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Abstract

Questa tesi presenta lo sviluppo, l’ottimizzazione e la validazione del framework di analisi

in tempo reale “Real-Time Analysis DataProcessor (RTA-DP)”, progettato presso INAF

– OAS per il processamento distribuito di dati relativi a raggi gamma atmosferici. Il

lavoro ha riguardato la revisione dell’architettura multi-thread e della gestione del ciclo

di vita dei thread, l’introduzione di code concorrenti sicure, l’integrazione di ZeroMQ

per lo streaming dei dati e l’ottimizzazione del codice per limitare il consumo di CPU

e memoria, con l’obiettivo di garantire stabilità e bassa latenza in ambienti edge. La

pipeline è stata estesa per il caso d’uso GammaSky, integrando un modello di machine

learning per la ricostruzione delle waveform, quantizzato e ottimizzato per l’esecuzione

su edge computer Jetson Orin Nano. I test di inferenza, gli stress test e il monitoraggio

delle risorse mostrano latenze dell’ordine dei 400 µs, throughput superiori ai requisiti e

consumo energetico minimo. Sono stati inoltre sviluppati test di integrazione end-to-end

che verificano l’intero flusso di processamento dei dati. I risultati dimostrano che la

pipeline è stabile, efficiente e adatta a scenari “resource constrained”, costituendo una

base solida per il deployment all’interno del setup di GammaSky presso l’Osservatorio

del Monte Cimone e per futuri impieghi in missioni spaziali con nanosatelliti.
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Introduzione

L’astronomia dei raggi gamma rappresenta uno dei campi più affascinanti e sfidanti della

ricerca moderna. I raggi gamma sono fotoni ad altissima energia, la forma più energetica

della radiazione elettromagnetica, e la loro osservazione consente di indagare fenomeni

estremi dell’Universo. Un singolo fotone gamma può viaggiare per miliardi di anni prima

di interagire con la materia, mentre gli eventi astrofisici che generano emissioni gamma

presentano scale temporali molto variabili: i Gamma-Ray Burst (GRB), ad esempio,

possono andare da pochi millisecondi a diverse ore. Esistono inoltre fenomeni gamma di

origine atmosferica come i Terrestrial Gamma-ray Flashes (TGF), brevissimi ma estre-

mamente energetici. La rivelazione di tali segnali richiede strumenti ad alta sensibilità e

sistemi di acquisizione capaci di registrare eventi molto rapidi, insieme a tecniche avan-

zate di elaborazione dati in grado di distinguere le emissioni di interesse dal rumore di

fondo e ottenere una ricostruzione accurata del fenomeno per comprenderne i meccanismi

fisici sottostanti.

Negli ultimi anni, la crescente disponibilità di tecnologie avanzate di calcolo a basso

consumo ha aperto nuove prospettive per l’analisi dei dati direttamente a bordo degli

strumenti scientifici. I rivelatori di raggi gamma possono infatti essere installati su

diverse piattaforme: dai grandi osservatori spaziali ai satelliti di piccole dimensioni, fino

a postazioni a terra. In questo contesto, il paradigma dell’edge computing consente di

eseguire algoritmi complessi su piattaforme embedded con risorse limitate, riducendo

la quantità di dati da trasmettere a terra e migliorando l’autonomia operativa delle
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INTRODUZIONE

missioni. Ciò risulta particolarmente rilevante per sistemi con capacità di comunicazione

limitate, come i nanosatelliti CubeSat, dove l’elaborazione in loco permette di ottimizzare

l’uso della banda disponibile e di selezionare e inviare solo i dati scientificamente più

significativi.

All’interno di questo contesto si inserisce il progetto Real-Time Analysis Datapro-

cessor (RTA-DP), sviluppato presso l’Osservatorio di Astrofisica e Scienza dello Spazio

(OAS) di Bologna, una sede dell’Istituto Nazionale di Astrofisica (INAF). RTA-DP è un

framework per l’elaborazione dati distribuita, orientato all’implementazione di pipeline

software di processamento dati in streaming e fornisce strumenti per il controllo e il mo-

nitoraggio del sistema. I dati che il framework tratta sono dati acquisiti da strumenti

per la rivelazione di raggi gamma e processati in tempo reale dalle varie pipeline. Origi-

nariamente sviluppato in Python, è stato successivamente migrato in C++ per garantire

migliori prestazioni, gestione più efficiente delle risorse e compatibilità con piattaforme

a ridotta capacità computazionale.

Durante il periodo di tirocinio svolto presso OAS, il lavoro si è concentrato sullo

sviluppo, l’ottimizzazione e la validazione della versione C++ del framework. Sono

state affrontate problematiche legate alla concorrenza, alla sincronizzazione tra thread e

alla gestione della memoria, con il duplice obiettivo di ridurre la latenza e minimizzare

il consumo di risorse. Nel corso di questo lavoro di tesi, inoltre, la pipeline RTA-DP è

stata estesa per eseguire processing di eventi gamma tramite modelli di machine learning

ottimizzati per ambienti edge, con lo scopo di ricostruire in tempo reale le proprietà

fisiche degli eventi acquisiti. Tale approccio rientra nell’edge AI, ossia l’applicazione

di algoritmi di intelligenza artificiale in prossimità della fonte dei dati. Tecniche di

ottimizzazione come la quantizzazione sono state adottate per adattare i modelli alle

capacità computazionali delle piattaforme edge impiegate. I test sono stati condotti su

una scheda prodotta da NVIDIA chiamata Jetson Orin Nano, la quale rappresenta un

buon compromesso tra prestazioni e consumo energetico e che è stata configurata per
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INTRODUZIONE

ospitare tutta la pipeline di analisi e ricostruzione, dalla ricezione dei dati raw, passando

per la fase di inferenza in tempo reale, fino alla scrittura dei parametri fisici ricostruiti

su file in output.

Questa tesi presenta dunque lo sviluppo, l’ottimizzazione e l’estensione di una pipeli-

ne di analisi real-time orientata all’utilizzo in missioni spaziali con risorse limitate. Oltre

a descrivere i fondamenti scientifici e tecnologici alla base del progetto, verranno illu-

strate le soluzioni implementative, le sfide affrontate e i risultati sperimentali ottenuti,

con particolare attenzione al ruolo dell’edge AI e alla prospettiva, sempre più attuale,

dell’elaborazione scientifica avanzata direttamente a bordo dello strumento.

La presente tesi è suddivisa in sei capitoli:

• Capitolo 1 introduce il contesto scientifico e tecnologico del lavoro. Vengono

presentati i Terrestrial Gamma-ray Flashes (TGF), le missioni spaziali che li hanno

studiati, i rivelatori a scintillazione utilizzati per la rivelazione dei raggi gamma ed

il ruolo crescente dell’edge computing nelle missioni spaziali.

• Capitolo 2 descrive il progetto GammaSky e il relativo setup sperimentale, illu-

strando l’architettura hardware e software basata su detector a scintillazione SiPM,

scheda Red Pitaya e piattaforma Jetson Orin Nano, motivando l’utilizzo di tecni-

che di machine learning nella ricostruzione degli eventi e descrivendo i formati di

input e output del sistema.

• Capitolo 3 fornisce una panoramica dell’architettura generale del framework RTA-

DP, descrivendone le librerie utilizzate, i principali componenti e i meccanismi

di configurazione, comunicazione e monitoraggio che abilitano la costruzione di

pipeline di processamento in tempo reale.

• Capitolo 4 presenta lo sviluppo e l’ottimizzazione della versione C++ del fra-

mework, discutendo le limitazioni iniziali dell’implementazione Python e approfon-

dendo la gestione dei thread e del loro ciclo di vita, l’introduzione di code thread-
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INTRODUZIONE

safe, l’integrazione di ZeroMQ per lo streaming dei dati, la gestione dei pacchetti

binari provenienti dal modulo DAM e il sistema di logging configurabile, oltre alle

principali ottimizzazioni finalizzate alla riduzione del consumo di risorse.

• Capitolo 5 illustra l’estensione di RTA-DP al caso d’uso GammaSky. È descritto il

modello di machine learning usato per la stima dell’area delle waveform, il processo

di quantizzazione del modello per l’esecuzione su edge computer, l’integrazione del

modello nella pipeline C++ e la generazione dei file DL2 a partire dai pacchetti R0.

• Capitolo 6 descrive la fase di testing e di analisi delle prestazioni della pipeline

RTA-DP: vengono presentati i benchmark di inferenza del modello ML su Jetson

Orin Nano, il monitoraggio dell’utilizzo delle risorse hardware in scenari di id-

le e di pieno carico, e i test di integrazione end-to-end che verificano il corretto

funzionamento dell’intero flusso R0 → inferenza ML → DL2.

4



Capitolo 1

Contesto scientifico e tecnologico

Questo capitolo raccoglie le basi utili per i capitoli applicativi: un richiamo su raggi

gamma e Terrestrial Gamma-ray Flashes (TGF), una panoramica delle missioni che li

hanno osservati, i principi dei rivelatori a scintillazione (PMT e SiPM) e, infine, il ruolo

dell’edge computing a bordo (in particolare sui CubeSat) e il suo impatto sulle scelte

architetturali e sulle ottimizzazioni software discusse nei capitoli successivi.

1.1 Astronomia dei raggi gamma

I raggi gamma sono fotoni altamente energetici, con energie superiori a 100 keV1, e

rappresentano la porzione più estrema dello spettro elettromagnetico. Quest’ultimo si

estende infatti dalle onde radio, caratterizzate dalle energie più basse, passando per la

luce visibile, fino ai raggi gamma, che possiedono le energie più elevate. In astronomia,

lo studio dei raggi gamma si concentra su energie comprese tra alcune centinaia di keV e

diversi PeV. La loro propagazione in linea retta nello spazio consente di determinare con

buona precisione la sorgente di emissione. I raggi gamma possono originare da numerosi

fenomeni astrofisici, come resti di supernova, pulsar, nuclei galattici attivi e Gamma-

11 eV (electronvolt) corrisponde all’energia cinetica acquisita da un elettrone accelerato da una
differenza di potenziale di 1 volt, pari a circa 1, 602 · 10−19 J (joule).
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CAPITOLO 1. CONTESTO SCIENTIFICO E TECNOLOGICO

ray Bursts (GRB). Questi rientrano nella più ampia categoria dei fenomeni transienti,

ovvero eventi astrofisici o atmosferici di breve durata e difficilmente prevedibili, che

comprendono anche lampi di raggi X e lampi radio veloci (FRB). Tuttavia, non si tratta

di un’esclusiva cosmica: raggi gamma vengono prodotti anche sulla Terra, in particolare

durante intensi temporali atmosferici. In questo contesto si inseriscono i Terrestrial

Gamma-ray Flashes (TGF).

1.1.1 Terrestrial Gamma-ray Flashes

I TGF sono improvvisi lampi di raggi gamma prodotti tra l’alta troposfera e la strato-

sfera terrestre, generati da temporali intensi e intercettati da satelliti in orbita terrestre

bassa. Si manifestano come emissioni estremamente brevi, in genere da poche decine

fino a qualche centinaio di microsecondi, con rari casi che raggiungono circa un millise-

condo[1], e sono tipicamente associate all’attività elettrica dei fulmini. Questa tipologia

di fenomeni si distingue nettamente dai GRB per la scala temporale: mentre i TGF

durano soltanto frazioni di millisecondo, i GRB presentano una grande varietà di durate,

che possono andare da pochi millisecondi fino a diversi minuti e, in casi eccezionali (gli

ultra-long GRB), anche a ore[2].

I TGF furono osservati per la prima volta nel 1994 dal Compton Gamma Ray Ob-

servatory[3], una missione NASA lanciata nel 1991 per studiare raggi gamma, e suc-

cessivamente confermati da missioni come AGILE (Astrorivelatore Gamma a Immagini

LEggero, ASI/INAF)[4] e dal Fermi Gamma-ray Space Telescope[5]. Si stima che, ogni

giorno, circa 500 TGF vengano prodotti a livello globale (uno per ogni mille fulmini), ma

la maggior parte non venga rilevata, lasciando questa stima come incerta. Le valutazioni

più recenti indicano valori ancora più elevati, addirittura di circa 400.000 l’anno[6]. Dal

punto di vista energetico, le prime osservazioni effettuate dal satellite RHESSI avevano

mostrato che lo spettro dei TGF si estendeva fino a circa 20 MeV[7], mentre le misure

più recenti del satellite AGILE hanno rivelato componenti ad energie ancora più elevate,
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CAPITOLO 1. CONTESTO SCIENTIFICO E TECNOLOGICO

fino a 40 MeV e, in casi estremi, prossime a 100 MeV[8], dimostrando che le energie

coinvolte nei TGF possono essere molto più elevate di quelle inizialmente osservate.

Alcuni studi hanno mostrato che l’origine dei raggi gamma nei TGF si trova a cir-

ca 10–25 km di altitudine, quindi all’interno delle nubi temporalesche nelle profondità

dell’atmosfera[9]. La distribuzione geografica dei TGF presenta un picco nelle regioni

tropicali, suggerendo che i temporali tipici di queste zone, caratterizzati da forti correnti

convettive, siano in grado di generarli[10]. I temporali infatti, agiscono come veri e pro-

pri acceleratori naturali di particelle. Nello specifico, i Terrestrial Gamma-ray Flashes si

originano all’interno di questi fenomeni quando i campi elettrici prodotti dalla tempesta

raggiungono intensità tali da estendersi per diversi chilometri nell’atmosfera. In queste

condizioni, gli elettroni liberi presenti nell’aria vengono accelerati a velocità prossime a

quella della luce[11]. Durante la loro corsa, tali elettroni interagiscono con i nuclei de-

gli atomi dell’atmosfera, emettendo fotoni gamma tramite bremsstrahlung2, producendo

l’impulso osservato in orbita. Questo processo genera quindi lampi di raggi gamma estre-

mamente energetici e di brevissima durata, emessi dalla regione temporalesca. Alcune

osservazioni hanno inoltre mostrato che, come conseguenza dei TGF, possono essere pro-

dotti anche positroni, cioè le antiparticelle degli elettroni. Questi flussi di antimateria

riescono a propagarsi nello spazio, seguendo le linee del campo magnetico terrestre in

un fascio piuttosto stretto, dove possono essere rilevati dai satelliti che passano sopra la

zona[12].

Il processo di formazione dei Terrestrial Gamma-ray Flashes viene mostrato in Figura

1.1.

2Il bremsstrahlung (dall’inglese “braking radiation”) è la radiazione emessa da particelle cariche,
come elettroni, quando vengono decelerate o deviate dall’interazione con campi elettrici di nuclei atomici.
Questo fenomeno è responsabile della produzione di fotoni ad alta energia.
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CAPITOLO 1. CONTESTO SCIENTIFICO E TECNOLOGICO

Figura 1.1: Sequenza illustrativa del processo di formazione dei Terrestrial Gamma-ray
Flashes (TGF) durante un temporale (vedi fonte in figura).

1.2 Missioni spaziali per lo studio dei TGF

Dalla loro scoperta nel 1994, i Terrestrial Gamma-ray Flashes sono stati oggetto di

numerose osservazioni condotte da diverse missioni spaziali. Ciascun satellite ha con-

tribuito con strumenti e capacità uniche, permettendo di migliorare progressivamente

la comprensione del fenomeno: dalla semplice identificazione degli eventi iniziali, alla

determinazione della loro distribuzione globale e origine. Nei paragrafi seguenti vengono

ripercorse le principali tappe di questo percorso, attraverso le missioni più rilevanti.

Compton Gamma Ray Observatory (CGRO)

La scoperta dei Terrestrial Gamma-ray Flashes risale al 1994, grazie al Burst and Tran-

sient Source Experiment (BATSE) a bordo del Compton Gamma Ray Observatory
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CAPITOLO 1. CONTESTO SCIENTIFICO E TECNOLOGICO

(CGRO) della NASA[3]. BATSE era stato concepito per lo studio dei Gamma-ray Burst

cosmici, fenomeni di durata molto più lunga, ma si rivelò in grado di identificare anche

lampi gamma terrestri estremamente rapidi. Nel corso dei suoi nove anni di attività,

lo strumento rilevò 76 eventi di TGF[13], fornendo la prima conferma sperimentale del-

l’esistenza di questo fenomeno. Sebbene il numero di rilevamenti fosse limitato, questi

risultati aprirono la strada a un nuovo campo di ricerca, mostrando che l’atmosfera terre-

stre, in condizioni particolari, può comportarsi come una sorgente di radiazione gamma

di altissima energia.

RHESSI

Un passo cruciale nello studio dei TGF avvenne con il lancio del satellite Reuven Ramaty

High Energy Solar Spectroscopic Imager (RHESSI)[7] nel 2002. Progettato principalmen-

te per lo studio dei brillamenti solari, RHESSI permise di raccogliere un numero molto

maggiore di eventi rispetto a CGRO e, soprattutto, di analizzarne lo spettro energetico

con maggiore precisione. Le osservazioni mostrarono che i TGF si estendono fino a circa

20 MeV, fornendo cos̀ı le prime misure dirette dell’energia dei fotoni emessi.

Fermi Gamma-ray Space Telescope

Il lancio del Fermi Gamma-ray Space Telescope nel 2008 segnò un ulteriore salto di qua-

lità. Lo strumento Gamma-ray Burst Monitor (GBM)[14], progettato per la rivelazione

di Gamma-ray Bursts, si è dimostrato particolarmente adatto anche allo studio dei TGF,

grazie al suo ampio campo di vista e alla sensibilità agli impulsi di durata molto breve.

In pochi anni, Fermi ha raccolto migliaia di eventi, portando la stima del tasso globale

a centinaia di TGF al giorno[5].

9
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AGILE

Un contributo decisivo è arrivato anche dal satellite italiano AGILE [15], lanciato nel

2007. Il suo strumento Mini-Calorimeter (MCAL)[16] si è dimostrato particolarmente

efficace nello studio dei TGF grazie a una sensibilità spettrale estesa e a un’elevata

risoluzione temporale (nell’ordine del microsecondo). Le osservazioni di AGILE hanno

permesso non solo di stabilire che lo spettro dei TGF si estende fino a oltre 40 MeV,

con eventi eccezionali prossimi ai 100 MeV, ma anche di ottenere le prime localizzazioni

spaziali dirette e di evidenziare correlazioni temporali con i fulmini[8]. Questi risultati

hanno rappresentato una svolta nello studio del fenomeno, indicando che i TGF sono più

frequenti ed energetici di quanto ipotizzato inizialmente.

Atmosphere-Space Interactions Monitor (ASIM)

L’Atmosphere-Space Interactions Monitor (ASIM)[17] è un esperimento installato nel

2018 sul modulo Columbus della Stazione Spaziale Internazionale (ISS)3 e rappresenta

la prima missione dedicata principalmente allo studio dei TGF. Il suo payload scientifico

comprende il Modular X- and Gamma-ray Sensor (MXGS), sensibile ai fotoni fino a

circa 20 MeV, e il Modular Multi-Imaging Assembly (MMIA), in grado di registrare

l’emissione ottica associata ai fenomeni temporaleschi. ASIM ha permesso di effettuare

le prime osservazioni simultanee di TGF e scariche elettriche nei temporali, mostrando

in modo diretto la connessione tra i lampi gamma e l’attività dei fulmini. Inoltre, grazie

alla combinazione di misure nei raggi gamma e nel visibile, è stato possibile caratterizzare

con maggiore dettaglio lo spettro e la dinamica temporale dei TGF[18]. L’orbita bassa

della ISS, che sorvola frequentemente le regioni equatoriali e tropicali, ha garantito ad

ASIM una posizione privilegiata per lo studio di questi fenomeni, che si manifestano con

3La Stazione Spaziale Internazionale è una piattaforma orbitante abitata permanentemente dal
2000, frutto della cooperazione tra diverse agenzie spaziali, che orbita a circa 400 km di quota e funge
principalmente da laboratorio in assenza di gravità.
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maggiore frequenza proprio in tali aree. Ad oggi, ASIM costituisce lo strumento più

avanzato per l’osservazione dei TGF.

LIGHT-1 CubeSat

Un esempio rilevante per questo lavoro di tesi è rappresentato dal CubeSat4 LIGHT-1

(noto anche come RAADSat), una missione congiunta del Bahrein e degli Emirati Arabi

Uniti. Il satellite, di tipo 3U, è stato lanciato nel dicembre 2021 e trasportato sulla

Stazione Spaziale Internazionale, dove è stato rilasciato in orbita il 3 febbraio 2022 e

ha fatto rientro nell’atmosfera nel gennaio 2023. A bordo, LIGHT-1 ospitava il payload

RAAD (Rapid Acquisition Atmospheric Detector), progettato per la rivelazione dei TGF

con alta risoluzione temporale (fino a 500 ns). RAAD utilizzava cristalli scintillatori ad

alta risoluzione accoppiati a fotomoltiplicatori convenzionali (PMT) e fotomoltiplicatori

al silicio (SiPM), per confrontare diverse configurazioni di rivelazione in orbita[19] (per

una descrizione dettagliata dei due tipi di rivelatore si veda la Sezione 1.3). L’elabora-

zione dei dati avveniva direttamente a bordo del satellite grazie a un sistema elettronico

dedicato: i segnali prodotti dai rivelatori venivano convertiti in forma digitale e confron-

tati con soglie prestabilite per identificare i fotoni di interesse. Quando venivano rilevati

più fotoni in un intervallo di tempo molto breve, il sistema li riconosceva come possibile

evento di tipo TGF e ne registrava con precisione sia l’energia sia il tempo di arrivo. I

dati cos̀ı raccolti venivano poi trasmessi a Terra, dove venivano analizzati in dettaglio

e messi in relazione con altre osservazioni, come i cataloghi di fulmini e i dati di altre

missioni[19]. Questa missione dimostra che è possibile integrare sistemi per la rilevazione

di TGF su CubeSat dalle dimensioni compatte, confermando la fattibilità dell’approccio

studiato nella presente tesi.

4I CubeSat sono nanosatelliti standardizzati, introdotti all’inizio degli anni 2000, caratterizzati da
un formato modulare basato su unità (U) di 10 × 10 × 10 cm. Le configurazioni più comuni sono 1U,
3U e 6U. Grazie al basso costo di realizzazione e lancio, vengono ampiamente utilizzati per missioni
scientifiche, tecnologiche ed educative.
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Le principali missioni spaziali dedicate allo studio dei TGF sono illustrate in Figura

1.2.

(a) Compton Gamma Ray Observatory
(CGRO) – 1991.

(b) Reuven Ramaty High Energy Solar
Spectroscopic Imager (RHESSI) – 2002.

(c) Fermi Gamma-ray Space Telescope –
2008.

(d) Astrorivelatore Gamma a Immagini
LEggero (AGILE) – 2007.
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(e) Atmosphere–Space Interactions Moni-
tor (ASIM, ISS) – 2018.

(f) LIGHT-1 3U CubeSat – 2021 (Crediti:
Bahrain NSSA).

Figura 1.2: Principali missioni spaziali che hanno contribuito allo studio dei Terrestrial
Gamma-ray Flashes (TGF).

1.3 Rivelatori a scintillazione per raggi gamma

Lo studio dei Terrestrial Gamma-ray Flashes (TGF) richiede rivelatori capaci di mi-

surare eventi di brevissima durata e di alta energia con efficienza e precisione. Una

delle tecnologie più diffuse è quella basata sui materiali (cristalli) scintillatori, che emet-

tono luce visibile quando attraversati da radiazione ionizzante. L’intensità della luce

prodotta è proporzionale all’energia depositata nel materiale, rendendo possibile rico-

struire informazioni sia temporali che energetiche sull’evento di interesse. Per rendere

utilizzabile questa luce, agli scintillatori vengono accoppiati dispositivi di conversione

ottico-elettronica chiamati fotomoltiplicatori (PM). Questi trasformano linearmente i fo-

toni in elettroni e ne amplificano la carica di un fattore 105–109, producendo un segnale

elettrico misurabile. Storicamente, i più usati sono i tubi fotomoltiplicatori (PMT), ma

negli ultimi anni i Silicon Photomultiplier (SiPM) hanno guadagnato un ruolo centrale

13
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grazie ai loro vantaggi in termini di compattezza, robustezza e consumi.

1.3.1 PMT

I Photomultiplier Tubes (PMT) sono fotomoltiplicatori a tubo e rappresentano la tec-

nologia tradizionale per la rivelazione della luce di scintillazione. Essi sono costituiti da

un fotocatodo, un sistema di elettrodi noti come dinodi e un anodo. Questi componenti

sono racchiusi in un tubo a vuoto. I PMT sfruttano l’effetto fotoelettrico: i fotoni in-

cidenti colpiscono il fotocatodo, generando elettroni che vengono moltiplicati attraverso

la catena di dinodi, producendo un segnale elettrico amplificato e facilmente misurabi-

le[20] (vedi Figura 1.3). I PMT offrono un’elevata sensibilità, bassa rumorosità e ottima

risoluzione temporale, caratteristiche che li hanno resi lo standard per decenni.

