
Alma Mater Studiorum - Università di
Bologna

Scuola di Scienze
Corso di Laurea in Informatica

Discussione sull’integrazione di
strumenti di verifica formale

nella programmazione quotidiana

Relatore:
Prof. Claudio Sacerdoti Coen

Presentata da:
Daniele Vito Ardito

Sessione II - Secondo Appello
Anno Accademico 2024/2025

ii

Indice

1 Introduzione 1
1.1 Motivazione . 1

1.1.1 La prima intuizione . 2
1.2 L’individuazione di un primo strumento 3
1.3 L’esplorazione di altri strumenti 4
1.4 Caratteristiche di TLA+, Atelier B, Rocq, Iris, Why3 4

1.4.1 TLA+ . 4
1.4.2 Atelier B . 5
1.4.3 Rocq . 5
1.4.4 Iris . 5
1.4.5 Why3 . 6

1.5 La scelta di Why3 . 6

2 La piattaforma Why3 9
2.1 Caratteristiche e funzionamento 9
2.2 Il linguaggio WhyML . 10
2.3 Studiare Why3 . 13
2.4 Il mio uso di Why3 . 13

3 Le esercitazioni su problemi isolati 15
3.1 La modalità con cui sono stati svolti 15

3.1.1 Gli esempi ufficiali . 15
3.1.2 Leetcode . 18

3.2 Aiutarsi con gli LLM . 19
3.3 Difficoltà riscontrate nella risoluzione di un problema 20

3.3.1 Il problema . 21
3.3.2 La modalità di risoluzione 21
3.3.3 La formalizzazione . 21
3.3.4 La soluzione . 23

iii

3.3.5 Una presa di coscienza . 26
3.4 L’ideazione del metodo . 27
3.5 Necessità di sperimentazione su un progetto reale 30

4 Il Progetto 31
4.1 Requisiti . 31
4.2 Il progetto scelto . 31

4.2.1 Specifiche . 32
4.3 Il progetto svolto nel tirocinio . 33
4.4 Il progetto svolto per la tesi . 33
4.5 Il diario . 34

5 Rielaborazione del diario 35
5.1 I moduli del progetto . 35

5.1.1 Uno spunto sull’architettura esagonale 36
5.1.2 L’astrazione seguita nel mio progetto 37

5.2 Comporre o ricostruire teorie? . 37
5.3 Testare le specifiche . 40

5.3.1 Testare gli assiomi . 40
5.3.2 Testare i contratti di funzione 41
5.3.3 Difficoltà nella dimostrazione di lemmi 43

5.4 Rifattorizzazione di specifiche . 45
5.5 Teoria inconsistente . 46
5.6 Premeditazione involontaria di funzioni future 50
5.7 Sulla ricostruizione della teoria di networkx. Una nota sul tempo . 51
5.8 Aiutarsi con gli LLM, assiomi al posto di lemmi 52
5.9 Corrispondenza tra digraph.mlw e digraph.py 53
5.10 Le prime applicazioni del metodo nel progetto 54
5.11 Cosa fare prima: testare le specifiche o implementare? 58
5.12 Sostituire lemmi con postcondizioni in funzioni implementate . . . 60
5.13 Implementazioni Python. Traduzione del codice 62

5.13.1 Espressione non banale di precondizioni 64
5.13.2 Problemi di ottimizzazione 68

5.14 Utilizzo di scorciatoie di linguaggio in WhyML 68

6 Conclusioni 71
6.1 Considerazione sul tempo e sul codice prodotto 71

6.1.1 Sul peso del codice . 73

iv

6.2 Integrazione in un contesto aziendale 73
6.3 Alla fine? Ne vale la pena? . 74

Bibliografia 77

v

Capitolo 1

Introduzione

Il presente studio propone un uso non convenzionale di Why3, uno strumento
di verifica formale. Viene definita una strategia che guida il programmatore
all’uso atipico di questo strumento. Il metodo proposto aiuterebbe a trovare un
compromesso tra formalità ed efficienza nello sviluppo software. Questo approccio
viene analizzato e studiato attraverso casi di studio reali: esercizi su problemi
isolati ed un progetto. Queste attività hanno generato una serie di deduzioni e
conclusioni, che sostanzialmente compongono l’elaborato.

1.1 Motivazione

La scrittura di questa tesi parte da una necessità. La necessità che ha un pro-
grammatore scarso di capire come migliorare il proprio stile di programmazione.
In tutta la mia vita ho avuto molti consigli sullo stile di programmazione. Al-
cuni mi sono stati utili, altri meno, molti si contraddicevano. Studiando diversi
linguaggi ho avuto modo di assorbire concetti, pratiche e stili di programmazione
che mi hanno aiutato a programmare meglio ma non a capire esattamente come
reagire agli ostacoli incontrati sviluppando codice. Inoltre, ho avuto spesso la
sensazione di programmare in modo avventato, senza conoscere un’alternativa.
Meglio, le alternative di cui ero a conoscenza, mi sembravano troppo deboli. Par-
lo di diagrammi di flusso, pseudocodice, diagrammi grafici come UML ecc...
Pensavo, quindi, che questi fossero gli unici strumenti per poter ragionare in mo-
do strutturato su un problema, o meglio, per aiutarsi a pensare ad una soluzione
prima di scrivere del codice considerabile definitivo.

1

1.1.1 La prima intuizione

Nel corso di studi, ho avuto la fortuna di poter seguire corsi di matematica e corsi
come "logica per l’informatica", "algoritmi e strutture dati" e "informatica teorica"
che mi hanno suggerito in varie forme l’uso della logica per ragionare sui problemi
prima di scrivere del codice che implementasse una soluzione. Ho provato ad uti-
lizzare questo metodo nello sviluppo dei progetti svolti per vari corsi. Il metodo
consisteva semplicemente nel provare a ragionare sul problema scrivendo su carta
delle proprietà matematiche che riguardassero il problema in analisi. Poi, prova-
vo a scrivere dello pseudocodice, per lo più utilizzando notazioni matematiche.
Successivamente, riportavo l’implementazione nel linguaggio di programmazione
di destinazione. Non avevo risolto molto. Continuavo a commettere errori tipici,
continuavo a scovare proprietà del mio codice dopo il ritrovamento di numerosi
errori. Non sentivo di aver raggiunto un approccio strutturato alla programma-
zione. Tanto meno un metodo che mi permettesse di capire i problemi a pieno,
o di avere fiducia nel codice che scrivevo. Questa era la mia più grande preoccu-
pazione. Non riuscivo ad avere fiducia nelle mie implementazioni, sentivo sempre
sfuggirmi qualcosa.
Nonostante ciò, rimanevo convinto del fatto che la matematica fosse la via giusta
di approcciare certi tipi di problemi, più facilmente manipolabili con la logica.
Nella mia mente era chiara la corrispondenza tra programmazione e dimostra-
zione, come la corrispondenza tra funzioni e teoremi. Studiando la matematica,
leggere programmi diventava sempre più simile a capire teorie matematiche. Dun-
que, lo studio di programmi può avvenire in modo simile allo studio di una teoria
matematica. Non mi era chiaro il processo con cui si scrive un programma quanto
non mi era chiaro il processo con cui si compone una teoria. Sia l’informatica
che la matematica, in certi aspetti, vengono spiegate in modo simile. Per capire
la programmazione si studiano dei problemi e delle soluzioni algoritmiche a quei
problemi. Si spiegano delle soluzioni e poi si chiede di risolvere un problema
simile. Avviene la stessa cosa con la matematica. Si spiegano delle teorie, spie-
gandone gli assiomi, le definizioni, i teoremi, poi, alcuni teoremi simili si danno
da dimostrare come esercizio. All’inizio si è spaesati, in entrambe le discipline.
Scrivere una dimostrazione è molto più difficile che capirne una e, allo stesso
modo, scrivere del codice è spesso più difficile che leggere del codice di cui si è
intuita la correttezza. Facendo un po’ di pratica, si tende a migliorare in questi
processi. Si impara a sviluppare un certo intuito personale, che ci direziona nella
formulazione di algoritmi e dimostrazioni.
A questo punto, l’intuizione che consisteva nell’uso della matematica per aiutarsi a

2

risolvere problemi in programmazione, continuava a reggersi sulla somiglianza che
c’è tra queste discipline e sul rigore matematico, spesso assente nella programma-
zione. È un’intuizione e non una verità affermata perché, oltre alla somiglianza,
esistono anche delle grandi differenze.
Equiparando una funzione informatica a un teorema, si notano delle discrepanze
sostanziali. Per capire l’enunciato di un teorema, non serve leggere la dimo-
strazione. Leggere la dimostrazione aiuta a capire meglio il contesto in cui vive
l’enunciato, permette di capire perché quell’enunciato sia vero. Questo perché
l’enunciato descrive esattamente la verità che si vuole affermare.
Se si vede l’intestazione di una funzione informatica come l’enunciato, e il corpo
della funzione come la dimostrazione, si nota che il processo di comprensione di
una funzione è piuttosto diverso. L’intestazione della funzione, nei linguaggi di
programmazione tradizionali, è troppo povera per descrivere lo scopo di quella
funzione. Se il linguaggio è tipato, ci sarà scritto solo il nome della funzione, i no-
mi dei parametri, i tipi dei parametri, il tipo del valore di ritorno. L’intestazione
della funzione, dunque, risulta quasi sempre insufficiente alla comprensione delle
specifiche e ciò deriva dalla scarsa espressività dei tipi che si usano. Quindi, si
cerca di dedurre l’enunciato dall’intestazione, dal nome (che è informale) e dalla
dimostrazione (corpo). Risulta evidente che dedurre un enunciato dalla dimo-
strazione (spesso i corpi delle funzioni sono molto lunghi) è un’attività molto più
complicata. La corrispondenza diventa totale con un sistema di tipi abbastanza
ricco da poter specificare qualsiasi funzione con i parametri e il valore di ritor-
no. Tipizzare diventa però piuttosto dispendioso. I linguaggi di programmazione
utilizzati nella maggior parte dei casi non dispongono di questi sistemi.

1.2 L’individuazione di un primo strumento

Continuavo a non sentirmi fiducioso riguardo al mio approccio. Sentivo un biso-
gno di imposizione di una serie di vincoli che mi avrebbero guidato in approcci
più schematici e rigorosi. Ho pensato che ci potessero essere dei software che mi
potessero aiutare a fare questo. Quindi, cercando, sono incappato in TLA+, un
software sviluppato da Leslie Lamport, rilasciato nel 1999. TLA+ è uno strumen-
to atto alla specifica di sistemi (o software) concorrenti. È basato sulla matemati-
ca e su una logica sviluppata da Lamport stesso, chiamata TLA (Temporal Logic
of Actions) che è sostanzialmente un’estensione della logica LTL (Linear Tempo-
ral Logic). Studiandolo, ho letto una serie di sentenze che sentivo di condividere
ma non avevo l’esperienza per verificarle. Ad esempio, una delle dichiarazioni che

3

echeggiava nei tutorial e nei libri su TLA+, diceva che dare specifiche formali di
programmi e algoritmi sia fondamentale per scrivere codice corretto. Mi sembra-
va giusto ma non avevo avuto modo di sperimentarlo su di me. Quando l’oggetto
di uno studio è il processo e non il prodotto, le sensazioni di coloro che conducono
un processo sono fondamentali.

Conclusione

La comprensione del processo di programmazione può essere esplorata uni-
camente attraverso le testimonianze dei programmatori sulla loro attività,
sulle loro sensazioni e sugli stati del prodotto, sotto determinate condizioni.

1.3 L’esplorazione di altri strumenti

Grazie al mio relatore, ho avuto modo di conoscere altri strumenti che potessero
essere inerenti allo scopo della mia indagine, che quindi verte sull’individuazione
di uno strumento che permetta di ragionare su problemi in modo strutturato,
ad alto livello, senza utilizzare il linguaggio di programmazione di destinazione.
Dunque il principio fondamentale vedrebbe lo studio di problemi (che concerne
formalizzazione di specifiche e implementazione) come un processo circa separato
e previo alla stesura del codice finale.
Oltre a TLA+, mi sono stati suggeriti altri software/ambienti di sviluppo. Questi
sono Atelier B, Rocq, Iris, Why3.

1.4 Caratteristiche di TLA+, Atelier B, Rocq,
Iris, Why3

1.4.1 TLA+

Come detto in precedenza, TLA+ è un software atto alla specifica di sistemi,
utilizzando un’estensione della logica temporale lineare: TLA. Esso è stato con-
cepito più per il design di sistemi concorrenti che per la scrittura di algoritmi.
In sostanza, con TLA+ si scrivono una serie di predicati, la cui correttezza vie-
ne enunciata da invarianti e teoremi, i quali dovranno essere dimostrati, con dei
prover automatici. L’attività per cui viene più utilizzato consiste nel formalizza-
re un sistema logicamente e verificarne la correttezza tramite l’individuazione di
proprietà che dovranno essere dimostrate.

4

1.4.2 Atelier B

È un software molto ricco e complesso, molto diverso da tutti gli altri citati.
Esso è nato per guidare un team nello sviluppo di un software in tutto il suo
processo. Sostanzialmente, Atelier B implementa e valida un metodo in modo
rigoroso, chiamato B method. È basato sulla logica classica e la teoria degli
insiemi e prevede una scrittura formale dei requisiti attraverso macchine a stati,
questi requisiti vengono poi rifiniti, implementati in un linguaggio intermedio,
questa implementazione viene dimostrata (da prover automatici o interattivi) e
infine tradotta in un linguaggio di programmazione finale.

1.4.3 Rocq

Rocq è uno dei proof assistant più famosi e utilizzati. È quindi un software che
permette di formalizzare teorie matematiche e programmi informatici, basato sul-
la logica intuizionista e la teoria dei tipi (piuttosto teoria degli insiemi). È un
proof assitant, quindi le dimostrazioni devono essere scritte dall’utente, nel lin-
guaggio riconosciuto dall’ambiente, le quali potrebbero essere validate oppure no,
a seconda della correttezza del ragionamento e della sintassi. Il suo linguaggio
è piuttosto flessibile e permette di creare ulteriori linguaggi e tecniche di dimo-
strazione. Rocq è uno strumento utilizzatissimo per dimostrare la correttezza di
codice e di teorie matematiche. La sua eccessiva flessibilità, però, rende prati-
camente necessaria (a meno di esercizi piuttosto semplici) l’uso di librerie che
implementino un proprio linguaggio, una propria logica e utlizzando delle tec-
niche di dimostrazioni avanzate, adatte al linguaggio e alla logica stabiliti. Un
esempio di framework per Rocq, è Iris.

1.4.4 Iris

Come annunciato precedentemente, è un framework per Rocq. In quanto tale,
utilizza una logica: la separation logic, un’estensione della logica di Hoare che
implementa il concetto di stato della memoria, separata tra stack e heap. Iris
è un framework efficiente per la scrittura di codice dimostrato. Dispone di una
serie di linguaggi adatti a vari scopi. Ci sono linguaggi più minimali, altri più
complessi, adatti a determinati usi.
È un proof assistant, quindi le dimostrazioni di correttezza del codice devono
essere scritte dall’utente.

5

1.4.5 Why3

Why3 è un software che utilizza un linguaggio per formalizzare teorie matematiche
e programmi. Può essere utilizzato sia con prover automatici (uso comune) che
con proof assistant (come Rocq). Il suo linguaggio è WhyML: un linguaggio
funzionale arricchito da costrutti di formalizzazione logica basati sulla logica di
Hoare.

1.5 La scelta di Why3

Sono stato obbligato alla scelta di uno di questi strumenti. Quest’obbligo deri-
va dal fatto che per ognuno di essi, la curva di apprendimento è piuttosto alta.
Inoltre, ha poco senso testare questi strumenti su casi semplici, perché il mio
obiettivo è verificabile solo in esempi pseudo-reali. Quindi, la cosa migliore si è
rivelata scegliere uno strumento tra questi e diventare il più bravo possibile ad
utilizzarlo, per fornire un’analisi completa dell’uso atipico che ne avrei fatto.
Ognuno di questi programmi, è adatto a determinati scopi. Non cercavo il soft-
ware migliore, cercavo il software più adatto ai miei scopi. Quindi cercavo un
software flessibile ma non troppo lontano da un normale ambiente di program-
mazione reale, che permettesse di specificare e implementare algoritmi nel modo
più naturale possibile. Ho quindi analizzato le caratteristiche di ogni software,
cercando di capirne non solo la natura, ma anche i contesti in cui vengono utiliz-
zati. TLA+ ha il problema di essere troppo incentrato sui sistemi concorrenti e
di essere basato solo sulle specifiche. Gli step da fare per passare dalle specifiche
all’implementazione finale sono tanti e vaghi, quindi il rigore da me ambito non
sarebbe pienamente soddisfatto.
Atelier B è stato concepito per creare un intero programma totalmente dimostra-
to. Il processo è piuttosto formale e rigoroso, ma non è uno strumento adatto a
pensare su problemi isolati. Cercavo qualcosa di più flessibile.
Rocq, come anticipato, in molti casi necessita l’utilizzo con di librerie. La flessi-
bilità eccessiva concerne l’obbligo di formalizzazione anche concetti basilari, che
risultano triviali nella scrittura di codice tradizionale. I due candidati finali,
quindi sono Iris e Why3. Iris permette di formalizzare, attraverso la separation
logic, concetti relativi alla memoria molto più efficientemente rispetto a Why3.
Iris è perfetto per scrivere codice di cui si vuole avere il controllo totale e la cui
traduzione debba essere il più fedele possibile all’originale.
Mi serviva uno strumento che mi permettesse di ragionare al livello di astrazione
che si sceglie e avere fiducia nei propri ragionamenti attraverso delle dimostrazio-

6

ni con dei tempi ragionevoli. Dunque, la flessibilità del linguaggio WhyML e la
possibilità di dimostrazioni automatiche, mi ha spinto nella scelta di Why3.

7

8

Capitolo 2

La piattaforma Why3

2.1 Caratteristiche e funzionamento

Why3 è una piattaforma di verifica formale di programmi. Fornisce un ricco
linguaggio di specifica e programmazione, chiamato WhyML e si basa su di-
mostratori di teoremi esterni (automatici o interattivi). Why3 è dotato di una
libreria standard, che include teorie logiche (interi e aritmetica sui reali, opera-
zioni booleane, insiemi, mappe, ecc...) e strutture dati base (array, code, hash
tables, ecc...).
Si può interagire con Why3 sia da CLI che da un’IDE. Ho avuto modo di spe-
rimentare entrambi e personalmente mi sono trovato meglio utilizzando Visual
Studio Code per la scrittura del codice e l’IDE per la dimostrazione dei goal, per
scovare errori di sintassi. Quando si apre un file .mlw o .why con l’IDE, si vedono
tre schermate. A destra abbiamo nella parte superiore il codice a cui si fa rife-
rimento, in basso messaggi di errori o successo. A sinistra abbiamo un pannello
in cui vengono elencati tutti i goal generati a partire dal codice. Cliccando su
di essi, si possono lanciare dei prover automatici. Si può scegliere di avviare un
prover specifico, scegliere il tempo di esecuzione massima, come si può scegliere
di utilizzare dei procedimenti predefiniti a diversi gradi di profondità, o applicare
delle trasformazioni specifiche.
In alternativa, si può decidere di dimostrare interattivamente, c’è un’operazio-
ne che scrive una "traduzione" in un linguaggio adatto all’ambiente preferito (ad
esempio Rocq), verrà creato un file completo del contesto utile alla dimostrazione.
Il programmatore in quel caso dovrà scrivere una dimostrazione e farla verificare.
Se questa verifica sarà andata a buon fine, il goal in questione risulterà vero anche
nella piattaforma di Why3.
I goal vengono segnalati graficamente come non dimostrati, dimostrati, o falsi (il

9

prover ha trovato un controesempio).
I goal vengono inferiti automaticamente dal codice e vengono utilizzati come
verità nei contesti dei goal successivi a prescindere dall’esito ricevuto dai dimo-
stratori. Questa è una caratteristica molto importante da tenere a mente quando
si sviluppa in Why3. Dei goal potrebbero risultare dimostrati perché sopra di
loro potrebbero esserci degli enunciati falsi che hanno contribuito alla dimostra-
zione. Why3 dispone di un piccolo interprete che gli permette di eseguire il codice
e di sistemi di traduzione automatica da WhyML a sottoinsiemi di linguaggi di
programmazione come C, Python e OCaml.

