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Introduzione

La geometria tropicale ¢ una branca relativamente giovane della matemati-
ca. Le sue radici concettuali risalgono agli anni Settanta e Ottanta, quando
si inizio a parlare di semianello min-plus (o max-plus); all’epoca tali idee
non erano ancora identificate come ”tropicali”, ma ne costituivano il terreno
teorico. La formulazione moderna della teoria nacque soltanto nei primi an-
ni Duemila, grazie ai lavori di Grigory Mikhalkin, Bernd Sturmfels e David
Speyer. Il nome "tropicale” venne introdotto poco dopo, in onore del mate-
matico e informatico brasiliano Imre Simon, tra i primi a dedicarsi a queste
strutture.

L’obiettivo principale della geometria tropicale consiste nel tradurre problemi
di geometria algebrica classica in domande riguardanti oggetti combinatori,
in particolare complessi poliedrali in R", cioe unione di poliedri tale che ogni
loro intersezione sia una faccia comune, eventualmente vuota, dei poliedri
coinvolti. In questo modo, questioni tradizionalmente descritte da varieta
algebriche possono essere riformulate in termini piu discreti e spesso piu ac-
cessibili dal punto di vista combinatorio.

Si possono distinguere tre principali approcci alla geometria tropicale:

e Approccio sintetico: in questa prospettiva si studiano gli oggetti tro-
picali come entita autonome, lavorando direttamente sul semianello
tropicale Ry, e costruendo varieta tropicali a partire da polinomi

tropicali.

e Approccio valutativo: secondo questa visione la geometria tropicale na-

sce come lo studio delle immagini, tramite una valutazione, di varieta
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algebriche definite su opportuni campi. Si tratta dell’approccio piu vi-
cino alla geometria algebrica classica, poiche permette di associare a
una varieta algebrica un complesso poliedrale che ne riflette, almeno in

parte, la struttura geometrica.

e Approccio delle degenerazioni: questo punto di vista si sviluppa dallo
studio delle degenerazioni di varieta algebriche e mette in luce la rela-
zione tra la geometria tropicale e i comportamenti limite delle famiglie

algebriche.

In questa tesi si adottera principalmente ’approccio sintetico alla geometria
tropicale. Nel primo capitolo verra introdotto il semianello tropicale Ryqp
con le sue proprieta di base, per poi passare allo studio dei polinomi tropicali
e dei loro grafici. Successivamente, ci si concentrera sulle curve tropicali,
ossia varieta tropicali piane: in particolare verra presentato un algoritmo per
costruirne la struttura combinatoria e si mostrera in che senso tale struttura
e un complesso poliedrale pesato e bilanciato. Infine, nel terzo e ultimo capi-
tolo, si prendera in esame la controparte tropicale di uno dei risultati classici
della geometria algebrica, ovvero il teorema di Bézout, del quale verranno
fornite due diverse dimostrazioni.

Solo nel secondo capitolo verra introdotta la nozione di valutazione e sara
enunciata una versione semplificata del teorema di Kapranov, collegata al-

I’approccio valutativo alla geometria tropicale.



Capitolo 1

L’algebra tropicale

1.1 Il semianello tropicale
Definizione 1.1.1 (Operazioni tropicali). Consideriamo I'insieme dei numeri
reali R unito a 400 su cui si definiscono due nuove operazioni binarie:

e ®:RU{+o00} x RU{+00} - RU{+o0}, &y =min{z,y}.

e O :RU{+o0o} x RU{+o0} = RU{+x}, 20y =x+y.
chiamate rispettivamente somma e prodotto tropicale. Si indica col simbolo
Rirop = (RU {+0o0}, ®, ©)

I'insieme R U {400} dotato di queste due nuove operazioni binarie.

Definizione 1.1.2 (Semianello). Un semianello (A,+,-) ¢ una struttura
algebrica dotata di un insieme A e di due operazioni binarie + e -, dette

rispettivamente somma e prodotto, che soddisfano le seguenti proprieta:
i) proprieta commutativa della somma:

Va,be A, a+b=b+a.

ii) proprieta associativa della somma e del prodotto:

Va,b,ce A, a+(b+c)=(a+b)+c, a-(b-c)=(a-b)-c.
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iii) esistenza e unicita dell’elemento neutro per la somma:

AN €A :VacA a+d=d+a=a

iv) proprieta distributiva del prodotto rispetto alla somma:

Va,b,ce A, (a+0b)-c=(a-c)+(b-¢c), a-(b+c)=(a-b)+ (a-c).

v) Se a’ & ’elemento neutro per la somma introdotto nel punto iii), allora
vale

Vo€ A a-d=d -a=d.
Lemma 1.1.3. Ry, ¢ un semianello commutativo con unita.

Dimostrazione. Verichiamo che le operazioni di somma tropicale & e di pro-

dotto tropicale ® soddisfano le proprieta viste in Definizione 1.1.2.
i) Va,b € Ryop,
a @ b= min{a, b}
= min{b, a}
=b®da.
ii) Va,b,c € Riyop,
a® (b®c) =min{a, min{b, c}}
= min{a, b, ¢}
= min{min{a, b}, c}
=(a®b) ®c,
a®boc)=a+ (b+c)
=(a+0b)+c
=(a®b)Oc
iii) e Esistenza: Consideriamo l’elemento +oo. Allora vale

Va € Riyop, a @ (+00) = min{a, +o00} = a.

400 ¢ un elemento neutro per la somma tropicale.
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e Unicita: Supponiamo per assurdo che esista @ in R un altro

elemento neutro per la somma tropicale. Allora vale
a=a® (+00) = min{a, +o00} = +00 = a = +oo0.

Questo e un assurdo; quindi, I'unico elemento neutro per la somma

tropicale e 4-00.
iv) Va,b, c € Ryop,
a® (b®c)=a-+min{b, c}
= min{a + b,a + ¢}
=(a®b)®(a®c).
(bdc) ®a=min{b,c} +a
= min{b+ a,c+ a}
=boa)®(c®a).
V) Ya € Rtrop;
a® (+00) = a+ (+00)
= (+00) +a
= (+00) ®a
= +o00.

In pit, e verificata la proprieta commutativa del prodotto tropicale:

Va,b € Riyop, a®b=a-+Db
=b+a

=bQOa.

Infine, 0 & ’elemento neutro per il prodotto tropicale:

Va € Ryop, a©0=a+0=0+a=00a=a.
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Per il Lemma 1.1.3 Ry, ¢ un semianello, ma non ¢ un anello: infatti nessun
elemento di Ry, eccetto +oo ha un inverso additivo, in quanto I'equazione

a ® b = +o0o ha come unica soluzione a = b = +00.

Osservazione 1.1.4. Ry, puo essere definito in maniera analoga come
(RU{-o0},®,0)

dove

r®y=max{z,y}, TOYy=z+y.

In tal caso, I'elemento neutro per la somma ¢ —oo. E’ del tutto analogo
studiare geometria tropicale scegliendo come definizione di somma tropicale
il massimo o il minimo tra due numeri: infatti, i due semianelli ottenuti sono

isomorfi tramite I’applicazione
T — —I

Esattamente come in aritmetica classica, in assenza di parentesi il prodotto

tropicale ha la precedenza sulla somma tropicale:
Va,b,c € Ryop, a®b® c=min{a, b+ c}.

Inoltre, per facilitare la notazione si omette il simbolo ® nel prodotto tropi-
cale tra due numeri e si usa a” per indicare il prodotto tropicale di a con se

stesso n volte:

Va,b € Ryop, ab=a®b, ad"=aGa®---Oa=n-a.

n volte

1.2 I polinomi tropicali

Definizione 1.2.1 (Monomio tropicale). Un monomio tropicale m ¢ una
funzione

m: R?

trop IRtroP

tale che
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dove
CGRtr0p7 kl,...,knEN.

In aritmetica classica, m e una funzione lineare a variabili zq, ..., z,:
m(xy,...,x,) =c+kixy + ...+ kyx,.

Definizione 1.2.2 (Polinomio tropicale). Un polinomio tropicale p ¢ dato
dalla somma tropicale di un numero finito di monomi tropicali. In particolare,

un polinomio tropicale p € una funzione
. n
p . Rtrop Rtrop

tale che

N
ki1 ki
p(x1, ..., x,) = @mi(xl,...,xn) = EB cimyt L
i=1 ‘
dove
Cl,...,CNGRtrOp, k171,...,l€N7n€N.

Usando l'aritmetica classica, vale

p(z1, ..., x,) = 1r<r%i<nN{ci +kipxy + .o+ kipxn}

A parole, un polinomio tropicale ¢ il minimo di un numero finito di funzioni

lineari a variabili zq,...,xz,.

Definizione 1.2.3 (Grado di un polinomio tropicale). Con le stesse notazioni
introdotte in Definizione 1.2.2, si dice che il polinomio p ha grado k dove
k = max {ki,l + ...+ kl,n}
1<i<N
Si indica con deg(p) il grado di un polinomio.
Esempio 1.2.4.
(i) pi(z) =32 ® (-2)2* @52 P 1 =min{3z +3, 20 -2, z +5, 1}.

Il grado di p; ¢ deg(p1) = 3.

(i) po(z,y) =20y dIxdlyd4d=min{r+y+2, z+9, y+1, 4}.