Tuttavia, presentano alcuni limiti come dimensioni e peso elevati, necessità di alte

tensioni di alimentazione (centinaia o migliaia di volt) e fragilità meccanica, in quanto si

tratta di dispositivi a vuoto. Per queste ragioni, sebbene ancora utilizzati in esperimenti

ground-based di grande scala, i PMT risultano poco adatti a missioni spaziali di piccole

dimensioni o a scenari con sistemi compatti a basso consumo tipo CubeSat[21].

Figura 1.3: Schema di un fotomoltiplicatore accoppiato ad uno scintillatore (PMT) per
la rivelazione dei raggi gamma[22].
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1.3.2 SiPM

I Silicon Photomultipliers (SiPM) sono fotomoltiplicatori a stato solido costituiti da un

semiconduttore al silicio (vedi Figura 1.4). Essi sono rivelatori costituiti da matrici di

fotodiodi a valanga (Avalanche Photodiode, APD), impiantate direttamente sul semicon-

duttore e operanti in modalità Geiger5. Ciascuna microcella funziona come un contatore

binario: quando viene colpita da un fotone genera un segnale “acceso/spento”. L’uscita

complessiva del SiPM è quindi proporzionale al numero di celle attivate nello stesso mo-

mento, permettendo una misura diretta dell’intensità del segnale luminoso[23]. Rispetto

ai tradizionali fotomoltiplicatori (PMT), i SiPM offrono diversi vantaggi: sono molto

più compatti e leggeri e richiedono tensioni di alimentazione molto più basse (tipica-

mente tra 20 e 70 V). A questo si aggiungono una notevole robustezza meccanica, che

li rende resistenti a vibrazioni e urti, e una buona tolleranza a un ampio intervallo di

temperature operative. D’altra parte, i SiPM presentano alcune limitazioni rispetto ai

PMT: sono più sensibili al rumore termico (dark count rate) e tendono a saturarsi più

rapidamente in presenza di eventi molto intensi, a causa del numero finito di microcelle

disponibili. Nonostante ciò, i continui progressi tecnologici hanno reso questi limiti sem-

pre meno significativi, confermando i SiPM come una delle soluzioni più promettenti per

applicazioni di rivelazione di fotoni in astrofisica e in contesti spaziali[21].

Figura 1.4: Fotomoltiplicatore al silicio (SiPM) realizzato da FBK, montato su circuito
stampato (PCB) (Da: PhysicsOpenLab).

5Per modalità Geiger si intende un regime di funzionamento in cui basta l’arrivo di un singolo fotone
per accendere una microcella e produrre un impulso elettrico sempre uguale.
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1.4 Edge computing nei CubeSat e nelle missioni

spaziali

L’edge computing in ambito spaziale si riferisce all’elaborazione dei dati direttamente

a bordo del satellite, invece di inviarli grezzi a Terra per il processamento. Ciò è par-

ticolarmente vantaggioso per CubeSat e piccoli satelliti, che spesso hanno finestre di

comunicazione molto brevi e banda limitata verso le stazioni di terra. Eseguendo analisi

e processing dei dati in tempo reale sul payload orbitale, si riduce la latenza tra l’osser-

vazione e la disponibilità a Terra dell’informazione[24]. Questo è un aspetto critico in

applicazioni in cui serve una risposta tempestiva, come ad esempio nel monitoraggio di

disastri naturali quali incendi ed eruzioni vulcaniche oppure nel rilevamento di fenomeni

astrofisici di brevissima durata, come i TGF. Inoltre, data la ridotta capacità di down-

link, è spesso impraticabile trasmettere tutte le osservazioni grezze: conviene selezionare

a bordo e inviare solo i dati effettivamente rilevanti al task, massimizzando l’efficacia

dell’utilizzo del canale radio.

Oltre allo scenario orbitale, concetti simili possono trovare impiego nell’esplorazione

planetaria. Ad esempio, un rover lunare equipaggiato con un rivelatore gamma intelli-

gente potrebbe rilevare fenomeni transienti nel cielo lunare (come GRB lontani) senza

dover inviare continuamente dati grezzi alla Terra. In situazioni in cui la comunicazio-

ne è limitata (si pensi a un rover sul lato nascosto della Luna o su Marte), dotare lo

strumento di capacità decisionali tramite edge AI significa permettergli di reagire local-

mente ad eventi di interesse: il rover potrebbe autonomamente identificare un aumento

anomalo di radiazione e attivare misure di raccolta dati approfondite, oppure scegliere di

inviare un segnale di allerta a Terra con priorità. Tali funzionalità aumentano il valore

scientifico della missione, massimizzando i dati utili raccolti pur entro i ristretti canali

di comunicazione disponibili.

Già nei primi anni 2000 si è intravisto il potenziale dell’elaborazione autonoma a bordo
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con la missione NASA EO-1 (Earth Observing-1), la quale sperimentò dei primi algoritmi

di intelligenza artificiale on-board per individuare eventi scientifici rilevanti osservati sulla

superficie e reagire autonomamente senza attendere i comandi da Terra[25]. Oggi, con

l’avvento di costellazioni di decine o centinaia di nanosatelliti, l’approccio tradizionale

con satelliti che si limitano a ritrasmettere i dati a terra rischia di non essere scalabile.

Studi recenti mostrano che sfruttare l’elaborazione in orbita può assicurare una migliore

scalabilità delle infrastrutture spaziali, riducendo la necessità di molte stazioni di terra

pur mantenendo la stessa capacità di raccolta dati[26]. In altri termini, una costellazione

di piccoli satelliti cooperanti può fungere da sistema distribuito in orbita che filtra ed

elabora localmente i dati, inviando a Terra soltanto risultati sintetici o segnalazioni di

eventi di interesse.

L’abilitazione dell’edge AI sui CubeSat è dovuta anche ai progressi dell’elettronica

embedded. Tradizionalmente i computer di bordo privilegiano affidabilità e tolleranza

alle radiazioni rispetto alle prestazioni, risultando lenti e poco adatti a carichi intensivi

come quelli di machine learning. Negli ultimi anni si sta invece sperimentando l’uso di

componenti commerciali (Commercial Off-the-Shelf Components, COTS)6 anche nello

spazio, accettando una durata missione limitata in cambio di capacità computazionale

molto superiore[24]. Numerose missioni hanno verificato l’impiego di processori avanzati

low-power in orbita per l’esecuzione di algoritmi di intelligenza artificiale: il CubeSat

ESA Φ-Sat-1 ha utilizzato un acceleratore AI Intel Movidius Myriad 2 a bordo[27]; la

piattaforma OPS-SAT integra invece FPGA (Field Programmable Gate Arrays) e un

SoC (System-on-a-Chip) con CPU dual-core per eseguire algoritmi in tempo reale[28].

Test preliminari indicano che alcuni dispositivi COTS possono operare nello spazio per

periodi brevi senza subire danni da radiazioni, aprendo la strada a missioni sperimentali

con capacità di calcolo elevate[24].

6Commercial Off-the-Shelf Components, ovvero componenti elettronici standard reperibili in com-
mercio e non progettati specificamente per l’ambiente spaziale. L’adozione di COTS consente di ridurre
costi e tempi di sviluppo, ma introduce maggiori rischi di guasti dovuti a radiazioni e condizioni estreme,
rendendo la durata della missione potenzialmente più breve.

17



CAPITOLO 1. CONTESTO SCIENTIFICO E TECNOLOGICO

Figura 1.5: Il CubeSat ESA Φ-Sat-2 integrato e pronto per il lancio. Si tratta di un
satellite di tipo 6U, con dimensioni 22 × 10 × 33 cm e massa al lancio di circa 9 kg
(Crediti: Open Cosmos).

Tra le missioni europee che hanno sperimentato con successo l’edge computing e

l’edge AI on-board possiamo citare alcune pietre miliari:

Φ-Sat-1 (ESA, 2020)

Primo dimostratore europeo di deep learning a bordo di un CubeSat. In questa

missione un chip Intel Myriad 2 (VPU) ha eseguito una rete neurale convoluzionale

(CNN) per il rilevamento di nubi (denominata CloudScout), con l’obiettivo di scar-

tare automaticamente le immagini coperte da nuvole, quindi inutilizzabili, prima

di trasmetterle a Terra[29]. L’esperimento ha cos̀ı dimostrato che l’elaborazione a

bordo può ridurre significativamente il volume di dati da trasmettere a terra senza

sacrificare informazioni utili[30].

OPS-SAT (ESA, 2019–2024)

Un CubeSat 3U progettato come “laboratorio orbitale” per testare software e tec-

nologie di controllo avanzate. OPS-SAT disponeva di un computer di bordo spe-

rimentale circa dieci volte più potente dei normali computer spaziali, il che ha

consentito di eseguire il deployment di space software sotto forma di applicazioni
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AI direttamente a bordo del nanosatellite. Ciò è stato reso possibile grazie ad

un’architettura che, da remoto, permetteva di installare, aggiornare e gestire app,

chiamata NanoSat MO Framework (NMF)7[32]. Questa piattaforma ha dimostra-

to la capacità di far girare modelli di machine learning in tempo reale, eseguendo

inferenza usando CNN quantizzate post allenamento.

Particolarmente significativi sono i traguardi tecnologici raggiunti da OPS-SAT

nell’ambito dell’edge AI: il satellite ha ospitato il primo deployment in orbita di

una rete neurale per applicazioni di intelligenza artificiale, ha effettuato per la pri-

ma volta l’addestramento a bordo di modelli supervisionati e non supervisionati e

ha realizzato il primo ri-addestramento in volo di un modello AI utilizzando dati

raccolti dal satellite stesso. Inoltre, OPS-SAT è stato il primo esperimento a riuti-

lizzare reti neurali pre-addestrate sviluppate per applicazioni terrestri, dimostrando

la possibilità di trasferire modelli esistenti in un contesto spaziale[33].

L’ESA ha inoltre organizzato una competizione chiamata “OPS-SAT Case” per

coinvolgere sviluppatori nel progettare modelli di image classification ottimizzati

per l’esecuzione sul satellite[28]. I vincitori di questa challenge hanno caricato le

loro app AI a bordo di OPS-SAT, verificando con successo in orbita la classificazione

autonoma di scene terrestri (come riconoscimento di suolo agricolo, acque, neve,

vegetazione ecc.). Questo caso dimostra l’interesse crescente verso modelli ML

custom, pre-allenati e ottimizzati per essere eseguiti su nanosatelliti a limitate

capacità prestazionali.

HYPSO-1 (NTNU, 2022)

Un CubeSat 6U per l’osservazione oceanografica che adotta algoritmi di ML a

bordo. In particolare, HYPSO-1 sfrutta cosiddette mappe auto-organizzanti (Self-

7Il NanoSat MO Framework è un software sviluppato dall’ESA per nanosatelliti di tipo CubeSat.
Implementa un’architettura modulare basata sullo standard CCSDS Mission Operations (MO) e con-
sente di gestire applicazioni a bordo, eseguire aggiornamenti remoti e monitorare i processi in esecuzione
in maniera standardizzata.[31]
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Organizing Maps) per rilevare in tempo reale la presenza di fioriture algali poten-

zialmente dannose nelle acque oceaniche[34]. Elaborando localmente i dati iper-

spettrali del colore dell’oceano, il satellite è in grado di identificare queste anomalie

ecologiche e segnalarle tempestivamente, ottimizzando l’efficacia scientifica della

missione senza dover inviare a Terra l’intero flusso di immagini grezze[35].

Φ-Sat-2 (ESA, 2024)

Evoluzione di Φ-Sat-1, è un CubeSat 6U progettato per ospitare a bordo molteplici

applicazioni AI in ambito osservazione della Terra, continuando il lavoro che si era

aperto con OPS-SAT (vedi Figura 1.5). Grazie a un computer di bordo potenziato

(lo stesso usato in Φ-Sat-1) e al framework NanoSat MO, Φ-Sat-2 può eseguire

diversi algoritmi in parallelo, elaborando e processando i dati alla fonte[36]. Invece

di downlinkare immagini e telemetria grezze, il satellite effettua localmente analisi

avanzate e invia a Terra solo informazioni sintetiche essenziali, con benefici rilevanti

in efficienza di banda e rapidità decisionale[37].

Φ-Sat-2 è stata lanciata con quattro applicazioni AI attive: un’app di compressio-

ne di immagini basata su CNN per ottimizzare la trasmissione dei dati a terra, un

algoritmo di rilevamento delle nubi in tempo reale per evitare acquisizioni di im-

magini inutilizzabili, un’app per l’individuazione e classificazione di imbarcazioni

navali per la sorveglianza marittima contro la pesca illegale e infine una per genera-

re street maps a partire da immagini satellitari (Sat2Map) necessarie in situazioni

d’emergenza quali alluvioni o terremoti[36]. Due ulteriori applicazioni, vincitrici

della OrbitalAI challenge[38], sono state caricate in seguito: un’app di allerta in-

cendi (PhiFire), la quale analizza immagini termiche individuando focolai e zone

bruciate in tempo reale e un algoritmo per identificare anomalie negli ecosistemi

marini (ad esempio rilevare fioriture algali anomale o sversamenti di petrolio)[39].
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Il progetto GammaSky

Nel contesto della rivelazione dei Terrestrial Gamma-ray Flashes e dello sviluppo di

tecniche di Edge AI, nasce GammaSky. GammaSky è un progetto sperimentale attual-

mente in fase di sviluppo presso l’INAF – OAS, concepito come un setup sperimentale

composto da un rivelatore a scintillazione, un sistema di acquisizione basato su conver-

sione analogico-digitale (ADC) e un’unità di edge computing per il processamento dei

dati. L’obiettivo è validare una catena completa di rivelazione ed elaborazione in tempo

reale di eventi gamma ad alta energia, gettando le basi per futuri sistemi autonomi da

impiegare su piattaforme spaziali compatte. L’idea chiave è spostare l’analisi dei dati

direttamente a bordo del dispositivo di acquisizione; in questo modo, si riduce la quan-

tità di informazioni da trasmettere a terra e il sistema può reagire autonomamente ai

fenomeni di interesse. GammaSky è pensato come dimostratore tecnologico per futuri

progetti in ambito spaziale, come ad esempio nanosatelliti, con un’architettura proget-

tata per mantenere peso e consumi contenuti e capace di elaborare localmente i dati,

inviando a Terra solo informazioni filtrate. Ciò consentirebbe di prendere decisioni in

tempo reale, ad esempio analizzando autonomamente i segnali di interesse per la mis-

sione o inviando allerte scientifiche1 in presenza di eventi come un TGF o un GRB,

1Nel contesto delle missioni scientifiche, per allerta si intende una notifica automatica e tempestiva,
inviata verso centri di controllo e la comunità scientifica, che segnala il rilevamento di un fenomeno
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senza richiedere il downlink dei dati e ulteriore processamento a terra, riducendo i tempi

necessari all’emissione dell’allerta.

GammaSky trae vantaggio dall’esperienza maturata con il progetto Gamma-Flash[42]

e, al contempo, ambisce a portare avanti il lavoro sui TGF iniziato in INAF – OAS

con AGILE, introducendo però significative innovazioni tecnologiche. In particolare,

impiega rivelatori allo stato dell’arte e integra modelli di machine learning su piattaforme

embedded, per migliorare la precisione e l’autonomia dello strumento. Il progetto mira a

dimostrare la possibilità di identificare e analizzare in tempo reale un TGF o un Gamma-

ray Glow (GRG)2 durante un temporale, capacità che con le due missioni sopracitate

richiedeva analisi a posteriori. Per testare queste potenzialità in un contesto reale, il setup

sperimentale è stato installato all’interno di una cupola protettiva presso l’Osservatorio

Climatico “O. Vittori” sul Monte Cimone (2165 m s.l.m.)3, mostrato in Figura 2.1, un sito

ideale per l’osservazione di fenomeni gamma atmosferici da terra. Il team di GammaSky

ha inoltre sviluppato librerie software per supportare lo sviluppo, il training e il testing

di modelli di machine learning. Fanno parte del “pacchetto”, infatti, un simulatore di

forme d’onda, librerie con algoritmi standard per la ricostruzione e il processamento dei

dati e utilities per la verifica e comparazione delle performance dei modelli rispetto agli

algoritmi tradizionali

Il predecessore di GammaSky, Gamma-Flash (ASI/INAF), ha costituito un passo

importante verso questo obiettivo. Mediante una rete di rivelatori di raggi gamma e

neutroni installati presso l’osservatorio sul Cimone, Gamma-Flash ha permesso di osser-

vare e analizzare un GRG, sebbene solo in fase di post-processing[43]. Questo esperi-

transiente di particolare interesse (ad es. GRB o TGF) e permette di attivare rapidamente osservazioni
o analisi di follow-up. Queste allerte possono essere generate in formato machine-readable (notices) o
come circolari testuali e vengono distribuite tramite reti dedicate, come il General Coordinates Network
(GCN)[40][41].

2I Gamma-ray Glows sono emissioni di raggi gamma di lunga durata associate a temporali, tipica-
mente generate da elettroni accelerati nei campi elettrici atmosferici. A differenza dei TGF, che sono
brevissimi lampi gamma, i GRG possono durare da frazioni di secondo fino a decine di secondi, risultando
quindi più facili da osservare con rivelatori a scintillazione.

3https://www.isac.cnr.it/it/node/7813
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mento ha quindi confermato la fattibilità di studiare da terra i fenomeni gamma legati ai

temporali e ha evidenziato la necessità di strumenti più autonomi e capaci di analisi in

tempo reale. Il setup sperimentale di GammaSky, rispetto a Gamma-Flash, apporta ag-

giornamenti sotto un punto di vista tecnologico. Infatti, è stato aggiornato sostituendo i

tradizionali PMT con fotomoltiplicatori al silicio (SiPM), più compatti, a basso consumo

e con migliore rapporto segnale/rumore. L’uso di cristalli scintillatori accoppiati ai SiPM

consente di osservare sia fenomeni atmosferici (TGF, GRG) sia eventi cosmici (GRB),

sfruttando algoritmi di trigger e analisi a bordo. Lo sviluppo di modelli di machine

learning per la rilevazione dei TGF a terra rappresenta quindi un banco di prova per la

futura implementazione di sistemi di AI a bordo di nanosatelliti, aprendo la strada alla

rivelazione autonoma di GRB e altri fenomeni transienti direttamente dallo spazio.

Figura 2.1: Parte dell’Osservatorio Climatico “O. Vittori” (ISAC-CNR) sul Monte Ci-
mone (2165 m s.l.m.) che ospita vari esperimenti atmosferici.
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2.1 Architettura hardware e setup sperimentale

L’architettura hardware di GammaSky è stata sviluppata con particolare attenzione a

consumi contenuti e capacità di elaborazione locale, replicando in piccolo una piattafor-

ma scientifica spaziale e autonoma. In Gamma-Flash, i segnali venivano rivelati tramite

tubi fotomoltiplicatori (PMT) e successivamente elaborati su un Main Control Computer

(MCC) dedicato, in cui veniva eseguita la pipeline software di analisi dati. Per Gam-

maSky è stata adottata una soluzione più adatta ad applicazioni embedded e a future

missioni spaziali: i detector PMT sono stati sostituiti con detector SiPM, i quali ope-

rano a bassa tensione, mentre il MCC è stato rimpiazzato da un edge computer capace

di eseguire modelli di intelligenza artificiale direttamente a bordo. I SiPM richiedono

tensioni di alimentazione molto inferiori rispetto ai PMT tradizionali, tanto da poter

essere alimentati tramite una semplice porta USB o piccoli alimentatori dedicati. Al

contrario, i PMT necessitano di survoltori e circuiti ad alta tensione che non solo au-

mentano l’ingombro complessivo, ma introducono anche problematiche di isolamento e

interferenze elettromagnetiche, potenzialmente in grado di degradare il segnale. L’edge

computer, d’altra parte, consente di eseguire in locale i modelli di machine learning otti-

mizzati per l’analisi in tempo reale. Pur mantenendo un consumo energetico contenuto,

deve integrare acceleratori hardware adeguati, come GPU o FPGA nel SoC, in grado

di assicurare elevate prestazioni di calcolo e flessibilità per diversi scenari applicativi di

edge computing. Il setup sperimentale utilizzato in GammaSky, mostrato in Figura 2.2

all’interno della cupola dell’osservatorio climatico sul Monte Cimone, è quindi composto

dai seguenti componenti:

• Detector SiPM4: il prototipo impiega un rivelatore integrato Luxium basato su

cristallo scintillatore di ioduro di sodio (Nal), accoppiato a un fotomoltiplicatore al

silicio (SiPM). Il modulo è ottimizzato per applicazioni portatili e a basso consu-

4https://luxiumsolutions.com/radiation-detector-assemblies/

sipm-integrated-detectors
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mo, alimentato tramite porta USB a 5V. Il sistema fornisce un segnale analogico

proporzionale all’energia depositata nel cristallo, con un intervallo dinamico com-

preso tra 9 keV e 6MeV, coprendo quindi buona parte del range di interesse per

la rivelazione di TGF. Il rivelatore mantiene una risposta stabile anche al variare

della temperatura, grazie a un circuito di compensazione automatica che corregge

il guadagno nell’intervallo operativo -20 °C ÷ +50 °C. Il setup attuale utilizza un

singolo rivelatore, sufficiente per la validazione della catena di acquisizione e della

pipeline di analisi.

• Scheda di acquisizione Red Pitaya STEMlab 125-145: dispositivo basato su

SoC Xilinx Zynq-7020 con ADC (Analogue-to-Digital Converter) a 14 bit e frequen-

za di campionamento di 125 MS/s. La CPU ARM dual-core gestisce il controllo

e l’acquisizione dei dati. Un modulo GPS fornisce segnali per la sincronizzazione

temporale assoluta, garantendo timestamp con precisione di pochi microsecondi.

La Red Pitaya digitalizza il segnale analogico generato dal detector SiPM, tramite

l’ADC e lo prepara per il processamento. Il consumo complessivo della scheda è di

circa 10W.

• Edge computer NVIDIA Jetson Orin Nano6: piattaforma embedded ad alte

prestazioni, equipaggiata con una CPU a 6 core ARM, 8 GB di memoria LPDDR5

e una GPU NVIDIA Ampere con 1024 core CUDA e 32 tensor core. Riceve i dati

digitalizzati dalla Red Pitaya, li processa in tempo reale ed esegue inferenza con

modelli di machine learning ottimizzati. Il profilo di potenza configurabile (minimo

7 W, massimo 25 W) permette di bilanciare performance e consumo energetico,

rendendola adatta per l’esecuzione di algoritmi di AI in contesti a risorse limitate.

Grazie alla combinazione di CPU multicore e GPU, la Jetson è in grado di gestire

5https://redpitaya.com/stemlab-125-14
6https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/jetson-orin/

nano-super-developer-kit/
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contemporaneamente la pipeline di acquisizione, il pre-processing e l’esecuzione di

modelli di deep learning con latenze ridotte.

Figura 2.2: Parte del setup sperimentale di GammaSky presente all’interno della cupola
dell’osservatorio sul Cimone. In basso si può notare la scheda Red Pitaya, mentre in alto
il detector SiPM.

Nel setup installato presso l’osservatorio, il rivelatore è connesso alla scheda Red Pi-

taya all’interno della cupola, mentre l’unità di elaborazione Jetson Orin Nano, collegata

via Ethernet alla Red Pitaya, è collocata nel centro di calcolo dell’osservatorio. La scelta

di mantenere la Jetson in un ambiente controllato è dovuta al fatto che la comunicazione

tra i due dispositivi avviene tramite rete, rendendo non necessario il montaggio diretto

in cupola. In questo modo si evita di esporre il dispositivo a condizioni ambientali poten-

zialmente critiche, come basse temperature, elevata umidità o formazione di condensa,

che potrebbero compromettere l’affidabilità e la durata dell’esperimento.
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2.2 Funzionamento del sistema in tempo reale

Dal punto di vista funzionale, GammaSky implementa pipeline di acquisizione e elabo-

razione dati capaci di operare in streaming continuo, con bassa latenza, cos̀ı da indivi-

duare eventi gamma e analizzarli in real time tramite machine learning. Il flusso dei dati

attraverso il sistema avviene in più stadi sequenziali (vedi Figura 2.3):

• Rivelazione e digitalizzazione: al momento della rivelazione di un fotone gam-

ma, l’elettronica del rivelatore genera un rapido impulso di tensione, della durata

di pochi microsecondi, la cui forma temporale può essere approssimata come la ri-

sposta di un filtro CR− (RC)n[44]. Questo segnale analogico viene inviato tramite

cavo coassiale alla scheda Red Pitaya[42], dove l’ADC campiona la forma d’onda,

producendo un insieme di dati digitali (una traccia temporale discreta) rappresen-

tativo dell’impulso rilevato. Con forma d’onda (waveform in inglese) si intende

l’aspetto del segnale generato dall’elettronica del detector, quando questo interagi-

sce con fotoni o elettroni. La waveform contiene informazioni utili per ricostruire

energia e tempo dell’evento.

• Trigger ed estrazione dell’evento: la traccia digitale passa attraverso una logica

di trigger implementata sull’FPGA della Red Pitaya. Questo circuito verifica in

tempo reale se il segnale soddisfa certi criteri predefiniti (ad esempio supera una

certa soglia). In caso affermativo, l’FPGA “dichiara” un evento valido e isola i

dati dell’impulso corrispondente (una finestra di campioni intorno al picco) per

l’elaborazione successiva[42]. Questo primo filtraggio hardware permette di ridurre

la mole di dati, scartando il rumore di fondo o impulsi non significativi, e garantisce

che solo gli eventi potenzialmente interessanti proseguano nella pipeline.

