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Introduzione

La geometria tropicale è una branca relativamente giovane della matemati-

ca. Le sue radici concettuali risalgono agli anni Settanta e Ottanta, quando

si iniziò a parlare di semianello min-plus (o max-plus); all’epoca tali idee

non erano ancora identificate come ”tropicali”, ma ne costituivano il terreno

teorico. La formulazione moderna della teoria nacque soltanto nei primi an-

ni Duemila, grazie ai lavori di Grigory Mikhalkin, Bernd Sturmfels e David

Speyer. Il nome ”tropicale” venne introdotto poco dopo, in onore del mate-

matico e informatico brasiliano Imre Simon, tra i primi a dedicarsi a queste

strutture.

L’obiettivo principale della geometria tropicale consiste nel tradurre problemi

di geometria algebrica classica in domande riguardanti oggetti combinatori,

in particolare complessi poliedrali in Rn, cioè unione di poliedri tale che ogni

loro intersezione sia una faccia comune, eventualmente vuota, dei poliedri

coinvolti. In questo modo, questioni tradizionalmente descritte da varietà

algebriche possono essere riformulate in termini più discreti e spesso più ac-

cessibili dal punto di vista combinatorio.

Si possono distinguere tre principali approcci alla geometria tropicale:

• Approccio sintetico: in questa prospettiva si studiano gli oggetti tro-

picali come entità autonome, lavorando direttamente sul semianello

tropicale Rtrop e costruendo varietà tropicali a partire da polinomi

tropicali.

• Approccio valutativo: secondo questa visione la geometria tropicale na-

sce come lo studio delle immagini, tramite una valutazione, di varietà
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INTRODUZIONE iii

algebriche definite su opportuni campi. Si tratta dell’approccio più vi-

cino alla geometria algebrica classica, poichè permette di associare a

una varietà algebrica un complesso poliedrale che ne riflette, almeno in

parte, la struttura geometrica.

• Approccio delle degenerazioni: questo punto di vista si sviluppa dallo

studio delle degenerazioni di varietà algebriche e mette in luce la rela-

zione tra la geometria tropicale e i comportamenti limite delle famiglie

algebriche.

In questa tesi si adotterà principalmente l’approccio sintetico alla geometria

tropicale. Nel primo capitolo verrà introdotto il semianello tropicale Rtrop

con le sue proprietà di base, per poi passare allo studio dei polinomi tropicali

e dei loro grafici. Successivamente, ci si concentrerà sulle curve tropicali,

ossia varietà tropicali piane: in particolare verrà presentato un algoritmo per

costruirne la struttura combinatoria e si mostrerà in che senso tale struttura

è un complesso poliedrale pesato e bilanciato. Infine, nel terzo e ultimo capi-

tolo, si prenderà in esame la controparte tropicale di uno dei risultati classici

della geometria algebrica, ovvero il teorema di Bézout, del quale verranno

fornite due diverse dimostrazioni.

Solo nel secondo capitolo verrà introdotta la nozione di valutazione e sarà

enunciata una versione semplificata del teorema di Kapranov, collegata al-

l’approccio valutativo alla geometria tropicale.



Capitolo 1

L’algebra tropicale

1.1 Il semianello tropicale

Definizione 1.1.1 (Operazioni tropicali). Consideriamo l’insieme dei numeri

reali R unito a +∞ su cui si definiscono due nuove operazioni binarie:

• ⊕ : R ∪ {+∞}× R ∪ {+∞} → R ∪ {+∞}, x⊕ y := min{x, y}.

• ⊙ : R ∪ {+∞}× R ∪ {+∞} → R ∪ {+∞}, x⊙ y := x+ y.

chiamate rispettivamente somma e prodotto tropicale. Si indica col simbolo

Rtrop := (R ∪ {+∞},⊕,⊙)

l’insieme R ∪ {+∞} dotato di queste due nuove operazioni binarie.

Definizione 1.1.2 (Semianello). Un semianello (A,+, ·) è una struttura

algebrica dotata di un insieme A e di due operazioni binarie + e ·, dette
rispettivamente somma e prodotto, che soddisfano le seguenti proprietà:

i) proprietà commutativa della somma:

∀a, b ∈ A, a+ b = b+ a.

ii) proprietà associativa della somma e del prodotto:

∀a, b, c ∈ A, a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c.

.
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2 1. L’algebra tropicale

iii) esistenza e unicità dell’elemento neutro per la somma:

∃!a′ ∈ A : ∀a ∈ A, a+ a′ = a′ + a = a.

iv) proprietà distributiva del prodotto rispetto alla somma:

∀a, b, c ∈ A, (a+ b) · c = (a · c) + (b · c), a · (b+ c) = (a · b) + (a · c).

v) Se a′ è l’elemento neutro per la somma introdotto nel punto iii), allora

vale

∀a ∈ A, a · a′ = a′ · a = a′.

Lemma 1.1.3. Rtrop è un semianello commutativo con unità.

Dimostrazione. Verichiamo che le operazioni di somma tropicale ⊕ e di pro-

dotto tropicale ⊙ soddisfano le proprietà viste in Definizione 1.1.2.

i) ∀a, b ∈ Rtrop,

a⊕ b = min{a, b}

= min{b, a}

= b⊕ a.

ii) ∀a, b, c ∈ Rtrop,

a⊕ (b⊕ c) = min{a,min{b, c}}

= min{a, b, c}

= min{min{a, b}, c}

= (a⊕ b)⊕ c,

a⊙ (b⊙ c) = a+ (b+ c)

= (a+ b) + c

= (a⊙ b)⊙ c.

iii) • Esistenza: Consideriamo l’elemento +∞. Allora vale

∀a ∈ Rtrop, a⊕ (+∞) = min{a,+∞} = a.

+∞ è un elemento neutro per la somma tropicale.
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• Unicità: Supponiamo per assurdo che esista ā in R un altro

elemento neutro per la somma tropicale. Allora vale

ā = ā⊕ (+∞) = min{ā,+∞} = +∞ ⇒ ā = +∞.

Questo è un assurdo; quindi, l’unico elemento neutro per la somma

tropicale è +∞.

iv) ∀a, b, c ∈ Rtrop,

a⊙ (b⊕ c) = a+min{b, c}

= min{a+ b, a+ c}

= (a⊙ b)⊕ (a⊙ c).

(b⊕ c)⊙ a = min{b, c}+ a

= min{b+ a, c+ a}

= (b⊙ a)⊕ (c⊙ a).

v) ∀a ∈ Rtrop,

a⊙ (+∞) = a+ (+∞)

= (+∞) + a

= (+∞)⊙ a

= +∞.

In più, è verificata la proprietà commutativa del prodotto tropicale:

∀a, b ∈ Rtrop, a⊙ b = a+ b

= b+ a

= b⊙ a.

Infine, 0 è l’elemento neutro per il prodotto tropicale:

∀a ∈ Rtrop, a⊙ 0 = a+ 0 = 0 + a = 0⊙ a = a.
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Per il Lemma 1.1.3 Rtrop è un semianello, ma non è un anello: infatti nessun

elemento di Rtrop eccetto +∞ ha un inverso additivo, in quanto l’equazione

a⊕ b = +∞ ha come unica soluzione a = b = +∞.

Osservazione 1.1.4. Rtrop può essere definito in maniera analoga come

(R ∪ {−∞},⊕,⊙)

dove

x⊕ y = max{x, y}, x⊙ y = x+ y.

In tal caso, l’elemento neutro per la somma è −∞. E’ del tutto analogo

studiare geometria tropicale scegliendo come definizione di somma tropicale

il massimo o il minimo tra due numeri: infatti, i due semianelli ottenuti sono

isomorfi tramite l’applicazione

x 7−→ −x

Esattamente come in aritmetica classica, in assenza di parentesi il prodotto

tropicale ha la precedenza sulla somma tropicale:

∀a, b, c ∈ Rtrop, a⊕ b⊙ c = min{a, b+ c}.

Inoltre, per facilitare la notazione si omette il simbolo ⊙ nel prodotto tropi-

cale tra due numeri e si usa an per indicare il prodotto tropicale di a con se

stesso n volte:

∀a, b ∈ Rtrop, ab = a⊙ b, an = a⊙ a⊙ · · · ⊙ a︸ ︷︷ ︸
n volte

= n · a.

1.2 I polinomi tropicali

Definizione 1.2.1 (Monomio tropicale). Un monomio tropicale m è una

funzione

m : Rn
trop −→ Rtrop

tale che

m(x1, . . . , xn) = c xk1
1 . . . xkn

n .
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dove

c ∈ Rtrop, k1, . . . , kn ∈ N.

In aritmetica classica, m è una funzione lineare a variabili x1, . . . , xn:

m(x1, . . . , xn) = c+ k1x1 + . . .+ knxn.

Definizione 1.2.2 (Polinomio tropicale). Un polinomio tropicale p è dato

dalla somma tropicale di un numero finito di monomi tropicali. In particolare,

un polinomio tropicale p è una funzione

p : Rn
trop −→ Rtrop

tale che

p(x1, . . . , xn) =
N⊕
i=1

mi(x1, . . . , xn) =
N⊕
i=1

ci x
ki,1
1 . . . xki,n

n .

dove

c1, . . . , cN ∈ Rtrop, k1,1, . . . , kN,n ∈ N.

Usando l’aritmetica classica, vale

p(x1, . . . , xn) = min
1≤i≤N

{ci + ki,1x1 + . . .+ ki,nxn}.

A parole, un polinomio tropicale è il minimo di un numero finito di funzioni

lineari a variabili x1, . . . , xn.

Definizione 1.2.3 (Grado di un polinomio tropicale). Con le stesse notazioni

introdotte in Definizione 1.2.2, si dice che il polinomio p ha grado k dove

k := max
1≤i≤N

{ki,1 + . . .+ ki,n}.

Si indica con deg(p) il grado di un polinomio.

Esempio 1.2.4.

(i) p1(x) = 3x3 ⊕ (−2)x2 ⊕ 5x⊕ 1 = min{3x+ 3, 2x− 2, x+ 5, 1}.

Il grado di p1 è deg(p1) = 3.