Il grado di py & deg(ps) = 2.
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Osservazione 1.2.5. Nella Definizione 1.2.2 & superfluo chiedere che i coeffi-
cienti ¢1,...,cy € RU {+0oc}, ma basterebbe chiedere che ¢y,...,cy € R:
infatti, se esistesse ¢ in {1,..., N} tale che ¢; = 400, allora il monomio
m;(z1,...,x,) varrebbe costantemente +o0o per ogni scelta di (z1,...,x,) in

Rn

trop- Poiche +o0o e 'elemento neutro per la somma tropicale, il monomio

m; puo essere omesso nella scrittura del polinomio tropicale.

Osservazione 1.2.6. Se esiste ¢ in {1,..., N} tale che ¢; = 0, allora tale
coefficiente viene omesso nella scrittura dell’i-esimo monomio in quanto 0 e

I’elemento neutro per il prodotto tropicale, cioe
mi(zy, .. on) =o)L akie = 0t 2k
Esempio 1.2.7.

) il coefficiente di x? ¢ 0,
plz)=2"®4 —
il coefficiente di x ¢ + oo.

Definizione 1.2.8 (Grafico di un polinomio tropicale). Con le stesse nota-
zioni introdotte in Definizione 1.2.2, si chiama grafico del polinomio tropicale

p l'insieme dei punti
{(xl, e Ty P, ) { (T1,. . 20) ERE LT C R?;g;.

Osservazione 1.2.9. Nella Definizione 1.2.2 un polinomio tropicale viene de-
finito su R}

trop» & ha senso restringere il suo dominio a R™: infatti, preso un

polinomio tropicale

p(x1, ..., xy) = min {¢; + ki1x1 + ...+ kinTnlt,

1<i<N
supponendo che 1’i-esima variabile x; sia = +o00 e le altre n — 1 variabili
siano in R, allora tutti le funzioni lineari che presentano nella loro defini-
zione la variabile x; valgono constantemente +o0o e non contribuiscono al
minimo. Quindi si possono eliminare; in questo modo restano solo quelle
con variabili z1,...,2;_1,Tiz1,. .., Z,. Si puo concludere dunque che studia-
re un polinomio in n variabili appartenenti a Ry, in cui solo una di esse
vale constantemente +o00 equivale a studiare un polinomio in n — 1 variabili

appartenenti a R.
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Esempio 1.2.10. Consideriamo il polinomio tropicale
p(z,y,2) =22 © 2%y ©Trz @ (—3)y =min{3z, 20 +y +2, v +2+7, y — 3}.
Fissata ora la variabile z = +o00, vale

p(x,y, +00) = min{+o0, 2z +y+2, x + (+00) + 7, y — 3}

=min{2z +y +2, y — 3} =227y & (-3)y.

Per Osservazione 1.2.5 e Osservazione 1.2.9, in questa tesi si considerano
polinomi tropicali a coefficienti ¢;,...,¢, in R e con dominio R"; in questo
modo, anche il codominio di un polinomio tropicale sara R. Inoltre, con

questa scelta, il grafico di un polinomio tropicale non sara pitt un sottoinsieme

di R?rt;, bensi un sottoinsieme di R"*!; questo permette di rappresentarlo

nello spazio euclideo come il grafico di un polinomio classico.
Esempio 1.2.11. Consideriamo il polinomio tropicale
20 +5, sex < —4,
p(z) =52 @ 1le ®4 =min{2x +5, v+ 1, 4} = r+1, se —4<x<3,

4, sex > 3.

Figura 1. Grafico del polinomio p(z) = 5z* @ 1z @ 4.



1. L’algebra tropicale

In Esempio 1.2.11, il numero di parti lineari con pendenza diversa nel grafico
coincide esattamente con il numero di monomi del polinomio, cioe 3. Tutta-
via, questa uguaglianza non ¢ sempre vera: in generale, supponendo che il
polinomio sia la somma tropicale di N monomi, il suo grafico ha al massimo
N parti lineari con pendenza diversa. Infatti, possono esserci casi in cui non
tutte le funzioni lineari presenti all’interno del minimo sono raggiunte per

qualche (x1,...,x,).
Esempio 1.2.12. Consideriamo il polinomio tropicale

3x+8, sex < —06,
p(z) = 82°®22*®10266 = min{3z+8, 2242, x+10, 6} =22 +2, se —6 <z < 2,
6, sex > 2.

In questo caso, il termine x + 10 non viene mai raggiunto dal minimo del

polinomio. Quindi il suo grafico non avra 4 parti lineari, bensi 3.

1210 -8 —6 —4/—

Figura 2. Grafico del polinomio p(x) = 823 @ 22> ® 10z & 6.



1.2 I polinomi tropicali

Esempio 1.2.13. Consideriamo il polinomio tropicale

(
z, sex<yex <0,

p(r,y) =r @y ®0=min{z, y, 0} = qy, sey<zey<0,

\0’ se0<zel<y.

Figura 3. Grafico del polinomio p(z,y) =x &y ®H0

Si nota dai grafici disegnati che i tre polinomi riportati negli esempi prece-
denti sono funzioni continue, concave e affini a tratti. Introduciamo anzitutto
il concetto di funzione affine a tratti, per poi successivamente dimostrare tali

proprieta per un polinomio tropicale generico.

Definizione 1.2.14 (Funzione affine a tratti). Una funzione f : R™ — R si
dice affine a tratti se esiste una decomposizione poliedrale finita { Py, ..., P}
di R, dove ciascun P; ¢ un poliedro (cioe intersezione finita di semispazi
chiusi determinati da iperpiani), tale che per ogni i, j l'intersezione P, N P;

sia una faccia (eventualmente vuota) comune di P, e di P; e tale che, per ogni
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i € {1,...,m}, la restrizione di f a P; sia una trasformazione affine, cioe
V(zq,...,2,) € By, f(x1, .. xn) = a; + 121 + .o+ VT,
per opportuni a; € R e v;1,...,v;,, €R.

Osservazione 1.2.15. Nel caso di funzioni f : R — R, la condizione di essere

affine a tratti coincide con la nozione di funzione lineare a tratti.

Proposizione 1.2.16. Sia

N

ki ks
p(xl,...,xn):@ cixy
i=1

un polinomio tropicale. Allora valgono le sequenti:

i) p & continua.
ii) p € affine a tratti.
iii) p € concava.

Dimostrazione. i) Dimostriamo per induzione che date N funzioni conti-
nue fi,..., fy : R" = R, la funzione minimo my (z) = min{ fi(z), ..., fxn(x)}

¢ continua.

(a) Passo base: Date due funzioni continue f,g : R — R, allora
la funzione minimo ms(x) = min{ f(z )} & continua: infatti

)
si puo scrivere come somma e composizione di funzioni continue,

cioe

fla) +g(@) —[f(z) — g(2)|

ma(z) = min{f(z), g(z)} = 2

(b) Passo induttivo: Date N + 1 funzioni continue fi,..., fyi1
R™ — R e supponendo per ipotesi induttiva che la funzione my

sia continua, si ha

my+1(z) = min{fi(z),..., fx+1(z)}
— min{min{ fi(2), .., fn (@)}, fy1(2)}

= min{my(z), fy1(2)}.
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ii)

iii)

my+1(x) € il minimo di due funzioni continue, quindi per il passo

base ¢ continua.

Siccome le funzioni (z1,...,2,) — ¢ +kiix1+. ..+ kinZ, sono con-

tinue Vi € {1,..., N}, allora anche p(xy,...,z,) = 1I<ni<nN{ci + kijxy +
YA

..+ kinz,} € continua.

L’affinita a tratti del polinomio tropicale p ¢ diretta conseguenza della

sua scrittura come minimo di funzioni lineari.

Poniamo m;(x) = m;(xy,...,x,) = ¢; + kiix1 + ... + k;px,. Poiche
Vi e {1,..., N} la funzione m; & lineare, si ha

mi(tx + (1 - t)y) =tm;(x) + (1 —t)m;(y), Va,y € R, t € [0, 1].
Di conseguenza, si ha che

plta+(1=t)y) = min {mi(to-+(1=t)y)} = min {¢mi(x)+(1-0) mi(y)}.

1<i<N
Ora, prese due qualsiasi famiglie finite di numeri reali {A;},{B;} e per
ogni t € [0, 1], vale
miin{tAi +(1—-t)B;} > tmiin{Ai} +(1—1) miin{Bi}.
Infatti, fissato i, si ha
tA,+(1-t)B;, > tmjin{Aj} +(1—1) Hﬂ‘in{Bj}’

e passando al minimo in ¢ nel membro di sinistra la disuguaglianza
si conserva. Applicando questa osservazione con A; = m;(z) e B; =

m;(y), si ottiene:

1<i<N 1<i<N

=tp(z) + (1 =) p(y).

min {¢mi(e) + (1= ) mi(y)} > ¢ min {mi()} + (1= 1) min {mi(y)}

Quindi
p(tl’ + (1 - t)y) > tp(:):) + (1 - t)p<y>a \V/[E,y S Rna te [07 1]

che e esattamente la definizione di funzione concava.



Capitolo 2

Le curve tropicali

2.1 Radici e ipersuperfici tropicali
Sia
p(x1, ..., x,) = 1gi§nN{ci +kiixy + .o F kipxn}

un polinomio tropicale.

Definizione 2.1.1 (Radice di un polinomio tropicale). Una n-upla (ay, ..., a,)

in R™ si dice radice di p se tale polinomio tropicale non e differenziabile in

(al, ceey CLn).
Un’altra definizione di radice di un polinomio tropicale e la seguente:

Definizione 2.1.2 (Radice di un polinomio tropicale). Si dice radice di p
una n-upla (ag,...,a,) in R™ in cui almeno due delle funzioni lineari che

definiscono il polinomio p assumono lo stesso valore minimo.

