogni valore di dimezzamento h, decide

istantaneamente se esiste o meno un S ∈ Ii,j tale che e(S, x) > h.

Per comodità poniamo n la taglia dell’input del problema. Operativamente, la

ricerca binaria potrebbe essere impostata cos̀ı:

while A−B > ε :

mid = A+B
2

if ∃S ∈ Ii,j | e(S, x) > mid : (oracolo lo decide in uno step)

B = mid

else :

A = mid

dove il parametro ε ∈ R+ rappresenta la precisione.
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Al termine del ciclo, i termini A e B, che sono rappresentati da taglia polinomiale

in n, sono distanti meno di ε: scegliendo accuratamente tale parametro (ad

esempio ε = 2−p(n) per un certo polinomio p(n)), il numero di chiamate sarà

O(log(2p(n)) = O(p(n)), cioè polinomiale nella taglia dell’input del problema3.

Il costo di ciascuna chiamata è polinomiale poiché essa consiste di una somma,

una divisione e una verifica istantanea, quindi in tempo polinomiale un ciclo

simile individua il massimo eccesso e(S, x) con S ∈ Ii,j . In modo analogo è

calcolabile in FP con aiuto dell’oracolo anche sj,i(x) ed il loro confronto sarà

polinomiale nella loro taglia combinata (ancora polinomiale in n).

Pertanto la prova è conclusa a meno di dimostrare che un oracolo cos̀ı descritto

esista in NP . Tuttavia ciò è facile perché basta considerare la macchina non

deterministica che indovina sul nastro possibili coalizioni S ed in secondo tempo

controlla che esse siano in Ii,j e che e(S, x) > h. Una tale routine esterna è

chiaramente non deterministica e polinomiale (fissato un S, il calcolo di e(S, x)

è polinomiale per la Proposizione 7, cos̀ı come è polinomiale il controllo che

i ∈ S e che j /∈ S). Quindi complessivamente il calcolo di si,j(x) è in FPNP e

decidere se un vettore x ∈ X(G) o meno è possibile farlo in tempo polinomiale

con un oracolo in NP , il che conclude.

3Si ricorda che una ricerca binaria “classica” su intervallo reale [a, b] non individua un valore

esatto, ma un intervallo di incertezza con precisione ε. Dopo k passi l’intervallo di ricerca

si dimezza k volte, quindi il numero di iterazioni necessario per raggiungere precisione ε è

almeno log2(
|b−a|

ε
). Nel nostro contesto tuttavia i numeri in questione hanno rappresentazione

polinomiale in n e questo, insieme ad un’oculata scelta della precisione ε, ci permette di avere

la garanzia che la ricerca abbia un numero di chiamate polinomiale in n.



Conclusioni

Il presente elaborato è nato con l’idea di essere una panoramica quanto più

breve ed autocontenuta possibile sulla gerarchia polinomiale, le sue proprietà ed i

rapporti con le altre classi di complessità. A questo proposito si presti attenzione

alle Proposizioni 1, 2 e 3 e ai Corollari seguenti, cos̀ı come alla presentazione dei

problemi completi per gerarchia polinomiale più comuni delle pagine successive.

Durante la stesura, è stato piuttosto naturale mostrare un’applicazione di

alcuni dei concetti sviluppati nella prima parte ad un campo apparentemente

molto lontano, la teoria dei giochi. L’idea di aggiungere una parte corposa di

esempi di problemi di natura diversa dalla logica booleana, tratti dalla teoria

dei giochi cooperativi, ha permesso di definire ed esemplificare i concetti del

Bargaining Set e del Kernel di un gioco a grafo.

Allo stesso tempo ha dato l’occasione di trattare brevemente dei giochi compatti

e di introdurre il problema della loro rappresentazione concisa, un campo molto

prolifico. I risultati di Πp
2-hardness (Corollario 6) e di ∆p

2-completezza (Teorema

2) dei problemi del Bargaining Set e del Kernel rispettivamente sono piuttosto

recenti (2011) ed aprono il campo a numerose generalizzazioni, ad esempio in

termini di rappresentazioni di giochi dello stesso tipo secondo altri metodi (di-

versi dai grafi pesati); inoltre tali risultati possono essere studiati aggiungendo

(o indebolendo) ipotesi sulla modellizzazione dei giochi stessi (giochi ad utilità

non trasferibile, oppure giochi ad albero, per dirne alcuni).

Per ultimo non vorrei mancare di osservare che le dimostrazioni sui grafi sono

a mio parere molto fantasiose ed acute e danno appena un assaggio di quan-

to possa essere complesso e variegato il mondo delle riduzioni dell’Informatica

Teorica.

Sperando di fare un favore al lettore interessato, pongo di seguito una bi-

bliografia con alcuni validissimi testi ed articoli di ricerca per completare ed

approfondire gli argomenti presentati.
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51



Infine vorrei ringraziare mio fratello, con cui quotidianamente mi misuro, e

mia madre per avermi insegnato ad essere quello che sono nel viaggio più lungo
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