2.2 Il linguaggio WhyML

Il linguaggio di Why3 è un linguaggio derivante dalla famiglia ML. È di tipo
funzionale ma supporta anche costrutti imperativi. Inoltre, permette anche la
creazione di funzioni non pure (quindi ci possono essere effetti collaterali, al con-
trario di altri linguaggi funzionali) e la gestione di puntatori. WhyML possiede
una serie di costrutti logici e altri di programmazione classica. Alcuni di questi
costrutti sono in comune e possono essere utilizzati in entrambi i contesti.
La divisione di contesto può avvenire anche nei moduli. Esistono due tipi di file,
con estensioni diverse: .why e .mlw. Il linguaggio permesso del file .why è un
sottoinsieme di WhyML. I file .why servono a scrivere logica pura. Servono a
formulare specifiche di programmi e teorie logiche. All’interno di un file .why, le
varie definizioni devono essere all’interno di un blocco theory, che viene chiuso
dalla keyword end.
Il linguaggio legale nei file .mlw è WhyML. Quindi, in un file .mlw si possono
scrivere sia delle theory che dei module. Un module deve essere chiuso anch’esso
dalla keyword end e può contenere sia costrutti logici che di programmazione.
Quindi, mentre nei file .why sono consentite solo delle specifiche, nei file .mlw
si scrivono sia specifiche che implementazioni. Tra i vari costrutti vediamo i più
importanti.

Nome: axiom

Contesto: logico
Descrizione: Serve a definire un assioma. All’interno di esso possono essere
usati solo elementi puramente logici, come funzioni dichiarate con function, val

function e let function e predicati (predicate).

10

Nome: lemma

Contesto: logico
Descrizione: Serve a definire un enunciato da dimostrare. Non ci sono altre
keyword del tipo theorem o corollary. Può contenere gli stessi elementi che può
contenere axiom

Nome: function

Contesto: logico (e possibilmente programmazione)
Descrizione: Serve a dichiarare una funzione pura. Se usata da sola (senza let

e val) può ammettere solo costrutti logici o funzionali (ad esempio for, while e
ref non sono permessi) e potrà essere utilizzata solo in contesti logici e non in
contesti di programmazione. Nel caso venga affiancata a let o val ammette tutti
i costrutti di programmazione e la funzione così dichiarata potrà essere usata sia
in contesti logici che di programmazione. In questo caso, l’uso di function sta a
indicare che la funzione non ha effetti collaterali, è quindi pura.

Nome: predicate

Contesto: logico (e possibilmente programmazione)
Descrizione: È esattamente una function che ha come valore di ritorno un boo-
leano.

Nome: let

Contesto: programmazione
Descrizione: Può avere due usi: costrutto let...in (classico costrutto let...in

usato nei linguaggi funzionali come OCaml) e nel contesto di funzioni. Serve a
dichiarare una funzione di cui viene scritta anche l’implementazione, oltre alle
specifiche. Nel caso venga usata con function, deve essere una funzione pura,
altrimenti può non esserlo.

Nome: val

Contesto: programmazione
Descrizione: Può avere due usi: dichiarare costanti, usando val constant, op-
pure dichiarare funzioni di cui si scrivono solo le specifiche. La purezza della
funzione viene determinata come in let (in questo caso solo in base al contratto).

Nome: rec

Contesto: programmazione

11

Descrizione: È il modo per indicare che una funzione è ricorsiva. La keyword
va scritta subito dopo let

Nome: ghost

Contesto: programmazione
Descrizione: Serve a dichiarare funzioni (non necessariamente pure) che servono
a enunciare proprietà che possano aiutare nella dimostrazione di un contratto di
un’altra funzione. Sostanzialmente sono funzioni di servizio atte alla dimostra-
zione.

Nome: requires

Contesto: programmazione
Descrizione: È il modo per definire una precondizione. Si scrive dopo l’intesta-
zione della funzione.

Nome: ensures

Contesto: programmazione
Descrizione: È il modo per definire una postcondizione. Si scrive dopo l’inte-
stazione di una funzione.

Nome: invariant

Contesto programmazione
Descrizione: È il modo per definire un’invariante di ciclo. Si scrive subito dopo
la riga del for o del while. Serve ad aiutare nella dimostrazione di correttezza di
una funzione.

Nome: assert

Contesto: programmazione
Descrizione: È il modo per definire un’asserzione. Può essere scritta in qual-
siasi punto del corpo di una funzione. Serve ad aiutare nella dimostrazione di
correttezza di una funzione.

Nome: variant

Contesto: logico
Descrizione: È il modo per indicare una variante. Indica la terminazione di un
ciclo o di ricorsione. Va scritta dopo l’intestazione della funzione per funzioni
ricorsive, oppure dopo la dichiarazione di un ciclo while nel caso imperativo.

12

2.3 Studiare Why3

All’inizio, studiare Why3 è piuttosto difficoltoso. Approcciare uno strumento
del genere richiede molto impegno anche per un programmatore con solidi back-
ground matematici. Oltre a questo, la documentazione è piuttosto scarsa. Le
uniche risorse disponibili sono il manuale ufficiale, la libreria standard e una gal-
leria di circa 200 esempi. Personalmente, ho trovato molto utile ricopiare pezzi di
libreria standard, cercando di capire al meglio ogni singola definizione e provan-
do ad estenderla. Credo sia molto importante perché serve a ereditare uno stile
adatto alla piattaforma. La libreria standard, però, non è molto uniforme. Dei
concetti simili spesso vengono gestiti in maniera diversa. Ad esempio, nel modulo
list.mlw c’è una divisione molto granulare dei moduli. In array.mlw ci sono molti
meno moduli ma le funzionalità coperte sono simili e in un numero paragonabile.
I cambi di stile hanno delle implicazioni negative nella programmazione (bisogna
consultare più frequentemente la libreria standard, c’è poca uniformità anche nel
proprio codice), ma ha implicazioni positive sull’apprendimento di WhyML. Così
si ha modo di capire più aspetti del linguaggio, in tutta la sua versatilità. Quindi,
non basta studiare pochi moduli. È necessario studiarne tanti per avere un’idea
più completa delle capacità del linguaggio e dell’uso che va fatto.
Gli esempi riguardano per lo più implementazioni di algoritmi già noti. Purtrop-
po non viene fornito molto contesto. Qui, inoltre, gli stili sono davvero numerosi,
saltano fuori dei modi di programmare ancora diversi rispetto a quelli della li-
breria standard. Inoltre, quasi tutti gli esempi riguardano singoli algoritmi e non
programmi interi, più complessi. I pochi software scritti interamente in Why3
riguardano per lo più l’ambito della verifica formale, o comunque contesti pura-
mente logici o algoritmici. Non ci sono esempi di programmi simili a quelli di
genere più comune: software che interagiscono con database, utenti, filesystem,
system call.

2.4 Il mio uso di Why3

Il motivo per cui non ci sono esempi di software scritti in WhyML colmi di intera-
zioni con utente, database, sistema, consiste nel fatto che Why3 è stato concepito
per scrivere programmi interamente dimostrati, e questi elementi da me appe-
na citati, sono piuttosto difficili da astrarre. Soprattutto, variano di linguaggio
in linguaggio. Ad esempio, l’interazione con l’utente è estremamente difficile da
formalizzare logicamente ma estremamente semplice da programmare. Le intera-
zioni col database consistono spesso in query dichiarative, la cui formalizzazione

13

è molto macchinosa e la scrittura di queste non rappresenta un grande proble-
ma. Le interazioni col sistema, possono avvenire in modo molto diverso tra i
vari linguaggi. Di nuovo, formalizzare le interazioni col filesystem, o la gestione
di processi, o la gestione di dispositivi, può risultare estremamente complicato.
In questo caso, però, i problemi possono essere molto più complessi rispetto a
gestione dell’utente e query dichiarative.
Allora, perché credo che Why3 sia uno strumento utile? Per cosa si può utilizza-
re? Quando si scrive un software, le componenti esterne e meno pregne di logica,
sono sempre presenti.
Il mio obiettivo, come detto in precedenza, non è quello di sostituire i test con
Why3 in toto. Esistono già metodi per scrivere software totalmente dimostrato.
Esistono già software totalemente verificati.
Io utilizzo Why3 per aiutarmi a ragionare e a verificare le proprietà del mio ra-
gionamento. Piuttosto che pensare ad un’implementazione e cercare di esprimere
le mie idee direttamente nel linguaggio di programmazione finale, in molti casi
necessito di un passaggio intermedio. Spesso, questo passaggio avviene scrivendo
su carta, il che rimane utile. A volte questo non basta. Quindi l’uso che faccio di
questo strumento si allontana dallo scopo per cui è stato creato.
Questo è un uso diverso, di cui non ho trovato traccia in letteratura. A causa di
ciò, sono stato costretto a una sperimentazione personale. Ho pensato che non
bastasse fare un po’ di pratica con Why3 nel modo in cui lo concepisco, bensì
ho creduto fosse necessario esercitare questo uso in due tipi di casi: su problemi
isolati e su un progetto reale. Da cui derivano i capitoli successivi.

14

Capitolo 3

Le esercitazioni su problemi
isolati

3.1 La modalità con cui sono stati svolti

Ho deciso di praticare l’uso di Why3 svolgendo esercizi in due modalità:

• provando a risolvere quelli ufficiali e studiando le soluzioni;

• provando a risolvere problemi della piattaforma leetcode.

Credo che queste due modalità siano complementari ed entrambe necessarie.

3.1.1 Gli esempi ufficiali

Gli esempi ufficiali, seppur raccolti per argomenti, sono piuttosto discontinui.
Non c’è una progressione lineare. Ci sono pochi esercizi per ogni argomento e la
difficoltà tra questi varia enormemente. Studiare questi esempi, però, è essenzia-
le per capire i propri errori, soprattutto se si è nuovi alla scrittura di specifiche
matematiche del codice. All’inizio è difficile scrivere specifiche corrette. Inoltre,
non si ha idea delle proprietà necessarie alla dimostrazione del codice. Ad esem-
pio, all’inizio, sono stato bloccato nella scrittura di proprietà di un banalissimo
insertion sort. Di seguito l’esempio ufficiale:
module InsertionSort

(* Import vari omessi *)

let rec insert (x: elt) (l: list elt) : list elt
requires { sorted l }
ensures { sorted result }

15

ensures { permut (Cons x l) result }
variant { l }

= match l with
| Nil → Cons x Nil
| Cons y r → if le x y then Cons x l else Cons y (insert x r)
end

let rec insertion_sort (l: list elt) : list elt
ensures { sorted result }
ensures { permut l result }
variant { l }

= match l with
| Nil → Nil
| Cons x r → insert x (insertion_sort r)
end

end

Come si vede, le proprietà sono semplicissime. Sia le specifiche che il codice sono
semplicissimi. Avevo già letto molti esempi, e di difficoltà superiore. Avevo ormai
dimestichezza con la sintassi. Avevo capito tutti gli esempi letti, avevo persino
esteso brevemente qualche modulo. Adesso mi ritrovavo a essere completamente
spaesato. Ho sentito le stesse sensazioni che provavo quando programmavo per la
prima volta. Sentivo di aver accumulato una serie di strumenti e di averne capito
le funzionalità, ma non avevo idea di come utilizzarli. Non riuscivo a esprimermi,
ne sapevo cosa dovessi esprimere. Qui ho capito che scrivere codice con proprietà
è un’attività molto più difficile rispetto alla scrittura di codice tradizionale. Mi
veniva naturale scrivere il codice ma non riuscivo a capire cosa dovesse fare quella
funzione, esattamente. Notavo, così, che il mio modo di programmare era vago.
Ero abituato a scrivere codice senza prima pensare cosa avrebbe dovuto fare
esattamente la funzione che stavo sviluppando.
Ad esempio, per l’insertion sort, ho scritto l’implementazione corretta al primo
colpo, ma non riuscivo a dimostrarla. Avevo perso pochissimo tempo per scrivere
la funzione, tantissimo per formalizzarla e verificarla. Intuivo, quindi, che avrei
dovuto imparare un’attività proprio diversa da quella che avevo sempre svolto.
A mio avviso, c’è proprio un passaggio di classe. Stanco delle mie formalizzazioni
errate (che ovviamente non venivano dimostrate), avevo provato a semplificare,
consultando la libreria standard, per vedere se ci fossero predicati o funzioni
che mi avrebbero aiutato. Trovando il predicato sorted, ho scritto una singola
postcondizione, che indicava che la funzione fosse ordinata, e veniva dimostrata.
A questo punto, ero convinto di aver fatto un buon lavoro, perchè la funzione

16

scritta risultava dimostrata. Guardando la soluzione ufficiale, però, mi ero reso
conto che non avevo riportato la proprietà che diceva che la lista in output dovesse
essere una permutazione della lista in input. A quel punto vedevo un risultato
dimostrato, la cui implementazione era giusta, ma che non esprimeva le reali
specifiche della funzione. Avevo dunque commesso un errore e la dimostrazione
riuscita mi fuorviava.

Conclusione

Una dimostrazione di correttezza di una funzione implementata indica che
il codice è sufficiente a dimostrare le precondizioni e le postcondizioni ripor-
tate, le quali, potrebbero essere un sottoinsieme di quelle che potrebbero
essere dimostrate.

Si nota che leggere la soluzione dell’esempio ufficiale è stato fondamentale.
Se non avessi visto esempi che indicassero i miei errori sulla deduzione delle
proprietà, mi sarei fidato del risultato conferitomi dal prover automatico. Avrei
potuto scrivere un’implementazione errata ma che era sufficiente a dimostrare che
la lista in output sarebbe stata ordinata. Sarei stato convinto di un ragionamento
errato e avrei tradotto il codice nel linguaggio di programmazione di destinazione
convinto della correttezza del mio codice. È importante segnalare in che modo
un codice risulti corretto.

Nota

Non esiste una correttezza assoluta del codice, quindi è errato dichiarare che
del codice sia corretto o dimostrato. È giusto dichiarare che, nel caso lo sia,
del codice sia corretto rispetto alla specifica, ovvero, il codice è sufficiente
a dimostrarla.

Consiglio

Inizialmente, consiglio l’utilizzo di esempi molto semplici da implementa-
re: permettono di concentrarsi totalmente sulla deduzione delle proprietà
piuttosto che sulla scrittura del codice.

Un caso importante

C’è stato un caso abbastanza importante, che vale la pena riportare. Tra i vari
esempi, mi sono imbattuto in una BFS per grafi. Ho ricopiato il codice Why3,
completo di tutte le sue proprietà. Lanciando i prover, ho notato che alcuni
dei risultati non venivano dimostrati. Non capivo il perché: nella pagina da cui

17

ho preso l’esempio, come nella maggior parte degli esempi, c’era il report che
mostrava che tutti i goal generati erano stati dimostrati. I miei prover, invece,
non riuscivano a dimostrare molti dei goal. Allora, ho analizzato in modo più
approfondito il report, confrontandolo con i risultati ottenuti dall’esecuzione dei
miei prover. Ho notato, prima di tutto, che sono state utilizzate delle tecniche
di trasformazione avanzate, attraverso le quali i prover sono stati molto aiutati.
Infine, una postcondizione della BFS, è stata addirittura dimostrata in modalità
assistita con Rocq. Applicando le dimostrazioni segnalate passo passo, mi era
rimasta da dimostrare, effettivamente, solo il risultato che era dimostrato con
Rocq, che i prover non riuscivano a dimostrare in nessun modo.
È una semplice BFS, è un algoritmo di cui si conosce la correttezza ma è piut-
tosto difficile da dimostrare in Why3. A volte, vedendo il proprio risultato non
dimostrato, si può pensare subito a degli errori commessi nell’implementazione o
nelle specifiche. A volte, invece, i prover possono non essere abbastanza capaci.
Provare a dimostrare gli esempi nel proprio ambiente risulta molto utile, permette
di individuare i casi in cui i prover sono più in difficoltà.

3.1.2 Leetcode

Quando ho cominciato a sviluppare un certo intuito rispetto all’individuazione di
proprietà (sia nelle precondizioni, che nelle postcondizioni che nelle invarianti),
ho cominciato a testare le mie capacità su un percorso più lineare, attraverso la
piattaforma leetcode. Leetcode è un sito in cui ci sono migliaia di problemi di
vario genere. Si può scegliere il linguaggio di progammazione che si mastica più
facilmente, ce ne sono tanti. La soluzione proposta verrà verificata tramite dei
test lanciati dalla piattaforma.
WhyML è molto poco conosciuto e non è un normale linguaggio di programma-
zione, quindi non rientra tra i linguaggi disponibili da leetcode. Questo è un pro.
Il mio obiettivo consiste nell’utilizzare WhyML e Why3 per ragionare, quindi ho
approcciato i problemi leetcode in questo modo: scrivevo del codice in WhyML,
lo verificavo e, una volta verificato, scrivevo una traduzione in un linguaggio a
scelta.
Ad esempio, è quello che è avvenuto per il primo problema affrontato, che è stato
semplicissimo da risolvere e da trasporre. Il problema richiedeva lo sviluppo di
un algoritmo che trovasse duplicati in un array. Di seguito la soluzione WhyML
verificata:

let function contains_duplicate (a: array int) : bool

18

ensures { (exists i j: int. 0 ≤ i < j < length a ∧ a[i] = a[j]) ↔ result =
true }

ensures { (forall i j: int. 0 ≤ i < j < length a → a[i] ̸= a[j]) ↔ result
= false }

=
let values = empty () in
for i = 0 to length a - 1 do

invariant { forall j k: int. 0 ≤ j < k < i → a[j] ̸= a[k] }
invariant { forall x: int. mem x values ↔ (exists k: int. 0 ≤ k < i ∧ a[
k] = x) }
if mem a[i] values then return true
else add a[i] values

done;
return false

E la soluzione C++ che ha passato i test leetcode:

bool containsDuplicate(vector<int>& nums){
set<int> values = {};
for(int i = 0; i < nums.size(); i++){

if(values.contains(nums[i])) return true;
else values.insert(nums[i]);

}
return false;

}

L’unica difficoltà nella scrittura di questo codice è avvenuta nella traduzione
nel linguaggio di destinazione. Si vedono delle differenze, naturalmente, tra le
due implementazioni. Le operazioni sugli insiemi, ad esempio, vengono denotate
in modo diverso. Quindi, nel caso saltino fuori degli errori, la prima cosa da
controllare è la corrispondenza tra le due implementazioni. Bisogna verificare, in
questo caso, che le specifiche delle proprie funzioni sugli insiemi corrispondano
con quelle definite dalla libreria standard di C++.