(ii) p2(x, y) = 2xy ⊕ 9x⊕ 1y ⊕ 4 = min{x+ y + 2, x+ 9, y + 1, 4}.

Il grado di p2 è deg(p2) = 2.
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Osservazione 1.2.5. Nella Definizione 1.2.2 è superfluo chiedere che i coeffi-

cienti c1, . . . , cN ∈ R ∪ {+∞}, ma basterebbe chiedere che c1, . . . , cN ∈ R:
infatti, se esistesse i in {1, . . . , N} tale che ci = +∞, allora il monomio

mi(x1, . . . , xn) varrebbe costantemente +∞ per ogni scelta di (x1, . . . , xn) in

Rn
trop. Poichè +∞ è l’elemento neutro per la somma tropicale, il monomio

mi può essere omesso nella scrittura del polinomio tropicale.

Osservazione 1.2.6. Se esiste i in {1, . . . , N} tale che ci = 0, allora tale

coefficiente viene omesso nella scrittura dell’i-esimo monomio in quanto 0 è

l’elemento neutro per il prodotto tropicale, cioè

mi(x1, . . . , xn) = x
ki,1
1 . . . xki,n

n = 0x
ki,1
1 . . . xki,n

n .

Esempio 1.2.7.

p(x) = x2 ⊕ 4 −→

{
il coefficiente di x2 è 0,

il coefficiente di x è +∞.

Definizione 1.2.8 (Grafico di un polinomio tropicale). Con le stesse nota-

zioni introdotte in Definizione 1.2.2, si chiama grafico del polinomio tropicale

p l’insieme dei punti{
(x1, . . . , xn, p(x1, . . . , xn))

∣∣ (x1, . . . , xn) ∈ Rn
trop

}
⊆ Rn+1

trop.

Osservazione 1.2.9. Nella Definizione 1.2.2 un polinomio tropicale viene de-

finito su Rn
trop, ma ha senso restringere il suo dominio a Rn: infatti, preso un

polinomio tropicale

p(x1, . . . , xn) = min
1≤i≤N

{ci + ki,1x1 + . . .+ ki,nxn},

supponendo che l’i-esima variabile xi sia = +∞ e le altre n − 1 variabili

siano in R, allora tutti le funzioni lineari che presentano nella loro defini-

zione la variabile xi valgono constantemente +∞ e non contribuiscono al

minimo. Quindi si possono eliminare; in questo modo restano solo quelle

con variabili x1, . . . , xi−1, xi+1, . . . , xn. Si può concludere dunque che studia-

re un polinomio in n variabili appartenenti a Rtrop in cui solo una di esse

vale constantemente +∞ equivale a studiare un polinomio in n− 1 variabili

appartenenti a R.



1.2 I polinomi tropicali 7

Esempio 1.2.10. Consideriamo il polinomio tropicale

p(x, y, z) = z3 ⊕ 2x2y ⊕ 7xz ⊕ (−3)y = min{3z, 2x+ y + 2, x+ z + 7, y − 3}.

Fissata ora la variabile z = +∞, vale

p(x, y,+∞) = min{+∞, 2x+ y + 2, x+ (+∞) + 7, y − 3}

= min{2x+ y + 2, y − 3} = 2x2y ⊕ (−3)y.

Per Osservazione 1.2.5 e Osservazione 1.2.9, in questa tesi si considerano

polinomi tropicali a coefficienti c1, . . . , cn in R e con dominio Rn; in questo

modo, anche il codominio di un polinomio tropicale sarà R. Inoltre, con

questa scelta, il grafico di un polinomio tropicale non sarà più un sottoinsieme

di Rn+1
trop, bens̀ı un sottoinsieme di Rn+1; questo permette di rappresentarlo

nello spazio euclideo come il grafico di un polinomio classico.

Esempio 1.2.11. Consideriamo il polinomio tropicale

p(x) = 5x2 ⊕ 1x⊕ 4 = min{2x+ 5, x+ 1, 4} =


2x+ 5, se x ≤ −4,

x+ 1, se − 4 ≤ x ≤ 3,

4, se x ≥ 3.

−8 −6 −4 −2 2 3 4 6 8

−8

−6

−4

−2

2

4

6

8

x

y

Figura 1. Grafico del polinomio p(x) = 5x2 ⊕ 1x⊕ 4.
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In Esempio 1.2.11, il numero di parti lineari con pendenza diversa nel grafico

coincide esattamente con il numero di monomi del polinomio, cioè 3. Tutta-

via, questa uguaglianza non è sempre vera: in generale, supponendo che il

polinomio sia la somma tropicale di N monomi, il suo grafico ha al massimo

N parti lineari con pendenza diversa. Infatti, possono esserci casi in cui non

tutte le funzioni lineari presenti all’interno del minimo sono raggiunte per

qualche (x1, . . . , xn).

Esempio 1.2.12. Consideriamo il polinomio tropicale

p(x) = 8x3⊕2x2⊕10x⊕6 = min{3x+8, 2x+2, x+10, 6} =


3x+ 8, se x ≤ −6,

2x+ 2, se − 6 ≤ x ≤ 2,

6, se x ≥ 2.

In questo caso, il termine x + 10 non viene mai raggiunto dal minimo del

polinomio. Quindi il suo grafico non avrà 4 parti lineari, bens̀ı 3.

−12 −10 −8 −6 −4 −2 2 4 6 8 10 12

−12

−10

−8

−6

−4

−2

2

4

6

8

10

12

x

y

Figura 2. Grafico del polinomio p(x) = 8x3 ⊕ 2x2 ⊕ 10x⊕ 6.



1.2 I polinomi tropicali 9

Esempio 1.2.13. Consideriamo il polinomio tropicale

p(x, y) = x⊕ y ⊕ 0 = min{x, y, 0} =


x, se x ≤ y e x ≤ 0,

y, se y ≤ x e y ≤ 0,

0, se 0 ≤ x e 0 ≤ y.

Figura 3. Grafico del polinomio p(x, y) = x⊕ y ⊕ 0

Si nota dai grafici disegnati che i tre polinomi riportati negli esempi prece-

denti sono funzioni continue, concave e affini a tratti. Introduciamo anzitutto

il concetto di funzione affine a tratti, per poi successivamente dimostrare tali

proprietà per un polinomio tropicale generico.

Definizione 1.2.14 (Funzione affine a tratti). Una funzione f : Rn → R si

dice affine a tratti se esiste una decomposizione poliedrale finita {P1, . . . , Pm}
di Rn, dove ciascun Pi è un poliedro (cioè intersezione finita di semispazi

chiusi determinati da iperpiani), tale che per ogni i, j l’intersezione Pi ∩ Pj

sia una faccia (eventualmente vuota) comune di Pi e di Pj e tale che, per ogni
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i ∈ {1, . . . ,m}, la restrizione di f a Pi sia una trasformazione affine, cioè

∀(x1, . . . , xn) ∈ Pi, f(x1, . . . , xn) = ai + vi,1x1 + . . .+ vi,nxn,

per opportuni ai ∈ R e vi,1, . . . , vi,n ∈ R.

Osservazione 1.2.15. Nel caso di funzioni f : R → R, la condizione di essere

affine a tratti coincide con la nozione di funzione lineare a tratti.

Proposizione 1.2.16. Sia

p(x1, . . . , xn) =
N⊕
i=1

ci x
ki,1
1 . . . xki,n

n

un polinomio tropicale. Allora valgono le seguenti:

i) p è continua.

ii) p è affine a tratti.

iii) p è concava.

Dimostrazione. i) Dimostriamo per induzione che date N funzioni conti-

nue f1, . . . , fN : Rn → R, la funzione minimomN(x) = min{f1(x), . . . , fN(x)}
è continua.

(a) Passo base: Date due funzioni continue f, g : Rn → R, allora

la funzione minimo m2(x) = min{f(x), g(x)} è continua: infatti

si può scrivere come somma e composizione di funzioni continue,

cioè

m2(x) = min{f(x), g(x)} =
f(x) + g(x)− |f(x)− g(x)|

2
.

(b) Passo induttivo: Date N + 1 funzioni continue f1, . . . , fN+1 :

Rn → R e supponendo per ipotesi induttiva che la funzione mN

sia continua, si ha

mN+1(x) = min{f1(x), . . . , fN+1(x)}

= min{min{f1(x), . . . , fN(x)}, fN+1(x)}

= min{mN(x), fN+1(x)}.
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mN+1(x) è il minimo di due funzioni continue, quindi per il passo

base è continua.

Siccome le funzioni (x1, . . . , xn) 7−→ ci+ki,1x1+ . . .+ki,nxn sono con-

tinue ∀i ∈ {1, . . . , N}, allora anche p(x1, . . . , xn) = min
1≤i≤N

{ci + ki,1x1 +

. . .+ ki,nxn} è continua.

ii) L’affinità a tratti del polinomio tropicale p è diretta conseguenza della

sua scrittura come minimo di funzioni lineari.

iii) Poniamo mi(x) = mi(x1, . . . , xn) = ci + ki,1x1 + . . . + ki,nxn. Poichè

∀i ∈ {1, . . . , N} la funzione mi è lineare, si ha

mi

(
tx+ (1− t)y

)
= tmi(x) + (1− t)mi(y), ∀x, y ∈ Rn, t ∈ [0, 1].

Di conseguenza, si ha che

p(tx+(1−t)y) = min
1≤i≤N

{mi

(
tx+(1−t)y

)
} = min

1≤i≤N
{tmi(x)+(1−t)mi(y)}.

Ora, prese due qualsiasi famiglie finite di numeri reali {Ai}, {Bi} e per

ogni t ∈ [0, 1], vale

min
i
{tAi + (1− t)Bi} ≥ tmin

i
{Ai}+ (1− t)min

i
{Bi}.

Infatti, fissato i, si ha

tAi + (1− t)Bi ≥ tmin
j
{Aj}+ (1− t)min

j
{Bj},

e passando al minimo in i nel membro di sinistra la disuguaglianza

si conserva. Applicando questa osservazione con Ai = mi(x) e Bi =

mi(y), si ottiene:

min
1≤i≤N

{tmi(x) + (1− t)mi(y)} ≥ t min
1≤i≤N

{mi(x)}+ (1− t) min
1≤i≤N

{mi(y)}

= t p(x) + (1− t) p(y).