• Marcatura temporale: per ogni evento validato, il sistema associa un timestamp

assoluto basato sul clock sincronizzato tramite GPS. La parte software di acquisi-

zione in esecuzione sulla CPU ARM della Red Pitaya riceve dal modulo GPS sia
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il segnale Pulse Per Second (PPS) sia i pacchetti NMEA 01837 trasmessi tramite

interfaccia UART. Il software decodifica da questi pacchetti la data e l’ora cor-

renti e utilizza il segnale PPS per sincronizzare il clock interno, compensando le

derive temporali dovute alla limitata precisione dell’oscillatore di bordo. In questo

modo, a ciascuna forma d’onda acquisita viene associato un riferimento temporale

accurato per l’evento rilevato.[42]. In questo modo, ogni flash gamma registrato è

identificato univocamente nel tempo, consentendo analisi di coincidenza con eventi

(come ad esempio fulmini) registrati da altre stazioni.

• Trasmissione dei dati al nodo di elaborazione: i dati dell’evento (che possono

includere la forma d’onda grezza oppure parametri riassuntivi detti di “housekee-

ping”) vengono impacchettati e inviati dalla Red Pitaya all’edge computer Jetson

Orin Nano per il processing avanzato. La comunicazione avviene attraverso in-

terfaccia di rete (Ethernet), utilizzando il protocollo TCP. In sostanza, quindi,

in GammaSky la Red Pitaya agisce da “producer” dei dati, mentre la Jetson da

“consumer”.

• Elaborazione edge e inferenza AI: lo stream di eventi validati e marcati tem-

poralmente viene inviato in tempo reale alla Jetson, dove viene eseguita la pipeline

software di analisi (RTA-DP, descritta nel Capitolo successivo). In questa fase,

ogni evento è rappresentato dalla sua forma d’onda digitale proveniente dal rivela-

tore scintillatore. L’obiettivo principale è la ricostruzione accurata dei parametri

dell’impulso, in particolare l’energia depositata (area sotto la curva) e il tempo

di arrivo, i quali sono fondamentali per identificare e classificare fenomeni gamma

transienti. Tradizionalmente, questa ricostruzione viene effettuata con algoritmi

deterministici basati sull’integrazione discreta dell’impulso (ad es. con il metodo

7Il protocollo NMEA 0183 è uno standard di comunicazione seriale ampiamente usato nei ricevitori
GPS. Fornisce stringhe ASCII contenenti informazioni di tempo, posizione e stato del segnale. Il segnale
PPS invece genera un impulso digitale al secondo, sincronizzato con il tempo GPS, che consente di
allineare con alta precisione i clock locali.
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dei trapezi8), i quali richiedono tarature manuali e possono risultare sensibili al

rumore[46]. Un limite importante di questi metodi emerge in presenza di eventi in

sovrapposizione (pile-up): quando due impulsi si avvicinano nel tempo, la forma ri-

sultante può deformarsi in modo imprevedibile, rendendo difficile stimare l’intensità

corretta. GammaSky adotta invece reti neurali convoluzionali (CNN) ottimizzate

per piattaforme embedded. Questi modelli analizzano direttamente le waveform e

stimano i parametri chiave dell’evento in modo più robusto rispetto agli algoritmi

deterministici tradizionali, mostrando una maggiore capacità di adattamento in

presenza di rumore, distorsioni e variazioni dovute a eventi in pile-up. Esistono già

approcci avanzati per la gestione del pile-up in sistemi di rivelazione gamma[47],

ma la loro applicazione in contesti di analisi in tempo reale su dispositivi a risorse

limitate rappresenta tuttora una sfida aperta.

Le CNN vengono eseguite in inferenza direttamente sulla CPU della Jetson, sfrut-

tando l’elaborazione parallela e mantenendo latenze molto ridotte, compatibili con

un sistema real-time a risorse limitate. Questa scelta apre la strada a ulteriori svi-

luppi: una volta garantita una ricostruzione precisa e veloce dei singoli eventi, sarà

possibile applicare modelli di machine learning più complessi, ad esempio per il

riconoscimento automatico di sequenze anomale (anomaly detection) o pattern ca-

ratteristici di fenomeni come i TGF, con l’obiettivo di generare allerte direttamente

a bordo.

8Il cosiddetto metodo dei trapezi si riferisce al filtro di shaping digitale proposto da Jordanov et
al.[45], impiegato per ricostruire impulsi provenienti da amplificatori “charge-sensitive”. Il filtro opera
sui campioni discreti del segnale e ne trasforma la forma esponenziale in una risposta trapezoidale, la
cui altezza risulta proporzionale all’energia dell’evento. Questa tecnica consente di stimare l’ampiezza
in modo più stabile e meno sensibile al rumore rispetto a una misura diretta del picco, riducendo gli
effetti del cosiddetto “deficit balistico”, ma richiede una corretta taratura dei parametri di shaping ed è
sensibile a eventi in sovrapposizione (pile-up).
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Figura 2.3: Schema funzionale rappresentante il setup sperimentale di GammaSky.

2.3 Modello dei dati

Il modello dei dati adottato in GammaSky organizza le informazioni acquisite e proces-

sate lungo la catena in differenti livelli, in base al contenuto informativo che possiedono.

Questa struttura multi-livello costituisce l’interfaccia comune tra i vari moduli coinvolti

nel sistema. A partire dal dato grezzo generato all’interno del Red Pitaya, l’informazione

viene progressivamente arricchita, filtrata e trasformata fino a ottenere parametri fisici,

stimati dal modello di ML, direttamente utilizzabili per l’analisi.

I livelli di dato definiti sono i seguenti:

• R0 (Raw Level 0): è il dato grezzo prodotto dalData Acquisition Module (DAM)9

in esecuzione sulla scheda Red Pitaya. Contiene un header con metadati di acquisi-

zione (run, configurazione, timestamp, stato del GPS) e un buffer di 16 384 campio-

ni ADC, memorizzati come interi unsigned a 16 bit rappresentati in complemento

a 2. Il livello R0 costituisce l’input diretto alla pipeline di elaborazione.

• HK (Housekeeping): pacchetto periodico (tipicamente a 0.2Hz) contenente dei

flag che riportano lo stato del sistema di acquisizione. Questi includono l’informa-

9Il DAM è il componente software che viene eseguito sulla scheda Red Pitaya e si occupa dell’ac-
quisizione delle waveform provenienti dai rivelatori a scintillazione, della loro serializzazione e dell’invio
tramite rete verso la pipeline di analisi.
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zione sulla validità del segnale GPS (PPS e stringhe NMEA), contatori di waveform,

stato del trigger e parametri operativi. I dati di housekeeping accompagnano i dati

scientifici delle waveform come informazione ausiliaria.

• DL0 (Data Level 0): primo livello di archiviazione strutturata, salvato in formato

HDF5. Contiene le waveform grezze acquisite, ciascuna memorizzata come dataset

indipendente nel gruppo /waveforms, insieme ai principali metadati di run, confi-

gurazione e timestamp. I dati scientifici sono salvati dopo de-complementazione a

2 e rappresentano i valori digitalizzati della tensione in ingresso.

• DL1 (Data Level 1): livello di pre-processing che riduce il volume dei dati

scientifici. Vengono conservate solo le forme d’onda rilevanti (ad esempio quelle

contenenti un impulso valido), insieme a parametri estratti e a un sottoinsieme

dei dati di housekeeping. I file DL1 sono anch’essi organizzati in formato HDF5 e

strutturati per facilitare l’accesso vettoriale ai dati e l’analisi successiva.

• DL2 (Data Level 2): rappresenta il prodotto finale della pipeline di elaborazione

scientifica. Ogni evento fisico viene descritto tramite parametri ricostruiti, in parti-

colare il tempo di arrivo e l’energia depositata. I file sono organizzati come tabelle

HDF5, dove ogni riga corrisponde a un evento e contiene le informazioni fisiche di

interesse.

I file DL0, DL1 e DL2 sono strutturati secondo lo standard HDF510 (Hierarchical

Data Format), un formato ampiamente utilizzato in ambito scientifico per l’archiviazione

di grandi quantità di dati eterogenei. HDF5 consente di organizzare i dati in modo

gerarchico tramite group, dataset e attribute e di integrare nello stesso file sia i dati

numerici che le informazioni di metadato (strumentazione, configurazione, timestamp,

ecc.). Grazie alla sua efficienza e portabilità, il formato HDF5 è adottato in molti campi,

10https://www.hdfgroup.org/solutions/hdf5/
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come l’astrofisica, dove l’organizzazione modulare e la compressione sono fondamentali

per gestire volumi elevati di dati acquisiti in continuo.

Di seguito, un approfondimento sui modelli di dato particolarmente rilevanti per

questo lavoro.

2.3.1 Formato R0

Il livello R0 è il primo elemento del modello dati e rappresenta il punto di ingresso del

flusso di elaborazione. Ogni pacchetto R0 è prodotto dal modulo DAM in esecuzione

sulla Red Pitaya e costituisce l’input diretto per la pipeline RTA-DP, che ne gestisce

lo streaming e il processamento. I dati (le waveform grezze digitalizzate dal sistema di

acquisizione) sono memorizzati in strutture dati C++, le quali vengono poi serializzate

in un buffer binario di un messaggio ZeroMQ (libreria introdotta nella Sezione 3.1.1).

Ogni pacchetto R0 è composto da due parti principali:

• Header: contiene informazioni sulla sessione di acquisizione, identificativi vari,

lo stato del GPS, i timestamp correnti e parametri interni del firmware come la

decimazione, l’offset del trigger e la dimensione totale del buffer contenente le

waveform. La Tabella 2.1 mostra i campi principali dell’header:
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Tabella 2.1: Campi principali dell’header del pacchetto R0.

Campo Tipo Descrizione Esempio

Type uint8 Tipo di pacchetto 0xA1
SubType uint8 Sottotipo di pacchetto 0x01
SessionID uint16 ID della sessione di acquisizione 1
ConfigID uint16 ID della configurazione hardware 3
TimeSts uint8 Stato del time tag GPS 0x00
PPSSlice uint8 Indice PPS usato per il timestamp 0
Min uint8 Minuti 49
Sec uint8 Secondi 32
Usec uint32 Microsecondi (da PPS) 199657
Equalization uint8 Livello di equalizzazione ADC 0
Decimation uint16 Fattore di decimazione ADC 8
CurrOff uint32 Offset del campione finale nel buffer 16384
TrigOff uint32 Offset del trigger nel buffer 8200
Size uint32 Dimensione totale del buffer waveform 16384

• Payload: un buffer di 16 384 campioni consecutivi acquisiti dall’oscilloscopio che

viene eseguito sull’FPGA del Red Pitaya, memorizzati come interi a 16 bit un-

signed complementati a 2, che rappresentano l’intera finestra di acquisizione. Il

payload contiene a sua volta un piccolo header il quale consiste principalmente di

Type e SubType, in modo da poter distinguere di che pacchetto si tratta. La wave-

form contiene il segnale proveniente dal rivelatore a scintillazione, campionato alla

frequenza dell’ADC e già pronto per la ricostruzione successiva.

2.3.2 Formato DL0

Il DL0 è un archivio strutturato in formato HDF5 che contiene l’insieme delle waveform

acquisite. Il file presenta un gruppo principale /waveforms, all’interno del quale ogni

dataset (wf 000000, wf 000001, . . . ) rappresenta una singola forma d’onda acquisita. I

file seguono la convenzione di naming:

wf_runId_XXXXX_configId_ZZZZZ_YYYY-MM-DDTHH:mm:ss.SSSSS.h5
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La Figura 2.4 mostra i principali campi dei metadati associati ad una specifica

waveform acquisita, derivati dal software di acquisizione di Gamma-Flash[48], da cui

GammaSky eredita parte dell’infrastruttura.

Figura 2.4: Contenuto di un file DL0 riguardante una waveform denominata wf 000001.
Si possono osservare i vari campi associati alla forma d’onda e i relativi valori.

La gestione del timestamp nei DL0 è articolata in modo da fornire valori precisi e

coerenti. Il DAM combina infatti diverse informazioni temporali provenienti sia dall’F-

PGA sia dal modulo GPS della Red Pitaya. Al momento del trigger, il sistema registra

un tempo locale ad alta risoluzione, mentre in parallelo un modulo di sincronizzazione

aggiorna periodicamente il tempo assoluto utilizzando il segnale PPS e le stringhe NMEA

del GPS. Il timestamp finale viene quindi ricavato a partire dal tempo GPS quando il

segnale è valido, oppure dal clock locale in caso di perdita di sincronizzazione. Questo

meccanismo consente di associare a ogni waveform un riferimento temporale coerente e,

quando il GPS è stabile, accurato all’ordine dei microsecondi.

Ogni DL0, oltre ai metadati, ha associato anche un buffer contenente i valori effettivi

della waveform. La struttura di ogni buffer segue un formato chiave–valore, dove la

chiave è l’indice progressivo del campione e il valore rappresenta l’ampiezza del segnale
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digitalizzato. Una waveform tipica presenta una regione iniziale stabile, generalmente

considerata come rumore, seguita da un rapido incremento d’ampiezza (il picco) e da

un successivo decadimento, corrispondente al rilascio di energia nel cristallo scintillatore.

Viene riportato parte del buffer riguardante la waveform vista in precedenza (wf 000001):

1 {

2 "0": 125,

3 "1": 104,

4 "2": 115,

5 "3": 133,

6 ...

7 "22": 1641,

8 "23": 1653,

9 "24": 1670,

10 ...

11 "46": 119,

12 "47": 133,

13 "48": 119,

14 "49": 133

15 }

2.3.3 Formato DL2

Il formato DL2 rappresenta l’output finale della pipeline di elaborazione e quindi del

modello dati. Contiene le informazioni fisiche delle waveform ricostruite a partire dal

modello R0, come l’energia depositata e il tempo di arrivo di ciascun evento. Il formato

utilizzato è HDF5 e contiene una tabella unica di eventi, dove ogni riga corrisponde a una

waveform elaborata (vedi Tabella 2.2 con i campi principali). I file DL2, i quali vengono

salvati su disco alla fine del processo di inferenza, seguono la convenzione di naming:

dl2_runID_XXXXX_seqnum_YYYYY.h5
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Tabella 2.2: Campi principali della tabella di un file DL2.

Campo Tipo Descrizione Esempio

n waveform float32 Identificativo della forma d’onda analizzata 2.0
tstart float32 Tempo d’inizio dell’evento in secondi UNIX 2.6128e9
integral1 float32 Integrale dell’area sottesa al picco della waveform 89435.16

Questo livello fornisce quindi la rappresentazione compatta e fisicamente interpre-

tabile dei dati scientifici prodotti da GammaSky. La pipeline in sostanza, riceve come

input dati raw R0 contenenti le waveform grezze, esegue su di esse la ricostruzione tra-

mite rete neurale convoluzionale (CNN) ottimizzata per l’esecuzione su NVIDIA Jetson

Orin Nano, e produce in uscita i file DL2.
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Real-Time Analysis DataProcessor

(RTA-DP)

Il Real-Time Analysis DataProcessor (RTA-DP)[49] è un framework per il processamen-

to distribuito di dati in tempo reale, sviluppato presso l’INAF – OAS, con l’obiettivo

di fornire un’infrastruttura software modulare, scalabile e adattabile a diversi scena-

ri sperimentali. Il sistema consente di costruire pipeline di analisi basate su flussi di

dati, composte da processi indipendenti che comunicano tra loro attraverso canali ad

alte prestazioni. In tale contesto, RTA-DP è stato progettato per supportare l’imple-

mentazione di pipeline di analisi di dati in tempo reale nel campo delle osservazioni

di raggi gamma, per strumenti basati a terra, garantendo al contempo elevato throu-

ghput, bassa latenza e flessibilità architetturale. Il codice sorgente del framework e le

istruzioni per l’esecuzione sono disponibili pubblicamente nel repository GitHub ufficiale:

https://github.com/ASTRO-EDU/rta-DataProcessor.

Grazie alla sua struttura modulare, RTA-DP consente di configurare pipeline adatte a

diversi contesti sperimentali, assicurando parallelismo, scalabilità e controllo distribuito

dei processi. La versione iniziale del framework, implementata in Python, è utilizza-

ta come pipeline software per alcuni progetti in cui OAS è coinvolto, tra cui l’Online
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Observation Quality System (OOQS) dell’ASTRI Mini-Array Project [50] e il già citato

GammaSky. Riguardo quest’ultimo, è attualmente eseguito su un server dedicato, in

attesa dell’ottimizzazione necessaria per il deployment su piattaforme di edge compu-

ting a basso consumo di risorse. Tale architettura ha costituito la base per le successive

evoluzioni del framework, tra cui la versione ottimizzata in C++ impiegata proprio in

GammaSky.

3.1 Architettura generale del sistema

L’architettura del framework è modulare e organizzata attorno a un insieme di entità

funzionali con responsabilità distinte e complementari. Il Producer costituisce la sorgente

dei dati in ingresso, i quali vengono ricevuti dal DataProcessor, ossia il nodo di calcolo

responsabile dell’elaborazione, che incapsula al suo interno i componenti operativi. Il

Supervisor funge da orchestratore locale: coordina l’avvio e il ciclo di vita delle unità

di lavoro, gestisce la configurazione runtime e raccoglie ed esporta informazioni di stato;

i compiti di esecuzione parallela sono demandati a insiemi di WorkerManager, i quali

organizzano pool omogenei diWorker incaricati delle singole operazioni di processamento

(deserializzazione, processing, analisi e scrittura dei risultati). Il controllo della pipeline è

affidato a un componente di coordinamento denominato Coordinator System, il quale è in

grado di comandare e gestire più DataProcessor simultaneamente. Infine, il sottosistema

di Monitoring centralizza e pubblica statistiche sul processamento e la telemetria dei

nodi del sistema, utili per la supervisione e per il debugging. La struttura del sistema è

completamente configurabile tramite file JSON, che definiscono la topologia dei processi,

i canali di comunicazione, le code a priorità, il numero di worker e le modalità di logging

e monitoraggio.

Oltre alla sua architettura modulare, RTA-DP è concepito per essere facilmente riu-

tilizzabile e adattabile a diversi casi d’uso. Ogni applicazione può infatti specializzare i
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suoi componenti principali per definire il tipo di processamento richiesto. In particolare,

i worker rappresentano le unità elementari di elaborazione e possono essere estesi per

implementare task specifici, come operazioni di pre–processing, filtraggio o analisi me-

diante modelli avanzati come quelli di machine learning. I WorkerManager coordinano

gruppi di worker specializzati, mentre il supervisor può essere personalizzato per con-

trollare diverse combinazioni di WorkerManager e adattare il pre–processing dei dati in

funzione del caso d’uso. In questo modo, il framework fornisce un’infrastruttura generale

per la gestione della comunicazione, del parallelismo e del monitoraggio, lasciando però

libertà di scelta su come implementare la logica di elaborazione.

3.1.1 Librerie utilizzate

RTA-DP si concentra su un insieme limitato di librerie esterne Python, scelte per sup-

portare la comunicazione, la serializzazione e la gestione dei flussi di dati in tempo reale.

La combinazione di queste librerie consente di gestire architetture distribuite, flessibili

e affidabili per l’elaborazione in tempo reale di grandi volumi di dati. Quelle utilizzate

sono:

• Apache Avro1: framework di serializzazione dei dati sviluppato nell’ambito del

progetto Apache Hadoop. Fornisce un formato binario compatto ed efficiente per

la trasmissione di grandi quantità di dati, insieme a un’interfaccia semplice per la

definizione delle strutture tramite schemi JSON. Ogni schema descrive la struttura

e i tipi di dato previsti, garantendo compatibilità e coerenza tra sistemi eterogenei

e linguaggi diversi. Avro supporta inoltre un’ampia gamma di tipi complessi (re-

cord, array, mappe, unioni) e permette la schema evolution, la quale permette di

aggiornare o estendere le definizioni dei dati senza compromettere la compatibilità

con versioni precedenti.

1https://avro.apache.org/
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• ZeroMQ (Zero Message Queue)2: libreria di messaggistica ad alte prestazioni

progettata per la realizzazione di applicazioni distribuite e concorrenti. Fornisce

un’infrastruttura di comunicazione leggera e scalabile, semplificando lo sviluppo di

sistemi complessi grazie a un’API di alto livello per la gestione dei socket. ZeroMQ

supporta diversi pattern di messaggistica, ciascuno adatto a differenti modelli di

comunicazione:

– PUSH/PULL: modello di comunicazione unidirezionale in cui uno o più pro-

duttori (PUSH) inviano messaggi a uno o più consumatori (PULL). È utilizzato

per distribuire il carico di lavoro in modo bilanciato tra più processi o thread

(ad esempio, i worker della pipeline).

– PUB/SUB (Publisher/Subscriber): modello basato sulla pubblicazione

e sottoscrizione, in cui un publisher invia messaggi a uno o più subscriber.

Questi ultimi ricevono soltanto i messaggi relativi agli argomenti o canali a

cui sono iscritti. È impiegato per la trasmissione in broadcast di eventi o dati

di interesse comune.

– REQ/REP (Request/Reply): pattern di tipo client-server che implementa

uno scambio sincrono di messaggi, dove un client (request) invia una richiesta

e il server (reply) risponde. È utile nei casi in cui sia necessario un feedback

esplicito o un controllo puntuale delle comunicazioni.

ZeroMQ è agnostica rispetto al linguaggio di programmazione e al trasporto, funzio-

nando su protocolli come TCP, UDP e IPC, e garantisce bassa latenza e throughput

elevato. In RTA-DP, è impiegata come strato di comunicazione tra i processi della

pipeline, facilitando il trasferimento rapido di dati e messaggi di controllo tra com-

ponenti distribuiti. Il pattern di comunicazione utilizzato è specificato nel file di

2https://zeromq.org/
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configurazione JSON del framework. ZeroMQ è spesso impiegata in combinazione

con Avro, che gestisce la serializzazione dei dati trasmessi nei messaggi.

• Apache Kafka3: piattaforma di streaming distribuita sviluppata da Apache Soft-

ware Foundation, progettata per gestire flussi di dati in tempo reale su larga scala

con elevata tolleranza ai guasti. Kafka funge da message broker distribuito, basa-

to su un modello publish/subscribe, in cui i produttori pubblicano messaggi su

specifici topic e i consumatori si iscrivono per riceverli. Il sistema garantisce persi-

stenza e replicazione dei dati, permettendo la gestione di elevati volumi di traffico

con scalabilità orizzontale e bassa latenza. In alcune configurazioni di RTA-DP,

Kafka viene utilizzato come alternativa o complemento a ZeroMQ per gestire pi-

peline distribuite su più nodi o esperimenti che richiedono buffering, tracciabilità e

resilienza ai guasti. In combinazione con il formato Avro, consente la serializzazio-

ne efficiente dei messaggi e la gestione centralizzata degli schemi tramite Schema

Registry.

• JSON: JSON (JavaScript Object Notation)4 è un formato di interscambio dati leg-

gero, di tipo testuale e facilmente leggibile sia da esseri umani sia da macchine. È

“schema-less”, quindi non richiede una struttura predefinita, e supporta tipi di dati

semplici come stringhe, numeri, array e oggetti. Grazie alla sua semplicità, è am-

piamente utilizzato per file di configurazione, interfacce API e scambio di messaggi

tra componenti software. In RTA-DP, JSON viene impiegato per la definizione dei

parametri di configurazione, per i messaggi di controllo e per il monitoraggio del

sistema. I log generati permettono di tracciare in tempo reale lo stato dei processi e

delle code, supportando il debugging e l’analisi delle prestazioni. Rispetto ad Avro,

JSON privilegia la leggibilità e la facilità di utilizzo, mentre Avro viene adottato

per la serializzazione efficiente e compatta dei dati binari.

3https://kafka.apache.org/
4https://www.json.org/json-en.html
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3.1.2 Componenti principali

Il framework è costituito da un DataProcessor, il quale a sua volta è composto da diversi

componenti principali che cooperano per realizzare le pipeline di analisi in tempo reale.

Ogni DataProcessor esegue il processamento di uno o più tipi di elaborazione sullo stesso

tipo di dato e dispone di un unico Supervisor e di un insieme di WorkerManager. Ogni

Supervisor gestisce n WorkerManager, e ciascun WorkerManager coordina M Worker in

parallelo (vedi Figura 3.2). Tutti e tre i componenti del DataProcessor implementano

una macchina a stati che regola le fasi operative (inizializzazione, gestione dei cicli di

attesa, processamento e chiusura), la quale consente un monitoraggio coerente del sistema

durante l’esecuzione (in Figura 3.1 è riportata la macchina a stati del WorkerManager).

• Supervisor: è il componente centrale del sistema e gestisce l’orchestrazione dei

dati e degli altri componenti. Il Supervisor è responsabile dell’inizializzazione del-

l’intera pipeline: istanzia i WorkerManager previsti e richiama ognuno di essi per

creare i rispettivi worker, secondo le specifiche definite nel file JSON di configura-

zione. Può operare secondo due modelli di esecuzione, specificati nel file di confi-

gurazione: Thread (esecuzione concorrente nello stesso spazio di memoria) oppure

Process (esecuzione isolata tra istanze).