Le due definizioni sono del tutto equivalenti. Infatti, se esistono indici distinti

j e h tali che
p(al, R ,an) =Cj + k’j71a1 +---+ k’ijLn =cpt+ kh,lal +- kh,nana

allora il grafico di p, ottenuto come inviluppo inferiore degli iperpiani descritti

dalle forme lineari ¢; + Z;L:l ki ex¢, coincide localmente con due iperpiani

12



2.1 Radici e ipersuperfici tropicali

13

che si incontrano in quel punto. Pertanto (aq,...,a,) € un punto di non

differenziabilita del polinomio tropicale.

Osservazione 2.1.3. In geometria algebrica classica, le radici di un polinomio
p(z1,...,x,) sono le n-uple in cui il polinomio si annulla. Se si adottasse la
stessa definizione nel contesto tropicale, le radici di un polinomio tropicale
sarebbero i punti in cui esso assume valore +oo. Tuttavia, come evidenziato
in Osservazione 1.2.5 e Osservazione 1.2.9, un polinomio tropicale a coeffi-
cienti reali e definito in R™ non assume mai il valore +o0o, ma soltanto valori
reali finiti; di conseguenza, con questa definizione, nessun polinomio tropicale

avrebbe radici.

Osservazione 2.1.4. La scelta di questa nozione di radice per un polinomio
tropicale si ispira ad un’altra formulazione classica presente nella geometria
algebrica per i polinomi in una variabile: dato un polinomio p(x), un numero
reale a & una radice di molteplicita k se esiste un altro polinomio g(z) e k € N

massimale tali che
p(z) = (z — a)g(x).

In maniera del tutto analoga, nel contesto tropicale si definisce a radice di
un polinomio tropicale p(z) se esiste un polinomio tropicale di Laurent g(x)

e k € N massimale per cui vale

con k molteplicita di a.
Infatti, se a € una radice di p(x), allora tale polinomio presenta un salto di
pendenza in a. Indicando con mg, e mg, le pendenze del polinomio p(x)

rispettivamente a destra e a sinistra di a, poniamo
k= Mgy — Mgy.
Consideriamo il polinomio tropicale

q(z) = (r @ a)* = k- min{x, a}.
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Questo ¢ il polinomio ”piu semplice” che abbia un salto di pendenza di k in
r = a; infatti vale

k-x sex<a,
q(x) =
k-a sex>a.

Ponendo ora

per costruzione si ottiene

p(x) = q(z) + g(z) = (x ® a)* © g(2).
Osserviamo che g(x) ¢ ancora un polinomio tropicale, ma puo presentare
anche esponenti negativi: infatti se
p(x) = min{a; + m;z},

allora si ha
min{a; + (m; — k)xz}  sex <a,
gla) =4 "
miin{(ai —ka)+m;x} sex>a.
Inoltre, si puo verificare che tale k € massimale e che @ non e una radice per
il polinomio g(z).

Viceversa, se un polinomio ¢ della forma
p(a) = (z @ a)* © g(x) = k- min{z, a} + g(x),

allora p(x) presenta un salto di pendenza di valore k in x = a; in particolare,

a ¢ una radice di p.

Definizione 2.1.5 (Ipersuperficie tropicale). L’insieme di tutte le radici di
un polinomio tropicale p(x1,...,z,) & detto ipersuperficie tropicale di p e si

indica con V' (p).

Esempio 2.1.6. In Esempio 1.2.11, dal grafico in Figura 1 si vede come 1

punti di non differenziabilita del polinomio
p(z) =52> ® 1o @4 = min{2x + 5, v+ 1, 4}

sono x = —4 e x = 3. Analogamente, usando la Definizione 2.1.2, si ha:
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e 2r+bh=zx+1<4 = x=-4

er+1=4<2+5 = x=23

e2r+5=4<z+1 = Az
Quindi V (p) = {3, —4}.

Sapendo che le sue uniche radici sono 3 e —4, entrambe di molteplicita 1,

per Osservazione 2.1.4 il polinomio puo essere riscritto nella forma
p(x) =g(2) © (z ®3) © (v ® (—4)) = g(x) + min{z, 3} + min{z, —4}

dove g(x) & un polinomio tropicale che non ha 3 e —4 come radici. Per
determinarlo osserviamo che, nei vari intervalli determinati dalle radici, 1l

polinomio coincide rispettivamente con uno dei suoi monomi:

4

gx)+2x=20+5 sex < —4,

px)=qg(x)+r—4=a+1 se —4<az<3, = g(x) =5.

g(x)+3—-4=4 sex > 3,

In conclusione, vale
p(x) =50 (@ 3)O (zd(—4)).

Esempio 2.1.7. In Esempio 1.2.13, procedendo come nel caso precedente,

usando la Definizione 2.1.2 per il polinomio
p(r,y) =2 ®y @0 = min{z,y,0}
st ha:
ey=0<z = {(x,00eR?*|z>0},
er=0<y = {(0yeR[y=0}
erz=y<0 = {(r,y) eR?*|z<0,y<0}.

Quindi V (p) é lunione di questi tre insiems.
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2.2 Dalla geometria algebrica classica a quel-

la tropicale

Definizione 2.2.1 (Valutazione su K). Sia K un campo. Una valutazione
sul campo K ¢ un’applicazione val : K — Ry,p che soddisfa le seguenti

proprieta:
e val(ab) = val(a) 4+ val(b),
e val(a+b) > min{val(a),val(b)} Va,be K\ {0},
e val(a) = 400 < a=0.
Inoltre, se val(a) # val(b) allora val(a + b) = min{val(a), val(b)}.

Le valutazioni consentono di passare dal campo K a Ry, preservando, al-
meno in parte, la struttura algebrica di partenza. Infatti, la definizione di
valutazione ¢ molto simile a quella di omomorfismo: nella maggior parte dei
casi, essa € compatibile con le operazioni di somma e prodotto, comportandosi

quindi in modo analogo a un omomorfismo di strutture algebriche.

Esempio 2.2.2 (Valutazione p-adica). Fissato un numero primo p, si defi-
nisce la valutazione p-adica val, come una mappa da Q a Ryop. Ogni numero
razionale q puo essere scritto come rapporto di due interi a,b e ciascuno di
esst puo essere a sua volta scomposto come il prodotto di una potenza di p e

un intero non divisibile per p. In formule, si ha:

Vg€ Q, da,b,c,d€Z:pte,d ed Ik, 1 €N tali che q= a_re :pk_lf.
b pld d

Allora si definisce val,(q) =k — L.

Ad esempio, per p =3 si ha valy(3) =1 e vals(16) = 0.

Definizione 2.2.3 (Tropicalizzazione di un polinomio). Sia p(z1,...,x,) =

N ki ki . .. .
Yol Gyt xy"" un polinomio in Kz, ..., x,] e sia val : K — Ry, una
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valutazione sul campo K. Si definisce la tropicalizzazione di p il seguente

polinomio tropicale:
N
trop(p) = @Val(ci) O] :zz:lf’"1 O...0xkn
i=1

Teorema 2.2.4 (Kapranov). Sia p(z1,...,z,) un polinomio con coefficienti
nel campo K la cui varieta V(p) € un sottoinsieme di (K \ {0})" e sia val :

K — Ryyop una valutazione su K. Allora vale

V(trop(p)) = trop(V (p))

dove
trop(V (p)) = {(val(z1), ..., val(zy)) | (z1,...,2,) € V(p)} S R".

Il teorema di Kapranov afferma che, dato un polinomio con coefficienti in
un campo K, ottenere la sua varieta algebrica e successivamente tropicaliz-
zarla mediante una valutazione e equivalente al procedimento opposto, ov-
vero tropicalizzare il polinomio e successivamente considerare I'ipersuperficie

tropicale associata. In altri termini, il seguente diagramma commuta:

polinomi a coefficienti in K — > curve algebriche C K?
valJ/ O valJ/
polinomi tropicali % > curve tropicali C R?
trop

Osservazione 2.2.5. Il Teorema 2.2.4 rappresenta una versione semplificata
del teorema di Kapranov, ottenuta imponendo l'ipotesi che la varieta V(p)
sia contenuta in (K \ {0})". La formulazione completa del teorema di Ka-
pranov si applica invece a varieta qualsiasi definite da polinomi di Laurent
in zy,...,x,. Tuttavia, poiche questa estensione richiede strumenti ulteriori,

non verra trattata in questa tesi.
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2.3 Le curve tropicali

Definizione 2.3.1 (Curva tropicale). L’ipersuperficie tropicale di un poli-

nomio in due variabili p(z,y) si chiama curva tropicale.

Mentre per i polinomi a una variabile ¢ relativamente semplice disegnare il
grafico, per quelli a due variabili la situazione si complica, poiche il grafico
¢ in R3; per visualizzare il comportamento di un polinomio p(x,y) a due
variabili, ¢ quindi utile tracciare la sua curva tropicale in R? e indicare in
ogni componente connessa di R? \ {V(p)} quale valore assume il grafico in

quella regione di piano.
Esempio 2.3.2. Consideriamo il polinomio
p(r,y) =2 @y ® 0= min{z,y,0}.

studiato in Esempio 2.1.7.

Figura 4. Ipersuperficie tropicale del polinomio p(x,y) =x @y D 0.
Esempio 2.3.3. Consideriamo il polinomio tropicale

plr,y) =00 2® y® 12?® (—Dry® 1y’
=min{0, z, y, 2z + 1, z+y— 1, 2y + 1}.
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(17—1)

2y +1

Figura 5. Curva tropicale del polinomio

plr,y)=00rdy® 1z’ e (—1)ay & 1y

D’ora in poi ci si limitera a considerare polinomi in due variabili, poiché

I’obiettivo di questa tesi e lo studio delle proprieta delle curve tropicali.