Quindi

p(tx+ (1− t)y) ≥ t p(x) + (1− t) p(y), ∀x, y ∈ Rn, t ∈ [0, 1].

che è esattamente la definizione di funzione concava.



Capitolo 2

Le curve tropicali

2.1 Radici e ipersuperfici tropicali

Sia

p(x1, . . . , xn) = min
1≤i≤N

{ci + ki,1x1 + . . .+ ki,nxn}

un polinomio tropicale.

Definizione 2.1.1 (Radice di un polinomio tropicale). Una n-upla (a1, . . . , an)

in Rn si dice radice di p se tale polinomio tropicale non è differenziabile in

(a1, . . . , an).

Un’altra definizione di radice di un polinomio tropicale è la seguente:

Definizione 2.1.2 (Radice di un polinomio tropicale). Si dice radice di p

una n-upla (a1, . . . , an) in Rn in cui almeno due delle funzioni lineari che

definiscono il polinomio p assumono lo stesso valore minimo.

Le due definizioni sono del tutto equivalenti. Infatti, se esistono indici distinti

j e h tali che

p(a1, . . . , an) = cj + kj,1a1 + · · ·+ kj,nan = ch + kh,1a1 + · · ·+ kh,nan,

allora il grafico di p, ottenuto come inviluppo inferiore degli iperpiani descritti

dalle forme lineari ci +
∑n

ℓ=1 ki,ℓxℓ, coincide localmente con due iperpiani

12
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che si incontrano in quel punto. Pertanto (a1, . . . , an) è un punto di non

differenziabilità del polinomio tropicale.

Osservazione 2.1.3. In geometria algebrica classica, le radici di un polinomio

p(x1, . . . , xn) sono le n-uple in cui il polinomio si annulla. Se si adottasse la

stessa definizione nel contesto tropicale, le radici di un polinomio tropicale

sarebbero i punti in cui esso assume valore +∞. Tuttavia, come evidenziato

in Osservazione 1.2.5 e Osservazione 1.2.9, un polinomio tropicale a coeffi-

cienti reali e definito in Rn non assume mai il valore +∞, ma soltanto valori

reali finiti; di conseguenza, con questa definizione, nessun polinomio tropicale

avrebbe radici.

Osservazione 2.1.4. La scelta di questa nozione di radice per un polinomio

tropicale si ispira ad un’altra formulazione classica presente nella geometria

algebrica per i polinomi in una variabile: dato un polinomio p(x), un numero

reale a è una radice di molteplicità k se esiste un altro polinomio g(x) e k ∈ N
massimale tali che

p(x) = (x− a)kg(x).

In maniera del tutto analoga, nel contesto tropicale si definisce a radice di

un polinomio tropicale p(x) se esiste un polinomio tropicale di Laurent g(x)

e k ∈ N massimale per cui vale

p(x) = (x⊕ a)k ⊙ g(x)

con k molteplicità di a.

Infatti, se a è una radice di p(x), allora tale polinomio presenta un salto di

pendenza in a. Indicando con mdx e msx le pendenze del polinomio p(x)

rispettivamente a destra e a sinistra di a, poniamo

k := mdx −msx.

Consideriamo il polinomio tropicale

q(x) := (x⊕ a)k = k ·min{x, a}.
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Questo è il polinomio ”più semplice” che abbia un salto di pendenza di k in

x = a; infatti vale

q(x) =


k · x se x < a,

k · a se x > a.

Ponendo ora

g(x) := p(x)− q(x),

per costruzione si ottiene

p(x) = q(x) + g(x) = (x⊕ a)k ⊙ g(x).

Osserviamo che g(x) è ancora un polinomio tropicale, ma può presentare

anche esponenti negativi: infatti se

p(x) = min
i
{ai +mix},

allora si ha

g(x) =


min

i
{ai + (mi − k)x} se x < a,

min
i
{(ai − k a) +mi x} se x > a.

Inoltre, si può verificare che tale k è massimale e che a non è una radice per

il polinomio g(x).

Viceversa, se un polinomio è della forma

p(x) = (x⊕ a)k ⊙ g(x) = k ·min{x, a}+ g(x),

allora p(x) presenta un salto di pendenza di valore k in x = a; in particolare,

a è una radice di p.

Definizione 2.1.5 (Ipersuperficie tropicale). L’insieme di tutte le radici di

un polinomio tropicale p(x1, . . . , xn) è detto ipersuperficie tropicale di p e si

indica con V (p).

Esempio 2.1.6. In Esempio 1.2.11, dal grafico in Figura 1 si vede come i

punti di non differenziabilità del polinomio

p(x) = 5x2 ⊕ 1x⊕ 4 = min{2x+ 5, x+ 1, 4}

sono x = −4 e x = 3. Analogamente, usando la Definizione 2.1.2, si ha:
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• 2x+ 5 = x+ 1 ≤ 4 ⇒ x = −4

• x+ 1 = 4 ≤ 2x+ 5 ⇒ x = 3

• 2x+ 5 = 4 ≤ x+ 1 ⇒ ̸ ∃ x

Quindi V (p) = {3,−4}.

Sapendo che le sue uniche radici sono 3 e −4, entrambe di molteplicità 1,

per Osservazione 2.1.4 il polinomio può essere riscritto nella forma

p(x) = g(x)⊙ (x⊕ 3)⊙ (x⊕ (−4)) = g(x) + min{x, 3}+min{x,−4}

dove g(x) è un polinomio tropicale che non ha 3 e −4 come radici. Per

determinarlo osserviamo che, nei vari intervalli determinati dalle radici, il

polinomio coincide rispettivamente con uno dei suoi monomi:

p(x) =


g(x) + 2x = 2x+ 5 se x ≤ −4,

g(x) + x− 4 = x+ 1 se − 4 ≤ x ≤ 3,

g(x) + 3− 4 = 4 se x ≥ 3,

=⇒ g(x) = 5.

In conclusione, vale

p(x) = 5⊙ (x⊕ 3)⊙ (x⊕ (−4)).

Esempio 2.1.7. In Esempio 1.2.13, procedendo come nel caso precedente,

usando la Definizione 2.1.2 per il polinomio

p(x, y) = x⊕ y ⊕ 0 = min{x, y, 0}

si ha:

• y = 0 ≤ x ⇒ { (x, 0) ∈ R2 | x ≥ 0 },

• x = 0 ≤ y ⇒ { (0, y) ∈ R2 | y ≥ 0 },

• x = y ≤ 0 ⇒ { (x, y) ∈ R2 | x ≤ 0, y ≤ 0 }.

Quindi V (p) è l’unione di questi tre insiemi.
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2.2 Dalla geometria algebrica classica a quel-

la tropicale

Definizione 2.2.1 (Valutazione su K). Sia K un campo. Una valutazione

sul campo K è un’applicazione val : K → Rtrop che soddisfa le seguenti

proprietà:

• val(ab) = val(a) + val(b),

• val(a+ b) ≥ min{val(a), val(b)} ∀ a, b ∈ K \ {0},

• val(a) = +∞ ⇔ a = 0.

Inoltre, se val(a) ̸= val(b) allora val(a+ b) = min{val(a), val(b)}.

Le valutazioni consentono di passare dal campo K a Rtrop preservando, al-

meno in parte, la struttura algebrica di partenza. Infatti, la definizione di

valutazione è molto simile a quella di omomorfismo: nella maggior parte dei

casi, essa è compatibile con le operazioni di somma e prodotto, comportandosi

quindi in modo analogo a un omomorfismo di strutture algebriche.

Esempio 2.2.2 (Valutazione p-adica). Fissato un numero primo p, si defi-

nisce la valutazione p-adica valp come una mappa da Q a Rtrop. Ogni numero

razionale q può essere scritto come rapporto di due interi a, b e ciascuno di

essi può essere a sua volta scomposto come il prodotto di una potenza di p e

un intero non divisibile per p. In formule, si ha:

∀q ∈ Q, ∃ a, b, c, d ∈ Z : p ∤ c, d ed ∃ k, l ∈ N tali che q =
a

b
=

pkc

pld
= p k−l c

d
.

Allora si definisce valp(q) := k − l.

Ad esempio, per p = 3 si ha val3(
54
36
) = 1 e val3(16) = 0.

Definizione 2.2.3 (Tropicalizzazione di un polinomio). Sia p(x1, . . . , xn) =∑N
i=1 ci x

ki,1
1 . . . x

ki,n
n un polinomio in K[x1, . . . , xn] e sia val : K → Rtrop una
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valutazione sul campo K. Si definisce la tropicalizzazione di p il seguente

polinomio tropicale:

trop(p) :=
N⊕
i=1

val(ci)⊙ x
ki,1
1 ⊙ . . .⊙ xki,n

n .

Teorema 2.2.4 (Kapranov). Sia p(x1, . . . , xn) un polinomio con coefficienti

nel campo K la cui varietà V (p) è un sottoinsieme di (K \ {0})n e sia val :

K → Rtrop una valutazione su K. Allora vale

V (trop(p)) = trop(V (p))

dove

trop(V (p)) := {(val(x1), . . . , val(xn)) | (x1, . . . , xn) ∈ V (p)} ⊆ Rn.

Il teorema di Kapranov afferma che, dato un polinomio con coefficienti in

un campo K, ottenere la sua varietà algebrica e successivamente tropicaliz-

zarla mediante una valutazione è equivalente al procedimento opposto, ov-

vero tropicalizzare il polinomio e successivamente considerare l’ipersuperficie

tropicale associata. In altri termini, il seguente diagramma commuta:

polinomi a coefficienti in K curve algebriche ⊆ K2

polinomi tropicali curve tropicali ⊆ R2

V

val val

Vtrop

⟳

Osservazione 2.2.5. Il Teorema 2.2.4 rappresenta una versione semplificata

del teorema di Kapranov, ottenuta imponendo l’ipotesi che la varietà V (p)

sia contenuta in (K \ {0})n. La formulazione completa del teorema di Ka-

pranov si applica invece a varietà qualsiasi definite da polinomi di Laurent

in x1, . . . , xn. Tuttavia, poichè questa estensione richiede strumenti ulteriori,

non verrà trattata in questa tesi.
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2.3 Le curve tropicali

Definizione 2.3.1 (Curva tropicale). L’ipersuperficie tropicale di un poli-

nomio in due variabili p(x, y) si chiama curva tropicale.