A runtime, riceve i flussi di dati dai producer attraverso socket ZeroMQ, secondo

il pattern di comunicazione indicato nel file di configurazione. Questi pattern

definiscono la modalità di interfacciamento del DataProcessor con l’esterno, ovvero

con altri moduli o processi che utilizzano ZeroMQ per la trasmissione dei dati. In

particolare:

– il pattern PUSH/PULL implementa una comunicazione unidirezionale di

tipomany-to-one o load-balanced, in cui uno o più produttori inviano messaggi

a un singolo consumatore; è tipicamente utilizzato per distribuire il carico di

eventi tra più nodi di processamento;
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– il pattern PUB/SUB realizza una comunicazione one-to-many, in cui un

publisher invia i dati a più subscriber interessati, utile in scenari in cui diversi

moduli devono ricevere simultaneamente lo stesso flusso di dati.

Questi pattern riguardano esclusivamente la comunicazione esterna del DataPro-

cessor. La comunicazione interna tra i tre componenti avviene invece tramite code

concorrenti e meccanismi di scambio di comandi dedicati. In questo modo, il Su-

pervisor riceve i dati dai socket ZeroMQ, li inserisce nelle code interne a priorità

differente (low priority – LP e high priority – HP) per la gestione separata di even-

ti ordinari e critici, e i WorkerManager li prelevano per distribuirli ai rispettivi

worker per l’elaborazione. I risultati prodotti vengono infine inviati verso l’esterno

attraverso gli endpoint ZeroMQ configurati per la trasmissione, secondo il tipo di

interfaccia e di dato specificato nel file JSON di configurazione.

Il Supervisor inoltre, pubblica periodicamente messaggi di monitoraggio e, in ba-

se ai comandi di controllo che riceve dal centro di comando, esegue funzionalità

differenti:

– shutdown: interrompe immediatamente il funzionamento del sistema e termi-

na tutti i processi attivi;

– cleanedshutdown: esegue una chiusura controllata, attendendo che tutte le

code non vuote vengano liberate prima di arrestare il sistema;

– startprocessing: avvia l’elaborazione dei dati impostando lo stato del si-

stema su “Processing” e abilitando l’elaborazione nei WorkerManager;

– stopprocessing: sospende l’elaborazione dei dati mantenendo il sistema

attivo, riportando lo stato a “Waiting”;

– startdata: abilita la ricezione dei dati dai producer, impostando il flag

stopdata = false;
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– stopdata: interrompe temporaneamente la ricezione dei dati dai producer,

impostando il flag stopdata = true;

– start: avvia simultaneamente la ricezione e l’elaborazione dei dati;

– stop: ferma sia la ricezione che l’elaborazione dei dati;

– reset: riporta il sistema allo stato iniziale (come fa stop), pulisce tutte le

code dei WorkerManager e riporta lo stato a “Waiting”;

– getstatus: restituisce informazioni sullo stato corrente del Supervisor e dei

WorkerManager.

In sostanza quindi, il Supervisor controlla l’esecuzione della pipeline e il lifetime

della stessa, in base ai messaggi di comando che riceve. Prima dell’inoltro dei dati,

esegue una fase di pre-processing (la quale può essere modificata se necessario)

specifica al tipo con il quale il sistema avrà a che fare, il quale è specificato nel file

JSON di configurazione:

– per dati di tipo filename, effettua l’apertura del file contenente la lista di

eventi, i quali vengono caricati su una coda;

– per dati di tipo binary, esegue una decodifica del payload e carica il risultato

sulla coda;

– per dati di tipo string, inoltra direttamente il messaggio senza ulteriori

elaborazioni.

• WorkerManager: ogni WorkerManager gestisce un gruppo di worker che eseguo-

no task di elaborazione in parallelo. Gestisce i dati attraverso code concorrenti

(riempite man mano dal Supervisor), li distribuisce ai worker attraverso code in-

terne e raccoglie i risultati nelle proprie code di output. Ogni WorkerManager

mantiene una coda per i risultati associata e invia periodicamente al Supervisor
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metriche di performance per il monitoraggio (vedi un esempio di messaggio di mo-

nitoraggio nella Sezione 3.1.4). Questa struttura a pool consente di parallelizzare

il lavoro e bilanciare il carico tra le unità di elaborazione, aumentando l’efficienza

complessiva della pipeline.

Figura 3.1: Macchina a stati del WorkerManager, con i principali stati e transizioni che
regolano il ciclo di elaborazione dei dati all’interno del DataProcessor.

45



CAPITOLO 3. REAL-TIME ANALYSIS DATAPROCESSOR (RTA-DP)

• Worker: i worker rappresentano le unità di calcolo effettive del sistema, dove av-

viene il vero e proprio processamento dei dati. Ogni worker eredita da una classe

base astratta che ne definisce l’interfaccia e implementa un metodo dedicato per

l’elaborazione dei dati in ingresso. Tutti i worker gestiti dallo stesso WorkerMa-

nager sono istanze equivalenti e applicano lo stesso algoritmo di elaborazione in

parallelo sul flusso di dati assegnato.

A seconda della configurazione, i worker possono operare su file, pacchetti binari o

stringhe, e inseriscono i risultati nelle code di output LP o HP in base alla priorità

dell’evento. Essi costituiscono il punto in cui si concretizza il caso d’uso specifico del

DataProcessor: qui vengono implementate le logiche di calcolo e analisi che possono

spaziare da semplici operazioni di pre-processing fino a modelli complessi di analisi

avanzata o inferenza basata su machine learning. Grazie a questa architettura

modulare, è possibile adattare facilmente il comportamento dei worker a diversi

contesti applicativi (ad esempio, per la decodifica dei dati grezzi, l’estrazione di

feature o l’analisi ad alto livello).
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Figura 3.2: Schema generale del DataProcessor che illustra il flusso di dati e messaggi
all’interno del framework RTA-DP: i dati prodotti dai Producer vengono ricevuti dal
Supervisor (Consumer), instradati ai WorkerManager e successivamente elaborati in pa-
rallelo dai Worker, fino alla produzione dei risultati sui canali di output (Crediti: INAF
– OAS).

3.1.3 Configurazione

L’architettura di RTA-DP è completamente configurabile tramite un file in formato

JSON, che definisce i parametri operativi del sistema e la topologia della pipeline. Il

file di configurazione rappresenta un elemento chiave del framework: consente infatti di

descrivere in modo modulare la struttura della pipeline, con la dichiarazione della confi-

gurazione di ogni DataProcessor e dei componenti di controllo e monitoraggio. Per ogni

DataProcessor, viene specificato il tipo di dato da elaborare, le modalità di comunicazio-

ne (pattern ZeroMQ) con il mondo esterno (quindi con il producer e con chi “consumerà”

l’output), il numero di worker da istanziare e i socket di rete utilizzati per la trasmissione

dei dati e dei messaggi di monitoraggio.
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Viene riportato di seguito un esempio di file di configurazione per uno specifico

DataProcessor:

{

"processname": "RTADP1",

"dataflow_type": "binary",

"processing_type": "thread",

"datasocket_type": "pubsub",

"data_lp_socket": "tcp://127.0.0.1:5564",

"data_hp_socket": "tcp://127.0.0.1:5565",

"command_socket": "tcp://127.0.0.1:5568",

"monitoring_socket": "tcp://127.0.0.1:5561",

"manager": [

{

"result_socket_type": "pubsub",

"result_dataflow_type": "binary",

"result_lp_socket": "tcp://127.0.0.1:5566",

"result_hp_socket": "tcp://127.0.0.1:5567",

"num_workers": 5,

"name": "Rate",

"name_workers": "worker"

}

],

"logs_path": "/tmp/",

"logs_level": 5

}

Il contenuto del file JSON può essere suddiviso in tre sezioni principali:
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• Parametri generali del DataProcessor

– processname: nome identificativo del DataProcessor.

– dataflow type: indica il tipo di dato da gestire. Può assumere tre valori:

∗ filename: il dato è rappresentato da un percorso a un file contenente la

lista di eventi da elaborare;

∗ binary: il dato è una sequenza di byte da decodificare;

∗ string: il dato è una stringa testuale, che può contenere valori numerici,

array o messaggi JSON.

– processing type: definisce la modalità di esecuzione del DataProcessor. Può

essere thread oppure process.

– datasocket type: specifica il pattern ZeroMQ di comunicazione implemen-

tato dai canali, tipicamente pubsub o pushpull, a seconda dell’architettura

della pipeline.

– logs path e logs level: specificano rispettivamente il percorso in cui salvare

i file di log e il livello di dettaglio dei messaggi registrati. Ogni Supervisor

genera file di log contenenti informazioni sull’elaborazione dei dati, eccezioni

ed errori. Il parametro logs level può assumere valori da 1 a 5, dove 1 indica

solo errori critici e 5 il massimo livello di verbosità.

• Socket e canali di comunicazione

– data lp socket e data hp socket: definiscono gli endpoint TCP utilizzati

per i canali di comunicazione rispettivamente a bassa (LP) e alta priorità

(HP). Questa distinzione consente di separare flussi di dati ordinari da quelli

critici o urgenti.

– command socket: punto di connessione per la ricezione dei comandi operativi

(start, stop, shutdown, ecc.).
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– monitoring socket: canale dedicato alla trasmissione dei dati di monitorag-

gio (stato dei processi, utilizzo risorse, eventi processati). In configurazioni

distribuite, il sistema può impiegare uno o più forwarder per aggregare e

inoltrare i monitoring point verso un nodo centrale.

• Configurazione dei WorkerManager

– Ogni elemento dell’array manager definisce un WorkerManager con i relativi

parametri di output e parallelizzazione:

∗ result socket type: tipo di comunicazione adottata per l’invio dei ri-

sultati (es. pubsub);

∗ result dataflow type: formato dei dati di output (es. string o binary);

∗ result lp socket e result hp socket: socket TCP dedicati ai canali di

output a bassa e alta priorità;

∗ num workers: numero di worker che il WorkerManager deve istanziare;

∗ name e name workers: identificatori testuali utilizzati per etichettare i

processi e i thread.

3.1.4 Comunicazione e formati

Tutti i messaggi scambiati tra i componenti del framework RTA-DP condividono una

struttura comune in formato JSON. Ogni messaggio è composto da due sezioni principali:

• un header, che contiene i campi standard di identificazione e instradamento del

messaggio;

• un body, che racchiude il contenuto vero e proprio (payload) o i parametri opera-

tivi.

L’header include le seguenti informazioni:
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• type: tipo di messaggio (0 = command, 1 = monitoring, 2 = alarm, 3 = configu-

ration, 4 = log, 5 = info);

• subtype: categoria o sottotipo specifico del messaggio;

• time: timestamp del momento di generazione del messaggio;

• pidsource: identificativo del processo sorgente;

• pidtarget: identificativo del processo destinatario (può essere “*” per broadcast);

• priority: livello di priorità del messaggio (es. low o high).

La sezione body, invece, varia in base alla tipologia di messaggio e può contenere

dati di monitoraggio, log, eventi o pacchetti di dati scientifici. Le principali tipologie di

messaggi gestite dal sistema sono le seguenti:

• Command: messaggi di controllo e gestione del sistema. Permettono di invia-

re comandi come start, stop, shutdown o reset ai vari processi del framework

per l’avvio oppure l’arresto dell’acquisizione dei dati e dell’elaborazione. Alcuni

comandi possono agire sull’intera pipeline (ad esempio pidtarget = "*"), mentre

altri sono diretti a componenti specifici. Un esempio di comando usato per comu-

nicare a tutti i processi attivi di fermare il processamento degli eventi potrebbe

essere:

{

"header": {

"type": 0,

"subtype": "stopprocessing",

"time": "2024-01-12T12:34:56Z",

"pidsource": "processA",

"pidtarget": "*",
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"priority": "high"

}

}

• Monitoring: messaggi periodici usati per il monitoraggio in tempo reale delle

prestazioni e dello stato dei componenti attivi nel sistema. Contengono informa-

zioni come lo stato del processo (es. Processing, Idle, Stopped), l’utilizzo di CPU

e memoria, la dimensione delle code di input e output e varie metriche riguar-

danti i worker (come il numero di eventi processati). Un esempio di messaggio di

monitoraggio prodotto da un WorkerManager può essere:

{

"header": {

"type": 1,

"time": 1761303743.5273652,

"pidsource": "R0toDL2-r0dl2_wm",

"pidtarget": "*"

},

"workermanagerstatus": "Processing",

"procinfo": {

"cpu_percent": 99.9,

"memory_usage": [

186490880,

20438589440,

0,

19686834176,

0
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]

},

"queue_lp_size": 0,

"queue_hp_size": 0,

"stopdatainput": false,

"queue_lp_result_size": 0,

"queue_hp_result_size": 0,

"workersstatusinit": 0,

"workersstatus": 2.0,

"workersname": "worker",

"worker_rates": {"0": 0.0},

"worker_tot_events": {"0": 380.0},

"worker_status": {"0": 2}

}

• Alarm, Log e Info: messaggi informativi o diagnostici utilizzati per notifica-

re eventi anomali, condizioni operative o semplici messaggi di log. Ogni Super-

visor, WorkerManager e Worker può generare monitoring points, alarms, logs e

informations.

• Dati di input e output: pacchetti di dati scientifici da elaborare. Come già

detto possono essere di tre tipi principali: filename che contiene il nome di un

file di dati da elaborare, binary che rappresenta dati binari arbitrari (ad esempio

waveform digitalizzate) e string il quale contiene una stringa o un flusso di testo

strutturato (ad esempio messaggi JSON o Avro).
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Capitolo 4

Reingegnerizzazione e

ottimizzazione di RTA-DP in C++

In questo capitolo viene descritto il lavoro svolto durante la prima parte del tirocinio

presso INAF – OAS, con l’obiettivo di rendere funzionante e performante il prototipo

C++ del framework RTA-DP. La necessità di migrare e ottimizzare rispetto alla ver-

sione in Python è dettata dai requisiti di latenza e consumo tipici di ambienti di edge

computing e dall’esigenza di integrare nativamente librerie C++ per la comunicazio-

ne e l’ottimizzazione. Il lavoro ha preso come punto di partenza una bozza C++ non

funzionante e l’ha trasformata in un framework stabile, manutenibile e configurabile.

4.1 Limitazioni dell’implementazione originale in Py-

thon

La versione originale del framework RTA-DP, sviluppata in Python, costituiva un valido

prototipo funzionale e ha permesso di definire la logica generale della pipeline e dei flussi

di comunicazione. Tuttavia, durante le prime fasi di test sono emerse diverse limitazioni

che ne impedivano l’utilizzo in contesti con una limitazione di risorse. Python, pur
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essendo un linguaggio estremamente efficace per la prototipazione, lo sviluppo rapido e

l’analisi dati, introduce inevitabilmente un overhead dovuto alla natura interpretata e al

modello di concorrenza, che ne limita l’uso in contesti ad alte prestazioni o con vincoli

hardware rigidi.

Per rispondere a queste esigenze, si è reso necessario un porting completo in C++,

linguaggio adatto a tali piattaforme visto che consente un controllo più diretto sulla

gestione della memoria, sul parallelismo e sulle ottimizzazioni a basso livello. Questo

approccio ha reso possibile ottenere prestazioni compatibili con i requisiti dei sistemi

embedded e delle architetture di calcolo real-time. Di seguito sono riportate le principali

limitazioni riscontrate nella versione originale e le motivazioni tecniche che hanno guidato

la reingegnerizzazione in C++:

• Prestazioni e latenza: l’esecuzione in ambiente interpretato e la presenza del

Global Interpreter Lock (GIL)1 introducono inevitabilmente un overhead che limi-

ta la prevedibilità dei tempi di esecuzione. In un contesto real–time, dove la latenza

deve essere costante e controllata, queste variabilità compromettono il comporta-

mento del sistema. Il porting in C++ consente di ottenere codice compilato nati-

vamente e di sfruttare le ottimizzazioni del compilatore, migliorando sensibilmente

il throughput.

• Controllo della memoria e uso delle risorse: Python delega la gestione della

memoria al garbage collector, rendendo meno prevedibili i tempi di allocazione e

rilascio. Su dispositivi con risorse limitate è invece essenziale avere un controllo

esplicito sul consumo di memoria e sulle allocazioni. C++ permette di gestire

in modo diretto il ciclo di vita delle risorse, adottando strategie di allocazione

personalizzate per contenere il memory footprint complessivo.

1Il Global Interpreter Lock (GIL) è un meccanismo dell’interprete Python che permette l’esecuzione
di un solo thread alla volta per proteggere le strutture interne del linguaggio. Sebbene semplifichi la
gestione della memoria, limita l’effettivo parallelismo dei thread “CPU-bound”.
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• Multithreading e parallelismo: il GIL di Python limita l’efficacia del multi-

threading nei task CPU-bound, impedendo l’esecuzione concorrente di più thread

all’interno dello stesso processo. Sebbene il modulo multiprocessing consenta di

aggirare parzialmente questo vincolo creando processi separati, tale approccio intro-

duce un overhead aggiuntivo in termini di memoria e comunicazione inter-processo,

risultando meno efficiente in sistemi con risorse limitate. In C++, il multith-

reading è nativo e supportato da primitive efficienti (std::thread, std::mutex,

std::condition_variable), che permettono di sfruttare pienamente i core dispo-

nibili condividendo lo stesso spazio di memoria e riducendo il costo di sincroniz-

zazione, aspetto fondamentale per massimizzare le prestazioni in ambienti edge e

real-time.

• Integrazione con librerie e acceleratori: la scelta del C++ è stata guidata

anche dalla prospettiva di un futuro caso d’uso del framework RTA-DP, ovvero

l’analisi di eventi gamma mediante inferenza in tempo reale basata su modelli di

machine learning (vedi Capitolo 5). Poiché il dispositivo edge scelto per l’esecu-

zione del framework è una NVIDIA Jetson, è stato ritenuto opportuno utilizzare

un linguaggio pienamente compatibile con le librerie di ottimizzazione e inferen-

za NVIDIA (come LiteRT e CUDA). Tali librerie forniscono interfacce native in

C/C++ altamente performanti, non direttamente accessibili o pienamente efficienti

in Python. L’integrazione diretta in C++ consente inoltre di gestire buffer binari

senza copie intermedie e di ridurre la latenza nella comunicazione con i dispositivi

di accelerazione hardware.

• Librerie di supporto: la logica di comunicazione basata su ZeroMQ era già

presente nella versione Python, ma la riscrittura in C++ ha permesso di gestire

in modo più efficiente le risorse e di integrare librerie pensate per ambienti ad alte

prestazioni. In particolare, l’introduzione di spdlog2 ha consentito di implementare

2spdlog è una libreria C++ open source per il logging ad alte prestazioni. Offre un’interfaccia semplice
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un sistema di logging configurabile a runtime, con livelli di dettaglio selezionabili e

la possibilità di disattivare completamente l’output durante le fasi di elaborazione.

Questo approccio riduce l’impatto del logging sulle prestazioni e contribuisce a una

maggiore stabilità complessiva del sistema.

4.2 Stabilizzazione e refactoring iniziale

La prima fase del lavoro ha avuto come obiettivo la messa in funzione del prototipo C++

di RTA-DP, che nella versione di partenza non risultava eseguibile. Il codice presentava

numerose criticità strutturali e logiche che impedivano la corretta inizializzazione dei

componenti, la gestione dei thread e la sincronizzazione tra i moduli. L’attività è quindi

iniziata con un’analisi sistematica dei crash e delle eccezioni rilevati in fase di esecuzione,

utilizzando strumenti di debugging come gdb3 e un sistema di logging temporaneo, al fine

di individuare le sezioni di codice affette da comportamenti indefiniti o accessi a memoria

non validi. Una volta individuate le principali cause di instabilità, è stato eseguito un

processo di refactoring mirato a garantire il corretto funzionamento del framework e del

ciclo di vita dei componenti.

4.2.1 Correzione delle criticità strutturali

Tra i problemi iniziali più rilevanti si sono verificati diversi casi di segmentation fault

durante l’avvio del framework, causati da dereferenziazioni di puntatori nulli o dall’uti-

lizzo di oggetti non ancora istanziati. Un esempio tipico riguardava la variabile manager

nella funzione Supervisor::listen for result(), utilizzata prima della corretta ini-

zializzazione e responsabile dell’arresto immediato del programma. Per evitare tale com-

e thread-safe, supporta sink multipli (console, file, syslog) e consente di configurare il livello di verbosità
a runtime, minimizzando l’overhead anche in applicazioni real-time.

3gdb (GNU Debugger) è un debugger open source per programmi C, C++ e altri linguaggi, che
consente di ispezionare lo stato di esecuzione, impostare breakpoint e analizzare le cause di crash o
comportamenti anomali.
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portamento è stato introdotto un controllo esplicito sullo stato del puntatore e un ciclo

di attesa con ritardo temporizzato, che assicura la disponibilità del componente prima

del suo utilizzo:

1 for (auto& manager : manager_workers) {

2 int attempt = 0;

3 while (manager == nullptr && attempt < 10) {

4 std::this_thread::sleep_for(std::chrono::seconds(1));

5 attempt++;

6 }

7 }

L’origine di questi errori era però più profonda e riconducibile alla mancanza di un

ordine deterministico nell’inizializzazione dei componenti. Durante l’avvio del sistema,

il framework non garantiva che i WorkerManager fossero creati prima dei relativi worker

e dei thread di servizio, con conseguenti accessi a strutture non ancora pronte. Per

risolvere definitivamente la criticità, è stata definita la sequenza esplicita di avvio:

start managers() → start workers() → start service threads().

Questa modifica ha eliminato i crash all’avvio e ha reso prevedibile la sequenza di

inizializzazione del sistema, garantendo che ogni componente venga istanziato e registrato

prima dell’avvio delle unità dipendenti.

4.2.2 Gestione del multithreading, sincronizzazione e stabilità

Una parte significativa del lavoro è stata dedicata alla correzione dei problemi legati al

multithreading e alla gestione del ciclo di vita dei thread e dei componenti, che rap-

presentavano una delle principali cause di instabilità del framework. Durante le prime

esecuzioni, l’invio del comando di terminazione globale (shutdown all) o l’interruzio-

ne tramite CTRL+C (SIGINT) causavano frequentemente segmentation fault, eccezioni

del tipo “invalid argument” e, in alcuni casi, errori come “cannot join thread before it

is started”. Questi comportamenti indicavano che la terminazione dei thread non era
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gestita in modo ordinato e che la sincronizzazione tra i componenti del sistema era in-

completa: diversi thread rimanevano bloccati in attesa su risorse condivise o su socket

ZeroMQ, impedendo la chiusura pulita del framework.

