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"Percio chiunque ascolta queste mie parole e le mette in pratica,

e simile a un womo saggio che ha costruito la sua casa sulla roccia.
Cadde la pioggia, strariparono i fiumi, soffiarono i venti e si
abbatterono su quella casa, ed essa non cadde, perché era fondata

sopra la roccia.”






Introduzione

L’ubiquita dei sistemi di calcolo moderni e 'eterogeneita delle architetture hard-
ware su cui essi operano impongono, nel panorama dello sviluppo software contem-
poraneo, sfide sempre pitt complesse legate alla portabilita e alla distribuzione del
codice. Il Progetto Debian, da decenni pilastro della comunita open source, fonda la
propria filosofia sulla garanzia di un sistema operativo universale, capace di adattar-
si a molteplici piattaforme hardware mantenendo inalterati standard di stabilita e
sicurezza. In parallelo, il laboratorio e la comunita di Virtualsquare (V?) perseguono
I’ambizioso obiettivo di democratizzare la virtualizzazione, offrendo strumenti che
permettano la creazione di reti e macchine virtuali in contesti privi di privilegi am-
ministrativi.

Il presente lavoro di tesi si colloca esattamente nell’intersezione tra queste due

filosofie, nascendo dall’esigenza concreta di estendere I’accessibilita del progetto ssh-
lirp - un tool innovativo per la connettivita TCP /IP in user-space - a un vasto spettro
di architetture, dai comuni amd64 e arm64, a port piu specifici come riscv64.
La necessita di distribuire binari statici pronti all’'uso per tali architetture, desti-
nati a operare su host remoti eterogenei, ha evidenziato le limitazioni degli approcci
tradizionali alla cross-compilazione, spesso vincolati da pesanti emulazioni di sis-
tema, dipendenze da privilegi root o infrastrutture cloud.

L’elaborato descrive quindi il percorso evolutivo che ha condotto alla proget-
tazione e all'implementazione di Rootless V2CI (Rootless Virtual Square Continuous
Integration), un motore di integrazione continua distribuito, altamente configurabile
e nativamente indipendente da privilegi elevati. Tale sistema non si limita alla mera
automazione della cross-compilazione, ma rappresenta anche un ecosistema comple-
to in grado di gestire il ciclo di vita dei binari, dalla risoluzione delle dipendenze
in ambienti isolati alla loro rotazione e archiviazione, garantendo persistenza, idem-
potenza e sicurezza.

La trattazione dello sviluppo che ha portato a questo risultato é strutturata in un

percorso incrementale che rispecchia le fasi di ricerca e implementazione affrontate.
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Nel primo capitolo verra delineato il contesto tecnologico di origine, introducen-
do l'ecosistema Virtualsquare e il progetto sshlirp. Verranno inoltre analizzate le
motivazioni che rendono necessaria una distribuzione capillare e multi-architettura
di tale strumento, ponendo le basi per i requisiti del progetto.

Il secondo capitolo invece documentera le fasi embrionali del lavoro, focalizzate
sulla pacchettizzazione Debian manuale. Saranno analizzate le criticita emerse dal-
I'uso di Qemu System Emulation per architetture obsolete e la transizione verso un
approccio piu snello basato su Qemu User-Mode Emulation combinato a deboot-
strap. Si argomentera inoltre la scelta di prediligere una soluzione di build locale
rispetto alle pipeline CI cloud-based (come Salsa CI), in virtu di una maggiore ne-
cessita di controllo sulle risorse e persistenza degli ambienti di compilazione.

Il terzo capitolo illustrera il fondamentale passaggio dallo sviluppo manuale al-
lautomazione, attraverso ’analisi dei prototipi sshlirpCI e Rootless sshlirpCI. In
questa sede verranno esposte le soluzioni tecniche adottate per abbattere il vincolo
dei privilegi, sfruttando primitive del kernel Linux quali gli User Namespaces e I’as-
trazione dei permessi fornita da fakeroot. Si analizzeranno inoltre le vulnerabilita di
sicurezza intrinseche all’uso di sudo e system() e come queste siano state superate.

Infine il quarto e ultimo capitolo é dedicato alla maturazione finale del progetto
in Rootless V2CI. Di questo se ne descrivera 'architettura finale, caratterizzata da
un approccio concorrente che vede demoni indipendenti per ogni progetto coordinare
thread di compilazione specifici per architettura. Verranno quindi approfonditi as-
petti implementativi cruciali quali la gestione della concorrenza su risorse condivise,
il meccanismo di disaster recovery per la resilienza dei rootfs, e le politiche di ro-
tazione dei binari. Infine, si presentera l'integrazione del motore di CI con uno stack
ELK (Elasticsearch, Logstash, Kibana) containerizzato, progettato per offrire una
monitorabilita centralizzata e granulare dei processi di build distribuiti, trasforman-
do log grezzi in dashboard visuali intuitive.

Rootless V2CI si propone dunque non solo come soluzione tecnica a un problema
di ingegneria del software, ma come dimostrazione accademica di come sia possibile
orchestrare processi complessi, e solitamente privilegiati, in user-space, coniugando

efficienza computazionale, sicurezza operativa e usabilita.
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Capitolo 1

Contesto di origine: Virtualsquare e

sshlirp

In questo primo capitolo si introdurra il contesto di nascita di Rootless V2CI,
illustrandone motivazioni e necessitd madri e collocando queste all’interno del piu
ampio scenario dello sviluppo software per progetti di virtualizzazione proposto da
Virtualsquare.
In particolare si illustrera la principale origine dello sviluppo del progetto di tesi:
sshlirp. Di questo si esporra il processo di nascita, le caratteristiche e le funzionalita
che ne permettono l'integrazione all’interno dell’architettura Virtualsquare. Inoltre
di quest’ultima verranno descritti gli scopi, i principi e la struttura generale, con par-
ticolare attenzione al suo sottoinsieme di componenti che interagiscono con sshlirp
e quindi per i quali il progetto di tesi é stato originariamente pensato.

[’intento iniziale di Rootless V2CI infatti era quello di dare un contributo al

progetto Virtualsquare attraverso il rilascio di pacchetti multi-architettura di sshlirp.

1.1 Virtualsquare

Virtualquare ¢ definibile e pensabile come un container di progetti, tool e librerie
il cui scopo & quello di permettere la creazione di un ambiente virtuale unificato in
cui sia garantita la comunicazione e l'interazione tra vari componenti quali macchine
virtuali, sistemi operativi in user space e stack di rete [1].
Al coltempo Virtualsquare rappresenta una comunitd open source e un concetto
accademico originato all’interno dell’Universita di Bologna, grazie alla ricerca e allo

sviluppo del fondatore Renzo Davoli.
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1.1.1 Origini di Virtualsquare

L’ambiziosa idea alla base di Virtualsquare fonda le sue origini, nel 2004, sulla
necessita accademica di permettere agli studenti universitari del corso di Laboratorio
di Sistemi Operativi dell’Universita di Bologna, di sperimentare, amministrare e
configurare i propri sistemi operativi in un ambiente virtuale in cui non fossero
richiesti privilegi root e da cui, allo stesso tempo, fosse possibile ’accesso a risorse
di rete reali [2].

Originariamente infatti un sistema Virtual Square (V?) era pensato come un
insieme di macchine virtuali connesse tramite reti virtuali e primariamente come

un’architettura governata da tre caratteristiche fondanti [2|:

e Coerenza di emulazione: il sistema virtuale nel suo insieme doveva compor-
tarsi e apparire a tutti gli effetti come un insieme di host e connessioni di rete
reali, in cui lo strato di virtualizzazione aggiunto causava al pit un overhead

prestazionale che si traduceva in un apparente rallentamento dei device;

e Possibilita di integrazione o isolamento: i vari componenti dell’ecosis-
tema V2 erano pensati sia per comunicare con le reti e i sistemi reali sottostanti
in modo da poter essere integrati in essi consentendo I'accesso a risorse esterne,

che per essere isolati completamente da essi;

e Sicurezza: macchine e reti Virtual Square erano progettate per eseguire come
normali processi utente non privilegiati e per cui la garanzia di corretta co-
municazione con il sistema sottostante era data al pit da configurazioni root-

required sull’host stesso.

Tali regole erano in principio implementate tramite un’ampia infrastruttura che

vedeva 1'uso di host V2 dedicati e di tool per la creazione di reti virtuali.

Host V2

I nodi del network Virtual Square potevano essere implementati tramite vari tipi
di VMs, tra cui [2]:

e User-Mode Linux: questo emulatore non é altro che un kernel Linux ri-
compilato per eseguire come processo utente e per interfacciarsi con le risorse

del sistema host tramite sole system calls; questo tipo di mappatura virtuale
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accesso hardware <— system calls garantisce il funzionamento del kernel vir-
tuale di UML completamente in user-space, senza la necessita di privilegi di
root [2, 3.

e Qemu: un emulatore di macchine open source impiegato sia per I'emulazione
completa di architetture hardware (System Emulation) che per 'esecuzione di
singoli programmi compilati per architetture diverse da quella dell’host (User-
mode Emulation), con conseguente emulazione della CPU. Il cuore di ese-
cuzione di Qemu ¢ il Tiny Code Generator (TCG), un traduttore dinamico di
codice che converte le istruzioni della CPU guest in istruzioni della CPU host,
impiegato sia in modalita System Emulation che in User-mode Emulation. Di
conseguenza, preso singolarmente, Qemu é classificabile come un emulatore
puro e percido come un hypervisor di tipo 2 (hosted). In caso di integrazione
con KVM invece, Qemu permette di accedere a funzionalita di virtualizzazione
hardware rientrando nella categoria degli hypervisor di tipo 1 (bare-metal) e
permettendo full virtualization. Cio, d’altro canto, esclude la possibilita em-
ulazione di CPU diverse da quella dell’host [4, 5|. L’impiego di Qemu nello

sviluppo del progetto Rootless VV2CI ha avuto un ruolo decisivo.

e Bochs: questo storico emulatore puro fornisce un sistema virtuale completo
1386, disponibile su piu piattaforme ed eseguito in user-space. Essendo fondato
su tecniche di interpretazione delle istruzioni CPU standard, Bochs pecca di

prestazioni rispetto alle soluzioni pitt moderne.

e PearPC: un emulatore analogo a Bochs impiegato perd per 'emulazione di
architettura PPC.

e MPS/uMPS: sviluppato per scopi accademici, anche questo host V2 ¢ un

sistema virtuale completo, minimale e leggero.

Reti V?

Tra i tool di networking impiegati per la creazione di reti virtuali V2 vi erano

[2]:

¢ VDE Virtual Distributed Ethernet: un’intera rete virtuale a user-level in
grado di instradare pacchetti ethernet tra macchine virtuali sullo stesso host,
macchine virtuali distribuite, sistemi operativi e, con semplici configurazioni

di rete root-required per 1'utilizzo di interfacce di rete tuntap, anche su host
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reali tramite 'uso di switch, hubs e cavi virtuali. I nodi della rete VDE
erano collegati a questi componenti tramite i vde_plugs. Originariamente gli
host virtuali supportati da VDE erano UML, Qemu, Bochs e MPS/uMPS.

Successivamente ¢ stato aggiunto supporto anche per Virtualbox [1].

e Supporto kernel TUN/TAP: questi device virtuali di rete, implementati
come moduli kernel, permettono la creazione di interfacce di rete virtuali che
operano a livello di link layer (TAP) o di network layer (TUN) e che, anziché
inviare 1 pacchetti alla scheda di rete fisica dell’host, li reindirizzano a processi

utente.

e Slirp: un tool di rete originariamente pensato per permettere a utenti non
privilegiati di accedere da host reali a reti esterne tramite connessione PPP
simulata sopra una semplice connessione da terminale. Slirp, isolando quindi il
traffico di rete del client da quello del server, anticipava gia nel 1995 il concetto
di NAT [6] e acquisiva proprieta che gli avrebbero concesso in un secondo mo-
mento di essere impiegato come stack di rete user-space per macchine virtuali.
F importante sottolineare infine che da slirp é nato, nel Febbraio 2024 grazie
alle idee e allo sviluppo di Renzo Davoli e del team Virtualsquare, il successivo

progetto sshlirp |7], da cui Rootless V2CI prende origine.

1.1.2 Virtualsquare oggi

Dopo piu di 20 anni di ricerca e sviluppo, Virtualsquare non ¢ piu solamente un
insieme di host e connessioni virtuali pensate per scopi didattici, ma rappresenta un
ecosistema completo di tool e librerie open source pensate per la creazione di interi
ambienti virtuali complessi e personalizzabili.

Sebbene infatti i principi esposti nella precedente sezione siano rimasti le fondamenta
delle ambizioni Virtualsquare, i progetti esistenti si sono estesi e nuovi tool sono stati
sviluppati per permettere la creazione di ambienti virtuali sempre pitt complessi e
realistici. Questi obbiettivi appunto sono stati raggiunti attraverso un lungo processo

evolutivo diretto da linee guida di scalabilita, quali [8]:
e Re-use di tool esistenti;
e Modularita e compatibilita;
e Nessun vincolo di architettura richiesta.

In particolare, VDE ha visto l'integrazione di funzionalita innovative e il livello di

virtualizzione conseguibile dagli strumenti Virtual Square ¢ stato dilatato a livello
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di sistema operativo, grazie allo sviluppo di VUQS, e sul piano di networking a livello

applicativo, per mezzo di IoTh.

Gli sviluppi di VDE
I principali progressi di VDE hanno coinvolto aspetti come:

e Compatibilitd di vde plug: come anticipato nella sezione 1.1.1, la possi-
bilita di impiegare il concetto di VDE del plug - che nel tempo ¢ diventato
fondante - si ¢ estesa a piu host virtuali (tra cui VirtualBox) e a nuovi pro-
grammi che implementano stack di rete; inoltre lo stesso vde_plug € stato
integrato nella piu estesa prospettiva di vdeplug4, una libreria C che fornisce
nativamente plug-ins sotto forma di librerie dinamiche per la connessione a un
ampio set di reti virtuali: vde, ptp, tap, vxlan, vxvde e udp; quest’ultime ven-
gono identificate dal plug tramite il cosidetto Virtual Network Locator (VNL),
una stringa che identifica la risorsa virtuale come un URL ¢ in grado di fare

per una risorsa web [9].

e Isolamento e virtualizzazione di rete tramite namespace: grazie allo
sviluppo del nuovo tool vdens, VDE ha acquisito un’ulteriore caratteristica di
isolamento e virtualizzazione di rete, permettendo, tramite I'uso di network
namespaces, la creazione di reti virtuali completamente isolate da quella del-

I’host e collegabili a una rete VDE esistente tramite un VNL condiviso [1, 10].

e Scalabilitad e distribuibilita con vxvde: attraverso il plug-in libvdepl
ug_vxvde, é stata aggiunta la possibilita di connettere nodi VDE posizionati
su host disgiunti - sebbene connessi alla medesima LAN - a reti distribuite
vxvde. Tale tool permette quindi di scalare orizzontalmente le reti virtuali
VDE, estendendone la portata oltre il singolo host fisico, senza la necessita di
host dedicati che espongano switch VDE e implementando quindi il concetto
di Local Area Cloud [1, 11].

e Connettivita tramite libslirp: come anticipato nella sezione 1.1.1, 'impiego
di slirp si € integrato nell’ecosistema VDE grazie al modulo
libvdeplug_slirp, che ha permesso 1'uso dislirp come stack di rete user-space
e router fornitore di NAT, DHCP, DNS e port forwarding che desse connet-
tivita TCP/IP esterna a nodi VDE, grazie alla libreria interna 1ibslirp (e

alla sua versione pin recente libvdeslirp) [1, 12, 13]. Sara poi da questa
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libreria che nascera il progetto sshlirp, su cui fondera le proprie origini lo
stesso Rootless V2CI.

e Incapsulamento e sicurezza con plug-ins innestati: un’ulteriore avan-
zamento per VDE é stato lo sviluppo di plug-ins come vdeplug_agno e
vdeplug_vlan, che permettessero di sommare rispettivamente incapsulamen-
to crittografico e tagging VLAN al normale traffico VDE, garantendo cosi

sicurezza e segregazione del traffico all’interno delle reti virtuali [1].

VUOS

Una delle evoluzioni pitt importanti per il progetto Virtualsquare - sebbene secon-
daria per lo sviluppo di Rootless V2CI - ¢ stata la creazione di VU0S. Questo kernel
modulare e configurabile esegue in user-space, ricordando i concetti introdotti da
UML e introducendo al coltempo innovazione attraverso 'idea di "vista (view)" per
processo o thread. VUQS infatti é interpretabile non solo come filtro e forwarder di
system calls - grazie al suo hypervisor umvu - ma anche come un sistema di gestione
delle risorse che permette di definire viste personalizzate per ogni processo o thread
in esecuzione che si intende virtualizzare [1]. Infatti, per mezzo di moduli quali
vufs, vufuse, vudev e vunet, VUOS aggiunge uno strato di virtualizzazione tra il

processo utente e il kernel host.

IoTh

Un’altra espansione dell’ecosistema Virtualsquare ha visto l'implementazione
dell'innovativa idea di conferire il ruolo di nodo Internet a singoli processi, o ad-
dirittura thread, utente. Questo cambio di prospettiva distribuisce i poteri di vir-
tualizzazione di rete concessi dai tool VDE a livello applicativo: un processo utente
ha ora accesso a uno o piu stack di rete configurabili |1].

Anche questo sviluppo non ¢ direttamente collegato a Rootless V2CI ma rappresenta
comunque un passo avanti verso lo scopo comune di rendere accessibili a utenti e

processi non privilegiati funzionalita di virtualizzazione e networking avanzate.

1.2 sshlirp

Come accennato in precedenza, sshlirp costituisce il principio di avvio del pro-

cesso di sviluppo ed evoluzione che ha portato alla realizzazione di Rootless V2CI.
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Questa tecnologia pone le sue origini nel progetto slirp, di cui si sono gia introdotti

gli scopi.

Slirp: origini e funzionamento

Slirp nasce il 30 Marzo 1995 grazie allo sviluppo di Danny Gasparovski [6], e il
suo scopo era intrinsicamente legato al momento storico delle sue origini.
L’accesso a Internet era principalmente garantito tramite 1'uso di terminali ed era
quindi comune connettersi ai propri account shell su server remoti per avere accesso
alla rete esterna [14]. Cio chiaramente non permetteva ai client di avere un link
diretto alla rete né, conseguentemente, di utilizzare processi TCP/IP direttamente
sul proprio host.
Una semplice connessione PPP (Point to Point Protocol) invece integrava nativa-
mente tali servizi e, se il corrispondente ISP lo prevedeva, poteva essere usata per
accedere a Internet con un proprio indirizzo IP pubblico, permettendo traffico in
entrata senza overhead di NAT o port forwarding.
D’altro canto, I'uso di PPP prevedeva costi maggiori rispetto a una semplice con-

nessione terminale [14, 15].

In tale contesto storico slirp si proponeva come un tool in grado di simulare
una connessione PPP sopra una semplice connessione terminale, permettendo cosi
a utenti non privilegiati di avere accesso a servizi TCP/IP senza la necessita di

sostenere i costi di un vero e proprio link PPP.

In generale un emulatore SLIP/PPP come slirp esegue soltanto sull’host remoto
su cui & quindi richiesta l'installazione dei protocolli TCP/IP. L’host locale invece,
affinché possa comunicare correttamente con 'emulatore, deve integrare nel suo ker-
nel il protocollo PPP [16]. Dati questi requisiti, il client, una volta configurato il
ppp daemon (pppd) affinché utilizzi il canale shell come link di rete, puo effettuare
richieste PPP con la garanzia che 'emulatore sara in grado di catturare e inviare
correttamente i pacchetti fuori sulla Rete. I dati in ingresso invece, con un processo
del tutto simmetrico, vengono catturati dall’emulatore sull’host remoto che si occu-
pera di inviarli sul collegamento SLIP/PPP simulato al client. In questo modo la
Rete continuera a percepire il traffico rete del client come proveniente dal modem
ospitante I’account shell remoto, mentre il client potra utilizzare servizi TCP/IP

come se fosse connesso tramite un vero link PPP [16].
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Chiaramente questo approccio, per quanto innovativo ed economico per I’epoca,
presentava delle grosse limitazioni rispetto a un vero SLIP/PPP link. Ad esempio
il traffico di rete del client, essendo incapsulato all’interno di una connessione ter-
minale, non poteva beneficiare delle ottimizzazioni e delle funzionalita di sicurezza
offerte da un vero link PPP.

Una connessione telnet-like implicava infatti che ogni dato venisse trasmesso in
chiaro, esponendo cosi il traffico di rete del client a potenziali intercettazioni [16].
L’altro profondo svantaggio di un emulatore rispetto un vero SLIP/PPP ¢ che al
client non veniva assegnato nessun indirizzo IP univoco, rendendo impossibile 1'in-
stradamento di traffico in entrata direttamente verso di esso e aggiungendo quindi

un overhead non indifferente [16].

VDE slirp e libslirp

Nonostante le limitazioni appena esposte, 'idea di slirp di fornire connettivita
TCP/IP a utenti non privilegiati ha ispirato, come anticipato nella sezione 1.1.1, lo
sviluppo di 1ibslirp e della sua versione piil recente 1libvdeslirp, mirati a essere

impiegati come stack di rete user-space per nodi VDE.[1].

sshlirp

Dalla fusione delle idee che hanno portato prima alla creazione di slirp, poi
allo sviluppo di VDE e infine di libvdeslirp, nasce sshlirp. Questo semplice tool,
sviluppato a partire dal Febbraio 2024 da Renzo Davoli, unisce |7, 17|:

e l'esigenza di connettivita TCP/IP user-space grazie a connessioni tramite ac-

count shell a host remoti, alla base dell’ambizione di slirp;

e la possibilita di connettere nodi VDE alla rete reale, attraverso socket user-

space, introdotta da VDE attraverso libvdeslirp;
e diffusione, sicurezza e tunnelling SSH per ’accesso remoto a host shell;

sshlirp infatti si basa sull’idea di, dato un tunnel SSH tra un nodo VDE e un
host remoto, e traffico TCP/IP del nodo incapsulato e mascherato sul canale di
STDIN/STDOUT fornito da SSH, decapsulare i pacchetti ricevuti attraverso libvdeslirp,
reindirizzarli allo stack di libslirp e, grazie a quest’ultimo, aprire socket user-space
per comunicare con la rete esterna.

Questo processo permette quindi a un nodo VDE non solo di avere connettivita

TCP/IP esterna senza la necessita di privilegi di root, ma anche di usufruire della
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sicurezza e del tunnelling SSH per un servizio sia di NAT che di VPN [17].

L’uso tipico di sshlirp, che solitamente prevede la creazione di un network names-
pace tramite vdens sul client VDE, é intrinsecamente vincolato alla disponibilita del

binario di sshlirp, pronto all’'uso, sull’host remoto.

1.3 Le origini di Rootless V?CI: il contributo a ssh-
lirp

Oggi Rootless V2CI si propone come strumento altamente configurabile, accessi-
bile e facilmente monitorabile, per 'automazione del processo di build in user space
non privilegiato di binari statici cross-compilati per architetture multiple e progetti
multipli.

Le sue origini pero incarnavano una semplice soluzione alle pill specifiche esigenze
dell’utilizzo di sshlirp, esposte nella precedente sezione.

Nato infatti come progetto di pacchettizzazione per il corso di Sistemi Virtuali del-
I’Universita di Bologna, ha visto un eterogeneo processo di sviluppo che lo ha portato
dal semplice scopo di creare pacchetti multi-architettura di sshlirp, ufficiali e rilas-
ciabili attraverso un package manager affinché fossero facilmente installabili su host
remoti, all’idea di un sistema di CI per sshlirp, mirato alla costruzione rootless di
binari pronti alla copia e all’uso da remoto, fino all’ambizione odierna di un tool
generalizzato e user-friendly per la consegna di binari cross-compilati statici aggior-

nati per progetti multipli.

Rootless V2CI da quindi corpo all’ambizione di contribuire, con uno sviluppo
open source regolato da licenza GPL-2.0, alla trasmissione e diffusione dei progetti
Virtualsquare, permettendone 1'utilizzo distribuito su host remoti e agevolandone
di conseguenza 'espansione da sistema virtuale locale a infrastruttura virtuale de-
centralizzata, dandone un primo esempio con la sua comprovata applicabilita al

progetto di sshlirp.
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Capitolo 2
Pacchettizzazione Debian di sshlirp

La prima fase di sviluppo di Rootless V2CI prende origine, come anticipato,
dalla semplice idea di costruire pacchetti .deb del progetto di sshlirp, per tutti
i principali port Debian, in modo che fosse conseguentemente possibile distribuirli
attraverso un package manager ufficiale e poi installarli facilmente su qualsiasi host
remoto, su cui si volesse utilizzare sshlirp.

Per il raggiungimento di questo scopo € stato quindi avviato un processo di pacchet-
tizzazione Debian manuale e in locale, che si é basato principalmente sull’utilizzo di
Debian Salsa GitLab, gemu e gbp.

Tale processo é stato preferito all’utilizzo di pipeline CI standard e distribuite su
cloud per le motivazioni che verranno esposte nella sezione 2.3.

In questo primo approccio, del tutto "manuale", la priorita é stata centrata sulla pos-
sibilita di una cross-compilazione e di una build dei pacchetti facilmente ripetibile.
Si sono quindi acerbamente impiegati tool standard e di facile utilizzo, trascurando
approcci pit complessi che avrebbero invece garantito il funzionamento anche per

utenti non privilegiati.

Al fine di riassumere e illustrare questo percorso di pacchettizzazione Debian
di sshlirp, ¢ stato realizzato il seguente schema di flusso che include i principali
passaggi di ricerca teorica e sviluppo che hanno condotto dall’obbiettivo iniziale al

raggiungimento di una soluzione ottimizzata.

11
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Obbiettivo di sviluppare Studio dei tool Debian e
pacchetti Debian N Virtualsquare per la

di sshlirp cross-compilati "1 pacchettizzazione: Debian
staticamente Salsa GitLab
£ 1 A4

Documentazione della
struttura dei repository Salsa
e della directory centrale
debian/

Requisito di cross-
compilazione

Requisito di staticita

Composizione della
.| repository Salsa e della

directory debian/ per
sshlirp secondo i requisiti
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Secondo approccio definitivo:
Qemu User-Mode

» Emulation e debootstrap,
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coud-based: Salsa CI
pipelines GitLab

Figura 2.1: Schema di flusso del processo di pacchettizzazione Debian di sshlirp

2.1 Impiego di Debian Salsa GitLab

Come gia fatto per alcuni degli altri progetti firmati Virtualsquare [1], anche per
la distribuzione dei pacchetti di sshlirp si é scelto di impiegare Debian Salsa GitLab.
Questo servizio di hosting GitLab, fornito dalla Debian Foundation, permette la
creazione di repository Git pubblici e privati per progetti open source legati a De-
bian, e offre inoltre un’infrastruttura CI/CD integrata per 'automazione di build,

test e deployment di pacchetti Debian [18].
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Nel caso specifico di sshlirp, Debian Salsa GitLab é stato impiegato principalmente
come repository remoto per il codice sorgente e per la directory debian/ di pacchet-
tizzazione, seguendo le direttive Virtualsquare [1]. Cid ha permesso che il processo
di build incrociata dei pacchetti potesse essere eseguito in locale tramite 'uso, nati-

vamente complementare a Debian Salsa [18], di gbp.

2.1.1 Introduzione a Debian Salsa

Salsa, successore di git.debian.org e Alioth [19], come anticipato ¢ l'istanza
GitLab ufficiale di Debian, ossia il server Git per lo sviluppo collaborativo dei pac-
chetti Debian. Si tratta di una piattaforma su cui i manutentori Debian collaborano,
versionano i sorgenti dei pacchetti, gestiscono merge request, CI, test e altre attivita
legate al processo di pacchettizzazione [18, 19|.

Essendo basata su GitLab Community Edition, fornisce inoltre molte delle caratter-
istiche standard di GitLab (repository Git, merge request, issue), integrandole con
componenti specifici per Debian, come Salsa CI, il sistema di continuous integration
custom per i pacchetti Debian, attraverso la quale i manutentori possono automa-

tizzare la compilazione su pitl architetture [19].

Nel contesto della pacchettizzazione Virtualsquare, Debian Salsa ¢ impiegata
principalmente come servizio di hosting per i repository Git dei progetti, a partire
dai quali si esegue la build locale dei pacchetti Debian con gbp.

Sebbene questa scelta escluda 1'uso delle pipeline CI integrate di Salsa, essa perme-
tte di mantenere il controllo completo sul processo di build e di eseguirlo in ambienti

personalizzati, come verra illustrato nella sezione 2.3.

In generale lo sviluppo Virtualsquare basa il suo processo di distribuzione e
diffusione sull’uso di Debian Salsa GitLab secondo le linee guida esposte dalla Debian
Policy, dalla Debian wiki e nei documenti DEP [1, 21, 22, 23|.

Come viene usata Debian Salsa nel progetto Virtualsquare
Un repository Virtualsquare su Debian Salsa GitLab ¢é strutturato in tre branch
principali [1]:

e upstream: questo branch contiene il codice sorgente originale del proget-
to, ereditabile dal repository ufficiale di sviluppo (che solitamente é loca-

to su GitHub per i progetti Virtualsquare) grazie a un suo puntatore URL


git.debian.org
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(Repository) che puod essere specificato nel file upstream/metadata; infatti
questo branch é pensato per essere aggiornato automaticamente dai sorgenti

originali, senza commit manuali [19];

e debian/sid: questo branch definisce, in aggiunta al codice ereditato da upstream,
la directory debian, contenente una serie di file che regolano il processo di pac-

chettizzazione Debian del progetto [1, 21, 23|;

e pristine-tar: quest’ultimo branch (opzionale per Virtualsquare ma racco-
mandato sia dalla developers reference Debian che dai documenti DEP |23,
24]), contiene un archivio di file binari delta che descrivono come ricostru-
ire il tarball dei sorgenti originale a partire dai file presenti nell’upstream
branch; in sostanza, specificando ’opzione --git-pristine-tar durante I'uso
di git-buildpackage, é possibile rigenerare il tarball “pulito” originale senza

dover conservare una sua versione compressa nel repository Git [24].

I branch dei repository Virtualsquare hostati su Debian Salsa GitLab provengono da
un flusso di lavoro standardizzato per lo sviluppo Virtualsquare, e conforme ai pro-
cessi di pacchettizzazione Debian, che prevede un’esecuzione ordinata di operazioni

preparatorie, compositorie, di debug, di test e infine di upload [1] quali:

1. Creazione di un repository Git pubblico su Debian Salsa GitLab;
Clone del repository ufficiale del progetto (solitamente su GitHub) in locale;
Creazione del branch upstream e push su Debian Salsa GitLab;

Aggiunta e push di tag di versione al branch upstrean;

AN

Creazione del branch debian/sid a partire da upstream e popolamento della

directory debian/ con i file di pacchettizzazione;

6. Debug e test della build dei pacchetti in locale con gbp buildpackage -us
-uc;

7. Creazione del branch pristine-tar e popolamento con i file delta generati;

8. Push di tutti i branch su Debian Salsa GitLab;

Questo processo ordinato € stato meticolosamente seguito anche per la pacchet-
tizzazione di sshlirp, la quale pero, prevedendo il requisito aggiuntivo di cross-
compilazione statica per tutti i port ufficiali Debian, ha richiesto ulteriori accorg-
imenti, per quanto riguarda la composizione della directory debian, come verra
esposto nella prossima sottosezione 2.1.2, e scelte progettuali addizionali per I'emu-

lazione delle architetture target, descritte nella sezione 2.2.
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2.1.2 Sviluppo della directory debian

I file interni alla directory debian che permettono a gbp di eseguire la build di
pacchetti Debian sono molteplici. In particolare, quelli ritenuti fondamentali dalle
linee guida Virtualsquare 1], e quindi impiegati anche per la pacchettizzazione di

sshlirp, sono [22]:

e changelog: scritto in un formato specifico, questo file contiene la cronologia
delle modifiche apportate al pacchetto, con dettagli su ogni versione rilasciata,

come numero di versione, data di rilascio, autore e descrizione delle modifiche;

e control: questo file di testo definisce le informazioni essenziali del pacchetto,
come nome, versione, mantenitore, dipendenze, descrizione e altri metadata;
é cruciale per il corretto funzionamento del package manager durante 'instal-

lazione e la gestione del pacchetto;

e copyright: in questo file vengono specificate le informazioni sul copyright e
la licenza del pacchetto, indicando i diritti d’uso, distribuzione e modifica sia
del software originale del progetto che di quello aggiunto per il processo di

pacchettizzazione;

e rules: questo file di testo, scritto in formato Makefile, contiene le istruzioni per
la compilazione e 'installazione del pacchetto; definisce i comandi necessari per
costruire il software dai sorgenti, installarlo temporaneamente in una directory

di staging e prepararlo per la creazione del pacchetto finale;

e source/format: questo file specifica il formato del pacchetto sorgente Debian
utilizzato, come 3.0 (quilt), che supporta l'uso di patch e altre funzionalita

avanzate per la gestione dei sorgenti;

e compat: in questo file é reperibile la versione utilizzata di debhelper, un tool
di supporto per la creazione dei pacchetti Debian, che implementa in modo

standardizzato molte delle operazioni necessarie alla direzione del processo di
build;

e gbp.conf: questo file di configurazione specifica le impostazioni per

git-buildpackage attraverso diverse sezioni, di cui le rincipali sono [25]:

— [DEFAULT]: questa sezione definisce opzioni che si applicano a tutti i
comandi di gbp, a meno che non vengano sovrascritte dalle sezioni suc-

cessive, specifiche per comando;
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— [buildpackagel: questa sezione sovrascrive le opzioni definite in

[DEFAULT] per il comando gbp buildpackage;
— [import-origl: analogamente alla precedente, questa sezione sovrascrive

le opzioni per il comando gbp import-orig.

e watch: questo file serve a monitorare gli aggiornamenti del software upstream

in modo da poter verificare lo stato di sincronizzazione con le nuove releases
su GitHub;

e <bin>.install: questi file - solitamente in numero corrispondente ai binari
presenti nel pacchetto - specificano quali file devono essere installati e in quali
directory target del pacchetto finale durante il processo di build; mentre il path
di origine relativo alla directory di staging é sempre obbligatorio, il path di
destinazione puo essere omesso, nel qual caso viene "guessato" da dh_install
[26].

Trascurando gli aspetti implementativi dei file changelog, copyright,
source/format, compat, gbp.conf e watch, la cui composizione ha seguito le di-
rettive standard della Debian Policy [22], con la sola aggiunta costumizzata di con-
figurazioni specifiche per l'abilitazione del ramo pristine-tar (in particolare in
gbp. conf), i file pia rilevanti per la pacchettizzazione di sshlirp sono stati control,
rules e sshlirp.install, che sono stati sviluppati tenendo conto dei requisi-
ti specifici del progetto, quali la cross-compilazione per architetture multiple e la

creazione di binari statici.

Requisito di cross-compilazione e sviluppo della directory debian

La necessita di ottenere pacchetti cross-compilati di sshlirp per tutti i port uffi-
ciali Debian - ossia amd64, arm64, armhf, armel, 1386, ppc64el e s390x - affinché
avessero massimo grado di usabilita per lo scopo prefissato del progetto stesso, ha
richiesto, a livello di sorgenti Debian, la sola accortezza di specificare correttamente

Parchitettura target nel file control.