Per polinomi con molti monomi, calcolare manualmente la relativa curva
tropicale e rappresentarla nel piano secondo la Definizione 2.1.2 risulta un
procedimento piuttosto lungo e laborioso. A tale scopo, esiste un algoritmo

che consente di disegnare una curva tropicale a meno di riscalamento.

Definizione 2.3.4 (Inviluppo convesso in R™). Sia I sottoinsieme di R". Si
chiama inviluppo convesso di I 'intersezione di tutti gli insiemi convessi che
lo contengono. Equivalentemente, ¢ il piu piccolo sottoinsieme convesso di

R™ che contiene I.

Definizione 2.3.5 (Politopo di Newton). Sia p(x,y) un polinomio. Si chia-

ma politopo di Newton del polinomio p e si indica con Newt(p) I'inviluppo
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convesso in R? dell’insieme

x'y’ compare in p(z,y) con
S=4q(i,j) e’
coefficiente diverso da + oo

Definizione 2.3.6 (Politopo di Newton sollevato). Con le stesse notazioni
della Definizione 2.3.5, si chiama politopo di Newton sollevato del polinomio

p l'inviluppo convesso in R? dell’insieme
{(i,j,a;;) € Z* xR | (i,5) € S, a;; & il coefficiente del monomio x'y’ di p}
e lo indichiamo con [ — Newt(p).

Definizione 2.3.7 (Inviluppo convesso inferiore in R3). Sia K linviluppo
convesso di un sottoinsieme I di R3. Si chiama inviluppo convesso inferiore
di K linsieme dei suoi punti visti da (0,0, —oco). Piu precisamente, sono i
punti P tali per cui, tracciando una semiretta H che parte da P in direzione

negativa di z, allora H non interseca nessun altro punto del politopo.

Partendo da un polinomio p(x,y) a due variabili, si costruisce il suo politopo
di Newton sollevato | — Newt(p). Considerandone il suo inviluppo convesso
inferiore e proiettando questi punti sul piano xy, si ottiene una suddivisione

del politopo di Newton Newt(p) di partenza.
Esempio 2.3.8. Consideriamo il polinomio

plry) =08 & y& e (-laye 1y’
visto in Esempio 2.5.3. Allora si ha:

o Newt(p) = Conv{(0,0), (1,0), (0, 1), (2,0), (1,1), (0,2)}.;

o [-Newt(p) = Conv{(o,o,()), (1,0,0),(0,1,0),(2,0,1), (1,1, -1), (0,2, 1)}.
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(0,2)

0.1) (1,1)

(0,0) (1,0) (2,0)

Figura 6. Newt(p) con p(x,y) =0®z Dy d 12> P (—1)zy & 1y*

Figura 7. [-Newt(p) con p(x,y) = 0@z Dy d 122 @ (—1)zy © 1y*

(0,2)1
(0, 1)1 (1’ 1)
(0,0) (1,0) (2,0)

Figura 8. Suddivisione di Newt(p) con p(x,y) =0®z®yd 12> @ (—1)zy © 1y*.
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Definizione 2.3.9 (Grafo planare). Si definisce grafo planare un grafo G =
(V,S) immerso in R? dove V = {vy,...,v,} ¢ 'insieme dei suoi vertici e S =
{s1,...,8m} insieme dei suoi spigoli tali che questi ultimi non si intersechino
fra loro se non eventualmente nei vertici. Le componenti connesse di R? \ G

si dicono facce del grafo G.

Definizione 2.3.10 (Grafo duale). Sia G un grafo planare. Si definisce grafo
duale di G un altro grafo immerso in R* G’ = (V’,S’) i cui vertici sono in
corrispondenza biunivoca con le facce di G. Piu precisamente, in ogni faccia
di G si pone un vertice di G’ e due vertici di G’ sono connessi da uno spigolo

se le facce in G corrispondenti hanno uno spigolo in comune.

Osservazione 2.3.11. 11 grafo duale di un grafo planare non ¢ unico.

Figura 9. Esempio di un grafo duale di un grafo planare.

La suddivisione del politopo di Newton Newt(p) determina un grafo planare
in R2. Da esso si costruisce un grafo duale ponendo un vertice in ciascu-
na faccia limitata della suddivisione e tracciando spigoli perpendicolari agli
spigoli corrispondenti del grafo originario. Questo duale non coincide con
quello definito in Definizione 2.3.10, ma ne rappresenta una variante adatta-
ta al contesto. Infine, riflettendo il grafo ottenuto rispetto alla retta y = —x
si ottiene la curva tropicale associata al polinomio p(x,y) di partenza, a meno

di una riscalatura di quest’ultima.
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Esempio 2.3.12. Consideriamo il polinomio

plr,y) =08 26 y& 1*a (—lzysd 1y’

visto in Esempio 2.3.8. Partendo dalla suddivisione di Newt(p) vista in

Figura 8, st ha:

Figura 10. Grafo duale associato alla suddivisione di Newt(p) con

plz,y) =0@z®ydla? @ (—1)zy @ 1y2.

Figura 11. Riflessione del grafo duale visto in Figura 10 rispetto a y = —z.

La curva ottenuta coincide, a meno di riscalamento, con la curva tropicale
del polinomio p(z,y) =0® z® y® 122 @ (—1)zy® 1y? vista in Figura 5
in Esempio 2.5.3.

Osservazione 2.3.13. In modo del tutto analogo, puo risultare piu semplice

ruotare di 180° il politopo di Newton Newt(p) gia suddiviso e poi calcolarne
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il grafo duale come descritto in precedenza. In questo modo si ottiene diret-
tamente la curva tropicale, senza la necessita di rifletterla rispetto alla retta
Y= —x.

Osservazione 2.3.14. L’algoritmo appena descritto consente di determinare la
struttura combinatoria di una curva tropicale V' (p), ma non necessariamente
la sua forma esatta. Una volta ottenuta tale struttura, risulta relativamente
semplice, a partire dal polinomio iniziale, calcolare le coordinate dei vertici e
determinare il valore assunto dal polinomio in ciascuna componente connessa
di R?\ {V(p)}, in modo da ricostruire la curva tropicale completa. Ad esem-
pio, se si lascia tendere y a 400, il polinomio di partenza si comporta come
un polinomio in una sola variabile x. Infatti, tutti i termini che contengono
y tendono a 400 e non possono quindi contribuire al minimo: rimangono
pertanto solo i monomi in z. Ne consegue che, nelle componenti connesse
di R?\ {V(p)} che si estendono verso lalto, il valore del polinomio dipen-
de unicamente dalla variabile z. In tali regioni, al diminuire di z (cioé per
x — —00), il grado della variabile z nei monomi che realizzano il minimo cre-
sce progressivamente. In modo del tutto analogo, nelle componenti connesse
di R\ {V(p)} che si estendono verso destra (cio¢ per & — +00), il polinomio
assumera valori che dipendono soltanto dalla variabile y. In queste regioni,
al diminuire di y (cio¢ per y — —o0), il grado della variabile y nei monomi
che realizzano il minimo aumenta. Conoscendo i valori assunti dal polinomio
nelle diverse componenti connesse di R? \ {V(p)}, ¢ semplice determinare le
coordinate dei vertici: e sufficiente uguagliare i monomi che si incontrano in

un dato vertice e risolvere il sistema di equazioni ottenuto rispetto a = e y.
Esempio 2.3.15. Consideriamo il polinomio

p(z,y) =10 (-2)y @ 1lx ©y* ® loy ® 227
Allora si ha:

o Newt(p) = Conv{(o,o), (1,0), (0, 1), (2,0), (1,1), (0,2)}.,-

o [-Newt(p) = Conv{(o,o, 1),(1,0,1), (0,1, -2),(2,0,2), (1,1,1), (0,2,0)}.
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Considerando soltanto le facce inferiori di | — Newt(p), proiettandole sul
piano xy e, in base a Osservazione 2.3.13, ruotando di 180° la suddivisione

di Newt(p), si ottiene:

/

Figura 12. Suddivisione del politopo di Newton ruotato di 180°(sopra) e
grafo duale corrispondente (sotto) per p(x,y) = 1®(—2)y®ledy*®lryH 2.

Osserviamo che, nella regione in alto a destra, il polinomio assume valore 1,
poiché per x,y che tendono a +oo tutti i monomi che contengono almeno una
delle due variabili tendono a +00, quindi non possono realizzare il minimo.
In base a Osservazione 2.3.14, nelle due regioni che si estendono verso de-
stra, il polinomio dipende soltanto dalla variabile y; di consequenza, esso
assume rispettivamente i valori y — 2 e 2y. Analogamente, nelle regioni che
st estendono verso l’alto, il polinomio dipende solo da x e i valori corrispon-
denti sono x + 1 e 2x + 2.