Per risolvere tali problemi, è stata riscritta la logica di gestione dei thread all’interno

delle classi Supervisor, WorkerManager e WorkerThread. La variabile di controllo glo-

bale continueall, in precedenza dichiarata come semplice bool, è stata sostituita da un

tipo atomico per garantire la corretta propagazione dei segnali di stop a tutti i thread

concorrenti:

1 std::atomic<bool> continueall;

Nel metodo stop all() del Supervisor, la variabile viene impostata a false non

appena ricevuto il comando di terminazione, permettendo a tutti i thread di completare

in modo controllato le operazioni in corso:

1 void Supervisor::stop_all() {

2 continueall = false;

3 std::cout << "Stopping all workers and managers..." << std::endl;

4 command_stop();

5 std::this_thread::sleep_for(std::chrono::milliseconds(100));

6

7 for (auto &manager : manager_workers) {

8 manager->stop();

9 }

10 std::cout << "All workers, managers and internal threads terminated.";

11 }

Nel distruttore della classe WorkerThread è stato aggiunto un mutex per rendere

sicura la distruzione dell’oggetto worker anche in presenza di più thread concorrenti,

evitando accessi simultanei a memoria non più valida:

1 WorkerThread::~WorkerThread() {

2 {

3 std::lock_guard<std::mutex> lock(stop_worker_mutex);

4 if (worker) {

5 delete worker;

6 worker = nullptr;

7 }
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8 }

9 if (!_stop_event) {

10 stop();

11 }

12 }

Per impostazione predefinita, la chiamata recv() di ZeroMQ è bloccante, ovvero il

thread rimane in attesa finché non viene ricevuto un nuovo messaggio. Questo compor-

tamento, se non gestito, può impedire la corretta terminazione del programma, poiché

i thread di ricezione restano sospesi durante la chiusura del sistema. Per evitare che

i socket ZeroMQ rimanessero bloccati in attesa di nuovi messaggi durante la chiusura,

sono stati introdotti timeout di un secondo nelle chiamate recv() su socket lp data e

socket hp data. In questo modo, il loop di ricezione può controllare periodicamente il

flag di stop ed uscire correttamente anche in presenza di segnali di terminazione (incluso

SIGINT). La gestione del segnale di interruzione è stata migliorata verificando il valore

di ritorno di recv() nelle funzioni listen for lp data() e listen for hp data(), cos̀ı

da interrompere il ciclo principale in caso di errore (EINTR) oppure per la ricezione del

comando CTRL+Z:

1 int timeout = 1000; // Timeout in millisecondi

2

3 if (datasockettype == "pubsub") {

4 socket_lp_data = new zmq::socket_t(context, ZMQ_SUB);

5 socket_lp_data->connect(config["data_lp_socket"].get<std::string>());

6 socket_lp_data->setsockopt(ZMQ_SUBSCRIBE, "", 0);

7 socket_lp_data->setsockopt(ZMQ_RCVTIMEO, &timeout, sizeof(timeout));

8 }

9

10 void Supervisor::listen_for_lp_data() {

11 while (continueall) {

12 if (!stopdata) {

13 zmq::message_t data;

14 zmq::recv_flags flags = zmq::recv_flags::none;

15 try {

16 auto result = socket_lp_data->recv(data, flags);

17 }

18 catch (const zmq::error_t& e) {
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19 if (zmq_errno() == EINTR) {

20 break; // Interruzione del ciclo su segnale

21 } else {

22 std::cerr << "ZMQ exception: " << e.what() << std::endl

;

23 throw;

24 }

25 }

26 }

27 }

28 std::cout << "End listen_for_lp_data" << std::endl;

29 }

Una parte fondamentale della stabilizzazione ha riguardato la riscrittura del distrut-

tore del Supervisor, che in precedenza lasciava thread e socket aperti, causando crash

o deadlock durante la chiusura del framework. La nuova implementazione gestisce in

modo deterministico la terminazione dei thread, rimuovendo gli utilizzi di detach() e

sostituendoli con join(), e la chiusura di tutti i socket ZeroMQ, includendo un controllo

di errore per ciascuno di essi. Infine, il contesto ZeroMQ viene esplicitamente arrestato e

chiuso dopo la terminazione completa dei thread e il rilascio dei socket, garantendo una

deallocazione ordinata e prevenendo accessi a risorse non più valide:

1 Supervisor::~Supervisor() {

2 if (lp_data_thread.joinable()) lp_data_thread.join();

3 if (hp_data_thread.joinable()) hp_data_thread.join();

4 if (result_thread.joinable()) result_thread.join();

5

6 // Chiusura socket di comando

7 if (socket_command) {

8 try { socket_command->close(); }

9 catch (const zmq::error_t& e) {

10 std::cerr << "Error while closing socket_command: {}" << e.what

() << std::endl;

11 }

12 delete socket_command; socket_command = nullptr;

13 }

14

15 // Chiusura socket di input LP e HP

16 if (socket_lp_data) {

17 try { socket_lp_data->close(); }
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18 catch (const zmq::error_t& e) {

19 std::cerr << "Error while closing socket_lp_data: {}" << e.

what() << std::endl;

20 delete socket_lp_data; socket_lp_data = nullptr;

21 }

22 if (socket_hp_data) {

23 try { socket_hp_data->close(); }

24 catch (const zmq::error_t& e) {

25 std::cerr << "Error while closing socket_hp_data: {}" << e.

what() << std::endl;

26 }

27 delete socket_hp_data; socket_hp_data = nullptr;

28 }

29

30 // Chiusura socket di risultato LP e HP

31 if (!socket_lp_result.empty()) {

32 for (auto* socket : socket_lp_result) {

33 if (socket) {

34 try { socket->close(); }

35 catch (const zmq::error_t& e) {

36 std::cerr << "Error while closing socket_lp_result: {}"

<< e.what() << std::endl;

37 }

38 delete socket; socket = nullptr;

39 }

40 }

41 socket_lp_result.clear();

42 }

43 if (!socket_hp_result.empty()) {

44 for (auto* socket : socket_hp_result) {

45 if (socket) {

46 try { socket->close(); }

47 catch (const zmq::error_t& e) {

48 std::cerr << "Error while closing socket_hp_result: {}"

<< e.what() << std::endl;

49 }

50 delete socket; socket = nullptr;

51 }

52 }

53 socket_hp_result.clear();

54 }

55

56 // Chiusura socket di monitoraggio

57 if (socket_monitoring) {
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58 try { socket_monitoring->close(); }

59 catch (const zmq::error_t& e) {

60 std::cerr << "Error while closing socket_monitoring: {}" << e.

what() << std::endl;

61 }

62 delete socket_monitoring; socket_monitoring = nullptr;

63 }

64

65 // Chiusura del contesto ZeroMQ

66 zmq_ctx_shutdown(context.handle());

67 try { context.close(); }

68 catch (const zmq::error_t& e) {

69 std::cerr << "Error while closing ZMQ Context: {}" << e.what() <<

std::endl;

70 }

71

72 // Deallocazione logger

73 if (logger) { delete logger; logger = nullptr; }

74 }

4.3 Nuova politica di gestione delle code thread-safe

Con la stabilizzazione del framework e la risoluzione delle principali criticità strutturali,

la fase successiva del lavoro si è concentrata sull’ottimizzazione della gestione delle code

di comunicazione, elemento centrale per garantire la corretta distribuzione dei dati tra i

thread e mantenere prestazioni stabili in scenari real-time.

Durante le prime esecuzioni del framework, uno dei problemi più ricorrenti era rap-

presentato da altri errori di segmentazione generati nelle funzioni di invio e ricezione dei

dati, in particolare in Supervisor::send result(). Il crash si verificava quando un

thread tentava di accedere o rimuovere un elemento da una coda già svuotata da un al-

tro thread concorrente. In precedenza infatti, le code erano implementate come semplici

std::queue condivise tramite std::shared ptr, senza alcun meccanismo di protezione

rispetto all’accesso simultaneo. Ad esempio, la chiamata combinata di front() e pop(),

risultava quindi non atomica: tra la lettura dell’elemento in testa e la sua rimozione po-
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teva intervenire un altro thread, invalidando il riferimento e causando un segmentation

fault.

Per risolvere definitivamente questo problema è stata introdotta una nuova classe

generica ThreadSafeQueue<T> (Listato 4.1), che ridefinisce le operazioni standard delle

code garantendo la sicurezza dei dati in contesti concorrenti. La classe, sviluppata come

header indipendente e poi integrata nei moduli principali del framework, contiene:

• un std::mutex per la protezione dell’accesso alla coda;

• una std::condition variable per sincronizzare i thread in attesa;

• un flag di stato stop per gestire correttamente la fase di chiusura;

• un insieme di metodi quali push(), front(), get(), pop(), empty(), size() e

notify all(), ridefiniti per garantire atomicità e consistenza.

Il cuore della soluzione è il metodo get(), che combina in un’unica operazione atomica

la lettura e la rimozione di un elemento dalla coda, evitando la necessità di chiamate

separate a front() e pop() e prevenendo cos̀ı race conditions tra thread. In precedenza,

il codice nel metodo Supervisor::send result() utilizzava due chiamate separate:

1 auto data = result_queue->front();

2 result_queue->pop();

Ora l’accesso è stato sostituito da una singola istruzione:

1 auto data = result_queue->get();

eliminando cos̀ı la possibilità di conflitti tra thread concorrenti e rendendo il codice

più chiaro e sicuro. Inoltre, le funzioni di accesso impiegano una condition variable

per gestire in modo efficiente la sincronizzazione tra thread produttori e consumatori: i

thread che tentano di prelevare dati da una coda vuota vengono sospesi automaticamente

fino a quando un nuovo elemento non viene inserito (attraverso una push() che invoca

notify one()) oppure fino a quando non viene impostato il flag di arresto. In questo
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modo si evita il ricorso a cicli di attesa attiva (busy waiting) e si garantisce un risveglio

immediato e controllato dei thread al verificarsi di una condizione utile o di terminazione.

1 template <typename T>

2 class ThreadSafeQueue {

3 private:

4 std::queue<T> queue;

5 mutable std::mutex mtx;

6 std::condition_variable condvar;

7 bool _stop = false; // Flag per indicare l’arresto

8

9 public:

10 ThreadSafeQueue() = default;

11 ~ThreadSafeQueue() = default;

12

13 void push(const T& value) {

14 std::lock_guard<std::mutex> lock(mtx);

15 queue.push(value);

16 condvar.notify_one();

17 }

18

19 T front() {

20 std::unique_lock<std::mutex> lock(mtx);

21 condvar.wait(lock, [this] { return _stop || !queue.empty(); });

22 if (_stop) {

23 throw std::runtime_error("ThreadSafeQueue stopped");

24 }

25 return queue.front();

26 }

27

28 T get() {

29 std::unique_lock<std::mutex> lock(mtx);

30 condvar.wait(lock, [this] { return _stop || !queue.empty(); });

31 if (_stop) {

32 throw std::runtime_error("ThreadSafeQueue stopped");

33 }

34 T value = queue.front();

35 queue.pop();

36 return value;

37 }

38

39 void pop() {

40 std::unique_lock<std::mutex> lock(mtx);

41 condvar.wait(lock, [this] { return _stop || !queue.empty(); });
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42 if (_stop) {

43 return; // Esce dalla funzione e termina l’elaborazione

44 }

45 queue.pop();

46 }

47

48 bool empty() const {

49 std::lock_guard<std::mutex> lock(mtx);

50 return queue.empty();

51 }

52

53 size_t size() const {

54 std::lock_guard<std::mutex> lock(mtx);

55 return queue.size();

56 }

57

58 void notify_all() {

59 std::lock_guard<std::mutex> lock(mtx);

60 _stop = true;

61 condvar.notify_all();

62 }

63 };

Listing 4.1: La classe ThreadSafeQueue con la ridefinizione dei metodi di std::queue per
gestire ottimalmente la concorrenza tra thread

Tutte le code utilizzate nel framework sono state quindi convertite in istanze di

ThreadSafeQueue, condivise tra i componenti tramite std::shared ptr:

1 low_priority_queue = std::make_shared<ThreadSafeQueue<std::vector<uint8_t

>>>();

2 high_priority_queue = std::make_shared<ThreadSafeQueue<std::vector<uint8_t

>>>();

3 result_lp_queue = std::make_shared<ThreadSafeQueue<std::vector<uint8_t>>>()

;

4 result_hp_queue = std::make_shared<ThreadSafeQueue<std::vector<uint8_t>>>()

;

Oltre a garantire la sicurezza nell’accesso concorrente ai dati, la nuova implemen-

tazione assicura anche una terminazione controllata e priva di blocchi. Quando il fra-

mework riceve un comando di arresto, ciascun componente del sistema invoca il me-

todo notify all() su tutte le proprie code, risvegliando immediatamente i thread
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eventualmente sospesi in attesa di nuovi dati:

1 // Notify all threads that are waiting on the queues

2 low_priority_queue->notify_all();

3 high_priority_queue->notify_all();

4

5 if (internal_thread && internal_thread->joinable()) {

6 internal_thread->join();

7 }

La chiamata a notify all() imposta internamente il flag stop e invia un segnale

di risveglio a tutte le condition variables associate alle code. In questo modo, i metodi

get(), front() e pop() rilevano la condizione di arresto, interrompono in modo sicuro

l’attesa bloccante e restituiscono il controllo al flusso principale di terminazione. Fatto

ciò è possibile richiamare la join() sui thread da terminare, la quale assicura quindi che

tutte le operazioni pendenti vengano completate prima della chiusura definitiva, evitando

situazioni di deadlock o memoria corrotta.

4.4 Logging configurabile

Durante la reingegnerizzazione del framework, una delle necessità emerse è stata la defini-

zione di un sistema di logging flessibile, efficiente e configurabile. Nella versione originale

in Python, come anche nelle prime versioni del porting C++, la registrazione dei log

era gestita tramite semplici istruzioni print() o std::cout, distribuite in praticamente

tutti i punti principali del codice. Questa soluzione, seppur utile nelle fasi iniziali di

debug, introduceva un notevole overhead in fase di esecuzione, soprattutto in contesti

real-time, dove l’I/O su console rappresenta un collo di bottiglia rilevante. In particola-

re, la scrittura su standard output all’interno di cicli frequenti o thread concorrenti può

generare ritardi non trascurabili e influire negativamente sulla prevedibilità temporale

del sistema.

Per risolvere queste criticità è stato introdotto un sistema di logging basato su
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spdlog4, una libreria C++ open source ad alte prestazioni, progettata per supporta-

re applicazioni multi-thread e ambienti a bassa latenza. L’integrazione è stata realizzata

attraverso una classe dedicata, denominata WorkerLogger, che incapsula la configurazio-

ne, la gestione e la formattazione dei messaggi di log, offrendo allo stesso tempo una piena

modularità e la possibilità di attivare o disattivare il logging già in fase di compilazione.

4.4.1 Configurazione a compile-time e riduzione dell’overhead

Per evitare che il logging incidesse sulle prestazioni anche quando non necessario, è stata

introdotta una macro di compilazione ENABLE LOGGING, configurabile direttamente da

CMakeLists.txt:

1 // Per abilitare il logging compilare con: cmake -DENABLE_LOGGING=ON ..

2 option(ENABLE_LOGGING "Enable logging" OFF)

3

4 if(ENABLE_LOGGING)

5 add_compile_definitions(ENABLE_LOGGING)

6 endif()

In questo modo, quando la macro è definita a OFF, le chiamate ai metodi di logging

vengono completamente escluse in fase di compilazione, riducendo il peso del file binario

relativo e azzerando l’overhead a runtime. La classe WorkerLogger definisce infatti due

versioni dei metodi principali: una effettiva, compilata solo se ENABLE LOGGING è attiva,

e una “vuota”, che non esegue alcuna operazione in caso contrario:

1 #ifdef ENABLE_LOGGING

2 void debug(const std::string& msg, const std::string& extra = "");

3 void info(const std::string& msg, const std::string& extra = "");

4 ...

5 #else

6 void debug(const std::string&, const std::string& = "") {}

7 void info(const std::string&, const std::string& = "") {}

8 ...

9 #endif

4https://github.com/gabime/spdlog
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Questa scelta consente di adattare il comportamento del framework a seconda del

contesto: ad esempio durante lo sviluppo e i test è possibile abilitare un logging esteso,

mentre nelle versioni destinate a piattaforme edge o ambienti di produzione il logging

può essere completamente disattivato, massimizzando le prestazioni.

4.4.2 Struttura e funzionamento della classe WorkerLogger

La classe WorkerLogger utilizza i sink di spdlog per gestire in modo flessibile l’output

dei log. Un sink rappresenta un canale di destinazione per i messaggi di log: ogni volta

che viene generato un messaggio, esso viene inviato a uno o più sink registrati. Esistono

diversi tipi di sink, come quello per la console, per i file, per i flussi di rete o per de-

stinazioni personalizzate. Questo approccio modulare consente di combinare più output

contemporaneamente (ad esempio, scrivere su file e mostrare su console) o di disattivare

completamente la registrazione dei log. A seconda della configurazione, quindi, i messag-

gi possono essere scritti su file di log, visualizzati a terminale oppure ignorati del tutto.

Grazie a questa implementazione, il sistema di logging è anche pienamente thread-safe

e non blocca i thread concorrenti, anche in presenza di output simultanei. Ogni logger

è identificato da un nome univoco e può essere configurato con un livello di verbosità

compreso tra 1 (solo errori) e 5 (debug dettagliato).

Il costruttore accetta i parametri logger name, log file, level e logging mode,

che determinano la modalità operativa:

1 WorkerLogger::WorkerLogger(const std::string& logger_name,

2 const std::string& log_file,

3 spdlog::level::level_enum level,

4 const std::string& logging_mode) {

5 std::vector<spdlog::sink_ptr> sinks;

6

7 if (logging_mode == "file" || logging_mode == "both") {

8 auto file_sink = std::make_shared<spdlog::sinks::basic_file_sink_mt

>(log_file, true);

9 file_sink->set_pattern("[%Y-%m-%d %H:%M:%S.%e] [%l] %v");

10 sinks.push_back(file_sink);
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11 }

12

13 if (logging_mode == "console" || logging_mode == "both") {

14 auto console_sink = std::make_shared<spdlog::sinks::

stdout_color_sink_mt>();

15 console_sink->set_pattern("[%Y-%m-%d %H:%M:%S.%e] %^[%l]%$ %v");

16 sinks.push_back(console_sink);

17 }

18

19 if (!sinks.empty()) {

20 logger = std::make_shared<spdlog::logger>(logger_name, sinks.begin

(), sinks.end());

21 logger->set_level(level);

22 } else {

23 auto null_sink = std::make_shared<spdlog::sinks::null_sink_mt>();

24 logger = std::make_shared<spdlog::logger>(logger_name, null_sink);

25 }

26 }

4.4.3 Configurazione via JSON e livelli di verbosità

La modalità di logging è configurabile a runtime tramite il file di configurazione JSON

del framework che definisce i parametri: logs path, logging (equivalente al parametro

logging mode del costruttore di WorkerLogger) e logs level:

1 {

2 "logs_path": "/tmp/",

3 "logging": "both",

4 "logs_level": 5,

5 "comment": "logging=file|console|both|none"

6 }

I log vengono salvati nel percorso specificato da logs path, mentre il campo logging

controlla la modalità (solo file, solo console, entrambi o nessuno). Il parametro logs level

stabilisce invece la soglia di dettaglio: valori più bassi limitano l’output a errori e mes-

saggi critici, mentre livelli superiori abilitano la stampa di informazioni diagnostiche

dettagliate, utili per il debugging o l’analisi del comportamento del sistema. spdlog

adotta infatti una gerarchia di livelli di log che a runtime stabilisce quali messaggi ven-
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gono effettivamente registrati in base alla soglia impostata. I livelli, dal meno al più

verboso, sono i seguenti:

• off : nessun messaggio viene registrato.

• critical: registra solo i messaggi critici.

• err: include err e critical.

• warn: include warn, err e critical.

• info: include info, warn, err e critical.

• debug: include debug, info, warn, err e critical.

• trace: registra tutti i messaggi, dal più dettagliato al meno.

Grazie a questa gerarchia, il sistema consente di regolare la quantità di informazioni

prodotte in base alle esigenze operative: durante lo sviluppo è possibile attivare livelli più

verbosi (debug o trace), mentre per il deployment è meglio limitarli a err o critical

per ridurre l’overhead e mantenere i log più puliti.

L’uso pratico dei livelli di log può essere visto ad esempio nei blocchi di gestione delle

eccezioni, dove è consigliabile mostrare i messaggi critici riguardanti gli errori sollevati

durante l’esecuzione:

1 catch (const std::exception& e) {

2 logger->critical("Exception in listen_for_result: {}", e.what());

3 }

oppure:

1 catch (const std::exception& e) {

2 logger->error("Exception while sending results for manager at index {}:

{}", indexmanager, e.what());

3 }
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Analogamente, per la normale esecuzione del flusso applicativo, i messaggi informativi

vengono registrati con il livello info, utile per il monitoraggio dell’attività:

1 logger->info("End listen_for_result: {}", globalname);

In precedenza, messaggi di questo tipo venivano gestiti tramite output standard, ad

esempio:

1 std::cout << "End listen_for_result" << std::endl;

L’adozione di spdlog consente quindi di sostituire l’output diretto su console con

un sistema di logging strutturato, filtrabile e thread-safe, migliorando la tracciabilità e

l’analisi del comportamento del sistema in contesti complessi e multi-thread.

4.5 Gestione dei messaggi generici

Nelle prime versioni, il framework RTA-DP prevedeva una gestione rigida e fortemente

tipizzata dei dati in transito, pensata per formati di messaggi a lunghezza fissa e con

struttura definita staticamente. Con l’evoluzione del sistema e la necessità di supportare

flussi di dati eterogenei provenienti da sorgenti differenti, è stato necessario introdurre un

modello più flessibile, capace di gestire messaggi binari di dimensione variabile in modo

sicuro e scalabile.

Il framework, infatti, non si occupa di interpretare il contenuto dei dati, ma di fornire

un’infrastruttura generica per il loro scambio e trattamento in tempo reale. La comuni-

cazione avviene tramite la libreria ZeroMQ, che consente di trasmettere messaggi binari

o testuali tra i vari moduli in modo asincrono e thread-safe. In questo contesto, il fra-

mework è completamente agnostico rispetto al formato dei dati: essi possono rispettare

uno standard scientifico (ad esempio CCSDS5), essere codificati in JSON o costituire un

buffer binario arbitrario.

5CCSDS: Consultative Committee for Space Data Systems, standard di telemetria e scambio dati in
ambito spaziale.
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4.5.1 Standardizzazione del formato dei messaggi

Per supportare la variabilità dei formati e delle dimensioni dei dati, ogni messaggio in

ingresso inizia con un campo di 4 byte che rappresenta la dimensione complessiva del

payload. Questa informazione consente al framework di allocare dinamicamente un buffer

di dimensione adeguata, copiando successivamente il contenuto effettivo del messaggio

all’interno della memoria. La scelta progettuale permette di gestire in modo uniforme

dati di tipo eterogeneo, evitando accessi fuori dai limiti e semplificando la logica di

parsing nei moduli applicativi:

1 int32_t size;

2 memcpy(&size, data.data(), sizeof(int32_t)); // Lettura della dimensione

3

4 std::vector<uint8_t> vec(size); // Buffer per contenere il messaggio

5 memcpy(vec.data(), static_cast<const uint8_t*>(data.data()) + sizeof(

uint32_t), size);

Questa logica consente di gestire in modo sicuro messaggi binari di lunghezza va-

riabile, indipendentemente dal loro contenuto. Il framework, una volta ricostruito il

messaggio completo, lo passa ai moduli applicativi (come i vari worker) per le successive

operazioni di interpretazione o elaborazione.

In un’ottica di ottimizzazione futura, l’allocazione dinamica della memoria potrà

essere sostituita da una gestione statica basata su buffer preallocati, definiti in fase di

pre-compilazione. Tale approccio permetterebbe di ridurre l’overhead di allocazione e

frammentazione, migliorando le prestazioni complessive del framework in scenari di carico

elevato.

4.5.2 Serializzazione e costruzione dei messaggi

Lato producer, è stato introdotto un meccanismo simmetrico di costruzione dei messaggi

che consente di serializzare qualunque struttura dati in forma binaria, anteponendo la
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dimensione totale all’inizio del buffer. In questo modo, il framework può inviare messaggi

di qualunque tipo (testuale o binario) senza conoscerne la semantica:

1 template <typename T>

2 std::vector<uint8_t> serializeMessage(const T& message) {

3 int32_t size = sizeof(T);

4 std::vector<uint8_t> buffer(sizeof(int32_t) + size);

5 memcpy(buffer.data(), &size, sizeof(int32_t)); // Scrive la size

6 memcpy(buffer.data() + sizeof(int32_t), &message, size); // Scrive il

payload

7 return buffer;

8 }

Questo approccio consente di mantenere la compatibilità tra moduli diversi e di

garantire una gestione coerente dei messaggi, indipendentemente dal loro contenuto.

Il framework si occupa quindi della serializzazione, trasmissione e ricezione dei dati,

lasciando alle implementazioni specializzate il compito di interpretare e processare le

informazioni trasportate.

La logica di elaborazione dei messaggi è demandata ai thread Worker, i quali preleva-

no i dati dalle code condivise e li processano in base alla funzione applicativa associata.

Il framework fornisce le primitive necessarie per la gestione concorrente dei dati, il coor-

dinamento dei thread e la sincronizzazione degli accessi alle code, ma non impone alcuna

semantica sul contenuto dei messaggi. Un worker può quindi essere configurato per:

• filtrare o validare i dati ricevuti;

• applicare algoritmi di pre-processing o trasformazione;

• inoltrare i risultati verso altri moduli del framework o verso pipeline esterne di

analisi.

Questa architettura modulare consente di mantenere il nucleo del framework indi-

pendente dal dominio applicativo, favorendo il riutilizzo del codice e la specializzazione

in contesti diversi, come flussi di dati sperimentali o simulazioni di acquisizione.
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4.6 Ottimizzazioni e miglioramento delle prestazioni

Una volta stabilizzato il framework e risolte le principali criticità strutturali e di sincro-

nizzazione, è emersa la necessità di ridurre il consumo di risorse hardware, in particolare

l’uso della CPU e della memoria RAM e di incrementare maggiormente le prestazioni

del sistema per un processing real-time a bassa latenza. Durante le prime esecuzioni,

l’osservazione tramite strumenti di monitoraggio forniti da Linux come top e htop6 ha

mostrato che il sistema manteneva un carico CPU costantemente vicino al 100% nella

maggior parte dei core anche in condizioni di inattività, mentre la memoria allocata cre-

sceva rapidamente in presenza di cicli di elaborazione prolungati. Questo comportamento

era dovuto principalmente a:

• cicli di attesa (while) non bloccanti che consumavano CPU anche in idle;

• thread di servizio (come il monitoraggio) attivi costantemente, indipendentemente

dal carico effettivo;

• logging pesante, che introduceva un overhead notevole soprattutto in presenza di

più thread concorrenti;

• copie ridondanti dei buffer durante il parsing e la serializzazione dei pacchetti.