3.2 Aiutarsi con gli LLM

In esempi successivi, mi sono ritrovato a non avere idea di come formalizzare
un problema, pur avendo un’idea della soluzione finale. Dunque, ho provato ad
interrogare degli LLM a riguardo. Ne ho utilizzati vari. Ho utilizzato sia versioni
premium che versioni più leggere. Ho notato, che gli LLM sono piuttosto scarsi a
scrivere codice verificato, anche per problemi molto semplici. Commettono errori
grossolani. Gli errori riguardo la sintassi di WhyML sono comprensibili, perché è

19

un linguaggio poco utilizzato. I problemi più grandi riguardavano, però, le pro-
prietà scovate, che erano spesso errate o insufficienti.
Quindi, concludo che l’esperienza avuta con gli LLM, sia stata piuttosto positi-
va. Grazie alle loro scarse capacità mi hanno permesso di sviluppare un senso
critico spiccato nei loro confronti. In precedenza li ho utilizzati soprattutto in
contesti in cui erano piuttosto bravi, sbagliavano raramente. Adesso mi fornivano
soluzioni corrette molto raramente. Ciò mi ha permesso di utilizzarli come un
interlocutore molto poco esperto, che mi potesse dare degli spunti di cui non ero
a conoscenza o che non mi erano venuti in mente. Inoltre, quando non avevo idea
di come continuare, scrivendo le domande, e leggendo le risposte, avevo modo di
pensare per più tempo al problema, mi davo il tempo per pensare. Quando si
vuole ottenere una soluzione, si è spesso inclini a cercare di trovarla subito, inve-
ce, spesso, è più utile capire le proprietà del problema, affinchè la soluzione venga
fuori in modo più naturale. L’interazione con gli LLM, in questo ambito, aiuta
il programmatore ad esplorare il problema in maniera semi-autonoma, piuttosto
che affidarsi a del codice non capito.
Se gli LLM fossero molto bravi a scrivere codice verificato, il lavoro del program-
matore muterebbe sostanzialmente. Come affermato in precedenza, il codice è
corretto rispetto alle specifiche, quindi il ruolo del programmatore si riducerebbe
alla scrittura delle specifiche, in modo più o meno granulare. Al momento mi
sembra che siamo piuttosto distanti da questo scenario.

3.3 Difficoltà riscontrate nella risoluzione di un
problema

Svolgendo molti esercizi, sono riuscito a impratichirmi nella scrittura delle spe-
cifiche. Finalmente, ho raggiunto un punto in cui mi capitava spesso di riuscire
a scrivere il contratto di funzioni molto più velocemente rispetto alla loro im-
plementazione. Questo, però, varia da problema a problema. Si può diventare
più bravi a specificare che a programmare ma alcune funzioni, in certi contesti,
richiedono una quantità di codice di specifica maggiore rispetto a quella richiesta
dall’implementazione. Inoltre, alcune funzioni sono più comode da implementare
scomponendole in sottofunzioni e, di alcune di queste, un’eccessiva formalizzazio-
ne può rappresentare una perdita di tempo.
Queste deduzioni nascono dallo svolgimento di un esercizio leetcode, chiamato
group anagrams.

20

3.3.1 Il problema

Dato un array di stringhe, raggruppare gli anagrammi.
Esempio
Input: ["eat","tea","tan","ate","nat","bat"]

Output: [[["bat"],["nat","tan"],["ate","eat","tea"]]]

Quindi l’output risulta un array di array, in cui ogni array contiene degli anagram-
mi. Gli anagrammi, in realtà, in questo caso, vengono visti come delle semplici
permutazioni, non è richiesto che ogni parola debba avere un senso in una data
lingua.

3.3.2 La modalità di risoluzione

Per questo problema, ispirato da alcune soluzioni di problemi tra gli esempi uf-
ficiali, ho deciso di definire prima le specifiche in un modulo separato, per poi
ideare una soluzione, implementare dei sottoproblemi. Ho adottato quindi un
approccio top-down. È il modo in cui ho agito più spesso in programmazione.

3.3.3 La formalizzazione

Per scrivere un contratto della funzione pulito e ben pensato, ho ritenuto neces-
sario scomporre la specifica in funzioni e predicati. Sono servite quasi 50 righe
di codice, solo per le specifiche. Non è stato affatto un processo difficoltoso, ma
abbastanza lungo rispetto a ciò che ci si aspetta. Di seguito il modulo:
module GroupAnagramsSpec

use int.Int
use array.Array
use array.ArrayPermut

type str = array int

predicate all_permut (a: array str) =
forall i j: int, s1 s2: str. i ̸= j
→ 0 ≤ i < length a ∧ s1 = a[i]
→ 0 ≤ j < length a ∧ s2 = a[j] → permut_all s1 s2

predicate all_all_permut (a: array (array str)) =
forall i: int. 0 ≤ i < length a → all_permut a[i]

use int.Sum

21

function total_length (a: array (array str)) : int =
sum (fun i → (length a[i])) 0 (length a)

function offset (a: array (array str)) (i: int) : int =
sum (fun k → length a[k]) 0 i

val function flatten (a: array (array str)) : array str
ensures { total_length a = length result }
ensures { forall i j: int.

0 ≤ i < length a →
0 ≤ j < length a[i] →
result[offset a i + j] = a[i][j] }

predicate no_other_permut (a: array (array str)) =
forall i k j t: int. i ̸= k
→ 0 ≤ i < length a → 0 ≤ k < length a
→ 0 ≤ j < length a[i] → 0 ≤ t < length a[k]
→ not permut_all a[i][j] a[k][t]

val function group_anagrams(strs: array str) : array (array str)
ensures { all_all_permut result }
ensures { permut_all strs (flatten result) }
ensures { no_other_permut result }

end

In questo caso, il problema mi era già molto chiaro, scrivere così tante righe di
specifica per un singolo contratto di funzione non mi ha aiutato a capire meglio
il problema, perché il problema mi era già stato spiegato in modo esaustivo nella
piattaforma leetcode. Si nota quindi come il processo di specifica sia necessario
nei casi in cui non si siano capite a pieno le proprietà di un problema. In questo
caso, però stavo risolvendo un problema che mi era stato assegnato. Spesso,
invece, ai programmatori vengono assegnate delle task più o meno precise, da cui
il programmatore individuerà il problema da risolvere. Non appena un problema
venga individuato, risulta spesso vago, per cui risulta necessario formalizzarlo,
per capirlo al meglio. Da qui deduco che per esercitarsi a scrivere specifiche,
utilizzare piattaforme come leetcode, che danno una spiegazione esaustiva del
problema, può essere molto utile. Ritengo sia un buon metodo per prepararsi,
perché in questo caso l’esercitazione si limita ad una traduzione: dal linguaggio
naturale (anche se schematico), al linguaggio logico.

22

3.3.4 La soluzione

Per questo problema, ho deciso di adottare una soluzione più macchinosa, che
pensavo potesse avere un costo computazionale più basso.
L’idea che avevo era abbastanza vaga. La soluzione si reggeva sul fatto che una
stringa può essere tradotta in un multiinsieme, quindi delle stringhe che erano tra
loro degli anagrammi, venivano tradotte nello stesso multiinsieme. A questo pun-
to pensavo, scorrendo l’array in input, di salvare in una lista delle mappe. Queste
mappe avrebbero avuto come chiave un multiinsieme e come valore una lista con-
tenente gli anagrammi. È una soluzione che in un linguaggio di programmazione
normale avrebbe avuto una certa difficoltà nell’essere implementata, in WhyML
è certamente ancora più difficile, perché ogni sottofunzione sarebbe dovuta essere
dimostrata. Come anticipato, senza pensarci, ho utilizzato l’approccio top-down
sempre utilizzato quando programmavo.
Il modulo sui multiinsiemi era piuttosto povero, quindi ho dovuto riformularlo.
Per avere il giusto numero di operazioni a disposizione, ho dovuto scrivere circa
70 righe di specifiche:

module Multset

use int.Int
use bag.Bag
type elt

val eq (x y: elt) : bool
ensures { result ↔ x = y }

type multset = abstract {
to_bag: bag elt;

}
meta coercion function to_bag

val function nb_occ (x: elt) (b: multset) : int
ensures { result = nb_occ x b }

val function mem (x: elt) (b: multset) : bool
ensures { result ↔ mem x b }

val function (==) (a b: multset) : bool
ensures { result ↔ a == b }

val function empty_multset : multset
ensures { result = empty_bag }

23

ensures { card result = 0 }
ensures { forall x: elt. nb_occ x result = 0 }

val function singleton (x: elt) : multset
ensures { result = singleton x }

val function union (a b: multset) : multset
ensures { result = union a b }

val function add (x: elt) (b: multset) : multset
ensures { result = add x b }
ensures { card result = card b + 1 }
ensures { forall y: elt. nb_occ y result = if y = x then nb_occ y b + 1
else nb_occ y b }

val function card (b: multset) : int
ensures { result = card b }

val function diff (a b: multset) : multset
ensures { result = diff a b }

val function inter (a b: multset) : multset
ensures { result = inter a b }

val function choose (b: multset) : elt
ensures { result = choose b }

end

module IntMultset
use int.Int
use bag.Bag
clone export Multset with type elt = int, val eq = Int.(=), axiom .

end

module MapImpMultset
use IntMultset
clone export fmap.MapImp with type key = IntMultset.multset, val eq =

IntMultset.(==)
end

Ho voluto svolgere un lavoro coerente, quindi non ho scritto solo le funzioni che
mi sarebbero servite in questo caso. Ho scritto le funzioni che possono essere utili
quando si utilizzano dei multiisiemi.
Poi, ho cominciato a scrivere le sottofunzioni che pensavo potessero essere utili.

24

Per specificare, ho dovuto definire altre funzioni logiche. Inoltre, i sottoproblemi
individuati, non sono stati impossibili da risolvere ma mi hanno fatto impiegare
una discreta quantità di tempo. Di seguito le funzioni ausiliarie (di cui non riporto
le funzioni logiche per pulizia):

let rec nb_occ_lu (x: int) (s: str) (l u: int) : int
requires { 0 ≤ l ≤ u ≤ length s }
ensures { result = num_occ_str_l x s l u }
variant { u - l }

=
if u = l then 0
else

let count = nb_occ_lu x s (l+1) u in
if s[l] = x then count + 1 else count

let string_to_multset (s: str) : multset
ensures { forall i: int. 0 ≤ i < length s → IntMultset.mem s[i] result }
ensures { forall x: int. nb_occ x result = num_occ_str x s }

=
let ref m = empty_multset in
assert { forall x: int. nb_occ x m = 0 };
for i = 0 to length s - 1 do

invariant { forall j: int. 0 ≤ j < i → IntMultset.mem s[j] m }
invariant { forall x: int. nb_occ x m = num_occ_str_l x s 0 i }
label L in
m ← IntMultset.add s[i] m;
done;

m

let rec add_to_distinct_list (x: multset) (l: list multset) : list multset
requires { distinct l }
ensures { distinct result }
ensures { Mem.mem x l → Length.length result = length l }
ensures { not Mem.mem x l → Length.length result = length l + 1 }
ensures { Mem.mem x result }
variant { length l }

=
match l with
| Nil → Cons x Nil
| Cons y r → if IntMultset.(==) y x

then begin
assert { Mem.mem x l };
l

end

25

else begin
assert { not Mem.mem y r };
Cons y (add_to_distinct_list x r)

end
end

3.3.5 Una presa di coscienza

Adesso, però, non capivo bene come assemblare queste funzioni. Soprattutto, mi
ero reso conto, che il costo computazionale non sarebbe stato inferiore a quello
di una soluzione molto più semplice ed elegante. Avevo formalizzato un modulo,
scritto funzioni e dimostrate, ma non avevo ancora risolto il mio problema, che,
adesso, intuivo non avere neanche un costo computazionale ottimale. Avevo fatto
un errore di calcolo, perché nella costruzione dell’output, avrei dovuto scorrere
la struttura dati creata (la lista di mappe) una sola volta. Invece, adesso, mi
rendevo conto che, per la creazione di questa struttura dati, avrei dovuto comun-
que scorrere la lista più volte, in cerca del multiinsieme corretto per la stringa
trovata.
Avevo scritto circa 200 righe di codice, per risolvere un problema in un modo
troppo e inutilmente complicato. Gran parte del tempo è stato speso a causa di
Why3, perché avevo l’obbligo di formalizzare. La formalizzazione e la dimostra-
zione sono state le attività che hanno richiesto più tempo. A questo punto sono
stato assalito da dubbi, che hanno generato una serie di domande, che sono state
fondamentali per trovare un uso corretto di questo strumento.

Domanda

Perché utilizzare uno strumento come Why3?

Domanda

Quando utilizzarlo?

Domanda

Come va utilizzato?

Domanda

In che modo migliorano il processo di programmazione nella quotidianità?

26

Domanda

A lungo termine, si scrive codice più velocemente (prevenendo gli errori) o
più lentamente (lo sforzo nella formalizzazione sarebbe superiore a quello
nella risoluzione degli errori)?

3.4 L’ideazione del metodo

Tutte queste domande mi hanno costretto a cercare un uso più consono di questo
strumento, che potesse realmente essere utile allo scopo che mi ero prefissato. Ho
avuto modo di capire le vere potenzialità di Why3 proprio scoprendo i suoi limiti.
Ho cercato quindi di ideare un metodo che provasse a soddisfare le domande
formulate. Con esso, cerco di risolvere le difficoltà affrontate sfruttando delle
peculiarità di Why3. Di seguito uno schema della strategia ideata:

1. Individuare un problema;

2. Scrivere le specifiche;

3. Cominciare a scrivere un’implementazione;

4. Se si incappa in un sottoproblema, scrivere, della funzione ausiliaria, solo il
contratto, senza implementazione, utilizzando la notazione con val;

5. Finita l’implementazione della funzione principale, dimostrarla. Una volta
dimostrata, implementare un sottoinsieme delle funzioni ausiliarie, seguen-
do il procedimento dal punto 3.

Esempio

1. Individuo il problema di ordinare una lista;

2. Scrivo le specifiche:

val insertion_sort (l: list elt) : list elt
ensures { sorted result }
ensures { permut l result }

3. Comincio a scrivere un’implementazione con gli strumenti che ho a dispo-
sizione:

27

let rec insertion_sort (l: list elt) : list elt
ensures { sorted result }
ensures { permut l result }
variant { l }

= match l with
| Nil → Nil
| Cons x r → insert x (insertion_sort r)
end

4. Sono incappato in una funzione ausiliaria (insert), scrivo solo il contratto:
val insert (x: elt) (l: list elt) : list elt

requires { sorted l }
ensures { sorted result }
ensures { permut (Cons x l) result }

let rec insertion_sort (l: list elt) : list elt
ensures { sorted result }
ensures { permut l result }
variant { l }

= match l with
| Nil → Nil
| Cons x r → insert x (insertion_sort r)
end

5. Dimostro la funzione principale. La funzione viene dimostrata. Ritengo sia
necessario implementare anche la funzione ausiliaria:
(a)

let rec insert (x: elt) (l: list elt) : list elt
requires { sorted l }
ensures { sorted result }
ensures { permut (Cons x l) result }
variant { l }

= match l with
| Nil → Cons x Nil
| Cons y r → if le x y then Cons x l else Cons y (insert x r)
end

(b) Dimostro la funzione ausiliaria. Viene dimostrata. Non ho dovuto
usare funzioni ausiliarie, ho finito.

Questo metodo è praticabile grazie a delle caratteristiche di WhyML e dell’am-
biente Why3. WhyML permette di definire funzioni di cui è riportato unicamente

28

il contratto, con val. Queste funzioni possono essere utilizzate in funzioni suc-
cessivamente definite, seppur prive di corpo. Il corpo delle funzioni è utile alla
dimostrazione solo del contratto della funzione implementata, non contribuisce
al contesto delle dimostrazioni di funzioni definite successivamente. Quindi, al
contrario che nella programmazione classica, per validare un proprio ragionamen-
to, basta formalizzare le funzioni ausiliarie piuttosto che implementarle. Questo
approccio permette di concentrarsi su un problema alla volta, favorendo un ap-
proccio top-down. Questo è un approccio più difficile da seguire in programma-
zione classica. Non si possono testare funzioni che utilizzano delle sottofunzioni
prive di implementazione. In questo senso, quindi, l’uso di Why3 rappresenta
non solo un vantaggio nella formulazione di una soluzione corretta, ma anche
nell’efficienza. Ricollegandoci alla corrispondenza che sussiste tra matematica e
programmazione, vediamo che questo metodo segue un approccio top-down come
avviene spesso nella costruzione di dimostrazioni. La lettura del codice, come la
lettura della matematica, avviene spesso bottom-up, ma la scrittura e la lettura
sono processi completamente diversi.
Ora, alcune delle domande formulate possono avere risposta.

1. Perchè utilizzare uno strumento come Why3?
Per avere fiducia nei propri ragionamenti prima di scrivere codice.

2. Quando utilizzarlo?
Quando si incappa in un problema di cui si intuisce una complessità difficile
da risolvere direttamente.

3. Come va utilizzato?
Usando il metodo sopra riportato

La risposta alla domanda 1 viene dall’intuizione iniziale. La risposta alla domanda
3 può avere un certo rigore, dato che segue un metodo abbastanza strutturato.
La risposta 2, invece, risulta abbastanza arbitraria e la domanda è quella che
bisogna porsi anche per ogni singolo sottoproblema in cui si incappa risolvendo
un problema più grande. Ritengo sia giusto che la scelta attraverso la quale si
decida di implementare (e quindi dimostrare) una funzione in Why3 debba essere
decisa in base alle sensazioni del programmatore. Egli deve fare una stima mentale
dell’importanza e del numero di errori generabile da un’implementazione errata
e una stima sullo sforzo impiegato a formalizzare, implementare, dimostrare e
trascrivere la stessa funzione. Deve sviluppare un certo fiuto per le difficoltà
che la sua persona potrà affrontare su determinati problemi. Penso che questo

29

fiuto possa essere sviluppato più facilmente imparando e utilizzando strumenti di
verifica formale.

3.5 Necessità di sperimentazione su un progetto
reale

Le ultime due domande nei riquadri, invece, non trovano ancora risposta. Per
trovarla, ho individuato la necessità di sperimentare questo uso di Why3 in un
progetto reale. Scrivere un progetto è un processo più lungo e, le domande cui
faccio riferimento, richiedono una sperimentazione più consistente nello stesso
contesto. Ho quindi svolto dei progetti simili in due modalità diverse: la modalità
classica, senza uso di strumenti di verifica formale e una modalità che integra
Why3 nell’uso sopra descritto. Nel capitolo successivo, riporto informazioni più
dettagliate riguardo i progetti.

30

Capitolo 4

Il Progetto

4.1 Requisiti

Che tipo di progetto avrei dovuto svolgere?
Il mio obiettivo consiste in un uso appropriato al mio scopo di Why3 e avevo
bisogno di testarlo in un progetto che somigliasse ad un caso reale, che potesse
essere il più versatile possibile. Nel capitolo 2 spiego che gli esempi di progetti
online riguardano prettamente l’ambito logico, che è un caso abbastanza specifico
e poco diffuso. Io volevo verificare la versatilità di Why3 in un progetto che
avesse delle interazioni frequenti con l’utente (che avviene in molti software) e
che avesse di certo delle componenti pregne di logica. Come descritto nel capitolo
precedente, utilizzo Why3 solo nei problemi in cui ritengo che una dimostrazione
preventiva possa essere più efficiente rispetto ad una riparazione di errori trovati
in futuro. Mi interessa che la metodologia da me proposta possa essere più
versatile possibile, quindi avevo bisogno di un esempio abbastanza variegato, in
cui avessi la possibilità di incontrare le giuste difficoltà che mi avrebbero aiutato a
raggiungere delle conclusioni significative. Infine, volevo che il mio progetto fosse
comunque qualcosa di inerente allo sviluppo software, volevo un programma che
aiutasse il programmatore in qualche modo.