In conclusione, si determinano le coordinate dei vertici come descritto in

Osservazione 2.3.1/ e si ottiene la sequente curva tropicale:
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T+ 1 1

2 + 2

Figura 13. Curva tropicale esatta del polinomio

plr,y) =10 (=2)y ® 1o @ y? ® lay ® 222

Cerchiamo ora di spiegare perche tale algoritmo funziona: I'obiettivo & com-
prendere in che modo il duale della suddivisione del politopo di Newton
permetta di ricostruire la struttura combinatoria della curva tropicale deter-
minata da p. In particolare, si vuole mostrare che ciascun vertice della suddi-
visione corrisponde a un monomio che domina nel minimo e che, qualora due
monomi raggiungano simultaneamente tale minimo, i vertici corrispondenti
nel politopo di Newton sollevato risultano uniti da uno spigolo. In questo
modo, la sua proiezione determina un lato della suddivisione di Newt(p) che

risulta dualmente associato ad uno spigolo della curva tropicale. Sia quindi
p(@,y) = minfa;; + iz + jy}
irj
il polinomio tropicale in questione e per ogni coppia di indici (i, j) sia

Ui,j = (i7j>ai,j) € Rg
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il punto corrispondente al monomio a; ; + iz + jy. Con questa notazione, il
politopo di Newton sollevato | — Newt(p) ¢ dato dall’inviluppo convesso dei

punti v; ;, ossia

N =1 — Newt(p) = conv{v; ;} C R®.

Fissato un punto (7,y) € R?, definiamo la funzione lineare
Lizg(u,v,w) =uZ +vy+w.
Si osserva che per ogni (i, j) risulta
Lag)(vig) = Liz g6 5, aig) = 1T+ 5§ + @i,
ossia esattamente la valutazione del monomio a; ; + iz + jy nel punto (Z,7).

Ne consegue che

p(zT,9) = it ijl)l{az‘,j +iT +jy} = 1(1111]1)1 Lz5)(vij)-

Pertanto, affermare che in (Z,y) il minimo sia raggiunto esattamente da
due monomi distinti equivale a dire che la funzione L5 realizza il proprio
minimo su IV precisamente nei due vertici v,y € v, 4 corrispondenti ai monomi

in questione.

Allora l'insieme

F:={pe N|Lzg(p) =m} dove m = rprg} L5 (p),

¢ una faccia di N supportata dall'iperpiano {Lzgz = m}, nel senso che
tale iperpiano interseca il politopo N esattamente nell’insieme F' e che N
risulta contenuto interamente nel semispazio {L(z 5 > m}. In altri termini,
{L@zg = m} costituisce un iperpiano di supporto di N, e la parte di N su

cui esso si appoggia coincide precisamente con la faccia F'.

Se i soli vertici di N che realizzano il minimo di Lz 3 sono vgy € v.4, allora,

poiché Lz g ¢ lineare, tutte le combinazioni convesse di tali vertici

conv{vap, Ved} = {)\ Vap + (L = X) Vg } 0< A< 1}
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realizzano anch’esse tale minimo. Ne segue che il segmento che unisce v,y e
U.,q coincide con la faccia F' del politopo N. La condizione che questi siano
gli unici vertici in cui L(z gy raggiunge il minimo implica che nessun altro v; ;
appartenga a questa faccia, cosicché F' ¢ effettivamente uno spigolo (faccia
di dimensione 1) di V.

Tale faccia appartiene in particolare all’inviluppo inferiore di N e, mediante
la proiezione

(i, 4, aig) — (i, 7),
induce esattamente un lato della suddivisione di Newt(p). Lo spigolo della
curva tropicale duale a tale lato e precisamente quello che separa le due
regioni di R? in cui il polinomio assume, rispettivamente, i due monomi

lineari considerati.

Un ragionamento del tutto analogo vale nel caso in cui il minimo sia realiz-
zato da tre monomi distinti: la funzione Lz g assume in tal caso il proprio
minimo in tre vertici di N, e la corrispondente faccia F' € un triangolo. Dopo
la proiezione (i,7,a;;) — (i,7), tale faccia diventa una 2-cella finita della
suddivisione di Newt(p) e corrisponde dualmente a un vertice della curva
tropicale, cio¢ a un punto in cui il minimo e realizzato simultaneamente da

almeno tre monomi distinti.

In sintesi, la dualita puo essere descritta nel modo seguente:

e a ciascun vertice della suddivisione di Newt(p) corrisponde un monomio
che domina nel minimo che definisce il polinomio, e quindi una regione

di R? in cui tale monomio ¢ 'unico attivo;

e a ciascun lato finito della suddivisione corrisponde uno spigolo della
curva tropicale, lungo il quale il minimo ¢ raggiunto esattamente da

due monomi distinti;

e a ciascuna 2-cella finita della suddivisione corrisponde un vertice della
curva tropicale, dove il minimo ¢ realizzato simultaneamente da almeno

tre monomi.
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2.4 Condizione di bilanciamento delle curve
tropicali

L’algoritmo per determinare una curva tropicale in R?, descritto nella sezio-
ne precedente, consente di assegnare in modo naturale dei pesi agli spigoli
della curva, i quali rivestiranno un ruolo fondamentale nella definizione di

molteplicita di un punto di intersezione.

Definizione 2.4.1 (Peso di uno spigolo). Sia V(p) una curva tropicale e
siano $i,...,s, 1 suoi spigoli. Come visto in precedenza, ciascuno di essi
corrisponde in modo biunivoco a uno spigolo della suddivisione del politopo
di Newton Newt(p). Allora, per ognii € {1,...,n}, sidefinisce il peso w; di s;
come la lunghezza reticolare dello spigolo corrispondente nella suddivisione di

Newt(p), ossia il numero di punti di Z? attraversati da tale spigolo diminuito
di 1.

Definizione 2.4.2. (Vettore integrale primitivo di uno spigolo) Sia V(p) una
curva tropicale e siano s, ..., s, 1 suoi spigoli. Per ogni i € {1,...,n}, fissato
un punto P sullo spigolo s;, si definisce vettore integrale primitivo u; associato
a s; come il vettore che, una volta traslato P nell’origine, raggiunge la prima
intersezione tra la retta contenente s; e il reticolo Z2. In altre termini, ¢ il
vettore direzionale dello spigolo, normalizzato in modo che le sue coordinate

siano intere e coprime tra loro.

Osservazione 2.4.3. Per ogni spigolo di una curva tropicale, fissato un punto
P su di esso, esistono due possibili vettori integrali primitivi: infatti, se
u = (u1,us) & un vettore integrale primitivo associato ad uno spigolo, allora
anche —u = (—uy, —uz) lo &, in quanto soddisfa anch’esso la Definizione 2.4.2.
Nel caso particolare in cui P sia un vertice della curva tropicale, la scelta del
vettore integrale primitivo diventa univoca: infatti, traslando P nell’origine e
tracciando la semiretta uscente da P nella direzione dello spigolo, si seleziona

il vettore che raggiunge la prima intersezione tra tale semiretta e il reticolo
72,
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Osservazione 2.4.4. La definizione di vettore integrale primitivo associato a
uno spigolo non dipende dalla scelta del punto P su di esso, ma unicamente

dalla sua pendenza.

Esempio 2.4.5. Consideriamo il polinomio
p(z,y) =10 (-2)y @ 1lx ©y* ® loy ® 227

studiato in Esempio 2.3.15. Siano{si,...,s7} gli spigoli di' V (p) e{s},..., st}

gli spigoli corrispondenti della suddivisione di Newt(p).
o Tutti v pest w; sono uguali a 1, tranne w; che € pari a 2.

o [ vettori integrali primitivi sono

Uy = Ug = (:I:l,O), Ug = Uy = (O, :i:l), Uz = uy = (:i:l, :i:l), Uy = (:i:l, :|:2)

S2
S4

51

51 Ss

56
S7

Figura 14. Suddivisione di Newt(p) (a sinistra) e curva tropicale V (p) (a
destra) con rispettivi spigoli con p(z,y) = 1@ (=2)y & 1o @ y* ® 1oy © 222

S6

Notiamo che per il polinomio visto in Esempio 2.4.5 valgono le seguenti

condizioni di bilanciamento nei vertici:

e Consideriamo i tre spigoli sy, s9 € s3 incidenti nel vertice (0,3) con i loro

rispettivi pesi e vettori integrali primi. Allora vale:

’LU1U1+’LU2U2—|—U)3U3:1(1,0)+1(0,1)+1(—1,—1):(0,0)
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e Analogamente, nel vertice (-1,2) vale:

w3 Uz +wg-ug +ws-us =1-(1,1)4+1-(0,1)+1-(=1,-2) = (0,0).

e Infine, nel vertice (—3,—2) si ha:

w5u5—|—w6u6+w7u7:1(1,2)+1(1,0)+2(—1,—1):(0,0)

Proposizione 2.4.6 (Condizione di bilanciamento). Sia V(p) una curva
tropicale e sia P un suo vertice nel quale incidono gl spigoli sy, ..., s della

curva. A ciascun spigolo s; sono associati:
® un peso intero positivo w;,

e un vettore integrale primitivo u; € Z* che indica la direzione dello

spigolo e che é univocamente determinato per Osservazione 2.4.35.

Allora é soddisfatta la sequente condizione di bilanciamento nel vertice P:

k
i=1

Dimostrazione. Si e visto, nell’algoritmo per la costruzione di una curva tro-
picale, che esiste una corrispondenza biunivoca tra i vertici della curva tro-
picale e i poligoni della suddivisione del politopo di Newton. Consideriamo
quindi il poligono della suddivisione di Newt(p) associato a P. Poiche si
tratta di un poligono in R? i cui vertici hanno coordinate intere, i suoi lati
possono essere interpretati come vettori in Z2.