Riduzione del carico CPU e ottimizzazione dei cicli di attesa

Molti thread del framework eseguivano cicli di polling o attese attive senza alcuna forma

di sincronizzazione o temporizzazione, generando un consumo costante di risorse. In

assenza di una pausa esplicita, i thread rimanevano in esecuzione continua, controllan-

do ripetutamente lo stato delle variabili di controllo e delle code senza mai rilasciare

il controllo della CPU. Questo comportamento, noto come busy waiting, porta i core a

6top e htop sono strumenti Linux per il monitoraggio in tempo reale dei processi e dell’utilizzo di
CPU e memoria; htop offre un’interfaccia più interattiva e leggibile rispetto a top.
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rimanere costantemente al 100% di utilizzo, anche quando il sistema non elabora effetti-

vamente dati. L’introduzione di brevi pause (sleep) all’interno di questi cicli consente

invece al sistema operativo di sospendere temporaneamente il thread, liberando la CPU

per altre attività e riducendo drasticamente il consumo energetico. Con questa semplice

modifica, il carico dei core è passato dal 100% a valori prossimi allo zero, anche con la

pipeline a pieno utilizzo.

Un caso tipico era quello dei cicli principali del Supervisor, che verificava in continuo

la disponibilità di comandi o dati senza sospendersi, mantenendo la CPU impegnata

anche in assenza di traffico. L’introduzione di pause temporizzate mirate ha permesso

di mantenere il comportamento reattivo del sistema senza gravare sulla CPU:

1 while (continueall) {

2 listen_for_commands();

3 std::this_thread::sleep_for(std::chrono::seconds(1)); // Riduce l’uso

CPU in idle

4 }

In modo analogo, anche durante la fase di “cleaned shutdown” venivano effettuati

controlli continui sulle code dei WorkerManager fino al loro svuotamento, per chiudere

il sistema in modo sicuro. Una semplice pausa tra una verifica e l’altra ha portato a

un’ulteriore riduzione del carico CPU, senza impatti negativi sui tempi di terminazione:

1 while (manager->getLowPriorityQueue()->size() != 0 ||

2 manager->getHighPriorityQueue()->size() != 0) {

3 std::this_thread::sleep_for(std::chrono::milliseconds(200));

4 }

Anche il thread di monitoraggio, vista la sua esecuzione continua, è stato ottimizzato

tramite intervalli configurabili in modo da “alleggerire” la CPU tra un’iterazione di ciclo

e l’altra:

1 void MonitoringThread::run() {

2 while (!stop_event) {

3 json monitoring_data = monitoringpoint.get_data();

4 std::string monitoring_data_str = monitoring_data.dump();

5 zmq::message_t message(monitoring_data_str.begin(),
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monitoring_data_str.end()); // Create ZMQ message

6 socket_monitoring.send(message, zmq::send_flags::none); // Send

the message

7 std::this_thread::sleep_for(std::chrono::seconds(1)); // Sleep for

1 second

8 }

9 }

Ottimizzazione della memoria

Un altro intervento rilevante per il miglioramento delle prestazioni del framework ha

riguardato la riduzione delle copie di dati e una più efficiente distribuzione del carico

di elaborazione tra i thread. Nelle prime versioni, il framework effettuava numerose

copie di pacchetti e vettori binari (std::vector<uint8 t>) durante il parsing e il tra-

sferimento tra le code, generando un overhead significativo dovuto alle operazioni di

copia e riallocazione dinamica. Con la nuova gestione, le funzioni di serializzazione e

parsing (come serializePacket() e pushPacketToQueue()) sono state riorganizzate

per lavorare direttamente su vettori preallocati, riducendo le memcpy() e le allocazioni

temporanee. Inoltre, l’inserimento dei pacchetti nelle code sfrutta le “move semantics”

implicite del linguaggio: quando il risultato di serializePacket() (che restituisce un

oggetto temporaneo di tipo std::vector<uint8 t>) viene passato alla coda, il contenuto

viene spostato anziché copiato, evitando duplicazioni di memoria:

1 manager->getLowPriorityQueue()->push(serializePacket(*packet_wf));

Impatto del sistema di logging configurabile

Il nuovo sistema di logging basato su spdlog ha avuto un impatto positivo anche sul

piano delle prestazioni. La possibilità di disattivarlo completamente tramite la macro

ENABLE LOGGING consente di compilare versioni leggere del framework prive di log a runti-

me, ideali per l’esecuzione su dispositivi embedded o a basso consumo. La disattivazione

77



CAPITOLO 4. REINGEGNERIZZAZIONE E OTTIMIZZAZIONE DI RTA-DP C++

del logging ha comportato una riduzione sensibile dei tempi di esecuzione e latenza, in

particolare nei moduli con cicli ad alta frequenza di logging (come i WorkerManager o

WorkerThread).

In particolare, la disattivazione selettiva del logging ha portato ai seguenti migliora-

menti:

• riduzione dell’overhead di std::cout e delle stampe concorrenti su console;

• incremento del throughput nelle pipeline a pieno carico;

• migliore controllo del livello di verbosità e selettività dei messaggi di log.
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Capitolo 5

Estensione di RTA-DP con ML per

il caso d’uso GammaSky

Dopo la fase di stabilizzazione e ottimizzazione descritta nel capitolo precedente, il fra-

mework RTA-DP è stato esteso e adattato per essere impiegato nel progetto GammaSky.

RTA-DP implementa la pipeline di analisi e ricostruzione in tempo reale, gestendo lo

streaming delle waveform acquisite e la ricostruzione fisica degli eventi gamma atmosferici

attraverso l’inferenza basata su modelli di machine learning ottimizzati per l’esecuzione

su hardware a risorse limitate.

L’integrazione di GammaSky ha richiesto una serie di modifiche che non hanno al-

terato la struttura di base del framework, ma ne hanno esteso le funzionalità per sup-

portare un flusso dati specifico (vedi Sezione 2.3). In particolare, il sistema di streaming

e serializzazione è stato adattato per supportare i messaggi provenienti dal modulo di

acquisizione DAM in esecuzione su Red Pitaya. Il fulcro del lavoro però, è stata la crea-

zione di un nuovo worker dedicato all’inferenza di modelli di ML ottimizzati tramite

tecniche di quantizzazione. È stato quindi definito un flusso dati completo, dal modello

R0 (waveform grezze) al formato DL2 (lista dei fotoni ricostruiti), con output compatibili

con i formati scientifici standard come HDF5.
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5.1 Adattamento del producer e dello streamer

Per abilitare e testare il funzionamento della pipeline RTA-DP applicata per GammaSky,

è stato necessario per prima cosa sostituire il CCSDSProducer, precedentemente impie-

gato nella fase di validazione del framework generico, con il Data Acquisition Module

(DAM). Testare la pipeline processando direttamente i dati che arrivano dal DAM non è

fattibile se non si ha a disposizione la scheda di acquisizione ed il detector. Per poter

semplificare i test, è stato quindi realizzato uno streamer ad alte prestazioni denominato

GFSE, utilizzato per testare la pipeline in condizioni di pieno carico. Lo streamer legge

i file DL0 da disco (prodotti da un altro software di acquisizione ereditato da Gamma-

Flash), ricostruisce i pacchetti secondo il formato R0 definito dal DAM (un pacchetto

binario contenente header e payload) e invia i dati corrispondenti sotto forma di mes-

saggi tramite socket ZeroMQ in modo continuato (fino a 200 pacchetti al secondo), per

validare il comportamento e la stabilità della pipeline. Questa procedura è stata eseguita

principalmente come stress test per la fase di inferenza real-time e per la scrittura dei

file DL2 in output.

5.1.1 Adozione di ZeroMQ e nuovo formato di pacchetto

Una delle principali modifiche apportate ai due producer ha riguardato il protocollo

di comunicazione. La logica basata su socket TCP tradizionali è stata sostituita con

un modello PUB/SUB implementato tramite ZeroMQ, garantendo maggiore efficienza e

scalabilità per l’interfacciamento con i consumer. Per consentire la compatibilità tra

il DAM e RTA-DP, è stato definito un formato di pacchetto con header uniformato,

implementato nel file packet.h, valido per entrambi i sistemi. Ogni pacchetto, trasmesso

come messaggio, segue la struttura:

• un prefisso di 4 byte contenente la dimensione totale del pacchetto;
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• un header comune (HeaderDams), che identifica sorgente, tipo, sequenza e CRC del

messaggio;

• un payload che può assumere due forme principali:

– Data HkDams, per i pacchetti di housekeeping;

– Data WaveHeader + Data WaveData, per i pacchetti contenenti waveform.

La definizione sintetica delle strutture è riportata di seguito:

1 class HeaderDams { // Header comune ad entrambi i packets

2 public:

3 uint8_t start; // 0x8D

4 uint8_t apid;

5 uint16_t sequence;

6 uint16_t runID;

7 uint16_t size; // Dimensione payload

8 uint32_t crc; // Controllo

9 };

10

11 class Data_HkDams {

12 public:

13 uint8_t type; // 0x03

14 uint8_t subType; // 0x01

15 uint8_t state;

16 uint8_t flags;

17 uint32_t waveCount;

18 struct timespec ts; // Timestamp di acquisizione

19 };

20

21 class Data_WaveHeader {

22 public:

23 uint8_t type; // 0xA1

24 uint8_t subType; // 0x01

25 uint16_t sessionID;

26 uint16_t configID;

27 uint8_t timeSts, ppsSliceNo, year, month, day, hh, mm, ss;

28 uint32_t us;

29 struct timespec ts; // Tempo assoluto

30 uint32_t dec, currOff, trigOff, size;

31 };

32
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33 class Data_WaveData {

34 public:

35 uint8_t type; // 0xA1

36 uint8_t subType; // 0x02

37 uint8_t spare0, spare1;

38 uint32_t buff[1020]; // I valori della waveform

39 };

Questa nuova struttura ha semplificato la gestione dei messaggi nel consumer per-

mettendo di allocare dinamicamente la memoria in base al valore di size letto nei primi

4 byte del prefisso e, per questo caso d’uso, di identificare immediatamente il tipo di dato

contenuto nel messaggio ricevuto. In questo modo, il meccanismo di gestione di messaggi

generici introdotto nel framework (vedi Sezione 4.5) viene qui applicato a un formato

di dati specifico, permettendo a RTA-DP di integrarsi direttamente con il sistema di

acquisizione di GammaSky.

5.1.2 Invio di pacchetti completi

A seguito di questo aggiornamento, l’integrazione ha richiesto altre modifiche simmetri-

che per entrambi i producer. Nel DAM, i file tchandler wave.cpp e tchandler hk.cpp

sono stati aggiornati per generare pacchetti completi (header + payload) preceduti dal

prefisso di dimensione. La principale differenza rispetto alle versioni precedenti (come

quella usata per Gamma-Flash) riguarda la gestione dei pacchetti. Nella precedente im-

plementazione basata su TCP puro, il flusso era soggetto a frammentazione in funzione

della MTU1 e non vi era alcuna garanzia di corrispondenza tra una singola send() e una

singola recv(). Ciò richiedeva la ricostruzione esplicita dei messaggi lato ricezione. Con

l’introduzione di ZeroMQ, il quale è comunque basato su TCP, questa complessità viene

però eliminata: la libreria fornisce un livello di astrazione che garantisce la consegna ato-

mica dei messaggi, evitando frammentazioni e semplificando la logica di comunicazione.

1La Maximum Transmission Unit (MTU) è la dimensione massima, in byte, di un singolo pacchetto
trasmissibile su un link di rete senza frammentazione.
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Questo ha reso possibile unificare header e payload in un unico buffer dati. La funzio-

ne sendWaveform() crea ora un singolo blocco dati contenente l’header (HeaderDams)

e la sezione dati (Data WaveHeader + Data WaveData), evitando la delimitazione ma-

nuale dei messaggi che avveniva in precedenza. Un estratto della funzione è riportato di

seguito:

1 // Definizione delle dimensioni (header + payload)

2 const size_t headerSize = sizeof(HeaderDams);

3 const size_t waveHeaderSize = sizeof(Data_WaveHeader);

4 const size_t waveDataSize = sizeof(Data_WaveData);

5 const size_t packetPayloadSize = headerSize + waveHeaderSize + waveDataSize

;

6 const size_t totalSize = sizeof(uint32_t) + packetPayloadSize;

7

8 // Costruzione del pacchetto unificato

9 uint8_t unifiedBuff[packetPayloadSize];

10 HeaderDams* header = reinterpret_cast<HeaderDams*>(unifiedBuff);

11 header->size = (uint16_t)(waveHeaderSize + waveDataSize);

12 header->encode(); // Calcolo del CRC

13

14 // Copia del contenuto del pacchetto

15 memcpy(unifiedBuff + headerSize, &waveHeader, waveHeaderSize);

16 memcpy(unifiedBuff + headerSize + waveHeaderSize, waveData, waveDataSize);

17

18 // Aggiunta del prefisso di dimensione

19 uint8_t finalBuff[totalSize];

20 uint32_t sizePrefix = packetPayloadSize;

21 memcpy(finalBuff, &sizePrefix, sizeof(uint32_t));

22 memcpy(finalBuff + sizeof(uint32_t), unifiedBuff, packetPayloadSize);

23

24 // Invio tramite ZeroMQ

25 if (g_ctrlServer.getState() == TcpServer::STT_ACTIVE)

26 g_ctrlServer.send(finalBuff, totalSize);

Analogamente, nello streamer gfse.py è stata definita la funzione create unified

waveform packet(), che costruisce i pacchetti in modo coerente al nuovo formato, inclu-

dendo sia i metadati che i dati binari della waveform. La funzione genera l’HeaderDams

e il Data WaveHeader, concatena i blocchi dati (Data WaveData) e infine aggiunge un

prefisso di 4 byte che indica la dimensione complessiva del pacchetto:
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1 def create_unified_waveform_packet(wform, srcid, npkt, crc_table):

2 # HeaderDams (12 B) + Data_WaveHeader (44 B)

3 header_payload = build_wave_header(wform)

4 header_common = build_header_common(wform, len(header_payload))

5 unified_header = header_common + header_payload

6

7 # Data_WaveData section: inner header + waveform samples

8 waveform_data = struct.pack("<%dL" % len(wform.data), *wform.data)

9 data_field = b"\xA1\x02\x00\x00" + waveform_data

10

11 # Pacchetto finale con prefisso di lunghezza (4 B)

12 unified_payload = unified_header + data_field

13 size_prefix = struct.pack("<L", len(unified_payload))

14 return size_prefix + unified_payload

Anche in questo caso il messaggio risultante viene inviato su un socket ZMQ PUB, con

il consumer (il supervisor) che li riceverà tramite un socket ZMQ SUB. Questa soluzione ha

reso possibile un’integrazione trasparente tra i due sistemi: lo stesso codice di parsing nel

consumer di RTA-DP può ora gestire pacchetti provenienti sia dal DAM sia dallo streamer

GFSE, garantendo un formato comune di comunicazione e una pipeline uniforme.

5.2 Ottimizzazione e porting del modello di ML per

Edge Computing

Come descritto nel Capitolo 2, nel caso d’uso GammaSky, l’uso di intelligenza artificiale

per l’analisi di fenomeni gamma ad alta energia, come i TGF, deve avvenire direttamente

su di un edge computer. Quest’ultimo, riceve in streaming le waveform digitalizzate dal

DAM e si occupa di stimare in tempo reale i parametri fisici di interesse, in questo caso

l’energia depositata (area sottesa al picco) nel rivelatore a partire dalla forma d’onda

acquisita e il tempo di arrivo dell’impulso. In questo contesto non è sufficiente disporre

di un modello di deep learning preciso: il modello deve anche essere sufficientemente

leggero ed efficiente da poter essere eseguito con bassa latenza e throughput elevato su
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un dispositivo a risorse limitate e con vincoli di consumo energetico.

Per questo scopo è stato implementato un modello di deep learning sviluppato inter-

namente in INAF – OAS: una rete neurale convoluzionale (CNN) che, dato un segmento

di waveform, stima l’integrale del picco, proporzionale all’energia dell’evento. Come

discusso nella Sezione 2.2, tale valore non corrisponde semplicemente all’integrale diret-

to dell’impulso, ma a una misura ricostruita che deve rimanere stabile in presenza di

rumore, variazioni della forma d’onda o eventi in sovrapposizione (pile-up), condizioni

in cui i metodi deterministici tradizionali mostrano limiti significativi. La rete è stata

quindi addestrata su un dataset di waveform simulate e successivamente compressa me-

diante tecniche di quantizzazione, utilizzando LiteRT2 e la libreria TensorFlow Model

Optimization. L’obiettivo è ottenere dei modelli che rispettino due vincoli fondamentali:

• mantenere una performance sufficiente per la ricostruzione dell’area della waveform

nell’intervallo di energie di interesse per GammaSky;

• ridurre il costo computazionale e l’occupazione di memoria, in modo da eseguire

inferenza in tempo reale sulla Jetson ed integrare il modello in un worker C++ del

framework RTA-DP.

5.2.1 Dataset e pre–processing

Il dataset utilizzato per il training e per applicare le varie tecniche di ottimizzazione

è composto da 50 000 waveform simulate, ognuna costituita da 1000 campioni interi

(int16) e accompagnate da una label, la quale indica l’area sottesa all’impulso relativo

rappresentata da un numero reale a doppia precisione (float64). Il dataset è stato

suddiviso come segue:

2LiteRT è il framework di TensorFlow dedicato all’esecuzione di modelli di deep learning su dispo-
sitivi edge, embedded e mobile, ottimizzato per ridurre la latenza, il consumo di memoria e i requisiti
computazionali dell’inferenza. Fornisce strumenti per la conversione dei modelli in un formato leggero
(.tflite) e supporta tecniche di ottimizzazione come quantizzazione e pruning-aware training. Fino a
settembre 2024 era noto con il nome di TensorFlow Lite.
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• Training set: 70% delle waveform totali (34 999), con a sua volta un 20% del

subset usato come validation set;

• Test set: 20% delle waveform totali (10 000), contenente campioni non usati nel

training su cui valutare la rete;

• Optimization set: il 10% delle waveform rimanenti viene usato per applicare le

varie tecniche di ottimizzazione.

Prima di essere forniti alla rete, i dati vengono normalizzati come segue:

• le waveform di input sono state scalate campione per campione e poi rimodel-

late in un tensore di dimensione (N, 1000, 1), adatto all’input richiesto dai layer

convoluzionali Conv1D;

• i target (le aree) sono stati scalati con un MinMaxScaler nell’intervallo [−1, 1], in

modo da rendere il problema numericamente coerente: sia il training sia il test

(ri-scalato poi con i parametri del training) mostrano lo stesso intervallo di valori

dopo la normalizzazione.

Questa fase di pre–processing è fondamentale per due motivi: da un lato permette alla

rete di concentrarsi sulla forma del segnale piuttosto che sulle scale assolute, dall’altro

semplifica la successiva fase di quantizzazione, riducendo il rischio di saturazione dei

valori in formato intero.

5.2.2 Architettura della rete e fase di training

Il modello di partenza è una CNN monodimensionale profonda ma relativamente com-

patta (circa 25 600 parametri, ≃ 110 kB in formato Keras), progettata come detto per

stimare l’area della waveform a partire dalla forma d’onda normalizzata. L’architettura,

riportata in Tabella 5.1, segue uno schema gerarchico di feature extraction ed è composto

dai seguenti layer:
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• otto blocchi convoluzionali 1D con kernel di dimensione 5 e funzione di attivazione

tanh, ciascuno seguito da un livello di MaxPooling1D. Questa scelta, verificata spe-

rimentalmente, ha mostrato prestazioni più robuste rispetto a soluzioni alternative

basate su convoluzioni con stride, in quanto il max pooling tende a preservare le

attivazioni più significative riducendo al contempo gli effetti del rumore;

• un layer di Flatten che proietta le feature in uno spazio vettoriale di dimensione

96;

• un layer denso intermedio con 16 neuroni e funzione di attivazione tanh;

• un layer denso finale con 1 neurone lineare che restituisce l’area normalizzata del

picco.
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Tabella 5.1: Architettura del modello Area Predictor. Tutti i layer convoluzionali e densi
utilizzano come funzione d’attivazione tanh.

Layer Output shape # parametri

Conv1D + tanh (None, 1000, 4) 24
MaxPooling1D (None, 500, 4) 0
Conv1D + tanh (None, 500, 8) 168
MaxPooling1D (None, 250, 8) 0
Conv1D + tanh (None, 250, 16) 656
MaxPooling1D (None, 125, 16) 0
Conv1D + tanh (None, 125, 32) 2592
MaxPooling1D (None, 62, 32) 0
Conv1D + tanh (None, 62, 32) 5152
MaxPooling1D (None, 31, 32) 0
Conv1D + tanh (None, 31, 32) 5152
MaxPooling1D (None, 15, 32) 0
Conv1D + tanh (None, 15, 32) 5152
MaxPooling1D (None, 7, 32) 0
Conv1D + tanh (None, 7, 32) 5152
MaxPooling1D (None, 3, 32) 0
Flatten (None, 96) 0
Dense + tanh (None, 16) 1552
Dense (output) (None, 1) 17

Totale 25 617

Le dimensioni principali dei tensori in uscita si riducono progressivamente da (1000, 4)

a (3, 32) dopo l’ultimo blocco di pooling, per poi essere trasformate in un vettore e

mappate sullo spazio scalare dell’integrale. La combinazione di kernel piccoli e operazioni

di pooling permette di catturare la struttura locale del segnale mantenendo contenuto il

numero totale di parametri allenabili (25 617). La rete è stata addestrata con la seguente

configurazione:

• funzione di loss: Huber con δ = 2. Questa funzione, usata per i modelli di regres-

sione, è stata scelta perché più robusta agli outlier della MSE e più veloce della

MAE;
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• massimo di 500 epoche di training, con early stopping sulla val loss a patience

di 10 epoche e salvataggio del modello migliore tramite ModelCheckpoint, sempre

in termini di val loss;

• ottimizzatore: Adam con learning rate dell’ordine di 10−4.

Il training si è arrestato alla 183-esima epoca, con una training loss dell’ordine di

1.74 × 10−5 e una validation loss di 1.46 × 10−5. L’andamento delle loss di training e

di validazione è riportato in Figura 5.1. Si può osservare una diminuzione regolare di

entrambe le curve e l’assenza di overfitting significativo, con le due loss che rimangono

comparabili per tutta la durata dell’addestramento. I piccoli picchi osservabili lungo la

validation loss sono coerenti con il contesto. Essi infatti dipendono dal rumore del dataset

e dal fatto che il batch di validazione non è identico a ogni epoca: queste variazioni locali

non indicano comunque instabilità del training.

Figura 5.1: Andamento della loss di training e di validazione per il modello di CNN.

Un confronto tra valori reali e predetti sul test set (vedi Figura 5.2) mostra scarti tipi-

camente inferiori a poche unità percentuali (in spazio scalato [−1, 1]), sia per aree positive
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che negative, a conferma della capacità del modello base di approssimare correttamente

la relazione non lineare tra forma della waveform e area del picco.

Figura 5.2: Confronto tra le aree reali e i valori predetti dal modello su un sottoinsieme
di esempi del test set.

5.2.3 Quantizzazione con LiteRT e confronto tra modelli

Per rendere il modello eseguibile in modo efficiente su edge computer, la rete addestrata

è stata ottimizzata convertendola in formato TensorFlow Lite (LiteRT) e sottoposta a

tecniche di quantizzazione post–training. La quantizzazione riduce la precisione numerica

dei tensori del modello (i pesi e in parte le attivazioni) con l’obiettivo di diminuire
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l’occupazione di memoria per allocare o archiviare la rete e il costo delle operazioni

aritmetiche. In questo contesto sono stati considerati tre tipi di rappresentazione:

• Modello originale di riferimento: conversione diretta in formato a virgola

mobile a singola precisione (float32) senza quantizzazione;

• Quantizzazione float16: i pesi vengono memorizzati in virgola mobile a mezza

precisione;

• Quantizzazione int8: pesi e attivazioni sono quantizzati a 8 bit interi. Per

questa modalità è stato utilizzato un representative dataset di waveform, ottenuto

dall’optimization set (tuning set), per calibrare gli intervalli di quantizzazione.

La Figura 5.3 mostra un confronto diretto tra le dimensioni dei file dei tre modelli.

Il modello originale (float32) occupa su disco 116.75 kB, la versione float16 scende a

69.05 kB, mentre il modello int8 raggiunge 50.10 kB. In termini relativi:

• la quantizzazione a float16 riduce la dimensione del modello di circa il 41%

rispetto all’originale;

• la quantizzazione a int8 porta a una riduzione di circa il 57%.

91



CAPITOLO 5. ESTENSIONE DI RTA-DP CON ML PER GAMMASKY

Figura 5.3: Confronto delle dimensioni dei modelli in formato TFLite: originale
(float32), quantizzato float16 e quantizzato int8.