4.2 Il progetto scelto

Spinto dalle esigenze espresse, ho individuato un problema, da cui avrei poi ri-
cavato un software. Il problema consiste nella gestione di pezzi di codice che si
ritengono significativi. A volte capita di dover scrivere algoritmi simili ad altri che
si sono già scritti in precedenza. Si è spinti quindi alla ricerca di quegli snippet,
che sono da qualche parte nei tanti progetti svolti in precedenza. A volte questa

31

ricerca può essere abbastanza lunga, a volte si decide di abbandonarla, dichiaran-
dosi sconfitti. Il software da me proposto prova a mitigare questo problema.
Il programma è sostanzialmente uno snippet manager basato su metadati. Esi-
stono già già degli snippet manager ma tutti quelli che ho trovato propongono
un sistema di salvataggio a directory. Io volevo trovare i vari snippet di codice
attraverso i concetti, da cui l’integrazione dei metadati.

4.2.1 Specifiche

L’utente deve poter inserire, modificare, eliminare e soprattutto recuperare snip-
pet e metadati. Uno snippet ha un nome, un’estensione, un contenuto e un
insieme di metadati associati. I metadati hanno un nome e una categoria. Gli
snippet possono avere solo metadati della stessa categoria. Esistono due sole ca-
tegorie: linguaggio e concetto. Gli snippet di concetto sono pezzi di codice che
riguardano un concetto trasversale ai linguaggi e che ha quindi a che fare con la
programmazione in generale, ad esempio: ordinamento, ricorsione, concorrenza,
alberi, algoritmo. Gli snippet di linguaggio sono pezzi di codice che riguardano
un concetto inerente ad un linguaggio, ad esempio: classe, monade, eccezione,
decoratore, while.
Ho deciso di fare questa divisione perché a volte mi capita di dover cercare pezzi
di codice che riguardano concetti che non uso da un po’ di tempo; a volte capita
di dover riutilizzare un certo linguaggio di programmazione dopo tanto tempo
e, in questo caso, può essere utile recuperare del vecchio codice da cui è facile
rispolverare certi concetti.
I metadati sono legati da una relazione gerarchica. Nel database, quindi, c’è una
foresta di metadati. Allora, perché, ritengo che i dati vengano organizzati in
modo diverso rispetto agli snippet manager tradizionali? Perché in questi, sono
gli snippet ad essere organizzati in directory. Nel mio programma, gli snippet
sono associati a una serie di metadati, i quali sono organizzati in maniera gerar-
chica. Il fine ultimo è cercare gli snippet e questa ricerca deve avvenire in modo
concettuale. Perciò, la struttura gerarchica dei metadati serve solo a preservare
una coerenza nell’astrazione dei concetti, che deve essere modellata in modo ap-
propriata attraverso l’organizzazione dei metadati. Nel progetto, per cercare uno
snippet, nel caso più comune, si inserisce una lista di metadati appropriati.
L’inserimento di snippet e metadati può avvenire singolarmente oppure, nel caso
dei metadati, se ne può inserire una foresta. Questo deriva dalla natura gerarchi-
ca della relazione che c’è tra i metadati.
Ci sono diverse get, pensate per navigare efficientemente tra i concetti (uso con-

32

cetto come astrazione superiore di metadato). Dato un metadato, si possono
ottenere tutti i concetti più specifici (get dell’albero), risalire a tutti i concetti
più generali (get del percorso dalla radice al metadato), risalire a tutti i concetti
allo stesso livello di genericità (get di tutti i fratelli). Per ottenere gli snippet,
si può cercare attraverso il nome (che deve essere esatto), oppure attraverso i
metadati. Data una lista di metadati, esistono due get diverse. Una get che re-
stituisce tutti gli snippet che contengono tutti i metadati specificati; una get che
restituisce tutti gli snippet che contengono almeno uno dei metadati specificati.
Questo software si rivela utile nel caso l’utente si impegni a organizzare in modo
sensato i metadati e associ agli snippet i metadati corretti. Il focus principale è
la ricerca, che concerne un impegno maggiore nell’organizzazione della foresta di
metadati e nell’inserimento di snippet con caratteristiche appropriate.
Ho sviluppato il software in due forme e metodologie diverse. Ho avuto l’op-
portunità di creare, per il tirocinio, un MCP server con circa queste specifiche,
senza l’uso di Why3. Successivamente, ho creato un altro snippet manager con
specifiche molto simili ma con interazione da cli, usando Why3.

4.3 Il progetto svolto nel tirocinio

Lo snippet manager svolto nel tirocinio è un MCP server. Un MCP server è un
server basato sul protocollo MCP (Model Context Protocol), sviluppato da An-
thropic. È un protocollo che permette di sviluppare facilmente servizi con cui gli
LLM siano in grado di interagire. Lo sviluppo del server consiste sostanzialmente
nella creazione di una serie di tool e risorse (come se fossero endpoint di un’API)
che possano essere invocati, in formato JSON, dagli LLM.
Ho utilizzato node.js con typescript, l’SDK ufficiale di Anthropic per gli MCP
server e un database a grafo, neo4j. Sviluppare MCP server è piuttosto semplice.
È molto simile a qualsiasi altro software. Esporre tool e risorse con l’SDK uffi-
ciale è stata la parte più semplice del progetto, non ha mai generato problemi, ne
errori difficili da trovare. La parte complicata del progetto, quindi, risiedeva nella
logica, nella gestione di snippet e metadati nel db, nella formulazione di query
sensate e ben concatenate.

4.4 Il progetto svolto per la tesi

Lo snippet manager sviluppato successivamente al tirocinio funziona da cli. L’in-
terazione con l’utente avviene quindi in modo più "classico" e "manuale".

33

Il progetto è stato svolto in Python, usando un database a grafo: arangodb con
adattatore networkx. Il sistema di persistenza scelto è molto diverso da neo4j.
Mentre in neo4j si utilizza cypher, un linguaggio per scrivere query dichiarative
(come SQL), con l’adattatore networkx per arangodb, ho dovuto gestire il grafo
in maniera più "manuale". Non avevo a disposizione query dichiarative ma avevo
la possibilità di gestire i dati in memoria come se fosse un grafo in RAM, con le
classiche operazioni esposte da una libreria di un grafo diretto. Quindi ho dovuto
scrivere da me gli algoritmi che mi permettessero di inserire ed eliminare i dati
in modo appropriato, esplorare il grafo nelle giuste direzioni e selezionando i dati
corretti.
Ho scelto questa metodologia di persistenza per due motivi:

• Essendo la gestione dei dati in memoria il fulcro di entrambi i progetti,
ho avuto così la possibilità di svolgere due progetti diversi con le stesse e
identiche specifiche. Così, sono più facilmente confrontabili.

• È il modo giusto per testare il mio uso di Why3. Si intuisce dalle specifiche
che questo è un software che avrà dei pezzi in cui Why3 è inutile, in altri
in cui può risultare vantaggioso.

4.5 Il diario

La scrittura del progetto è stata accompagnata dalla scrittura di un diario. Il
diario riporta delle esperienze progettuali significative, da cui sono state dedotte
delle conclusioni. Nel capitolo successivo, riporto una rielaborazione del diario.

34

Capitolo 5

Rielaborazione del diario

Le conclusioni riportate hanno l’utilità di sviscerare l’attività della programma-
zione (seguendo il metodo ideato) in modo completo, in modo da poter scegliere
delle strategie di risoluzione appropriate alla propria persona in relazione al pro-
blema che si deve svolgere. Quindi, le conclusioni tratte, risponderanno alle
domande del capitolo 3: "In che modo migliorano il processo di programmazione
nella quotidianità?" e "A lungo termine, si scrive codice più velocemente o più
lentamente?" nel mio singolo progetto.
Le risposte a queste domande possono essere considerate rigorose se fornite da
uno studio in larghissima scala, su moltissimi programmatori, di diverso livello, su
progetti di diversa matrice. Non disponendo di questa possibilità, ritengo che, con
l’esperienza e le conclusioni riportate in questo capitolo, il singolo programmatore
potrà capire autonomamente, in base alla sua persona e in base ai problemi che
dovrà risolvere, se il metodo proposto sarà adatto in tali circostanze.
Inoltre, le conclusioni raggiunte cercano di preparare il programmatore che si
approccia per la prima volta alla verifica formale ad un uso conscio di questo
metodo. Nei prossimi paragrafi, si cercano di spiegare le insidie e le difficoltà che
si devono affrontare, in quali contesti si trovano, come affrontarle e se vale la pena
affrontarle.

5.1 I moduli del progetto

Fin dall’inizio, ho individuato delle parti del progetto in cui una formalizzazione
sarebbe servita, altre parti in cui non avrebbe aiutato e, anzi, sarebbe stata li-
mitante. Dunque, ho creato 3 file: main.py, digraph.py e msm_digraph.py. Mentre
digraph.py e msm_digraph.py ricalcano dei moduli scritti in WhyML, digraph.mlw e
msm_digraph.mlw, ho deciso di non formalizzare niente prima di scrivere main.py.

35

Mentre i file digraph.py e msm_digraph.py riguardano operazioni sui grafi, che ri-
guardano operazioni pregne di logica, ho destinato main.py all’interazione utente.
Formalizzare l’interazione con l’utente è piuttosto difficile e, nella maggior parte
dei casi, non supera nessuna difficoltà, perché non ne sussiste alcuna. Nei test
del codice si danno delle priorità. È importante testare il codice critico, che può
essere più soggetto a errori logici. Gli errori di codice in cui c’è interazione uten-
te sono estremamente semplici da scovare (basta qualche esecuzione del codice),
lo sforzo della formalizzazione e della dimostrazione risulterebbe una perdita di
tempo inutile.

5.1.1 Uno spunto sull’architettura esagonale

Per poter seguire il metodo descritto nel capitolo 3, è vantaggioso riuscire a in-
dividuare le differenze tra le funzionalità del programma che si sta scrivendo e le
interazioni con sistemi esterni. Ad esempio, nell’architettura esagonale, un pro-
gramma viene descritto separando il core (funzionalità del programma, la logica)
dagli adattatori (vari tipi di agenti esterni). Questi adattatori possono essere il
sistema operativo, il database, user interface, CLI, ed altri ancora.
Come detto in precedenza, il mio uso di Why3 consiste nella validazione di ragio-
namenti. Quindi, adottando il mio metodo, ognuno di questi adattatori sarebbe
soggetto ad un livello di astrazione, che può essere variabile a seconda del soft-
ware che si sta sviluppando. Ci sono adattatori la cui astrazione è più facile da
formalizzare rispetto ad altri, come ci sono adattatori in cui la formalizzazione
rappresenta un vantaggio sulla prevenzione degli errori ed altri no.
Anche all’interno degli adattatori, ci sono differenze. Ad esempio, riguardo il
sistema operativo, ci sono system call più facili da formalizzare rispetto ad altre.
Le read/write sui file sono molto più semplici da formalizzare rispetto a una fork,
è intuitivo. Riguardo i database, è difficile trovare modelli difficili da astrarre
nelle operazioni base, in quelli conosciuti: i più conosciuti sono i database re-
lazionali, gerarchici, reticolari e chiave valore. Sono tutti facilmente astraibili,
derivano direttamente da concetti matematici. Riguardo l’interazione utente da
CLI, invece, modellare i comportamenti è quasi sempre molto complicato. Per
non parlare di codice html/css. In quel caso i problemi non sono affatto logici,
non vanno categoricamente affrontati in Why3.
L’esperienza di un programmatore e ulteriori studi in questo ambito potrebbero
aiutare a individuare velocemente le parti di programma in cui è conveniente se-
guire un approccio formale piuttosto che empirico (d’ora in poi userò formale per

36

riferirmi a codice che viene prima dimostrato e poi scritto, empirico per riferirmi
a codice che viene verificato tramite test).
L’architettura esagonale è solo un esempio di modularizzazione che può essere
seguita per separare il codice in modo da poter separare problemi su cui è giusto
ragionare in modo differente. Ad esempio, l’architettura a microservizi, che è
un derivato, è un approccio paragonabile. Io non ho seguito nessuna architet-
tura di modularizzazione prestabilita, individuare sezioni più logiche di altre (in
cui conveniva un approccio formale), nello snippet manager, è risultato piuttosto
semplice.

5.1.2 L’astrazione seguita nel mio progetto

Non ho diviso immediatamente il progetto in main.py, digraph.py e msm_digraph.

py. Volevo separare dall’inizio le funzioni che agiscono sul database e le funzioni
che interagiscono con l’utente. Come detto, volevo formalizzare solo le funzioni
core, che interagissero sul grafo in memoria. Ho usato la libreria networkx. In
Why3, però, non c’è un corrispondente della libreria networkx. Quindi, per poter
adottare il mio metodo sulle funzioni importanti, sono stato forzato a scrivere un
modulo Why3 che gestisse grafi direzionati in modo simile a networkx. Quindi, ho
ricostruito e formalizzato il pezzo di networkx che mi serviva per poter costruire
le mie funzioni. Da qui, è nato il modulo digraph.mlw. Questo modulo, è quasi del
tutto privo di implementazioni, perché ricostruisce una teoria già fatta e che non
devo costruire, che è appunto la libreria networkx. Da qui ho ricavato il modulo
digraph.py per avere un’astrazione uniforme che corrispondesse più fedelmente
possibile alla formalizzazione Why3 e che avesse una coerenza nel mio progetto.
Così, ho implementato le mie funzioni (quindi ho costruito la mia teoria) in
msm_digraph.mlw, clonando la teoria fornita da digraph.mlw; così come ho esteso
la classe di digraph.py per poter scrivere le funzioni effettive in msm_digraph.py

. La scrittura di msm_digraph.mlw è stata quindi completamente diversa rispetto
a alla scrittura di digraph.mlw. In msm_digraph.mlw ho composto una teoria, in
digraph.mlw ho ricostruito una teoria.

5.2 Comporre o ricostruire teorie?

Questa terminologia può risultare atipica. Ho scelto di usarla ugualmente perché
ritengo che sia più estensiva. Sono concetti che ho individuato nella programma-
zione ma che si possono ritrovare in altri ambiti come logica, matematica, fisica.
Intendo per ricostruire una teoria: lo studio di una teoria già esistente, che sia un

37

programma, una teoria matematica, una teoria fisica. È paragonabile al processo
di analisi.
Intendo per comporre una teoria: la composizione di una teoria nuova (o di un
pezzo nuovo di teoria), che sia un programma, una teoria matematica, una teoria
fisica. È paragonabile al concetto di sintesi.

Adesso, svolgere delle task e creare un progetto sono entrambe attività che richie-
dono la scrittura di codice. Quindi possono sembrare molto simili. Utilizzando
Why3 mi sono reso conto che hanno dei pezzi in comune ed altri diametralmente
opposti. Quando si crea un progetto nuovo, si compone una teoria, aggiungendo
dei tasselli pian piano. Quando si svolge una task bisogna ricostruire la teoria
già composta da altri, per poter poi aggiungere qualche tassello. Un program-
matore può essere incaricato di creare un progetto nuovo (caso molto raro, in
cui certamente e principalmente avviene la composizione di una teoria), oppure
di integrare un software già esistente. L’integrazione di un software già esistente
può avvenire creando dei moduli circa indipendenti, utili al software principale
(quindi componendo una teoria), oppure implementando dei moduli integranti
del software principale. In questo ultimo caso bisogna scrivere del codice in cui la
comprensione del codice pregresso è fondamentale, quindi si ricostruisce una teo-
ria. In realtà, si svolgono entrambi i processi in proporzioni diverse. Ad esempio,
come spiegato, ho dovuto ricostruire la "teoria" di networkx, ovvero ho dovuto
capire le funzioni della libreria nel dettaglio, per essere sicuro degli effetti che esse
avranno sul mio codice. Facendolo, però ho anche svolto un processo di compo-
sizione, perché capendo le funzioni disponibili, ho scritto le specifiche di funzioni
e dei lemmi che erano coerenti con la teoria dei grafi diretti e che sarebbero
servite in futuro. Quindi poi ho scritto un’interfaccia Python (un wrapper) che
congiungesse networkx alle specifiche da me formulate (sia quelle ricostruite che
quelle composte). In seguito, col modulo digraph.mlw, ho già disponibili i pezzi di
teoria che mi permettono di lavorare in modo "indipendente", quindi, scrivendo
msm_digraph.mlw, sto solo componendo. È evidente, in questo ultimo modulo, che
le proporzioni sono molto spostate sulla composizione che sulla ricostruzione.
Durante la risoluzione di un task, invece, si è costretti a ricostruire il contesto
intorno al singolo problema da risolvere. È prevedibile, che una volta ricostruito
il contesto, serva comporre poca teoria per la risoluzione del singolo problema. Ci
sono però, sicuramente, dei casi in cui il problema si rivela più difficile (o meno
affine al resto del codice) del previsto e prevede la formulazione di un grosso pez-
zo di teoria, che diventerà integrante a quella principale. Tutto ciò deriva dalle

38

similitudini che ci sono tra la programmazione e la matematica e, nello specifico,
dalla domanda millenaria che recita: La matematica viene creata o viene sco-
perta? La risposta di questa domanda è un’opinione. Nel software può esserlo
solo in certi e pochi casi, perchè il codice che viene creato è un componimento
che ha una vita e che fa qualcosa (distinzione programma-processo, il programma
ha vita attraverso il processo), un programma serve e fa qualcosa: se non esiste,
va creato. La teoria di un programma è atta a un’esecuzione, è dinamica. La
teoria matematica è statica, perché tenta di modellare dei concetti che troviamo
nella realtà. Fornisce delle risposte sotto determinate assunzioni, che possono
essere utili alla creazione e alla scoperta di qualcos’altro. Quindi, mentre nella
programmazione c’è una differenza nel contesto, che ci permette di distinguere
più facilmente composizione e ricostruizione, nella matematica diventa molto più
difficoltoso (e in toto impossibile). Detto ciò, in programmazione, tradizional-
mente, la teoria di un programma si ricostruisce mentalmente, leggendo il codice;
e si compone scrivendo. Con Why3, si ha l’opportunità sia di ricostruire che
di comporre. Essere coscienti di ciò che si sta facendo (ricostruire o comporre)
può essere utile per individuare dei metodi per svolgere l’attività in questione
nel modo più efficiente possibile. Questi metodi possono essere anche individuati
in letteratura. Il binomio ricostruzione e composizione di una teoria può essere
associato al binomio modello descrittivo e normativo.
I modelli descrittivi servono a descrivere un sistema esistente, estrapolando un
modello (reverse engineering, ricostruisco una teoria). La valutazione del modello
creato si basa sull’accuratezza.
I modelli normativi servono a stabilire come dovrebbe essere un sistema, estrapo-
lando un modello che dovrà poi essere implementato (progettazione, compongo
una teoria). La valutazione del modello creato si basa sulla correttezza, comple-
tezza e coerenza.
Nel mio contesto, una volta scritto digraph.py non ho più dovuto consultare la
documentazione di networkx, seppure non avessi mai usato la libreria prima d’o-
ra. Utilizzare le funzioni ponte da me sviluppate è stato piuttosto organico, avevo
piena padronanza nella scrittura del software. Quindi, la descrizione del sistema
preesistente, è avvenuta in modo solido e accurato.

Conclusione

Si può utilizzare Why3 per leggere e capire software già esistenti, scrivendo-
ne le specifiche formalmente. Questo uso porta a una comprensione solida
e completa del software in analisi, permettendo un’integrazione efficiente.

39

Riguardo invece la correttezza, la completezza e coerenza del modello crea-
to (sostanzialmente il modulo msm_digraph.mlw), verranno discusse nelle sezioni
successive.

5.3 Testare le specifiche

Dicevo che in digraph.mlw sono state scritte per lo più specifiche di funzioni. Per
poter scrivere queste specifiche ho dovuto prima modellare il concetto di grafo
nel modo più vicino possibile alla libreria che avrei usato in seguito (la teoria dei
grafi formalizzata in Why3 aveva formalizzazione povera e distante da networkx.).