In un contesto di cross-compilazione manuale infatti 'opzione Architecture,
interna al file control e definita nella sezione Package, deve essere impostata al
valore any, non solo per coerenza logica, ma anche per permettere al builder spec-
ificato in gbp.conf di riconoscere correttamente ’architettura target del pacchetto

durante I'installazione senza necessita di cambiamenti ai sorgenti Debian [22].
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Per questo motivo, la sezione Package del file control di sshlirp ¢ stata sviluppata

come segue [22]:

Package: sshlirp
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}
Description: sshlirp creates an "instant VPN"
sshlirp converts a text based shell connection (e.g. ssh[1])

into a VDE virtual private network.

Requisito di staticita dei binari e sviluppo directory debian

Come anticipato nella sezione 1.3, una delle features attese pitt importanti per
i pacchetti di sshlirp consisteva nella staticita dei loro binari, anch’essa intrinsica-
mente legata allo scopo di diffusione e usabilita del progetto.
Questo requisito ha richiesto accortezze pitl sostanziali ai file della directory debian,
derivate da uno studio preliminare delle dipendenze e del processo di compilazione

di sshlirp previsto dal suo CMakeLists.txt originale.

Da questa analisi sono emersi tre punti fondamentali che hanno inciso successi-

vamente sulla scrittura dei file Debian:

1. sshlirp dipende da 1ibglib2.0-dev, libpcre2-dev e libvdeslirp-dev per

la compilazione;

2. 1libvdeslirp-dev dipende dal pacchetto ufficiale libslirp-dev il quale, sebbene
distribuito da Debian, anche nelle releases piti recenti non contiene nativamente

i file .a, ossia gli archivi necessari per il linking statico [27];

3. la compilazione di sshlirp con make genera due binari distinti: sshlirp, cor-
rispondente al binario linkato dinamicamente, e sshlirp-<arch>, il binario

linkato staticamente per 1’architettura host.

Il primo punto ha semplicemente richiesto 'aggiunta delle dipendenze di build al

file control, nella sezione Build-Depends, che ha quindi assunto la seguente forma:

Build-Depends: debhelper (>= 10), cmake, libslirp-dev,
libglib2.0-dev, libpcre2-dev

Cio ha garantito che gran parte delle dipendenze di build fossero installate automati-

camente dal package manager prima dell’inizio del processo di compilazione [22], e



18

2. Pacchettizzazione Debian di sshlirp

che fossero quindi resi disponibili i corrispondenti archivi statici necessari per la fase

di linking di sshlirp.

Il secondo punto invece non ha influito direttamente sulla scrittura dei file De-
bian, quanto sulla fase di build vera e propria, rendendo necessaria la compilazione
manuale e l'installazione preliminare di 1ibslirp per ogni architettura target, in
modo da ottenere gli archivi statici mancanti.

L’immediato effetto di questa necessita non é stato solo 'incremento di complessita
nel processo di cross-build, come verra esposto nella sezione 2.2, ma anche il con-
seguente bisogno di override delle direttive dh_shlibdeps di deb_helper.

Infatti, grazie a quanto emerso dal precedente studio del CMakeLists.txt di sshlirp
e riportato nel terzo punto, € stato possibile compiere la seguente deduzione: dal
momento che gli archivi di 1ibslirp utilizzati sia per il linking dinamico che stati-
co sarebbero stati quelli generati dalla compilazione manuale del progetto stesso, si
sarebbe reso necessario evitare che deb_helper, durante la build dinamica, eseguisse
il check automatico della provenienza delle shared libraries (ossia degli archivi di-
namici .so) appunto attraverso dh_shlibdeps [22|, che, in questo contesto specifico,
sarebbe fallito a causa della "non tracciabilita" di 1ibslirp.so.

Questo blocco funzionale a deb_helper ¢é stato percid implementato nel file

debian/rules attraverso il seguente override:

override_dh_shlibdeps:
dh_shlibdeps --dpkg-shlibdeps-params=--ignore-missing-info

Infine, il terzo punto, derivato dal CMakeLists.txt, ha influito sia sulla scrittura
di debian/rules che di debian/sshlirp.install.
Per quanto riguarda le direttive di build, la conoscenza preliminare della generazione
di due binari distinti ha permesso di escludere I'inserimento di flag per cmake che
avrebbero forzato la compilazione statica globalmente.
Questi infatti, sebbene intuitivamente necessari e aderenti al requisito essenziale
di staticita, avrebbero in realta compromesso la generazione del target dinamico
sshlirp, per il quale non era previsto, nel add_executable corrispondente del
CMakeLists.txt, il linking di simboli Sysprof, da cui dipendeva l'esito della com-
pilazione statica di glib-2.0, inserito comunque come target secondario.
Per questo motivo, il file debian/rules ha assunto la seguente struttura finale,

conforme agli standard Virtualsquare [28]:

#!/usr/bin/make -f
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# output every command that modifies files on the build system.
export DH_VERBOSE = 1

# Enable all hardening options
export DEB_BUILD_MAINT_OPTIONS = hardening=+all

# Compile with multiple jobs in parallel

export DEB_BUILD_OPTIONS = parallel=$(shell nproc)

# Instruct the linker not to include unnecessary shared libraries
export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

# Variables for CMake
CMAKE_FLAGS = -DCMAKE_BUILD_TYPE=RelWithDebInfo

# Use the CMake build system for dh
%
dh $@ --buildsystem=cmake

# Advanced configuration with CMake
override_dh_auto_configure:

dh_auto_configure -- $(CMAKE_FLAGS)

# Specify the installation path
override_dh_auto_install:

dh_auto_install --destdir debian/tmp

# Bypass the dependency provenance check (if I had to manually
# compile a project for a certain architecture, dh will complain)
override_dh_shlibdeps:

dh_shlibdeps --dpkg-shlibdeps-params=--ignore-missing-info

Per quanto riguarda invece il file sshlirp.install, la distinzione tra i due binari
prodotti ha semplicemente permesso di selezionare, in fase di loro installazione nel

pacchetto, il solo binario statico, come segue:

usr/bin/sshlirp-x*
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2.2 Costruzione dei pacchetti sshlirp

Il passo successivo allo sviluppo della directory debian/ ¢é stata 1’esecuzione del
processo di build vero e proprio tramite gbp.
Dopo un primo test di build in locale per I'architettura host (amd64), che ha per-
messo di verificare la correttezza dei file Debian e di debuggare eventuali errori, si &
proceduto alla costruzione cross-compilata dei pacchetti per tutte le altre architet-
ture target che, come anticipato, corrispondevano ai port Debian arm64, armel,
armhf, 1386, mips64el, ppcb4el, riscv64d e s390x.
Per I'esecuzione di questo processo "architetturalmente incrociato", & stato neces-
sario impiegare strumenti di emulazione che, solo in un secondo momento, sono stati
scelti con maggior consapevolezza.
Un primo sviluppo dei pacchetti di sshlirp si ¢ infatti appoggiato sull’uso grezzo di
Qemu System Emulation, che, sebbene molto potente e versatile, si é presto rive-
lato essere una soluzione "over-dimensionata" per lo scopo di una semplice cross-

compilazione.

2.2.1 Approcci iniziali: Qemu System Emulation

Come anticipato nella sezione 1.1.1, Qemu System Emulation permette di emu-
lare interi sistemi hardware, inclusi CPU, memoria, dispositivi di I/O e periferiche,
consentendo ’esecuzione di sistemi operativi completi all’interno di macchine virtu-
ali e fornendo un ambiente isolato per testare e sviluppare software su architetture

diverse da quella host, grazie all'impiego diretto del suo TCG [4].

Inizialmente si é pensato che 'impiego di Qemu System Emulation potesse cos-
tituire una soluzione pratica e ripetibile al problema della cross-compilazione di
sshlirp, in quanto avrebbe permesso non solo di eseguire la build incrociata ma
anche di seguire le pratiche di virtualizzazione documentate da Virtualsquare, che
prediligono odiernamente 1'uso di Qemu come host virtuale [1].

Nonostante cio, durante la costruzione del pacchetto di sshlirp per la particolare ar-
chitettura armel, si é concluso che I'uso di Qemu System Emulation introduceva non
solo un sostanziale overhead in termini di risorse di sistema e tempi di esecuzione,
ma anche una complessita di gestione delle configurazioni e delle dipendenze che
rendeva il processo di build meno agevole e ripetibile, specialmente per port meno

documentati e/o obsoleti.
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Questa prima strategia ¢ stata quindi presto abbandonata dopo la sperimen-
tazione di solo due delle architetture target: armé64 e appunto armel. Infatti, sebbene
I’emulazione e la cross-compilazione per la prima fossero andate a buon fine senza
particolari difficolta, ’architettura armel ha introdotto numerosi ostacoli, per quan-
to riguarda sia la configurazione e 'avvio dell’host Qemu che il processo di build di
sshlirp, dovuti principalmente alla sua obsolescenza e alla conseguente scarsita di
supporto, in particolare per lo scopo di una sua emulazione di sistema.

Nonostante cio, 'esperienza acquisita durante 'impiego di Qemu System Emulation
per queste due architetture ha permesso di affrontare la soluzione successiva con
maggior consapevolezza, in particolare per quanto riguarda le difficolta che si sareb-

bero comunque dovute affrontare per la risoluzione delle dipendenze di build statica.

Per comprendere al meglio i motivi che hanno portato al celere abbandono di
questa prima strategia é bene illustrare:

1. il funzionamento generale dell’avvio di un’emulazione di sistema tramite Qemu,
che ha fatto emergere i primi limiti sostanziali di questo approccio applicato
a port obsoleti;

2. le differenze di emulazione che hanno introdotto al successo del primo tentativo
di emulazione per arm64 e al fallimento del secondo per armel;

3. le difficolta di risoluzione delle dipendenze di build statica riscontrate per il
port piu datato, correlate con l'emulazione di sistema e determinanti nella

scelta di passare a Qemu User-Mode Emulation.

Avvio di un host Qemu

L’avvio di un intero host virtuale Debian per un’architettura specifica attraverso
Qemu, richiede la disponibilita e I'impiego di componenti fondamentali senza i quali

I'hypervisor stesso non si puo avviare [29]:

e Un kernel minimale di una versione Debian specifica, compilato per l'ar-
chitettura target e necessario per 'avvio dell’installer. Questo kernel puo es-
sere fornito sia da un’immagine CD ISO di installazione che direttamente da

un file binario vmlinuz;

e Un initrd (initial ramdisk), ossia un archivio .gz caricato in RAM al mo-
mento dell’avvio del kernel, che contenga gli strumenti e i driver necessari per
I'installazione e il montaggio del filesystem root. Anche questo componente &
derivabile da un’ISO o da un file dedicato;
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e Un metodo di avvio, che puo essere basato su BIOS, UEFI o Direct Linuz

Boot, a seconda dell’architettura target e delle sue specifiche di boot;

e Un’immagine di disco virtuale, che funga da storage primario per I’host
Qemu e sulla quale l'installer scrivera il sistema operativo Debian, dopo le

prime fasi di setup.

Dipendentemente dall’architettura target, la guida ufficiale di installazione Debian
su Qemu [29] suggerisce specifiche per 'avvio profondamente diverse.

Per 'emulazione di architetture moderne e odiernamente supportate il metodo sug-
gerito risiede in una combinazione di ISO netinst + UEFI (EDK II) + qcow2. L’uso
di un’immagine ISO di tipo netinst (Network Install) permette infatti di avviare
un’installazione minimale e personalizzabile del sistema operativo, che scarichi in
fase di setup solo i pacchetti necessari, riducendo cosi i tempi di setup iniziali [30].
Inoltre 'adozione di un sistema di avvio tramite UEFT pittosto che BIOS, consente
un boot piu prestazionale. Per questo motivo, in ambito di emulazione di sistema
Qemu, si sceglie solitamente di installare edk2 di T%anoCore, 'implementazione di
riferimento dell’UEFT sviluppata da Intel®7 e di utilizzarne i file AAVMF_CODE.fd e
AAVMF_VARS . fd - rispettivamente il codice e le variabili del firmware - per I'avvio
della macchina virtuale [31, 32|. Infine, I'uso di un’immagine di disco virtuale in
formato gcow2 offre funzionalita avanzate di allocazione di spazio sparsa, compres-

sione e crittografia, ottimizzando cosi I'uso delle risorse di archiviazione [33].

Un approccio piu tradizionale, suggerito invece per '’emulazione di architetture
pit datate o meno diffuse, prevede una somma di netboot + Direct Linuz Boot +
qgcow2. In questo caso, sebbene I'impiego di un disco virtuale moderno sia comunque
supportato, I'avvio dell’host virtuale Qemu avviene tramite boot diretto del kernel,
ossia caricando direttamente in memoria sia il file vmlinuz che Dinitrd [29, 34|,

seguendo quindi un approccio di tipo netboot.

Ostacoli preliminari per I’avvio dell’host armel e differenze con arm64

L’errata supposizione che un’emulazione di sistema fosse il giusto approccio per
il problema della cross-compilazione di sshlirp é stata sfortunatamente validata dal-
Iiniziale successo della sua applicazione per I’architettura armé4, derivato da un’ese-
cuzione di un processo standardizzato, documentatamente corretto e funzionante per

questo port moderno [29]:
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1. Download dell’immagine ISO: seguendo le linee guida Debian, é stata

scelta un’immagine di tipo netinst;

2. Creazione dell’immagine di disco virtuale: anche per questo punto é

stato seguito il suggerimento di un’immagine qcow2;

3. Installazione di un UEFI arm64 sull’host: qemu-efi-aarch64
di TianoCore EDK II;

4. Installazione del sistema operativo Debian arm64: attraverso il coman-
do gqemu-system-aarch64 si ¢ avviato un processo in cui sono stati selezionati
gli attributi di partizionamento, configurata la rete e installato il software di

base;

5. Avvio della macchina virtuale, clone dei repository e build del pac-
chetto: una volta completata I'installazione dell’OS sull’immagine qcow?2, si
é avviata la macchina virtuale. Al suo interno si é poi dovuto clonare il repos-
itory Git di 1ibslirp per il soddisfacimento del requisito di staticita, come
esposto nella sezione 2.1.2. Dopo la sua conseguente compilazione - con allega-
ta risoluzione di dipendenze innestate - e installazione a livello di sistema dei
suoi archivi statici, si € clonato il repository Debian Salsa GitLab di sshlirp
- costruito come descritto nella sezione 2.1.2 - e si ¢ infine eseguita la build del

pacchetto .deb;

6. Trasferimento del pacchetto tramite port forwarding: una volta gen-
erato il pacchetto .deb di sshlirp, si é proceduto al suo trasferimento sull’host
reale tramite I'uso di scp, abilitato da un port forwarding della porta SSH

della macchina virtuale Qemu verso ’host reale.

L’immediato buon esito di questo piano, ha lasciato spazio al tentativo disinfor-
mato di applicarlo anche all’architettura armel, per cui pero ¢ fallito al punto 4.
Tale insuccesso é stato quindi seguito da una successiva analisi che ha portato alla
luce quanto detto nella sezione precedente.

Infatti, sebbene per tale port datato fossero forniti da Debian sia un’immagine ISO
netinst (per la release bookworm 12.12.0 |35]) che un UEFI compatibile
(gemu-efi-arm [32]), é noto che i kernel Debian per armel non includono il supporto
EFI stub. Un bug Debian nota osserva infatti: “Per avviare un kernel in modalita
UEFI, deve essere compilato con CONFIG_EFI. Ma nessun kernel Debian armel (es.
linux-image-marvell, linux-image-rpi) é costruito con CONFIG_EFI”, rendendo cosi il
GRUB UEFTI per armel praticamente inutilizzabile [36].

Questa conclusione ha logicamente reso necessaria la sostituzione del metodo di avvio
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ISO netinst + UEFI EDK II con la combinazione netboot + Direct Linuz Boot,
che pero ha obbligato al dowonload manuale di un kernel vmlinuz e di un initrd piu
datati. Cio a sua volta ha introdotto difficolta nella risoluzione delle dipendenze di
build di 1ibslirp.

Build statica su armel e interruzione d’uso di Qemu System Emulation

Come osservato nella sezione 2.1.2, le difficolta relative all’adempienza del requi-
sito di staticita si sono concentrate sulla compilazione manuale di 1ibslirp. A sua
volta, una grossa fetta dello svolgimento di questo compito appartiene al caso parti-
colare del tentativo di compilazione di tale libreria per ’architettura armel emulata
con Qemu System Emulation.

Infatti, 'impiego di un kernel e un initrd datati ha portato con sé il limite di un
mirror Debian obsoleto. Cio ha significato il sorgere di innumerevoli conflitti di ver-
sioning tra le dipendenze di 1ibslirp stesso.

Quando ¢ stato evidente che la catena di compilazione manuale delle dipendenze,
necessaria per risolvere tali problemi di versioning, avrebbe assunto dimensioni in-
gestibili per lo scopo di una pacchettizzazione da ripetere per tutti i port Debian,
si & deciso di abbandonare ’approccio basato su Qemu System Emulation in favore
di una strategia pitl leggera e specifica per la cross-compilazione: Qemu User-mode

Emulation.

2.2.2 Impostazione dell’approccio definitivo: uso di Qemu

User-mode Emulation combinato a debootstrap

La scoperta di Qemu User-Mode Emulation ha permesso di superare tutti i
limiti legati alla riproduzione dell’hardware di sistema, concentrandosi invece sul-
I’emulazione di una compilazione per architetture diverse da quella host, aderendo
perfettamente all’ambizione di distribuzione globale di pacchetti statici di sshlirp.
In modalita User-Mode Emulation Qemu infatti non fa altro che tradurre codice
user-space del programma guest in codice equivalente compatibile con il sistema
host, non intervenendo quindi con ’emulazione di sistemi operativi né tantomeno di

hardware [37].
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Intuizione teorica sull’impiego di Qemu User-Mode Emulation

Sostanzialmente, Qemu User-Mode Emulation é stato impiegato per intercettare,
grazie al suo JIT TCG, le chiamate di sistema del programma guest, pensabile per
semplicita come il compilatore binario per sshlirp compilato per un’architettura di-
versa da quella host, mapparle in systemcalls equivalenti sul sistema host (adeguando
endian e formati a 32/64 bit) ed eseguirle direttamente su sshlirp.

Il risultato é stato un binario di sshlirp compilato da un compilatore che traduce
codice sorgente in istruzioni macchina dello stesso tipo delle istruzioni macchina che
lo compongono, ossia un binario di sshlirp cross-compilato per I'architettura dello
stesso compilatore. E cid che ha consentito 1’esecuzione di tale compilatore su un
sistema host di architettura differente é stata proprio '’emulazione a run-tim svolta

da Qemu.

Quindi, assumendo che:
e la notazione Cfg o rappresenti un compilatore scritto in un linguaggio L0 che
traduce codice L1 in codice LO;
e la notazione Ifg rappresenti un interprete scritto in un linguaggio L0 che esegue
codice L1;

e la notazione P rappresenti un programma scritto in un linguaggio L0;

Possiamo ridurre:

e il programma di pacchettizzazione di sshlirp per un’architettura target (e.g.
gbp per armel) a un compilatore Cz,t scritto in linguaggio macchina target che
traduce codice sorgente in codice target;

e il TCG di Qemu a un interprete If, scritto in linguaggio macchina host che
esegue codice target;

e il codice di sshlirp a un programma P?® scritto in linguaggio sorgente;

E infine concludere che il processo di cross-compilazione, esposto poc’anzi, & rapp-

resentabile attraverso la seguente espressione formale:
h t s Dt
It (Cs,t(P )) T P

La validita di questa similitudine si appoggia pero su un tassello fondamentale non

t

ancora introdotto: un ambiente isolato in cui il compilatore C;

, POssa essere eseguito
dall’interprete I? senza conflitti di dipendenze; ossia, parafrasando, un filesystem
minimale Debian in cui il processo di pacchettizzazione incrociata, svolto da gbp,

possa essere mappato dal TCG di Qemu e eseguito correttamente.
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L’impiego di debootstrap

In precedenza, I'ottenimento di un ambiente Debian isolato e di architettura
straniera per la pacchettizzazione incrociata era gid incorporato nella soluzione di
Qemu System Emulation.

Con Qemu User-Mode Emulation invece, la creazione di tale ambiente é stata resa
possibile dall’uso di debootstrap.

Questo strumento - che necessita nativamente di privilegi root - permette infatti
di installare un filesystem Debian minimale in una directory specificata, scaricando
e configurando i pacchetti di base necessari per il funzionamento di un ipotetico
sistema operativo per un’architettura target [38].

Tale processo, nel contesto di "cross-debootstrapping" [38], viene svolto in due fasi

principali:

1. Download ed estrazione dei pacchetti di base con
debootstrap --foreign: debootstrap scarica i pacchetti essenziali
dall’archivio ufficiale specificato, estraendoli nella directory di destinazione da-
ta dall’'utente, e installa nel sistema base una copia del suo stesso programma
che sara utilizzata nella seconda fase; questo primo processo viene eseguito "es-
ternamente" al filesystem in costruzione ed ¢ avviabile attraverso il comando

[39]:

debootstrap --arch=<architettura_target> --foreign

<release> <destinazione> <mirror>

2. Configurazione dei pacchetti e del filesystem con --second-stage: una
volta estratti i pacchetti, debootstrap configura il filesystem minimale, impo-
stando le directory di sistema, i file di configurazione e le dipendenze necessarie
per l'esecuzione di base. Questo passo, a differenza del primo, viene eseguito
"internamente" al filesystem in costruzione in quanto richiede I'esecuzione di
alcuni dei binari estratti per il completamento dell’installazione.

Per questo motivo é necessario copiare preventivamente ’eseguibile di Qe-
mu User-Mode Emulation, corrispondente all’architettura target, all’interno
del filesystem minimale o installare binfmt-support sul sistema host. Questo
semplice tool permette infatti di registrare i binari di Qemu come interpreti per
i file eseguibili di architettura straniera, consentendo cosi ’esecuzione traspar-

ente di tali binari all’interno del filesystem debootstrap-ato [40].
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Una volta predisposto 'ambiente si puo quindi chroot-are in esso per eseguire

infine il comando [39]:

/debootstrap/debootstrap --second-stage

Il risultato di questo iter é un rootfs Debian chroot-able per ’architettura target, che
ha concesso al processo di pacchettizzazione incrociata di sshlirp un ambiente dove
la cross-compilazione potesse eseguire correttamente e piu agevolmente rispetto a

quanto accadeva nei sistemi emulati integralmente con Qemu System Emulation.

Risoluzione delle dipendenze su port datati

Nonostante la compilazione manuale di 1ibslirp e molte delle sue dipendenze sia
rimasta un compito necessario per il soddisfacimento del requisito di staticita, 'uso
di Qemu User-Mode Emulation combinato a debootstrap ha ridotto notevolmente
la "lunghezza" e la "larghezza" della catena di archivi statici .a dipendenti tra loro,
su port datati come armel, armhf e 1386.

Infatti la facilita di setup e utilizzo di questi strumenti, che si é palesata ad esempio
nella possibilita di scegliere intuitivamente I'architettura target, la release e il mirror
oltre che nelle prestazioni di emulazione ottimizzate, ha rivelato anche un alto grado

di supporto e aggiornamento.

2.2.3 Vantaggi rispetto a pbuilder

Un’altra soluzione al problema della cross-compilazione altamente documentata

¢ rappresentata dal wrapper di pbuilder, gemubuilder [41, 42].

pbuilder ¢ lo strumento alla base dello stack di build Debian e permette, appog-
giandosi anch’esso a debootstrap, un processo di pacchettizzazione "pulito", alta-
mente automatizzato e ripetibile con semplici comandi di create, build e update
[41].
Sebbene le avanzate funzionalitd built-in di risoluzione delle dipendenze rendano
questo strumento altamente affidabile, il suo wrapper gemubuilder introduce com-
plessita aggiuntive - quali creazione di un’intera immagine gemu e avvio di un host
virtuale con tanto di kernel e initrd [42]| - che lo etichettano come "ridondante",
anche nella stessa wiki Debian [41], rispetto alla pitt moderna soluzione basata su

Qemu User-Mode Emulation e debootstrap.
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2.2.4 Considerazioni sull’approccio finale

L’adozione di Qemu User-Mode Emulation combinato a debootstrap e chroot
ha sancito il confine tra la fase di sviluppo e testing "manuale" dei pacchetti di
sshlirp e quella di automazione del processo di build incrociata dei binari.
Infatti questo approccio finale estremamente leggero, prestazionale e ripetibile ha
permesso di intravedere la possibilita di automatizzare 'intero processo di cross-
compilazione e delivery dei binari di sshlirp.
La prima soluzione che implementera quest’idea, documentata nel capitolo 3, sara
sshlirpCI. Questa sara poi rimpiazzata dalle successive evoluzioni a causa del suo
limite principale, nato proprio dall’adozione di questo approccio combinato Qemu-
debootstrap-chroot: la necessita di privilegi elevati per 'esecuzione di debootstrap

e chroot.

L’unica alternativa nativamente "rootless" all’uso di questi strumenti sarebbe
stato lo switch da uno sviluppo in locale a uno cloud-based, sfruttando le pipeline
di Continuous Integration di Salsa CI.

Essendo perd questo requisito di "rootlessness" sorto solo in un secondo momento
ben successivo alla fase di pacchettizzazione manuale, lo si é escluso in principio.

Inoltre, anche dopo un confronto a posteriori, sarebbe stata confermata la scelta di
un approccio locale e validata la supremazia - per il caso d’uso specifico - della sua

versione finale Rootless V2CI.

2.3 Confronto tra build in locale e uso delle pipeline
di CI di GitLab

Come anticipato nella sezione 2.1, I'istanza GitLab di Debian, Salsa, fornisce un
sistema di Continuous Integration (CI) che permette di automatizzare il processo di
build, test e deployment dei pacchetti Debian [44].

Questa modernissima tecnologia quindi non mira solo alla costruzione di pacchetti
.deb una tantum, ma consente anche di creare intere pipeline di build che, dalla
fase di commit del codice sorgente fino al rilascio del pacchetto, eseguono in contain-
er Docker [43] in cui Iintero processo, comprensivo dell’installazione dei pacchetti
necessari e della risoluzione delle dipendenze, viene svolto automaticamente sotto le

direttive specificate in un file .gitlab-ci.yml [44].
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Sebbene questo strumento di CI sia il pitl avanzato e largamente impiegato per la

costruzione di pacchetti Debian, come sottolineato nella precedente sezione, si & con-
cluso a posteriori che, per il requisito specifico di costruzione e delivery di pacchetti
cross-buildati staticamente una tantum, un approccio locale rimanesse comunque
preferibile.
Inoltre, le motivazioni che hanno portato a validare la soluzione locale per il sod-
disfacimento dei requisiti di pacchettizzazione, sono rimaste vive anche in presenza
dei successivi requisiti di cross-compilazione statica automatizzata, premiando allo
stesso modo la soluzione finale di Rootless V2CI rispetto a un’ipotetica pipeline di
CI in Salsa.

Tali motivazioni, definibili quindi "globali", sono riassunte di seguito.

2.3.1 Prestazioni

Dal momento che le pipeline di CI in Salsa eseguono il processo di build all’in-
terno di container Docker ospitati su macchine virtuali condivise [43], le risorse di
sistema assegnate a tali container sono limitate e soggette a variazioni in base al
carico del server.

Inoltre, Salsa CI, per ogni fallimento di build, reimposta completamente [’ambiente
di esecuzione del container, costringendo a ripetere l'installazione delle dipendenze
e la configurazione dell’ambiente da zero.

Questo vincolo, in una prima fase di studio e testing del processo di pacchettizazz-
ione, avrebbe rallentato notevolmente il ciclo di sviluppo. Per esempio, al verificarsi
di un semplice fallimento di build causato da frequenti e probabili errori di dipenden-
za e versioning, mentre lo sviluppo locale sarebbe potuto proseguire con compilazioni
iterative, con Salsa CI si sarebbero ottenuti innumerevoli jobs falliti e ampi tempi

di attesa dovuti alla ricostruzione degli ambienti containerizzati.

2.3.2 Monitorabilitd e debugging

La necessita di testare e correggere costantemente il processo di pacchettizzazione
incrociata, al fine di studiarne le pediculiarita e i requisiti specifici per ogni architet-
tura in questa prima fase di build manuale, si traduceva nell’esigenza di reperibilita
e completezza dei log di sistema.

Sebbene Salsa CI fornisca un sistema di logging integrato che consente di visualizzare
i log di build direttamente nellinterfaccia web [44], ’analisi e il debugging di errori

complessi o ricorrenti possono risultare difficili a causa della natura temporanea dei
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container Docker e della limitata esposizione dei log di sistema degli stessi.
La build in locale invece ha portato massimo grado di controllo e monitorabilita,

accellerando e permettendo di affinare il processo di sviluppo.

2.3.3 Re-use delle risorse di build

Come accennato nella sottosezione 2.3.1, la natura effimera dei container Docker
in Salsa CI implica che ogni build inizi con un ambiente "pulito", privo di qualsiasi
pacchetto o configurazione precedentemente installata [44].

Questo non solo rallenta il processo di build, come gia scritto, ma impedisce anche il
riutilizzo di risorse precedentemente configurate, come cache di pacchetti o librerie
compilate.

Nel contesto di sviluppo locale invece, la persistenza dei rootfs debootstrap-ati ha
permesso di ottimizzare 'impiego delle risorse di sistema e di mantenere uno stato di

build coerente tra le diverse iterazioni, senza doverlo rigenerare per ogni insuccesso.



Capitolo 3

sshlirpCI e Rootless sshlirpCI

La seconda fase di sviluppo di Rootless VV2CI ¢ sostanzialmente figlia di un cam-
bio dei requisiti e delle necessita che avevano avviato la prima di pacchettizzazione
e che sono stati soddisfatti dalla corrispondente soluzione finale che ha previsto,
come gia ampiamente discusso, la combinazione tra Qemu User-mode Emulation,
debootstrap e chroot.

Questa espansione di requisiti ha visto quindi una proporzionata e simmetrica espan-
sione della soluzione, la cui forma finale, che ha preso il nome di Rootless sshlirpCI,
ha poi permesso di intravedere la possibilita di un’ulteriore generalizzazione.

L’essenzialita di questa fase intermedia risiede proprio in questo: con sshlirpCI e
successivamente Rootless sshlirpCI, non solo si sono costruite le principali fondamen-
ta del risultato finale introducendo automazione e "rootlessness”, ma si sono anche
modellati i mattoni che compongono 'architettura di Rootless VV2CI. Quest™ultimo

infatti si basera sul concetto di esecuzione sincrona di molteplici processi "Rootless
sshlirpCI - like".

Dal momento che questi due prototipi intermedi sono stati comunque generati
da un lungo processo di progettazione e sviluppo, risulta necessario dare una visione
dall’alto introduttiva del percorso seguito, attraverso il seguente schema. sshlirpCI-
RootlessSshlirpCTRoadMap.drawio.pdf
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Figura 3.1: Roadmap di sviluppo di sshlirpCI e Rootless sshlirpCI

Per fornire una descrizione completa del processo che ha portato allo sviluppo

di questi due motori per la cross-compilazione di sshlirp, ¢ innanzitutto necessario

esporre quali requisiti sono cambiat

precedente.

i e come e quali si sono aggiunti rispetto alla fase
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3.1 I nuovi requisiti e I’evoluzione del contesto

Partendo da sshlirpCI, il contesto non ¢é piu stato focalizzato su uno sviluppo
manuale e su operazioni di testing, debugging e risoluzione delle dipendenze con
lunghe catene di compilazioni in locale; bensi si ¢ evoluto prima nella ricerca di una
soluzione concettualmente aderente ai nuovi requisiti, e dopo nella sua implemen-
tazione.

Partendo quindi dai requisiti sorgente, & possibile descrivere come tale contesto é
passato dal compito di pacchettizzazione di sshlirp alla modellazione di una pri-
ma soluzione, elencando di questi le tre principali differenze rispetto alle necessita

precedenti:

e Compatibilita: dopo un’analisi piu precisa del problema legato alla dis-
tribuzione di sshlirp su host remoti, si é concluso che la produzione di pacchetti
statici anche per architetture obsolete e meno diffuse nel contesto Virtual-
square fosse ridondante e che quindi si rendesse necessaria una riduzione del
numero di port per cui costruire i binari. Per questo motivo si é deciso di
limitare la produzione alle architetture piu supportate di amd64, arm64, armhf
e riscv64. La scelta di escludere in particolare armel ha sollevato il contesto

di sviluppo da molte delle difficolta legate alla risoluzione delle dipendenze.

e Produzione di binari: sempre grazie a un orientamento pitt mirato alla
risoluzione del problema specifico, si é concluso che la costruzione di interi
pacchetti .deb fosse superflua e troppo problematica rispetto a un semplice
processo di cross-compilazione e distribuzione di binari statici.

Questa considerazione é anche figlia del limite imposto da 1ibslirp, di cuisié
discusso nella sezione 2.1.2: essendo il suo archivio statico 1ibslirp.a assente
dal pacchetto Debian ufficiale 1ibslirp-dev, la compilazione "manuale" di
tale libreria e il suo linking statico con sshlirp avrebbero firmato sshlirp stesso
come un pacchetto non affidabile e quindi non distribuibile tramite repository
ufficiali Debian, vanificando cosi lo scopo di una pacchettizzazione standard.

Tale problema invece non sarebbe sussistito per la semplice costruzione e dif-

fusione di binari statici su archivi esterni.

e Automazione: combinando la semplicita e ripetibilita della soluzione basata
su Qemu User-Mode Emulation, debootstrap e chroot con la riduzione del nu-
mero di port e la semplificazione del processo di build, si é potuto intravedere

la possibilita di automatizzare 'intero processo di cross-compilazione e deliv-
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ery dei binari statici di sshlirp.

Quest’idea, di cui la prima finalizzazione sshlirpCI si sarebbe basata principal-
mente sulla semplice trascrizione in script Bash e file C dei comandi eseguiti per
portare a termine il processo di build descritto nella sezione 2.2.2 del capitolo
precedente, ha dato avvio a una nuova fase di sviluppo focalizzata sull’imple-
mentazione di un demone che eseguisse in sequenza e in modo autonomo le
operazioni di cross-compilazione per i port target, operando in una directory
di build, trasferendo i binari finali in una destinazione specifica e verificando la
presenza di eventuali aggiornamenti al codice sorgente di sshlirp ogni intevallo

di durata fornita dall’utente.

E importante sottolineare che, sebbene 'introduzione di questi nuovi requisiti abbia
portato a un’evoluzione sensibile del progetto, la prima risposta a tali necessita non

era stata ancora pensata per un’esecuzione "rootless".

3.2 sshlirpCI: prima automazione root-required

Creazione root-required dei rootfs per port target, chroot privilegiato in essi,
clone dei repository necessari, risoluzione delle dipendenze e compilazione di sshlirp
sono le operazioni presenti nell’insieme intersezione tra lo sviluppo manuale dei
pacchetti svolto in precedenza e l'esecuzione del sistema di continuous integration
implementato da sshlirpCI.

L’idea che risiede alla base di questo motore per la cross-compilazione consiste infatti
nell’ereditare le soluzioni adottate in precedenza, riadattarle in script e programmi C
per soddisfare i requisiti di compatibilita e produzione di binari, e infine orchestrare
I’esecuzione di tali componenti in un demone che operi in un contesto configurabile

dall’utente.