Indicando tali vettori con vy, ..., v, il poligono risulta chiuso e orientato, e

dunque la somma dei suoi lati e nulla. In formula, si ha:

k

ZUZ' = (0,0)

i=1

Poiche ad ogni lato v; del poligono corrisponde uno spigolo s; di V(p) inci-

dente nel vertice P e ad esso ortogonale, dalla Definizione 2.4.2 segue che la
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direzione di u; e perpendicolare a quella di v;. Piu precisamente, utilizzando
la Definizione 2.4.1, si ha che

vi:wi-uiL = Zvi:Zwiuj:(0,0)

k

=1 =1

dove u;" ¢ ottenuto ruotando u; di 90°.

Applicando la rotazione inversa, che non altera il fatto che la somma dei

vettori sia nulla, si ottiene

k

Zwi-ui = (0,0).

=1



Capitolo 3

Il teorema di Bézout

3.1 Intersezione di curve tropicali e moltepli-

cita
Definizione 3.1.1 (Grado di una curva tropicale). Si dice che una curva
tropicale V(p) ha grado d se il suo politopo di Newton Newt(p) ¢ il triangolo
di vertici (0,0), (d,0) e (0,d). Equivalentemente, V(p) & di grado d se il poli-
nomio tropicale p(z,y) che la definisce & di grado d e contiene con coefficienti
d

non banali (cio¢ diversi da +00) il termine costante e i monomi ¢ e y?.

Definizione 3.1.2 (Curva tropicale a supporto pieno). Sia V(p) una curva
tropicale di grado d. Si dice che V(p) e a supporto pieno se tutti i punti
del reticolo Z?* contenuti nel politopo di Newton Newt(p) compaiono come

vertici della sua suddivisione.

Osservazione 3.1.3. Poiche in una curva tropicale a supporto pieno tutti i
punti di Z? compaiono come vertici della suddivisione di Newt(p), tutti gli
spigoli di tale suddivisione hanno lunghezza pari a 1. Per la Definizione 2.4.1,

cio implica che ogni spigolo della curva tropicale ha peso 1.

Osservazione 3.1.4. La suddivisione di Newt(p) associata a una curva tropi-
cale di grado d a supporto pieno presenta esattamente d spigoli per ciascun

lato del politopo. Poiche a ciascuno di essi corrisponde un ramo infinito della

33
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curva, V' (p) possiede esattamente d raggi infiniti in ognuna delle tre direzioni
standard: d in direzione (1,0), d in direzione (0, 1) e d in direzione (—1, —1),
cioe lungo la retta y = x in discesa.

Osservazione 3.1.5. Una condizione necessaria, ma non sufficiente, affinche
una curva tropicale di grado d sia a supporto pieno e che il polinomio che
la definisce abbia coefficienti non banali per tutti i monomi compatibili col
grado, ossia nessun coefficiente uguale a +00. Infatti, se esistesse un monomio
2y’ con i+ 5 < d con coefficiente 400, il punto (7, ) non potrebbe comparire
come vertice della suddivisione di Newt(p), poiché non sarebbe nemmeno un

vertice del politopo di Newton sollevato corrispondente.

Esempio 3.1.6. Il polinomio
plry) =08 28 y& l*® (laye 1y’

studiato in Esempio 2.3.12 ¢ un polinomio tropicale di grado 2 a supporto

pieno.

Esempio 3.1.7. Il polinomio
p(z,y) =1@ (-2)y ® 1z @ y* ® lay ® 22°.

studiato in Esempio 2.3.15 costituisce un controesempio al fatto che la pre-
senza di soli coefficienti non banali sia una condizione sufficiente affinche la
curva tropicale sia a supporto pieno. Sebbene nessun coefficiente sia pari a
+00, la curva tropicale non é a supporto pieno: infatti il punto (1,1) non
compare come vertice della suddivisione di Newt(p) mostrata in Figura 12.
In Figura 13 si nota inoltre che, pur trattandost di un polinomio di grado 2,
compare un unico raggio infinito in direzione (—1, —1), con peso pari a 2, in

accordo con quanto discusso in Osservazione 3.1.3 e Osservazione 3.1.4.

Definizione 3.1.8 (Intersezione trasversale). L’intersezione di due curve
tropicali C' e D si dice trasversale se il punto di intersezione P non e un
vertice di nessuna delle due curve e, localmente in P, gli spigoli di C' e D
che si intersecano in P hanno direzioni date da vettori integrali primitivi

linearmente indipendenti.
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Figura 15. Intersezione trasversale tra due curve tropicali di grado 1

Definizione 3.1.9 (Intersezione non trasversale). L’intersezione di due curve
tropicali C' e D si dice non trasversale se il punto di intersezione P & un
vertice di una delle due curve (o di entrambe), oppure se in un intorno di
P due spigoli delle curve coincidono per un tratto e hanno direzioni date da

vettori integrali primitivi paralleli.

Figura 16. Intersezione non trasversale tra due curve tropicali di grado 1 e
2

Definizione 3.1.10 (Molteplicita di un punto di intersezione trasversale).

Con le stesse notazioni di Definizione 3.1.8, si chiama molteplicita tropicale
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di P

mOltrop (P, cn D) = WowWp |det(uc, uD)’

To X
det ¢ b
Yo Yp

= WcwWp |l‘cyD - $DyC‘-

= WcWp

dove we e wp sono i pesi e uc = (¢, yc) e up = (xp,yp) 1 vettori integrali
primitivi degli spigoli rispettivamente delle curve C' e D che si intersecano

nel punto P.

Osservazione 3.1.11. Per quanto detto in Osservazione 2.4.3, dato un punto
di intersezione trasversale P, i vettori integrali primitivi associati agli spigoli
di C' e D non sono univocamente determinati, poiché possono essere scelti
sia uc e up sia i loro opposti —uc e —up. La definizione di molteplicita non

dipende da questa scelta, poiche vale
det(uc,up) = det(—uce, —up) = — det(uc, —up) = — det(—uc, up)

e nella definizione interviene il valore assoluto. Pertanto il verso dei vettori
integrali primitivi non influisce sul risultato.

Per convenzione, si scelgono i vettori integrali primitivi con componente x
positiva; nel caso di vettori verticali (cio¢ con componente x = 0), si scelgono

quelli con componente y positiva.

Osservazione 3.1.12. La Definizione 3.1.10 di molteplicita puo essere appli-
cata solo quando il punto di intersezione ¢ trasversale.
Se P invece € un punto di intersezione non trasversale, si possono verificare

due problemi:

e Se P ¢ un vertice di una delle due curve, ad esempio di C, allora su P
incidono piu spigoli di C. Di conseguenza, la scelta del vettore integrale

primitivo u¢c da utilizzare in Definizione 3.1.10 non ¢ univoca.

e Se due spigoli coincidono per un tratto, i loro vettori integrali primitivi
sono linearmente dipendenti; in tal caso si ha ‘det(uo, U D)‘ = 0 e quindi
moltyop (P, CN D) = 0.
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Esempio 3.1.13. Consideriamo la curva tropicale C' di grado 2 studiata in

Esempio 2.3.15 e la curva tropicale D di grado 2 descritta dal polinomio
po(,y) =050 @y ® 12° ® (—1)zy ® 1y*.

e calcoliamo le molteplicita dei loro punti di intersezione trasversale.

Py

P,

Py

Figura 17. Intersezioni delle curve descritte dai polinomi
po(r,y) =1® (-2)y @ le ®y* © loy © 22° ¢
po(r,y) =050 20y @ 12? @ (—1)ay © 1y?.

St osservi che tutti gli spigoli delle due curve che concorrono nei quattro
punti di intersezione hanno peso pari a 1. Di consequenza, nel calcolo delle

molteplicita e sufficiente quardare esclusivamente i vettori integrali primitivi.

e Pi:uc=(1,1),up = (0,1) = moltye, (P, CND) =[1-0-1-1| =1
o Po:ue = (1,2),up = (0,1) = moltyey, (P, CND) =|1-1-2-0] =1
o Py:uc=(1,2),up = (1,1) = moltye, (P, CND) =[1-1-2-1| =1
o Py uc = (1,0),up = (1,1) = moltye,(Py, CND) =[1-0-1-1| =1
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3.2 1l teorema di Bézout tropicale

Teorema 3.2.1 (Bézout tropicale). Siano C' e D due curve tropicali di grado

rispettivamente ¢ e d che si intersecano trasversalmente. Allora vale

> moltyep (P, €N D) = cd.

PeCND

In altre parole, le due curve si intersecano in totale in cd punti, ognuno dei

quali contato con la loro molteplicita.

Esempio 3.2.2. Consideriamo le due curve tropicali C' e D di grado rispet-

tivamente 2 e 1 descritte dai polinomi

po(z,y) =00roy®la’ @ (-)ry© 1y*, pp(r,y)=10r0yY.

D

Figura 18. Intersezione delle curve descritte dai polinom:

poe(r,y) =000y @12’ @ (~Day @ 1y* epp(r,y) =10z Sy,

Poiché le curve st intersecano in un unico punto di intersezione P, il teorema

di Bézout si riduce a:

moltyop (P, CND) = wewp |zcyp —xpyc| =1-1]1-1=1- (1) =2=2-1
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Esempio 3.2.3. Consideriamo le due curve C' e D, entrambe di grado 2,
wiste in Esempio 3.1.13. Esse soddisfano il teorema di Bézout tropicale;
infatti

4
> moltyep (P, CND) =4=2-2

=1

Dimostrazione. La dimostrazione del teorema di Bézout tropicale puo essere

articolata in cinque passaggi distinti:

e Step 1: Supponiamo inizialmente che C' e D siano curve tropicali a
supporto pieno di grado rispettivamente ¢ e d e che si intersechino
esclusivamente lungo i loro raggi infiniti orizzontali e verticali. Per Os-
servazione 3.1.3 e Osservazione 3.1.4, esse hanno rispettivamente c e d
raggi infiniti orizzontali con vettore integrale primitivo (1,0) e altret-
tanti verticali con vettore integrale primitivo (0, 1), tutti di peso 1.
Nel caso in cui l'intersezione avvenga esclusivamente lungo tali raggi,
per quanto detto sopra si ottengono esattamente cd punti di interse-

zione, ciascuno con moltepliticita pari a 1: infatti i pesi degli spigoli

0 1
det =1.

coinvolti sono unitari e inoltre vale

10
det =

Ricapitolando, si ha

ICND|=cd e VP eCND moltye,(P,CND) =1

da cui

> moltye, (P, €N D) = cd.

prPeCnND
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e e e e e e e e e — =

Figura 19. Esempio di intersezione lungo i raggi infiniti orizzontali e

verticali di due curve tropicali a supporto pieno di grado c =3 ed = 2.