5.3.1 Testare gli assiomi

Ho dovuto quindi definire il tipo grafo:
type v (* Tipo vertice *)
type e (* Tipo arco (edge) *)

val function src (e: e) : v (* Sorgente di un arco *)
val function dst (e: e) : v (* Destinazione di un arco *)

(* Il grafo è una coppia: insieme di vertici e insieme di archi *)
type graph = { vertices: fset v; edges: fset e }

val function memv (v: v) (g: graph) : bool (* Membership di un vertice *)
ensures { result = mem v g.vertices }

val function meme (e: e) (g: graph) : bool (* Membership di un arco *)
ensures { result = mem e g.edges }

Da qui, ho dovuto scrivere degli assiomi, che modellassero il tipo grafo ulterior-
mente:
(* Se un arco è nel grafo, anche sorgente e destinazione sono nel grafo *)
axiom edges_well_formed:

forall g: graph, e: e.
meme e g → memv (src e) g ∧ memv (dst e) g

(* Non ci sono archi uguali *)
axiom no_duplicate_edges:

forall g: graph, e1 e2: e.
meme e1 g → meme e2 g → src e1 = src e2 → dst e1 = dst e2 → e1 = e2

Una volta scritti, però, ho avuto un dubbio. Come faccio a sapere che siano
corretti?

40

In programmazione, si è abituati a testare tutto. Per testare basta spesso una
funzione di print sul caso che non si ha ben chiaro. In Why3 non si esegue il
codice, si dimostra. Gli assiomi non possono essere eseguiti. Per le funzioni
ci sono modi per eseguire il codice e per scrivere dei test ma risulta parecchio
macchinoso perché non è uno scopo dello strumento. Quindi, quando si fa il
design della logica, per "testare", per avere delle prove (di cui spesso si sente il
bisogno), come si fa?
Si possono scrivere dei teoremi (in Why3 viene usata solo la parola lemma).
Questi teoremi devono essere delle proprietà immancabili nel contesto che si sta
modellando e devono essere dimostrabili a partire dagli assiomi. Di seguito il
lemma (che è stato dimostrato) a partire dagli assiomi riportati:

(* Caso specifico dell’assioma edges_well_formed *)
lemma vertex_existence:

forall v1 v2: v, e: e, g: graph.
memv v2 g ∧ meme e g ∧ src e = v1 ∧ dst e = v2

→ memv v1 g

5.3.2 Testare i contratti di funzione

Anche per le funzioni ausiliarie, se non si è sicuri delle specifiche che si sono da-
te, se queste sono definite con val function (quindi oltre a essere funzioni che si
possono usare in un programma, sono funzioni logicamente pure, prive di effet-
ti collaterali), si possono utilizzare dei lemmi per verificare la correttezza delle
specifiche. Se questi lemmi verranno dimostrati, si avranno sia dei risultati che
potrebbero essere utili a dimostrare le correttezza di funzioni future, sia la sicu-
rezza che queste specifiche siano state formulate correttamente.
Quando un concetto risulta già visto e semplice, si tende a non avere bisogno di
verificarne la correttezza immediatamente. Nel caso opposto, si vuole testare ogni
riga. Quindi ciò che accade nella programmazione classica per le implementazio-
ni (spesso avendo un’idea vaga delle specifiche), accade in Why3 nelle specifiche.
La correttezza del codice viene dimostrata rispetto alle specifiche date, le quali
possono essere errate.
Riporto un esempio. Modellando la specifica della funzione di insert di un vertice,
ho ritenuto necessario scrivere dei lemmi che verificassero il suo comportamento
su certe classi di casi:

val function insertv (v: v) (g: graph) : graph
ensures { result.edges = g.edges }
ensures { result.vertices = Fset.add v g.vertices }

41

(* Inserimento di vertice nel vuoto *)
lemma insertv_empty:

forall g1 g2: graph, v: v. empty_graph g1
→ g2 = insertv v g1
→ memv v g2 ∧ cardinalv g2 = 1

(* Inserimento di vertice in grafo generico, cardinalità maggiore e membership
*)

lemma insertv_memv_cardinalv:
forall g1 g2: graph, v: v, n: int. cardinalv g1 = n ∧ not (memv v g1)
→ g2 = insertv v g1
→ memv v g2 ∧ cardinalv g2 = (n+1)

In questo caso le specifiche erano corrette dall’inizio, però è successa una cosa
interessante. Il primo lemma, è stato dimostrato immediatamente. Il secondo no,
perchè non avevo scritto la condizione not (memv v g1). Il fatto che non venisse
dimostrato mi ha subito fatto venire in mente la condizione mancante. Quindi,
grazie al "test" della specifica, ho pensato ad una caratteristica che non avevo
pensato prima, quindi ho prevenuto dei dubbi che sarebbero venuti più in la.
Attraverso questo lemma ho preso subito coscienza del fatto che questa funzione
era corretta ma poco chiara. L’operazione Fset.add non aggiunge duplicati, quindi
nel grafo non ci saranno nodi duplicati. Però, la funzione è invocabile su un
duplicato. Questo, mi ha portato, in futuro, a cambiare la funzione, aggiungendo
una precodizione:

val function insertv (v: v) (g: graph) : graph
requires { forall u:v. memv u g → u ̸= v }
ensures { result.edges = g.edges }
ensures { result.vertices = Fset.add v g.vertices }

Quando ho dovuto cambiare la funzione (è avvenuto molto tempo dopo la sua
definizione), avevo piena coscienza dei cambiamenti che andavano fatti e perché
andavano fatti, perché ero stato costretto a scovare delle proprietà.

Conclusione

Il modo giusto per testare specifiche è scrivere delle proposizioni che do-
vranno essere dimostrate. Scrivere queste proposizioni risulta anche utile
a dedurre proprietà che probabilmente si riveleranno utili a dimostrazioni
future.

42

Conclusione

Scrivere proposizioni che vengono dimostrate è utile in due sensi: dedurre
e dimostrare proprietà di un problema e ampliare il contesto utile alla di-
mostrazione di risultati futuri.
Capire le prorpietà di un problema è vantaggioso nella prevenzione degli
errori. L’effetto è diretto perché è utile alla programmazione.
Ampliare il contesto è tendenzialmente utile a non perdere tempo nelle
dimostrazioni future. L’effetto è indiretto perché è utile alla modellazione.

5.3.3 Difficoltà nella dimostrazione di lemmi

Stavo specificando la funzione di eliminazione di un vertice. Per testare il con-
tratto della funzione, ho scritto dei lemmi:

val function deletev (v: v) (g: graph) : graph
ensures { result.vertices = Fset.remove v g.vertices }
ensures { result.edges = Fset.filter g.edges (fun (e: e) → src e ̸= v ∧ dst

e ̸= v) }

(* L’eiliminazione di un nodo da un grafo vuoto restituisce un grafo vuoto *)
lemma deletev_empty:

forall g1 g2: graph, v: v. empty_graph g1 → g2 = deletev v g1 →
empty_graph g2

(* Alla cardinalità degli archi va sottratto il grado del vertice eliminato *)
lemma deletev_card:

forall g1 g2: graph, v: v, n: int.
n = cardinale g1 ∧ g2 = deltev v g1
→ cardinale g2 = n - (degree v g1)

Il primo lemma è stato dimostrato, il secondo, non riusciva a essere dimostrato. A
questo punto non sapevo se le specifiche fossero sbagliate, il lemma fosse sbaglia-
to, oppure se i prover non riuscissero a dimostrare questo risultato. Mi sembrava
che il contratto della funzione fosse corretto e che anche il lemma fosse corretto.
Quindi, ho cercato di concentrare i miei sforzi nell’aiutare i prover a dimostrare
questo lemma. Ci sono tanti modi per farlo. Si possono aggiungere dei lemmi (o
assiomi) ausiliari, aggiungere postcondizioni che si ritenevano superflue, utilizzare
delle tecniche di trasformazione opportune, riformulare l’enunciato da dimostrare
o riformulare il contratto della funzione protagonista del risultato. Successiva-
mente, ho provato a usare diverse di queste tecniche, riuscendo a dimostrare una
versione debole dell’enunciato problematico:

43

val function deletev(v: v) (g: graph) : graph
ensures { result.vertices = Fset.remove v g.vertices }
ensures { result.edges = Fset.filter g.edges (fun (e: e) → src e ̸= v ∧ dst

e ̸= v) }
(* Il grado del nodo eliminato è 0 *)
ensures { degree v result = 0 }
(* stesso grado per gli altri nodi *)
ensures { forall u: v. u ̸= v → memv u g → degree u g = degree u result }

lemma deltev_cardinal_vertices_weak:
forall g1 g2: graph, v: v, n: int. n = cardinalv g1 ∧ g2 = deletev v g1
→ cardinale g2 ≤ n

Questo lemma è stato dimostrato, grazie alle postcondizioni inserite. Quando
bisogna unicamente specificare una funzione senza implementazione, per poter-
la usare in altre funzioni, aggiungere troppe postondizioni per dimostrare certi
lemmi rappresenta un rischio. Le postcondizioni, in funzioni prive di implementa-
zioni che dimostrano il contratto, rappresentano degli assiomi. Quindi, allargare
le specifiche di una funzione significa dare per vero più risultati, alcuni dei quali
potrebbero essere falsi. È buona pratica, dato un numero di postcondizioni, ve-
rificare che alcune di queste siano dimostrabili a partire da altre. È un risultato
più solido e meno rischioso.
Ecco un esempio in cui ho scritto inizialmente, intuitivamente, una postcondizione
che sono riuscito a dimostrare successivamente in un lemma:

val function fset_to_list (s: fset ’a) : list ’a
ensures { forall x: ’a. Fset.mem x s → LM.mem x result }
ensures { cardinal s = length result }
ensures { forall x y: ’a. LM.mem x result ∧ Lm.mem y result → x ̸= y }

Ho eliminato la seconda postcondizione, riuscendo a dimostrarla come lemma:

val function fset_to_list (s: fset ’a) : list ’a
ensures { forall x: ’a. Fset.mem x s → LM.mem x result }
ensures { forall x y: ’a. LM.mem x result ∧ Lm.mem y result → x ̸= y }

lemma cardinal_eq_length:
forall s: fset ’a, l: list ’a.

l = fset_to_list s
→ cardinal s = length l

44

5.4 Rifattorizzazione di specifiche

Ci si può rendere conto, a volte, di aver formalizzato dei pezzi di teoria in modo
poco intelligente. Ci si può rendere conto che gli assiomi sono troppo deboli, o
che esprimono proprietà false, o che esprimono proprietà dimostrabili. Può ca-
pitare di aver formalizzato male i tipi su cui si fonda la teoria. Questo è stato
il mio caso. Dopo le prime funzioni, ho provato a clonare la teoria, per comin-
ciare a formalizzare il modulo del grafo che mi sarebbe servito. Inizialmente, gli
archi erano definiti così: type e = (v,v). Per riuscire a formalizzare snippet e
metadati, ho dovuto rendere generico il tipo arco, accedendo agli elementi di un
arco tramite le funzioni src e dst, come definito nella sezione 5.3.1. Così facendo,
ho dovuto rifattorizzare gran parte della teoria creata. Ho dovuto riformulare
lemmi, assiomi, contratti di funzione. Così facendo, ho dovuto ripensare al sen-
so di ogni enunciato, di ogni predicato. È stata un’occasione per rafforzare la
mia conoscenza riguardo i problemi affrontati e per riformulare gli enunciati per
renderli più coerenti. Quando si fa un refactoring della propria teoria, però, si
perde la dimostrazione dei risultati ottenuti e tutti quelli che dipendono da essi.
Quindi, se si riformula, ad esempio, l’ultimo lemma scritto, sarà l’unico risultato
a dover essere ri-dimostrato. Se, invece, riformulo un assioma fondante, che è
definito prima di qualsiasi risultato, dovrò ri-dimostrare tutti i risultati succes-
sivi. Si vede quindi che il refactoring impone uno sforzo non banale. Dovendo
ri-dimostrare, si potrebbe non riuscire a dimostrare dei risultati che era stati già
provati. Oppure potrebbe avvenire il caso opposto. È ciò che è avvenuto nel
mio caso. Nella sezione 5.3.3 spiegavo che non riuscivo a dimostrare la funzione
deletev. Rifattorizzando il codice (per altri motivi), rilanciando i prover, il lem-
ma che prima non veniva dimostrato, è stato provato. Ciò è avvenuto grazie al
fatto che stessi usando uno strumento che utilizzasse prover automatici. In quel
momento non pensavo più al lemma che non riuscivo a dimostrare, pensavo di
occuparmene più tardi. Dovendo lanciare i prover su tutti i goal generati (dato
che avevo rifattorizzato), questi hanno avuto modo di riprovare a dimostrare il
lemma, ottenendo successo. In uno strumento di dimostrazione assistita, ciò non
avviene, perché le dimostrazioni in cui la fattorizzazione non influisce, rimangono
intatte. Quelle in cui influisce, vanno riformulate. I risultati che non si sono
riusciti a dimostrare, rimangono tali. Con i proof assistant si ha più controllo,
quindi, dopo una fattorizzazione, potrebbero non esserci molti cambiamenti, dal
punto di vista dei risultati ottenuti. In un sistema basato su prover automatici,
invece, bisogna sperare che tutto ciò che era stato dimostrato venga confermato.
È un sistema certamente più instabile.

45

Conclusione

Sia M un modulo, che dispone di un insieme di enunciati E.
Sia E1 ⊆ E l’insieme di enunciati dimostrati di M .
Sia M ′ il modulo ottenuto da una rifattorizzazione di M .
Sia E2 ⊆ E l’insieme di enunciati dimostati di M ′.
Allora E2 ⊆ E1 ∨ E1 ⊆ E2 ∨ E2 = E ∨ E2 = ∅.
Ovvero, l’insieme degli enunciati dimostrati dopo la fattorizzazione
potrebbe variare rispetto a quello precedente.

Come descritto, la fattorizzazione è stata necessaria, ed è avvenuta perché ho
provato a clonare la il modulo digraph.mlw nel mio caso specifico, msm_digraph.mlw.
Da qui, ricavo un consiglio.

Consiglio

Se si sta sviluppando un modulo Why3 il cui è scopo principale è essere
clonato (usato), è utile clonarlo (usarlo) in un caso specifico già quando
si ottiene un insieme minimale di funzioni, in modo da poter individuare
prontamente eventuali fattorizzazioni necessarie. Rimandare la fattorizza-
zione è controproducente, perché, tutto il codice accumulato dovrà essere
rifattorizzato.

Questa fattorizzazione è stata molto importante, perché mi ha fatto capire
delle proprietà riguardo a questa attività, ma, soprattutto, mi ha causato dei
grandi problemi, grazie ai quali ho avuto delle esperienze significative, descritte
nel capitolo successivo.

5.5 Teoria inconsistente

La fattorizzazione era avvenuta in un momento in cui stavo sviluppando con-
temporaneamente i moduli digraph.mlw e msm_digraph.mlw, motivo per il quale ho
avuto necessità della rifattorizzazione.
Per testare la coerenza della teoria del grafo specifico del mio progetto, ho pro-
vato a scrivere un lemma che verificasse la presenza di archi che non potevano
esistere:

lemma wrong_relation:
forall g: graph. exists e: e. meme e g ∧ (is_metadata (src e) ∧ is_snippet (

dst e))

46

Quindi, speravo che il lemma non venisse dimostrato. Poi avrei scritto il lemma
opposto, sperando venisse dimostrato, perchè effettivamente, nel grafo, non pos-
sono esserci archi da metadato a snippet. Con mia grande sorpresa, il lemma è
stato dimostrato.
Pensandoci, il lemma non solo non avrebbe dovuto essere dimostrato in questo
contesto, ma non dovrebbe risultare dimostrabile neanche in un contesto senza
gli assiomi che avrebbero dovuto ostacolarlo. Questo perchè è falso a prescindere
che un grafo abbia almeno un arco con sorgente un metadato e destinazione uno
snippet, un grafo può essere vuoto!
Ho scritto la negazione del lemma:
lemma not_wrong_relation:

forall g: graph, e: e. meme e g → (is_metadata (src e) → not (is_snippet (
dst e)))

Veniva dimostrato anch’esso. Ormai, avevo capito che la mia teoria fosse incon-
sistente. Ho sentito una sensazione di fallimento, e sentivo che scovare l’errore
sarebbe stato ancora più umiliante. Ho chiesto aiuto a un LLM, preferivo che fos-
se qualcun’altro (o meglio, qualcos’altro) a scoprire il motivo dell’inconsistenza.
Gemini ha trovato subito il problema, ahimè, era l’assioma fondante della teoria
DiGraph (per fortuna gli avevo fornito anche DiGraph come contesto!). Quello
stesso assioma che pensavo fosse la chiave per dimostrare altri lemmi, in realtà
rendeva la mia teoria inconsistente, creando contraddizioni con altri assiomi pre-
senti successivamente.
L’inconsistenza avviene tra l’assioma edges_well_formed, assolutamente sbagliato
che implica che ci possa essere al massimo un nodo. Tutte le funzioni successive
avevano specifiche che permettevano di avere più di un nodo nel grafo. Le post-
condizioni delle funzioni di cui sono state scritte solo le specifiche rappresentano
degli assiomi. Questi assiomi, quindi, erano in contraddizione con l’assioma prin-
cipale.
Durante la fattorizzazione, avevo appunto cambiato l’assioma fondante commet-
tendo un errore madornale. Di seguito l’assioma che generava l’inconsistenza:
axiom edges_well_formed:

forall v1 v2: v, e: e, g: graph. meme e g ∧ src e = v1 ∧ dst e = v2 ↔ memv
v1 g ∧ memv v2 g

In questo caso, quindi l’LLM ha scovato prontamente l’inconsistenza nella mia
teoria, soprattutto l’errore madornale che era quell’assioma. Questo è rassicu-
rante. Quando si trova un’inconsistenza è già frustrante accettarla e ammetterla,
inizialmente ero riluttante a cercarla. Un LLM può aiutare a superare questi

47

vincoli affettivi che si provano per il proprio codice. Bisogna però notare anche
che ho fornito il codice (incluso l’assioma sbagliato) più volte allo stesso Gemini
o altri LLM per scopi diversi e loro non mi hanno mai segnalato questo errore
gravissimo. Se avessi chiesto qualcosa riguardo un altro lemma ad un umano
mediamente preparato, questi, leggendo l’assioma avrebbe molto probabilmente
segnalato l’errore. Gli LLM cercano sempre di dare una risposta soddisfacente a
ogni domanda, non conoscono/capiscono il vero obiettivo dell’interlocutore.
Sistemato l’assioma, ho trovato altre contraddizioni. Soprattutto, molte delle
contraddizioni trovate, erano in digraph.mlw.
Adesso, volevo trovare un procedimento per riuscire a scovare l’inconsistenza in
modo efficiente. Pensando al modo in cui è stata trovata la prima volta, ovvero
da una contraddizione, ho capito che sarebbe stato molto semplice.
Basta aggiungere, in fondo al modulo, un lemma che semplicemente dichiara il
falso: lemma lemma_false: false.
Se questo verrà dimostrato, avremo la certezza che la teoria sia inconsistente.
Ma nel caso non venga dimostrato? Vuol dire che la teoria è consistente? Po-
trebbe capitare che i prover non riescano a dimostrare il falso, ma che il falso sia
effettivamente un risultato ottenibile nel contesto di riferimento. Allora, si può
avere certezza sull’inconsistenza ma non sulla consistenza della teoria che si sta
costruendo? La risposta alla domanda è sì, non si può essere certi della consi-
stenza della propria teoria. Allora, come si fa? È vero che non si può avere la
certezza, ma si può avere una discreta sicurezza. Mi rendevo conto, che, quando
dimostravo risultati in una teoria inconsistente, questi venivano dimostrati molto
velocemente, così come veniva dimostrato velocemente il falso. Quindi, questo
mi ha fatto avere delle intuizioni sulla natura dei prover automatici, che sono
state confermate dalle documentazioni che spiegano il loro funzionamento. I pro-
ver automatici provano a dimostrare tutto per assurdo, raggiungono i risultati
molto più velocemente. Quindi, quando devono dimostrare il falso, suppongono
il vero e cercano una contraddizione. Questo permette di scovare l’inconsistenza
in modo estremamente veloce. Possono essere rallentati solo dalla larghezza del
contesto. Quindi l’efficienza dei prover nel dimostrare il falso, un fallimento nella
dimostrazione di questo conferisce molta sicurezza sulla coerenza della propria
teoria.