3.2.1 Struttura, funzionaliti e gestione delle risorse

Come accennato in precedenza, sshlirpCI é stato progettato per eseguire le oper-
azioni di cross-compilazione e delivery in background, fornendo diverse funzionalita,

in modo che un utente privilegiato potesse:

e configurare preliminarmente I'esecuzione del demone stesso, specificando di-
versi parametri quali:
— gli URL dei repository Git da cui effettuare il clone iniziale e i pull di

aggiornamento per la produzione dei binari statici di sshlirp;
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— la directory di build in cui sshlirpCI avrebbe debootstrap-ato i rootfs
per ogni architettura richiesta, posizionato i sorgenti e generato i file di
compilazione;

— la directory di destinazione dei binari finali;

e avviare sshlirpCI e delegargli la produzione e I’aggiornamento dei binari statici

di sshlirp;
e interrompere I'esecuzione del demone in modo sicuro e coerente;

e riavviare sshlirpCI con garanzia di idempotenza, ossia con la certezza che
sia in presenza che in assenza di un ambiente gia precedentemente setup-ato,
le funzionalita offerte dal motore di cross-compilazione potessero riprendere

correttamente e restituire 1 risultati desiderati.

Sebbene gli unici punti di contatto tra 'utente finale e sshlirpCI siano rappresen-
tati da quanto descritto poc’anzi, le funzionalita che permettono la sussistenza e la
garanzia di tali punti sono molteplici e articolate.

Per fornire una visione d’insieme di queste, prima di scendere in una loro descrizione
piu dettagliata e focalizzata sull’implementazione delle stesse, ¢ possibile affermare
che l'architettura di sshlirpCI ¢ stata costruita principalmente sui seguenti compo-

nenti e sotto-componenti:

e Il loader della configurazione e il setupper: questo elemento del processo
principale - ossia il processo che esegue per primo dopo 'avvio di sshlirpCI da
parte dell’utente - si occupa di caricare le impostazioni - di cui si & accennato
nel precedente elenco puntato - fornite in un file di configurazione ci.conf
ed utilizzarle, dopo essersi demonizzato, per settare una tantum il "guscio"
dell’ambiente di build che, in sshlirpCI, si assume rimanga persistente ad ogni

ciclo di esecuzione.

e Il loop principale: il cuore di sshlirpCI risiede in questo ciclo infinito che si

occupa periodicamente di svolgere le seguenti operazioni:

— clone o pull dei sorgenti sull’host: in caso di primo avvio di sshlirpCI,
il demone clona i repository specificati nella configurazione all’interno
della directory di build. In caso invece di esecuzione avviata o riavviata
con un ambiente di build gia esistente, sshlirpCI effettua un pull dei

sorgenti per verificare la presenza di nuovi commit al solo codice sorgente
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di sshlirp, trascurando la verifica dello stato di aggiornamento della sua

dipendenza libslirp;

— setupper dei thread builder per ogni port target: internamente al
main loop, se dal componente precedente risulta che siano stati effettuati
dei cambiamenti al codice sorgente di sshlirp, sshlirpCI procede ad avviare
per ogni architettura target un thread builder che si occupera di svolgere
tutte le operazioni cardine necessarie alla cross-compilazione di sshlirp
dentro ambienti chroot. Affinché tale processo sincrono avvenga corret-
tamente per ogni thread, il main dovra costruire preliminarmente anche
una struttura dati da passare ai thread builder, contenente le informazioni

necessarie per la loro corretta esecuzione nei rootfs corrispondenti;

— join dei thread builder e merge concatenato dei log prodotti: una
volta avviati tutti i thread builder, il main attende la loro terminazione in
seguito alla quale procede a raccogliere i log di build prodotti da ciascuno
di essi, concatenandoli in un unico file di log principale salvato nella
directory di build e contenente i log precedentemente prodotti dal resto
dei componenti, in modo da fornire una visione d’insieme completa di

tutte le operazioni svolte in ogni ciclo di build;

— move dei binari finali: infine, una volta completate le operazioni di
build per ogni port target, sshlirpCI si occupa di trasferire i binari statici
prodotti dai thread builder in una sotto-directory "versionata' della di-
rectory di destinazione specificata nella configurazione, sovrascrivendo i
file esistenti e garantendo cosi che per ogni tag del codice sorgente esista

un path che contenga sempre le ultime versioni dei binari;

— sleep e amministrazione dei segnali di interruzione: essendo, come
anticipato, prerequisito essenziale per sshlirpCI la possibilita di essere
interrotto in modo sicuro e coerente, durante il conclusivo ciclo di sleep
tra un’iterazione e ’altra del main loop, il demone si predispone a ricevere

segnali di interruzione da parte dell’'utente.

e I thread builder: questi componenti innestati nel cuore del flusso di ese-
cuzione del main loop, si occupano di svolgere idempotentemente per ogni

port target le operazioni ordinate di:

1. creazione del rootfs debootstrap-ato per I'architettura specifica, qualora

non fosse gia presente nella directory di build, in caso di primo avvio;
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2. creazione, se non gia esistenti, delle directory e dei file di build all’interno
del rootfs corrispondente, contestualmente alla prima iterazione del main

loop;
3. copia dei sorgenti di sshlirp e libslirp all’interno dell’ambiente chroot;

4. installazione delle dipendenze necessarie e cross-compilazione di libslirp

e sshlirp internamente al rootfs chroot-ato;
5. rimozione dei sorgenti di copia dal rootfs una volta completata la build.
Al fine di riassumere ed esporre graficamente 'architettura di sshlirpCI, é stato

realizzato il seguente diagramma rappresentante le componenti principali e le loro

interazioni:
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Figura 3.2: Diagramma architetturale di sshlirpCI

A partire da questa descrizione generale é possibile scendere nella delineazione

di alcuni aspetti implementativi fondamentali che permettono il corretto funziona-

mento dell’intero sistema e 'interazione tra i componenti rappresentati.

In particolare si analizzeranno:
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e i meccanismi di loading delle variabili di configurazione;

e il funzionamento del sistema di logging che ha ispirato I'importante espansione

lato monitoring in Rootless V2CI;
e il sistema di versioning adottato per la gestione e il delivery dei binari finali;

e i meccanismi di comunicazione con cui i thread builder amministrano 1’'uso
delle risorse di sistema e quello con cui interagiscono in fase di setup e ritorno

con il main loop;

e il metodo di gestione dei segnali di interruzione per I'arresto sicuro e coerente

del demone;

e 'approccio adottato per 'esecuzione di operazioni direttamente sul filesystem

host e su quelli chroot-ati.

Loading delle variabili di configurazione e setup

SshlirpCI, come anticipato, basa la sua esecuzione su alcuni parametri di config-
urazione che ne modellano il comportamento e le risorse impiegate.
Infatti, per motivi di utilizzo delle risorse di sistema, monitorabilita, correttezza di
funzionamento e grado di compabilitd e aggiornamento, 'utente ha il compito pre-

liminare - all’avvio del demone - di specificare nel file ¢i.conf i seguenti parametri:

# Gli URL dei repository Git da cui effettuare il clomne

# iniziale e i pull di aggiornamento:
SSHLIRP_REPO_URL=https://github.com/virtualsquare/sshlirp.git
LIBSLIRP_REPO_URL=https://gitlab.freedesktop.org/slirp/libslirp.git

# La directory di build in cui si desidera che sshlirpCI crei
# 1 rootfs, posizioni i sorgenti e salvi i log:

MAIN_DIR=/home/sshlirpCI

# I1 file di versioning che si desidera venga utilizzato per
# tenere traccia delle versioni dei binari prodotti:

VERSIONING_FILE=/home/sshlirpCI/versions.txt

# Rispettivamente, la directory target in cui i thread builder
# posizioneranno provvisoriamente i binari all’interno deil rootfs
# chroot-ati (indicata con path relativo al rootfs), e la directory

# dell’host in cui si desidera che sshlirpCI esponga 1 binari finali:
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THREAD_CHROOT_TARGET _DIR=/home/sshlirpCI/thread_binaries
TARGET_DIR=/home/sshlirpCI/binaries

# Le directory dell’host in cui si voglia che sshlirpCI
# salvi 1 sorgenti:
SSHLIRP_SOURCE_DIR=/home/sshlirpCI/sshlirp
LIBSLIRP_SOURCE_DIR=/home/sshlirpCI/libslirp

# I1 file di log principale, su cui sshlirpCI concatenera’ i
# log di tutti i componenti:

LOG_FILE=/home/sshlirpCI/log/main_sshlirp.log

# A scopo di monitoring a run-time, rispettivamente, la

# directory in cui i thread builder salveranno i1 loro log di
# esecuzione sull’host e i1l file dei log prodotti da ciascun
# thread builder durante la loro esecuzione interna al rootfs
# chroot-ato (indicato con path relativo al rootfs):
THREAD_LOG_DIR=/home/sshlirpCI/log/threads

THREAD_CHROOT _LOG_FILE=/home/sshlirpCI/log/thread_sshlirp.log

# L’intervallo di polling per la verifica di aggiornamenti ai sorgenti
# e le architetture target per la build:

POLL_INTERVAL=3600 # secondi -> 1 ora
ARCHITECTURES=amd64,arm64,armhf ,riscv64

Tali variabili verranno lette dal loader attraverso una funzione di parsing
conf_vars_loader () che, presi in input puntatori a variabili vuote corrispondenti
ai parametri di configurazione e allocate dal main con dimensioni prefissate global-
mente, aprira il file ci.conf, ne leggera riga per riga il contenuto e assegnera i valori
letti alle variabili puntate.

Successivamente, il setupper controllera se ¢ attiva una sua altra istanza - verificando
la presenza di un pid file atteso in /tmp - e in caso negativo procedera a demonizzarsi
tracciando la sua esistenza con la creazione del pid file.

Infine, a partire dalle variabili di configurazione caricate, procedera a creare - se non
gia esistenti - la directory di build, il file di versioning, la directory di log sull’host e il
log file principale all’interno di essa, predisponendo cosi 'ambiente per ’esecuzione

del main loop.
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Il sistema di logging

SshlirpCI é stato progettato per fornire sia una singola interfaccia di logging di
riferimento per 'utente finale, utile alla visualizzazione completa di tutte le oper-
azioni svolte dal demone e alla verifica, a termine di ogni iterazione, dell’esito della
cross-compilazione, che processi di logging distribuiti per ogni thread builder, essen-

ziali per scopo di debugging e monitorabilita a run-time.

In generale, sia i log centrali appartenenti al file definito dalla variabile di config-
urazione LOG_FILE, che quelli distribuiti sui file "personali" di ogni thread builder,
sono generati attraverso il semplice meccanismo di apertura di un FILE stream per
il path specificato, di stampa su di esso tramite fprintf, e di chiusura dello stesso

al termine del processo che se ne serve:

FILE* log_fp = fopen(log_file, "a");
if (1log_fp) {
return 1;

+
fprintf(log_fp, "Log message here\n");

fclose(log_£fp);

Inoltre, 'obbiettivo di fornire un unico log file centrale all’'utente che desiderasse
verificare I’esito complessivo di ogni iterazione del main loop, ¢ stato finalizzato at-
traverso 'uso di log "speciali" che permettessero di comprendere l'intero processo
di esecuzione di sshlirpCI, tramite separazioni chiare tra le sezioni di log prodotte
dai diversi componenti - concatenate al termine del join dei thread builder - e times-
tamps per ogni operazione fondamentale quale I'inizio di un’iterazione del main loop,
il completamento del processo di build per ogni port target, la conclusione dell’iter-
azione e ’eventuale interruzione del ciclo di sleep finale.

E importante sottolineare che l'inserimento di timestamps formattati ha anticipato
I'idea di un sistema di monitoring pitl avanzato, che sarebbe stato implementato in
Rootless V2CI, e che avrebbe permesso di trasmettere i log prodotti dal demone a

un sistema esterno di analisi e visualizzazione.
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Versioning e gestione dei binari finali

A scopo di organizzazione, tracciabilita e aggiornamento dei binari statici prodot-
ti, sshlirpCI si occupa di mantenere una struttura di sotto-directory "versionate"
all’interno della directory di destinazione specificata nella configurazione.

Per fare cio, oltre a servirsi di un file di versioning su cui vengono progressivamente
scritti i nuovi tag dei sorgenti di sshlirp a cui corrisponeranno i binari prodotti nel-
la stessa iteazione di build, sshlirpCI istanzia, preliminarmente al main loop, due

strutture dati commit_status_t:

typedef struct {
int status;
char *new_release;

} commit_status_t;

In quest’ultime verranno salvati l'esito e il tag dell’ultimo commit rilevato - "unstable"
se assente - rispettivamente per ’operazione di check_host_dirs() iniziale - che si
occupa per il primo avvio di sshlirpCI di clonare i sorgenti - e per ogni successivo
pull effettuato nel main loop attraverso la funzione check_new_commit ().

In questo modo, al termine di ogni iterazione del main loop, sshlirpCI, indipen-
dentemente dal contesto di primo avvio o di esecuzione continuativa, potra creare
una sotto-directory nella directory di destinazione con nome corrispondente al tag
dell’'ultimo commit rilevato, e spostare in essa i binari prodotti dai thread builder,

sovrascrivendo quelli eventualmente gia presenti.

// main loop

while (1) {

// 6. Controllo se ci sono le directory dell’host e i repository git
if (round == 0) {

log_time(log_fp);

fprintf(log_fp, "Avvio del demone per la prima volta...\n");

// return.status:

// 0 -> tutto ok, le repo esistono gia’
// 1 -> errore

// 2 -> le repo sono state clonate ora

initial_check = check_host_dirs(target_dir, sshlirp_source_dir,
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libslirp_source_dir, log_file, sshlirp_repo_url,
libslirp_repo_url, thread_log_dir, log_fp, versioning_ file
)3
// Nota: questa funzione non fa nulla se
// le dirs sono gia’ esistenti e se esiste

// gia’ la repo git (possibile causa crash o interruzione)

// 6.1. Se non e’ il primo avvio (e quindi avevo gia’ clonato e
// ho atteso poll_interval secondi) o se la repo era gia’ clonata,
// tento di pullare eventuali nuovi commit
if (round > O || initial_check.status == 0) {
new_commit = check_new_commit(sshlirp_source_dir,
sshlirp_repo_url, libslirp_source_dir,
libslirp_repo_url, log_file, log_fp, versioning_file

)

// 7. Se e’ il primo avvio e ho effettivamente clonato o se ho
// trovato nuovi commit, preparo i thread per la build
if ((round == O &% initial_check.status == 2) ||

new_commit.status ==

) 1

// 7.5. Sposto i binari in target_dir/initial_check.new_release
// (oppure in target_dir/new_commit.new_release)

for (int i = 0; i < num_archs; i++) {

if (new_commit.status == 2) {
snprintf (final_target_dir, sizeof (final_target_dir), "%s/%s",
target_dir, new_commit.new_release
)3
} else {
snprintf (final_target_dir, sizeof (final_target_dir), "%s/%s",
target_dir, initial_check.new_release

)
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Thread builder: sincronizzazione e gestione delle risorse

Nel caso in cui il demone di sshlirpCI constati la necessita di eseguire una nuova
iterazione di build - a seguito del primo avvio o della rilevazione di nuovi commit
- il main loop procedera ad avviare per ogni architettura target un thread builder
a cui deleghera 'esecuzione dell’intero processo di cross-compilazione per il port
corrispondente.

A tal fine, il main costruira preliminarmente un numero di strutture dati
thread_args_t pari al numero di architetture target, ognuna delle quali conterra le

informazioni necessarie per I’esecuzione del thread builder associato:

#define MAX_ARCHITECTURES 9

#define MAX_CONFIG_LINE_LEN 512
#define MAX_CONFIG_ATTR_LEN 256
#define MAX_COMMAND_LEN 2048
#define MAX_VERSIONING_LINE_LEN 128

typedef struct {
int pull_round;
char arch[16];
char sshlirp_host_source_dir[MAX_CONFIG_ATTR_LEN];
char 1libslirp_host_source_dir [MAX_CONFIG_ATTR_LEN];
char chroot_path[MAX_CONFIG_ATTR_LEN];
char thread_chroot_main_dir [MAX_CONFIG_ATTR_LEN];
char thread_chroot_sshlirp_dir[MAX_CONFIG_ATTR_LEN];
char thread_chroot_libslirp_dir [MAX_CONFIG_ATTR_LEN];
char thread_chroot_target_dir[MAX_CONFIG_ATTR_LEN];
char thread_chroot_log_file[MAX_CONFIG_ATTR_LEN];
char thread_log_file[MAX_CONFIG_ATTR_LEN];
pthread_mutex_t *chroot_setup_mutex;

} thread_args_t;
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Come ¢ possibile dedurre dalla struttura dati soprastante, I'unica operazione per cui
é risultata necessaria una serializzazione tra i thread builder tramite mutex é stata
la creazione dei rootfs tramite debootstrap.

Infatti, essendo questa operazione particolarmente dispendiosa in termini di risorse
di sistema e tempo di esecuzione, si ¢ deciso di permettere che solo un thread per
volta potesse eseguirla, in modo da evitare un sovraccarico di I/O e CPU che avrebbe

potuto compromettere la stabilitd dell’intero sistema host.

void #*build_worker(void *arg_ptr) {

thread_args_t* args = (thread_args_t*)arg_ptr;

fprintf (thread_log_fp, "Worker started for arch %s. Pull round: %d.\n",
args->arch, args->pull_round
)3
if (args->pull_round == 0) {
fprintf (thread_log_fp, "First run (pull_round 0). Checking and
eventually setting up chroot for %s.\n", args->arch
)3
pthread_mutex_lock(args->chroot_setup_mutex);
int setup_status = setup_chroot(args, thread_log_fp);

pthread_mutex_unlock(args->chroot_setup_mutex) ;

In assenza di quest’accortezza si sono infatti sperimentati numerosi fallimenti di
avvio di build per 'ultimo thread lanciato, a causa di una saturazione delle risorse
di sistema nel contesto di esecuzione su host Ubuntu 24.04.3 LTS con processore
11th Gen Intel® Core™ i5-1155G7 x 8 e 16 GB di RAM.

Infine, per quanto riguarda il ritorno dei thread builder al main loop, si & deciso
di impiegare una semplice struttura dati che permettesse di trasmettere l’esito del
thread stesso e un eventuale messaggio di errore, in modo che il main potesse loggare
tali informazioni nel file di log centrale al termine del join di tutti i thread e fornire

cosl un resoconto completo e granulare dell’esito di ogni iterazione di build.

typedef struct {
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int status;
char *error_message;

} thread_result_t;

Interruzione sicura e coerente del demone

Attraverso la compilazione di sshlirpCI tramite cmake, 'utente ottiene due es-
eguibili distinti:
e sshlirp_ci_start, che si occupa di avviare il demone;

e sshlirp_ci_stop, che invia un segnale di interruzione al demone in ese-

cuzione.

Per permettere a quest’ultimo di arrestare in modo sicuro e coerente I'esecuzione di
sshlirpClI, si € deciso di predisporre il main loop alla ricezione del segnale SIGTERM
solo durante la fase di sleep tra un’iterazione e l'altra.

Questa funzionalita é figlia di un’interazione particolare tra il processo di start e
quello di stop che non si basa solo su operazioni di read e write sul pid file e sull’invio
di segnali, ma che prevede anche il salvataggio dello stato di esecuzione del demone
in un file STATE_FILE, al path /tmp/sshlirp_ci.state, in cui vengano registrati
i valori WORKING o SLEEPING, a seconda che il demone stia eseguendo un’iterazione
del main loop o stia attendendo il completamento del ciclo di sleep.

In questo modo, il processo di stop potra verificare lo stato corrente del demone
leggendo tale file e, nel caso in cui risulti SLEEPING, inviare il segnale di interruzione
SIGTERM; in caso contrario, attendera un intervallo di tempo prefissato e ripetera la

lettura del file di stato, per un numero di tentativi totali definito.

while (attempts < MAX_WAIT_SECONDS) {

char current_state[50] = {0};
state_file_ptr = fopen(STATE_FILE, "r");

if (state_file_ptr) {
if (fgets(current_state, sizeof(current_state),
state_file_ptr) == NULL
y {7}

+
if (strcmp(current_state, DAEMON_STATE_SLEEPING) == 0) {
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printf ("Il demone e’ in stato SLEEPING. Invio SIGTERM...\n");
if (kill(daemon_pid, SIGTERM) == 0) {

printf("Segnale SIGTERM inviato con successo.\n");

// Attendo un po’ che il demone termini e pulisca i suoi file

sleep(3);

printf ("Demone sshlirp_ci terminato.\n");
fclose(state_file_ptr);
return O;

} else {

fclose(state_file_ptr);
return 1;
+
} else {
if (attempts == 0) {
printf ("Il demone e’ attualmente in stato ’%s’. Quindi
attendo...\n", strlen(current_state) > O 7 current_state
"UNKNOWN"
o5
+
sleep(1);
attempts++;
+
fclose(state_file_ptr);

Lato processo start invece, il main, durante I’esecuzione della funzione di demoniz-
zazione, setta un handler per SIGTERM che imposta una variabile globale

terminate_daemon_flag a 1 in caso di ricezione del segnale, in modo che il ciclo di
sleep, se interrotto, possa verificare il valore di tale flag ed eventualmente terminare

I'esecuzione di sshlirpCI, pulendo il pid file e il file di stato.

volatile sig_atomic_t terminate_daemon_flag = O;
static void sigterm_handler(int signum) {
if (signum == SIGTERM) {

terminate_daemon_flag = 1;
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+
static void cleanup_daemon_files() {
remove (PID_FILE) ;
remove (STATE_FILE) ;
+
static void update_daemon_state(const char *state) {
FILE *fp = fopen(STATE_FILE, "w");
if (fp) {
fprintf(fp, "%s'", state);
fclose (fp);
} else {

perror("Failed to update daemon state file");

by

static void daemonize() {

signal (SIGTERM, sigterm_handler) ;

by

int main() {

daemonize();

atexit(cleanup_daemon_files);

while(1) {
update_daemon_state (DAEMON_STATE_WORKING) ;

update_daemon_state (DAEMON_STATE_SLEEPING) ;
log_time(log_£fp);
fprintf(log_fp, "Demone in attesa per %d secondi...\n",
poll_interval
JE
// Ciclo di sonno e gestione dei segnali di interruzione
unsigned int time_left = poll_interval;
while(time_left > 0) {
time_left = sleep(time_left);
if (terminate_daemon_flag) {

fprintf(log_fp, "Sleep interrotto da segnale di
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terminazione.\n"
)
break;

+
if (time_left > 0) {
fprintf(log_fp, "Sleep interrotto, %u secondi rimanenti,
continuo ad attendere...\n", time_left

)

b

round++;

Operazioni su filesystem ed esecuzione degli script

Per garantire la corretta esecuzione delle operazioni di setup e build all’interno
degli ambienti chroot-ati, sshlirpCI si affida all’esecuzione di comandi shell, invocati
tramite la funzione system().

In particolare, le operazioni di clone e pull dei sorgenti, di setup degli ambienti chroot
da parte dei thread, di copia dei sorgenti dall’host ai rootfs, di cross-compilazione e
di rimozione dei sorgenti dagli ambienti debootstrap-ati, si appoggiano tutte all’ese-
cuzione di eseguibili .sh.

Quest’ultimi vengono generati a run-time, posizionati nella directory /tmp con un
path univoco - settato tramite la funzione mkstemp () -, popolati attraverso la copia
in essi di script embedded in stringhe - costanti e definite in componenti header
dedicati - e invocati tramite system().

Ad esempio, nel file sorgente di sshlirpCI
src/include/scripts/remove_source_copy_script.h, é definito lo script di ri-

mozione dei sorgenti di sshlirp e libslirp dai rootfs chroot-ati, sotto forma di stringa:

#ifndef REMOVE_SOURCE_COPY_SCRIPT_H

#define REMOVE_SOURCE_COPY_SCRIPT_H

static const char remove_source_copy_script_content[] =
"#!/bin/bash\n"
m\p"
"chroot_path=$1\n"
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"chroot_sshlirp_dir=$2\n"
"chroot_libslirp_dir=$3\n"
"logfile=$4\n"

||\nll

"exit O\n";

t#tendif

Questo verra poi invocato da ogni thread builder - con lo scopo di "pulire" il proprio
rootfs al termine della build - attraverso la funzione

remove_sources_copy_from_chroot (), la quale, a sua volta, fara riferimento a un
metodo di utilita execute_embedded_script_for_thread(), che si occupera ap-

punto della generazione, della scrittura e dell’esecuzione dello script corrispondente.

Questo approccio, basato su script shell embedded, é stato inizialmente predilet-
to rispetto all'invocazione diretta di script esterni per motivi di portabilita e in-
dipendenza dal filesystem. Infatti, 'incapsulamento degli stessi script all’interno
del binario finale di sshlirpCI e la loro riproduzione su file .sh temporanei hanno
sollevato lo sviluppo da problematiche legate sia alla distribuzione a compile-time
di un’eventuale directory script/ in una destinazione sicura, che alla gestione dei
permessi di scrittura ed esecuzione degli script esterni, che, in caso di salvataggio
permanente e invocazione diretta, sarebbero stati invece soggetti a modifiche acci-

dentali o malevole da parte di utenti o processi non autorizzati.

Nonostante sshlirpCI si possa considerare un sistema di automazione di build
incrociata per sshlirp abbastanza completo, diverse scelte implementative e architet-
turali hanno fatto emergere limiti e vincoli che hanno successivamente spinto allo
sviluppo di una versione potenziata e allo stesso tempo pitl leggera e sicura: Rootless
sshlirpCI.

3.2.2 Limitazioni, vincoli e privilegi

Le principali restrizioni che rendono sshlirpCIl un’architettura valida ma non
ottimale per lo scopo di cross-compilazione automatizzata di sshlirp si basano prin-

cipalmente su sei fattori:
1. Composizione frammentata e over-ingegnerizzata;

2. Amministrazione non persistente delle risorse di build;
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Fragilita e vulnerabilita legate a configurabilita eccessivamente granulare;
Impossibilita di interruzione forzata e pulita durante le operazioni di build;

Aspetti di sicurezza e limiti legati all’uso di sudo;

SO A el

Complicazioni correlate all'impiego di script shell embedded e alla loro ese-

cuzione tramite system();

Frammentazione dell’architettura

Come ¢é possibile osservare dal diagramma architetturale di sshlirpCI 3.2, la
struttura di questo primo sistema di continuous integration per sshlirp presenta una
composizione piuttosto frammentata.

In particolare la scomposizione dei task per ogni thread in diversi componenti -
e conseguentemente in molteplici script shell - sebbene abbia permesso di isolare
e incapsulare le singole operazioni di build, ha al contempo introdotto un ecces-
sivo grado di complessita e over-ingegnerizzazione, che non solo ha reso difficile la
manutenzione del codice e I'individuazione di bug, ma che ha anche avuto un impat-
to negativo sulla performance complessiva del sistema, a causa del numero elevato
di operazioni di I/O e di creazione e distruzione di processi figlio per 'esecuzione
degli script.

Dal momento che ogni thread builder lavora in modo indipendente dagli altri, un’ar-
chitettura "monolitica" in cui ogni worker esegue un unico script di build che rac-
chiuda tutte le operazioni necessarie - dalla creazione del rootfs allo spostamento dei

binari finali - avrebbe permesso di semplificare notevolmente il flusso di esecuzione.

Persistenza e coerenza delle risorse

Un altro aspetto critico di sshlirpCI riguarda la gestione debole delle risorse di
sistema durante le fasi di setup sia del main loop che dei thread builder.
Infatti, per quanto i metodi setupper check_host_dirs() - interno al main - e
setup_chroot () e check_worker_dirs() - interni ai thread builder e addetti rispet-
tivamente alla creazione dei rootfs e alla verifica delle directory di lavoro - permet-
tano di evitare operazioni ridondanti in caso di esecuzione avviata, garantendo co-
munque idempotenza al riavvio, trascurano I’eventualita di una perdita o rimozione
a run-time delle risorse di build.
Se ad esempio durante il primo ciclo di sleep del main loop venissero rimossi i rootfs,

al termine di questo e all’avvio della seconda iterazione di build, i thread, ricevendo
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un thread_args_t* args tale per cui args->pull_round > 0, darebbero per as-
sunta l'esistenza dei rootfs e tenterebbero di copiare i sorgenti dall’host a directory

non esistenti, causando un fallimento della build.

Allo stesso tempo anche il sistema di reperimento dei sorgenti basato sulla com-
binazione di clone iniziale sull’host, copia e rimozione post-build nei rootfs, sebbene
permetta di minimizzare il carico di storage richiesto, il tempo di setup e il traffico
di rete, introduce molteplici rischi di incoerenza. Per esempio, una modifica acciden-
tale ai sorgenti sull’host durante 1’esecuzione di una build potrebbe compromettere
Iintegrita del processo di cross-compilazione per tutti i threads. Ancora pit critico
sarebbe il caso in cui sshlirpCI venisse arrestato forzatamente con sudo kill -9
<pid> prima che i thread potessero rimuovere i sorgenti dai rispettivi rootfs. In
questo scenario, al successivo avvio del demone, il main potrebbe pullare una nuova
versione dei sorgenti, mentre i therad builder, attestando 'esistenza della directory
.git dei sorgenti allinterno degli ambienti chroot-ati, non sovrascriverebbero i file
presenti con quelli aggiornati, portando a un’incoerenza tra i sorgenti usati per la

build e quelli presenti sull’host.

Configurabilitad granulare e possibilmente incoerente

Durante la prima fase di progettazione di sshlirpCI, si é pensato che fornire
all’'utente la possibilita di configurare in modo granulare ogni aspetto dell’esecuzione
del demone potesse essere un vantaggio in termini di flessibilita e adattabilita a
diversi contesti di utilizzo.

Tuttavia, in seconda analisi, si & compreso che questa scelta avrebbe potuto portare
a situazioni di incoerenza e vulnerabilita.
In particolare, la possibilita di settare path innestati arbitrariamente avrebbe potuto

causare errori di esecuzione in caso di directory mancanti o non scrivibili.

Assenza di un killer

Un’altra limitazione di sshlirpCI riguarda I'impossibilita di interrompere forzata-
mente e comunque in modo pulito il demone durante le operazioni di build.
Infatti, come descritto nella sezione 3.2.1, dedicata all’interruzione sicura del de-
mone, sshlirpCI puo essere arrestato solo durante la fase di sleep tra un’iterazione e
I’altra del main loop.

Cio implica che 'utente, nel caso in cui desideri terminare I'esecuzione del demone
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durante una fase di build, debba attendere il completamento di tutte le operazioni
di cross-compilazione per ogni architettura target o, in alternativa, forzare l'inter-
ruzione del processo con sudo kill -9 <pid>, rischiando pero di lasciare risorse di

build in uno stato incoerente, come descritto nella sezione precedente.

Sicurezza e privilegi

L’impiego di sudo in sshlirpCI, necessario sia per la creazione dei rootfs tramite
debootstrap che per l'esecuzione di chroot, espone il sistema host a potenziali
rischi di escalation dei privilegi.

SshlirpCI é stato sviluppato nel corso di Giugno 2025, in un contesto in cui sudo
non era ancora stato aggiornato alla versione 1.9.17p1 [45]. Prima di tale release,
sudo - anche nella sua versione appena precedente 1.9.17 - era affetto da una vul-
nerabilita di sicurezza che riguardava proprio il suo uso combinato con chroot e le
sue equivalenti flag -R e --chroot [46].

Come descritto dalla voce Common Vulnerabilities and Exposures CVE-2025-32463
[46] e come confermato dal relativo commit di patch a sudo fdafc2c [47], ele-
vazione dei privilegi seguita da un’operazione di "spostamento radicale" della root
directory del processo comportava che sudo eseguisse prima il cambio di root e dopo
la risoluzione di utenti e gruppi servendosi del file /etc/nsswitch.conf interno al
chroot, caricando cosi sull’host le librerie condivise specificate in esso, al momento
dell’esecuzione di lookup NSS (Name Service Switch).

Questa falla permetteva a un utente o a un processo non privilegiato malevolo di
definre un file nsswitch.conf costum all’interno dell’ambiente chroot - qualora
quest’ultimo gli fosse accessibile - che facesse riferimento a moduli dinamici arbi-
trari - ad esempio una shared library che contenesse codice per lanciare una shell
con UID 0 - ottenendo cosi, grazie all’'uso di sudo combinato a chroot da parte di
un programma innocuo, un’escalation di privilegi.

Sebbene questa vulnerabilita sia stata successivamente risolta con la release di sudo
1.9.17p1, l'uso di sudo in sshlirpCI, come illustrato dal precedente scenario, puo
comunque rappresentare un punto debole dell’architettura, oltre a imporre all’utente
la necessita di disporre di privilegi root e a esporre il sistema host a rischi legati a

errori di configurazione e bugs.
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Complicazioni da script embedded e system()

Come anticipato nella sottosezione 3.2.1 dedicata all’illustrazione del meccanis-
mo di esecuzione degli script shell embedded in sshlirpCI, 'uso di tale approccio
ha si privilegiato portabilita e indipendenza dal filesystem ma compromettendo si-

curezza e prestazioni.

Infatti, sebbene 'invocazione di script temporanei avvenga direttamente dal bi-
nario sshlirp_ci_start con passaggio di parametri fissati, escludendo quindi in
gran parte il rischio di Command Shell injection, il posizionamento di tali file .sh
nella directory /tmp espone sshlirpCI a potenziali attacchi di tipo TOC/TOU ( Time-
of-check/Time-of-use): in un sistema multi-utente, un processo malevolo potrebbe
intercettare la creazione di questi script temporanei e sostituirli con eseguibili o sym-
link arbitrari, portando, anche in questo caso, a un’escalation di privilegi o a danni
al sistema host.

Ad aumentare la vulnerabilita di questo approccio vi é inoltre 'uso di system(), il
quale lancia a run-time una shell che eredita tutte le variabili di ambiente dal pro-
cesso chiamante. In un ambiente "sporco" o compromesso, questo potrebbe portare
all’esecuzione di comandi il cui effetto differisce da quello atteso, causando mal-
funzionamenti o, ancora peggio, permettendo ’esecuzione di codice malevolo. Per
questi motivi, 'impiego di system(), specialmente in programmi dotati di privilegi
elevati, é generalmente sconsigliato in favore di chiamate di sistema pilu sicure e
dirette, come execve () [48].

Infine, la generazione di script shell "usa e getta" in combinazione con la loro ese-
cuzione tramite system() e la frammentazione architetturale di sshlirpCI, di cui si
é parlato poc’anzi, introduce un overhead significativo in termini di performance, a
causa del numero elevato di operazioni di I/O e di apertura e chiusura di processi
figlio, che si ripercuote negativamente sul consumo di risorse di sistema e sul tempo

totale di build.

Tutte queste vulnerabilita e limitazioni sono state sorpassate grazie a una
re-ingegnerizzazione completa dell’architettura e a una considerevole semplificazione
dell'implementazione di sshlirpCI, le quali, con anche una maggiore attenzione alle
problematiche di sicurezza e coerenza, hanno portato allo sviluppo di Rootless ssh-
lirpCI.
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3.3 Evoluzione in Rootless sshlirpCI

Cio che ha primariamente spinto sshlirpCI a evolversi in una soluzione pitu si-
cura, che si sarebbe poi dimostrata anche piu leggera, scalabile e performante, é
stata l'introduzione del nuovo requisito di "rootlessness", rispetto alle gia soddisfat-
te prerogative di compatibilita, produzione di binari e automazione, discusse nella
sezione 3.1.