Mentre per i polinomi a una variabile è relativamente semplice disegnare il

grafico, per quelli a due variabili la situazione si complica, poichè il grafico

è in R3; per visualizzare il comportamento di un polinomio p(x, y) a due

variabili, è quindi utile tracciare la sua curva tropicale in R2 e indicare in

ogni componente connessa di R2 \ {V (p)} quale valore assume il grafico in

quella regione di piano.

Esempio 2.3.2. Consideriamo il polinomio

p(x, y) = x⊕ y ⊕ 0 = min{x, y, 0}.

studiato in Esempio 2.1.7.

(0, 0)

0

x

y

Figura 4. Ipersuperficie tropicale del polinomio p(x, y) = x⊕ y ⊕ 0.

Esempio 2.3.3. Consideriamo il polinomio tropicale

p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2

= min{0, x, y, 2x+ 1, x+ y − 1, 2y + 1}.



2.3 Le curve tropicali 19

(−1, 1) (0, 1)

(1, 0)

(1,−1)

x+ y − 1
y

x

0

2y + 1

2x+ 1

Figura 5. Curva tropicale del polinomio

p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2.

D’ora in poi ci si limiterà a considerare polinomi in due variabili, poiché

l’obiettivo di questa tesi è lo studio delle proprietà delle curve tropicali.

Per polinomi con molti monomi, calcolare manualmente la relativa curva

tropicale e rappresentarla nel piano secondo la Definizione 2.1.2 risulta un

procedimento piuttosto lungo e laborioso. A tale scopo, esiste un algoritmo

che consente di disegnare una curva tropicale a meno di riscalamento.

Definizione 2.3.4 (Inviluppo convesso in Rn). Sia I sottoinsieme di Rn. Si

chiama inviluppo convesso di I l’intersezione di tutti gli insiemi convessi che

lo contengono. Equivalentemente, è il più piccolo sottoinsieme convesso di

Rn che contiene I.

Definizione 2.3.5 (Politopo di Newton). Sia p(x, y) un polinomio. Si chia-

ma politopo di Newton del polinomio p e si indica con Newt(p) l’inviluppo
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convesso in R2 dell’insieme

S :=

(i, j) ∈ Z2

∣∣∣∣∣∣ x
iyj compare in p(x, y) con

coefficiente diverso da +∞

 .

Definizione 2.3.6 (Politopo di Newton sollevato). Con le stesse notazioni

della Definizione 2.3.5, si chiama politopo di Newton sollevato del polinomio

p l’inviluppo convesso in R3 dell’insieme

{(i, j, ai,j) ∈ Z2 × R | (i, j) ∈ S, ai,j è il coefficiente del monomio xiyj di p}

e lo indichiamo con l −Newt(p).

Definizione 2.3.7 (Inviluppo convesso inferiore in R3). Sia K l’inviluppo

convesso di un sottoinsieme I di R3. Si chiama inviluppo convesso inferiore

di K l’insieme dei suoi punti visti da (0, 0,−∞). Più precisamente, sono i

punti P tali per cui, tracciando una semiretta H che parte da P in direzione

negativa di z, allora H non interseca nessun altro punto del politopo.

Partendo da un polinomio p(x, y) a due variabili, si costruisce il suo politopo

di Newton sollevato l −Newt(p). Considerandone il suo inviluppo convesso

inferiore e proiettando questi punti sul piano xy, si ottiene una suddivisione

del politopo di Newton Newt(p) di partenza.

Esempio 2.3.8. Consideriamo il polinomio

p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2

visto in Esempio 2.3.3. Allora si ha:

• Newt(p) = Conv
{
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)

}
.;

• l-Newt(p) = Conv
{
(0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 0, 1), (1, 1,−1), (0, 2, 1)

}
.
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(0, 0) (2, 0)(1, 0)

(0, 1)

(0, 2)

(1, 1)

Figura 6. Newt(p) con p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2.

Figura 7. l-Newt(p) con p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2.

(0, 0) (2, 0)(1, 0)

(0, 1)

(0, 2)

(1, 1)

Figura 8. Suddivisione di Newt(p) con p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2.
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Definizione 2.3.9 (Grafo planare). Si definisce grafo planare un grafo G =

(V, S) immerso in R2 dove V = {v1, . . . , vn} è l’insieme dei suoi vertici e S =

{s1, . . . , sm} l’insieme dei suoi spigoli tali che questi ultimi non si intersechino

fra loro se non eventualmente nei vertici. Le componenti connesse di R2 \G
si dicono facce del grafo G.

Definizione 2.3.10 (Grafo duale). Sia G un grafo planare. Si definisce grafo

duale di G un altro grafo immerso in R2 G′ = (V ′, S ′) i cui vertici sono in

corrispondenza biunivoca con le facce di G. Più precisamente, in ogni faccia

di G si pone un vertice di G′ e due vertici di G′ sono connessi da uno spigolo

se le facce in G corrispondenti hanno uno spigolo in comune.

Osservazione 2.3.11. Il grafo duale di un grafo planare non è unico.

Figura 9. Esempio di un grafo duale di un grafo planare.

La suddivisione del politopo di Newton Newt(p) determina un grafo planare

in R2. Da esso si costruisce un grafo duale ponendo un vertice in ciascu-

na faccia limitata della suddivisione e tracciando spigoli perpendicolari agli

spigoli corrispondenti del grafo originario. Questo duale non coincide con

quello definito in Definizione 2.3.10, ma ne rappresenta una variante adatta-

ta al contesto. Infine, riflettendo il grafo ottenuto rispetto alla retta y = −x

si ottiene la curva tropicale associata al polinomio p(x, y) di partenza, a meno

di una riscalatura di quest’ultima.



2.3 Le curve tropicali 23

Esempio 2.3.12. Consideriamo il polinomio

p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2

visto in Esempio 2.3.8. Partendo dalla suddivisione di Newt(p) vista in

Figura 8, si ha:

Figura 10. Grafo duale associato alla suddivisione di Newt(p) con

p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2.

y = −x

Figura 11. Riflessione del grafo duale visto in Figura 10 rispetto a y = −x.

La curva ottenuta coincide, a meno di riscalamento, con la curva tropicale

del polinomio p(x, y) = 0⊕ x⊕ y⊕ 1x2 ⊕ (−1)xy⊕ 1y2 vista in Figura 5

in Esempio 2.3.3.

Osservazione 2.3.13. In modo del tutto analogo, può risultare più semplice

ruotare di 180◦ il politopo di Newton Newt(p) già suddiviso e poi calcolarne
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il grafo duale come descritto in precedenza. In questo modo si ottiene diret-

tamente la curva tropicale, senza la necessità di rifletterla rispetto alla retta

y = −x.

Osservazione 2.3.14. L’algoritmo appena descritto consente di determinare la

struttura combinatoria di una curva tropicale V (p), ma non necessariamente

la sua forma esatta. Una volta ottenuta tale struttura, risulta relativamente

semplice, a partire dal polinomio iniziale, calcolare le coordinate dei vertici e

determinare il valore assunto dal polinomio in ciascuna componente connessa

di R2 \{V (p)}, in modo da ricostruire la curva tropicale completa. Ad esem-

pio, se si lascia tendere y a +∞, il polinomio di partenza si comporta come

un polinomio in una sola variabile x. Infatti, tutti i termini che contengono

y tendono a +∞ e non possono quindi contribuire al minimo: rimangono

pertanto solo i monomi in x. Ne consegue che, nelle componenti connesse

di R2 \ {V (p)} che si estendono verso l’alto, il valore del polinomio dipen-

de unicamente dalla variabile x. In tali regioni, al diminuire di x (cioè per

x → −∞), il grado della variabile x nei monomi che realizzano il minimo cre-

sce progressivamente. In modo del tutto analogo, nelle componenti connesse

di R2 \{V (p)} che si estendono verso destra (cioè per x → +∞), il polinomio

assumerà valori che dipendono soltanto dalla variabile y. In queste regioni,

al diminuire di y (cioè per y → −∞), il grado della variabile y nei monomi

che realizzano il minimo aumenta. Conoscendo i valori assunti dal polinomio

nelle diverse componenti connesse di R2 \ {V (p)}, è semplice determinare le

coordinate dei vertici: è sufficiente uguagliare i monomi che si incontrano in

un dato vertice e risolvere il sistema di equazioni ottenuto rispetto a x e y.

Esempio 2.3.15. Consideriamo il polinomio

p(x, y) = 1⊕ (−2)y ⊕ 1x⊕ y2 ⊕ 1xy ⊕ 2x2.

Allora si ha:

• Newt(p) = Conv
{
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)

}
.;

• l-Newt(p) = Conv
{
(0, 0, 1), (1, 0, 1), (0, 1,−2), (2, 0, 2), (1, 1, 1), (0, 2, 0)

}
.
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Considerando soltanto le facce inferiori di l − Newt(p), proiettandole sul

piano xy e, in base a Osservazione 2.3.13, ruotando di 180◦ la suddivisione

di Newt(p), si ottiene:

Figura 12. Suddivisione del politopo di Newton ruotato di 180°(sopra) e

grafo duale corrispondente (sotto) per p(x, y) = 1⊕(−2)y⊕1x⊕y2⊕1xy⊕2x2.

Osserviamo che, nella regione in alto a destra, il polinomio assume valore 1,

poichè per x, y che tendono a +∞ tutti i monomi che contengono almeno una

delle due variabili tendono a +∞, quindi non possono realizzare il minimo.

In base a Osservazione 2.3.14, nelle due regioni che si estendono verso de-

stra, il polinomio dipende soltanto dalla variabile y; di conseguenza, esso

assume rispettivamente i valori y − 2 e 2y. Analogamente, nelle regioni che

si estendono verso l’alto, il polinomio dipende solo da x e i valori corrispon-

denti sono x+ 1 e 2x+ 2.