48

Conclusione

Quando il falso viene dimostrato, è certo che la teoria sia inconsistente.
Quando il falso non viene dimostrato, non è certo che la teoria sia
consistente, ma è molto probabile.

Adesso, per capire il punto in cui avviene la contraddizione, basta spostare in
alto il lemma che dichiara il falso, per vedere fino a che punto viene dimostrato.
Quando si troverà un punto in cui non viene dimostrato, vuol dire che, in teoria,
nell’assioma successivo (o specifica di funzione successiva), avviene la contrad-
dizione. Dico in teoria e non sicuramente perché, può capitare, in casi remoti,
che una contraddizione avvenga prima ma venga rilevata solo dopo dei risultati
dimostrati.
Ecco una descrizione più formale. Siano A e B i due assiomi in contraddizione.
Può capitare che quest’ultima non sia evidente, quindi, il falso non venga dimo-
strato. Viene dimostrato un lemma C a partire da B. Il falso viene dimostrato
dopo C. Quindi sembrerà che l’inconsistenza avvenga a causa di C, ma in realtà
C avrà solo palesato la contraddizione tra A e B. A questo punto, se il falso risul-
ta dimostrato dopo un risultato provato, per capire dove avvenga effettivamente
la contraddizione, bisogna intuire come sia stato dimostrato quel risultato.
Trovata, l’inconsistenza, ho dovuto rifattorizzare la teoria, per risolvere le varie
contraddizioni. È curioso notare che una rifattorizzazione aveva generato l’in-
consistenza, dimostrando un risultato che non riusciva a essere verificato: un
lemma su deletev. Successivamente, trovata l’inconsistenza, e rifattorizzata la
teoria per eliminare qualsiasi tipo di contraddizione, deletev è stata dimostrata
correttamente. Da quel momento in poi, ho spesso cercato di scovare inconsi-
stenze inserendo il lemma_false in fondo al modulo. È importante ricordarsi, di
togliere quel lemma, però, quando si è sicuri della consistenza. Altrimenti il falso,
per come è fatto Why3, servirà da contesto per i risultati successivi anche se non
dimostrato.

Consiglio

Per verificare la consistenza della propria teoria, scrivere, nell’ultima riga,
un lemma che dichiari il falso.
Nel caso venga dimostrato, spostarlo in alto finché non venga più a di-
mostrato. Molto probabilmente, l’enunciato successivo, sarà la causa
dell’inconsistenza.

49

5.6 Premeditazione involontaria di funzioni fu-
ture

Scrivendo le specifiche delle prime funzioni del grafo, pensavo già a quelle successi-
ve, quindi scrivere queste risultava più semplice. Scrivendo le successive, pensavo
già alle specifiche del grafo nel mio programma specifico, che è risultato più sem-
plice. Capito come fare queste, pensavo già alle implementazioni delle funzioni
del progetto finale, in che modo sarebbero state implementate sia in Why3 che in
Python. Tutto ciò avveniva mentre facevo altro. Ho quindi sperimentato quanto
sia forte l’attività di specifica in un progetto grande. Invece non ho notato la
potenza delle specifiche quando ho risolto singoli problemi come esercitazione.
Quindi, secondo la mia esperienza, noto che l’attività di specifica possa risulta-
re lunga e tediosa nella soluzione di un singolo problema isolato, può sembrare
anche inutile se la soluzione che si ha in mente dall’inizio si riveli perfetta alla
fine. Quando si crea un programma più complesso, specificare aiuta a pensare al
problema prima di produrre codice che si è riluttanti a buttare. In questo caso,
diventa un’attività molto granulare e soddisfacente. La potenza dell’attività di
specifica sta proprio nel pensare involontariamente alle soluzioni di problemi che
si devono risolvere più avanti e questo avviene solo in contesti in cui il problema
da risolvere è complesso, in cui bisogna fare delle scelte. Ad esempio, al posto di
leggere le specifiche di funzioni che avevo a disposizione, ho dovuto specificarle
per poterle usare, come quella dei successori e dei predecessori in digraph.mlw:

val function edges_srcv (v: v) (g: graph) : fset e
ensures { result = Fset.filter g.edges (fun (p:e) → src p = v) }

val function successors (v: v) (g: graph) : fset v
ensures { result = map (fun (p: e) → dst p) (edges_srcv v g) }

val function successors_list (v: v) (g: graph) : list v
ensures { result = fset_to_list (successors v g) }

lemma members_successors:
forall g: graph, v: v, succ: fset v. succ = successors v g →

(forall u: v. mem u succ ↔ (exists e: e. meme e g ∧ src e = v ∧ dst e = u
))

val function edges_dstv (v: v) (g: graph) : fset e
ensures { result = Fset.filter g.edges (fun (p:e) → dst p = v) }

val function predecessors (v: v) (g: graph) : fset v

50

ensures { result = map (fun (p: e) → src p) (edges_dstv v g) }

val function predecessors_list (v: v) (g: graph) : list v
ensures { result = fset_to_list (predecessors v g) }

lemma members_predecessors:
forall g: graph, v: v, pred: fset v. pred = predecessors v g →

(forall u: v. mem u pred ↔ (exists e: e. meme e g ∧ src e = u ∧ dst e =
v))

Mentre scrivevo gli enunciati di lemmi relativi ho pensato all’implementazione
di una funzione che dovrò svolgere molto più in la, get_siblings (la funzione che
prende i fratelli dei metadati). In fare ciò ero privo di intenzione, in quel momento
il mio unico scopo era di specificare. Questo è solo un esempio, l’implementa-
zione di get_siblings è sicuramente piuttosto semplice, ma questo è avvenuto di
continuo, e, molte delle intuizioni avute, si sono rivelate corrette. Ho pensato
involontariamente alle specifiche e alle implementazioni delle funzioni successive
molto frequentemente. Questo rappresenta un gran vantaggio.
Adesso, questo avveniva nella mia mente e non conosco la mente degli altri. Ri-
porto semplicemente la mia esperienza. Non so se sia così per la maggior parte
delle persone. Ciò non toglie che delle persone in cui questo avvenga ci siano e
quindi credo valga la pena provare, data la potenza del vantaggio.

5.7 Sulla ricostruizione della teoria di networkx.
Una nota sul tempo

Scrivendo l’interfaccia che riguarda i grafi, in modo che abbia circa le stesse funzio-
nalità che sono fornite dalla libreria networkx, bisogna fare un lavoro abbastanza
importante. Ho dovuto scrivere circa 250 righe di specifiche (tra tipizzazione, spe-
cifiche di funzioni, lemmi, assiomi). Nonostante il tempo impiegato sia notevole,
credo ne valga la pena per vari motivi:

• Così facendo si è forzati a conoscere bene la libreria di riferimento, le
funzionalità e gli edge cases sono molto più chiari

• Si deducono, prima di scrivere il programma effettivo, le funzioni che pos-
sono essere utili al programma, prima ancora di svilupparlo

• Si deducono già delle funzioni di servizio che potrebbero servire sia al
programma nel linguaggio finale, che nelle specifiche finali

51

• Il tempo impiegato è ben investito perchè, in un contesto lavorativo, può
essere frequente l’utilizzo della stessa libreria in più progetti. Spesso le
aziende tendono a individuare delle tecnologie di riferimento, quindi for-
malizzare una libreria sarebbe un lavoro che si farebbe solo una volta (al
massimo con degli aggiornamenti sporadici) e che si potrebbe riutilizzare
nei progetti successivi

• Per restare aggiornati su una libreria, nelle nuove release, può essere utile
formalizzare le specifiche delle nuove funzioni piuttosto che leggere sempli-
cemente la documentazione. Spesso capita di affezionarsi a vecchie versioni
di linguaggio o una libreria semplicemente perché ci si è abituati. Dunque
si fa fatica ad integrare le nuove funzionalità nella programmazione di tutti
i giorni. Formalizzare queste funzionalità può aiutare a capirle meglio e
quindi a capirne meglio il potenziale

5.8 Aiutarsi con gli LLM, assiomi al posto di
lemmi

Scrivendo msm_digraph.mlw, ho notato che i prover fanno molta fatica a dimostrare
determinati tipi di lemmi. Spesso non riuscivano a essere dimostrati dei risultati
(piuttosto triviali) sulla cardinalità. Ho deciso di convertire alcuni lemmi in
assiomi (annotandolo nel codice), che poi avrebbero aiutato a dimostrare risultati
successivi. Questo perchè sono molto sicuro che questi siano veri e li ritengo
piuttosto importanti. Inoltre, ho notato che gli LLM non riescono quasi mai ad
aiutare nelle dimostrazioni automatiche (trovando lemmi e proprietà del codice)
ma (soprattutto quelli con deepthinking) sono riusciti spesso a trovare dei miei
errori, se chiedevo esplicitamente di trovarli. Sono fatti per soddisfare la risposta
dell’utente, quindi non scovano quasi mai errori se non chiedo di farlo. Quando
invece chiedo di farlo "si impegnano" in quel compito. Quando hanno trovato
degli errori, ci sono stati due casi:

• Segnalavano dei lemmi falsi quando in realtà erano dimostrati. In questo
caso, le loro segnalazioni erano errate e non mi interessavano (abbastanza
frequente);

• Segnalavano dei lemmi falsi che non erano stati dimostrati. In questo caso ci
sono stati suggerimenti preziosi, riguardo il perchè i lemmi fossero sbagliati
e riguardo incoerenze dell’intera teoria.

52

Quindi, in questo caso, dato che ho individuato dei punti deboli dei prover auto-
matici sul mio contesto, ho deciso di chiedere a 3 LLM diversi (Gemini, Claude,
ChatGPT) cosa ne pensassero riguardo la correttezza di questi lemmi e hanno
tutti dato un riscontro positivo, fornendo una dimostrazione informale.
Questo è un uso molto poco rigoroso di Why3. Si dovrebbe cercare di avere meno
assiomi possibile. Utilizzare gli LLM per dare delle dimostrazioni informali, o
provare a farle autonomamente, su carta, per convincerci della correttezza di un
enunciato, credo si possa fare solo in circostanze particolari:

1. i lemmi che si vogliono convertire hanno delle proprietà in cui i prover fanno
spesso molta fatica;

2. i lemmi che si vogliono convertire sono di fondamentale importanza. Ovve-
ro, sono utili a dimostrare risultati successivi (non deve essere un mero test
di specifica);

3. si scrive (o si legge da un LLM) una dimostrazione informale che ci dà molta
sicurezza sulla correttezza del risultato.

5.9 Corrispondenza tra digraph.mlw e digraph.py

L’applicazione del metodo che avevo ideato nel capitolo 3 ha avuto luogo dopo
molte righe di codice. Ho dovuto prima scrivere digraph.mlw, per poter scrivere
le basi della teoria di msm_digraph.mlw. Inoltre, per poter scrivere codice in modo
organico, prima di scrivere le prime funzioni significative, ho scritto digraph.py.
In digraph.py ho scritto le funzioni che sono state specificate nel corrisponden-
te modulo formale. Quindi ho scritto delle implementazioni nel linguaggio di
programmazione di destinazione, che non erano state dimostrate in Why3. È
avvenuto perché, appunto, digraph.py rappresenta semplicemente un ponte tra la
libreria networkx e il core del mio programma. Le implementazioni delle funzioni
sono estremamente triviali, perché utilizzano una libreria. Le specifiche forma-
li sono state scritte proprio per ricostruire la teoria dedotta dalla libreria. Ad
esempio, la specifica della funzione deletee, è stata scritta così in Why3:

val function deletee (e: e) (g: graph) : graph
ensures { result.edges = Fset.remove e g.edges }
ensures { result.vertices = g.vertices }

L’implementazione Python è questa:

def deletee(self, source_key: str, target_key: str):

53

"""Delete edge from graph."""
if not self.G.has_edge(source_key, target_key):

raise KeyError(f"Attempted to delete non-existent edge (’{source_key}’
-> ’{target_key}’).")

self.G.remove_edge(source_key, target_key)

Così, il programmatore che vorrà capire esattamente le specifiche della funzione
Python, potrà riferirsi al modulo scritto in WhyML.
Dunque le prime implementazioni sensate, scritte in WhyML e tradotte in Py-
thon, hanno avuto luogo in msm_digraph.mlw. Chiaramente, è stato applicato il
metodo desctitto nel capitolo 3.

5.10 Le prime applicazioni del metodo nel pro-
getto

La prima funzione a dover essere implementata è stata quella di inserimento di
uno snippet. Ho quindi scritto la funzione, ho utilizzato una funzione ausiliaria,
di cui ho specificato solo il contratto:

val function insert_metadata_list_for_snippet (s: v) (metadata_list: list v) (
g: graph) : graph

requires { is_snippet s }
requires { memv s g }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = g. vertices }
ensures { forall m: v. LM.mem m metadata_list → exists e: e. meme e

result ∧ src e = s ∧ dst e = m }

let function insert_snippet (s: v) (metadata_list: list v) (g: graph) : graph
requires { is_snippet s }
requires { not (memv s g) }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = Fset.add s g.vertices }
ensures { forall m: v. LM.mem m metadata_list → exists e: e. meme e

result ∧ src e = s ∧ dst e = m }
= let g_s_inserted = insertv s g in

insert_metadata_list_for_snippet s metadata_list g

A questo punto, la correttezza della funzione è stata dimostrata immediatamente.
Si nota che il problema più difficile consiste nella risoluzione della funzione ausi-

54

liaria. Valeva ovviamente la pena implementarla e cercare di dimostrarla, quindi
ho fornito un’implementazione:
let rec function insert_metadata_list_for_snippet (s: v) (metadata_list: list

v) (g: graph) : graph
requires { is_snippet s }
requires { memv s g }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = g. vertices }
ensures { forall m: v. LM.mem m metadata_list → exists e: e. meme e

result ∧ src e = s ∧ dst e = m }
= match metadata_list with

| Nil → g
| Cons m l →

let g_sm_edge = inserte (s,m) g in
insert_metadata_list_for_snippet s l g_sm_edge

end

Di essa, non riuscivo a dimostrare l’ultima postcondizione. Non capivo come
fare. Privo di idee, ho chiesto a ChatGPT e Claude. Entrambi mi hanno dato
una risposta simile, cercavano di aiutarmi aggiungendo delle asserzioni:
let rec function insert_metadata_list_for_snippet (s: v) (metadata_list: list

v) (g: graph) : graph
requires { is_snippet s }
requires { memv s g }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = g. vertices }
ensures { forall m: v. LM.mem m metadata_list → exists e: e. meme e

result ∧ src e = s ∧ dst e = m }
= match metadata_list with

| Nil → g
| Cons m l →

let g_sm_edge = inserte (s,m) g in
let g_final = insert_metadata_list_for_snippet s l g_sm_edge in
begin

assert { exists e: e. e = (s,m) ∧ meme e g_sm_edge ∧ src e = s ∧
dst e = m };

assert { exists e: e. meme e g_final ∧ src e = s ∧ dst e = m };
end

end

Le postcondizioni sono state dimostrate ma il problema è diventato dimostrare
la seconda asserzione. Poi, senza l’aiuto di AI, ho capito fosse opportuno provare

55

a scrivere diversamente le postcondizioni. Dato che avevo notato che i prover
facevano più fatica negli enunciati con il quantificatore esistenziale, ho provato a
riformulare le postcondizioni usando il quantificatore universale. Prima di tut-
to, ho ridimostrato la funzione principale con le nuove postcondizioni di quella
ausiliaria, ed è andata a buon fine. Successivamente, ho provato a dimostrare la
funzione senza asserzioni, convinto che il prover non sarebbe riuscito a dimostra-
re alcune delle postcondizioni, così avrei usato altri assert che avrebbero potuti
aiutarli in queste dimostrazioni. Invece, il contratto della funzione è stato dimo-
strato correttamente, senza asserzioni o lemmi aggiuntivi. Da qui si nota quanto
sia potente e importante l’eleganza con cui bisogna scrivere la logica, e quanto
risulti più facile dimostrare gli stessi concetti formulati diversamente. Di seguito
la versione dimostrata delle funzioni:

let rec function insert_metadata_list_for_snippet (s: v) (metadata_list: list
v) (g: graph) : graph

requires { is_snippet s }
requires { memv s g }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = g.vertices }
ensures { forall e: e. meme e g → meme e result }
ensures { forall m: v. LM.mem m metadata_list → meme (s,m) result }

= match metadata_list with
| Nil → g
| Cons m l →

let g_sm_edge = inserte (s,m) g in
insert_metadata_list_for_snippet s l g_sm_edge

end

let function insert_snippet (s: v) (metadata_list: list v) (g: graph) : graph
requires { is_snippet s }
requires { not (memv s g) }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = Fset.add s g.vertices }
ensures { forall m: v. LM.mem m metadata_list → exists e: e. meme e

result ∧ src e = s ∧ dst e = m }
= let g_s_inserted = insertv s g in

insert_metadata_list_for_snippet s metadata_list g_s_inserted

Da notare che la seconda postcondizione della funzione principale ha mantenu-
to la notazione con l’esiste ed è stata dimostrata ugualmente. Per preservare
coerenze, ho deciso di riformulare anche quella postcondizione, che ripeto essere

56

equivalente.

let function insert_snippet (s: v) (metadata_list: list v) (g: graph) : graph
requires { is_snippet s }
requires { not (memv s g) }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = Fset.add s g.vertices }
ensures { forall m: v. LM.mem m metadata_list → meme (s,m) result }

= let g_s_inserted = insertv s g in
insert_metadata_list_for_snippet s metadata_list g_s_inserted

Il contratto è stato ri-dimostrato con successo.

Conclusione

Per dimostrare la correttezza di un’implementazione, si può:

• aggiungere dei lemmi;

• aggiungere asserzioni;

• modificare l’implementazione stessa;

• riformulare il contratto in un altro equivalente.

Quando non si riesce a dimostrare un risultato, si tende a pensare che:

• bisogna fornire più contesto, aggiungendo lemmi o asserzioni, oppure

• l’implementazione è sbagliata, oppure

• il contratto è sbagliato.

Quando si dimostra con prover automatici, invece, capita spesso che l’uso di pre-
dicati equivalenti, ma scritti in modo diverso, permetta una verifica che prima
non avveniva. Questo è legato al modo in cui funzionano la maggior parte dei
prover automatici basati su logica classica. Intuitivamente, si può pensare al
fatto che dimostrare un risultato basato su un quantificatore esistenziale sia più
difficoltoso rispetto a dimostrarne uno basato su quantificatore universale, perché
nel caso del quantificatore esistenziale, bisogna ottenere un testimone.
Nel dettaglio funziona così. I prover automatici, come detto in precedenza, uti-
lizzano quasi sempre dimostrazioni per contraddizione. Quindi, quando il goal
consiste in: ∀xP (x), vengono svolti questi step da prover:

57

• Viene assunta la negazione dell’enunciato: ¬(∀xP (x))

• L’assunzione viene semplificata con le leggi di De Morgan, ottenendo ∃x(¬P (x))

• Viene applicata una tecnica chiamata skolemizzazione, sostituendo ∃x con
una costante c, ottenendo ¬P (c)

Dimostrare un risultato simile è più semplice perché lo spazio di ricerca è più
basso. Il prover deve solo confrontare la costante ottenuta con altri enunciati
nel contesto, per ottenre una contraddizione. Quando, invece, il goal consiste in:
∃xP (x), vengono svolti questi step:

• Viene assunta la negazione dell’enunciato: ¬(∃xP (x))

• L’assunzione viene semplificata con le leggi di De Morgan, ottenendo ∀x¬P (x)

Non può essere applicata skolemizzazione, quindi il massimo risultato ottenuto
dalla contraddizione è che per qualsiasi cosa nell’universo, P è falso. Per ottenere
una contraddizione, bisogna trovare una costante che renda vera P . Lo spazio di
ricerca può essere grandissimo, spesso infinito.
Mentre, nella dimostrazione di un per ogni, lo spazio di ricerca consiste negli
enunciati, nella dimostrazione di un esiste, lo spazio di ricerca consiste negli
abitanti dei tipi coinvolti. È ovvio che, quasi sempre, il numero di possibili
abitanti di un tipo è estremamente maggiore del numero di enunciati accumulati.