Nel workflow di ottimizzazione non sono state applicate altre tecniche di ottimizza-

zione, come il pruning, al modello di rete neurale. Ciò è dovuto a vari motivi tecnici

che rendono, nello specifico, questa tecnica poco vantaggiosa nel caso specifico. In primo

luogo, il modello utilizzato è estremamente compatto (circa 25k parametri, per una di-

mensione di ∼ 100 kB in formato float32). Introdurre sparsità in una rete cos̀ı piccola

non produce riduzioni significative né in memoria né in tempo di inferenza. Inoltre, il

pruning adottabile tramite TensorFlow Model Optimization è di tipo non strutturato e

LiteRT densifica i tensori al momento della conversione, eliminando di fatto qualsiasi

beneficio computazionale. L’hardware della Jetson Orin Nano non sfrutta accelerazioni

specifiche per reti prunate non strutturate, mentre supporta nativamente la quantizza-

zione FP16 e INT8, che garantiscono una reale riduzione dei costi computazionali. Per

questi motivi l’ottimizzazione si è concentrata esclusivamente sulla quantizzazione, che

rappresenta la tecnica più efficace per questo caso d’uso.
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Dal punto di vista del deployment su edge, la combinazione tra modello compatto,

quantizzazione (in particolare float16 per un buon compromesso tra performance e

peso) e runtime LiteRT con backend ottimizzato (attraverso la libreria XNNPACK) consente

di eseguire inferenza su Jetson Orin Nano con un impatto limitato su memoria e consumo

energetico, mantenendo al tempo stesso una precisione sufficiente per la ricostruzione

dell’energia evento per evento.

5.3 Integrazione del modello di ML nella pipeline

RTA-DP

Dopo la fase di ottimizzazione del modello, il passo successivo è stato integrare il modello

quantizzato in LiteRT (.tflite) all’interno della pipeline RTA-DP, cos̀ı da consentire

l’esecuzione dell’inferenza in tempo reale direttamente sulla Jetson Orin Nano. In questa

fase sono state affrontate tre attività fondamentali:

1. integrazione del modello quantizzato nel worker C++ del framework;

2. ottimizzazione dell’inferenza su CPU ARM tramite XNNPACK;

3. verifica del corretto flusso dati end-to-end (waveform grezze R0 → inferenza →

aree predette).

L’integrazione avviene nella parte finale della pipeline, dove il worker legge dalla

coda le waveform ricevute dal supervisor, esegue l’inferenza sul modello quantizzato

e restituisce i valori degli integrali necessari alla generazione successiva dei file DL2 in

output. Il flusso operativo rimane quello definito per il caso d’uso generico del framework

RTA-DP. Il producer (in questo caso gfse.py) invia via ZeroMQ messaggi organizzati

tramite pacchetti binari serializzati in formato R0 con i dati estratti dai file DL0 di input,

contenenti:
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• un header comune sia per pacchetti waveform che housekeeping (HeaderDams);

• una struttura Data WaveHeader seguita da una struttura Data WaveData, la quale

contiene il buffer di waveform compattato in parole uint32 t, secondo il formato

definito in packet.h.

Ogni messaggio, come visto nella Sezione 5.1.1, è preceduto da un prefisso di 4 byte

che contiene la dimensione del payload relativo. Il supervisor specializzato per questo

task (Supervisor1) riceve il pacchetto, verifica la dimensione, identifica il tipo di dato

accedendo ai campi dell’header type/subtype, ricostruisce un oggetto WfPacketDams

contenente header e payload e inserisce il pacchetto serializzato nella coda a priorità dei

worker. La ricostruzione del pacchetto è illustrata nello snippet seguente:

1 int32_t size;

2 memcpy(&size, data.data(), sizeof(int32_t));

3

4 const HeaderDams* h_ptr = reinterpret_cast<const HeaderDams*>(raw + sizeof(

uint32_t));

5

6 const Data_WaveHeader* w_ptr = reinterpret_cast<const Data_WaveHeader*>(raw

+ sizeof(uint32_t) + sizeof(HeaderDams));

7

8 WfPacketDams packet;

9 packet.body.h = *h_ptr;

10 packet.body.w = *w_ptr;

11

12 std::memcpy(packet.body.d.buff, raw + sizeof(uint32_t) + sizeof(HeaderDams)

+ sizeof(Data_WaveHeader), U32_X_PACKET * sizeof(uint32_t));

13

14 lp_queue->push(serializePacket(packet));

Il worker dedicato all’inferenza (Worker1), d’altra parte, sarà quindi responsabile di:

1. leggere i pacchetti dalla coda;

2. estrarre le waveform;

3. pre-processarle normalizzando i campioni, in modo da allinearli alla logica usata

nel training;
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4. eseguire l’inferenza tramite LiteRT;

5. produrre il dato fisico da salvare in DL2.

5.3.1 Interprete LiteRT e delegate XNNPACK

Come preparazione dell’ambiente di inferenza e per massimizzare le prestazioni del-

la Jetson Orin Nano, l’interprete LiteRT è stato configurato per utilizzare il delegate

XNNPACK3, progettato per accelerare reti piccole e medie su CPU ARM (architettu-

ra che possiede la Jetson) tramite microkernel ottimizzati e istruzioni SIMD NEON.

L’inizializzazione avviene all’interno del costruttore di Worker1:

1 TfLiteModel* model = TfLiteModelCreateFromFile(model_path.c_str());

2

3 TfLiteXNNPackDelegateOptions xnn_opts = TfLiteXNNPackDelegateOptionsDefault

();

4 TfLiteDelegate* xnnpack = TfLiteXNNPackDelegateCreate(&xnn_opts);

5

6 TfLiteInterpreterOptions* opts = TfLiteInterpreterOptionsCreate();

7 TfLiteInterpreterOptionsAddDelegate(opts, xnnpack);

8

9 TfLiteInterpreter* interp = TfLiteInterpreterCreate(model, opts);

10 TfLiteInterpreterAllocateTensors(interp);

L’inferenza viene sempre eseguita internamente in float32, ma l’utilizzo di modelli

quantizzati (float16 o int8) riduce il footprint in memoria e migliora l’efficienza della

cache. Nonostante LiteRT consenta l’utilizzo di thread multipli, nel caso di un modello

estremamente compatto come quello utilizzato per questo caso d’uso, l’overhead supera

il beneficio: è quindi stato adottato un approccio single-thread per interprete, sfruttando

la parallelizzazione nativa del framework.

3XNNPACK è una libreria di microkernel ottimizzati per l’inferenza su CPU, sviluppata per accele-
rare operazioni tipiche del deep learning sfruttando istruzioni SIMD (NEON su ARM) e ottimizzazioni
della gerarchia di memoria. In LiteRT funge da delegate per ridurre la latenza di modelli leggeri su
dispositivi edge.
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5.3.2 Preprocessing ed esecuzione dell’inferenza

Ogni waveform è rappresentata da 1000 “word” uint32 t, ciascuna contenente due

campioni a 16 bit. Il worker ricostruisce i 2000 campioni originali tramite:

1 uint32_t word = aligned_buf[i];

2 uint16_t lo = word & 0xFFFF;

3 uint16_t hi = (word >> 16) & 0xFFFF;

4

5 float_wave[2*i] = static_cast<float>(hi);

6 float_wave[2*i+1] = static_cast<float>(lo);

I campioni sono quindi normalizzati nell’intervallo [−1, 1] tramite la stessa trasfor-

mazione MinMax usata durante il training:

1 x = std::clamp(x, in_min, in_max);

2 model_in[i] = 2.f * (x - in_min) / (in_max - in_min) - 1.f;

Questa operazione garantisce che i dati reali mantengano la stessa distribuzione

statistica dei dati simulati utilizzati per addestrare la rete.

La fase di inferenza vera e propria viene quindi eseguita invocando l’interprete con-

figurato in precedenza:

1 TfLiteInterpreterInvoke(interp_);

Analizzando una campione alla volta, il modello produce in output un singolo valore

scalato nel range [−1, 1]. Per avere un senso fisico, lo scalare viene poi convertito nello

spazio dell’area dell’impulso tramite la formula inversa della normalizzazione MinMax:

yorig =

(
ypred + 1

2

)
(outmax − outmin) + outmin (5.1)

Il valore yorig rappresenta l’integrale della waveform ricostruito (quantità da cui si

ricava l’energia dell’evento) e verrà successivamente salvato nei file DL2.

Per sfruttare appieno l’architettura ARM Cortex-A78 della Jetson Orin Nano, il file

di configurazione per la compilazione CMakeLists.txt è stato esteso per includere una

serie di flag di ottimizzazione specifici all’hardware su cui il framework viene eseguito:
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• -mcpu=cortex-a78 per generare codice ottimizzato per la CPU della Jetson;

• -ftree-vectorize per abilitare la vettorizzazione automatica;

• -funsafe-math-optimizations per velocizzare le operazioni floating-point;

• ottimizzazione globale -O2.

La build rileva automaticamente la piattaforma, ad esempio distinguendo se RTA-

DP viene compilato su di una Jetson oppure all’interno di un Docker container. Questo

garantisce portabilità e, al tempo stesso, massime prestazioni sulla piattaforma edge:

1 if(HOST_SYSTEM_PROCESSOR MATCHES "aarch64")

2 set(OPT_FLAGS -O2 -mcpu=cortex-a78 -ftree-vectorize -funsafe-math-

optimizations)

3 else()

4 set(OPT_FLAGS -O2 -march=x86-64 -mtune=generic)

5 endif()

5.3.3 Validazione dell’integrazione

Prima della generazione dei file DL2, la corretta integrazione del modello LiteRT nella

pipeline di ricostruzione è stata verificata direttamente a video, analizzando l’output

della predizione dell’area del worker di inferenza per singola waveform (vedi Figura 5.4).

Per ogni evento, il sistema stampa una serie di informazioni diagnostiche, tra cui:

• REAL AREA: il valore reale dell’area associata alla waveform, utilizzato come ground

truth (la label). Per facilitarne l’accesso in questa fase di test, tale valore è stato

temporaneamente memorizzato nel campo us della struttura Data WaveHeader lato

producer;

• Predicted model output (inverse-scaled area): l’area predetta dal modello

dopo l’applicazione dell’inversa della trasformazione MinMax (vedi Formula 5.1),

espressa nello stesso dominio fisico della ground truth;
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• Predicted model output (scaled area ([-1, 1])): la stessa predizione nel

dominio normalizzato MinMax, utile per verificare la coerenza con quanto osservato

nel notebook di addestramento;

• Output scaling details: i parametri min area value, max area value e il re-

lativo fattore di scala, che permettono di controllare che la trasformazione inversa

sia stata applicata con gli stessi estremi usati in fase di training;

• Waveform value range: i valori minimo, massimo e medio della waveform rico-

struita, utilizzati per verificare che i campioni rientrino nel range [in min, in max]

atteso e non subiscano saturazioni indesiderate (il valore massimo equivale al picco

della forma d’onda);

• Total inference time: il tempo impiegato dall’invocazione e dall’esecuzione di

TfLiteInterpreterInvoke per processare la singola waveform.
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Figura 5.4: Esempio di log a video dell’inferenza effettuata da Worker1 su Jetson Orin
Nano, utilizzando il modello di ML quantizzato float16.

Dall’analisi qualitativa dei log si osserva che, per waveform con area positiva e negati-

va nel dominio normalizzato, i valori di scaled area rientrano correttamente nell’intervallo

[−1, 1] e presentano il comportamento atteso: eventi con area più grande generano valori

prossimi agli estremi dell’intervallo, mentre eventi di energia più bassa cadono in regioni

intermedie. L’inverse-scaled area risulta numericamente coerente con la ground truth:

in diversi esempi l’area predetta differisce dalla reale solo di una frazione rispetto alla

scala complessiva del segnale, con una tendenza a leggere sottostime o sovrastime che

riproduce il comportamento già osservato per la valutazione del modello float16. Nello

stesso log, il range dei valori di waveform (minimo, massimo, media) risulta compatibile

con il dominio dei dati di training: i massimi sono compresi entro poche migliaia di con-

teggi e i minimi restano prossimi allo zero. Ciò conferma che l’operazione di unpacking
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dei campioni da uint32 t a float e la successiva normalizzazione mediante lo stesso

MinMax utilizzato in fase di training sono state implementate correttamente.

Le informazioni di scaling stampate a video (min area value, max area value e

fattore di scala) coincidono con i parametri per il preprocessing delle label utilizzati

nel notebook Python, garantendo che la trasformazione inversa sia applicata in modo

coerente sia offline sia durante l’inferenza embedded. In questo modo, il confronto fra

REAL AREA e Predicted model output (inverse-scaled area) avviene nello stesso

sistema di unità e permette di verificare direttamente la bontà del porting del modello e

i risultati dell’inferenza su valori non visti durante il training.

Infine, il campo Total inference time mostra che il tempo di inferenza per singo-

la waveform è dell’ordine delle frazioni di millisecondo, in linea con quanto atteso per

un modello di piccole dimensioni eseguito su CPU ARM con delegate XNNPACK. Seb-

bene l’analisi quantitativa dettagliata di latenza, throughput e consumo energetico sia

rimandata al Capitolo 6, questa fase di validazione ha permesso di confermare:

• l’allineamento dei valori dell’area predetta con inferenza in real-time comparata

con i valori di ground truth associati;

• il corretto unpacking e la corretta normalizzazione dei dati in ingresso;

• l’uso consistente dei parametri di scaling tra il notebook di training Python e

implementazione C++;

• il corretto funzionamento del delegate XNNPACK su Jetson Orin Nano;

• la coerenza numerica tra le predizioni ottenute in ambiente Python e quelle prodotte

in tempo reale dalla pipeline.

100



CAPITOLO 5. ESTENSIONE DI RTA-DP CON ML PER GAMMASKY

5.4 Scrittura dei file DL2 in output

L’ultimo stadio della pipeline di ricostruzione consiste nella generazione dei file DL2 (vedi

Sezione 2.3.3), che contengono la lista degli eventi ricostruiti a partire dalle waveform

grezze contenute nei pacchetti R0. In questo passo, le aree degli impulsi predette dal

modello quantizzato LiteRT vengono serializzate in un file con formato HDF5 contenen-

te una tabella di eventi. L’obiettivo è produrre una “photon list4” adatta alle analisi

scientifiche successive del progetto GammaSky. In questo modo si chiude il flusso dati

inaugurato dal producer: le waveform acquisite dal DAM vengono inviate in formato

grezzo R0 in streaming al consumer, analizzate dal modello di ML integrato nei worker

e infine scritte come tabella di eventi in un file DL2.

Per rendere configurabile la struttura dei file DL2, essa non è definita nel codice ma

è stato introdotto un descrittore esterno in formato XML, DL2model.xml, il cui parsing

avviene un’unica volta all’avvio del worker tramite la libreria tinyxml2 e che definisce

struttura e tipi dei campi della tabella di eventi. Il file descrive un dataset composto

(compound type) memorizzato nel gruppo /dl2/eventlist, i cui campi principali sono:

n waveform, tstart, integral1 e altri campi riservati a estensioni future (come altezza

del picco, integrali secondari per waveform con più di un picco, temperatura del rivela-

tore, ecc.), i quali vengono inizializzati con un valore di placeholder (ad esempio -1.0) .

Di seguito un estratto del modello XML:

1 <dataset name="eventlist" type="compound">

2 <fields>

3 <field name="n_waveform" type="float32"/>

4 <field name="tstart" type="float64"/>

5 <field name="integral1" type="float32"/>

6 <field name="integral2" type="float32"/>

7 <field name="integral3" type="float32"/>

4Una photon list è una rappresentazione basata su eventi individuali, in cui ciascun fotone rilevato è
descritto da parametri fisici ricostruiti, come tempo di arrivo, energia e direzione di provenienza. Questo
formato, tipico dell’analisi dei rivelatori per raggi gamma, conserva il massimo contenuto informativo
e permette di svolgere successivamente analisi scientifiche flessibili (spettrali, temporali e di imaging)
senza perdita di dati.
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8 <field name="halflife" type="float32"/>

9 <field name="temp" type="float32"/>

10 </fields>

11 </dataset>

Ogni evento ricostruito è rappresentato in memoria da una struttura C++ che ri-

specchia lo schema XML:

1 struct GFRow {

2 float n_waveform;

3 float mult;

4 float tstart;

5 float index_peak;

6 float peak;

7 float integral1;

8 float integral2;

9 float integral3;

10 float halflife;

11 float temp;

12 };

In questo modo l’aggiunta o la modifica di un campo nello schema DL2 richiede solo

l’aggiornamento del file XML (e, se necessario, della struttura GFRow), mantenendo la

logica di scrittura generica e riusabile.

L’inizializzazione del modello DL2 viene eseguita una sola volta e il risultato viene

condiviso tra tutti i worker. Per evitare race conditions, il blocco di inizializzazione

è protetto da uno std::mutex, cos̀ı che solo il primo thread effettui il parsing del file

XML, mentre gli altri riutilizzano la struttura già creata, anche per ridurre l’overhead.

Durante l’esecuzione, il worker popola un vettore std::vector<GFRow> condiviso tra

thread, all’interno del quale inserisce una riga per ciascuna waveform elaborata. In

questa prima implementazione solo alcuni campi vengono compilati: n waveform assume

l’indice progressivo della waveform nel batch, tstart è estratto dall’header del pacchetto

R0 ricevuto (timestamp del campione), mentre integral1 contiene l’area predetta dal

modello dopo la riconversione dall’intervallo normalizzato [−1, 1] allo spazio delle aree.

La generazione dei dati DL2 è integrata all’interno del metodo processData() di
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Worker1 (lo stesso in cui viene eseguita l’inferenza). Dopo l’inferenza sul modello LiteRT,

per ciascuna waveform viene creato un record GFRow:

1 GFRow row;

2 row.n_waveform = dl2_data.size() + 1; // Indice progressivo

3 row.mult = -1.0f;

4 row.tstart = static_cast<float>(packet->body.w.ts.tv_sec);

5 row.index_peak = -1.0f;

6 row.peak = -1.0f;

7 row.integral1 = y_orig; // L’area predetta (inverse MinMax)

8 row.integral2 = -1.0f;

9 ...

10

11 dl2_data.push_back(row);

I record vengono accumulati in un vettore condiviso dl2 data. Quando il numero di

eventi raggiunge una soglia configurabile (di default 1000 righe per file), il batch viene

scritto su file e salvato su disco in formato HDF5 tramite la funzione write dl2 file()

(vedi Figura 5.5 per il contenuto di un file DL2). Quest’ultima costruisce il tipo composto

HDF5 (H5::CompType) iterando sui campi definiti nel modello XML e inserendo i relativi

membri con i corrispondenti offset nella struttura GFRow. La mappatura tra modello e

struttura è attualmente basata su un insieme di controlli espliciti sui nomi dei campi,

soluzione semplice ma sufficiente per garantire la coerenza tra il modello DL2 e il dataset

HDF5 prodotto:

1 void Worker1::write_dl2_file(){

2 H5::CompType mtype(sizeof(GFRow));

3

4 for (const auto& field : model.fields) {

5 if (field.name == "n_waveform")

6 mtype.insertMember(field.name, HOFFSET(GFRow, n_waveform), H5::

PredType::NATIVE_FLOAT);

7 else if (field.name == "tstart")

8 mtype.insertMember(field.name, HOFFSET(GFRow, tstart), H5::

PredType::NATIVE_FLOAT);

9 else if (field.name == "integral1")

10 mtype.insertMember(field.name, HOFFSET(GFRow, integral1), H5::

PredType::NATIVE_FLOAT);

11 ...
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12 }

13

14 H5::DataSet dataset = group.createDataSet(model.datasetName, mtype,

dataspace);

15 dataset.write(data.data(), mtype);

16 }

17

18 std::vector<uint8_t> Worker1::processData(){

19 ...

20 if (dl2_data.size() >= 1000) {

21 std::string filename = getOutputPath() + "/dl2_output_batch" + std

::to_string(batch_counter++) + ".dl2.h5";

22

23 write_dl2_file(dl2_model, filename, dl2_data);

24 dl2_data.clear();

25 }

26 ...

27 }

In questo modo i batch di eventi accumulati in memoria vengono serializzati cor-

rettamente su file secondo il formato previsto. Completata la scrittura, il buffer viene

svuotato e il worker riprende il flusso di elaborazione. I file prodotti vengono salva-

ti in una directory di output configurabile tramite variabile d’ambiente e seguono una

convenzione di naming del tipo:

dl2_output_batchXXXX.dl2.h5

104



CAPITOLO 5. ESTENSIONE DI RTA-DP CON ML PER GAMMASKY

Figura 5.5: Esempio di file DL2 prodotto dopo aver processato 1000 waveform. Il campo
integral1 contiene il valore dell’area ricostruita tramite ML.

La scrittura a batch di dimensione configurabile consente di controllare il trade-off

tra:

• numero di file generati, in modo da limitare al minimo l’occupazione di memoria

non volatile in dispositivi a risorse limitate;

• latenza di scrittura su disco, riducendo l’overhead di I/O su sistemi embedded;

• efficienza del canale di downlink (in scenari space-based).
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Capitolo 6

Testing e analisi delle prestazioni

della pipeline di GammaSky

Quest’ultimo capitolo descrive la fase di testing e valutazione della pipeline di Gam-

maSky, dopo l’integrazione del modello di machine learning ottimizzato e della logica di

scrittura dei file DL2. L’obiettivo della sperimentazione è verificare la capacità del sistema

di sostenere un’elaborazione in tempo reale su piattaforma edge NVIDIA Jetson Orin

Nano, in vista del futuro deployment all’interno del setup sperimentale di GammaSky

presso l’Osservatorio sul Monte Cimone.

La campagna di test si è articolata in due direzioni principali. Da un lato, sono state

misurate le prestazioni dell’inferenza del modello neurale su flussi continui di waveform,

valutando latenza media, throughput e utilizzo di memoria, sia nel caso del modello

originale float32 sia nella variante float16. Dall’altro, è stato monitorato il compor-

tamento delle risorse hardware del dispositivo (CPU, RAM, GPU e potenza assorbita),

in condizioni sia di inattività sia di massimo carico, tramite il tool jtop. In aggiun-

ta alla misurazione delle prestazioni, sono stati condotti test di integrazione end-to-end

per verificare la correttezza funzionale dell’intero flusso di elaborazione, dall’invio dei

pacchetti R0 fino alla generazione dei corrispondenti file DL2, passando per la fase di
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inferenza. Sono stati sviluppati appositi script di integrazione per automatizzare l’ese-

cuzione dei test, permettendo di riprodurre condizioni di streaming a pieno carico (fino

a 200 waveform/s) e di validare la robustezza della pipeline nel lungo periodo. I ri-

sultati ottenuti forniscono indicazioni utili sulle effettive capacità della piattaforma di

eseguire ricostruzione in tempo reale nel contesto dell’analisi dei TGF e rappresentano

un passaggio fondamentale verso l’adozione operativa del sistema.

6.1 Benchmark di inferenza del modello ML su Je-

tson Orin Nano

Per valutare le prestazioni del modello di ricostruzione dell’area della waveform, è stata

eseguita una fase di benchmark sull’edge computer Jetson, utilizzando il worker adibi-

to all’inferenza descritto nella Sezione 5.3. L’analisi si è concentrata su tre parametri

principali:

• tempo medio di inferenza per singola waveform;

• rate (throughput) di inferenza espressa in Hz (la frequenza);

• utilizzo massimo di memoria RAM durante il processamento.

Per questa fase di confronto tra modelli, si è deciso di prendere in considerazione

quello originale in formato float32 non ottimizzato e quello quantizzato mediante post-

training quantization in formato float16. Per entrambi i modelli sono state processate

sequenze di 10 000 waveform consecutive, corrispondenti a circa 10 batch di scrittura di

DL2, con un rate di input generato dal producer (in questo caso lo streamer-simulatore

gfse.py) pari a circa 200 eventi/s, cos̀ı da stressare il sistema in condizioni superiori ai

requisiti previsti dal caso d’uso.
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6.1.1 Metodologia di misura

La latenza di inferenza è stata misurata direttamente all’interno del worker trami-

te clock gettime() basato sul timer CLOCK MONOTONIC RAW, calcolando la differenza

temporale, come mostrato nello snippet seguente estratto da Worker1.cpp:

1 clock_gettime(CLOCK_MONOTONIC_RAW, &start);

2 TfLiteInterpreterInvoke(interp_); // Inferenza

3 clock_gettime(CLOCK_MONOTONIC_RAW, &end);

4

5 double inference_time = timespec_diff(&start, &end);

Il consumo massimo di memoria durante la fase di inferenza è stato monitorato

tramite la funzione getrusage(), aggiornando un contatore:

1 int current_memory = getMemoryUsage();

2 int previous_peak = peak_memory_kb.load();

3

4 while (current_memory > previous_peak) {

5 if (peak_memory_kb.compare_exchange_weak(previous_peak, current_memory)

) {

6 break;

7 }

8 }

Le statistiche vengono accumulate in variabili atomiche condivise tra i worker e stam-

pate periodicamente dopo un intervallo fissato di waveform elaborate (di default ogni

10 000 eventi):

1 [Worker1] ===== INFERENCE STATISTICS =====

2 [Worker1] Processed N waveforms

3 [Worker1] Average inference time: X.XXXXXXXXs

4 [Worker1] Inference rate: YYYYY.YY Hz

5 [Worker1] Peak memory usage: ZZZZZ KB

6.1.2 Risultati sperimentali

Una media dei risultati ottenuta su varie esecuzioni del sistema è riportata nella Tabella

6.1. Come evidenziato, le prestazioni dei due modelli risultano estremamente simili.
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Tabella 6.1: Prestazioni di inferenza su 10 000 waveform.