In conclusione, si determinano le coordinate dei vertici come descritto in

Osservazione 2.3.14 e si ottiene la seguente curva tropicale:
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(0, 3)
(−1, 2)

(−3,−2)

1

y − 2

2y

2x+ 2

x+ 1

Figura 13. Curva tropicale esatta del polinomio

p(x, y) = 1⊕ (−2)y ⊕ 1x⊕ y2 ⊕ 1xy ⊕ 2x2.

Cerchiamo ora di spiegare perchè tale algoritmo funziona: l’obiettivo è com-

prendere in che modo il duale della suddivisione del politopo di Newton

permetta di ricostruire la struttura combinatoria della curva tropicale deter-

minata da p. In particolare, si vuole mostrare che ciascun vertice della suddi-

visione corrisponde a un monomio che domina nel minimo e che, qualora due

monomi raggiungano simultaneamente tale minimo, i vertici corrispondenti

nel politopo di Newton sollevato risultano uniti da uno spigolo. In questo

modo, la sua proiezione determina un lato della suddivisione di Newt(p) che

risulta dualmente associato ad uno spigolo della curva tropicale. Sia quindi

p(x, y) = min
(i,j)

{ai,j + ix+ jy}

il polinomio tropicale in questione e per ogni coppia di indici (i, j) sia

vi,j := (i, j, ai,j) ∈ R3
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il punto corrispondente al monomio ai,j + ix + jy. Con questa notazione, il

politopo di Newton sollevato l −Newt(p) è dato dall’inviluppo convesso dei

punti vi,j, ossia

N := l −Newt(p) = conv{vi,j} ⊆ R3.

Fissato un punto (x̄, ȳ) ∈ R2, definiamo la funzione lineare

L(x̄,ȳ)(u, v, w) := u x̄+ v ȳ + w.

Si osserva che per ogni (i, j) risulta

L(x̄,ȳ)(vi,j) = L(x̄,ȳ)(i, j, ai,j) = i x̄+ j ȳ + ai,j,

ossia esattamente la valutazione del monomio ai,j + ix+ jy nel punto (x̄, ȳ).

Ne consegue che

p(x̄, ȳ) = min
(i,j)

{ai,j + i x̄+ j ȳ} = min
(i,j)

L(x̄,ȳ)(vi,j).

Pertanto, affermare che in (x̄, ȳ) il minimo sia raggiunto esattamente da

due monomi distinti equivale a dire che la funzione L(x̄,ȳ) realizza il proprio

minimo su N precisamente nei due vertici va,b e vc,d corrispondenti ai monomi

in questione.

Allora l’insieme

F := {p ∈ N | L(x̄,ȳ)(p) = m} dove m := min
p∈N

L(x̄,ȳ)(p),

è una faccia di N supportata dall’iperpiano {L(x̄,ȳ) = m}, nel senso che

tale iperpiano interseca il politopo N esattamente nell’insieme F e che N

risulta contenuto interamente nel semispazio {L(x̄,ȳ) ≥ m}. In altri termini,

{L(x̄,ȳ) = m} costituisce un iperpiano di supporto di N , e la parte di N su

cui esso si appoggia coincide precisamente con la faccia F .

Se i soli vertici di N che realizzano il minimo di L(x̄,ȳ) sono va,b e vc,d, allora,

poiché L(x̄,ȳ) è lineare, tutte le combinazioni convesse di tali vertici

conv{va,b, vc,d} =
{
λ va,b + (1− λ) vc,d

∣∣ 0 ≤ λ ≤ 1
}
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realizzano anch’esse tale minimo. Ne segue che il segmento che unisce va,b e

vc,d coincide con la faccia F del politopo N . La condizione che questi siano

gli unici vertici in cui L(x̄,ȳ) raggiunge il minimo implica che nessun altro vi,j

appartenga a questa faccia, cosicché F è effettivamente uno spigolo (faccia

di dimensione 1) di N .

Tale faccia appartiene in particolare all’inviluppo inferiore di N e, mediante

la proiezione

(i, j, ai,j) 7−→ (i, j),

induce esattamente un lato della suddivisione di Newt(p). Lo spigolo della

curva tropicale duale a tale lato è precisamente quello che separa le due

regioni di R2 in cui il polinomio assume, rispettivamente, i due monomi

lineari considerati.

Un ragionamento del tutto analogo vale nel caso in cui il minimo sia realiz-

zato da tre monomi distinti: la funzione L(x̄,ȳ) assume in tal caso il proprio

minimo in tre vertici di N , e la corrispondente faccia F è un triangolo. Dopo

la proiezione (i, j, ai,j) 7→ (i, j), tale faccia diventa una 2-cella finita della

suddivisione di Newt(p) e corrisponde dualmente a un vertice della curva

tropicale, cioè a un punto in cui il minimo è realizzato simultaneamente da

almeno tre monomi distinti.

In sintesi, la dualità può essere descritta nel modo seguente:

• a ciascun vertice della suddivisione diNewt(p) corrisponde un monomio

che domina nel minimo che definisce il polinomio, e quindi una regione

di R2 in cui tale monomio è l’unico attivo;

• a ciascun lato finito della suddivisione corrisponde uno spigolo della

curva tropicale, lungo il quale il minimo è raggiunto esattamente da

due monomi distinti;

• a ciascuna 2-cella finita della suddivisione corrisponde un vertice della

curva tropicale, dove il minimo è realizzato simultaneamente da almeno

tre monomi.
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2.4 Condizione di bilanciamento delle curve

tropicali

L’algoritmo per determinare una curva tropicale in R2, descritto nella sezio-

ne precedente, consente di assegnare in modo naturale dei pesi agli spigoli

della curva, i quali rivestiranno un ruolo fondamentale nella definizione di

molteplicità di un punto di intersezione.

Definizione 2.4.1 (Peso di uno spigolo). Sia V (p) una curva tropicale e

siano s1, ..., sn i suoi spigoli. Come visto in precedenza, ciascuno di essi

corrisponde in modo biunivoco a uno spigolo della suddivisione del politopo

di NewtonNewt(p). Allora, per ogni i ∈ {1, . . . , n}, si definisce il peso wi di si

come la lunghezza reticolare dello spigolo corrispondente nella suddivisione di

Newt(p), ossia il numero di punti di Z2 attraversati da tale spigolo diminuito

di 1.

Definizione 2.4.2. (Vettore integrale primitivo di uno spigolo) Sia V (p) una

curva tropicale e siano s1, ..., sn i suoi spigoli. Per ogni i ∈ {1, . . . , n}, fissato
un punto P sullo spigolo si, si definisce vettore integrale primitivo ui associato

a si come il vettore che, una volta traslato P nell’origine, raggiunge la prima

intersezione tra la retta contenente si e il reticolo Z2. In altre termini, è il

vettore direzionale dello spigolo, normalizzato in modo che le sue coordinate

siano intere e coprime tra loro.

Osservazione 2.4.3. Per ogni spigolo di una curva tropicale, fissato un punto

P su di esso, esistono due possibili vettori integrali primitivi: infatti, se

u = (u1, u2) è un vettore integrale primitivo associato ad uno spigolo, allora

anche −u = (−u1,−u2) lo è, in quanto soddisfa anch’esso la Definizione 2.4.2.

Nel caso particolare in cui P sia un vertice della curva tropicale, la scelta del

vettore integrale primitivo diventa univoca: infatti, traslando P nell’origine e

tracciando la semiretta uscente da P nella direzione dello spigolo, si seleziona

il vettore che raggiunge la prima intersezione tra tale semiretta e il reticolo

Z2.
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Osservazione 2.4.4. La definizione di vettore integrale primitivo associato a

uno spigolo non dipende dalla scelta del punto P su di esso, ma unicamente

dalla sua pendenza.

Esempio 2.4.5. Consideriamo il polinomio

p(x, y) = 1⊕ (−2)y ⊕ 1x⊕ y2 ⊕ 1xy ⊕ 2x2.

studiato in Esempio 2.3.15. Siano {s1, . . . , s7} gli spigoli di V (p) e {s′1, . . . , s′7}
gli spigoli corrispondenti della suddivisione di Newt(p).

• Tutti i pesi wi sono uguali a 1, tranne w7 che è pari a 2.

• I vettori integrali primitivi sono

u1 = u6 = (±1, 0), u2 = u4 = (0,±1), u3 = u7 = (±1,±1), u5 = (±1,±2).

s′1

s′2

s′3

s′4

s′5

s′6

s′7

s1

s2

s3
s4

s5

s6

s7

Figura 14. Suddivisione di Newt(p) (a sinistra) e curva tropicale V (p) (a

destra) con rispettivi spigoli con p(x, y) = 1⊕ (−2)y ⊕ 1x⊕ y2 ⊕ 1xy ⊕ 2x2.

Notiamo che per il polinomio visto in Esempio 2.4.5 valgono le seguenti

condizioni di bilanciamento nei vertici:

• Consideriamo i tre spigoli s1, s2 e s3 incidenti nel vertice (0,3) con i loro

rispettivi pesi e vettori integrali primi. Allora vale:

w1 · u1 + w2 · u2 + w3 · u3 = 1 · (1, 0) + 1 · (0, 1) + 1 · (−1,−1) = (0, 0).
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• Analogamente, nel vertice (-1,2) vale:

w3 · u3 + w4 · u4 + w5 · u5 = 1 · (1, 1) + 1 · (0, 1) + 1 · (−1,−2) = (0, 0).

• Infine, nel vertice (−3,−2) si ha:

w5 · u5 + w6 · u6 + w7 · u7 = 1 · (1, 2) + 1 · (1, 0) + 2 · (−1,−1) = (0, 0).

Proposizione 2.4.6 (Condizione di bilanciamento). Sia V (p) una curva

tropicale e sia P un suo vertice nel quale incidono gli spigoli s1, . . . , sk della

curva. A ciascun spigolo si sono associati:

• un peso intero positivo wi;

• un vettore integrale primitivo ui ∈ Z2 che indica la direzione dello

spigolo e che è univocamente determinato per Osservazione 2.4.3.

Allora è soddisfatta la seguente condizione di bilanciamento nel vertice P :

k∑
i=1

wi · ui = (0, 0).