Step 2: Manteniamo l'ipotesi precedente secondo cui C' e D si interse-
cano esclusivamente lungo i loro raggi infiniti orizzontali e verticali, ma
ora rimuoviamo la condizione di supporto pieno. In particolare, senza
perdita di generalita, assumiamo che la curva non a supporto pieno sia
C. Per Osservazione 3.1.4, una curva tropicale di grado ¢ a supporto
pieno possiede esattamente ¢ raggi infiniti in direzione (1,0) e ¢ in di-
rezione (0, 1), tutti di peso 1.

E’ importante osservare che l'ipotesi di supporto pieno e piu forte della
sola condizione di avere ¢ raggi infiniti orizzontali e ¢ verticali: esistono
infatti curve che, pur non essendo a supporto pieno, posseggono co-
munque tale configurazione. Un esempio ¢ dato dalla curva descritta

dal polinomio di grado 2
p(z,y) =10 (-2)y ® lz @ y* ® lay @ 22°.

studiato in Esempio 2.4.5. In tale situazione, se le due curve C' e D

continuano a intersecarsi unicamente lungo tali raggi, ci si riconduce
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direttamente al caso descritto nello Step 1.

Rimane dunque da considerare il caso in cui C' perda effettivamen-
te uno dei questi raggi. Senza perdita di generalita, supponiamo che
venga rimosso un raggio orizzontale in direzione (1,0), in modo che la
curva risultante abbia solo ¢ — 1 raggi orizzontali. Nella suddivisione
di Newt(pc), la rimozione di un raggio orizzontale corrisponde ad eli-
minare uno spigolo su uno dei due cateti del politopo di Newton, il cui
numero passa cosi da ¢ a ¢ — 1. Di conseguenza, un altro spigolo ap-
partenente allo stesso cateto aumenta la sua lunghezza reticolare di 1;
in termini tropicali, questo si traduce in un incremento di 1 del peso di
un altro raggio orizzontale di C'. In sintesi, I’eliminazione di un raggio

orizzontale di C' comporta due effetti:
— la diminuzione di d del numero di punti di intersezione, poiche il
raggio rimosso incontrava esattamente d raggi verticali di D.

— l'incremento di 1 delle molteplicita di altrettanti d punti di in-

tersezione, dovuto all’aumento del peso di un raggio orizzontale

rimasto.
C !
: ! 1 1
! 4
1
1 PRs
Jomm7” 1 1
e 4
/. 7/
PR
i 1
: 1 1
4
,I
4
/, 4
4 4
,I
-——
I, !
e ! D
,l ,,— _____
,’ e

Figura 20. Situazione precedente alla rimozione del raggio infinito

orizzontale di C' (in rosso). A destra, la suddivisione di Newt(pc), con il

relativo spigolo corrispondente anch’esso evidenziato in rosso.
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Figura 21. Situazione successiva alla rimozione del raggio infinito

orizzontale di C'. A destra, la suddivisione modificata di Newt(pc).

Le due variazioni si compensano: il numero totale di intersezioni, con-

tate con le molteplicita tropicali, rimane invariato e continua a valere

> moltye, (P, €N D) = cd.

PeCnD

Ripetendo il discorso per ogni raggio eventualmente mancante in en-
trambe le curve, si conclude che, anche nel caso in cui C' e D non siano
a supporto pieno, purche abbiano grado rispettivamente c e d e che si
intersechino esclusivamente lungo raggi orizzontali e verticali, il numero

totale di intersezioni con molteplicita ¢ ancora pari a cd.

Partendo da due curve tropicali C' e D generiche, fissiamo C' e trasliamo D
nel piano; indichiamo con Dy la traslata di D nel piano al tempo ¢ in modo
che Dy = D.

Allora 'obiettivo consiste nel mostrare che esiste sempre una traslazione nel
piano della curva D in modo tale che, al termine del movimento, le curve
C e Dy si intersechino esclusivamente lungo i loro raggi infiniti orizzontali e

verticali e che, durante questa traslazione, possono comparire sia intersezio-
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ni trasversali sia intersezioni non trasversali, ma la somma delle rispettive

molteplicita rimane invariata per 'intera durata del processo.

e Step 3: Costruiamo innanzitutto una traslazione di D che minimizzi il
numero di intersezioni non trasversali con C. La posizione della curva
D; & univocamente determinata dalle coordinate di uno dei suoi punti.
Infatti, fissato () un vertice della curva, conoscendo le sue coordinate
al tempo ¢, si possono ricavare le coordinate di tutti gli altri punti della
curva. Ad esempio, se ) si trova inizialmente in (0,0) e al tempo ¢
risulta in (—1,2), allora 'intera curva al tempo ¢ e stata traslata di 2
unita verso ’alto e di 1 unita verso sinistra.

L’intersezione tra due curve C' e D, € non trasversale quando si verifica

una delle seguenti situazioni:

— un’intersezione vertice-con-vertice;

— un’intersezione vertice-con-spigolo.

Poiche ogni curva tropicale ha un numero finito di vertici, anche il
numero di possibili intersezioni vertice-con-vertice ¢ finito; questo ga-
rantisce che esiste sempre una traslazione della curva D che evita del
tutto questo tipo di intersezioni.

Sia ora () un vertice di D. Per quanto visto prima, se si trasla D nel
piano, la posizione di D; e univocamente determinata dalle coordinate
di Q;. Se, per un certo istante t, () cade sulle coordinate di un punto
appartenente alla curva C' (piu precisamente su un punto interno di
uno spigolo di ('), allora l'intersezione tra C' e D, & non trasversale,
poiche si realizza un’intersezione vertice-con-spigolo. In questo senso,
ogni punto di C' rappresenta una possibile posizione di ); che da luogo
a un’intersezione non trasversale tra le due curve.

Ripetendo lo stesso ragionamento per ciascun vertice della curva D, si
ottiene che il luogo di tutte le possibili intersezioni vertice-con-spigolo
¢ un’unione finita di copie di C, una per ogni vertice della curva D.

Poiche la traslazione di D ¢ determinata dalla traiettoria di un singolo
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vertice, ¢ possibile descrivere le intersezioni degli altri vertici di D con
gli spigoli di €' in funzione della posizione di ;. Ne segue che esiste un
cammino continuo di @); tale che, lungo questo movimento, si verifichi
solo un numero finito di intersezioni vertice-con-spigolo. Indichiamo i

corrispondenti istanti di tempo con {t1,...,%}.

Step 4: In ogni intervallo temporale (¢;,t;41), le curve C' e D si in-
tersecano solo in modo trasversale. Di conseguenza, durante questo
movimento non si creano ne si eliminano punti di intersezione; il lo-
ro numero rimane costante. Inoltre, anche le loro molteplicita restano
invariate, poiche ne i pesi ne i vettori integrali primitivi degli spigoli

subiscono modifiche.

Step 5: Rimane da analizzare il comportamento delle curve nei pressi
degli istanti ¢;. In particolare, vogliamo mostrare che, pur variando il
numero dei punti di intersezione e le relative molteplicita prima e dopo
t;, la somma totale delle molteplicita rimane invariata. In altri termini,

vogliamo dimostrare che
Z mOlttrop (P, cn Dtifdt) = Z mOlttrop (P7 cn Dti+dt) .
P P

Fissato ¢, all’istante ¢; ci sono due scenari possibili:

1. un vertice di C' coincide con un punto interno di uno spigolo di
Dti;

2. un vertice di Dy, coincide con un punto interno di uno spigolo di

C.

Poiche i due casi sono simmetrici, possiamo senza perdita di generalita
studiare il primo caso e indicare con P il punto in questione. Denotiamo
con £ lo spigolo della curva Dy,, con vettore integrale primitivo pesato
w, e con L la retta direzionale di F. Siano infine uy,...,u, e vy,..., 0,
i vettori integrali primitivi pesati degli spigoli di C' incidenti in P,

appartenenti rispettivamente ai due lati di L.



3.2 Il teorema di Bézout tropicale

45

Per Osservazione 3.1.11, la molteplicita di un punto di intersezione non
dipende dal verso scelto per i vettori integrali primitivi relativi agli
spigoli incidenti. In questo caso quindi possiamo assumere che i vettori
uy e v; siano scelti uscenti dal vertice PP e orientati radialmente verso

I’esterno.

Figura 22. Intersezione non trasversale delle curve C' e Dy,.

Le due rette tratteggiate parallele ad L indicano le intersezioni trasver-
sali tra la curva C' e le curve Dy,_q e Dy, .4 rispettivamente.