A scopo di finalizzare tale ambizione, con lo sviluppo di Rootless sshlirpCI, si sono
esplorate molteplici soluzioni escludenti I'uso di debootstrap e chroot tramite sudo,
di cui quella adottata ha assunto una struttura piti robusta, snella, sicura ed effi-
cente, divenendo cosi la candidata perfetta per il ruolo di componente di base per

la successiva e finale evoluzione in Rootless V2CI.

3.3.1 Rimozione di sudo: impiego di fakeroot, proot e un-

share

Come anticipato nelle precedenti sezioni, I'impiego sia di debootstrap che di
chroot richiedeva, per 1'utilizzo di sshlirpCI, il possesso di privilegi root sull’host.
Con lo scopo di eliminare questa dipendenza sono stati esplorati diversi tool alter-

nativi, di cui quelli mantenuti nella soluzione finale sono stati fakeroot e unshare.

Uso di fakeroot per debootstrap

Per quanto riguarda la creazione di ambienti rootfs, I'uso di sudo risulta neces-
sario dal momento che - per configurazione standard - debootstrap non crea solo
directory e file necessari ad emulare un filesystem Debian minimale - scaricando pac-
chetti essenziali dal mirror specificato ed estraendoli nel base system - ma tenta anche
di impostare permessi e proprieta degli stessi in modo coerente con quelli previsti
da un’installazione Debian nativa, ossia con ownership impostata a root:root.
Inoltre debootstrap, usato singolarmente senza l’aggiunta di flag opzionali né in
combinazione con altri tool di emulazione di privilegi, esegue anche operazioni di
mknod () per device essenziali. La funzione di cui si serve per fare cio
setup_devices () il cui contenuto prevede infatti di default la creazione di nodi

device attraverso setup_devices_simple():[49]

# create the static device nodes

setup_devices () {
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if doing_variant fakechroot; then

setup_devices_fakechroot

return O

fi

case "$HOST_0S" in
kfreebsdx*)

es

20

freebsd)

b

hurd*)

b

*)

setup_devices_simple

b

ac

setup_devices_simple () {

# The list of devices that can be created in a container

# comes from src/core/cgroup.c in the systemd source tree.

mk
mk
mk
mk
mk
mk
mk
1n
1n
1n
1n
1n

nod
nod
nod
nod
nod
nod

dir

-m 666 $TARGET/dev/null c 1 3
-m 666 $TARGET/dev/zero ¢ 1 5
-m 666 $TARGET/dev/full ¢ 1 7
-m 666 $TARGET/dev/random c 1
-m 666 $TARGET/dev/urandom c 1 9
-m 666 $TARGET/dev/tty c¢ 5 0
$TARGET/dev/pts/ $TARGET/dev/shm/
pts/ptmx $TARGET/dev/ptmx
/proc/self/fd  $TARGET/dev/fd
/proc/self/fd/0 $TARGET/dev/stdin
/proc/self/fd/1 $TARGET/dev/stdout
/proc/self/fd/2 $TARGET/dev/stderr

Debootstrap quindi non nasce con il solo scopo di generare in user-space un filesys-

tem tree "fittizio" per 'esecuzione di processi isolati tramite 'impiego di risorse

dell’host, ma é stato pensato per essere impiegato come strumento preliminare all’in-

stallazione e alla configurazione di sistemi Debian completi, comprensivi di device,
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dischi partizionati e bootloader.

Operazioni di questo tipo richiedono necessariamente privilegi di amministrazione e
operano su risorse del rootfs debootstrap-ato che, per coerenza e correttezza, devono
quindi essere di proprieta dell’'utente root.

Percio, essendo debootstrap di per sé un tool che non svolge operazioni root-
required - se non il setup di device minimali - ma che richiede tali privilegi princi-
palmente per conformita, si € pensato di poter aggirare il vincolo sui permessi dei
file creati impiegando fakeroot e trascurare completamente la creazione dei nodi
device, i quali non sarebbero stati strettamente necessari per 1’esecuzione di processi

chroot-ati eseguibili in user-space, quali la cross-compilazione di sshlirp.

fakeroot infatti, attraverso una libreria condivisa
/usr/lib/*/libfakeroot-*.so, caricata tramite il meccanismo di LD_PRELOAD, in-
tercetta chiamate di sistema relative alla manipolazione di file, quali getuid(),
chown() e stat(), e le sostituisce con implementazioni "simulate" che permettono
a un processo di operare come se avesse privilegi di root, non modificandone "'UID
né alterando i permessi dei file sul filesystem host, bensi mantenendo una tabella di

mapping interna che associa file e directory a UID, GID e permessi "fittizi" [50].

L’astrazione che fakeroot permette di introdurre sulle operazioni svolte da
debootstrap ¢ inoltre nativamente supportata da quest’ultimo, il quale, in ambi-
enti con "privilegi simulati", trascura automaticamente la creazione dei device con
mknod, sostituendola con setup_devices_fakechroot () che si limita a creare dei

link simbolici tra la directory /dev dell’host e quella del rootfs debootstrap-ato [49]:

setup_devices_fakechroot () {
rm -rf "$TARGET/dev"
1n -s /dev "$TARGET"

L’impiego di fakeroot ha quindi permesso di eseguire debootstrap senza privilegi
di amministrazione, generando si rootfs con file e directory di proprieta dell’'utente
corrente e privi di device "reali", ma superando comunque il primo ostacolo verso il

raggiungimento di un modello completamente rootless per sshlirpCI.
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Esplorazione di soluzioni rootless per chroot

L’altro grande ostacolo che impediva ancora a sshlirpCI di soddisfare il requisi-
to di rootlessness riguardava la necessita di eseguire processi isolati all’interno dei
rootfs debootstrap-ati.

Un primo tentativo disinformato di eseguire tale operazione senza privilegi di ammin-
istrazione - e quindi senza 'uso diretto di chroot - si é basato sulla sperimentazione
di fakeroot anche per questa fase del processo di build.

Tuttavia, ’assunzione che tale tool potesse permettere di astrarre anche le chiamate
di sistema relative al cambio di root directory si & presto scontrata con cio che é anche
ufficialmente documentato nel manuale dello stesso fakeroot. Questo strumento,
come anticipato, non concede alcun tipo di capability aggiuntiva ai processi che es-
egue. Di conseguenza, un operazione di chroot, anche se wrappata da fakeroot,
fallirebbe nel caso in cui l'utente non disponga della capability CAP_SYS_CHROOT
[50, 51].

A seguito di questa constatazione, si ¢ deciso di esplorare un’altra soluzione root-
less per I’emulazione di chroot: proot.
Questo strumento permette di eseguire processi in ambienti isolati senza richiedere
privilegi di amministrazione, sfruttando il meccanismo di ptrace per intercettare e
manipolare le chiamate di sistema effettuate dal processo figlio.
Di fatto proot non esegue un vero e proprio cambio di root directory, ma piuttosto
capta le chiamate di sistema che fanno riferimento a path assoluti e le riscrive in
modo che puntino alla directory specificata come "nuova root" [52].
Questo tool in user-space pero, oltre ad avere grosse limitazioni legate alla sua natura
intrinseca di traduttore e manipolatore di systemcalls piuttosto che di meccanismo
di isolamento nativo del kernel, ha mostrato, nel corso della sua sperimentazione
alternativa a chroot, diversi problemi di compatibilitd con Qemu User-Mode Emu-
lation e rootfs di architettura guest differente da quella host.
Infatti proot non solo ignora la presenza di qemu-<arch>-static tra gli interpreti
registrati tramite binfmt_misc - rendendo quindi necessaria la sua esplicita invo-
cazione tramite flag -q - ma presenta anche problemi di risoluzione dei path, mount,
e gestione delle variabili di ambiente e delle librerie condivise [53, 54|, rendendo com-
plicato, macchinoso, poco performante e per niente ripetibile il suo impiego in un

contesto di continuous integration per la cross-compilazione di sshlirp.
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Per questi motivi, dopo un ulteriore approfondimento delle alternative rootless

a chroot, si & deciso di adottare un approccio differente.

Upgrade verso gli user namespaces e I'impiego di unshare

L’isolamento di UID, GID, capabilities e privilegi offerto dall’impiego degli user
namespaces del kernel Linux [55] ha rappresentato la soluzione definitiva al nuovo
requisito di rootlessness per sshlirpCI e funzionalmente alternativa all’impiego sia
di chroot che di proot.

Questo potente meccanismo di sandbxing permette infatti ad utenti non privilegiati
di guadagnare permessi di amministrazione all’interno di ambienti confinati, senza
avere poteri aggiuntivi sul sistema host [55].

Sebbene questa funzionalita sia supportata nativamente dal kernel Linux per la mag-
gior parte delle distribuzioni, alcune di queste - al fine di garantire una maggiore
sicurezza - applicano delle restrizioni aggiuntive. Ad esempio, su host Ubuntu 23.10
o di versione >= 24.04 LTS, il kernel ¢ compilato di default con 'opzione AppArmor
apparmor_restrict_unprivileged_userns settata a 0, impedendo cosi agli utenti
non privilegiati di creare user namespaces [56].

Purtroppo in casi particolari come quest’ultimo, I'abilitazione degli user namespaces

per utenti non privilegiati richiede necessariamente I'intervento dell’admin [56].

Il tool che incarna al meglio 'uso degli user namespaces per I’esecuzione di pro-
cessi isolati, e che é stato impiegato nella soluzione finale di Rootless sshlirpCI, é
unshare, il quale, con un ampia gamma di opzioni, permette di creare nuovi names-

paces non privilegiati per differenti risorse di sistema [57].

Combinazione delle soluzioni adottate: rootless-debootstrap-wrapper

La fusione di fakeroot e debootstrap combinata alla sostituzione di chroot

con unshare ha portato all'impiego di un nuovo flusso di operazioni per la creazione
di ambienti rootfs isolati e non privilegiati, che ha costituito la base per lo sviluppo
di Rootless sshlirpCI.
Grazie allo sviluppo di Alex Bradbury [58, 59| é stato infatti possibile riciclare, al-
I'interno di Rootless sshlirpCI, una sua ambiziosa e brillante implementazione della
soluzione, di cui si é poc’anzi discusso, "fakeroot + debootstrap + unshare -
chroot", racchiusa in un wrapper script denominato

rootless-debootstrap-wrapper [59).
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Il cuore di questo componente, integralmente riportato nei sorgenti di Rootless ssh-
lirpCI, si occupa di [58, 59]:

1. Avviare la prima fase di debootstrap (--foreign) wrappato da fakeroot -s
alllinterno della directory e per l'architettura, la release e il mirror dati in
input;

2. Estrarre le variabili di ambiente di fakeroot, salvate durante lo step prece-
dente, all’interno della directory target;

3. Creare uno script _enter interno alla directory target, il quale permetta all’u-
tente di accedere a un usernamespace radicato nella directory target;

4. Accedere al rootfs parziale e completarne la costruzione attraverso la seconda
fase di debootstrap (--second-stage).

#!/bin/sh

# Copyright Muxup contributors.

# Distributed under the terms of the MIT-O license,
# see LICENSE for details.

# SPDX-License-Identifier: MIT-0O

TARGET_DIR=""

SUITE=""

MIRROR=""

ARGSTR=""

echo "@OQOQEQOQEOG [1] Starting first stage debootstrap Q0EECEQERQ"

TMP

_FAKEROOT_ENV=$ (mktemp)

fakeroot -s "$TMP_FAKEROOT_ENV" debootstrap $ARGSTR || error "Stage 1

debootstrap failed"

mv

"$TMP_FAKEROOT_ENV" "$TARGET_DIR/.fakeroot.env"

echo '"Q0Q0Q0Q0QQ [2] Extracting fakeroot for target Q0000QQQQQ"

cd

"$TARGET_DIR" || error "cd failed"

fakeroot -1 .fakeroot.env -s .fakeroot.env bash -e <<’EQF’ ||

error "Failed to extract fakeroot for target"

for deb in ./var/cache/apt/archives/{libfakeroot_,fakeroot_l}*.deb; do
done
1n -s fakeroot-sysv ./usr/bin/fakeroot

EOF
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cd "$OLDPWD" || error "cd failed"

echo "@0QOQ@QEQOQ [3] Creating _enter script Q0QQCQQRQQ"
cat <<’EQF’ > "$TARGET_DIR/_enter"
#!/bin/sh
export PATH=/usr/sbin:$PATH
FAKEROOTDONTTRYCHOWN=1 unshare -fpr --mount-proc -R
"$(dirname -- "$0")" \
fakeroot -i .fakeroot.env -s .fakeroot.env "$Q"

EQF

echo "00QQQEQEQEQQ [4] Starting second stage debootstrap Q0RQEQQCQQ"
"$TARGET_DIR/_enter" debootstrap/debootstrap --second-stage
--keep-debootstrap-dir || error "Stage 2 debootstrap failed"

L’adozione di questo wrapper ha permesso a Rootless sshlirpCI di soddisfare il req-
uisito di rootlessness e, grazie alla sua forma pulita e robusta, é stato d’ispirazione

per I'avvio di un processo di semplificazione e ristrutturazione dell’architettura.

3.3.2 Ottimizzazioni e architettura finale di Rootless sshlirp-
CI

Il superamento delle vulnerabilita e limitazioni di sshlirpCI legate all’'uso di sudo,
descritte nella sezione 3.2.2, ha acceso ’ambizione di risolvere anche gli altri vincoli
architetturali e implementativi, portando a un considerevole miglioramento generale
del motore di continuous integration per la cross-compilazione di sshlirp.

Infatti, sebbene la struttura triangolare portante Loader - Main Loop - Thread
Builder alla base di sshlirpCI sia rimasta invariata anche in questa evoluzione, molti
dettagli sono stati re-ingegnerizzati a favore di un disegno e una realizzazione pil
robusti, sicuri e performanti.

Oltre alla rootlessness nativa, le principali features di Rootless sshlirpCI, che sono
state sviluppate in parallelo ai punti deboli di sshlirpCI, riguardano principalmente

4 aspetti:
1. Architettura monolitica e compatta;

2. Gestione sicura, coerente e idempotente delle risorse di build;
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3. Configurabilita esterna del guscio di build e sviluppo interno delle strutture

innestate;

4. Introduzione di un killer per 'interruzione sicura del demone in qualsiasi fase

di esecuzione;

5. Semplificazione e sicurezza del sistema di esecuzione degli script.

Compattezza dell’architettura

La struttura di Rootless sshlirpCI si basa sull’idea che Quae sunt Thread-is,
Thread-1, ovvero tutto cio che sia di competenza dei thread builder debba essere
svolto da questi il pitt compattamente possibile e con minor consumo di risorse.

In altre parole tutte le operazioni connesse all’esecuzione dei worker e "privatizzabili"
in un loro corrispondente ambiente di lavoro, non devono risiedere all’interno del
main, il quale, a causa della sua natura serializzata, le svolgerebbe pit lentamente
impiegando mezzi aggiuntivi non necessari.

Questa linea guida, assunta all’inizio della fase di progettazione, ha portato ha due
effetti immediati:

1. Eliminazione della logica di gestione dei sorgenti basata sulla combinazione di

clone iniziale sull’host, copia e rimozione post-build nei rootfs;

2. Unificazione delle operazioni di creazione dei rootfs, reperimento in essi dei
sorgenti o di loro aggiornamenti, build e delivery dei binari statici di sshlirp

in un unico script invocato da ogni thread builder.

Il primo punto, sebbene privi Rootless sshlirpCI di una gestione centralizzata ed eco-
nomica dal punto di vista dello storage e del traffico di rete, solleva l'intero sistema
non solo da inutili operazioni di I/O ma anche da tutte le vulnerabilita e pericolosita

di incoerenza discusse ampiamente nella sezione 3.2.2.

Il secondo punto, invece, aggrega si molte operazioni in un’esecuzione poco gran-
ulare e quindi meno scalabile, ma evita che vengano aperti e chiusi troppo fre-
quentemente processi figlio per 'esecuzione dei componenti .sh e al coltempo che
sia il main a occuparsi sia del reperimento dei sorgenti di sshlirp e libslirp che
dello spostamento dei binari finali nella target directory versionata, entrambi com-
piti di competenza dei thread in quanto coinvolgono directory e file "privatizzabili"
e contestuali alla loro esecuzione.

Questa ristrutturazione architetturale, visibile dal diagramma nella figura 3.3, é sta-

ta quindi implementata attraverso lo spostamento di tali operazioni in un unico
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componente script denominato cross_compilation_engine.sh che contenesse an-
che il setup dei rootfs tramite 'invocazione di rootless-debootstrap-wrapper e

I’esecuzione della build di sshlirp e libslirp.

Main setupper

v
Main loop

Setup dei thread per n architetture

Thread 1 Thread 1

Y Y
e Creazione e Creazione
dei rootfs dei rootfs
¢ Clone/pull ¢ Clone/pull Join dei
sorgenti Ny - sorgenti thread e
merge
. Cross_- _ . Cross_- _ dei |Og
compilazione compilazione
e Move dei * Move dei
binari finali binari finali
N NN

e

{ Sleep e gestione delle interruzioni

Figura 3.3: Diagramma architetturale di Rootless sshlirpCI

La drastica unificazione delle operazioni ha poi permesso di apportare ulteriori

ottimizzazioni, quali:

e far convergere in un unico log file sull’host, dedicato a un singolo thread, i
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logs prodotti dall’esecuzione di tale worker sia interna che esterna al rootfs

corrispondente;

e gestire il sistema di sincronizzazione per la creazione dei rootfs con un lock file
globale (piuttosto che con un mutex c), generato appena un’istruzione prima
dell’invocazione di rootless-debootstrap-wrapper e rilasciato subito dopo
la sua conclusione, permettendo cosi ad ogni thread di minimizzare il tempo

di attesa per 'acquisizione del lock;

e amministrare la logica di versionamento della directory target attraverso 'es-
trazione del tag git corrente di sshlirp all’interno dello stesso script di build,
evitando cosi di dover passare tale informazione da un componente di update

.sh a un file di versioning, al thread builder e infine al main.

Tutti questi perfezionamenti sono stati quindi implementati all’interno di

cross_compilation_engine.sh, il cui codice principale é riportato di seguito:

#!/bin/bash

debian_arch=$1
sshlirp_build_dir=$2
target_host_dir=$3
thread_log_file=$4

pull_round=1
exec >> "$thread_log_file" 2>&1

# Directory assoluta in cui risiede questo script

SCRIPT_DIR="$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")"
>/dev/null 2>&1 && pwd)"

WRAPPER="$SCRIPT_DIR/rootless-debootstrap-wrapper.sh"

# Lock file globale per la sola fase di creaziome rootfs
LOCKFILE="$sshlirp_build_dir/.chroot_setup.lock"
if [ ! -d "$sshlirp_build_dir/$debian_arch-chroot" ]; then

exec {lockfd}> "$LOCKFILE"

flock "$lockfd"

echo "[From cross_compilation_engine.sh for $debian_arch archl]

Creating rootfs at $sshlirp_build_dir/$debian_arch-chroot"
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"$WRAPPER" --target-dir="$sshlirp_build_dir/$debian_arch-chroot"

--arch="$debian_arch" --suite "$suite" --include=build-essential

pull_round=0
exec {lockfd}>&-
fi
if [ $pull_round -eq O ]; then
$sshlirp_build_dir/$debian_arch-chroot/_enter <<EQOF
echo "[From cross_compilation_engine.sh inside $debian_arch-chroot
rootfs] First pull round: Installing required packages"
apt install -qq --assume-yes git meson cmake pkg-config
libglib2.0-dev libvdeplug-dev
EQF

echo "[From cross_compilation_engine.sh for $debian_arch arch]
Cloning sshlirp and libslirp repositories"

(cd $sshlirp_build_dir/$debian_arch-chroot/root;
git clone https://gitlab.freedesktop.org/slirp/libslirp.git

(cd $sshlirp_build_dir/$debian_arch-chroot/root;

git clone https://github.com/virtualsquare/sshlirp.git

fi

if [ $pull_round -eq 1 ]; then
$sshlirp_build_dir/$debian_arch-chroot/_enter <<EQOF
echo "[From cross_compilation_engine.sh inside

$debian_arch-chroot rootfs] installing updates"

apt-get update
apt-get upgrade -qq --assume-yes

EOF

echo "[From cross_compilation_engine.sh for $debian_arch arch]
Pulling latest changes for sshlirp and libslirp"
(cd $sshlirp_build_dir/$debian_arch-chroot/root/sshlirp; git pull)

(cd $sshlirp_build_dir/$debian_arch-chroot/root/libslirp; git pull)
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fi

cd $sshlirp_build_dir/$debian_arch-chroot/root/sshlirp

current_tag=$(git describe --tags --abbrev=0)

if [ ! -n "$current_tag" ]; then
current_tag="unstable"

fi

echo "[From cross_compilation_engine.sh for $debian_arch archl]
Starting build process"

$sshlirp_build_dir/$debian_arch-chroot/_enter << TAG

echo "[From cross_compilation_engine.sh inside $debian_arch-chroot
rootfs] Building libslirp"

cd /root/libslirp

meson build . --default-library=both

ninja -C build install

TAG

$sshlirp_build_dir/$debian_arch-chroot/_enter << TAG

echo "[From cross_compilation_engine.sh inside $debian_arch-chroot
rootfs] Building sshlirp"

mkdir -p /root/sshlirp/build

cd /root/sshlirp/build

cmake

make

TAG

# Verifica che il binario sia stato staticamente linkato

echo "[From cross_compilation_engine.sh for $debian_arch arch]
Copying sshlirp binaries to $target_host_dir/v-$current_tag"
if [ ! -d "$target_host_dir/v-$current_tag" 1; then
mkdir -p "$target_host_dir/v-$current_tag"
fi
cp $binary "$target_host_dir/v-$current_tag"

exit O

Lo spostamento di tutta la logica di esecuzione dei thread builder in questo singolo

componente .sh ha permesso di riflesso di alleggerire notevolmente il corpo "esterno"
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dei worker, contenuto nel file worker.c.

void *build_worker(void *arg_ptr) {
thread_args_t* args = (thread_args_t*)arg_ptr;

int *result = malloc(sizeof(int));

int script_status = execute_build_script_for_thread(
args->arch,
args->build_dir,
args->target_dir,
args->thread_log_file,
test_enabled,
thread_log_£p
b
if (script_status != 0) {
fprintf(thread_log_fp, "[Thread %s] Compile script failed
with status: %d\n", args->arch, script_status
)3

*result = 1;

return result;

Persistenza delle risorse

L’immediato side effect della ristrutturazione dell’architettura di Rootless ssh-
lirpCI & stata la risoluzione delle criticita legate all’amministrazione non coerente
delle risorse di build in sshlirpClI, gia criticata nella sezione 3.2.2.

Infatti, lo spostamento della maggior parte delle operazioni "thread-ful" - compresa
quella di setup dei rootfs - all’interno di un unico script esguito interamente da ogni
worker e per ogni iterazione del main loop, sebbene abbia introdotto una ridondanza
logica nei check di esistenza e validita delle risorse, ha permesso di garantire 'in-
tegrita di quest’ultime anche per le iterazioni di esecuzione avviata, le quali, sempre
grazie all’'uso del pull_round simulato dai thread e grazie ai check su di esso e

sull’esistenza dei rootfs, rimangono anche idempotenti.
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Non modificabilita dell’albero del filesystem interno alle risorse di build

Sulla scia della semplificazione architetturale e dell’ottimizzazione delle delle
risorse introdotta dalle due precedenti sottosezioni, si € deciso di scremare anche
il grado di configurabilita applicabile dall’'utente esterno al sistema di continuous
integration.

Infatti, come gia descritto nella sezione 3.2.2, sshlirpCI permetteva, troppo lasca-
mente, di configurare ’ambiente di build modificando arbitrariamente le variabili
contenute nel file ci.conf, le quali pero sarebbero poi state utilizzate per costruire
file e directory anche innestate.

Questo approccio, sebbene avesse il pregio di essere estremamente flessibile, presen-
tava il difetto di esporre il sistema a potenziali errori di configurazione e a incon-
gruenze tra le variabili settate e l'effettiva struttura del filesystem dell’host.

Per questo motivo, in Rootless sshlirpClI, si & deciso di limitare la configurabilita es-
terna alle sole variabili BUILD_DIR, TARGET_DIR, POLL_INTERVALL e ARCHITECTURES.

BUILD_DIR=/home/user/rootless_sshlirpCI
TARGET_DIR=/home/user/rootless_sshlirpCI/binaries
POLL_INTERVAL=3600 # secondi -> 1 ora
ARCHITECTURES=amd64,arm64,armhf ,riscv64

. La costruzione dei path delle risorse di build piu "interne" é stata invece delegata

all’esecuzione dei setupper del main e dei threads.

int main() {

// 0. Caricamento delle variabili dal file di configurazione

if (conf_vars_loader(
archs_list,
&num_archs,
build_dir,
target_dir,
&poll_interval) != 0
> {
fprintf(stderr, "Failed to load configuration
variables. Exiting.\n"
)3

return 1;
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+

printf ("Configuration loaded successfully.\n");

// Variabili da passare ai threads e costruibili dalle

// precedenti

char release_file[CONFIG_ATTR_LEN];

char log_dir [CONFIG_ATTR_LEN];

char log_file[CONFIG_ATTR_LEN];

char thread_log_dir[CONFIG_ATTR_LEN];

snprintf (release_file, sizeof(release_file), "Ys/release.txt",
build_dir

)3

snprintf (log_dir, sizeof(log_dir), "%s/log", build_dir);

snprintf (log_file, sizeof(log_file), "%s/log/main_sshlirp.log",
build_dir

)3

snprintf (thread_log_dir, sizeof(thread_log_dir), "¥%s/log/threads",
build_dir

)5

daemonize();

// 3. Creazione dei file principali (se non esistono):
// - la directory fondamentale

// (/home/user/rootless_sshlirpCI)

// - il file di release

// (/home/user/rootless_sshlirpCI/release.txt)

// - la directory dei log principali

// (/home/user/rootless_sshlirpCI/log)

// - il file di log principale

// (/home/user/rootless_sshlirpCI/log/main_sshlirp.log)
// - la directory dei log dei thread

// (/home/user/rootless_sshlirpCI/log/threads)

// 5. Avvio del loop principale nel demone
while (1) {

// 7.1. Preparazione dei thread

pthread_t threads[num_archs];
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thread_args_t args[num_archs];
// 7.2. Avvio dei thread di build
for (int 1 = 0; i < num_archs; i++) {
// Copia sicura del nome dell’architettura
strncpy(args[i] .arch, archs_list[i], sizeof(args[i].arch) - 1);
args[i] .arch([sizeof (args[i] .arch) - 1] = ’\07;
// Copia sicura del build_dir
snprintf (args[i] .build_dir, sizeof(args[i].build_dir),
"%s", build_dir
)3
// Copia sicura della target_dir
snprintf (args[i] .target_dir, sizeof(args[i].target_dir),
"%s", target_dir
)3
// Copia sicura del thread_log_file (ossia il log file su cui
// scrivera’ il thread)
snprintf (args[i] .thread_log_file, sizeof(args[i].thread_log_file),
"%s/hs-thread.log", thread_log_dir, archs_list[i]
)3
// Creazione del file di log del thread
FILE* thread_log_fp = fopen(args[i].thread_log_file, "a");

if (pthread_create(&threads[i], NULL, build_worker, &args[il)
'= 0
) o
fprintf(log_fp, "Error: Error creating thread for
architecture %s.\n", args[i].arch
)3
return 1;
} else {
fprintf(log_fp, "Thread created successfully for
architecture %s.\n", args[i].arch

)
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Implementazione di rootless_sshlirp_ci_instant_killer

Un’altra importante aggiunta a Rootless sshlirpCI riguarda 'introduzione di un
meccanismo sicuro per l'interruzione del demone in qualsiasi fase della sua ese-
cuzione.

Infatti, come seposto nella sezione 3.2.2, sshlirpCI non prevedeva alcun modo per
terminare in sicurezza il demone una volta avviato, se non attraverso 1'uccisione
forzata del processo stesso tramite kill -9 <PID>.

Questo approccio, oltre a essere poco elegante, non permetteva di eseguire prelim-
inarmente operazioni di cleanup o di rilascio delle risorse in uso, rischiando cosi di
impedire il riavvio del demone.

Per colmare questa lacuna é stato sviluppato un componente accessorio, la cui com-
pilazione tramite cmake da origine all’eseguibile
rootless_sshlirp_ci_instant_killer, e che, dopo un primo tentativo di inter-
ruzione tramite SIGTERM, ricorre all'invio del segnale SIGKILL al demone di Rootless

sshlirpCI e ne attende, per un numero di secondi fissato, la terminazione definitiva.

#define TERM_WAIT_SECONDS 10
#define CHECK_INTERVAL_MS 200
#define KILL_WAIT_SECONDS 2

int main(void) {

// Primo tentativo: SIGTERM
// (terminazione sicura -> permette al codice di chiudere
// risorse se intercetta il segnale)
if (kill(daemon_pid, SIGTERM) != 0) {
fprintf(stderr, "Errore nell’invio di SIGTERM a %d: %s\n",
daemon_pid, strerror (errno)
UE
} else {
printf ("SIGTERM inviato. Attendo fino a %d secondi...\n",
TERM_WAIT_SECONDS
)3
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = CHECK_INTERVAL_MS * 1000000L;

int waited_ms = 0;
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int max_wait_ms = TERM_WAIT_SECONDS * 1000;
while (waited_ms < max_wait_ms) {
if (!process_alive(daemon_pid)) {
printf ("Daemon terminato dopo SIGTERM (%d ms).\n", waited_ms);

goto cleanup;

}

nanosleep(&ts, NULL);

waited_ms += CHECK_INTERVAL_MS;
}

printf ("Il daemon non e’ terminato entro %d secondi dopo
SIGTERM.\n", TERM_WAIT_SECONDS
)3
b
// Escalation: SIGKILL
// Se il processo e’ ancora vivo, ripeto il processo di invio

// del segnale SIGKILL e attesa di KILL_WAIT_SECONDS

cleanup:

// Pulizia pid e state file

return O;

Esecuzione diretta degli script tramite system_safe()

Per eliminare le vulnerabilita connesse alla generazione a run-time di script, al
loro posizionamento in /tmp e alla loro esecuzione tramite system(), di cui si € gia
ampiamente discusso nella sezione 3.2.2, si ¢ deciso di tornare a considerare ’ese-
cuzione diretta degli script, anche se a discapito dei vantaggi offerti dalla precedente
soluzione e resi noti nella sezione 3.2.1.

Infatti, anche a seguito della drastica riduzione di script esterni, si é pensato che la
loro esecuzione diretta e il loro salvataggio in file .sh permanenti all’interno della
stessa directory dei sorgenti di Rootless sshlirpCI, avrebbero non solo potenziato le
prestazioni del demone ma anche assicurato che non potessero essere manomessi da
altri utenti o processi in esecuzione sullo stesso host ma privi dei permessi neces-
sari (assumendo che 'utente che intenda eseguire Rootless sshlirpCI abbia clonato

il repository corrispondente in una directory di sua proprieta e non abbia spostato
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la directory script/ in una destinazione accessibile ad altri utenti).

Per implementare questa soluzione si € reso necessario I'impiego di variabili globali,
che contenessero il path assoluto del principale script di build
cross_compilation_engine.sh, definite all’interno del file

src/includes/types/types.h:

#ifndef TYPES_H
#define TYPES_H
#define ROOTLESS_SSHLIRPCI_SOURCE_DIR "path/to/rootless_sshlirpCI"

#define DEFAULT_CONFIG_PATH ROOTLESS_SSHLIRPCI_SQURCE_DIR "/ci.conf"
#define CROSS_COMPILATION_SCRIPT_PATH
ROOTLESS_SSHLIRPCI_SOURCE_DIR "/script/cross_compilation_engine.sh"

#endif // TYPES_H

Inoltre, mentre 'impiego di system() introduceva ulteriori fragilita in sshlirpCI, in
Rootless sshlirpCI la garanzia di non incorrere in attacchi di command injection o in
errori dovuti ad ambienti "sporchi" o corrotti, & stata data dall’uso di una funzione
di utilita denominata system_safe().

Questo metodo, definito nel file execs.h del progetto Virtualsquare s2argv-execs
[60] e implementato come macro del metodo _system_common (), imita il comporta-
mento di system() seguendo pero i suggerimenti guida di Debian per I’esecuzione
sicura di comandi di shell da codice C, ossia tramite la creazione di argv e I'invo-

cazione diretta di execv() [48].

Sebbene l'architettura finale di Rootless sshlirpCI e i suoi perfezionamenti ab-
biano permesso di superare tutti i limiti di sshlirpCI, questo sistema di cross-
compilazione aggiornato e semplificato rimaneva ancora privo di un’importante com-
ponente utile alla verifica e alla distribuzione dei binari prodotti: il testing auto-

matico.

3.4 Testing dei binari

La crescente aderenza di Rootless sshlirpCI all’obbiettivo di un’infrastruttura
che permettesse la consegna di binari statici di sshlirp per port Debian multipli,

pronti per essere distribuiti e impiegati su host remoti per usufruire delle funzionalita
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native di sshlirp stesso, ha spinto a integrare nel sistema gia esistente un componente
aggiuntivo che testasse automaticamente gli eseguibili prodotti, al fine di garantire

non solo portabilitd e compabilitd, ma anche correttezza funzionale.

3.4.1 L’uso di vdens

Come gia anticipato nella sezione 1.2, sshlirp, una volta copiato sul server re-
moto, che fungerd quindi da gateway, NAT e VPN provider, é pensato per essere
"pluggato", per mezzo di libvdeplug4, a un network namespace creato sul client
VDE tramite vdens.

L’immagine sottostante rappresenta lo scenario di utilizzo di vdens combinato a
slirp, pensato per dare connettivita esterna a un nodo virtuale "pluggandone" un

network namespace VDE a un’istanza di slirp in esecuzione sul medesimo host.

8
Slinpi/fat libslirp I \‘:,

LIBVDEPLUG4

Figura 3.4: Scenario di utilizzo di slirp con vdens per connettivita esterna su uno

stesso host

Sshlirp non fa altro che spostare il provider, replicando quindi lo scenario rappre-
sentato in figura, con la sola differenza di esecuzione su un server remoto piuttosto
che sullo stesso host del client VDE, fornendo conseguentemente un servizio di VPN
e NAT istantanei.

Normalmente, per ottenere questo risultato, come indicato dal repository ufficiale

di sshlirp [7], si svolgono in sequenza le seguenti operazioni:

# [1] Copia dell’eseguibile statico di sshlirp sull’host remoto:
$ scp sshlirp-x86_64 remote.mydomain.org:/tmp/sshlirp

# [2] Creazione del network namespace VDE sul client e

# connessione di esso al server sshlirp:

$ vdens -R 9.9.9.9 cmd://"ssh remote.mydomain.org /tmp/sshlirp"

# [3] Configurazione dell’indirizzo ip (garantita dal servizio di
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# DHCP offerto sempre da sshlirp):
$ /sbin/udhcpc -i vdeO
# [4] Verifica della connettivita’ esterna:

$ ping -c 4 8.8.8.8

3.4.2 Considerazioni sulle difficolta di testing dei binari in

Rootless sshlirpCI

Lo scopo di automatizzare la fase di testing dei binari prodotti da Rootless ssh-
lirpCI, non ha trovato una soluzione immediata.
La natura stessa del progetto prevede infatti che Rootless sshlirpCI stesso possa
essere eseguito da chiunque, richiedendo i soli prerequisiti di possesso di un host
Debian-based e di connettivita a internet.
La necessita di testare i binari prodotti invece, nello scenario standard esposto nel-
la precedente sottosezione, richiede anche 'accessibilitd a un host remoto tramite
SSH.
Per aggirare questo vincolo, si € deciso di inserire testing automatico di sshlirp
tramite una procedura piu "(vde + slirp)-like", ossia mantenendo lo stack simulato
da sshlirp sullo stesso host su cui esegue Rootless sshlirpCI e avviandolo tramite I'in-
terfaccia cmd:// dopo la creazione di un network namespace VDE tramite vdens,
connesso all’interfaccia stessa.
Infatti, come lasciato intuire nella wiki di Virtualsquare [1], avvio di un network
namespace VDE collegato, grazie all'interfaccia cmd://, a sshlirp, permette di far
fluire 1 pacchetti della rete virtuale sul canale di stdin/stdout verso il processo di

sshlirp stesso, il quale procedera a raccoglierli e restituire le risposte corrispondenti.