Modello Avg. time Rate Peak RAM

float32 (117KB) 0.000451 s 2216Hz 16996KB
float16 quant. (70KB) 0.000446 s 2242Hz 17956KB

Come si può osservare, la quantizzazione a float16 non modifica in modo significativo

il tempo di inferenza medio rispetto alla versione float32. Ciò è coerente con le seguenti

considerazioni tecniche:

1. Modello compatto: la rete utilizza circa 25 000 parametri, rendendo marginale

il peso computazionale delle operazioni a singola precisione (float32).

2. Delegate XNNPACK e accelerazione hardware ARM NEON: entrambe

le rappresentazioni numeriche beneficiano degli stessi kernel ottimizzati per CPU

ARM, con l’architettura Jetson che supporta calcolo vettoriale efficiente sia per

FP16 che FP32.

3. Overhead di LiteRT: per modelli compatti l’orchestrazione del runtime (alloca-

zione tensori, copy buffer, scheduling) è comparabile al tempo di calcolo.

4. Batch unitario: l’inferenza avviene “sample-by-sample”, limitando i benefici

derivanti dalla minore occupazione in memoria dei tensori FP16.

La quantizzazione a float16 fornisce tuttavia un vantaggio rilevante in termini di

footprint del modello (riduzione di circa il 40%), mantenendo risultati di inferenza equi-

valenti al modello originale. Come tecnica, può pertanto essere adottata in modo pre-

ferenziale nel deployment a bordo di dispositivi di edge computing come per il caso di

GammaSky. Il test conferma che la piattaforma è in grado di sostenere un’elaborazione

continua con throughput superiore a 2 200 eventi/s, valore di gran lunga superiore al

requisito operativo della sorgente dati (≃ 200 waveform/s).
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6.2 Utilizzo delle risorse hardware

In questa fase sono state analizzate le risorse hardware utilizzate dalla NVIDIA Jetson

Orin Nano durante l’esecuzione della pipeline RTA-DP, al fine di verificarne l’efficienza

energetica e la compatibilità con scenari operativi caratterizzati da vincoli stringenti

(come piattaforme embedded o potenziali missioni CubeSat). Il monitoraggio è stato

effettuato tramite lo strumento jtop, che consente di osservare in tempo reale il consumo

di CPU, memoria, GPU, temperatura e potenza del sistema. Per simulare un ambiente

“resource-constrained”, la Jetson è stata impostata nella modalità di potenza minima

(NV Power [0], 15W massimi), che limita il budget energetico disponibile al SoC.

Il confronto è stato condotto in due condizioni distinte:

1. Jetson in idle: nessun processo della pipeline attivo, con tutti i componenti

di RTA-DP disattivati e con ProcessMonitoring.py non in esecuzione in back-

ground.

2. Pipeline a pieno carico: esecuzione contemporanea di parsing dei pacchetti,

inferenza, generazione dei file DL2 e monitoraggio in background. Per stressare il

sistema è stato utilizzato lo stesso scenario di test della Sezione 6.1, con il producer

configurato per inviare fino a 200 waveform/s, un valore superiore ai requisiti

previsti dal caso d’uso GammaSky.

La Tabella 6.2 riassume l’utilizzo delle principali risorse hardware nei due scenari.
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Tabella 6.2: Confronto dell’utilizzo delle risorse hardware della Jetson Orin Nano in idle
e durante l’esecuzione della pipeline completa.

Risorsa Idle Full load

CPU (RTA-DP utilizza solo 1 core su 6) 1–8% 40–55%
RAM utilizzata ∼750–800 MB ∼790–870 MB
GPU utilizzata 0% 0%
Potenza media (VDD IN) 4.8W 5.0W
CPU Clock 729 MHz 729 MHz
Temperatura CPU ∼46.2°C ∼46.5°C

Consumo della CPU

L’utilizzo della CPU rappresenta uno dei parametri più critici in un sistema real-time

su hardware embedded. Questo discorso è ancor più valido per RTA-DP, visto che tutte

le operazioni principali (inferenza inclusa) vengono eseguite su CPU. L’analisi condotta

tramite jtop evidenzia come:

• in idle, tutti e sei i core ARM Cortex-A78 operano in modalità alternata con un

utilizzo compreso tra l’1% e l’8%, senza alcun processo e thread della pipeline in

esecuzione;

• con la pipeline attiva, un solo core viene utilizzato in modo significativo (fino al

50–55% nei picchi), mentre gli altri rimangono pressoché inattivi.

Si osserva quindi che l’intero framework RTA-DP, incluso il processamento dei pac-

chetti, l’inferenza e la scrittura dei file DL2, riesce a funzionare sfruttando in modo limi-

tato un singolo core. La CPU rimane dunque largamente sotto-utilizzata, anche durante

lo stress test. Questo risultato è una conferma diretta dell’efficacia delle ottimizzazioni

introdotte nella Sezione 4.6:

• eliminazione dei cicli di busy waiting ;
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• utilizzo di sleep nei cicli di esecuzione dei thread;

• riorganizzazione dei buffer e delle code per ridurre le copie;

• logging configurabile e disattivabile via spdlog.

Consumo di memoria RAM

In condizioni di inattività, la Jetson utilizza tra 750MB e 800MB di RAM, un valore

in linea con quanto atteso per il sistema operativo e i processi di sistema. Durante

l’esecuzione completa della pipeline, l’incremento del consumo di memoria risulta molto

limitato: la RAM utilizzata aumenta infatti solo di alcune decine di megabyte, con un

picco di circa 870MB attribuibile ai principali task eseguiti dal DataProcessor.

Questo comportamento, come già visto in parte nella Sezione 6.1.2, è dovuto princi-

palmente a:

• la dimensione ridotta del modello di machine learning e la sua versione float16;

• l’utilizzo di LiteRT con delegate XNNPack;

• le ottimizzazioni introdotte nella Sezione 4.6 che hanno ridotto allocazioni ridon-

danti, copie di buffer e overhead di logging.

Utilizzo della GPU e consumo energetico

La GPU della Jetson Orin Nano non viene mai utilizzata né in idle né a pieno carico.

Questo è atteso, poiché l’esecuzione dell’inferenza avviene tramite il delegate XNNPACK,

basato su ottimizzazioni SIMD NEON della CPU. L’assenza di carico GPU riduce dra-

sticamente i consumi energetici, evita picchi termici e massimizza l’efficienza per sistemi

power-limited.

Per quanto riguarda l’assorbimento energetico, la Jetson configurata in modalità 15W

presenta:

112



CAPITOLO 6. TESTING E ANALISI DELLE PRESTAZIONI DI GAMMASKY

• Idle: potenza media (CPU e GPU) ∼0.58W e ∼1.4W (SoC), con potenza totale

di ingresso (VDD IN) pari a ∼4.8W.

• Pipeline attiva: valori quasi identici, senza variazioni significative durante l’infe-

renza (CPU e GPU ∼0.68W, SoC ∼1.4W) e potenza di ingresso media stabile a

5.0W.

La pipeline, anche a pieno carico, raggiunge massimo un terzo del budget energetico

disponibile (15W), dimostrando un’efficienza più che adeguata per applicazioni edge e

missioni con severe limitazioni energetiche. Per contestualizzare tali consumi è utile un

riferimento ai budget di potenza tipici per piattaforme CubeSat[51], cos̀ı da valutare

un’eventuale compatibilità del sistema con tali scenari spaziali:

• un 1U dispone tipicamente di ∼1–2,5W;

• un 2U può fornire ∼2–5W;

• un 3U raggiunge valori dell’ordine di ∼7–20W;

• un 6U, in funzione della configurazione dei pannelli solari e dell’area effettivamente

illuminata, può raggiungere alcune decine di watt (tipicamente ∼20–50W).

Una Jetson Orin Nano operante attorno i 5W di picco, insieme al resto del setup

sperimentale GammaSky (SiPM e RedPitaya con modulo GPS, i quali consumano attor-

no 10W), rientra nei limiti tipici di un CubeSat 3U–6U, possibilmente rendendo l’intero

payload compatibile con missioni satellitari o comunque ambienti edge estremamente

vincolati.

6.3 Test di integrazione dell’intera pipeline

Per verificare il corretto funzionamento nel suo insieme della pipeline RTA-DP applicata

al caso d’uso GammaSky, è stato sviluppato un test di integrazione end-to-end (system
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integration test) automatizzato. Questo test è stato concepito per assicurarsi che tutti

i componenti del sistema cooperino correttamente quando avviati, sincronizzati, messi

sotto carico e infine chiusi in modo ordinato, il tutto eseguito all’interno di un ambiente

controllato basato su Docker container.

A differenza degli unit test, che validano moduli isolati tramite dipendenze simulate

o input sintetici, un integration test esercita l’applicazione come un sistema completo,

verificando comunicazioni reali (ZeroMQ), lettura e scrittura su file system (DL0 →

DL2), gestione dei processi, scambio di segnali, corretta inizializzazione dei thread e

shutdown ordinato. In un contesto come RTA-DP, caratterizzato da un flusso continuo

di dati, interazioni concorrenti e componenti eterogenei scritti in linguaggi differenti,

gli unit test non bastano a rilevare errori di orchestrazione, race conditions, problemi

di temporizzazione o mancate sincronizzazioni tra i moduli. La correttezza del sistema

dipende infatti non solo dalla logica interna del codice, ma dalla sequenza temporale e

dal coordinamento dei processi. Gli integration test sono risultati dunque necessari per

validare il comportamento end-to-end dell’intero framework.

Il test sviluppato verifica la sequenza completa del flusso operativo, avviando in

sequenza e in modo controllato:

1. ProcessMonitoring.py, il servizio di monitoraggio dei processi;

2. gfse.py, che simula il DAM fungendo da producer ed inviando waveform in for-

mato R0 contenute in pacchetti DL0 tramite socket ZeroMQ;

3. il consumer C++ (ProcessDataConsumer1), che esegue il pre-processing dei dati,

inferenza ML e scrittura dei file DL2;

4. il modulo di controllo dei comandi, che avvia il processamento tramite il messaggio

start all.

Questo flusso rappresenta un vero test end-to-end. Verifica che i componenti della

pipeline si inizializzino correttamente, comunichino tra loro e rimangano operativi per un
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intervallo di tempo significativo, simulando un utilizzo reale. La validazione finale si basa

sul monitoraggio dello stato dei processi: se uno di essi termina inaspettatamente, il test

fallisce, segnalando un possibile problema di configurazione, concorrenza o comunicazione

interna alla pipeline. Possiamo dire che l’esecuzione adotta un approccio black-box. Il

test non valuta infatti la correttezza degli algoritmi interni, ma osserva il comportamento

complessivo del sistema come un unico blocco per un periodo configurabile (con un

timeout predefinito di 200 s). Lo script gestisce inoltre l’intero ciclo di vita dei processi,

incluso lo shutdown sequenziale automatico al termine del tempo di esecuzione, inviando

i relativi segnali UNIX. Questo garantisce la corretta liberazione delle risorse ed evita

situazioni indesiderate come processi zombie, porte occupate o code lasciate in stato

incoerente.

Il cuore del test è contenuto nello script test integration rtadp1.py, che utilizza il

framework Python unittest per avviare e monitorare l’intera pipeline di GammaSky al-

l’interno di un ambiente Docker isolato. Ogni componente viene lanciato sequenzialmente

tramite subprocess in un proprio gruppo di processi (os.setsid), cos̀ı da permetterne

una gestione indipendente e un successivo shutdown controllato. La logica utilizzata

per l’avvio dei processi è generica e modulare: ogni componente è incapsulato in una

funzione dedicata che registra l’handle del processo in una lista condivisa per consentire

la gestione coordinata delle risorse. Lo snippet seguente mostra un esempio tipico di

questa struttura:

1 def run_consumer(self):

2 cmd = [’./ProcessDataConsumer1’, self.rtaconfig]

3 process = subprocess.Popen(

4 cmd,

5 cwd=str(CPP_DIR / ’build’),

6 stdout=None, stderr=None,

7 preexec_fn=os.setsid

8 )

9 self.processes.append(process)

10 return process
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L’inizializzazione completa della pipeline avviene nel metodo test full integration(),

che rappresenta il flusso di avvio reale del sistema. Il test attende esplicitamente inter-

valli temporali tra un componente e il successivo per garantire che ogni modulo comple-

ti correttamente la propria fase di bootstrap (lettura configurazione, creazione socket,

inizializzazione dei worker, spawn di thread interni, ecc.). Una volta avviati tutti gli

elementi, viene inviato il comando globale start all, che attiva il flusso di elaborazione

dei dati:

1 def test_full_integration(self):

2 # 1. Avvio del monitoraggio

3 monitoring_process = self.run_process_monitoring()

4 time.sleep(2)

5

6 # 2. Avvio del simulatore DAMS (gfse)

7 simulator_process = self.run_dams_simulator(

8 addr=’127.0.0.1’, port=1234,

9 indir=str(TEST_DIR / ’dl0_simulated’),

10 rpid=1, wform_sec=200

11 )

12 time.sleep(6)

13

14 # 3. Avvio del consumer C++

15 consumer_process = self.run_consumer()

16 time.sleep(3)

17

18 # 4. Invio del comando START a tutti i componenti

19 start_process = self.send_start_command()

20

21 # 5. Tempo di esecuzione utile del sistema

22 time.sleep(200)

23

24 # 6. Verifica se i processi siano ancora attivi

25 self.assertEqual(monitoring_process.poll(), None)

26 self.assertEqual(consumer_process.poll(), None)

27 self.assertEqual(simulator_process.poll(), None)

28

29 logger.info(’Integration test completed successfully’)

Una caratteristica rilevante del test è la procedura di chiusura controllata (graceful

shutdown), che segue un approccio graduale garantendo la terminazione sicura e ordinata
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dei processi secondo una gerarchia prestabilita:

1. prima il consumer C++, che gestisce code e worker multipli e che necessita di

tempo aggiuntivo per completare eventuali chiusure di socket aperti o thread;

2. successivamente il producer-simulatore gfse.py;

3. infine il modulo di monitoraggio.

Il tutto è protetto da un sistema di intercettazione dei segnali di terminazione: prima

uno shutdown “gentile” tramite SIGINT, lasciando al processo la possibilità di chiudere

risorse e svuotare buffer ed eventuali code interne. Se il processo non risponde entro

un tempo limite, viene inviato SIGTERM. Solo come ultima risorsa si usa SIGKILL, as-

sicurando la chiusura totale del gruppo di processi (grazie all’utilizzo di os.setsid e

os.killpg). Questo meccanismo evita la creazione di processi zombie o porte rimaste

aperte, garantendo che ogni esecuzione successiva del test parta da un ambiente pulito.

Parte della logica di shutdown via segnali UNIX è riportata di seguito:

1 def terminate_process(process, name, timeout=3):

2 if not process or process.poll() is not None:

3 return

4 try:

5 os.killpg(process.pid, signal.SIGINT)

6 start = time.time()

7 while time.time() - start < timeout:

8 if process.poll() is not None:

9 return

10 time.sleep(0.1)

11

12 # Escalation a SIGTERM

13 process.terminate()

14 start = time.time()

15 while time.time() - start < 2:

16 if process.poll() is not None:

17 return

18 time.sleep(0.1)

19

20 # Ultima risorsa: SIGKILL
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21 process.kill()

22 process.wait(timeout=1)

23

24 except Exception:

25 # Kill forzato in caso di errori imprevisti

26 try:

27 if process.poll() is None:

28 process.kill()

29 process.wait(timeout=1)

30 except:

31 pass

Una volta definita la procedura di terminazione singola, il test applica un ordine di

shutdown rigoroso, seguendo le dipendenze reali del sistema:

1 # Step 1: Ferma prima il consumer con un timeout esteso

2 if consumer_process:

3 terminate_process(consumer_process, "Consumer", timeout=15)

4 time.sleep(5)

5

6 # Step 2: Ferma il DAMS simulator

7 if simulator_process:

8 terminate_process(simulator_process, "DAMS Simulator")

9 time.sleep(2)

10

11 # Step 3: Ferma il monitoring process

12 if monitoring_process:

13 terminate_process(monitoring_process, "Process Monitoring")

14 time.sleep(1)

15

16 # Step 4: Ferma eventuali processi rimanenti

17 for process in other_processes:

18 if process and process.poll() is None:

19 terminate_process(process, f"Other Process (PID: {process.pid})")

20

21 logger.info("Sequential cleanup completed")

L’utilizzo del container Docker migliora significativamente la riproducibilità dell’am-

biente di test, poiché isola le dipendenze software e rende la pipeline eseguibile in modo

coerente su diverse macchine di sviluppo. Pur non astraendo completamente dalle specifi-

cità hardware, l’approccio containerizzato facilita la validazione anche su dispositivi edge
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che supportano questa tecnologia, riducendo la variabilità dovuta alla configurazione del

sistema operativo e delle librerie.
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Conclusioni e sviluppi futuri

In questo progetto di tesi sono state presentate e discusse le attività svolte durante il

tirocinio presso l’Osservatorio di Astrofisica e Scienza dello Spazio di Bologna (OAS),

parte dell’Istituto Nazionale di Astrofisica (INAF). Il lavoro svolto nel corso di quei me-

si, ha portato alla progettazione, implementazione, ottimizzazione e validazione di una

pipeline completa per l’analisi in tempo reale di eventi gamma atmosferici in ambiente

embedded, basata sul framework RTA-DP e applicata al caso d’uso sperimentale Gam-

maSky. Il percorso affrontato ha abbracciato aspetti di architettura software, gestione

concorrente, ottimizzazione delle prestazioni, integrazione tra componenti eterogenei e

machine learning su dispositivi a risorse limitate, con l’obiettivo di ottenere un sistema

stabile, efficiente e adatto a contesti operativi con vincoli stringenti.

La prima fase del lavoro ha riguardato la stabilizzazione del framework C++, che

nella sua versione iniziale presentava race conditions, accessi concorrenti non controllati,

deadlock, terminazioni non pulite del sistema e uso inefficiente delle risorse hardware. Le

problematiche iniziali sono state risolte attraverso un’approfondita revisione della gestio-

ne dei thread, dei meccanismi di sincronizzazione e della comunicazione tramite ZeroMQ.

La riscrittura delle code interne tramite strutture thread-safe, la riorganizzazione del ci-

clo di vita dei thread e del contesto ZeroMQ e la riorganizzazione completa della fase

di terminazione hanno permesso di trasformare un abbozzo preliminare in un sistema

affidabile, capace di sostenere carichi elevati in streaming continuo. Le ottimizzazioni

introdotte, unite alla riduzione delle copie di memoria e all’eliminazione dei cicli di busy
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waiting, hanno portato a una drastica riduzione del carico della CPU, migliorando la

stabilità dell’intero sistema e rendendolo più prevedibile anche in condizioni di esecuzio-

ne prolungata. La possibilità di disattivare completamente il sistema di logging tramite

configurazione di compilazione ha permesso di ridurre ulteriormente l’overhead compu-

tazionale, ottimizzando il framework RTA-DP per un utilizzo su dispositivi a risorse

limitate.

La seconda parte del progetto ha introdotto la creazione di una pipeline di ricostru-

zione per il progetto GammaSky, basata su RTA-DP. Il lavoro ha richiesto lo sviluppo

di un worker che integra un modello di ML per la ricostruzione dell’area delle waveform

direttamente a bordo dell’edge computer NVIDIA Jetson Orin Nano. Dopo una fase de-

dicata all’addestramento del modello neurale e alla sua ottimizzazione tramite tecniche

di quantizzazione, il formato float16 si è dimostrato il più adatto a un’implementazione

in ambiente embedded, grazie al suo ottimo compromesso tra performance, dimensioni

ridotte e velocità di inferenza. L’intero flusso di inferenza è stato adattato per funzionare

in streaming, in modo da elaborare ogni waveform non appena disponibile, mantenendo

una latenza minima e un throughput compatibile con i requisiti sperimentali. Parallela-

mente, è stata implementata la logica di generazione dei file DL2 utilizzando il formato

HDF5 e un modello dati definito tramite file XML. Questa componente ha reso possibile

la creazione di tabelle eventi ordinate, nelle quali ogni waveform elaborata viene trasfor-

mata in un evento fisico ricostruito, completo del valore di area predetta dal modello e

del tempo di arrivo del flash gamma. Il workflow risultante copre cos̀ı l’intero flusso R0

→ inferenza → DL2, rendendo la pipeline operativa e pronta per essere utilizzata in un

contesto sperimentale reale.

La fase finale del lavoro ha riguardato l’analisi delle prestazioni e il testing del sistema.

I benchmark condotti sulla Jetson Orin Nano hanno mostrato che sia il modello originale

in float32 sia la versione in float16 garantiscono tempi di inferenza dell’ordine di pochi

centinaia di microsecondi per waveform, permettendo di raggiungere una frequenza di
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elaborazione superiore ai requisiti del caso d’uso. L’utilizzo di CPU e RAM è risultato

estremamente contenuto, con un incremento trascurabile rispetto allo stato di inattività

del dispositivo e un consumo energetico stabile che non supera i 5W anche durante stress

test prolungati.

Infine, è stato sviluppato un test di integrazione end-to-end che permette di validare il

funzionamento dell’intero sistema all’interno di un ambiente Docker. Questo processo ha

verificato il comportamento congiunto di tutti i componenti: monitoraggio, streaming di

waveform, DataProcessor C++, inferenza, generazione dei file DL2 e chiusura ordinata del

sistema. Questa fase ha rappresentato la validazione finale del lavoro svolto, dimostrando

la capacità della pipeline di operare in modo stabile e coordinato lungo tutto il ciclo di

vita, condizione essenziale per la successiva integrazione nel setup sperimentale completo

di GammaSky.

In conclusione, il progetto ha portato alla realizzazione di una pipeline completa e

funzionante per la ricostruzione in tempo reale di eventi gamma atmosferici su edge device

mediante tecniche di ML, dimostrando l’efficacia dell’approccio adottato e aprendo a una

serie di sviluppi futuri che potranno arricchire il valore scientifico del sistema e ampliare

gli scenari applicativi del framework RTA-DP.

Sviluppi futuri

Il lavoro svolto costituisce una base solida su cui costruire le evoluzioni future del progetto

GammaSky. Il primo passo consisterà nell’integrazione della pipeline nel setup instal-

lato presso l’Osservatorio sul Monte Cimone, integrandola con l’apparato sperimentale

completo composto dal rivelatore SiPM, dalla Red Pitaya dotata di modulo GPS e dalla

Jetson. Questa fase permetterà di validare sul campo le prestazioni del sistema e di

verificarne la robustezza in condizioni operative reali.

Un’evoluzione fondamentale del progetto riguarda il potenziamento degli algoritmi di
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ricostruzione. La rete neurale attualmente impiegata fornisce una stima dell’integrale del-

la waveform, ma non offre un vantaggio sostanziale rispetto a una semplice integrazione

numerica: il suo ruolo principale è stato quello di dimostrare la fattibilità dell’esecuzione

di modelli di ML all’interno della pipeline real–time. Il passo successivo consiste quindi

nello sviluppo di tecniche di ricostruzione più avanzate, basate su modelli di intelligenza

artificiale progettati per affrontare problematiche che i metodi deterministici non possono

gestire in modo affidabile: identificazione e separazione di eventi in pile-up, ricostruzione

di waveform parzialmente saturate e correzione automatica di segnali distorti o degra-

dati dal rumore. Questi aspetti rappresentano il reale valore aggiunto dell’AI rispetto

all’approccio tradizionale e costituiranno una direzione di ricerca nelle future evoluzioni

del sistema. Al tempo stesso, la disponibilità delle photon list (DL2) apre la possibilità

di implementare ulteriori DataProcessor dedicati all’analisi avanzata degli eventi rico-

struiti, con tecniche avanzate di apprendimento automatico per l’analisi di time series

tramite pattern recognition e anomaly detection, cos̀ı da identificare automaticamente

sequenze di eventi potenzialmente compatibili con fenomeni gamma come i TGF.

Un’ulteriore prospettiva riguarda la correlazione in tempo reale tra eventi gamma

rilevati e dati relativi all’attività elettrica atmosferica, con l’obiettivo di migliorare la

discriminazione dei fenomeni di origine meteorologica. In ottica futura sarà quindi ne-

cessario lo sviluppo di un ulteriore DataProcessor il cui task sarà quello di associare in

tempo reale ciascun TGF rilevato dal detector, al relativo fulmine temporalesco che lo

ha originato.

Infine, grazie ai risultati ottenuti sull’efficienza energetica dimostrata dal sistema, si

apre la possibilità di considerare il framework non solo come parte del setup sperimen-

tale di GammaSky presso il Monte Cimone, ma anche come candidato in futuri scenari

a risorse particolarmente limitate, come potenziali missioni CubeSat, nei quali l’elabo-

razione a bordo tramite intelligenza artificiale rappresenta un argomento di crescente

interesse. Oltre a tali impieghi, il framework RTA-DP potrà essere integrato anche in
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altri software dedicati alla rivelazione gamma, come l’infrastruttura di analisi in tem-

po reale del Cherenkov Telescope Array Observatory (CTAO)[52], progetto cui INAF –

OAS partecipa direttamente e dove la capacità di elaborare rapidamente grandi volumi

di dati è essenziale per l’identificazione di fenomeni transienti e la generazione di allerte

scientifiche.
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