Consiglio

Se possibile, negli enunciati, preferire quantificatori universali a
quantificatori esistenziali.

Questa, è chiaramente una nota negativa sui prover automatici. In genera-
le, dovrebbe bastare riuscire a scrivere delle specifiche corrette, nel modo più
comprensibile possibile. In questo modo, invece, bisogna sviluppare un intuito
sulla formulazione di enunciati, che deve essere corretta, ma in cui la difficoltà di
gestione da parte di prover automatici è una priorità rispetto all’eleganza.

5.11 Cosa fare prima: testare le specifiche o
implementare?

Scrivendo le implementazioni delle funzioni, ho avuto questo dubbio. Cosa è
meglio fare? Quando si scrivono i soli contratti di funzioni, questi si testano con

58

dei lemmi. È l’unico modo. Quando bisogna implementarle, si scrive il contratto,
poi si ha un dubbio: scrivo prima dei lemmi che fungano da test del contratto, o
implemento la funzione direttamente?
Cosa è più giusto fare? Credo che ciò sia dibattibile. Poniamo i due scenari:

• Scrivo prima i lemmi. Sono più sicuro di non dover cambiare le specifiche,
ho più fiducia nella loro correttezza. Quando implementerò la funzione,
sarò molto sicuro del fatto che il contratto non vada cambiato, quindi, se
ci saranno problemi nella dimostrazione, saranno probabilmente nell’imple-
mentazione. Potrebbe capitare, però, che la verifica non avvenga perché le
specifiche sono state formulate in un modo tale che i prover facciano fatica
a maneggiarle. In questo caso andrebbero riformulate, probabilmente anche
i lemmi precedentemente verificati. C’è anche il rischio di scrivere troppi
lemmi inutili, che potrebbero sovraccaricare il contesto e allungare i tempi
di dimostrazione.

• Scrivo prima l’implementazione con le proprietà (asserzioni, invarianti).
L’implementazione può essere vista come una "dimostrazione". Quando
si programma normalmente, è come se il corpo della funzione fosse la di-
mostrazione, da cui si deduce l’enunciato, che non è ben formalizzato dal-
l’intestazione della funzione. Quindi, scritta un’implementazione, che viene
dimostrata rispetto alle specifiche, si è abbastanza sicuri della correttezza
di quest’ultime. Ho sperimentato che quando ho scritto implementazioni
corrette dall’inizio, ero riluttante a scrivere i lemmi, perché mi sembrava
inutile, ero già sicuro della correttezza della funzione, che è l’obiettivo prin-
cipale. Non scrivere lemmi potrebbe portare all’impossibilità di dimostrare
la correttezza di implementazioni future, dato che potrebbero risultare uti-
li. C’è una probabilità, inoltre, che quelle specifiche siano errate, quindi,
oltre ad aver perso tempo, potremmo illuderci di aver scritto una funzione
corretta, quando in realtà è corretta rispetto a specifiche errate, rendendola
inutile.

Conclusione

Quando si scrive codice verificato, è dibattibile se sia giusto scrivere e di-
mostrare direttamente la correttezza di un’implementazione rispetto a un
contratto o scrivere prima delle proprietà derivanti dalle specifiche.

Quindi, come decidere cosa fare, in questi casi? Dipende dalle proprie sensazio-
ni riguardo al problema da risolvere e dalle caratteristiche di quest’ultimo. Ad

59

esempio, un problema può essere molto difficile da implementare ma molto sem-
plice da formalizzare; può avere molte proprietà che derivano dalle sue specifiche,
oppure molto poche. Credo che la scelta vada fatta, per ogni, funzione, in base a
queste caratteristiche e alle proprie capacità nell’implementare funzioni e dedurre
proprietà.

Consiglio

• Se una funzione risulta piuttosto semplice da specificare, non
si intuiscano delle proprietà importanti e si intuisca un’idea di
implementazione, scrivere direttamente il corpo della funzione.

• Se una funzione risulta molto difficile da specificare, scrivere prima
dei lemmi che verifichino il contratto.

• Se una funzione risulta piuttosto difficile da implementare, la causa
di ciò potrebbe variare. Può capitare che si abbiano bene in mente
le proprietà di un problema ma non si sappia bene come sfruttarle,
incapaci di ideare un algoritmo. Oppure, può succedere che non si
abbia idea delle proprietà di un problema ma si abbia in mente una
strategia di risoluzione. Nel primo caso, sarebbe meglio concentrar-
si sull’implementazione, nel secondo potrebbe aiutare la scrittura di
lemmi.

5.12 Sostituire lemmi con postcondizioni in fun-
zioni implementate

Quando le funzioni non sono implementate, è assolutamente raccomandato scri-
vere un contratto minimale e dimostrare le proprietà successivamente. Nel caso le
funzioni vadano implementate, questa raccomandazione non è così forte. Spiego
attraverso una mia esperienza.
Ho scritto una funzione che serve a filtrare una lista di vertici, in una lista di snip-
pet. Ho scritto una sola postcondizione, così poi da scrivere un lemma che venisse
dimostrato di conseguenza. Il contratto della dimostrazione è stato dimostrato
mentre il lemma no:

let rec function filter_snippets_from_vertices (l: list v) : list v
ensures { forall s: v. LM.mem s result ↔ is_snippet s ∧ LM.mem s l }

= match l with
| Nil → Nil

60

| Cons x r → if (is_snippet x)
then Cons x (filter_snippets_from_vertices r)
else (filter_snippets_from_vertices r)

end

lemma filter_snippets_from_vertices_length:
forall l1 l2: list v. l2 = filter_snippets_from_vertices l1 → length l2 ≤

length l1

Al che ho deciso di spostare il risultato del lemma in una postcondizione della
funzione. La postcondizione è stata dimostrata con facilità:

let rec function filter_snippets_from_vertices (l: list v) : list v
ensures { forall s: v. LM.mem s result ↔ is_snippet s ∧ LM.mem s l }
ensures { length result ≤ length l }

= match l with
| Nil → Nil
| Cons x r → if (is_snippet x)

then Cons x (filter_snippets_from_vertices r)
else (filter_snippets_from_vertices r)

end

In questo caso, sono autorizzato a spostare dei lemmi nella postcondizione, perché
questo risultato è stato dimostrato comunque. Se nella scrittura delle specifiche
(quindi funzioni senza implementazioni), le postcondizioni risultano degli assio-
mi, che, oltre a poter essere sbagliati, possono rendere la teoria inconsistente. In
questo caso le postcondizioni vengono dimostrate. È sicuramente un approccio
migliore avere un insieme minimale di postcondizioni, per dimostrare dei lemmi
a partire dal contratto, piuttosto che dal corpo della funzione, però, l’approccio
di aggiunta di postcondizioni, quando la funzione viene implementata, è comun-
que un approccio robusto. Inoltre, questa esperienza evidenzia un altro aspetto.
Usando Why3, prima scrivo le specifiche di una funzione, poi scrivo il corpo del-
la funzione per soddisfare queste specifiche. L’implementazione, però, potrebbe
garantire un’altra serie di proprietà, che altrimenti verrebbero dedotte difficil-
mente. Quindi, il processo di scrittura di una funzione si allarga. Oltre a scrivere
specifiche, scegliere se testarle e nel caso aggiungere lemmi, poi scrivere l’imple-
mentazione con le giuste asserzioni, si aggiunge l’attività di deduzione di proprietà
dall’implementazione, piuttosto che dal problema. Quest’ultima operazione può
essere anche tralasciata, però, dedurre altre proprietà, può risultare utile a dimo-
strazioni successive.
Ad esempio, in questo caso, se dovessi scrivere, successivamente, una funzione a
cui serve sapere length result <= length l per essere dimostrata, questa proprie-

61

tà è stata già dedotta.
Quindi, anche quando il contratto di una funzione non viene dimostrato, può
essere utile, oltre alle strategie già citate, provare a dedurre delle proprietà a par-
tire dalle implementazioni di funzioni precedentemente scritte. Così facendo, si
allarga il contesto.

Conclusione

L’implementazione di una funzione potrebbe avere più proprietà significati-
ve di quelle espresse nelle postcondizioni. Nel caso siano proprietà rilevanti,
sarebbe utile aggiungerle al contratto.

5.13 Implementazioni Python. Traduzione del
codice

Nel codice Why3 ho creato una distinzione tra snippet e metadati ma non ho
modellato i loro campi. Ho deciso che avrebbero complicato l’astrazione inutil-
mente, perché non erano questioni difficili su cui ragionare. O meglio, utilizzare
Why3 non avrebbe aiutato nella creazione di soluzioni migliori, sono questioni
più inerenti al linguaggio che alla logica. Ci sono delle questioni riguardo alla
categoria dei metadati e snippet, però, che risultano importanti e vanno gestite.
Quindi, la scelta di utilizzo di un’astrazione superiore porta uno svantaggio: il
codice scritto in WhyML non è del tutto aderente al codice Python. Però, con-
frontando le funzioni scritte nei linguaggi diversi, risulta molto semplice capire
quali sono i pezzi formalizzati e dimostrati precedentemente e quali no.
Di seguito il codice WhyML:

let function insert_freemetadata (m: v) (g: graph) : graph
requires { is_metadata m }
requires { not (memv m g) }
ensures { result = insertv m g }

= insertv m g

let function insert_metadata (m p: v) (g: graph) : graph
requires { is_metadata m ∧ is_metadata p }
requires { not (memv m g) ∧ memv p g }
ensures { result.vertices = Fset.add m g.vertices }
ensures { result.edges = Fset.add (p,m) g.edges }

= let g_with_m = insert_freemetadata m g in
inserte (p,m) g_with_m

62

E il codice Python:

def insert_freemetadata(self, metadata: Metadata) -> str:
key = self._format_metdata(metadata)

if self.memv(key):
raise KeyError("Metadata already exists")

Convert metadata to dict for storage
data = metadata.model_dump()
self.insertv(data, key)
return key

def insert_metadata(self, metadata: Metadata, parent: Metadata, category:
Category) -> str:

if metadata.category != category or parent.category != category:
raise ValueError(f"Category mismatch: child:{metadata.category},

parent:{parent.category} category to insert:{category}")

new_metadata_key = self._format_metdata(metadata)
parent_key = self._format_metdata(parent)

if not (self.is_metadata(parent_key)):
raise ValueError("Parent metadata doesn’t exist")

if metadata.category != parent.category:
raise ValueError(f"Parent category ({parent.category}) and child

category ({metadata.category}) must match")

if self.memv(new_metadata_key):
raise ValueError("Metadata already exists")

data = metadata.model_dump()
self.insertv(data, new_metadata_key)
self.inserte(parent_key, new_metadata_key, RelationType.METADATA_PARENT)
return new_metadata_key

Nel codice Python si notano una serie di if con delle try-except. È facile notare che
questi corrispondono, insieme al tipaggio pydantic, alle precondizioni in Why3.
Dopo queste "precondizioni", l’implementazione effettiva è molto simile. Si nota
che nel codice Python, c’è un controllo in più, sulla categoria. Notare le differenze
con il codice Why3 risulta semplice, quindi, nel caso di errori, si capisce bene quali
parti sono simili alla formalizzazione e quali no.

63

5.13.1 Espressione non banale di precondizioni

Adattando il codice di una funzione che permette l’inserimento di una lista di
metadati per uno snippet (è la funzione ausiliaria di insert_snippet), ho riscon-
trato una prima versione di conversione di requires a controllo con eccezione non
banale. Di seguito il codice WhyML:

let rec function insert_metadata_list_for_snippet (s: v) (metadata_list: list
v) (g: graph) : graph

requires { is_snippet s }
requires { memv s g }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = g.vertices }
ensures { forall e: e. meme e g → meme e result }
ensures { forall m: v. LM.mem m metadata_list → meme (s,m) result }
ensures { forall m r. metadata_list = Cons m r → meme (s,m) result }
ensures { metadata_list = Nil → (exists m: v. is_metadata m ∧ memv m g ∧

meme (s,m) result) }
= match metadata_list with

| Nil → g
| Cons m l →

let g_sm_edge = inserte (s,m) g in
insert_metadata_list_for_snippet s l g_sm_edge

end

E il codice Python:

def insert_metadata_list_for_snippet(self, snippet_key: str, metadata_list:
List[str]):
if not self.is_snippet(snippet_key):

raise ValueError(f"Snippet {snippet_key} isn’t in db")

for m in metadata_list:
if not self.is_metadata(m):

raise ValueError(f"Metadata {metadata_list} isn’t in db")

match metadata_list:
case []: return
case [m, *l]:

self.inserte(snippet_key, m, RelationType.HAS_METADATA)
self.insert_metadata_list_for_snippet(snippet_key, l)

Come si vede, il controllo sui metadati (presenti e coerenti), è specificato con
un forall. Quindi, in Python avviene il controllo con un ciclo for. Questo viene
da un’implementazione che sia più vicina possibile alle specifiche. Questo risulta

64

però estremamente inefficiente. Dunque si potrebbe pensare che il controllo possa
essere inserito più in basso, prima dell’insirimento dell’arco, mutando la funzione
così:
def insert_metadata_list_for_snippet(self, snippet_key: str, metadata_list:

List[str]):
if not self.is_snippet(snippet_key):

raise ValueError(f"Snippet {snippet_key} isn’t in db")

match metadata_list:
case []: return
case [m, *l]:

if not self.is_metadata(m): # Precondizione spostata
raise ValueError(f"Metadata {metadata_list} isn’t in db")

self.inserte(snippet_key, m, RelationType.HAS_METADATA)
self.insert_metadata_list_for_snippet(snippet_key, l)

Adesso risulta meno evidente la corrispondenza tra la precondizione in WhyML
e il controllo effettuato in Python. A questo punto i commenti giocano un ruolo
fondamentale, sono il mezzo che permettono di distinguere codice implementativo
da quello di controllo (più descrittivo). Da notare che programmando normal-
mente, la differenza tra codice implementativo a controlli è molto più sfocata.
Spesso si scrive prima il codice implementativo per poi scoprire degli errori di
controllo più tardi. Inoltre, viene considerata programmazione l’attività che con-
cerne entrambi i processi (programmazione e specifica), che, in Why3, notiamo
essere distinti.
Da ciò traggo che imparare questo strumento può portare a sviluppare un certo
intuito nel capire che "tipo di programmazione" si sta svolgendo in un determi-
nato momento, così da sviluppare anche una capacità superiore nella scrittura
dei commenti. Ad esempio, sopra l’intestazione di una funzione, si può scrivere
l’equivalente di un contratto Why3, un "enunciato discorsivo" e nell’implemen-
tazione, in corrispondenza di un controllo, scrivere un commento che rimanda a
quell’enunciato. Da notare che i controlli avvengono circa scrivendo un if con
eccezione, dove l’if valuta la negazione di una precondizione.
Si vede che nell’implementazione di una funzione nel mio metodo, avviene un
processo di raffinamento. Si sceglie un’astrazione, da cui deriva la specifica di
una funzione in Why3. Si scrive un’implementazione, la cui correttezza viene
dimostrata rispetto alla specifica. Qui la bisimulazione è rigorosa. Poi si passa
all’implementazione nel linguaggio di destinazione. La bisimulazione qui non è
affatto rigorosa: non c’è un algoritmo per passare da un’implementazione all’al-
tra, oppure una dimostrazione che provi che l’implementazione finale corrisponda

65

all’implementazione Why3.

Conclusione

Si tende ad accomunare processi di natura distinta con lo stesso termine:
programmazione. Attraverso il mio metodo, si impara a separare le attività
in un processo di raffinamento più completo. Dalla specifica ad un’imple-
mentazione coerente dimostrata. Da un astrazione validata al codice nel
linguaggio di programmazione di destinazione.

Ma torniamo al nostro esempio. I più attenti avranno notato un’imprecisione
nell’ultima versione Python proposta per la funzione di inserimento di metadati
per uno snippet. In realtà il controllo proposto non funziona bene, perché nel caso
uno solo dei metadati non fosse presente, voglio che lo snippet non venga inserito
e nessun arco relativo, quindi, il controllo va fatto per tutti i metadati della lista
in input. Nel caso si voglia accettare un risultato parziale, quel codice andrebbe
benissimo. Non era ciò che volevo, quindi ho dovuto cambiare l’implementazione
così:

def _metadata_present_same_cat(self, metadata_list: List[Metadata], category:
Category):

match metadata_list:
case []:

return
case [m, *l]:

if not self.is_metadata(self._format_metdata(m)):
raise ValueError(f"Metadata {m} isn’t in db")

if m.category != category:
raise ValueError(f"Metadata category: {m} doesn’t match

requested category:{category}")
self._metadata_present_same_cat(l, category)

def _insert_metadata_list_for_snippet_rec(self, snippet_key: str,
metadata_list: List[Metadata], category: Category):
match metadata_list:

case []:
return

case [m, *l]:
self.inserte(snippet_key, self._format_metdata(m), RelationType.

HAS_METADATA)
self._insert_metadata_list_for_snippet(snippet_key, l, category)

def _insert_metadata_list_for_snippet(self, snippet_key: str, metadata_list:
List[Metadata], category: Category):

66

if not self.is_snippet(snippet_key): # Precondizione
raise ValueError(f"Snippet {snippet_key} isn’t in db")

self._metadata_present_same_cat(metadata_list, category) # Precondizione

self._insert_metadata_list_for_snippet_rec(snippet_key, metadata_list,
category) # Corpo della funzione

Come si vede, per preservare il controllo in maniera coerente, ho complicato
il codice. Questa complicazione, però, ha permesso una semplificazione nella
funzione madre: insert_snippet. Di seguito il codice WhyML:

let function insert_snippet (s: v) (metadata_list: list v) (g: graph) : graph
requires { is_snippet s }
requires { not (memv s g)}
requires { metadata_list ̸= Nil }
requires { forall m: v. LM.mem m metadata_list → is_metadata m ∧ memv m g

}
ensures { result.vertices = Fset.add s g.vertices }
ensures { forall e: e. meme e g → meme e result }
ensures { forall m: v. LM.mem m metadata_list → meme (s,m) result }
ensures { snippet_metadata_outdegree s result > 0 }

= let g_s_inserted = insertv s g in
insert_metadata_list_for_snippet s metadata_list g_s_inserted

E il codice Python:

def insert_snippet(self, snippet: Snippet, metadata_list: List[Metadata],
category: Category):
if self.memv(snippet.name): # Precondizione

raise ValueError(f"Snippet {snippet.name} already exists")
if len(metadata_list) < 1: # Precondizione

raise ValueError("There should be at least one metadata name")

data = snippet.model_dump(mode=’json’)
self.insertv(data, snippet.name)
self._insert_metadata_list_for_snippet(snippet.name, metadata_list,
category)

Non ho riportato i controlli sui metadati, espressi nelle precondizioni, perché que-
sti vengono già eseguiti nella funzione ausiliaria. Quindi, traducendo, in un caso
ho dovuto complicare una funzione, nell’altro ho potuto semplificarla. Ho otte-
nuto una discrepanza col codice WhyML in entrambi i casi.
Ciò deriva dal fatto che Why3 è comunque un linguaggio, non è pseudocodice.
Quindi è più naturale ragionare con costrutti più vicini a un linguaggio funzio-
nale. Allontanandoci dallo stile nel linguaggio di destinazione rimaniamo fedeli

67

all’implementazione Why3, dimostrata. Quindi sacrifichiamo l’efficienza per ri-
manere conformi a un’implementazione che sappiamo essere dimostrata. D’altro
canto, se siamo coerenti con lo stile del linguaggio di programmazione finale (per-
diligendo leggibilità ed efficienza), tendiamo ad allontanarci dal codice originale
dimostrato Why3, perdendo fiducia sulla correttezza del proprio codice.