(Questa scelta ha introdotto un problema addizionale, che pero é stato risolto piu
rapidamente e con il riciclo di tecnologie gia impiegate.
Il tentativo di avviare piu eseguibili di sshlirp cross-compilati per port multipli su uno
stesso host, infatti, ha in un primo momento portato a pensare che fosse necessario
svolgere la fase di test per ogni architettura internamente al rootfs corrispondente,
in modo da garantire la corretta esecuzione del binario nel suo ambiente nativo.
Questa supposizione pero si € subito scontrata con quanto detto, nella sezione 3.3.1,
riguardo le limitazioni trascurabili introdotte da fakeroot durante 'invocazione di
debootstrap.

Infatti, 'assenza di device di rete "reali" negli ambienti chroot non privilegiati ha
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impedito 'invocazione di vdens e le operazioni di test basate su ping; d’altra parte
il requisito imprescindibile di rootlessness ha costretto a escludere la creazione di

questi in un secondo momento.

Tutti questi apparenti limiti sono stati perd superati dalla memoria di Qemu
User-Mode Emulation.
Infatti, il semplice riutilizzo dei binari gemu-<arch>-static e la loro registrazione
come interpreti per mezzo di binfmt_misc hanno permesso di dedurre che la fase di
testing di sshlirp potesse essere eseguita direttamente sull’host, senza dover ricorrere

ai rootfs.

3.4.3 Soluzione adottata

A seguito delle precedenti scelte e deduzioni, si & quindi deciso di inserire nel file
src/includes/types/types.h una variabile aggiuntiva TEST_ENABLED e, in caso di
abilitazione del testing tramite questa, di eseguire le operazioni esposte nella prece-
dente sotto-sezione direttamente a termine del componente principale dell’esecuzione

dei thread worker cross_compilation_engine.sh.

#!/bin/bash

debian_arch=$1
sshlirp_build_dir=$2
target_host_dir=$3
thread_log_file=$4
test_enabled=$5

pull_round=1

exec >> "$thread_log_file" 2>&1

# Fase di testing sull’host
if [ "$test_enabled" == "true" ]; then
echo "[From cross_compilation_engine.sh for $debian_arch arch]
Running test for $binary"
# Create a vde network namespace and connect it
# to sshlirp through cmd://
vdens cmd://"$binary" /bin/bash <<EOF
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ip a
# Configure the vdeO interface with a static IP
ip addr add 10.0.2.15/24 dev vdeO
ip link set vdeO up
# Ping the sshlirp default gateway to test comnectivity
ping -c¢ 4 10.0.2.2
EQF
if [ $? -eq 0 1; then
echo "[From cross_compilation_engine.sh for $debian_arch arch]
Test for $binary passed"
else
echo "[From cross_compilation_engine.sh for $debian_arch arch]
Test for $binary failed"
fi
fi
echo "[From cross_compilation_engine.sh for $debian_arch arch]

Copying sshlirp binaries to $target_host_dir/v-$current_tag"

exit O

Il raggiungimento di quest’ultimo obbiettivo ha completato il sistema di continuous

integration di sshlirp, portandolo a un alto livello di maturita e di aderenza agli

scopi prefissati.

La tentazione di scalare orizzontalmente Rootless sshlirpCI al fine di ottenere un
motore di cross-compilazione sincrono per piu progetti Virtualsquare - che avessero

gli stessi requisiti di build - e altamente disponibile, performante e sicuro é stata

soddisfatta dal successivo sviluppo di Rootless V2CI.
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Capitolo 4

Rootless V2CI e integrazione ELK

In quest’ultima fase di sviluppo ha preso forma, a partire dal lavoro svolto prece-
dentemente, il disegno di un sistema di continuous integration generalizzato per pro-
getti Virtualsquare multipli, in grado di produrne in parallelo binari cross-compilati
staticamente, secondo le medesime logiche e linee guida adottate durante 1’assem-
blaggio dell’antenato Rootless sshlirpCI.

Questo sistema, denominato Rootless V2CI, predisposto alla scalabilita e alla dis-
tribuibilita sin dalla prima progettazione, é stato poi affiancato dall’ambiziosa idea di
rendere il suo impiego e, in particolare, il suo monitoraggio di esecuzione piu "user-
friendly", attraverso un’integrazione con uno stack containerizzato e distribuito ad-
detto alla trasmissione, all’ingestion e alla creazione di visualizzazioni costum dei
log prodotti, basato sulle tecnologie ELK.

Il risultato finale di queste aspirazioni, raggiunto dopo un lungo processo evoluti-
vo che ha spaziato dallo studio teorico dell’architettura alla scelta di strumenti e
tecniche implementative che ne permettessero la piu alta affidabilita, ha incarnato
il sogno di rendere fruibile e per di pil intuitivo 'uso di un sistema di continuous
integration avanzato, il quale non solo € stato pensato per garantire massima per-
sistenza, configurabilita e performance, ma anche per essere distribuito e avviato su

piu server, comunque con la possibilita di una supervisione centralizzata.
Come quanto fatto per le fasi evolutive precedenti, in particolar modo per questo

consistente snodo terminale, risulta utile rappresentare il processo di disegno e

sviluppo seguito attraverso un diagramma riassuntivo.

79
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Figura 4.1: Diagramma riassuntivo del processo di design e sviluppo di Rootless

V2CI e della sua integrazione con ELK

4.1 Rootless V2CI: potenziamento ed espansione di

Rootless sshlirpCI

Il primo passo verso la realizzazione di questo complesso ecosistema che inte-

gra cross-compilazione e delivery di binari statici con monitoraggio e visualizzazione

avanzata dei log, € stato il perfezionamento e I’espansione orizzontale di Rootless

sshlirpCI.

Come gia anticipato nel precedente capitolo, Rootless sshlirpCI, o per lo meno le



4.1 Rootless V2CI: potenziamento ed espansione di Rootless sshlirpCI

81

sue fondamenta, hanno costituito i mattoni su cui é stato edificato Rootless V2CI.
Questo potente motore é infatti basato sull’idea di avviare in parallelo, a seguito di
una lettura e di un parsing di un denso file di configurazione, in cui siano specifi-
cati i progetti su cui 'utente intende avviare la build e per ognuno di essi dettagli
"privati" e scelte su come svolgere quest’ultima, processi "Rootless sshlirpCI-like"
multipli, ognuno "angelo custode" di uno dei progetti dati in input dall’utente.

Un’espansione orizzontale e sincrona di questo calibro ¢ figlia dello scontro con nu-
merose difficolta e di svariate scelte sia nel disegno che nell’implementazione del
sistema, in quanto, per preservare sicurezza e performance, si é reso necessario con-
siderare nuovi parametri di sviluppo quali la condivisione di risorse e il parallelismo

innestato.

4.1.1 1l disegno: scelte strutturali e difficolta affrontate

Il primo grande ostacolo fronteggiato durante lo sviluppo di Rootless V2CI ¢é
stato quello di definizione dell’architettura.
Prima che quest’ultima fosse tracciata, infatti, non era ancora chiaro quali com-
ponenti avrebbero svolto quali compiti e in che momento dell’esecuzione sarebbero
stati avviati.

Due soli requisiti erano certi:

1. T'utente finale sarebbe dovuto essere in grado di impostare in modo semplice
e granulare il comportamento di Rootless V2CI, avviarlo e ottenere i binari
statici per le architetture specificate per ogni progetto di input, circa nello

stesso tempo di esecuzione di Rootless sshlirpCI;

2. il nuovo ecosistema di Rootless V2CI avrebbe dovuto riutilizzare i componenti
sviluppati per Rootless sshlirpCI, appoggiandosi alle sue solide fondamenta e

al suo collaudato flusso di esecuzione.

Cio che ha risieduto alla base delle difficolta legate alla progettazione concettuale e
che ha al coltempo guidato le scelte che ne hanno permessa la risoluzione, ¢ stata
infatti la volonta di garantire all’'utente finale un grado di configurabilita tale da
poter vedere Rootless V2CI come incarnazione di un sistema di CI generalizzato per
qualsiasi sorgente.

Inoltre, il desiderio di riciclare le idee e lo sviluppo alla base di Rootless sshlirpCI
ha automaticamente spinto a prediligere una pianificazione che é rimasta alla base
del risultato finale e che si é dimostrata, anche a seguito di valutazioni successive,

pitt aderente logicamente al primo requisito e maggiormente performante rispetto
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ad alternative che sembravano inizialmente paritarie.

Riassumendo, ¢ possibile affermare che il processo di selezione dell’architettura

di Rootless V2CI si ¢ basato sulle segenti fasi:

1. Deduzione delle conseguenze logiche del primo requisito di configurabilita: for-

ma dell’input, ossia del file di configurazione;

2. Delineazione dello scheletro generale dell’architettura a partire dal tipo di com-
posizione dell’input;

3. Progettazione concettuale di due possibili alternative architetturali che avreb-
bero permesso la corretta elaborazione dell’input, guidata dalla forma di quest’ul-

timo e dalla struttura dello scheletro generale di Rootless V2CI;

4. Analisi comparativa delle possibili soluzioni sulla base dei parametri di perfor-
mance, coerenza logica con 'input e re-use dei componenti di Rootless sshlir-
pClI.

E inoltre possibile riassumere e illustrare tale procedimento analitico nel seguente

diagramma.
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Figura 4.2: Diagramma riassuntivo del processo di design architetturale di Rootless
V2CI

Le origini del progetto architetturale: configurabilita e forma dell’input

Scendendo nei dettagli del primo requisito, ancor prima del disegno architetturale
si era deciso che il cliente di Rootless V2CI dovesse essere in grado di specificare il
path della build directory e per ogni progetto di cui intendeva ottenere i binari, non
solo le architetture di destinazione, il poll interval e il path della target directory, ma
anche un elenco di sorgenti da compilare - che comprendeva 'URL del repository
principale del progetto stesso e quelli delle sue eventuali dipendenze "manuali" -, i
relativi sistemi di build (cmake, make, meson, ecc.), una lista di pacchetti aggiuntivi
da installare preliminarmente nei rootfs e il tipo di trigger per 'avvio della compi-
lazione - che si poteva configurare come dipendente da aggiornamenti al sorgente
principale o ai progetti linkati.
Da tutto cio é stato immediato intuire che il formato che avrebbe garantito all’u-

tente massima facilita di configurazione era yml e che quindi ’eventuale file di input
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risultante avrebbe avuto la forma di un elenco di oggetti "progetto" contenenti nu-

merosi componenti innestati, come mostra il seguente esempio di config.yml per

la sola cross-compilazione di sshlirp:

# Directory in cui verranno salvati gli ambienti rootfs,

# 1 log e gli

artefatti di build

# (1’utente deve avere permessi di scrittura qui)

build_dir: /home/francesco/v2ci_build

projects:

- name: sshlirp

# Directory in cui verranno salvati i binari statici finali

# (1’utente deve avere permessi di scrittura qui)

target_dir: /home/francesco/sshlirp_build/target_binaries

source:

main_repo:

git_url: https://github.com/virtualsquare/sshlirp

build_system: cmake

dependencies:

- pkg-config
- libglib2.0-dev

- libvdeplug-dev

dependency_repos:

- git_

url: https://gitlab.freedesktop.org/slirp/libslirp.git

build_system: meson

# Lista dei pacchetti APT da installare all’intermo di

# ogni ambiente rootfs

# per questa dipendenza

dependencies:

meson
ninja-build
libssl-dev
libglib2.0-dev
libexpatl-dev
libcap-ng-dev

libseccomp-dev

build_config:

# Modalita’ di build supportate: main

# (build solo se il repo principale ha nuovi commit),
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# dep (build se un qualsiasi repo di dipendenza ha nuovi commit)

# Intervallo di tempo (in secondi) tra due controlli consecutivi

# per nuovi commit

Prime deduzioni generali e questioni cardine per la scelta del disegno

Sia dall’idea iniziale di realizzare un sistema di CI per cross-compilazione sincrona
per architetture e progetti multipli che dal primo requisito di configurabilita e dalle
conseguenti deduzioni sulla forma dell’eventuale file di configurazione, si ¢ intuito
che Rootless V2CI avrebbe di certo assunto la forma di un processo, dall’esecuzione
limitata, che avrebbe avviato iterativamente sotto-processi, ognuno dei quali padre a
sua volta di threads multipli, identificati quindi da una coppia - non ancora ordinata
-<prj, arch>, ossia dal loro compito personale di cross-compilazione di un progetto
per una specifica architettura.

Le domande a cui perd mancava ancora una risposta erano:

e A quale "contenitore concettuale" sarebbero corrisposti i worker? Alle ar-
chitetture coinvolte in tutto il processo di cross-build sincrono o ai progetti

specificati dall’utente?

e I thread "foglia" di questo albero di esecuzione invece sarebbero stati avviati
in parallelo per ogni progetto, occupandosi quindi della sua cross-compilazione
per ogni suo port specificato, o per ogni architettura, cross-compilando percio

progetti diversi all’interno del medesimo rootfs?

e In che momento dell’esecuzione sarebbero stati setuppati gli ambienti chroot?
Durante la vita del main o all’interno di ogni worker? Oppure sarebbe stato

compito dei singoli thread figli della combinazione <prj, arch>?

E proprio dai primi due interrogativi sono nate le principali due alternative architet-
turali concrete, su ognuna delle quali si ¢ svolta un’analisi comparativa servendosi dei
parametri introdotti dal terzo interrogativo e, come anticipato, dal vincolo di re-use

dei componenti di Rootless sshlirpCI e dall’ambizione di performance ottimizzate.
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Prima soluzione: worker per architettura e threads per progetto

Il seguente seguente diagramma concettualizza alla perfezione la prima alterna-
tiva strutturale presa in considerazione per Rootless V2CIL.

config.yml ‘:
build_dir: /path/to/build

projects:
name: . ..

architectures:

Processo ~arch_1
main ‘
[ \ -pri_2:
name: . ..
Lettura di » architectures:
config.yml -

-pri_3:
name: . ..
architectures:

- arch_1

Creazione di una
struttura dati - pri_4:

dizionario che name: ...
associa ad ogni

architettura

una lista di progetti

che l'utente intende

cross-compilare per

tale port

" J
. /

architectures:

fork () - ~

worker per

worker per
arch_1

ptherad_create(f therad_create()

worker per

thread per
su arch_1

thread per ’ [ thread per ’

thread per thread per thread per
prj_3 suarch_1 su

prji_4 su su prji_2su

thread per thread per
pri_2su pri_3su

Figura 4.3: Schema concettuale della prima alternativa architetturale di Rootless

V2CI: worker per architettura e threads per progetto

Questa soluzione architetturale si basava sull’idea di un processo main che, una
volta completata la lettura del file di configurazione - di cui é ora evidente la forma
"object oriented" - avviasse un numero di demoni corrispondenti al numero di ar-
chitetture totali coinvolte nel processo di build. Questi si sarebbero poi occupati di
lanciare un thread per ogni progetto che avrebbe quindi acquisito il ruolo di cross-
compiler per quel solo sorgente all’interno di quel solo rootfs cross-debootstrap-ato.

I’idea di un’architettura di questo tipo ¢ stata inizialmente sviluppata e apprezzata
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in quanto permetteva di isolare logicamente e implementativamente la gestione di
ogni rootfs, affidandola a un demone dedicato ed evitando che processi diversi, o
ancora peggio thread figli di worker diversi, potessero interferire tra loro e operare
in ambienti condivisi. Infatti il timore di dover amministrare concorrenza e gestione
delle risorse di disco tra processi non comunicanti tra loro - ossia non interni allo
scope di un medesimo processo padre - aveva spinto a prediligere quest’architettura
che spostava al livello di "threads fratelli" le problematiche derivanti dal parallelis-
mo.

Sebbene un albero di esecuzione di questo tipo permettesse massimo isolamento
e "privatizzazione", una sua valutazione piu approfondita, riguardante in particolare
lo studio delle scelte implementative che ne avrebbero permessa la realizzazione, ha
fatto emergere scogli di contraddizione logica e di abbattimento delle prestazioni che
hanno portato a ricercare una soluzione addizionale.

In particolare, I’analisi ha evidenziato le seguenti criticita:

e Gestione di strutture dati complesse e ridondanti: la forma "contro
natura" della gestione dell’input - che considerava infatti le architetture come
"contenitori concettuali" di progetti - non solo avrebbe violato le aspetta-
tive logiche dell’'utente, ma avrebbe costretto, come si evince dal diagram-
ma 4.3, a dover costruire strutture dati complesse per cui un eventuale oggetto
architecture, input per ogni demone, avrebbe dovuto contenere una lista di
oggetti project con i loro dettagli compreso un ridondante riferimento alle
architetture per cui sarebbero stati cross-compilati. Da cio si é dedotto che
I'impiego di risorse di allocazione e di calcolo sarebbe stato eccessivo, special-
mente in scenari in cui molti progetti avrebbero richiesto una cross-build per
architetture diverse: in quest’ultimo caso si sarebbe infatti dovuta gestire 1’al-
locazione di oggetti project identici o, ancora peggio, il riferimento a liste di

progetti condivise;

e Parallelismo per progetti con poll_interval diversi: I'idea di eseguire in
parallelo per una stessa architettura progetti diversi si scontrava con il requisito
della configurabilita: progetti diversi sarebbero dovuti essere configurabili per
avere poll_interval diversi e questo avrebbe complicato di gran lunga la
gestione del parallelismo. Le seguenti due possibili soluzioni a questo scenario

infatti avrebbero solo aumentato complessita e tagliato le prestazioni:

— Soluzione 1: rimozione del multi-threading: questa alternativa

avrebbe previsto un’esecuzione del demone associato all’architettura "salte-
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rina'", ossia temporizzata tramite pii intervalli di sleep, uno per ogni pro-
getto interno allo scope del demone stesso. In tal caso non sarebbe stato
pit necessario avviare threads diversi ma sarebbe stato sufficiente eseguire
in un ciclo di build il processo di cross-compilazione piu volte a distanza
di differenze di A secondi e ripetuto con project di input diversi. Ques-
ta soluzione, oltre ad avere minimo grado di eleganza, avrebbe portato a
ritardi e sfasamenti tra le operazioni di build dovuti al tempo richiesto
per ogni cross-compilazione, si approssimabile ma comunque dipendente
da fattori non sempre prevedibili (latenza di rete e risorse computazionali

di sistema);

— Soluzione 2: sleep di attesa interno ad ogni thread: questa opzione,
sebbene piu elegante e di facile implementazione della precedente, si
sarebbe basata sul concetto di un main "greedy" che avrebbe lanciato
tutti i thread ogni volta che il minor poll_interval tra i progetti di
sua competenza scadeva. Dopo di che ogni thread con poll_interval
maggiore sarebbe entarto in uno stato di sleep per una differenza di A
secondi dal poll_interval minore. Un’alternativa di questo tipo non
solo avrebbe comportato l'aggiunta di un attributo delta alla struttura
dati di input di ogni thread, ma avrebbe costretto il main a trascurare il
join dei figli lanciati, andando cosi incontro a rischi per niente accettabili

nel contesto di sviluppo di un sistema di CI robusto e ottimizzato.

Grazie a queste valutazioni - aggiuntive a quelle che veranno compiute durante
l'ultima fase di confronto "parametrico" tra le due alternative architetturali - si é

deciso di spostare 1'attenzione su un’opzione dalla logica invertita.

Seconda soluzione: worker per progetto e threads per architettura

Come fatto per la prima soluzione, prima di qualsiasi valutazione o descrizione,

risulta utile illustrare quest’opzione tramite un diagramma concettuale.
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config.yml :
build_dir: /path/to/build
/ﬁ projects:
Processo architectures:
m ai n arch_1
-pri_2:
Lettura di P architectures:
config.yml -
-pri_3:
architectures:
- arch_1
Creazione di una )
struttura dat - pri_4:
dizionario che .
associa ad ogni architectures:
progetto N
una lista di
architetture
per cui l'utente
intende
cross-compilare tale
progetto

fork ()

worker per

pri_4

worker per
therad_oreate( ptherad_create(
ptherad_create()

thread per thread per thread per
arch_1su su su

thread per thread per thread per thread per
su prj_2 su prj_2 arch_1su su

worker per worker per
pri_2 pri_3

A

thread per
su

Figura 4.4: Schema concettuale della seconda alternativa architetturale di Rootless

V2CI: worker per progetto e threads per architettura

Questa configurazione architetturale di Rootless V2CI inverte 'esecuzione dei
componenti "padre" e "figlio" rispetto alla prima alternativa, affidando a ogni de-
mone lanciato dal main il compito di cross-compilare un progetto per tutte le ar-
chitetture specificate nel file di configurazione.

Tale scelta avrebbe permesso di risolvere le criticita emerse in precedenza, in parti-
colare, per quanto riguarda la gestione degli input, non sarebbe stato pilt necessario
comporre strutture dati complesse e ridondanti, bensi i thread avrebbero ricevuto
in input direttamente un argomento contentente un riferimento al progetto padre -
il quale sarebbe stato I'unico parametro di esecuzione anche per il demone - e all’ar-
chitettura di destinazione. Anche per quanto riguarda la gestione degli intervalli di
esecuzione, questa logica avrebbe semplificato drasticamente I’esecuzione del main
loop per ogni worker essendo quest’ultimo responsabile della build di un solo pro-

getto, associato a un solo poll_interval.
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Nonostante tali vantaggi, cio che era garantito dalla logica a "scompartimenti su
disco" della soluzione precedente, in questa era negato: i threads fratelli non avreb-
bero operato su risorse di storage in comune, bensi avrebbero dovuto regolare la loro
esecuzione con altri eventuali threads associati a project diversi ma che operavano
sullo stesso rootfs. Cio avrebbe chiaramente richiesto I'implementazione di un sis-
tema di locking per la gestione della concorrenza sui file system chroot condivisi,

escludendo la possibilita di gestire le interferenze tramite semplici mutex pthread.

Sebbene gia da questa prima analisi fosse emerso che di entrambe le soluzioni
architetturali proposte nessuna fosse perfetta e computazionalmente snella quanto
la logica alla base di Rootless sshlirpCI, era comunque gia possibile intuire che la
seconda alternativa era la "favorita" in quanto, con un leggero aumento di com-
plessita nella gestione del parallelismo, avrebbe rimosso criticita pitt profonde che
avrebbero invece portato a cali evidenti di performance e imprecisioni inaccettabili.
Nonostante la competizione tra queste due opzioni strutturali avesse quindi gia una
"vincitrice", un’ultima analisi comparativa, basata come anticipato sui tre parametri
di re-use dei componenti di Rootless sshlirpCI, performance e coerenza logica con
Iinput, arricchiti con valutazioni sul setup degli ambienti rootfs e sulla scalabilita,

ha permesso di confermare questa scelta.

Ultima analisi comparativa e parametrica

Come accennato poc’anzi, dalla precedente delineazione di alto livello delle due
possibili soluzioni architetturali, oltre ai tre parametri comparativi gia introdotti,
sono emersi altri due fattori di valutazione che hanno permesso di completare il
quadro analitico e di giungere a una decisione definitiva.

In particolare, si é deciso di considerare 'impatto che avrebbe avuto su ogni alter-
nativa il setup degli ambienti chroot, in quanto operazione maggiormente costosa, e
il grado di scalabilita orizzontale che ogni opzione avrebbe permesso.

Riassumendo quindi in cinque punti i criteri di valutazione adottati, ¢ possibile

svolgere le seguenti considerazioni:

e Criticita del chroot setup: come anticipato, 'operazione di cross-debootstrap
é la pit dispendiosa in termini di tempo e risorse di esecuzione, e per questo
motivo si € reso necessario valutare, per ogni alternativa, in che momento del-
I’esecuzione sarebbe stato pitt opportuno svolgerla in modo da escludere sia

ridondanze e sprechi dovuti ad eventuali setup multipli dello stesso rootfs che
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ritardi nell’avvio dei worker o complicazioni nella gestione della concorrenza.
In tale contesto, il principale vantaggio della prima soluzione architetturale,
ossia l'isolamento totale tra i rootfs, avrebbe intuitivamente permesso di es-
eguire tale operazione una sola volta, assegnandola al demone responsabile
dell’architettura corrispondente. Questo si avrebbe richiesto un sistema di
locking aggiuntivo per il corretto assegnamento delle risorse computazionali,
ma avrebbe evitato che processi diversi potessero tentare di eseguire la medes-
ima operazione.

Se si fosse voluto poi escludere totalmente 'utilizzo di locking tra processi nella
prima soluzione, si sarebbe potuti ricorrere sempre a setup iterativi nel main,
ma questo avrebbe inevitabilmente svuotato di utilitad funzionale i worker per
architetture diverse.

D’altra parte, il punto critico della seconda soluzione avrebbe influenzato di-
rettamente la sicurezza e la stabilita del processo di setup. Infatti il momento
in cui sarebbe stato piu logico eseguire il cross-debootstrap, volendo sfruttare
il gia esistente parallelismo del programma, sarebbe stato all’inizio dell’ese-
cuzione di ogni thread foglia.

In sostanza, ogni thread per una certa coppia <prj, arch> avrebbe potuto in-
izialmente verificare la presenza del rootfs di sua competenza e, se necessario,
svolgerne il setup. Considerando pero che il rischio di setup concomitante di
uno stesso rootfs da parte di threads figli di progetti diversi - e quindi non
regolabili tramite mutex - sarebbe stato elevato, si sarebbe reso comunque
necessario un sistema di locking tra threads.

Anche per questa seconda alternativa sarebbe stato possibile pensare di adottare
un setup serializzato nel main. In questo caso non solo nessun componente
avrebbe perso di funzionalita, in quanto ogni worker avrebbe ricoperto il solo
ruolo di padre dei threads a prescindere, ma si sarebbe anche alleggerita I’ese-

cuzione dei threads ed eliminati i problemi di conocorrenza.

Andando a confrontare quindi i due posizionamenti migliori del chroot setup
per ogni alternativa, si € notato che, nonostante la seconda soluzione par-
tisse svantaggiata a causa di un parallelismo di gestione intrinsecamente meno
facile, 'opzione di una costruzione serializzata dei rootfs nel main per la secon-
da alternativa architetturale garantiva un’esecuzione dei demoni piu leggera e

un’amministrazione della concorrenza basata su locking tra threads. I’opzione
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di setup concorrente per la prima alternativa avrebbe invece ritardato I'ese-
cuzione dei worker e richiesto I'impiego di locks, che si sarebbe aggiunto alla

gia esistente necessita di mutex tra threads operanti nello stesso rootfs.

Scalabilita: in questo contesto, con il termine "scalabilita" si vuole intendere
il grado di flessibilita da parte del sistema di CI ad ammettere I’aggiunta di pit
progetti nel file di configurazione da parte dell’'utente. Infatti, mentre il numero
massimo di architetture per cui un utente puo richiedere la cross-compilazione
rimane limitata superiormente da 4 (amd64, arm64, armhf e riscv64), il nu-
mero di progetti che possono essere specificati ¢ virtualmente illimitato.
In questo senso, la prima alternativa architetturale avrebbe garantito mini-
mo grado di scalabilita. La definizione di un progetto aggiuntivo da parte
dell'utente avrebbe infatti implicato che:
1. il main avrebbe allocato un nuovo oggetto project
2. per ogni struttura dati architecture passata in input ai demoni, il main
avrebbe aggiunto alla lista di progetti per quella architettura una copia
allocata dell’oggetto project o, ancora peggio, un riferimento a quello
gia allocato, causando nel primo caso ridondanze e sprechi e nel secondo

condivisione di puntatori tra processi diversi.

D’altra parte, la seconda alternativa avrebbe garantito massimo grado di scal-
abilita. Infatti 'aggiunta di un progetto nel file di configurazione avrebbe
richiesto al main la sola allocazione di un nuovo oggetto project, il quale
sarebbe stato passato in input a un nuovo demone, senza dover appesantire

strutture dati esistenti e gestire ridondanze o puntatori condivisi.

Re-use dei componenti di Rootless sshlirpCI: come anticipato, uno dei
requisiti per la progettazione di Rootless V2CI era quello di minimizzare lo
sforzo di re-implementazione di componenti gia sviluppati, dando quindi pri-
orita a un’implementazione modulare.

Una struttura basata su workers per architettura e threads per progetto avrebbe
totalmente stravolto la logica alla base di Rootless sshlirpCI, arricchendo il
contesto di esecuzione di ogni demone con l’eventualita di sorgenti diversi e
privandolo del concetto di cross-compilazione per architetture multiple.

La seconda alternativa invece rispettava alla perfezione il requisito di impiego
di processi "Rootless sshlirpCl-like", permettendo quindi di reimpiegare molte
delle idee genitori dell'implementazione dell’antenato di Rootless V2CI.

Infatti, come ¢é possibile dedurre dalle analisi svolte poc’anzi circa la gestione



4.1 Rootless V2CI: potenziamento ed espansione di Rootless sshlirpCI

93

della concorrenza e il setup dei rootfs, si sarebbe reso necessario solo aggiun-
gere un servizio di locking per 'amministrazione di threads di progetti diversi
per una stessa architettura e spostare la creazione degli ambienti chroot in un

ciclo interno al main, eliminando la necessita di locking per questa fase.

e Performance: tutte le considerazioni svolte in precedenza hanno condotto a
dedurre che le prestazioni di una qualsiasi configurazione della prima opzione
architetturale sarebbero state inferiori rispetto a quelle della seconda.
I’allocazione di strutture dati duplicate o condivise avrebbe di certo avuto un
impatto negativo sul tempo di esecuzione e sulle risorse richieste dai demoni.
Anche entrambe le possibili soluzioni al problema di concorrenza tra threads
di progetti diversi, con poll_interval diversi, avrebbe portato all’abuso di
cicli di sleep. Per di pitu, il mancato riciclaggio dei componenti di Rootless
sshlirpCI avrebbe inevitabilmente privato il sistema di ottimizzazioni gia col-
laudate. Infine I'impiego sia di locks per la fase di chroot setup concorrente
che di mutex per la cross-compilazione in ambienti condivisi da threads fratelli,
avrebbe appesantito ulteriormente I’esecuzione della prima opzione architet-
turale, rispetto alla sola necessita di servizi di locking tra threads "cugini" per
la cross-compilazione in ambienti condivisi, necessaria nella seconda alternati-

va.

e Coerenza logica con I'input: come gia accennato, un’architettura del pri-
mo tipo sarebbe stata "contro la natura" dell’input e, oltre a introdurre tutte
le limitazioni di cui si € gia discusso, avrebbe aumentato la curva di apprendi-
mento per l'utente finale, oltre a rallentare la fase di sviluppo del sistema
stesso.

La seconda alternativa invece avrebbe aderito perfettamente alla forma del-
I'input fornito dall’'utente e alle aspettative logiche di quest’ultimo, facilitando
cosi il passaggio da configurazione a strutture dati nell’implementazione, ’ese-

cuzione del sistema stesso e la sua comprensione.

Al termine di questa lunga analisi comparativa, ¢ stata evidente la superiorita del-
la seconda alternativa architetturale, che, sebbene presentasse lo svantaggio di non
essere a "scompartimenti su disco", é stata comunque adottata come struttura por-
tante di Rootless V2CI.

Nonostante questa prima selezione abbia permesso di escludere molti scenari che si
sarebbero dimostrati problematici, il lavoro di progettazione e implementazione del

sistema era appena iniziato.
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4.1.2 Dettagli architetturali e aspetti implementativi

La lunga fase implementativa di Rootless V2CI ha visto in parallelo anche la
traccia dei dettagli strutturali del sistema stesso. In particolare il primo sviluppo é

stato guidato da quattro fasi principali, successive al primo disegno architetturale:

1. Progettazione e implementazione del nuovo main radice, in modo che potesse

svolgere i compiti assegnatigli dalla precedente delineazione generale;

2. Ottimizzazione di alcuni aspetti dei demoni "Rootless sshlirpCl-like" in modo
che sgravassero i thread figli da check ridondanti e da operazioni non di loro

competenza;

3. Adattamento e scomposizione dei threads builder al fine di un’esecuzione per
progetto meno monolitica e ridondante e allo stesso tempo pit performante e

facilmente interrompibile, mantenendo sicurezza, coerenza e idempotenza;

4. Raffinamento del sistema di stop, mirato all’interruzione sia di un eventuale

processo main preparatorio che di tutti i demoni in esecuzione.

Il nuovo main: interfaccia tra utente e demoni

I1 processo main di Rootless V2CI avrebbe svolto pochi e semplici compiti, as-
sumendo solo alcune delle responsabilita del main dell’antenato Rootless sshlirpCI
e garantendo una vita pil leggera ai demoni figli.

In particolare questo nuovo processo radice avrebbe avuto la seguente forma:

O )

Main
Parsing del file di
configurazione e
costruzione delle

strutture dati

Costruzione della
build_dir generale e
di un piccolo logfile

Demonizzazione

——

Setup iterativo dei
rootfs con gestione di
fallimenti

Avvio dei worker figli
attraverso fork e
passaggio delle

strutture dati costruite,

Figura 4.5: Schema concettuale del main di Rootless V2CI
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I due componenti pitt complessi di questo processo dall’esecuzione limitata sareb-

bero stati il parser del file di configurazione e il sistema di setup dei rootfs.

Per quanto riguarda il parser, la difficolta principale é stata quella di trovare un
metodo di tokenizzazione che fosse flessibile per la lettura di un file dalla struttura
"object oriented" e innestata.

Un input di tipo .yml infatti permetteva si all’'utente di impostare il comporta-
mento di Rootless V2CI in modo granulare e ordinato, configurandosi come miglior
opzione di interfaccia tra il motore di cross-compilazione e 'utilizzatore finale, ma
comportava anche la necessita di un parser completo e robusto in grado di leggere
correttamente ogni sezione, elenco, chiave e valore del file e tradurre il tutto in strut-

ture dati C adeguate.