Dimostrazione. Si è visto, nell’algoritmo per la costruzione di una curva tro-

picale, che esiste una corrispondenza biunivoca tra i vertici della curva tro-

picale e i poligoni della suddivisione del politopo di Newton. Consideriamo

quindi il poligono della suddivisione di Newt(p) associato a P . Poichè si

tratta di un poligono in R2 i cui vertici hanno coordinate intere, i suoi lati

possono essere interpretati come vettori in Z2.

Indicando tali vettori con v1, . . . , vk, il poligono risulta chiuso e orientato, e

dunque la somma dei suoi lati è nulla. In formula, si ha:

k∑
i=1

vi = (0, 0).

Poichè ad ogni lato vi del poligono corrisponde uno spigolo si di V (p) inci-

dente nel vertice P e ad esso ortogonale, dalla Definizione 2.4.2 segue che la
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direzione di ui è perpendicolare a quella di vi. Più precisamente, utilizzando

la Definizione 2.4.1, si ha che

vi = wi · u⊥
i ⇒

k∑
i=1

vi =
k∑

i=1

wi u
⊥
i = (0, 0)

dove u⊥
i è ottenuto ruotando ui di 90

◦.

Applicando la rotazione inversa, che non altera il fatto che la somma dei

vettori sia nulla, si ottiene

k∑
i=1

wi · ui = (0, 0).



Capitolo 3

Il teorema di Bézout

3.1 Intersezione di curve tropicali e moltepli-

cità

Definizione 3.1.1 (Grado di una curva tropicale). Si dice che una curva

tropicale V (p) ha grado d se il suo politopo di Newton Newt(p) è il triangolo

di vertici (0, 0), (d, 0) e (0, d). Equivalentemente, V (p) è di grado d se il poli-

nomio tropicale p(x, y) che la definisce è di grado d e contiene con coefficienti

non banali (cioè diversi da +∞) il termine costante e i monomi xd e yd.

Definizione 3.1.2 (Curva tropicale a supporto pieno). Sia V (p) una curva

tropicale di grado d. Si dice che V (p) è a supporto pieno se tutti i punti

del reticolo Z2 contenuti nel politopo di Newton Newt(p) compaiono come

vertici della sua suddivisione.

Osservazione 3.1.3. Poichè in una curva tropicale a supporto pieno tutti i

punti di Z2 compaiono come vertici della suddivisione di Newt(p), tutti gli

spigoli di tale suddivisione hanno lunghezza pari a 1. Per la Definizione 2.4.1,

ciò implica che ogni spigolo della curva tropicale ha peso 1.

Osservazione 3.1.4. La suddivisione di Newt(p) associata a una curva tropi-

cale di grado d a supporto pieno presenta esattamente d spigoli per ciascun

lato del politopo. Poichè a ciascuno di essi corrisponde un ramo infinito della

33
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curva, V (p) possiede esattamente d raggi infiniti in ognuna delle tre direzioni

standard: d in direzione (1, 0), d in direzione (0, 1) e d in direzione (−1,−1),

cioè lungo la retta y = x in discesa.

Osservazione 3.1.5. Una condizione necessaria, ma non sufficiente, affinchè

una curva tropicale di grado d sia a supporto pieno è che il polinomio che

la definisce abbia coefficienti non banali per tutti i monomi compatibili col

grado, ossia nessun coefficiente uguale a +∞. Infatti, se esistesse un monomio

xiyj con i+j ≤ d con coefficiente +∞, il punto (i, j) non potrebbe comparire

come vertice della suddivisione di Newt(p), poichè non sarebbe nemmeno un

vertice del politopo di Newton sollevato corrispondente.

Esempio 3.1.6. Il polinomio

p(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2

studiato in Esempio 2.3.12 è un polinomio tropicale di grado 2 a supporto

pieno.

Esempio 3.1.7. Il polinomio

p(x, y) = 1⊕ (−2)y ⊕ 1x⊕ y2 ⊕ 1xy ⊕ 2x2.

studiato in Esempio 2.3.15 costituisce un controesempio al fatto che la pre-

senza di soli coefficienti non banali sia una condizione sufficiente affinchè la

curva tropicale sia a supporto pieno. Sebbene nessun coefficiente sia pari a

+∞, la curva tropicale non è a supporto pieno: infatti il punto (1, 1) non

compare come vertice della suddivisione di Newt(p) mostrata in Figura 12.

In Figura 13 si nota inoltre che, pur trattandosi di un polinomio di grado 2,

compare un unico raggio infinito in direzione (−1,−1), con peso pari a 2, in

accordo con quanto discusso in Osservazione 3.1.3 e Osservazione 3.1.4.

Definizione 3.1.8 (Intersezione trasversale). L’intersezione di due curve

tropicali C e D si dice trasversale se il punto di intersezione P non è un

vertice di nessuna delle due curve e, localmente in P , gli spigoli di C e D

che si intersecano in P hanno direzioni date da vettori integrali primitivi

linearmente indipendenti.
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P

Figura 15. Intersezione trasversale tra due curve tropicali di grado 1

Definizione 3.1.9 (Intersezione non trasversale). L’intersezione di due curve

tropicali C e D si dice non trasversale se il punto di intersezione P è un

vertice di una delle due curve (o di entrambe), oppure se in un intorno di

P due spigoli delle curve coincidono per un tratto e hanno direzioni date da

vettori integrali primitivi paralleli.

P

Figura 16. Intersezione non trasversale tra due curve tropicali di grado 1 e

2

Definizione 3.1.10 (Molteplicità di un punto di intersezione trasversale).

Con le stesse notazioni di Definizione 3.1.8, si chiama molteplicità tropicale
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di P

molttrop
(
P, C ∩D

)
:= wCwD

∣∣det(uC , uD)
∣∣

= wCwD

∣∣∣∣∣det
(
xC xD

yC yD

)∣∣∣∣∣
= wCwD

∣∣xCyD − xDyC
∣∣.

dove wC e wD sono i pesi e uC = (xC , yC) e uD = (xD, yD) i vettori integrali

primitivi degli spigoli rispettivamente delle curve C e D che si intersecano

nel punto P .

Osservazione 3.1.11. Per quanto detto in Osservazione 2.4.3, dato un punto

di intersezione trasversale P , i vettori integrali primitivi associati agli spigoli

di C e D non sono univocamente determinati, poiché possono essere scelti

sia uC e uD sia i loro opposti −uC e −uD. La definizione di molteplicità non

dipende da questa scelta, poichè vale

det(uC , uD) = det(−uC ,−uD) = − det(uC ,−uD) = − det(−uC , uD)

e nella definizione interviene il valore assoluto. Pertanto il verso dei vettori

integrali primitivi non influisce sul risultato.

Per convenzione, si scelgono i vettori integrali primitivi con componente x

positiva; nel caso di vettori verticali (cioè con componente x = 0), si scelgono

quelli con componente y positiva.

Osservazione 3.1.12. La Definizione 3.1.10 di molteplicità può essere appli-

cata solo quando il punto di intersezione è trasversale.

Se P invece è un punto di intersezione non trasversale, si possono verificare

due problemi:

• Se P è un vertice di una delle due curve, ad esempio di C, allora su P

incidono più spigoli di C. Di conseguenza, la scelta del vettore integrale

primitivo uC da utilizzare in Definizione 3.1.10 non è univoca.

• Se due spigoli coincidono per un tratto, i loro vettori integrali primitivi

sono linearmente dipendenti; in tal caso si ha
∣∣det(uC , uD)

∣∣ = 0 e quindi

molttrop
(
P, C ∩D

)
= 0.
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Esempio 3.1.13. Consideriamo la curva tropicale C di grado 2 studiata in

Esempio 2.3.15 e la curva tropicale D di grado 2 descritta dal polinomio

pD(x, y) = 0.5⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2.

e calcoliamo le molteplicità dei loro punti di intersezione trasversale.

P1

P2

P4

P3

C

D

Figura 17. Intersezioni delle curve descritte dai polinomi

pC(x, y) = 1⊕ (−2)y ⊕ 1x⊕ y2 ⊕ 1xy ⊕ 2x2 e

pD(x, y) = 0.5⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2.

Si osservi che tutti gli spigoli delle due curve che concorrono nei quattro

punti di intersezione hanno peso pari a 1. Di conseguenza, nel calcolo delle

molteplicità è sufficiente guardare esclusivamente i vettori integrali primitivi.

• P1: uC = (1, 1), uD = (0, 1) ⇒ molttrop
(
P1, C ∩D

)
=
∣∣1 · 0− 1 · 1

∣∣ = 1

• P2: uC = (1, 2), uD = (0, 1) ⇒ molttrop
(
P2, C ∩D

)
=
∣∣1 · 1− 2 · 0

∣∣ = 1

• P3: uC = (1, 2), uD = (1, 1) ⇒ molttrop
(
P3, C ∩D

)
=
∣∣1 · 1− 2 · 1

∣∣ = 1

• P4: uC = (1, 0), uD = (1, 1) ⇒ molttrop
(
P4, C ∩D

)
=
∣∣1 · 0− 1 · 1

∣∣ = 1
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3.2 Il teorema di Bézout tropicale

Teorema 3.2.1 (Bézout tropicale). Siano C e D due curve tropicali di grado

rispettivamente c e d che si intersecano trasversalmente. Allora vale∑
P∈C∩D

molttrop
(
P, C ∩D

)
= cd.

In altre parole, le due curve si intersecano in totale in cd punti, ognuno dei

quali contato con la loro molteplicità.

Esempio 3.2.2. Consideriamo le due curve tropicali C e D di grado rispet-

tivamente 2 e 1 descritte dai polinomi

pC(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2, pD(x, y) = 1⊕ x⊕ y.

P

D

C

Figura 18. Intersezione delle curve descritte dai polinomi

pC(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2 e pD(x, y) = 1⊕ x⊕ y.