5.13.2 Problemi di ottimizzazione

Scrivendo il codice Python, ho provato a essere il più fedele possibile alle imple-
mentazioni scritte in Why3. Quindi ho scritto prevalentemente codice funzionale,
modulare, ho usato molto il costrutto di pattern matching. Ma se questo approc-
cio, garantisse la correttezza del codice, ma ottimizzazioni piuttosto scarse? Per
preservare l’ottimizzazione, credo sia giusto farlo come procedimento separato.
Credo sia giusto avere prima un passaggio in cui si risolva un problema nel modo
più elegante, dimostrabile e modulare possibile, per poi cercare di ottimizzare il
costo computazionale. Quando si vuole risolvere un problema nel modo più otti-
mizzato possibile dall’inizio, si fa spesso l’errore di innamorarsi di una "scorciatoia
computazionale", dimenticando i vincoli a cui deve sottostare un problema. Inve-
ce, se l’ottimizzazione viene trattata come un procedimento separato, si affronta
un problema con molta più consapevolezza. Si ha un’idea molto più ampia dei
vincoli, quindi non si perde tempo di implementazioni la cui idea è sbagliata da
principio, a causa di un errore logico. L’ottimizzazione avverrebbe in maniera
molto più analitica.

5.14 Utilizzo di scorciatoie di linguaggio in WhyML

I linguaggi hanno dei limiti, designati da vincoli. Questi vengono creati per
guidare il programmatore, secondo certe filosofie di sviluppo. Esistono poi, delle
tecniche consigliabili e delle strategie da evitare. Questo avviene in WhyML come
avviene in tutti i linguaggi. In un esempio che riporto, ho utilizzato una strategia
da evitare, che rappresenta una scorciatoia.
Stavo scrivendo una funzione che prenda tutti gli snippet raggiungibili da una
lista di metadati, eccola:

let rec function get_snippets_union (metadata_list: list v) (g: graph) : fset
v

requires { forall m: v. LM.mem m metadata_list → is_metadata m }
ensures { forall m: v. LM.mem m metadata_list → (Fset.subset (

get_all_snippets_from_metadata m g) result) }

68

= match metadata_list with
| Nil → Fset.empty
| Cons m r → Fset.union (get_all_snippets_from_metadata m g) (

get_snippets_union r g)
end

Questa ha un problema, sto utilizzando gli fset, che sono oggetti logici che posso
utilizzare solo in contesti appunto logici (lemmi, postcondizioni, precondizioni,
assiomi e ghost code) e non nel corpo di funzioni eseguibili. Perciò, avevo un
problema di compilazione.
Per rimediare avrei dovuto usare gli applicative sets, un modulo della libreria
standard, che permette di usare la versione degli insiemi eseguibile per codice
classico. Però, per poterli usare, per loro costituzione, dovrei clonare il modulo
sui vertici, per poi poterlo utilizzare. Prima di farlo, ho comunque voluto verifi-
care che il codice fosse corretto, quindi ho segnalato la funzione in questione come
ghost, così da rendere legale l’utilizzo di fset e poter verificare la correttezza della
funzione. Ho riscontrato che la funzione era corretta.
Quindi, adesso, convinto del ragionamento, avrei potuto investire tempo nell’a-
dattamento. In questo caso, però, non l’ho fatto. È un uso errato del linguaggio,
ma non è grave.
Non bisogna mai confondere le funzioni ghost con quelle normali, perché è giusto
separare i due piani. Soprattutto, se si scrive una funzione normale, che si segna
ghost per comodità, questa potrà essere utilizzata solo in contesti ghost, quindi,
le funzioni che la utilizzeranno dovranno essere ghost anch’esse, a cascata. Così
si andrebbero a perdere totalmente tutti i vantaggi che offre il ghost code. Se
in questo caso mi permetto di barare, è perché sono sicuro che la funzione che
ho scritto non verrà utilizzata da altre funzioni. Essa è una funzione finale, che
utilizzerà l’utente e non è utile a nessuna funzione che dovrò implementare in fu-
turo. Sto facendo questo per risparmiare tempo. Quindi questo è un esempio di
scorciatoia illegale ma tollerabile, esplicativo sul grado degli errori. Soprattutto,
se mi sono permesso di farlo, è perché uso Why3 come strumento per ragionare
e validare i miei ragionamenti e non per scrivere codice finale, tradotto automa-
ticamente. In questo caso, utilizzare scorciatoie di linguaggio, preserva efficienza
nella programmazione, permette di non dilungarsi in formalizzazioni poco utili
ai problemi che si vogliono affrontare. L’obiettivo principale è sempre quello di
scrivere codice corretto nel linguaggio di programmazione di destinazione.

69

70

Capitolo 6

Conclusioni

Tutto il lavoro è stato svolto per rispondere ad una necessità: trovare un metodo o
delle approssimazioni che regalassero più fiducia nella scrittura del proprio codice.
Questo è avvenuto, per me. La necessità è stata soddisfatta ma, soprattutto, sono
stati riportati dei mezzi per poter capire al meglio in che modo andrebbe sfruttata
la metodologia proposta, con i suoi vantaggi e le sue limitazioni. Ci sono, però,
ancora delle considerazioni da riportare.

6.1 Considerazione sul tempo e sul codice pro-
dotto

Nel progetto, ho scritto circa 1200 righe di codice Python e 650 righe di codice
Why3. Il codice Why3 potrebbe risultare tanto, considerando che riguarda solo
due moduli su tre. Dunque, è stato scritto circa quanto codice Why3 quanto
quello Python. Si ipotizzerà che ci sia stato uno spreco di tempo. Questo dipen-
de sempre. Nel caso del mio progetto, credo che non ci sia stato uno spreco di
tempo, anzi credo che il tempo investito sia stato di qualità superiore, rispetto a
un normale processo di programmazione. Non mi è capitato quasi mai di dover
modificare codice Python, che è il codice finale, quello più importante. Non ci
sono stati bug impossibili da trovare. Le difficoltà sono state sempre nella riso-
luzione del singolo problema. Il tempo speso a svolgere questo progetto è stato
circa equivalente al progetto svolto nel tirocinio (senza test, usando un databa-
se a grafo con query dichiarative). Il progetto attuale, presentava il vantaggio
di conoscere bene le specifiche, data la similitudine con quello precedente, però
usava una tecnologia molto più difficile da gestire. Qui ho dovuto gestire i grafi
manualmente, nell’altro progetto ho semplicemente dovuto scrivere delle query

71

dichiarative. Inoltre, conoscevo di più il linguaggio usato nel progetto precedente
(typescript) rispetto al linguaggio usato adesso (Python). Nel progetto preceden-
te, come spesso è accaduto, mi è capitato più volte di modificare funzioni vecchie,
inoltre, c’era poco riuso di funzioni. Quindi, il tempo che ho spesso impiegato
cercando di dimostrare delle funzioni qui, scrivendo in un altro linguaggio, nell’al-
tro progetto è stato spesso impiegato nella ricerca degli errori. Nella risoluzione
di un singolo problema, però, il contesto di riferimento è più piccolo. Non riuscire
a dimostrare/specificare/implementare un singolo problema può essere frustrante
ma si sta gestendo un problema singolo. È meno frustrante rispetto a cercare
un errore che può essere in qualsiasi funzione. Spesso cercare un errore in un
programma è come cercare l’ago in un pagliaio, il che è molto frustrante. Questo
influisce sulla produttività del programmatore, la cui lucidità è importantissima
nello sviluppo giornaliero.
Il fatto che il codice Why3 venga dimostrato è importante, ma non credo sia causa
principale della qualità del codice prodotto e del tempo speso. Credo che la causa
principale sia che uno strumento come Why3 impone al programmatore un freno,
egli non può scrivere codice per eseguirlo a più non posso, per accontentarsi di
test su casi isolati.
Il programmatore, quando usa questi strumenti, ha l’obbligo di pensare meglio al
problema in generale e carpirne le proprietà, il che rende molto meno frenetico lo
sviluppo. Con Why3 si è più inclini ad avere un approccio sobrero, rispetto ad un
approccio magician hat. Col primo, si tende a dover capire un problema in modo
più estensivo, le funzioni importanti risultano più semplici da creare, svilupparle
diventa un effetto collaterale dello sviluppo di una teoria coerente.
Normalmente, si è inclini a voler scrivere solo il codice che si ritiene utile, avendo
una scarsa conoscenza sulla teoria su cui si regge il problema che si vuole risolvere.
Alle volte il programmatore è preso dalla frenesia di risolvere problemi, spesso
sottostimati. Mitigare questa frenesia permette di avere un approccio in cui si
capisce un problema e poi si risolve, piuttosto che l’approccio di produrre codice
che risolva un problema il più velocemente possibile. Inoltre, strumenti simi-
li, puniscono molto l’errore. Non vedere il proprio codice dimostrato, permette
di rivalutare molto più facilmente il proprio operato. La sensazione che si ha
quando si lancia un prover è quella di avere un giudice di autorità superiore alla
propria. Così, ci si abitua a vedere i propri errori dall’inizio, quando il codice è
fresco. Grazie a questa esperienza, si normalizza il fatto che si sbaglia di continuo.

72

6.1.1 Sul peso del codice

Utilizzare uno strumento simile col metodo da me ideato, permette di attribuire
un peso al codice che si scrive. Ci sono programmi che richiedono la scrittura
di molte righe di codice ma molto più semplice da scrivere e viceversa. L’uso
di Why3 come strumento per formalizzare determinati pezzi di codice, permette
di attribuire un peso maggiore al codice che si sceglie di formalizzare. Più nel
dettaglio, il peso può essere attribuito in base al livello di astrazione che si sceglie
di dare a una certa formalizzazione. Ad esempio, nel mio progetto, ho scelto di
non astrarre le categorie, perché rappresentavano un problema semplice. Docu-
mentare i livelli di astrazione che si attribuiscono alle formalizzazioni, permette,
a chi leggerà il codice, di capire quale sarà il codice più complicato da capire e
quale meno.

6.2 Integrazione in un contesto aziendale

Se si dovesse decidere di utilizzare un metodo di sviluppo software che si ispira
a quello proposto, si dovrebbe capire come integrarlo in un team di sviluppo che
conosce Why3 e WhyML. Apporterei dei cambiamenti minimi. Ad ogni program-
matore, normalmente, vengono assegnate delle task, più o meno specifiche, più o
meno rigorose. Sulle implementazioni di queste task, andrebbero fatti dei test. I
test vengono fatti normalmente dopo lo sviluppo delle implementazioni, a volte
prima (test driven programming). Why3 porterebbe un cambiamento minimo.
Colui che avrà assegnato la task e il programmatore potrebbero accordarsi sul
sistema di verifica di quella specifica task. Concorderanno se valga la pena mo-
dellare logicamente (e a che livello di astrazione) il problema per dimostrarlo e
poi implementarlo nel linguaggio specifico, senza test; oppure se programmare
nel modo totalmente classico, con verificazione empirica.
Questo permetterebbe di individuare i pezzi di software più adatti ai diversi tipi
di verifica, su cui, nel tempo, si potrebbe sviluppare un certo intuito. Il metodo di
verifica andrebbe concordato perchè si deve adattare non solo alle specifiche del
software ma anche alle capacità e alle caratteristiche del programmatore. Tutti
i programmatori che lavorerebbero ad un software con tecniche di verifica miste
dovrebbero però conoscere entrambi i metodi.

73

6.3 Alla fine? Ne vale la pena?

Questa è una domanda a cui è impossibile rispondere.
È una domanda estremamente personale. Il metodo proposto ha il problema di
avere delle componenti arbitrarie. Il programmatore deve scegliere il livello di
astrazione da usare in Why3 e che funzioni valga la pena implementare. Queste
scelte sono prive di rigore. Il processo è formale solo nello sviluppo delle singole
funzioni. Dunque, le scelte potrebbero rivelarsi, in futuro, poco efficienti o poco
formali. Si potrebbe scegliere un livello di astrazione troppo alto, che trascure-
rebbe troppi dettagli importanti: il raffinamento da WhyML al linguaggio finale
potrebbe non essere affatto scontato, si perderebbero i vantaggi di Why3. Un
livello di astrazione troppo dettagliato potrebbe invece risultare estremamente
complicato da formalizzare e implementare in Why3: si perderebbe troppo tem-
po in formalizzazioni inutili.
Le scelte, quindi, sono fondamentali e determinanti. Non esiste un modo per fare
scelte giuste, questo metodo richiede esercitazione ed esperienza.
Il programmatore che avrà un certo intuito nella scelta di un’astrazione consona
sarà probabilmente avvantaggiato dall’uso anomalo che propongo di Why3. Per
capire se ne valga la pena l’unico modo è provare e analizzare la propria espe-
rienza.
A questo punto, a prescindere dal metodo sviluppato, capire se sia più giusto
utilizzare strumenti come Why3 (seppur a un più alto livello di astrazione) in
alternativa ai test è pressappoco impossibile. Infatti, è poco utile dare una rispo-
sta a questa domanda. Posso rispondere per me, ritengo che per me sia valsa la
pena. Invece, ritengo sia utile che si possa rispondere facilmente alla domanda:
vale la pena provare?
Ho cominciato questo percorso con una scarsa conoscenza in questo ambito. Non
sapevo neanche cosa fosse la logica di Hoare. La documentazione e le risorse erano
scarse. Dunque, tutte le conclusioni riportate sono state dedotte dall’esperienza,
che consisteva nel programmare con l’ausilio di questi strumenti. Grazie a questi
ho capito proprietà sull’attività di programmazione che in tanti anni non avevo
mai capito. Ci sono cose che forse non avrei mai capito, altre che probabilmente
avrei interiorizzato negli anni.
La programmazione è un’attività logica, quindi, utilizzare strumenti che hanno
un approccio logico è essenziale per capire al meglio le insidie che ci sono dietro
ad uno dei processi più complicati a cui ci si può sottoporre.
Quindi ritengo che valga la pena provare a usare strumenti di verifica formale.
Io ho capito che sono adatti alla mia persona, e l’ho capito solo provandolo. Se,

74

in alternativa, ci si vede rallentati con l’uso di questi strumenti, ritengo comun-
que che il loro utilizzo possa essere illuminante per migliorare il proprio stile di
programmazione.

75

76

Bibliografia

[1] François Bobot et al. The Why3 Platform: User Manual. Manuale ufficiale:
riferimento per la sintassi WhyML e la libreria standard. Inria. 2024. url:
https://why3.lri.fr/doc/.

[2] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Manuale di riferimento per TLA+. Addison-
Wesley, 2002.

[3] ClearSy. Atelier B User Manual. Documentazione ufficiale consultata per il
funzionamento del B-Method. ClearSy. 2024. url: https://www.atelierb.
eu/en/documentation-atelier-b/.

[4] Charles Antony Richard Hoare. «An axiomatic basis for computer pro-
gramming». In: Communications of the ACM 12.10 (1969). L’articolo breve
originale che introduce le precondizioni e postcondizioni, pp. 576–580.

[5] The Iris Team. The Iris Project Documentation. Documentazione ufficiale
e tutorial consultati per lo studio del framework Iris. MPI-SWS. 2024. url:
https://iris-project.org/.

[6] Philip Wadler. «Propositions as types». In: Communications of the ACM
58.12 (2015). Una introduzione alla corrispondenza Curry-Howard, pp. 75–
84.

[7] Nikolaj Bjørner, Leonardo De Moura et al. Programming Z3. Guida pratica
e tutorial interattivo per l’uso di Z3 e SMT solvers. Microsoft Research.
2024. url: https://microsoft.github.io/z3guide/.

[8] NetworkX Developers. NetworkX Documentation. Consultata per l’analisi
delle API e la ricostruzione della teoria dei grafi. NetworkX. 2024. url:
https://networkx.org/documentation/stable/.

[9] Alistair Cockburn. Hexagonal Architecture. https://alistair.cockburn.
us/hexagonal-architecture/. Riferimento per la separazione tra logica
core e adattatori esterni. 2005.

77

https://why3.lri.fr/doc/
https://www.atelierb.eu/en/documentation-atelier-b/
https://www.atelierb.eu/en/documentation-atelier-b/
https://iris-project.org/
https://microsoft.github.io/z3guide/
https://networkx.org/documentation/stable/
https://alistair.cockburn.us/hexagonal-architecture/
https://alistair.cockburn.us/hexagonal-architecture/

[10] Anthropic. Model Context Protocol (MCP) Documentation. https://modelcontextprotocol.
io/. Specifiche tecniche per il progetto di tirocinio. 2024.

78

https://modelcontextprotocol.io/
https://modelcontextprotocol.io/

	Introduzione
	Motivazione
	La prima intuizione

	L'individuazione di un primo strumento
	L'esplorazione di altri strumenti
	Caratteristiche di TLA+, Atelier B, Rocq, Iris, Why3
	TLA+
	Atelier B
	Rocq
	Iris
	Why3

	La scelta di Why3

	La piattaforma Why3
	Caratteristiche e funzionamento
	Il linguaggio WhyML
	Studiare Why3
	Il mio uso di Why3

	Le esercitazioni su problemi isolati
	La modalità con cui sono stati svolti
	Gli esempi ufficiali
	Leetcode

	Aiutarsi con gli LLM
	Difficoltà riscontrate nella risoluzione di un problema
	Il problema
	La modalità di risoluzione
	La formalizzazione
	La soluzione
	Una presa di coscienza

	L'ideazione del metodo
	Necessità di sperimentazione su un progetto reale

	Il Progetto
	Requisiti
	Il progetto scelto
	Specifiche

	Il progetto svolto nel tirocinio
	Il progetto svolto per la tesi
	Il diario

	Rielaborazione del diario
	I moduli del progetto
	Uno spunto sull'architettura esagonale
	L'astrazione seguita nel mio progetto

	Comporre o ricostruire teorie?
	Testare le specifiche
	Testare gli assiomi
	Testare i contratti di funzione
	Difficoltà nella dimostrazione di lemmi

	Rifattorizzazione di specifiche
	Teoria inconsistente
	Premeditazione involontaria di funzioni future
	Sulla ricostruizione della teoria di networkx. Una nota sul tempo
	Aiutarsi con gli LLM, assiomi al posto di lemmi
	Corrispondenza tra digraph.mlw e digraph.py
	Le prime applicazioni del metodo nel progetto
	Cosa fare prima: testare le specifiche o implementare?
	Sostituire lemmi con postcondizioni in funzioni implementate
	Implementazioni Python. Traduzione del codice
	Espressione non banale di precondizioni
	Problemi di ottimizzazione

	Utilizzo di scorciatoie di linguaggio in WhyML

	Conclusioni
	Considerazione sul tempo e sul codice prodotto
	Sul peso del codice

	Integrazione in un contesto aziendale
	Alla fine? Ne vale la pena?

	Bibliografia