Il primo passo naturale, importante e preliminare alla composizione di questo
strumento essenziale é stato appunto quello di plasmare tali strutture dati sul-
la forma dello stesso file di configurazione. Analizzando il contenuto ipotetico di
quest’ultimo, riportato precedentemente, ¢ stata evidente la necessita di impiego di

tre strutture dati principali: Config, project e manual_dependency.

typedef struct manual_dependency {
char git_url[MAX_CONFIG_ATTR_LEN];
char build_system[MIN_CONFIG_ATTR_LEN];
char *dependencies[MAX_DEPENDENCIES] ;
int dep_count;
struct manual_dependency *next;

} manual_dependency_t;

typedef struct project {
char name[64];
// <cfg.build_dir>/<project.name>
char main_project_build_dir [CONFIG_ATTR_LEN];
// <main_project_build_dir>/logs/worker.log
char worker_log_file[MAX_CONFIG_ATTR_LEN];
// Path assoluto ricavato dal file di configurazione
char target_dir [CONFIG_ATTR_LEN];
char repo_url[MAX_CONFIG_ATTR_LEN];
char main_repo_build_system[CONFIG_ATTR_LEN] ;
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char build_mode [MIN_CONFIG_ATTR_LEN];

int poll_interval;

char *architectures[MAX_ARCHITECTURES] ;

int arch_count;

char *dependency_packages [MAX_DEPENDENCIES] ;
int dep_count;

manual _dependency_t *manual_dependencies;
int manual_dep_count;

struct project *next;

} project_t;

typedef struct {
char build_dir[MIN_CONFIG_ATTR_LEN];
char main_log_file[CONFIG_ATTR_LEN];
project_t *projects;
int project_count;

} Config;

A partire da queste strutture dati e dalla forma del file di configurazione é stato
poi necessario ricercare un metodo di tokenizzazione dell’input che fosse in grado di
popolare correttamnte i dati di esecuzione sopra illustrati.

Per fare cio & stato deciso di adottare la libreria 1ibyaml [61], la quale permette di
gestire la lettura di complessi file .yml attraverso I’emissione e la cattura di eventi.
Senza entrare nei dettagli di questo tool di parsing, & possibile mostrarne I'utilita,
e I'impiego nello sviluppo del programma di riconoscimento dei pattern interni al
config.yml, riportando alcuni estratti principali della funzione load_config() che
si sarebbe appunto occupata di posizionare in una struttura dati Config il path della
build_dir principale e una lista di project, caricati tramite la funzione ausiliaria

load_project.

// Funzione helper per il parsing di un singolo oggetto ’project’

static int load_project(project_t *prj, yaml_parser_t #*parser) {
// Variabili di stato per tracciare sezioni (es. source, git) e chiavi
int depth = 1; // Profondita’ di annidamento corrente
yaml_event_t ev;
// Ciclo annidato: consuma eventi finche’ non si chiude il project
while (depth > 0) {

// La funzione yaml_parser_parse fa avanzare il parser e popola ’ev’
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if (!yaml_parser_parse(parser, &ev)) { ... }
switch (ev.type) {
case YAML_SCALAR_EVENT:
// L’evento SCALAR indica la lettura di una chiave o di un valore
char *val = (char #*)ev.data.scalar.value;
// Se siamo dentro una sequenza (es. architectures),
// aggiungiamo il valore alla lista
if (seq == SEQ_ARCH) {
add_string(prj->architectures, ..., val);
+
// Altrimenti controlliamo 1’ultima chiave letta per assegnare
// il valore al campo corretto
else {
if (strcmp(last_key, '"name") == 0) {
snprintf (prj->name, sizeof(prj->name), "%s", val);
} else if (strcmp(last_key, "repo_url") == 0) {
snprintf (prj->repo_url, sizeof(prj->repo_url), "Ys", val);
+
// ... gestione altri campi (build_mode, ecc.)
+
break;
case YAML_MAPPING_START_EVENT:
depth++; // Entrata in una sotto-sezione (es. ’source:’)
// ... logica per aggiornare lo stato della sezione corrente
break;
case YAML_MAPPING_END_EVENT:
depth--; // Uscita da una sotto-sezione
break;
case YAML_SEQUENCE_START_EVENT:

// Inizio di una lista (es. ’architectures:’, ’dependencies:’)

// ... aggiornamento stato sequenza attiva ...
break;
//
+
yaml_event_delete(&ev) ;
}
return O;
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// Funzione principale di caricamento della configurazione

int load_config(Config *cfg) {

/] ...

apertura file e inizializzazione strutture ...

// Inizializzazione del parser libyaml

yaml_parser_t parser;

yaml_parser_initialize(&parser);

yaml_parser_set_input_file(&parser, config_file);

// Ciclo principale di parsing del file
while (!domne) {

yaml_parser_parse(&parser, &ev); // Fetch del prossimo evento

switch (ev.type) {

+

case YAML_SCALAR_EVENT:

// Lettura chiavi globali (es. ’build_dir?’)

if (Yin_projects && strcmp(top_last_key, "build_dir") == 0) {
snprintf (cfg->build_dir, ..., val);

+

break;

case YAML_SEQUENCE_START_EVENT:

// Rilevamento inizio lista ’projects’

if (strcmp(top_last_key, "projects") == 0) {
in_projects = 1;

+

break;

case YAML_MAPPING_START_EVENT:

// Se siamo dentro la lista ’projects’, inizia un nuovo oggetto
if (in_projects) {
project_t *prj = calloc(l, sizeof(project_t));
// ... linking del nuovo progetto alla lista in cfg ...
// Delega il parsing del contenuto del progetto alla funzione,
// helper passando il parser per continuare la lettura
load_project(prj, &parser);
by

break;

case YAML_STREAM_END_EVENT:

done = 1; // Fine del file

break;

yaml_event_delete(&ev);
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+
// ... cleanup parser e chiusura file ...
return O;

Grazie allo sviluppo di questo parser potenziato e flessibile, il main era ora dotato
della capacita di estrarre correttamente, in una variabile Config cfg, i dati di ese-
cuzione forniti dall’'utente, creare la cfg.build_dir, il suo log file

cfg.main_log_file, demonizzarsi esattamente come veniva fatto in Rootless sshlir-
pClI - settando quindi anche un handler temporaneo per catturare eventuali SIGTERM

durante successive operazioni consistenti - e procedere con il setup dei rootfs.

La seconda operazione pit densa, dopo il parsing del file config.yml e il load
delle variabili di configurazione, era appunto il setup degli ambienti chroot,
che, a seguito delle valutazioni svolte nella sottosezione 4.1.1, si era deciso di es-
eguire in modo serializzato nel main, attraverso l'invocazione diretta di uno script
chroot_setup.sh.

Chiaramente, per realizzare tale operazione, ¢ stato necessario inserire, tra la fase
di demonizzazione e quella di costruzione dei rootfs, ’estrazione delle architetture,
richieste da tutti i progetti della lista cfg.projects e non ripetute. Quest’op-
erazione addizionale, rispetto a quelle richieste da un alternativo setup sincrono
svolto dai singoli threads, ha aggiunto un minimo overhead in termini di tempo di
computazione, ma ha anche alleggerito drasticamente ’esecuzione dei demoni figli.
La scelta di un setup iterativo nel main ha pero fatto risorgere i problemi di coeren-
za legati alla costruzione di ambienti chroot una tantum, che rendevano sshlirpCI
soggetto a errori in scenari di rimozione a run-time delle risorse di build.
Tale criticita ¢ stata risolta solo in un secondo momento, grazie a raffinamenti e
accorgimenti implementativi che verranno discussi nella sezione 4.1.4.
Anche in questo primo sviluppo pero si € tentato di migliorare la sicurezza del sis-
tema e garantire che non ci fossero contraddizioni tra l'esito delle operazioni del
main e ’esecuzione dei demoni figli. Infatti, durante il chroot setup iterativo, si é
deciso di tener traccia delle architetture per cui il setup fosse fallito, provvedendo
in seguito a rimuoverle dalla lista di architetture di ogni progetto. In questo modo
si & quanto meno garantito che nessun demone figlio avrebbe tentato di operare in

un ambiente chroot non correttamente costruito.
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Le successiva e conclusiva operazione di avvio iterativo dei worker per progetto,
sempre interna al main, avrebbe portato a termine il compito di quest’ultimo, pas-
sando il controllo ai processi forkati, attraverso riferimenti ai corrispondenti project.
Questa prima versione del main di Rootless V2CI, integrando in essa i ruoli di "in-
terfaccia utente", loader, setupper e orchestratore, ha quindi assunto la seguente

forma:

int main() {
// 0. Caricamento delle variabili dal file di configurazione
Config cfg;
if (load_config(&cfg) = 0) { ... }
// 1. Creazione di directory e file principali (se non esistono)
//
// 2. Demonizzazione del processo
daemonize();
// 3. Unione delle architetture necessarie da tutti i progetti
// in una singola lista di architetture uniche
char *archs_list [MAX_ARCHITECTURES];
int num_archs = 0;
project_t *current = cfg.projects;
for (int i = 0; i < cfg.project_count; i++) {
// ... logica di unione architetture
+
// 4. Setup iterativo del chroot per ogni architettura
char *failed_chroots[MAX_ARCHITECTURES] ;
int num_failed_chroots = 0;
for (int i = 0; i < num_archs; i++) {
// I setup del chroot sono le operazioni piu’ dispendiose,
// quindi se viene ricevuto un segnale di terminazione,
// esce immediatamente
if (terminate_main_flag) { ... }
// ... preparazione path chroot

if (chroot_setup(archs_list[i], chroot_dir, cfg.main_log_file,

log_fp) !'= 0
) 1
// ... gestione errore setup ...

failed_chroots[num_failed_chroots] = archs_list[i];

num_failed_chroots++;
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+
// ... controllo se tutti i setup sono falliti
// 5. Avvio iterativo dei builder di progetto tramite fork
// {(nuovo processo per ogni progetto)
current = cfg.projects;
for (int i = 0; i < cfg.project_count; i++) {
// Prima di lanciare un nuovo worker, controlla se e’ stato
// ricevuto un segnale di terminazione
if (terminate_main_flag) { ... }
pid_t pid = fork();
if (pid < 0) {
// ... errore fork ...

} else if (pid == 0) {

// Processo figlio: lancia il worker del progetto solo con

// le architetture per cui il setup del chroot ha

// avuto successo

int failed_removal = remove_failed_archs_from_project(current,

failed_chroots, num_failed_chroots
)3
//
int result = project_worker(current, cfg.build_dir);
exit(result);
} else {
// Processo padre: continua al prossimo progetto

current = current->next;

by
b
// ... chiusura log e rimozione pid file
return O;

I demoni per progetto: processi Rootless sshlirpCI ottimizzati

Meno rivoluzionarie sono state le modifiche apportate al corpo del main loop

di Rootless sshlirpCI, quasi integralmente reimpiegato nei demoni figli di Rootless

V2CLL

Infatti, sebbene la fase di demonizzazione e di setup degli ambienti chroot risiedesse
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ora all’interno del nuovo main generale, la forma dei demoni di Rootless V2CI ha
permesso di rispettare ampiamente il requisito di re-use dei componenti antenati.
Come nella struttura portante di sshlirpCI e Rootless sshlirpCI, anche alla base dei
worker di questo nuovo motore risiedevano:
e un setup iniziale del sotto-albero di filesystem dedicato al progetto specifico
di ogni worker;
e un loop infinito che eseguisse periodicamente 1'avvio dei threads builder per
ogni architettura richiesta dal progetto.
Tre sole sono state le ottimizzazioni e le modifiche necessarie apportate a questa
struttura di base, precedentemente collaudata, e riassumibili nel seguente schema
comparativo che mostra a confronto i main di sshlirpCI e Rootless sshlirpCI con il

componente "demone per progetto", impiegato invece in Rootless V2CI:

Main setupper Main setupper Main setupper

Main loop Main loop

Clone o pull dei sorgenti
| Setup dei thread per n architetture

Main loop

Check delle condizioni di build

[ Check sui sorgenti principali !
Check sulle dipendenze

Setup dei thread per n architetture
T

i(failure)

—

E—

Thread 1

if(failure)

Thread 1 Thread n

Creazione Creazione
dei rootfs dei rootfs
Setup Setup
dellambiente dellambiente

Thread 1 Thread n

if (round == 0)

Join dei
thread e

Join dei
thread

Sleep e gestione delle interruzioni

S

Copia dei o Copia dei merge
deilog
sorgenti sorgenti
Sleep e gestione delle interruzioni
Cross- Cross-
compilazione

compilazione

N

Rimozione Rimozione
dei sorgenti dei sorgenti

Move dei binar finali
Sleep e gestione delle interruzioni

Figura 4.6: Confronto tra rispettivamente il main di sshlirpCI, quello di Rootless

sshlirpCI e il demone per progetto di Rootless V2CI

In particolare, come suggerito dal diagramma soprastante, ¢ possibile ampliare

la descrizione delle novita e delle variazioni introdotte in tre punti principali:

e Spostamento del check delle condizioni di build dallo script di ese-
cuzione dei thread al main: per quanto questa operazione di trasferimento
dei controlli di presenza o aggiornamento dei sorgenti possa rievocare la strut-
tura scomposta e frammentata di sshlirpCI, & bene sottolineare che in questo
nuovo contesto non sarebbe piti convenuto eseguire in un unico script tutte le

operazioni di competenza di un singolo thread. Il vantaggio di un’esecuzione
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monolitica in Rootless sshlirpCI derivava infatti dalla possibilita di delegare
ai singoli thread anche gli stessi setup dei rootfs. In Rootless V2CI invece
Iesecuzione dei thread é separata dalla costruzione degli ambienti di build ed
é quindi piu logico cercare di estrarre tutte le operazioni "generalizzabili" ap-
pena, successive.

Infatti un semplice check esterno alla fase di cross-compilazione vera e propria,
non comprensivo di alcun clone effettivo ed eseguito sul primo rootfs setup-ato
dal main, non solo non trasgredisce la linea guida Quae sunt Thread-is, Thread-
i, ma permette anche di regolare I'avvio del processo di cross-compilazione in
base al nuovo parametro di modalita di build. Avendo infatti il demone ac-
cesso diretto alla variabile prj->build_mode, risulta conveniente che sia lui
stesso a invocare un metodo check_for_updates_inside_chroot() con gli
argomenti corretti, i quali comunque verranno poi passati a un componente

check_updates. sh eseguito all’interno del chroot.

e Gestione degli errori e delle interruzioni: il main process sia di sshlirpCI
che di Rootless sshlirpCI, in caso di fallimento di una qualsiasi sua operazione,
ritornava errore e terminava la sua esecuzione. In Rootless V2CI invece si é
deciso di dotare 1 demoni della capacita di entrare anticipatamente nel ciclo
di sleep tramite una funzione sleep_and_handle_interrupts() e, al suo ter-
mine, ritentare direttamente I'ultima operazione fallita. Questo approccio é
stato adottato solo nel contesto di operazioni maggiormente network-dependent
come il check delle condizioni di build.

Contestualmente a questo potenziamento, che avrebbe permesso al demone
di un certo progetto di proseguire la sua esecuzione in caso di errori saltuari,
si ¢ deciso inoltre di irrobustire il sistema di cattura dei segnali SIGTERM. La
predisposizione alla ricezione e all’elaborazione di tali segnali ¢ stata infatti
aggiunta in corrispondenza di ogni attesa, come € possibile intuire dal nome
della funzione poc’anzi citata. Questa ottimizzazione é conseguenza logica
della presenza piu diffusa delle fasi di sleep: di per sé un ciclo di esecuzione
del demone con esito positivo non impiega troppo tempo se non appunto per
lattesa del join dei tread figli - la cui predisposizione all’interruzione tramite
SIGTERM verra discussa nella sottosezione successiva -, per un eventuale loop
infinito generatosi da un bug persistente e per il ciclo di sleep conclusivo di
ogni iterazione. QQueste ultime due sorgenti di attesa occupano probabilmente

piu del 50% della vita del demone e quindi sono intrinsecamente piu inclini a
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ricevere segnali di interruzione da parte di un utente.

Quindi, quest’ultimo, grazie a tale accorgimento avrebbe potuto servirsi piil
frequentemente del programma di stop piuttosto che di un eventuale Kkiller,
garantendo al demone 'opportunita di una terminazione si pulita ma anche

coerente.

e Rimozione del concatenazione dei logs: parallelamente alla riscrittura

del main loop interno ad ogni demone, si ¢ pensato che 'operazione di con-
catenazione dei logs prodotti dai threads figli in un unico log file "personale"
del demone padre, avrebbe aggiunto vantaggi minimi per 'utente rispetto al
pin consistente overhead introdotto dalle frequenti operazioni di I/0, special-
mente nel contesto di un’esecuzione generale con due gradi di concorrenza
e, conseguentemente, caratterizzata da un elevato numero di processi in ese-
cuzione contemporaneamente.

Per questo motivo si ¢ deciso di abbandonare completamente la gestione e il
popolamento di un unico log file di riferimento per un certo progetto, mante-

nendo invece su disco quello personale di ciascun thread lanciato.

La ripresa quasi in toto dell’antenato main.c di Rootless sshlirpCI con I'aggiunta di

queste modifiche marginali, ha portato alla creazione di un file project_worker.c

dalla seguente forma:

/] ...

include, gestori di segnali e helper per file di stato ...

static void sleep_and_handle_interrupts(int poll_interval,

)

by

char *STATE_FILE, FILE *log_fp, const char *project_name
{
update_worker_state (PROJECT_WORKER_STATE_SLEEPING, STATE_FILE);
unsigned int time_left = poll_interval;
while(time_left > 0) {
time_left = sleep(time_left);
// Controllo segnale di terminazione durante lo sleep
if (terminate_worker_flag) {

break;

+
update_worker_state (PROJECT_WORKER_STATE_WORKING, STATE_FILE);

int project_worker(project_t *prj, char *main_build_dir) {
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// ... Setup logging, PID file, gestori segnali, directory ...
// Loop principale
while (1) {
if (terminate_worker_flag) break;
// 1. Controllo aggiornamenti direttamente nel demone
int need2update = 0;
// ... setup percorsi chroot ...
if (strcmp(prj->build_mode, "main") == 0) {
// ... estrazione nome repo ...
int update_result = check_for_updates_inside_chroot(...,
&need2update,
)3
if (update_result != 0) {

// 2. Gestione errori tramite sleep e riprova

sleep_and_handle_interrupts(prj->poll_interval, ...);
continue;
+
} else if (strcmp(prj->build_mode, "dep") == 0) {
// ... logica simile per le dipendenze ...
+
if (!need2update) {
sleep_and_handle_interrupts(prj->poll_interval, ...);
continue;
+

// 3. Avvio thread (nessuna concatenazione log, logging diretto)
pthread_t threads[prj->arch_count];
thread_arg_t args[prj->arch_count];
for (int i = 0; i < prj->arch_count; i++) {
// ... setup argomenti ...
if (pthread_create(&threads[i], NULL, build_thread,
&args[i]) !'= 0
) 1
// Gestione errore creazione
sleep_and_handle_interrupts(prj->poll_interval, ...);

continue;

¥
// Attesa dei thread
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for (dnt j = 0; j < i; j++) {
pthread_join(threads[jl, ...);
// ... log risultato thread ...
by

// Sleep prima della prossima iterazione
sleep_and_handle_interrupts(prj->poll_interval, ...);

}
// ... Pulizia ...

return O;

Adattamento e scomposizione dei thread builder

I riflessi pitt importanti dell’architettura di Rootless V2CI, scalata orizzontal-
mente rispetto a quella dell’antenato Rootless sshlirpCI, si sono maggiormente no-
tati nell’adattamento dei thread builder al nuovo contesto "variabile".

Sia in sshlirpCI che in Rootless sshlirpCI infatti, il contesto di esecuzione dei thread
per architettura era tracciato: essendo il sorgente da cross-compilare fissato su
sshlirp, dipendenze, tool di compilazione e pacchetti richiesti erano noti a pri-
ori e 'esecuzione del processo di build in base a questi era quindi costante.

Una sequenza di operazioni fissa e di competenza dei soli threads aveva senso di
essere racchiusa in un unico script monolitico, come era stato fatto in Rootless ssh-
lirpCI; ma in Rootless V2CI, con la moltiplicazione dei progetti, la variabilita delle
loro caratteristiche e I’aggiunta di sorgenti multipli per ognuno di essi, questa rigid-
ita avrebbe costretto a una manipolazione degli argomenti di input per I'ipotetico

script centrale per niente immediata, che avrebbe previsto:

1. una traduzione integrale da parte del demone, o di ogni suo thread, della

complessa struttura dati project in una serie di argomenti stringa;
2. I'invocazione dello script di build con la complessa lista di parametri;

3. la decodifica, da parte dello script, di questi argomenti in variabili locali e
strutture dati interne, per poter eseguire correttamente le operazioni di cross-

compilazione.

Queste operazioni sarebbero state evidentemente molto costose in termini di tempo
di sviluppo e di performance, oltre a essere soggette a errori di traduzione e inter-
pretazione dei dati.

Per questo motivo si é deciso di scomporre il monolite di Rootless sshlirpCI in una
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serie di funzioni C, ognuna delle quali si sarebbe occupata di un singolo compito
all’interno del processo di build, tornando alla struttura pitt modulare e flessibile di
sshlirpCI, senza perd aumentare I'overhead dovuto alle operazioni di I/O su file di
script - che come in Rootless sshlirpCI sarebbero stati comunque eseguiti diretta-
mente - né abbattere le performance a causa dell’abuso di system() - che sarebbe
stato sostituito da system_safe() come quanto fatto per Rootless sshlirpCI.
Percio, per ogni operazione che avrebbe avuto un alto grado di variabilita negli ar-
gomenti di input, in quanto non solo sarebbe stata invocata su progetti diversi ma
anche su sorgenti di input multipli internamente allo scope di uno stesso project,
si & deciso di creare uno script .sh dedicato e invocarlo come utility pittosto che
motore comprensivo di tutte le funzionalita.

In particolare, ogni thread builder di Rootless V2CI avrebbe eseguito in ordine:

e install_packages_in_chroot.sh, invocato sia per l'installazione delle dipen-
denze di sistema richieste dal progetto principale che per l'installazione di

quelle delle sue dipendenze "manuali";

e clone_or_pull_for_project.sh, lanciato per ogni sorgente da cross-compilare,

sia esso il repository principale o uno di quelli delle dipendenze manuali;

e cross_compiler.sh che, come nei precedenti casi, sarebbe stato eseguito per
ogni sorgente, occupandosi della vera e propria compilazione incrociata per il
repository di input, attraverso il metodo di build specificato dal parametro
build_system. Per questo componente ¢ bene specificare che ¢ stato neces-
sario inserire anche una fase di selezione euristica del toolchain da utilizzare
per la compilazione e un processo di scelta dei binari statici finali, se prodotti
dalla build. Inoltre questo script, nel caso in cui il sorgente fosse stato una
dipendenza, avrebbe proceduto a una sua installazione all’interno del rootfs,
In caso contrario, avrebbe spostato I’eseguibile selezionato in una directory di

staging interna al chroot e poi nella destinazione target versionata, sull’host.

In base a quanto appena descritto, ¢ possibile rappresentare la forma generale di un

thread builder di Rootless V2CI con il seguente diagramma:
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/ Thread_i \

/ Installazione dei pacchetti \

[ Installazione dei pacchetti necessari ]

,[instalLpackagesﬁinfchroot.sh]
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/ Cross compilazione dei sorgenti su arch_i \
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cross_compiler.sh
corrente
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Figura 4.7: Schema concettuale di un thread builder di Rootless V2CI

[ clone_or_pull_for_project.sh ]

cross_compiler.sh ]

Come é possibile evincere dallo schema soprastante, cido che ha permesso I'in-
terazione tra questi script di "utility" e la necessita dei thread builder di portare a
termine una cross-compilazione completa, sono state funzioni intermedie, dedite a
estrarre i dati necessari dalla struttura project e a eseguire iterativamente su og-
ni "input atomico" i componenti .sh sopracitati, che non avrebbero quindi dovuto

occuparsi di alcun parsing o interpretazione di argomenti complessi.

Questa scelta, quasi obbligata, di scomporre il monolite di Rootless sshlirpCI ha

portato con sé due vantaggi addizionali, figli anche di arricchimenti e ottimizzazioni
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implementative:

e Maggior interrompibilitd dei thread builder tramite stop: sebbene
non sia stato precedentemente specificato, in questo nuovo contesto anche la
struttura dati di input di ogni thread thread_arg_t ¢ stata modificata non
solo affinché contenesse un riferimento necessario al suo project padre, ma
anche per includere la flag di terminazione condivisa con il demone genitore.
Infatti, come accennato nella sottosezione precedente, una delle operazioni
piu time-consuming del worker per progetto sarebbe stata ’attesa della termi-
nazione dei suoi thread figli. L’assenza di un metodo di interruzione ordinato e
granulare per quest’ultimi avrebbe costretto 'utente a servirsi direttamente di
un eventuale killer, senza garanzia di terminazione coerente. Invece, con la con-
divisione della terminate_worker_flag, definita nel file project_worker.c,
e grazie alla nuova struttura modularmente scomposta dei threads builder,
questi avrebbero potuto controllare periodicamente la presenza di un seg-
nale di interruzione per il genitore, interrompendo la loro esecuzione prima
di una qualsiasi operazione consistente o network-dependant. La precedente
esecuzione monolitica adottata in Rootless sshlirpCI invece non avrebbe per-
messo di usufruire di questo meccanismo, costringendo 'utente ad attese piu

lunge o terminazioni forzate.

e Tracciabilita degli errori e dello stato di avanzamento: un secondo
vantaggio derivante dalla scomposizione dell’esecuzione dei threads per ar-
chitettura ¢ stata la possibilita di amministrare gli scenari di terminazione in
modo pit completo, ritornando al project worker non solo un exit code - che
nel caso di Rootless sshlirpCI assumeva i soli valori di 0 o 1 rispettivamente
in caso di successo o fallimento - ma anche un messaggio e un nuovo attrib-
uto char #*stats, in modo che la scomodita derivante dalla mancanza di un
log file centralizzato per ogni worker fosse compensata da una tracciabilita di
eventuali errori potenziata. Ovviamente per permettere cid ¢ stato ripreso e

arricchito da sshlirpCI 'impiego della struttura dati thread_result.

L’ultima modifica sostanziale al corpo dei threads builder di Rootless V2CI é stata
I’aggiunta del sistema di locking per 'amministrazione di operazioni sui rootfs con-
divisi con threads "cugini", come introdotto nella sottosezione 4.1.1, dedicata alla
descrizione della seconda alternativa architetturale.

Infatti, sebbene threads per la stessa architettura e figli di project differenti non

avrebbero mai condiviso directory o file all’interno del rootfs comune, 'operazione



110 4. Rootless V2CI e integrazione ELK

di installazione delle dipendenze di sistema tramite apt, se eseguita contemporanea-
mente da piu processi, avrebbe portato quest’ultimi a tentare di scrivere simul-
taneamente su /usr/local/var/lib/dpkg/status. dpkg, per escludere incoerenze
e corruzioni del database dei pacchetti, impone un lock esclusivo su questo file du-
rante le operazioni di installazione [62], e un qualsiasi processo che tenti di acquisirlo
mentre é gia detenuto da un altro fallisce immediatamente.

Quindi, per evitare terminazioni precoci da parte dei threads builder a causa di
questa eventualita, in Rootless V2CI si ¢ deciso di atomizzare ’operazione di instal-
lazione dei pacchetti tramite due funzioni lock_package_manager_in_chroot ()
e unlock_package_manager_in_chroot(), che si sarebbero entrambe servite di
flock().

La nuova carrozzeria dei thread builder di Rootless V2CI, che ha preso il posto

del monolite di Rootless sshlirpCI, ha quindi assunto la seguente forma finale:

// ... include e funzioni helper per il locking ...

void #build_thread(void *arg) {
// Estrazione argomenti e preparazione risultato
thread_arg_t *targ = (thread_arg_t *)arg;
project_t *prj = targ->project;
volatile sig_atomic_t *terminate_flag = targ->terminate_flag;
thread_result_t *result = malloc(sizeof(thread_result_t));
// ... inizializzazione result e logging ...
// Creazione directory e file necessari nel chroot
// ... (mkdir ricorsivi per build_dir, log_file, target_dir)
// 1. Installazione dipendenze con locking
if (s#terminate_flag) { ... return (void #*)result; 7}
// Acquisizione lock per evitare conflitti apt/dpkg tra processi
int lock_fd = lock_package_manager_in_chroot(

targ->thread_chroot_dir,

)3

if (lock_fd == -1) { ... return (void *)result; }

// Installazione dipendenze principali

if (install_packages_list_in_chroot (prj->dependency_packages, ...)
'=0

) {

// ... gestione errore
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return (void *)result;
+
// Installazione dipendenze manuali (iterativa)
manual _dependency_t *cur_manual = prj->manual_dependencies;
while (cur_manual) {
if (install_packages_list_in_chroot(
cur_manual->dependencies,
) =0
) 1
// ... gestione errore
return (void *)result;
+
cur_manual = cur_manual->next;
+
// Rilascio lock
unlock_package_manager_in_chroot(lock_fd, ...);

// 2. Clone o pull dei sorgenti (principale e dipendenze)

if (*#terminate_flag) { ... return (void *)result; 7
if (clone_or_pull_sources_inside_chroot(targ, log_fp) != 0) {
// ... gestione errore

return (void *)result;
}
// 3. Avvio processo di build (compilazione dipendenze e progetto)
if (xterminate_flag) { ... return (void *)result; }
if (build_in_chroot(targ, log_fp) != 0) {
// ... gestione errore
return (void *)result;
}
// Successo
result->stats = "Progress: 100%";
result->status = O;

return (void *)result;

Potenziamento del sistema di stop

Ultima modifica sostanziale all’ecosistema di Rootless sshlirpCI é stata la ri-

mozione del metodo di terminazione tramite killer e I'implementazione di un sis-
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tema di stop ordinato e granulare, che avrebbe permesso all’'utente di interrompere
I’esecuzione del motore in modo pulito e coerente.
Infatti, come deducibile dalle tre sottosezioni precedenti, la possibilita di interrompre
in modo granulare il breve processo di "decollo" - ossia il nuovo main genitore dei
worker -, i processi demoni e gli stessi threads "foglia", grazie all'impiego pitl consis-
tente di flags di terminazione e a check piu frequenti per le operazioni maggiormente
time-consuming, ha permesso lo sviluppo di un programma stop. ¢ che, per qualsiasi
stadio di esecuzione, fosse in grado di terminare tuttii processi di cross-compilazione
avviati minimizzando il tempo di attesa richiesto e massimizzando la pulizia e co-
erenza delle risorse lasciate "inattive" sul disco.
In particolare il nuovo programma di stop si occupa di:

1. inviare un segnale SIGTERM all’eventuale processo main ancora vivo;

2. caricare le variabili di configurazione dal file di input config.yml;

3. ricostruire il percorso dei pid file di ogni demone per project e inviare a
ognuno di questi un segnale di terminazione senza attenderne la loro reale
morte con pesanti verifiche iterative.

Quest’ultimo punto conferma che la predisposizione di ogni processo avviato a una
ricezione granulare di interrupt, consente all'utente di avere un riscontro dell’esito

del processo di stop in tempo reale e la garanzia di terminazione ordinata e rapida
di Rootless V2CI.

int main() {
// 1. Tentativo di terminazione del processo main (se esiste)
const char *MAIN_PID_FILE = "/tmp/rootless_v2ci.pid";
if (access(MAIN_PID_FILE, F_0K) == 0) {
// ... lettura pid da file
kill(main_pid, SIGTERM);
+
// 2. Caricamento configurazione per ricostruire i path dei PID file
Config cfg;
if (load_config(&cfg) !'= 0) return 1;
// 3. Iterazione sui progetti e invio SIGTERM ai worker
project_t *current = cfg.projects;
for (int i = 0; i < cfg.project_count; i++) {
char PID_FILE[256];
snprintf (PID_FILE, sizeof (PID_FILE), "/tmp/¥%s-worker.pid",

current->name



4.1 Rootless V?CI: potenziamento ed espansione di Rootless sshlirpCI 113

)3
if (access(PID_FILE, F_OK) == 0) {
// ... lettura pid del worker ...
kill(pid, SIGTERM);
printf("Sent termination signal to project %s.\n",

current->name

)3
}
current = current->next;
}
// ... cleanup memoria ...
return O;
}

4.1.3 Diagramma finale

Le scelte architetturali e implementative prese durante l'intero processo di svilup-
po di Rootless V2CI, hanno dato vita a un’infrastruttura di CI completa, altamente
scalabile, configurabile e sicura, che combina all’interno dei suoi componenti dis-
tribuiti I'assenza di ridondanze e la granularita caratterizzanti sshlirpCI con I'idem-
potenza e la performance del suo successore Rootless sshlirpClI, introducendo anche
nuovi meccanismi di gestione degli errori e delle interruzioni.

I seguenti diagrammi concettuali riassumono la forma finale di questo ecosistema,
illustrandone rispettivamente la struttura generale e la composizione interna di un

suo componente worker.
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Figura 4.8: Schema concettuale generale di Rootless V2CI, con main espanso e

demoni per progetto rappresentati come contenitori logici opachi
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Figura 4.9: "Scorcio interno" del demone per il secondo progetto di esempio ereditato
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4.1.4 Raffinamenti e completezza: full build mode, disaster

recovery e rotazione dei binari

Sebbene la forma raggiunta da Rootless VV2CI attraverso il processo di sviluppo e
assemblaggio, descritto nella sottosezione 4.1.2 e riassunto dai diagrammi 4.8 e 4.9,
fosse gia sufficientemente completa, funzionale e robusta, al fine di affinare questo
sistema di CI distribuito fino a renderlo potenzialmente adatto a un contesto di
produzione reale, si & deciso di implementare tre ulteriori funzionalitad secondarie,
ma non meno importanti: il full build mode, un meccanismo di disaster recovery e
un sistema di rotazione dei binari prodotti.

Questi meccanismi, dall’implementazione piuttosto semplice ma dai vantaggi con-
sistenti, sono stati introdotti per ottimizzare tre aspetti principali di Rootless V2CI,
rispettivamente il grado di configurabilita, la persistenza delle risorse e la gestione

dello spazio su disco.

Full build mode

Una delle prime ottimizzazioni implementative che un contesto di produzione
avrebbe richiesto per Rootless VV2CI, sarebbe stata la possibilita di avviare il pro-
cesso di cross-compilazione nel caso di aggiornamenti sia ai sorgenti del progetto
principale che a quelli delle sue dipendenze, e non esclusivamente nel caso di una
sola condizione delle due.

Per maggiore chiarezza, nella versione finale di Rootless V2CI si intendeva permet-
tere all’'utente di specificare, per I'attributo build_mode del file di configurazione, un
terzo possibile valore full, attraverso il quale il demone del progetto corrispondente
avrebbe eseguito i check di aggiornamento sia per il repository principale che per
quelli delle dipendenze manuali, avviando il processo di build nel caso in cui almeno
uno di questi fosse risultato assente o superato da commit pitl recenti.

L’implementazione di questa funzionalita si é rivelata piuttosto semplice, richiedendo

esclusivamente I'inserimento di minimi controlli aggiuntivi nel file project_worker.c:

int project_worker(project_t *prj, char *main_build_dir) {

// ... Setup logging, PID file, gestori segnali, directory ...
// Main loop
while (1) {

// ... creazione dei percorsi e setup variabili ...

need2update = 0O;
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if (strcmp(prj->build_mode, "main") == 0 ||
strcmp(prj->build_mode, "full") == 0
) {
// ... estrazione nome repo ...
int update_result = check_for_updates_inside_chroot(
., &need2update,
)3
// ... gestione errori
+
if (stremp(prj->build_mode, "dep") == 0 ||
(stremp(prj->build_mode, "full") == 0 &% !need2update)
) {
manual _dependency_t *cur_manual = prj->manual_dependencies;
while (cur_manual)
// ... estrazione nome repo ...
int update_result = check_for_updates_inside_chroot(
., &need2update,
)3
// ... gestione errori ...
if (need2update) {
break;

by

cur_manual = cur_manual->next;
+
if (terminate_worker_flag) {

break;

+
if (!need2update) {
sleep_and_handle_interrupts(...);

continue;

by

// ... avvio thread builder ...