Poiché le curve si intersecano in un unico punto di intersezione P , il teorema

di Bézout si riduce a:

molttrop
(
P, C ∩D

)
= wCwD

∣∣xCyD −xDyC
∣∣ = 1 · 1|1 · 1− 1 · (−1)

∣∣ = 2 = 2 · 1



3.2 Il teorema di Bézout tropicale 39

Esempio 3.2.3. Consideriamo le due curve C e D, entrambe di grado 2,

viste in Esempio 3.1.13. Esse soddisfano il teorema di Bézout tropicale;

infatti

4∑
i=1

molttrop
(
Pi, C ∩D

)
= 4 = 2 · 2

Dimostrazione. La dimostrazione del teorema di Bézout tropicale può essere

articolata in cinque passaggi distinti:

• Step 1: Supponiamo inizialmente che C e D siano curve tropicali a

supporto pieno di grado rispettivamente c e d e che si intersechino

esclusivamente lungo i loro raggi infiniti orizzontali e verticali. Per Os-

servazione 3.1.3 e Osservazione 3.1.4, esse hanno rispettivamente c e d

raggi infiniti orizzontali con vettore integrale primitivo (1, 0) e altret-

tanti verticali con vettore integrale primitivo (0, 1), tutti di peso 1.

Nel caso in cui l’intersezione avvenga esclusivamente lungo tali raggi,

per quanto detto sopra si ottengono esattamente cd punti di interse-

zione, ciascuno con moltepliticità pari a 1: infatti i pesi degli spigoli

coinvolti sono unitari e inoltre vale

∣∣∣∣∣det
(
1 0

0 1

)∣∣∣∣∣ =
∣∣∣∣∣det

(
0 1

1 0

)∣∣∣∣∣ = 1.

Ricapitolando, si ha

|C ∩D| = cd e ∀P ∈ C ∩D,molttrop
(
P, C ∩D

)
= 1

da cui ∑
P∈C∩D

molttrop
(
P, C ∩D

)
= cd.
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D

C

Figura 19. Esempio di intersezione lungo i raggi infiniti orizzontali e

verticali di due curve tropicali a supporto pieno di grado c = 3 e d = 2.

• Step 2: Manteniamo l’ipotesi precedente secondo cui C e D si interse-

cano esclusivamente lungo i loro raggi infiniti orizzontali e verticali, ma

ora rimuoviamo la condizione di supporto pieno. In particolare, senza

perdita di generalità, assumiamo che la curva non a supporto pieno sia

C. Per Osservazione 3.1.4, una curva tropicale di grado c a supporto

pieno possiede esattamente c raggi infiniti in direzione (1, 0) e c in di-

rezione (0, 1), tutti di peso 1.

E’ importante osservare che l’ipotesi di supporto pieno è più forte della

sola condizione di avere c raggi infiniti orizzontali e c verticali: esistono

infatti curve che, pur non essendo a supporto pieno, posseggono co-

munque tale configurazione. Un esempio è dato dalla curva descritta

dal polinomio di grado 2

p(x, y) = 1⊕ (−2)y ⊕ 1x⊕ y2 ⊕ 1xy ⊕ 2x2.

studiato in Esempio 2.4.5. In tale situazione, se le due curve C e D

continuano a intersecarsi unicamente lungo tali raggi, ci si riconduce
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direttamente al caso descritto nello Step 1.

Rimane dunque da considerare il caso in cui C perda effettivamen-

te uno dei questi raggi. Senza perdita di generalità, supponiamo che

venga rimosso un raggio orizzontale in direzione (1, 0), in modo che la

curva risultante abbia solo c − 1 raggi orizzontali. Nella suddivisione

di Newt(pC), la rimozione di un raggio orizzontale corrisponde ad eli-

minare uno spigolo su uno dei due cateti del politopo di Newton, il cui

numero passa cos̀ı da c a c − 1. Di conseguenza, un altro spigolo ap-

partenente allo stesso cateto aumenta la sua lunghezza reticolare di 1;

in termini tropicali, questo si traduce in un incremento di 1 del peso di

un altro raggio orizzontale di C. In sintesi, l’eliminazione di un raggio

orizzontale di C comporta due effetti:

– la diminuzione di d del numero di punti di intersezione, poichè il

raggio rimosso incontrava esattamente d raggi verticali di D.

– l’incremento di 1 delle molteplicità di altrettanti d punti di in-

tersezione, dovuto all’aumento del peso di un raggio orizzontale

rimasto.

D

C

D

C
1

1

1

1

1 1

Figura 20. Situazione precedente alla rimozione del raggio infinito

orizzontale di C (in rosso). A destra, la suddivisione di Newt(pC), con il

relativo spigolo corrispondente anch’esso evidenziato in rosso.
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D

C

2 2

1 1

Figura 21. Situazione successiva alla rimozione del raggio infinito

orizzontale di C. A destra, la suddivisione modificata di Newt(pC).

Le due variazioni si compensano: il numero totale di intersezioni, con-

tate con le molteplicità tropicali, rimane invariato e continua a valere∑
P∈C∩D

molttrop
(
P, C ∩D

)
= cd.

Ripetendo il discorso per ogni raggio eventualmente mancante in en-

trambe le curve, si conclude che, anche nel caso in cui C e D non siano

a supporto pieno, purchè abbiano grado rispettivamente c e d e che si

intersechino esclusivamente lungo raggi orizzontali e verticali, il numero

totale di intersezioni con molteplicità è ancora pari a cd.

Partendo da due curve tropicali C e D generiche, fissiamo C e trasliamo D

nel piano; indichiamo con Dt la traslata di D nel piano al tempo t in modo

che D0 = D.

Allora l’obiettivo consiste nel mostrare che esiste sempre una traslazione nel

piano della curva D in modo tale che, al termine del movimento, le curve

C e Dt si intersechino esclusivamente lungo i loro raggi infiniti orizzontali e

verticali e che, durante questa traslazione, possono comparire sia intersezio-
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ni trasversali sia intersezioni non trasversali, ma la somma delle rispettive

molteplicità rimane invariata per l’intera durata del processo.

• Step 3: Costruiamo innanzitutto una traslazione di D che minimizzi il

numero di intersezioni non trasversali con C. La posizione della curva

Dt è univocamente determinata dalle coordinate di uno dei suoi punti.

Infatti, fissato Q un vertice della curva, conoscendo le sue coordinate

al tempo t, si possono ricavare le coordinate di tutti gli altri punti della

curva. Ad esempio, se Q si trova inizialmente in (0, 0) e al tempo t

risulta in (−1, 2), allora l’intera curva al tempo t è stata traslata di 2

unità verso l’alto e di 1 unità verso sinistra.

L’intersezione tra due curve C e Dt è non trasversale quando si verifica

una delle seguenti situazioni:

– un’intersezione vertice-con-vertice;

– un’intersezione vertice-con-spigolo.

Poichè ogni curva tropicale ha un numero finito di vertici, anche il

numero di possibili intersezioni vertice-con-vertice è finito; questo ga-

rantisce che esiste sempre una traslazione della curva D che evita del

tutto questo tipo di intersezioni.

Sia ora Q un vertice di D. Per quanto visto prima, se si trasla D nel

piano, la posizione di Dt è univocamente determinata dalle coordinate

di Qt. Se, per un certo istante t, Q cade sulle coordinate di un punto

appartenente alla curva C (più precisamente su un punto interno di

uno spigolo di C), allora l’intersezione tra C e Dt è non trasversale,

poichè si realizza un’intersezione vertice-con-spigolo. In questo senso,

ogni punto di C rappresenta una possibile posizione di Qt che dà luogo

a un’intersezione non trasversale tra le due curve.

Ripetendo lo stesso ragionamento per ciascun vertice della curva D, si

ottiene che il luogo di tutte le possibili intersezioni vertice-con-spigolo

è un’unione finita di copie di C, una per ogni vertice della curva D.

Poichè la traslazione di D è determinata dalla traiettoria di un singolo
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vertice, è possibile descrivere le intersezioni degli altri vertici di D con

gli spigoli di C in funzione della posizione di Qt. Ne segue che esiste un

cammino continuo di Qt tale che, lungo questo movimento, si verifichi

solo un numero finito di intersezioni vertice-con-spigolo. Indichiamo i

corrispondenti istanti di tempo con {t1, . . . , tk}.

• Step 4: In ogni intervallo temporale (ti, ti+1), le curve C e D si in-

tersecano solo in modo trasversale. Di conseguenza, durante questo

movimento non si creano nè si eliminano punti di intersezione; il lo-

ro numero rimane costante. Inoltre, anche le loro molteplicità restano

invariate, poichè nè i pesi nè i vettori integrali primitivi degli spigoli

subiscono modifiche.

• Step 5: Rimane da analizzare il comportamento delle curve nei pressi

degli istanti ti. In particolare, vogliamo mostrare che, pur variando il

numero dei punti di intersezione e le relative molteplicità prima e dopo

ti, la somma totale delle molteplicità rimane invariata. In altri termini,

vogliamo dimostrare che∑
P

molttrop
(
P, C ∩Dti−dt

)
=
∑
P

molttrop
(
P, C ∩Dti+dt

)
.

Fissato i, all’istante ti ci sono due scenari possibili:

1. un vertice di C coincide con un punto interno di uno spigolo di

Dti ;

2. un vertice di Dti coincide con un punto interno di uno spigolo di

C.

Poichè i due casi sono simmetrici, possiamo senza perdita di generalità

studiare il primo caso e indicare con P il punto in questione. Denotiamo

con E lo spigolo della curva Dti , con vettore integrale primitivo pesato

w, e con L la retta direzionale di E. Siano infine u1, . . . , un e v1, . . . , vm

i vettori integrali primitivi pesati degli spigoli di C incidenti in P ,

appartenenti rispettivamente ai due lati di L.
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Per Osservazione 3.1.11, la molteplicità di un punto di intersezione non

dipende dal verso scelto per i vettori integrali primitivi relativi agli

spigoli incidenti. In questo caso quindi possiamo assumere che i vettori

uk e vj siano scelti uscenti dal vertice P e orientati radialmente verso

l’esterno.

P

E

L

u1

u2 u3

v1

v2

ti − dt

ti + dt

Figura 22. Intersezione non trasversale delle curve C e Dti.

Le due rette tratteggiate parallele ad L indicano le intersezioni trasver-

sali tra la curva C e le curve Dti−dt e Dti+dt rispettivamente.

Quindi, si ha che:

– al tempo ti − dt la somma delle molteplicità dei punti di interse-

zione è
n∑

k=1

|det(uk, w)|.

– al tempo ti + dt la somma delle molteplicità dei punti di interse-

zione è
m∑
j=1

|det(vj, w)|.
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Vogliamo mostrare che queste due quantità sono uguali.