Quindi, si ha che:

— al tempo t; — dt la somma delle molteplicita dei punti di interse-

zione &
n

Z|det(uk, w).

k=1

— al tempo t; + dt la somma delle molteplicita dei punti di interse-

zione €

S ldet(vy, w).
j=1
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Vogliamo mostrare che queste due quantita sono uguali.

Per la condizione di bilanciamento della curva C' nel vertice P, vale

Zuk + Zvj:0
k=1 Jj=1

da cui, usando le proprieta del determinante, si ha

0 = det (Z ug + Zvj, w) = Z det (ug, w) + Zdet(vj,w) =
k=1 j=1 k=1 Jj=1

n m
== Zdet(uk, w)| = Zdet(vj,w) :
k=1 j=1
La retta L divide il piano in due semipiani: i vettori uq,...,u, si tro-
vano in uno di essi, mentre i vettori vy, ..., v, appartengono all’altro.

Poiche w giace sulla retta L, i determinanti det(uy,w) hanno tutti lo
stesso segno, mentre i determinanti det(v;, w) hanno segno opposto.

Di conseguenza, il valore assoluto della somma dei det(uy, w) coincide
con la somma dei loro valori assoluti, e la stessa proprieta vale anche

per i det(v;, w). Pertanto si ottiene

n m

> |det(ug, w)| =Y |det(vy, w)].

k=1 j=1

In conclusione, possiamo trasformare due curve con intersezioni trasversali
in posizione generale in due curve che si intersecano solamente lungo i raggi
orizzontali e verticali, senza modificare il numero di intersezioni contate con

molteplicita. Pertanto si ha

> moltyep (P, €N D) = cd.

PeCnD
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3.3 Una dimostrazione diversa di Bézout tro-
picale

Esiste anche un modo piu diretto per dimostrare il teorema di Bézout tro-
picale, basato su una definizione alternativa, ma equivalente, di molteplicita

di un punto di intersezione.

Proposizione 3.3.1. Siano C e D due curve tropicali definite rispettivamen-
te dai polinomi tropicali pc(x,y) e pp(x,y) e supponiamo che si intersechino
esclusivamente in modo traversale. Allora la loro unione C'U D coincide con

la curva tropicale associata al polinomio tropicale po(z,y) ® pp(x,y).

Dimostrazione. Denotiamo con h(z,y) = pc(x,y) ©pp(z,y) e sia H la curva

tropicale descritta da h. Se
po(z,y) = m}n{az‘ +kinr +kipyt e pp(r,y) = mjin{a; + Ko+ Koyt

il loro prodotto tropicale & definito, come funzione, dalla somma usuale dei

due polinomi, ovvero

h(z,y) = pc(z,y) © pp(z,y) = pe(x,y) + po(r,y)
= min{al- + ki71.’lll' + k‘@gy} + mln{G; + k;711' + k;ﬂy}-
7 J

Espandendo la somma dei due minimi, si ottiene la seguente espressione:

h(x,y) = min{(a; + a}) + (kix + k) )z + (k2 + K o)y}

17]

L’obiettivo consiste nel mostrare che H = C U D.

e Sia (xg,y0) ¢ CUD. Allora (z¢,yo) ¢ C e (zo,y0) ¢ D. Cio significa che,
per entrambi i polinomi, il minimo ¢ raggiunto da un unico monomio e
quindi essi sono differenziabili in (g, yo). Poiche h(x,y) ¢ la somma dei
due polinomi, risulta anch’esso differenziabile in (g, yo), cioe (o, yo) ¢
H.

Ne segue che H C CU D.
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e Sia ora (xg,yo) € C' U D. Allora (zg,yy) € C oppure (xq,yo) € D.
Se (zg,y0) € C, ci sono almeno due monomi di pc che realizzano il

minimo in (xg, yo), cioe vale

(o, Yo) = as + ks 170 + ksoyo = ar + k120 + ki 2Y0.
Poiche si ha
pp(xo,y0) = a, + k;@l'o + k;gyo

il minimo in A e raggiunto da due suoi monomi diversi, cioe

h(wo,y0) = (as + a;.) + (ks + k1) o + (ko2 + K.5) vo
= (ar +a,) + (key + k1) 20 + (k2 + K,.5) vo-

Ne segue che (zg,y0) € H.
Se (xg,yo) € D, il discorso ¢ analogo. Quindi CUD C H.

Per la doppia inclusione, vale H = C U D. O

Osservazione 3.3.2. Per la Proposizione 3.3.1, il grado di C'U D e pari alla

somma dei gradi dei due polinomi, ovvero deg(pc) + deg(pp).

Come visto in precedenza, i vertici di una curva tropicale corrispondono ai
poligoni della suddivisione del politopo di Newton associato al polinomio che
la definisce. Nel caso della curva C'U D, i vertici possono suddividersi in 3

categorie:
e vertici gia presenti in C', duali ai triangoli nella suddivisione di Newt(p¢);
e vertici gia presenti in D, duali ai triangoli nella suddivisione di Newt(pp);

e nuovi vertici, che corrispondono ai punti di intersezione trasversale tra

CeD.

Dai primi due casi segue che la suddivisione di Newt(pc ® pp) contiene, co-
me sottosuddivisioni, copie delle suddivisioni di Newt(pc) e di Newt(pp).
I nuovi poligoni che compaiono nella suddivisione di Newt(pc ® pp) corri-

spondono invece ai punti di intersezione trasversale tra C' e D.
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Tali poligoni devono essere necessariamente dei parallelogrammi. Infatti,
poiche i vertici di una curva tropicale corrispondono ai poligoni della suddi-
visione del politopo di Newton, gli spigoli che incidono in un vertice corrispon-
dono ai lati del suo poligono duale. Allora, se P € un punto di intersezione
tra C'e D, in C'U D convergono esattamente 4 spigoli in tale punto (2 pro-
venienti da C' e 2 da D). Di conseguenza, il poligono nella suddivisione di

Newt(pc ® pp) duale a P possiede 4 lati.

Definizione 3.3.3 (Molteplicita di un punto di intersezione trasversale).
Sia P un punto di intersezione trasversale tra le curve tropicali C' e D. Si
chiama molteplicita tropicale di P ’area del parallelogramma duale a P nella

suddivisione di Newt(pc ® pp).

Osservazione 3.3.4. La Definizione 3.3.3 di molteplicita tropicale di un punto
di intersezione ¢ del tutto analoga alla Definizione 3.1.10. Infatti, indicando
con v; e vy 1 vettori che descrivono i lati del parallelogramma duale al pun-
to di intersezione P, l'area di tale parallelogramma ¢ data da |det(vy,ve)].
Poiche compare il valore assoluto del determinante, la scelta del verso di v
e di v, non influisce sul risultato.

Gli spigoli della curva che incidono in P sono ortogonali ai lati del suo poli-
gono duale; supponiamo quindi, senza perdita di generalita, che v; sia duale
allo spigolo di C' passante per P e vy duale allo spigolo di D passante per P.
Per la Definizione 2.4.1 e Definizione 2.4.2, tali vettori possono essere scritti

come
1 1
V] = Wolg, Vg = WplUp,

dove we e wp i pesi degli spigoli che si intersecano in P, mentre ug e ug, si

ottengono ruotando rispettivamente i vettori integrali primitivi uc e up di
90° (la scelta del verso di rotazione ¢ irrilevante).

Da cio segue che

|det(vy, v2)| = |det(weug, wpup)| = wewp|det(us, up)| = wewp|det(uc, up)|.
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Esempio 3.3.5. Consideriamo le curve tropicali C' e D descritte dai polino-

mi
po(z,y) =0@z@y®12°® (—Dazy @ 1y*, pp(r,y) =100y,

gia analizzate in Esempio 3.2.2. Vogliamo calcolare la molteplicita del loro

unico punto di intersezione P wutilizzando la Definizione 3.3.3.

AN -

Figura 23. Suddivisione del politopo di Newton del polinomio pc ® pp (a

sinistra) e la curva tropicale corrispondente C'U D (a destra).

Da Figura 22 si osserva che il poligono duale al punto di intersezione P (in
rosso) € un quadrato di lato V2. La sua area é quindi pari a 2 e, per la

Definizione 3.3.3 si ottiene
moltirop (P, cn D) = 2.

St nota inoltre che il triangolo in basso a sinistra della suddivisione coincide
con una copia della suddivisione di Newt(pp), mentre i restanti 4 triangoli

formano una copia della suddivisione di Newt(pc).

Teorema 3.3.6 (Bézout tropicale). Siano C' e D due curve tropicali di grado

rispettivamente ¢ e d che si intersecano trasversalmente. Allora vale

> moltye, (P, CN D) = cd.

PeCnD
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Dimostrazione. Per Osservazione 3.3.2, poiche il grado di C'UD & pari a c+d,
il politopo di Newton di pc ® pp € il triangolo con vertici (0,0), (c + d,0) e
(0,c+d).

Indichiamo con s la somma delle molteplicita dei punti di intersezione tra
C e D e consideriamo la suddivisione di Newt(pc ® pp). Come visto in

precedenza, i poligoni di tale suddivisione appartengono a 3 famiglie:

e quelli duali ai vertici di C, la cui area totale e %cz;

e quelli duali ai vertici di D, la cui area totale e %dQ;

e i parallelogrammi duali ai punti di intersezione tra C' e D, la cui area

complessiva e s.

Poiche I'area di Newt(pc @ pp) ¢ pari a (¢ + d)?, si ottiene 'uguaglianza

1 1 1
502 + 5(12 4+ s = §(C+ d)z,

da cui segue
d2_ 2_d2
s:(c+ ) 26 = cd.
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