}
// ...
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Disaster recovery

Questo secondo miglioramento implementativo ¢ stato quello che ha apportato
maggior stabilita, persistenza, garanzia di idempotenza e di coerenza, rispetto a
tutti i precedenti accorgimenti introdotti nell’architettura di Rootless V2CI.
Infatti, come accennato nella sottosezione 4.1.2, la scelta, quasi obbligata, di as-
segnare il compito di un setup dei rootfs iterativo al main process, piuttosto che
all’esecuzione del main loop di ogni demone figlio, avrebbe privato Rootless V2CI
della capacita di ripristinare autonomamente gli ambienti chroot qualora fossero
stati corrotti o rimossi tra un’iterazione e ’altra del ciclo di build, capacita invece

in dotazione all’antenato monolitico Rootless sshlirpCI.

Per questo motivo, e ispirandosi all’alto grado di coerenza gia introdotto al-
Iinterno dei demoni dalla funzionalita aggiuntiva di gestione dei fallimenti della
costruzione dei rootfs, discussa nella sottosezione 4.1.2, si é deciso di implementare
un meccanismo di disaster recovery che fosse in grado di ripetere I'intero processo
di setup dei chroot al presentarsi di fallimenti critici durante le operazioni che ne
avrebbero richiesto ’accesso.

Questa accortezza ha inevitabilmente aumentato il livello di difficolta nella ges-
tione della concorrenza: esattamente come sarebbe stato necessario per regolare un
eventuale chroot setup a livello dei threads foglia, anche in questo caso si ¢ reso
indispensabile evitare, tramite locking, che piti demoni tentassero di eseguire con-
temporaneamente un’operazione di ricostruzione dello stesso rootfs.

Nonostante cio, il guadagno apportato da questo meccanismo di disaster recovery,
in termini di persistenza, idempotenza e sicurezza a run-time, ha permesso di su-
perare anche l'alto grado di affidabilita garantito gia da Rootless sshlirpClI, il quale
appunto mancava di una vera e propria gestione degli errori tramite recovery delle

risorse.

I’implementazione di questa ottimizzazione, sebbene un po’ piu laboriosa rispet-
to a quella del full build mode, ha previsto la sola aggiunta di due funzioni statiche
handle_recovery() e recovery() internamente al file project_worker.c, con 'in-
serimento di loro invocazioni nelle sezioni di gestione degli errori a seguito di oper-

azioni sui rootfs.

// Funzione core di recovery: ricrea directory e rilancia chroot_setup

static int recovery(project_t *prj, FILE **log_fp, char *main_build_dir)
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// 1. Ricreazione directory fondamentali (build_dir, log_file...)
// ... (omesso per brevita’)
// 2. Per ogni architettura, esegue il setup del chroot se mancante
for (int i = 0; i1 < prj->arch_count; i++) {
if (terminate_worker_flag) break;
// ... setup path chroot
if (chroot_setup(prj->architectures[i], chroot_dir,
prj->worker_log_file, xlog_fp) != 0
> {
// Log errore setup

return 1;

return O;

// Wrapper per gestire la concorrenza tra worker durante il recovery
static int handle_recovery(FILE **log_fp, project_t #*prj,
char *main_build_dir
) 1
// Lock tramite file di stato per evitare recovery simultanei
// su risorse condivise o sovraccarico host
char recovery_state_file[] = "/tmp/worker.recovery";
while (access(recovery_state_file, F_OK) == 0) {
// Attesa attiva se un altro worker sta facendo recovery
sleep(60);
+
// Creazione lock file
FILE *recovery_fp = fopen(recovery_state_file, "w");
if (lrecovery_fp) return 1;
// Avvio operazioni di recovery
int recovery_result = recovery(prj, log_fp, main_build_dir);
// Cleanup lock file
fclose(recovery_£fp);
remove (recovery_state_file);

return recovery_result;
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int project_worker(project_t *prj, char *main_build_dir) {
// ... Setup logging, PID file, gestori segnali
while (1) {
//

b
//

// 1. Controllo aggiornamenti (logica full/main/dep)
// In caso di errore nel check (es. chroot corrotto), tenta recovery
if (check_for_updates_inside_chroot(...) != 0) {
while (handle_recovery(&log_fp, prj, main_build_dir) == 1) {
// Se il recovery fallisce, riprova dopo poll_interval
sleep_and_handle_interrupts(prj->poll_interval, ...);
if (terminate_worker_flag) break;
+
if (terminate_worker_flag) break;
// Se recovery ok, riprova il check immediatamente
continue;

b

// ... Se non ci sono aggiornamenti, sleep e continue

// 2. Avvio thread builder e join

// ... (creazione thread e join come in precedenza)

// 3. Verifica esito build
if (failed_builds > 0) {
// Se le build falliscono (es. dipendenze rotte nel chroot),
// tenta il recovery dell’ambiente
while (handle_recovery(&log_fp, prj, main_build_dir) == 1) {
sleep_and_handle_interrupts(prj->poll_interval, ...);
if (terminate_worker_flag) break;
+
if (terminate_worker_flag) break;

// Riavvia il ciclo per ritentare la build

continue;
+
// ... Successo e sleep finale
. Cleanup ...

return O;
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Rotazione dei binari

Un’eventualita a cui un contesto di produzione reale sarebbe potuto andare in-
contro € la saturazione dello spazio su disco a causa dell’accumulo di versioni multiple
dei binari prodotti dai processi di cross-compilazione, specialmente nel caso in cui
questi fossero stati eseguiti con una frequenza elevata e su numerosi sorgenti, tutti
soggetti a costanti aggiornamenti e mirati a un numero di architetture target mas-
simo.

Non tanto per evitare il verificarsi di questo scenario - che nel contesto accademico di
Rootless V2CI sarebbe comunque stato piuttosto raro - quanto per conferire ulteriore
robustezza e flessibilita a questo ecosistema distribuito, si é deciso di ristrutturare
il sotto-albero di fs interno alla target directory di ogni progetto e implementarvi
un meccanismo di rotazione dei binari prodotti, basato su politiche di da:ly, weekly,
monthly, yearly retention, frequency interval e disk usage limit configurabili dall’u-

tente, sempre tramite il file di input config.yml.

In particolare, per ogni progetto l'utente avrebbe potuto definire una macro-
sezione binaries_config contenente a sua volta due sottosezioni:

e interval, la quale avrebbe contenuto per ogni scaglione temporale (weekly,

monthly e yearly) l'intervallo minimo in minuti tra due versioni consecutive

da conservare - non necessario per lo scaglione daily, il cui valore sarebbe

stato semanticamente gia implicito nel poll_interval;

e mem_limit, che avrebbe invece specificato, sempre per tutti gli scaglioni tem-
porali, una soglia massima di spazio su disco occupabile dai binari conservati

in quella categoria, espressa in kilobyte.

# e.g. 1440 minutes = 1 day

# e.g. 10080 minutes = 7 days
# e.g. 43200 minutes = 30 days
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# 10000 in KB -> 10 MB
# 50 MB

# 200 MB

# 1 GB

A partire da queste nuove direttive si sarebbe dovuto modificare lo script di compi-
lazione cross_compiler.sh e arricchire il comportamento del demone di Rootless

V2CI, integrandolo con un cronjob.

Nello specifico della fase di spostamento dei binari statici finali, interna
allo script di compilazione invocato da ogni thread builder per i sorgenti del pro-
getto di sua competenza, non si sarebbe pill potuta applicare la logica di version-
ing ereditata da sshlirpCI tramite Rootless sshlirpCI che, come descritto nella sot-
tosezione 3.2.1, prevedeva il salvataggio degli eseguibili compilati a partire da un
certo tag dei sorgenti in una sotto-directory della destinazione target, nominata
appunto target_dir/tag. Bensi si sarebbe reso necessario, al termine dell’ese-
cuzione di cross_compiler.sh sui sorgenti principali di un certo progetto, svolgere

le seguenti operazioni:
1. creare, se non esistente, la directory target_dir/daily;
2. installarvi il binario selezionato, rinominandolo
target_dir/prj_name-release_version-debian_arch;
3. eliminare iterativamente gli eseguibili meno recenti, solo se necessario, fino a
quando il mem_limit su daily non fosse rispettato;

Queste ottimizzazioni, riportate di seguito, avrebbero, per le prime iterazioni di
Rootless V2CI, solo impostato 'ambiente di salvataggio dei binari, trascurando an-
cora la necessita di una rotazione ordinata e rispettosa dei vincoli imposti dall’u-

tente.

#!/bin/bash
# ... (parsing degli argomenti e setup del logging)

# Ingresso nel chroot per eseguire la build

$thread_chroot_dir/_enter <<EQOF
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# ... (rilevamento del sistema di build: cmake,
# autotools, meson, makefile)

# ... (compilazione e installazione delle dipendenze)

# Solo per il progetto principale: selezione del binario candidato
if [ "$main_project" = "yes" ]; then
# ... (euristica per trovare 1l’eseguibile linkato staticamente)
cp -f "\$selected_binary" \
"$thread_chroot_target_dir/$repo_name-$debian_arch"
fi
EOF

# Solo per il progetto principale, rotazione e salvataggio
if [ "$main_project" = "yes" ]; then
cd "$thread_chroot_dir$thread_chroot_build_dir/$repo_name"
current_tag=$(git describe --tags --abbrev=0 2>/dev/null)

release_version=${current_tag:-"unstable'"}

# 1. Creazione della directory daily

mkdir -p "$project_target_dir/daily"

# 2. Installazione del binario con nome versionato
install -m 0755 \
"$thread_chroot_dir$thread_chroot_target_dir/$repo_name-$debian_arch" \

"$project_target_dir/daily/$repo_name-$release_version-$debian_arch"

# 3. Applicazione del limite di memoria per le build giormaliere
total_daily_size=$(du -s "$project_target_dir/daily" | cut -£f1)
while [ "$total_daily_size" -gt "$mem_limit" ]; do
oldest_file=$(1ls -t "$project_target_dir/daily" | tail -n 1)
# Evita di cancellare il file appena aggiunto
if [ "$oldest_file" = \
"$repo_name-$release_version-$debian_arch" 1; then
break
fi
oldest_file_size=$(du -s \
"$project_target_dir/daily/$oldest_file" | cut -£1)
rm -f "$project_target_dir/daily/$oldest_file"
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total_daily_size=$((total_daily_size - oldest_file_size))
done
fi
exit O

Per quanto riguarda invece la fase di rotazione dei binari ad esecuzione
avviata, si é deciso di servirsi del demone cron [63], addetto all’esecuzione periodica
di comandi o script a intervalli di tempo predefiniti, istruendolo attraverso I'editing
del file /var/spool/cron/crontabs/<user> [64] personale dell’'utente, tramite il
comando nativamente rootless crontab -u <user> <file> [65].

Per automatizzare questo processo di setup e creazione di un work temporizzato per
la rotazione dei binari, si ¢ scelto di creare uno script bash
binaries_rotation_cronjob.sh, nel quale sarebbe stata contenuta la logica di
gestione degli eseguibili salvati, e sviluppare una funzione
set_binaries_rotation_cronjob, all’interno del file project_worker.c, la quale,
una volta invocata durante la fase di setup iniziale del demone, avrebbe richiesto
un lock esclusivo tramite flock() - per non generare corruzioni sul file crontab
dell’utente, possibili e probabili in un contesto di demoni multi-threaded concorrenti
- e svolto le seguenti operazioni, solo al seguito delle quali avrebbe rilasciato le risorse
detenute:

1. composizione - secondo i pattern definiti dallo stesso manuale [64] - e salvatag-

gio in una variabile stringa dell’entry di crontab, la quale avrebbe invocato lo

script di rotazione dei binari ogni giorno a mezzanotte;

2. copia dei cronjobs esistenti in un file temporaneo, escludendo ogni entry iden-

tica a quella appena composta;
3. aggiunta dell’entry di rotazione dei binari al file temporaneo;

4. sostituzione del crontab dell’utente con il file temporaneo, tramite il comando

crontab -u <user> <temp_crontab_file>.

Queste operazioni sono state implementate come segue:

static int set_binaries_rotation_cronjob(project_t *prj, FILE *log_fp) {
// 0. Acquisizione di un lock globale su /tmp per
// evitare race conditions tra i worker che tentano
// di modificare il crontab contemporaneamente
int lock_fd = open("/tmp/cronjob_lock.lock", O_CREAT | O_RDWR, 0644);
flock(lock_fd, LOCK_EX);
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// 1. Preparazione dell’entry cronjob per
// eseguire lo script ogni notte
/* Crontab entries have the following format:

¥ * *x *x x command to be executed

T [ — Day of week (0 - 7) (Sunday=0 or 7)
[ R R SO Month (1 - 12)

[ Day of month (1 - 31)

| ommmmme- Hour (0 - 23)

oo Minute (0 - 59)

char cronjob_entry[MAX_COMMAND_LEN] ;

snprintf (cronjob_entry, sizeof (cronjob_entry),
"0 0 % *x x Y%s %s %s hs hd hd %d %hd %d %d\n",
expand_tilde (CRONJOB_SCRIPT_PATH),
prj->name, prj->target_dir, prj->cronjob_log_file,
prj->binaries_limits->weekly_mem_limit,

)

// 2. Lettura dei cronjob esistenti tramite ’crontab -1’ e copia in un
// file temporaneo, escludendo eventuali duplicati dell’entry corrente
FILE *cron_pipe = popen("/usr/bin/crontab -u $USER -1", "r");
FILE *cron_fp = fopen(temporary_crontab_file, "w'");
while (fgets(line, sizeof(line), cron_pipe)) {
if (strcmp(line, cronjob_entry) != 0) {
fputs(line, cron_fp);

3

// ... chiusura pipe e file ...

// 3. Aggiunta della nuova entry al file temporaneo
cron_fp = fopen(temporary_crontab_file, "a");
fputs(cronjob_entry, cron_fp);

fclose(cron_fp);

// 4. Installazione del nuovo crontab
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char command [MAX_COMMAND_LEN] ;

snprintf (command, sizeof(command), "/usr/bin/crontab -u %s %s",
getenv ("USER"), temporary_crontab_file

);

system_safe (command) ;

// 5. Rilascio del lock e pulizia
flock(lock_fd, LOCK_UN);
close(lock_fd);

remove (temporary_crontab_file);

return O;

Infine, lo script di rotazione dei binari binaries_rotation_cronjob.sh sarebbe
stato responsabile, per ogni sua invocazione, di operazioni di spostamento ed elimi-
nazione "a cascata', guidato dalle politiche definite dall’'utente e procedendo secondo

una logica di funzionamento riassumibile nei seguenti passi:

1. Eliminazione dalla directory target_dir/yearly dei binari prodotti pitu di un
anno fa, a partire dalla data di esecuzione dello script;

2. Spostamento, tramite una funzione di utility rotation_engine (), dei binari
pitt vecchi di un mese dalla directory target_dir/monthly a
target_dir/yearly, con controlli e operazioni preliminari per il rispetto dei
vincoli sugli intervalli e sulle soglie di memoria. In particolare, tale funzione
avrebbe eliminato iterativamente i binari mensili meno recenti fino a quando
la distanza temporale tra il file annuale piu recente e quello mensile pit vec-
chio non fosse stata almeno pari all’intervallo minimo definito per lo scaglione
temporale yearly; inoltre, prima di effettuare lo spostamento di un binario
candidato, avrebbe anticipatamente verificato che la soglia di memoria definita
per lo scaglione yearly non sarebbe stata superata, eliminando in tal caso i
file annuali meno recenti che impedivano il rispetto del vincolo.

3. Ripetizione del passo precedente per lo spostamento dei binari piu vecchi di
una settimana dalla directory target_dir/weekly a target_dir/monthly;

4. Rotazione dei binari pitt vecchi di un giorno dalla directory target_dir/daily

a target_dir/weekly, seguendo sempre la stessa logica.
A proposito dell’ordine di esecuzione delle operazioni sopra citate, ¢ importante

sottolineare che I'inversione della sequenza di rotazione, partendo cioé dallo sposta-

mento dei binari giornalieri fino ad arrivare a quelli annuali, nonstante la sua maggior
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logicita apparente, avrebbe portato a effettuare eliminazioni premature di eseguibili
che invece, dopo un preventivo "cleanup" della directory successiva a quella di loro
appartenenza, sarebbero potuti essere ruotati comunque nei vincoli di memoria e di

intervallo temporale.

[’intero processo di rotazione vincolata é stato poi trascritto nel corrispondente

file bash come segue:

#!/bin/bash

# ... (setup variabili e funzioni helper per calcolo date)

rotation_engine() {
local rotation_type=$1
local current_dir=$2
local later_dir=$3
# ... (impostazione limiti
# MEM_LIMIT,
# INTERVAL_LIMIT,
# MIN_AGE
# in base al tipo)

while true; do
oldest_current_file=$(1ls -t "$current_dir" | tail -n 1)

# ... (check esistenza file e verifica eta’ minima per rotazione)

# Verifica vincolo intervallo temporale con il file piu’
# recente nella directory successiva
recent_later_file=$(ls -t "$later_dir" | head -n 1)
if [ -n "$recent_later_file" ]; then
# ... (calcolo differenza temporale)
if [ "$minutes_diff" -1t "$INTERVAL_LIMIT" ]; then
# Vincolo non rispettato: elimino il file corrente
# (troppo frequente)
rm -f "$current_dir/$oldest_current_file"
continue
fi
fi
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# Verifica vincolo memoria nella directory di destinazione

# ... (calcolo dimensioni file e directory)

while [ "$forcasted_later_dir_mem_kb" -gt "$MEM_LIMIT" 1; do
# Elimina i file piu’ vecchi nella directory successiva per
# fare spazio
oldest_later_file=$(1ls -t "$later_dir" | tail -n 1)
rm -f "$later_dir/$oldest_later_file"
# ... (aggiornamento stima memoria occupata)

done

# Spostamento effettivo del file
mv "$current_dir/$oldest_current_file" "$later_dir/"

done

# ... (setup logging e check directory daily)

# 1. Pulizia directory YEARLY (elimina file piu’ vecchi di un anno)

# ... (ciclo di rimozione basato su eta’ file)

# 2. Rotazione MONTHLY -> YEARLY
mkdir -p "$yearly_dir"
rotation_engine "monthly" "$monthly_dir" "$yearly_dir"

# 3. Rotazione WEEKLY -> MONTHLY
mkdir -p "$monthly_dir"

rotation_engine "weekly" "$weekly_dir" "$monthly_dir"

# 4. Rotazione DAILY -> WEEKLY
mkdir -p "$weekly_dir"
rotation_engine "daily" "$daily_dir" "$weekly_dir"

E possibile infine specificare che, essendo un processo non esente da bug o scenari di
fallimento, si & deciso di distribuire il sistema di logging di Rootless V2CI - ancora
retaggio di Rootless sshlirpCI - anche all’interno di questo componente aggiuntivo,
che avrebbe quindi tracciato la sua esecuzione temporizzata su un log file dedicato

e unico per I'esecuzione dell’intera infrastruttura.
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L’implementazione di questi tre raffinamenti ha terminato il lungo percorso di
sviluppo, originato dallo scopo di una semplice pacchettizzazione di sshlirp e con-
fluito in un sistema avanzato e ottimizzato di continuous integration per sorgenti
multipli e port target eterogenei.

La completezza di Rootless V2CI, e la sua supremazia rispetto ai propri antenati in
termini di configurabilita, estensione, scalabilita, persistenza e sicurezza, & dovuta
pero anche all’assunzione della disponibilita di una certa mole di risorse di sistema

computazionali e di storage, capaci di tollerare costi significativi.

4.1.5 Calcolo dei costi di Rootless V2CI

Parallelismo innestato, progetti multipli, architetture multiple, dipendenze di sis-
tema e sorgenti numerosi, sono tutti fattori variabili, dipendenti dalla configurazione
di input dell’utente, che possono determinare per Rootless V2CI un’esecuzione con-
trollata o, al contrario, estremamente onerosa sia in termini di tempi di esecuzione

e di costi computazionali, che di consumo delle risorse di storage.

Analisi dei costi computazionali

Per lo svolgimento della seguente analisi computazionale e algoritmica di un solo
ciclo di build, si é ovviamente assunto lo scenario di Worst Case FEzecution Time
(WCET), ovvero che la build_mode sia impostata al valore full, da configurazione,
e che vengano rilevati aggiornamenti, innescando effettivamente il processo di build
per tutti i target.

Per questo motivo non é da intendersi come una media dei costi computazionali,

bensi come una stima del loro massimo globale.

Definizioni delle Variabili Siano date le seguenti variabili di input definite nel
file di configurazione config.yml:

e n: numero totale di progetti;

e m: numero di architetture target per progetto;

e k: numero di dipendenze manuali per progetto;

e j: numero di pacchetti di sistema per il progetto;
e y: numero di pacchetti di sistema per ogni dipendenza manuale;

u

: numero di architetture uniche nell’'unione di tuttiiprogetti (1 < u < nxm).
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1. Analisi della fase di inizializzazione Il processo sequenziale di setup iniziale,
eseguito dal main.c prima del fork dei processi worker, come gia precedentemente

descritto, ¢ composto dalle seguenti sotto-fasi:

1. Parsing della configurazione: trascurabile rispetto al resto, in quanto lim-
itato dalla dimensione del solo file config.yml.

2. Calcolo delle architetture Uniche: dal momento che il sistema itera su tut-
ti gli n progetti e le loro m architetture per creare una lista unica archs_list,
possiamo stimare un costo di O(n - m).

3. Chroot setup sequenziale: in questo ciclo for, il main.c itera u volte
chiamando chroot_setup.sh e invocando debootstrap; identificando il costo
delle operazioni di quest’ultimo Tie,p, possiamo stimare una complessita di
O(U : Tsetup)-

Costo totale dell’inizializzazione main: W,;; = O(n-m + u - Tsetup)

2. Analisi della vita dei demoni per progetto Una volta completato il setup,
il main fork-a n processi worker, il cui flusso di esecuzione con build_mode:full,
dopo un’inizializzazione della porzione di fs dedicata alla build del progetto, di cos-
to approssimabile a O(1), prevede la fase di controllo degli aggiornamenti sia per il
repository principale che per quelli delle sue dipendenze sorgenti.

Quindi, con un totale di 1 4 k£ chiamate a check_updates.sh e un costo temporale
assunto di Tys; cheek Per le operazioni di git remote update e git rev-parse, ipo-
tizzando WCET, ossia esecuzione avviata e non check costante causa rootfs assente,
abbiamo:

Costo totale per progetto pre-thread: Wepee = O((1 4 k) - Tgit check)-

3. Analisi della vita dei thread builder Considerando sempre il worst case
scenario, ognuno degli n demoni per progetto rileva un aggiornamento e procede
quindi a lanciare m thread builder, i quali si occupano di eseguire la build per ogni

architettura target, ognuno aggiungendo consistenti costi per le seguenti operazioni:

1. Installazione delle dipendenze di sistema: in questa fase vengono instal-
lati j pacchetti per il progetto e y pacchetti per ogni dipendenza, per un totale
di j + k - y pacchetti. Stimando un costo di installazione tramite apt di 7,
otteniamo quindi O((j + k- y) - Tapt);

2. Clone/pull dei sorgenti: il thread esegue il clone o il pull - di cui stimiamo

il costo con Ty, - del repository principale e di ogni dipendenza, per un costo
totale di O((1 + k) - Teone);



4.1 Rootless V?CI: potenziamento ed espansione di Rootless sshlirpCI 131

3. Cross-compilazione: infine, il thread esegue la compilazione delle k& dipen-
denze e del progetto principale. Ipotizzando che il costo medio di una com-
pilazione da sorgente sia Cpy,;q, abbiamo un costo computazionale totale di
O(k - Cyuita + Couita) = O((k + 1) - Chuita)-

Costo totale per thread builder: Wiyreod = Winstatr + Weione + Weompitation =
O((] -+ /{7 . y) . Tapt —+ (1 -+ /{Z) . Tclone + (k -+ 1) . Cbuild)-

4. Formula globale della complessita computazionale Possiamo ora formu-

lare il calcolo del lavoro totale W, eseguito dal sistema in un ciclo completo:
n m
Wtotal - Wim’t + Z (Wcheck,p + Z Wthread,Pﬂ)
p=1 a=1

Espandendo i termini in base alle variabilin, m, k, j, y, u, Tsetup, Tyit checks Tapts Teiones Chuitds

otteniamo:

Wtotal ~ O (n -m4+u- Tsetup) + Z <O ((1 + kp) : Tgit_check) +

p=1

Z (O ((ja,p + ka,p ' ya,p) : Tapt + (1 + ka,p) : Tclone + (ka,p + 1) : Cbuild) ))
a=1

Considerando costanti i tempi di esecuzione Tierup, Tgit check> Lupts Tetone, Couila € uni-
formi le variabili &, § er tutti i progetti e architetture, possiamo semplificare la
) ) )

formula come segue:
Wit = O (n-m+u)+n-O1+k)+n-m-O((G+k-y)+(1+k)+(kE+1))

Semplificando ulteriormente:

Witar O (n-m~+u)+O0(n-(14+k)+0n-m-(j+k -y+2k+2))
n-m)+0n-k)+0n-m-(k-y+j+k))

neme (kg4 + k)

n-m-k-y+n-m-j+n-m-k)

Infine supponendo y =~ j:

Wtotal%O(n'm'k'y)



132

4. Rootless V2CI e integrazione ELK

Analisi dei costi di storage

Pitt brevemente, ¢ possibile stimare i costi di storage richiesti da Rootless V2CI
ereditando le variabili definite nella precedente valutazione dei costi computazion-
ali e assumendo che Scp00r Sia lo spazio su disco occupato da un singolo rootfs
debootstrap-ato (considerabile uniforme per tutte le architetture), e che Shuild_artifacts
sia la quota richiesta dai sorgenti clonati e dalle dipendenze installate all’interno del-

I’ambiente chroot.

Stotal ~ (U : Sch’root) + (7’L -m - Sbuildiartifacts)
Come prima, considerando il caso pessimo di u &~ n - m:

Stotal ~ (n -m - Sch’root) + (n -m - Sbuildiartifacts)

~ O (TL sm - (Schroot + Sbuild_artifacts))

4.1.6 Analisi sui consumi reali delle risorse di sistema

Per quanto Rootless V2CI possa essere specchio di una perfetta armonia tra HA e
performance, la sua esecuzione, come intuito dalla precedente sottosezione, richiede
inevitabilmente 'impiego di risorse di calcolo e disco consistenti.

Infatti, al di 1a dei costi computazionali dipendenti da parametri di configurazione
variabili, nella maggior parte degli scenari d’uso, la fetta piu significativa di risorse
di sistema indispensabili per il funzionamento di Rootless V2CI & da attribuire a
quei fattori, si considerabili costanti, ma decisamente impattanti sul consumo totale
(Tsetup; Tgit_check; Tapt7 Teione © Cbuild)-

Conducendo test di esecuzione per un solo progetto su host Ubuntu 24.04.3 LTS con
processore 11th Gen Intel® Core™ i5-1155G7 x 8 e 16 GB di RAM, si sono infatti
potute svolgere diverse considerazioni aggiuntive e trarre conclusioni pratiche circa

i seguenti aspetti:

e Consumo delle risorse di calcolo durante il setup: come per Rootless
sshlirpCI, una delle principali fonti di spesa di risorse di sistema computazion-
ali durante 'esecuzione di Rootless V2CI ¢ legata alla fase di setup iterativo
dei rootfs; lo spostamento di questa da un contesto di concorrenza serializzata
a uno di esecuzione ciclica isolata ha pero sia abbassato il consumo percentuale
di RAM che ridotto, anche se minimamente, 'impiego delle CPUs; in parti-

colare, i test condotti hanno mostrato per Rootless sshlirpCI un’occupazione
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aggiuntiva di circa un 2% di memoria (equivalente a 328MB sull’host di es-
ecuzione) rispetto a un solo 1,2% (circa 197MB) richiesto invece dal main
setupper di Rootless V2CI. Per quanto riguarda invece I'utilizzo delle CPUs
i due processi hanno mostrato consumi molto simili, corrispondenti a valori
che variavano per ogni core tra il 100% - quando il carico di lavoro veniva
distribuito dal sistema su una o due sole unita di calcolo - e il 22% - quando
invece le operazioni richieste dall’esecuzione di debootstrap venivano bilan-
ciate equamente tra tutti gli 8 core disponibili sull’host di test.

Queste osservazioni hanno portato a concludere che I'esecuzione della costruzione
dei rootfs in concomitanza all’esistenza in memoria di pitu threads builder -
come accadeva in Rootless sshlirpCI - comportava un leggero sovraccarico di
memoria, e che invece il suo spostamento in una fase di setup iterativo avrebbe
garantito un’economia pill saggia e conveniente delle risorse computazionali.
Inoltre, essendo questa deduzione indipendente dal numero di project per cui
esegue Rootless V2CI, si dimostra di valenza "globale" la supremazia dell’ar-
chitettura di quest’ultimo ecosistema sviluppato rispetto sia alla sua versione
alternativa, pensata nella sezione 4.1.1, che al monolite "thread-level" di Root-
less sshlirpCI.

Detto cio, il consumo di risorse di calcolo durante questa fase é rimasto co-
munque non indifferente, a causa della natura intrinseca di debootstrap, por-

tando I'host a completare I’operazione per 4 port target in circa 19 minuti.

e Consumo delle risorse di calcolo durante la build: sebbene si possa
pensare che il setup serializzato dei rootfs sia di gran lunga 'operazione piu
dispendiosa, la preparazione degli ambienti di build e le cross-compilazioni in
parallelo hanno mostrato consumi di CPU e RAM ben piu elevati, a causa del-
Ielevato grado di parallelismo raggiunto con 'esecuzione multi-threaded dei
builder, sia in Rootless sshlirpCI che in Rootless V2CI.

Infatti, se si fosse tentato di impiegare tale grado di concorrenza anche per i ch-
root setup, almeno uno di questi sarebbe fallito, mostrando lo stesso comporta-
mento documentato per la prima versione di sshlirpCI nella sottosezione 3.2.1.
I processi di build invece, in quanto piu "leggeri" presi singolarmente, sono
stati eseguiti integralmente in parallelo senza una regolazione delle risorse com-
putazionali, mostrando pero un consumo di CPU e RAM molto elevato.

In particolare, i test condotti - sempre su un solo progetto e 4 architetture

target, ossia in un contesto ancora Rootless sshlirpCl-like - hanno generato,
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appunto durante la fase di build, un A di occupazione RAM massimo del 9, 6%
(raggiunto durante la cross-compilazione), minimo del 4,5% (durante la fase
di setup dei builder) e medio del 7, 1%, equivalente a circa 1, 16GB di memoria
aggiuntiva richiesta sull’host di test.

La percentuale di occupazione RAM si é inoltre rivelata estremamente connes-
sa al grado di impiego dei core, i quali, in modo del tutto simile, hanno tutti
contemporaneamente raggiunto picchi di utilizzo dell’80%, minimi del 12% e
medi del 53%, operando sempre in modo bilanciato.

Questi risultati hanno confermato come la natura altamente concorrente di
Rootless V2CI sia si in grado di completare le operazioni di build in appena 6
minuti, ma anche bisognosa di consistenti risorse di calcolo, in particolar modo

quando il numero di progetti e port target aumenta.

Impiego del disco: a differenza di quanto detto per le risorse computazionali,
per quelle di storage é possibile affermare che il consumo pit consistente deriva
dalla persistenza degli ambienti chroot sul filesystem. Quest’ultimi infatti,
indipendentemente dalle loro origini - ovvero, sia che siano stati costruiti da
Rootless sshlirpCI che da Rootless V2CI - richiedono in totale e in media circa
4,8GB di spazio su disco, con rootfs che occupano da un minimo di 990MB
(per port pitt "semplici" come armhf) a un massimo di 1,5GB (registrato per
riscvé4).

A questa "spesa fissa" si aggiunge poi lo spazio richiesto per i sorgenti e i
binari prodotti, il quale pero, rispetto a quello necessario per gli ambienti
chroot, risulta decisamente trascurabile, in caso di progetti "leggeri" e non

troppo numerosi.

I risultati dei test genitori di queste considerazioni possono inoltre essere riassunti

nella seguente tabella:
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Aspetto Rootless sshlirpCI Rootless V2CI Note
Max Min Medio Max Min Medio
RAM (Setup) N/A N/A ~2% (328MB) N/A N/A | ~1,2% (197TMB) | Valori aggiuntivi rispetto al-
lidle.
CPU (Setup) 100% 5% 22% 100% 5% 22% Bilanciamento  variabile:

100% su 1-2 core, 22% se

distribuito su 8 core.

RAM (Build) 9,6% 45% | 7,1% (~1,16GB) | 9,6% 4,5% | 7,1% (~1,16GB) | Valori identici per singolo
progetto.

CPU (Build) 80% 12% 53% 80% 12% 53% Carico  bilanciato  equa-
mente su tutti gli 8 core.

Storage (Rootfs) | 1,5GB | 990MB ~1,2GB 1,5GB | 990MB ~1,2GB Totale per 4 architetture:
~4,8GB.

Tabella 4.1: Tabella riassuntiva dei consumi di risorse di sistema rilevati durante i
test.

Da queste analisi approfondite si é tornati a confermare la natura di Rootless
V2CI: un potente motore estremamente avanzato ma, sebbene ottimizzato sotto
diversi aspetti e categorizzabile come prodotto finito, anche affetto da consumi di
"carburante" computazionale e di storage non trascurabili, e quindi non alla portata

di tutti gli ambienti di esecuzione.

4.1.7 Perfezionamento del sistema di logging: scopi dell’omo-

geneizzazione e arricchimento dei pattern

L’ultimo gradino aggiunto alla "scala evolutiva" di Rootless V2CI ha consentito
di conquistare "user-friendliness" e monitorabilitd avanzata.
Un’integrazione e una connessione con uno stack ELK dedicato all’ingestion, il pars-
ing, 'enrichment e la visualizzazione dei log prodotti, infatti non sarebbe stato pos-
sibile senza una normalizzazione di quest’ultimi.
Questa operazione, per quanto cruciale nel percorso verso il raggiungimento del
prodotto finale, é stata di facile implementazione e di minimo impatto sui sorgenti
di Rootless V2CI.
Nello specifico, ¢ stato sufficiente sostituire ogni fprintf di log interno ai componen-
ti .c - o analogo echo degli script . sh - con una funzione di utility formatted_log()
che si sarebbe occupata di arricchire ogni stampa con dati aggiuntivi, componendoli
in un log finale dalla notazione JSON-like, come mostra il seguente estratto di codice

del componente utils.c:

void formatted_log(FILE *log_file, const char *log_level,

const char *source_file, int line_number, const char *project_name,
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const char *thread_arch, const char *format, ...) {

// Recupero informazioni sull’host (IP, 0S, Arch, Modello)

// tramite esecuzione di comandi shell (curl, uname, hostnamectl)
char ip[128], o0s[128], arch[128], agent[128];
get_client_stats("curl ... https://api.ipify.org", ip, ...);
get_client_stats(''uname -o", os, ...);

// ... (altre chiamate per architettura e modello hardware)

// Formattazione del messaggio variabile

char message_buffer[2048] ;

va_list args;

va_start(args, format);

vsnprintf (message_buffer, sizeof (message_buffer), format, args);

va_end(args) ;

// Stampa del log con timestamp e metadati in formato JSON-like
log_time(log_file);
fprintf(log_file, "[%s] source: { client: { ip: %s, os: %s, ... }, "
"location: { file: %s, line: %d } }, project: %s, "
"thread_arch: %s, message: %s\n",
log_level, ip, os, source_file, line_number,
project_name 7 project_name : "N/A",
thread_arch ? thread_arch : "N/A",
message_buffer

)

Dopo quest’ultimo perfezionamento, Rootless V2CI non solo aveva raggiunto la sua
forma definitiva, ma si era anche dotato di un sistema di logging strutturato e

omogeneo, pronto per essere ingerito e processato da stack di monitoraggio esterni.