Per la condizione di bilanciamento della curva C nel vertice P , vale

n∑
k=1

uk +
m∑
j=1

vj = 0

da cui, usando le proprietà del determinante, si ha

0 = det

(
n∑

k=1

uk +
m∑
j=1

vj, w

)
=

n∑
k=1

det(uk, w) +
m∑
j=1

det(vj, w) =⇒

=⇒

∣∣∣∣∣
n∑

k=1

det(uk, w)

∣∣∣∣∣ =
∣∣∣∣∣

m∑
j=1

det(vj, w)

∣∣∣∣∣ .
La retta L divide il piano in due semipiani: i vettori u1, . . . , un si tro-

vano in uno di essi, mentre i vettori v1, . . . , vm appartengono all’altro.

Poichè w giace sulla retta L, i determinanti det(uk, w) hanno tutti lo

stesso segno, mentre i determinanti det(vj, w) hanno segno opposto.

Di conseguenza, il valore assoluto della somma dei det(uk, w) coincide

con la somma dei loro valori assoluti, e la stessa proprietà vale anche

per i det(vj, w). Pertanto si ottiene

n∑
k=1

|det(uk, w)| =
m∑
j=1

|det(vj, w)|.

In conclusione, possiamo trasformare due curve con intersezioni trasversali

in posizione generale in due curve che si intersecano solamente lungo i raggi

orizzontali e verticali, senza modificare il numero di intersezioni contate con

molteplicità. Pertanto si ha

∑
P∈C∩D

molttrop
(
P, C ∩D

)
= cd.
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3.3 Una dimostrazione diversa di Bézout tro-

picale

Esiste anche un modo più diretto per dimostrare il teorema di Bézout tro-

picale, basato su una definizione alternativa, ma equivalente, di molteplicità

di un punto di intersezione.

Proposizione 3.3.1. Siano C e D due curve tropicali definite rispettivamen-

te dai polinomi tropicali pC(x, y) e pD(x, y) e supponiamo che si intersechino

esclusivamente in modo traversale. Allora la loro unione C ∪D coincide con

la curva tropicale associata al polinomio tropicale pC(x, y)⊙ pD(x, y).

Dimostrazione. Denotiamo con h(x, y) := pC(x, y)⊙pD(x, y) e sia H la curva

tropicale descritta da h. Se

pC(x, y) = min
i
{ai + ki,1x+ ki,2y} e pD(x, y) = min

j
{a′j + k′

j,1x+ k′
j,2y},

il loro prodotto tropicale è definito, come funzione, dalla somma usuale dei

due polinomi, ovvero

h(x, y) = pC(x, y)⊙ pD(x, y) = pC(x, y) + pD(x, y)

= min
i
{ai + ki,1x+ ki,2y}+min

j
{a′j + k′

j,1x+ k′
j,2y}.

Espandendo la somma dei due minimi, si ottiene la seguente espressione:

h(x, y) = min
i,j

{(ai + a′j) + (ki,1 + k′
j,1)x+ (ki,2 + k′

j,2)y}.

L’obiettivo consiste nel mostrare che H = C ∪D.

• Sia (x0, y0) /∈ C∪D.Allora (x0, y0) /∈ C e (x0, y0) /∈ D. Ciò significa che,

per entrambi i polinomi, il minimo è raggiunto da un unico monomio e

quindi essi sono differenziabili in (x0, y0). Poichè h(x, y) è la somma dei

due polinomi, risulta anch’esso differenziabile in (x0, y0), cioè (x0, y0) /∈
H.

Ne segue che H ⊆ C ∪D.
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• Sia ora (x0, y0) ∈ C ∪D. Allora (x0, y0) ∈ C oppure (x0, y0) ∈ D.

Se (x0, y0) ∈ C, ci sono almeno due monomi di pC che realizzano il

minimo in (x0, y0), cioè vale

pC(x0, y0) = as + ks,1x0 + ks,2y0 = at + kt,1x0 + kt,2y0.

Poichè si ha

pD(x0, y0) = a′r + k′
r,1x0 + k′

r,2y0

il minimo in h è raggiunto da due suoi monomi diversi, cioè

h(x0, y0) = (as + a′r) + (ks,1 + k′
r,1) x0 + (ks,2 + k′

r,2) y0

= (at + a′r) + (kt,1 + k′
r,1) x0 + (kt,2 + k′

r,2) y0.

Ne segue che (x0, y0) ∈ H.

Se (x0, y0) ∈ D, il discorso è analogo. Quindi C ∪D ⊆ H.

Per la doppia inclusione, vale H = C ∪D.

Osservazione 3.3.2. Per la Proposizione 3.3.1, il grado di C ∪ D è pari alla

somma dei gradi dei due polinomi, ovvero deg(pC) + deg(pD).

Come visto in precedenza, i vertici di una curva tropicale corrispondono ai

poligoni della suddivisione del politopo di Newton associato al polinomio che

la definisce. Nel caso della curva C ∪ D, i vertici possono suddividersi in 3

categorie:

• vertici già presenti in C, duali ai triangoli nella suddivisione diNewt(pC);

• vertici già presenti inD, duali ai triangoli nella suddivisione diNewt(pD);

• nuovi vertici, che corrispondono ai punti di intersezione trasversale tra

C e D.

Dai primi due casi segue che la suddivisione di Newt(pC ⊙ pD) contiene, co-

me sottosuddivisioni, copie delle suddivisioni di Newt(pC) e di Newt(pD).

I nuovi poligoni che compaiono nella suddivisione di Newt(pC ⊙ pD) corri-

spondono invece ai punti di intersezione trasversale tra C e D.
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Tali poligoni devono essere necessariamente dei parallelogrammi. Infatti,

poichè i vertici di una curva tropicale corrispondono ai poligoni della suddi-

visione del politopo di Newton, gli spigoli che incidono in un vertice corrispon-

dono ai lati del suo poligono duale. Allora, se P è un punto di intersezione

tra C e D, in C ∪D convergono esattamente 4 spigoli in tale punto (2 pro-

venienti da C e 2 da D). Di conseguenza, il poligono nella suddivisione di

Newt(pC ⊙ pD) duale a P possiede 4 lati.

Definizione 3.3.3 (Molteplicità di un punto di intersezione trasversale).

Sia P un punto di intersezione trasversale tra le curve tropicali C e D. Si

chiama molteplicità tropicale di P l’area del parallelogramma duale a P nella

suddivisione di Newt(pC ⊙ pD).

Osservazione 3.3.4. La Definizione 3.3.3 di molteplicità tropicale di un punto

di intersezione è del tutto analoga alla Definizione 3.1.10. Infatti, indicando

con v1 e v2 i vettori che descrivono i lati del parallelogramma duale al pun-

to di intersezione P , l’area di tale parallelogramma è data da |det(v1, v2)|.
Poichè compare il valore assoluto del determinante, la scelta del verso di v1

e di v2 non influisce sul risultato.

Gli spigoli della curva che incidono in P sono ortogonali ai lati del suo poli-

gono duale; supponiamo quindi, senza perdita di generalità, che v1 sia duale

allo spigolo di C passante per P e v2 duale allo spigolo di D passante per P .

Per la Definizione 2.4.1 e Definizione 2.4.2, tali vettori possono essere scritti

come

v1 = wCu
⊥
C , v2 = wDu

⊥
D,

dove wC e wD i pesi degli spigoli che si intersecano in P , mentre u⊥
C e u⊥

D si

ottengono ruotando rispettivamente i vettori integrali primitivi uC e uD di

90◦ (la scelta del verso di rotazione è irrilevante).

Da ciò segue che

|det(v1, v2)| = |det(wCu
⊥
C , wDu

⊥
D)| = wCwD|det(u⊥

C , u
⊥
D)| = wCwD|det(uC , uD)|.



50 3. Il teorema di Bézout

Esempio 3.3.5. Consideriamo le curve tropicali C e D descritte dai polino-

mi

pC(x, y) = 0⊕ x⊕ y ⊕ 1x2 ⊕ (−1)xy ⊕ 1y2, pD(x, y) = 1⊕ x⊕ y.

già analizzate in Esempio 3.2.2. Vogliamo calcolare la molteplicità del loro

unico punto di intersezione P utilizzando la Definizione 3.3.3.

P

D

C

Figura 23. Suddivisione del politopo di Newton del polinomio pC ⊙ pD (a

sinistra) e la curva tropicale corrispondente C ∪D (a destra).

Da Figura 22 si osserva che il poligono duale al punto di intersezione P (in

rosso) è un quadrato di lato
√
2. La sua area è quindi pari a 2 e, per la

Definizione 3.3.3 si ottiene

molttrop
(
P, C ∩D

)
= 2.

Si nota inoltre che il triangolo in basso a sinistra della suddivisione coincide

con una copia della suddivisione di Newt(pD), mentre i restanti 4 triangoli

formano una copia della suddivisione di Newt(pC).

Teorema 3.3.6 (Bézout tropicale). Siano C e D due curve tropicali di grado

rispettivamente c e d che si intersecano trasversalmente. Allora vale∑
P∈C∩D

molttrop
(
P, C ∩D

)
= cd.
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Dimostrazione. Per Osservazione 3.3.2, poichè il grado di C∪D è pari a c+d,

il politopo di Newton di pC ⊙ pD è il triangolo con vertici (0, 0), (c + d, 0) e

(0, c+ d).

Indichiamo con s la somma delle molteplicità dei punti di intersezione tra

C e D e consideriamo la suddivisione di Newt(pC ⊙ pD). Come visto in

precedenza, i poligoni di tale suddivisione appartengono a 3 famiglie:

• quelli duali ai vertici di C, la cui area totale è 1
2
c2;

• quelli duali ai vertici di D, la cui area totale è 1
2
d2;

• i parallelogrammi duali ai punti di intersezione tra C e D, la cui area

complessiva è s.

Poichè l’area di Newt(pC ⊙ pD) è pari a 1
2
(c+ d)2, si ottiene l’uguaglianza

1

2
c2 +

1

2
d2 + s =

1

2
(c+ d)2,

da cui segue

s =
(c+ d)2 − c2 − d2

2
= cd.
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