4.2 Integrazione con stack ELK

La scoperta delle tecnologie ELK - acronimo di ElasticSearch, Logstash e Kibana
- ha permesso di ambire a un grado di usabilita di Rootless V2CI che, con i soli stru-

menti impiegati fino a questo momento, sarebbe stato impossibile da raggiungere.
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I’adozione di un’architettura containerizzata distribuita per I’esecuzione di questi
servizi, la scelta degli agenti di monitoring pit adatti al contesto di Rootless V2CI
e il processo di configurazione per l'invio, ’elaborazione e la visualizzazione dei log
prodotti, hanno si introdotto la necessita innegabile di ulteriori risorse di sistema e
di privilegi elevati, ma hanno anche permesso di completare il quadro di un sistema
di continuous integration user-friendly, monitorabile in tempo reale e distribuibile.
Senza quest’accessoria fase di sviluppo infatti, Rootless V2CI non avrebbe potuto
vantare di un metodo di controllo e analisi di esecuzione centralizzato in scenari di
istanziazione contemporanea su pitl server o macchine virtuali; e anche se eseguito
su un singolo host, la scelta ottimizzata di non unificare in un unico log file tutte
le stampe prodotte dai suoi componenti, avrebbe reso estremamente complessa la
lettura e l'interpretazione dei dati di esecuzione.

L’architettura compatta dei servizi elastic ha quindi permesso sia di rendere pil ac-
cessibile la verifica a run-time dell’infrastruttura di CI, che di facilitarne la raccolta e
I’analisi di log generati da sue istanze multiple, in un’ottica di scalabilita orizzontale

e di orchestrazione semplificata.

4.2.1 Cenni a ELK

Lo stack ELK ¢ una suite di strumenti open-source |66 sviluppata da Elastic
N.V., progettata per semplificare drasticamente la gestione e I'analisi di dati time-
series, come logs e metriche [67].

Il fulcro e la fonte di sviluppo di questi strumenti é rappresentato da FElasticsearch,
il quale funge da indicizzatore distribuito per i dati raccolti.

Inoltre, la sua integrazione con Logstash consente di ingerire, trasformare e arricchire
i dati provenienti da molteplici fonti, mentre quella con Kibana offre un’interfaccia
grafica intuitiva per la visualizzazione e I'analisi interattiva di tali dati.

Infine, un tassello fondamentale per la raccolta dei log in ambienti distribuiti &
rappresentato da Beats, una collezione di agenti leggeri progettati per inviare dati
direttamente alle pipelines di Elasticsearch o per farli transire preliminarmente da

Logstash.

ElasticSearch

Impiegato da importanti community e piattaforme come Wikimedia [68], Mozzil-
la [69], GitHub [70] e Netflix [71]|, Elasticsearch ¢ un motore di ricerca e analisi

distribuito, open source e sviluppato in Java, costruito sulla libreria Apache Lucene
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66, 72].

Rilasciato inizialmente nel 2010, si é affermato come standard industriale per la
ricerca full-text, I'analisi di log strutturati e non strutturati e la gestione di dati
geospaziali. A differenza dei tradizionali RDBMS, Elasticsearch é classificato come
un database NoSQL orientato ai documenti con un’architettura progettata per of-
frire scalabilita orizzontale, HA e capacita di gestione di grandi volumi di dati in
NRT (Near Real-Time), con una latenza tipica di un secondo tra l'indicizzazione del

documento e la sua disponibilita per la ricerca [72].

Per comprendere il funzionamento dell’architettura intrinsecamente distribuita
di Elasticsearch, é necessario definire i concetti logici e fisici che governano il sistema
[67]:

e Nodi: quest’unita alla base dell’infrastruttura é sostanzialmente una singo-
la istanza del server Elasticsearch in esecuzione, la cui composizione multipla
prende il nome di Cluster.

Ogni cluster ¢ identificato da un nome univoco e orchestra automaticamente
la distribuzione dei dati e delle query tra i nodi disponibili.

Inoltre ogni nodo pud essere configurato per svolgere ruoli specifici (come
master, data_content, data_hot, data_warm, data_cold, ecc.), ottimizzan-
do cosi le prestazioni e la gestione delle risorse in base ai carichi di lavoro

previsti e alle politiche di retention e rollover dei dati.

e Indici e Documenti: a livello logico, i dati sono organizzati in Indici. Un
indice ¢ una collezione di documenti che condividono caratteristiche simili ed
¢ analogo a una "tabella" in un database relazionale, sebbene questa analogia
sia puramente funzionale.

All’interno di un indice, i dati sono memorizzati sotto forma di Documenti,

serializzati in formato JSON.

e Shard primari e Replica: per garantire sia scalabilita orizzontale che HA,
Elasticsearch implementa il concetto di Sharding. Un indice puo essere sud-
diviso in pit frammenti chiamati shards. Ogni shard, che ¢ essenzialmente
un’istanza autonoma e completa di Apache Lucene, puo essere classificato in
due tipi:

— Primary Shard: dove avvengono le operazioni di scrittura originali.
— Replica Shard: copie dei primary shard, utilizzate per aumentare la

disponibilita del sistema (failover) e per parallelizzare le operazioni di
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lettura, migliorando il throughput delle ricerche, a discapito pero di un

leggero aumento del carico di scrittura e dello spazio richiesto su disco.

In questo contesto architetturale, é fondamentale specificare che i Nodi sono compo-
nenti che non necessariamente devono essere deploy-ati su server multipli. Chiara-
mente in un contesto di produzione aziendale, pratiche di sharding e replicamento
mirate all’lHA perderebbero di senso se eseguite su uno stesso host, ma nel contesto
di sviluppo di Rootless V2CI, dato lo scope intrinsecamente accademico, si ¢ deciso

di distribuire i nodi Elasticsearch come container Docker su un host centralizzato.

Una caratteristica rilevante di Elasticsearch per lo sviluppo dell’integrazione ELK
a Rootless V2CI, riguarda la sua usabilita: l’interazione con questo motore di
ricerca avviene tramite un’APT RESTful completa. In aggiunta, per le interrogazioni
complesse, lo strumento ELK fornisce un potente linguaggio dedicato chiamato DSL
(Domain Specific Language), basato su JSON, che permette di combinare filtri,

query full-text e aggregazioni analitiche in un’unica richiesta [67, 72].

Logstash

Logstash & un motore di elaborazione dati che funge da componente di ingestion
nella moderna architettura di gestione dei log, sviluppato in Java e Ruby [66].
La sua dinamica di funzionamento ¢é accostabile a quella di una pipeline ETL (Ex-
tract, Transform, Load): acquisisce dati da molteplici sorgenti simultaneamente, li
trasforma per normalizzarli e arricchirli, e infine li invia a una o piu destinazioni,
tipicamente Elasticsearch [73|. In sostanza, Logstash é generalmente impiegato per
risolvere il problema della normalizzazione di dati eterogenei: dal momento che i
log di sistema, i messaggi applicativi e le metriche di rete vengono generati in for-
mati disparati, esso agisce come strato di mediazione logica prima dell’archiviazione
persistente. In Rootless V2CI invece, questo strumento é stato impiegato prin-
cipalmente per permettere I'ingestion e il parsing dei log gia strutturati prodotti

dall’infrastruttura di CI, al fine di renderli interrogabili e visualizzabili in Kibana.

Per quanto riguarda 'architettura della pipeline di Logstash, ognuno dei suoi tre
stadi é gestito da plugin specifici che operano all’interno del ciclo di vita dell’evento.
Con il primo stadio di Input, responsabile dell’ingestion vera e propria, Logstash si
occupa di covertire i dati in un formato interno basato su eventi, "mettendosi in

ascolto" su una o piu fonti di dati [73]:
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e File: lettura in tailing di file di log, simile al comando Unix tail -f;

e Syslog: ascolto su porte standard (es. 514) per messaggi di sistema conformi
allRFC3164 [74];

e Beats: ricezione di dati inviati da data shippers leggeri installati sugli edge
node;
e TCP/UDP: gestione generica di socket di rete.
Lo stadio di Filter invece rappresenta il nucleo computazionale di Logstash. Qui
avvengono la strutturazione e ’arricchimento dei dati grezzi tramite filtri che ven-
gono applicati condizionalmente e in sequenza [73]:
e Grok: é il filtro pii rilevante per la strutturazione di testo non strutturato.
Utilizza pattern basati su RegEx per estrarre campi semantici (es. indirizzi

IP, timestamp) da stringhe di testo arbitrarie;

e Mutate: permette di rinominare, rimuovere, sostituire e modificare i campi
dati;
e GeolP: arricchisce i dati contenenti indirizzi [P aggiungendo coordinate ge-
ografiche (latitudine/longitudine) consultando database interni (es. MaxMind);
Infine lo stadio terminale di Output instrada i dati elaborati verso la destinazione
specificando lidentificativo dell’host target, il formato con cui salvare i dati (indez,
per targettizzare un indice specifico, o data stream per delegare a Elasticsearch la
gestione di piccoli backing indezes tramite I'incapsulamento in un unico flusso) ed
eventuali configurazioni di connessione ssl.
Sebbene Elasticsearch sia 'output primario nell’ecosistema Elastic, Logstash sup-

porta l'invio verso email, file system, servizi cloud o altri broker di messaggistica
come Kafka [73].

Kibana

Kibana, ultimo componente cardine dello stack ELK, é un’applicazione frontend,
sviluppata principalmente in Node.js [66], che funge da interfaccia utente per ’Elas-
tic Stack |75]. Il suo ruolo non ¢ limitato alla semplice presentazione grafica; Kibana
agisce come un client amministrativo e analitico per Elasticsearch, traducendo le in-
terazioni visive dell’utente in query RESTful complesse inviate al cluster sottostante,
permettendo 'esplorazione operativa dei dati, ’analisi dei time-series e la gestione
della sicurezza del cluster.

Nello sviluppo di Rootless VV2CI, Kibana ¢ stato uno strumento fondamentale per le

fasi di verifica degli indici, di testing e di creazione delle dashboards.
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Beats

Nelle moderne architetture distribuite, la centralizzazione dei log richiede data
shippers installati direttamente sui nodi edge di origine.
La piattaforma Beats ¢ una famiglia di agenti leggeri, scritti in Go [66].
Mentre Logstash opera come aggregatore server-side, i Beats operano secondo il
paradigma di forwarder: raccolgono i dati localmente e li inviano verso Logstash
(per un’elaborazione complessa) o direttamente verso Elasticsearch [76].
Sebbene esistano diversi Beat specializzati (come Metricbeat per le metriche e Pack-
etbeat per i dati di rete), il componente piu diffuso e cruciale per la gestione dei log
é Filebeat.

Questo agente leggero, progettato per inoltrare e centralizzare log e file di testo,
sostituisce tradizionali strumenti di monitoraggio pesanti o script artigianali, offren-
do una gestione robusta degli errori e della rotazione dei file [77].

Il suo funzionamento interno si basa su un’architettura di tipo producer-consumer,
governata da due componenti logici principali:

e Input: é il componente responsabile della gestione dei localizzatori. L’Input

scansiona i percorsi definiti nella configurazione (es. /var/log/*.log) per

rilevare nuovi file o modifiche a file esistenti;

e Harvester: avviato per ogni file rilevato dall’'Input, questo componente apre
il documento, ne legge il contenuto e invia i dati al buffer di uscita (Spooler).
Un aspetto tecnico fondamentale é che I’Harvester, finché attivo, mantiene
ogni fd aperto, mantenendo il file allocato su disco e garantendo la persistenza

dei log in lettura.

Inoltre, per garantire che nessun dato venga perso o duplicato, Filebeat mantiene
un file di stato locale chiamato Registry [77]. Il Registry mappa il percorso di ogni
suo file di input al corrispondente inode e all’offset, permettendo a Filebeat di ge-
stire correttamente eventuali operazioni terze di renaming (dovute ad esempio a log

rotation).

Infine, per semplificare 'ingestione di formati comuni, Filebeat introduce il con-
cetto di Moduli, ossia pacchetti preconfigurati per la localizzazione, il preparsing,
la selezione delle pipelines interne a Elasticsearch e la visualizzazione in Kibana di

logs comuni (come quelli di Apache, Nginx o PostgreSQL) [77].
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Nel contesto di sviluppo presente, 'impiego di data shippers distribuibili ha
consentito di separare (facoltativamente) i pesanti servizi di ingestion, indexing e
visualization dall’altrettanto dispendiosa cross-compilazione multi-process e multi-
threaded condotta da Rootless V2CI, permettendo per questultima l’esecuzione

diretta su server distribuiti e la sorveglianza centralizzata su un host separato.

Diagramma riassuntivo dell’infrastruttura ELK

Elastic Stack Elasticsearch Cluster Data Nodes

Nvar/lib/elasticsearch/data

Index 1 Shard 1

Index 2 Replica 1
Index1  Replica2

Elasticsearch

Beats

Coordinator

Nvar/lib/elasticsearch/data

Coordinator

Index2  Shard 1

Index 1 Shard 2

2.1 Elasticsearch Architecture 0'..‘ elastic
Figura 4.10: Diagramma riassuntivo della composizione del’ELK stack

4.2.2 Scelta di architettura containerizzata distribuita e de-

sign planning del cluster

Per l'allestimento di un Elastic Stack completo dedicato alla monitorabilita di
Rootless V2CI, si ¢ deciso di adottare un’architettura distribuita su piul container
Docker - uno per ogni servizio e nodo del cluster Elasticsearch - e orchestrata tramite
Docker Compose.

Tale scelta, sconsigliata per ambienti di produzione aziendale e suggerita per scopi
accademici di sviluppo e test locale su singoli server [67], ha aderito perfettamente
all’obbiettivo di permettere all'utente utilizzatore sia di istanziare agevolmente il
motore di cross-compilazione e lo stack ELK sul medesimo host, che di monitorare
i log generati da pit istanze distribuite di Rootless VV2CI da un unico server super-
visore.

Nonostante cio, la scelta, quasi obbligata, di un’infrastruttura ELK compattizzata
per un’esecuzione integrale su singolo host ha imposto non poche limitazioni pro-

gettuali.
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Trade-off del deploy containerizzato su singolo host

Come anticipato nella precedente sottosezione 4.2.1, il deploy dei nodi Elastic-
search - cosi come dei container associati ai servizi di Logstash e Kibana - su un
unico host, ha di certo mantenuto limitati i prerequisiti di funzionamento dell’intera
infrastruttura, ma ha anche escluso a priori la possibilita - o per lo meno il senso
- di adottare tecniche di replicamento degli shard, compromettendo cosi 'HA e la
tolleranza ai guasti dei container aventi il ruolo di data_content.

Questo compromesso pero, considerando il contesto di sviluppo e di probabile ap-

plicazione locale unificata a Rootless V2CI, si ¢ considerato del tutto accettabile.

Allo stesso tempo, la pilt verosimile eventualita di eseguire Rootless VV2CI con
"plugin" ELK su un unico server, ha pero costretto a una progettazione del cluster
Elastic estremamente economica che ha propagato 'assenza di HA anche a livello
di servizi.

Nello specifico, una prima progettazione over-stimata ha previsto I'adozione per
Elasticsearch di un totale di 7 nodi, di cui:

e 3 necessariamente con ruolo di master_eligible: necessario per tollerare

guasti del cluster e garantire I’elezione automatica del nodo master in caso di

crash di uno di essi, escludendo quindi scenari di split-brain |78];

e 2 con ruolo di data_hot: per consentire ai log ingeriti pit recentemente di
godere di una permanenza sicura (ossia caratterizzata da replicas e HA) su
nodi ottimizzati per I'indicizzazione, prima di ruotare su nodi efficienti per lo
stoccaggio [67];

e 2 con ruolo di dat_warm: per ospitare i log meno recenti e loro repliche, con mi-

nori requisiti di performance, ma comunque ancora soggetti a query frequenti

67].

Tale architettura, era si tecnicamente valida, aderente alle best-practices di Elastic
e altamente disponibile grazie alla ridondanza dei nodi, ma, in esecuzione combi-
nata ai servizi di Logstash, Kibana e Rootless V2CI, ha avuto 'immediato effetto
collaterale di saturare tutte le risorse computazionali al punto da causare trashing
a livello di sistema operativo host.

Questo fallimento dei test su hardware apprezzabile ma comunque limitato (proces-
sore 11th Gen Intel® Core™ i5-1155G7 x 8 e 16 GB di RAM), ha inevitabilmente
indotto a una revisione dell’architettura che permettesse un drastico abbattimento

dei servizi in esecuzione, attraverso un pedante calcolo delle risorse strettamente
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necessarie per il funzionamento di ogni container.

Per questo motivo perd, come verra esposto nella prossima sottosezione, la proget-
tazione del cluster Elastic per I'ingestion dei log di Rootless V2CI ha escluso il setup
di nodi ridondanti, rinunciando quindi a qualsiasi forma di HA, non solo a livello di

host ma anche di servizi containerizzati.

Design planning

La fase di progettazione concettuale e la pianificazione dei volumi del cluster Elas-
tic ha seguito un approccio top-down: partendo da stime verosimili di produzione
di log da parte di Rootless V2CI, si & proceduto a calcolare - seguendo le indicazioni
pratiche suggerite dall’architetto Elasticsearch Dave Moore [79] - le risorse minime
necessarie per ogni servizio containerizzato.

L’unica decisione progettuale impostata a priori, come anticipato, ¢ stata quella di
economizzare al massimo il numero di data_content. Pertento, a seguito di una
valutazione del contesto e dello scope pratico di questa integrazione ELK, in aggiun-
ta a previsioni e stime derivanti dai test svolti e falliti sulla precedente architettura
over-ingegnerizzata, si ¢ deciso di dotare il cluster Elasticsearch di una struttura

minimale composta da un totale di 4 nodi:

e 3 con ruolo di master_eligible, per garantire comunque il corretto funzion-

amento del cluster e un minimo di fault tolerance;

e 1 solo con ruolo di data_content, in hot tier, in modo da minimizzare le
ridondanze e al coltempo permettere indicizzazione ottimizzata, per 30 giorni
di retention, valore che si ¢ pensato fosse sufficiente all’'utente per stimare
in modo completo una media degli esiti delle operazioni di Rootless V2CI,
eseguite per la compilazione dei binari piu recenti. In particolare questa scelta
é figlia anche dell’assunzione che esecuzioni legate alla build di binari presenti
in target_dir/yearly siano poco rilevanti a scopo di monitorabilita della

fornitura di versioni aggiornate e corrette.

L’approccio migliore per illustrare le successive operazioni meticolose di size planning
é quello di mostrare le seguenti tabelle riassuntive delle stime dei volumi iniziali,
delle definizioni di eventuali requisiti di usabilita, dei calcoli del dimensionamento

del cluster e delle risorse finali da assegnare ad ogni container Docker.
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valore per hot

Memoria:dati

0.03333333333

Attributo Calcolo nota
data node
Basato sull’assunzione di un
massimo di 1/4 delle righe
totali prodotte (circa 15000)
per ogni progetto e per og-
ni ciclo (i log sono multilin-
log/giorno 3750-2-15 112500 ea). Considerando un caso
pessimo di 2 cicli al giorno
per progetto, comprensivi di
chroot setup (primo avvio o
recovery) e build, e 15 pro-
getti.
. . Stima molto rilassata (so-
Dimensione
- 1 lo per log multilinea molto
log (KB) .
grandi)
Dati grezzi al Logs/Day - Log Size/1024? 0.1195 Calcolato secondo le linee
giorno (GB) 112500 - 1/10242 ' guida [79)
Fattore JSON - 1.5 -
Fattore Indice - 1.1 -
Fattore Com-
. - 0.3 -
pressione
Fattore espan- | JSON - Indexing - Compression 0.495 Calcolato secondo le linee
sione netta 15-1.1-0.3 ' guida [79]
Memoria per
data node - 1 -
(GB)
Ricavato dal rapporto
Rapporto

memoria:dati di 1 : 30 delle

linee guida [79]

In questa architettura leg-

Retention . '
. . - 30 gera si assume una retention
(giorni) . . o
massima di 30 giorni
. Nessuna replica (i log rimar-
Repliche - 0

ranno disponibili sugli host)

Tabella 4.2: Assunzioni e Stime dei Dati
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Volume
Calcolo Volume dati storage Nodi dati
(GB) (GB)
Dy = Raw - Days - Exp - (Repl + 1)
Doy = 0.1125-30-0.495- 1
hot tier Stat = Dior - (11015 +0.05) 1.670625 2.00475 1.066825
Sior = 1.670625 - 1.2
N = [Sit/Mem/Ratio] + 1
N =2.00475-0.0333/1 + 1
totale - 1.670625 2.00475 1.066825
Tabella 4.3: Dati, Storage e Nodi
Risorse com- | Memoria prin-
Ruoli putazionali cipale (GB | Storage (GB)
(vCPU) RAM)
Servizio 1 | Master dedicato | 1 1 2
Servizio 2 | Master dedicato | 1 1 2
Servizio 3 | Master dedicato | 1 1 2
Servizio 4 | Dati Hot 2 1 2.879174185
Servizio 5 | Logstash 2 1 1
Servizio 6 | Kibana 2 1 1
~4/5cores con

Totale - hyperthread- 6 10.87917419

ing

Tabella 4.4: Ruoli dei Servizi e Risorse

Come é possibile evincere da queste tre tabelle fondamentali per la progettazione
del cluster ELK, i calcoli cardine hanno validato I'iniziale preclusione progettuale di
servirsi di un solo data_content, per 'indicizzazione in hot tier.

Infatti, partendo da assunzioni sul volume dei dati prodotti da Rootless V2CI in un
contesto di impiego intensivo, per 30 giorni di retention in hot tier si é dimostrato
necessario esattamente un solo nodo, validando cosi ’architettura scelta.

Infine, come é possibile osservare dall’ultima tabella, sia i calcoli esatti che le assun-
zioni su risorse computazionali e di disco (valutate empiricamente grazie al fallimento
dei test precedentemente svolti sull’architettura over-dimensionata), hanno mostra-

to la reale possibilita di eseguire questa ambiziosa integrazione ELK anche su host
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limitati.

Al fine di illustrare ’architettura finale di questo cluster é stato realizzato il

seguente diagramma.

i

Figura 4.11: Diagramma architetturale del cluster Elastic impiegato per il monitor-
ing di Rootless V2CI

4.2.3 Aspetti implementativi del setup, delle configurazioni e
della gestione delle risorse per i servizi ELK container-

1zzati

Come anticipato in precedenza, I'integrazione ELK per Rootless V2CI si basa
sull’orchestrazione tramite Docker Compose di 5 container, generati a partire dalle
immagini Docker ufficiali di Elastic [80], regolati da file di configurazione .yml e
setup-ati - con linking ai propri volumi e agli altri container in esecuzione - per
mezzo di script . sh.

Tale orchestrazione ¢ stata inoltre progettata per essere incapsulata in un unico
servizio systemd - elastic-stack.service - che prevede anche fasi di preparazione
preliminare e pulizia conclusiva all’esecuzione dei servizi ELK, garantendo cosi al-
I'utente che intenda utilizzare ELK associato a Rootless V2CI massima comodita e

resilienza.
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Orchestrazione con Docker Compose

Il file docker-compose.yml contiene la logica per un avvio ordinato e funzionale
dei servizi ELK [81].
Nello specifico, per il corretto raggiungimento dello stato healthy del cluster, sareb-
bero state necessarie non solo attente configurazioni ai singoli servizi - di cui verra
discusso nelle prossime sezioni - ma, primariamente, anche caute sequenze di oper-
azioni per 'avvio dei container stessi. In particolare, qualsiasi cluster Elastic [67]

necessita di start-are in ordine:
1. Tutti i nodi master_eligible, per permettere ’elezione del nodo master;

2. I nodi data_content, che si registrano al cluster una volta che il master é

stato eletto;

3. Infine, i servizi di Logstash e Kibana, che si connettono al cluster Elasticsearch

solo dopo che quest’ultimo é operativo.

Per ogni container, durante la fase di avvio, Docker Compose ha anche I'essenziale
compito di montare i volumi di persistenza dati, definire variabili di ambiente -
ereditate da un file .env dedicato e trasferite ai volumi dei servizi - e specificare un
healthcheck che, a intervalli regolari e limitato da un numero massimo di tentativi
e da un timeout, verifichi lo stato di salute del container, in modo che, una volta
completate con successo le operazioni di sua competenza, possa "sbloccare" I'avvio

dei container dipendenti [81].

Per il caso d’uso specifico di monitoring di Rootless V2CI, ¢ stato quindi com-
posto il file docker-compose.yml che, a seguito della redazione dei file di configu-
razione delle tecnologie ELK, dell’archivio .env delle variabili di ambiente, e degli

script bash per il setup dei nodi Elastic, ha assunto la seguente forma:

# Servizio effimero di setup per la generazione dei certificati SSL

# e la configurazione iniziale delle policy di retention (ILM)
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# ... (variabili d’ambiente per credenziali)
command: [
"bash", "-c", "/usr/share/elasticsearch/cluster_setup.sh \
&& tail -f /dev/null"
]
healthcheck:
# Prima di considerarsi sano attende la
# generazione dei certificati SSL
BEENB S
[
"CMD-SHELL", "[
-f config/certs/v2ci-es-master-1/v2ci-es-master-1.crt
1L
]
interval: 1s
timeout: 5s

retries: 120

# Nodo Master 1 (Rappresentativo per i 3 nodi master del cluster)
v2ci_es_master_1:
depends_on:
setup:
condition: service_healthy
image: elasticsearch:${STACK_VERSIONZ}
volumes:

# Montaggio certificati generati dal setup

./certs:/usr/share/elasticsearch/config/certs

# Configurazione specifica del nodo master

./elasticsearch/master/config/elasticsearch.yml:
/usr/share/elasticsearch/config/elasticsearch.yml:ro
# Volume dati persistente
- v2ci_es-master_1_data:/usr/share/elasticsearch/data

ports:

- ${ES_PORT}:${ES_PORT}
environment:

- NODE_NAME=v2ci-es-master-1

- CLUSTER_NAME=${CLUSTER_NAME}

# Rispetto della progettazione delle risorse di memoria
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# tramite variabili d’ambiente
- ES_JAVA_OPTS=-Xms${MASTER_HEAP} -Xmx${MASTER_HEAP}
# ...
healthcheck:
# Verifica connettivita’ sicura al nodo master
test:
L
"CMD-SHELL",
"curl -s --cacert config/certs/ca/ca.crt \
https://$$NODE_NAME: $$ES_PORT | grep -q \

’missing authentication credentials’",

# ... (v2ci-es-master-2, v2ci-es-master-3, v2ci-es-hot-1
# v2ci-logstash e v2ci-kibana, con volumi e healthcheck

# omessi per brevita’ e per configurazione simile)

volumes:
# Esempio di definizione volume con driver locale bind-mount
v2ci_es_master_1_data:
driver: local
driver_opts:
type: '"none"
device: "/var/lib/elastic-stack/es-master-1-data"
o: "bind"

# ... (altri volumi omessi)

Come anticipato e constatabile dal codice YAML soprastante, i tre aspetti cardine
- non ancora discussi - attorno ai quali ruota tutta ’esecuzione di docker compose
up -d - che avrebbe permesso di avviare l'intero stack -, riguardano la gestione
dei volumi persistenti, il setup iniziale, regolato dal servizio temporaneo setup per

mezzo di cluster_setup.sh, e i file di configurazione .yml dei singoli servizi Elastic.

Persistenza dei volumi

Uno dei prerequisiti fondamentali per ’avvio del processo di orchestrazione dei

container Docker ¢ la disponibilita di volumi persistenti per ogni servizio che ne



4.2 Integrazione con stack ELK 151

necessiti.

Dal momento che lo stack ELK per il monitoring di Rootless V2CI, come anticipato,
¢ stato pensato per essere avviato come servizio systemd, si é stabilito che il momen-
to piu aderente alla necessita di una fase di setup dei volumi fosse ’ExecStartPre
dello stesso elastic-stack.service.

In corrispondenza di questa direttiva é infatti invocato uno script LVM_setup.sh
che, con lo scopo accessorio di garantire persistenza, coesione e flessibilita nell’or-
ganizzazione dei dati, si serve di LVM (Logical Volume Manager) [82], al fine di
dimensionare preliminarmente i volumi da associare ai servizi Elastic, seguendo la

progettazione svolta nella sottosezione 4.2.2.

Nello specifico, dal momento che LVM necessita nativamente di un device dedica-
to e formattato su cui operare per creare e amministrare volumi logici, LVM_setup.sh

procede come mostrato di seguito:

1. per prima cosa si tenta di rilevare il block device secondario (e.g. /dev/sdb)
dichiarato dalla variabile di ambiente ESDATA_PV_DEVICE; in caso di sua man-
canza, lo script crea un’immagine disco /var/lib/elasticsearch-disk.img
- di capienza pari alla somma dello storage richiesto da ogni servizio Elastic -
e la collega a un loop-back device in modo che anche gli host dotati di un

singolo disco possano comunque imitare un data driver dedicato |82];

2. successivamente viene aggiornata la cache del device mapper, in modo che

eventuali modifiche precedenti ai block device vengano riconosciute;

3. si inizializza il physical volume - solo quando necessario, ossia se non ¢ gia

stato svolto un LVM setup sulla stessa .img in precedenza;

4. viene assemblato il volume group esdata-vg, garantendo riesecuzioni idem-

potenti;

5. per ogni componente dell’Elastic Stack, lo script predispone poi un logical
volume dimensionato secondo la pianificazione delle risorse precedente, lo
formatta con XFS (il filesystem raccomandato da Elastic per carichi di lavoro
ad alta concorrenza [67]) e aggiunge un’entry persistente in /etc/fstab

con quote utente abilitate;

6. dopo il mount, vengono applicati limiti di quota per-servizio per 'UID 1000,

impedendo a Elasticsearch, Logstash o Kibana di sottrarre risorse agli altri
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servizi ELK, e infine viene impostata correttamente I’ownership in modo che

i servizi containerizzati possano scrivere senza escalation di privilegi.

Queste operazioni, eseguite in sequenza, garantiscono che ogni servizio Elastic dispon-
ga di un volume logico dedicato, persistente e dimensionato secondo le necessita

progettuali.

#!/bin/bash

# Definizione variabili (device paths, nome volume group, mount root)
DATA_PV_DEVICE=${ESDATA_PV_DEVICE:-/dev/sdb}
DISK_IMAGE=${ESDATA_LOOP_IMAGE:-/var/lib/elasticsearch-disk.img}
DATA_VG_NAME=esdata-vg

MOUNT_ROOT=/var/lib/elastic-stack

# ...

# [1] Se il device specificato non esiste, crea e

# collega un loopback device

if [ ! -b "${DATA_PV_DEVICE}" ]; then
# ... (creazione file .img e associazione tramite losetup)
DATA_PV_DEVICE=${LOOP_DEVICE}

fi

# [2] Aggiornamento cache LVM
sudo pvscan --cache "${DATA_PV_DEVICE}" >/dev/null 2>&1 || true

# Definizione dei Logical Volumes in base alla pianificazione
declare -A LV_SPECS=(

[es-master-1-data]=2G

[es-master-2-datal=2G

[es-master-3-datal=2G

[es-hot-datal=3G

[logstash-datal=1G

[kibana-datal=1G

# [3] & [4] Inizializzazione Physical Volume e Volume Group
if ! sudo vgs ...; then
# ... (pvcreate se necessario)

sudo vgcreate "${DATA_VG_NAME}" "${DATA_PV_DEVICE}"
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fi
sudo vgchange -ay "${DATA_VG_NAME}" >/dev/null 2>&1 || true

# [5] Creazione Logical Volumes, formattazione XFS e aggiornamento fstab
for lv_name in "${'LV_SPECS[@]}"; do

# ... (setup variabili size e path)

# Creazione LV se non esiste

sudo lvcreate -L "${lv_sizel}" -n "${1lv_namel}'" "${DATA_VG_NAME}"

# Formattazione XFS se necessaria

sudo mkfs.xfs -f "${lv_path}" >/dev/null

# Aggiunta entry persistente in fstab con quote abilitate
fstab_entry="${1lv_path} ${mount_point} xfs defaults,uquota 0 2"
echo "${fstab_entry}" | sudo tee -a /etc/fstab >/dev/null

done

sudo mount -a

# [6] Configurazione quote XFS e ownership per UID 1000
for lv_name in "${!LV_SPECS[@]}"; do
# ...
sudo xfs_quota -x -c "limit -u bsoft=${lv_size}" \
"bhard=${lv_size} 1000" \
"${mount_point}"

done

sudo chown -R 1000:0 "${MOUNT_ROOT}"

echo "Volume setup completed."

Chiaramente, la scelta di collegare I'immagine disco contenente i volumi logici a
un dispositivo a blocchi virtuale che risiede in memoria, causa inevitabilmente la
perdita del collegamento device<»immagine ogni qualvolta che I’host si riavvia.
Senza ulteriori salvaguardie quindi, il sistema potrebbe fallire il mount dei logical
volumes al boot successivo, in quanto, sebbene 'immagine
/var/lib/elasticsearch-disk.img sia persistente, il loop-back che ne garantiva

I’accessibilita come block device, non esiste pitl.
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Per evitare questo problema, é stata aggiunta la direttiva ExecStopPost all’unit
elastic-stack.service, la quale si occupa di invocare LVM_teardown. sh.
Questo script, fratello del precedente, assicura arresti e riavvii del servizio idempo-

tenti e puliti, eseguendo le seguenti operazioni:

1. smonta i logical volumes sotto /var/lib/elastic-stack, rimuovendo i

mount points corrispondenti e le entries in /etc/fstab;

2. disattiva il volume group esdata-vg, ossia lo scollega dal block device

virtuale;

3. scollega il loop-back associato all'immagine disco.

Eseguiti in questo ordine, questi passaggi garantiscono uno smantellamento bottom-

up che preserva l'integrita dei dati e la coerenza del sistema.

#!/bin/bash

# ... (definizione variabili e funzione di logging)

# [1] Smontaggio dei volumi e rimozione persistenza in fstab

for 1v in "${LV_NAMES[@]}"; do
mount_point="${MOUNT_ROOT}/${1v}"
lv_path="/dev/${DATA_VG_NAME}/${1v}"

# Unmount se montato
if mountpoint -q "${mount_point}"; then
umount "${mount_point}" || true

fi

# Rimozione entry da /etc/fstab per evitare errori al boot
if [[ -f /etc/fstab ]1]; then
sed -1 "\|~${lv_path}[[:space:]11\+${mount_point}[[:space:1]11d" \
/etc/fstab
fi
rm -rf "${mount_pointl}"

done

# [2] Disattivazione del Volume Group
if vgdisplay "${DATA_VG_NAME}" >/dev/null 2>&1; then
vgchange -an "${DATA_VG_NAME}" >/dev/null 2>&1 || true
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fi

# [3] Distacco del loop device associato all’immagine disco
if [[ -f "${DISK_IMAGE}" 1]; then
loopdev=$(losetup -j "${DISK_IMAGE}" | cut -d: -f1 | head -nl)
if [[ -n "${loopdev}" 1]; then
losetup -d "${loopdev}" >/dev/null 2>&1 || true
fi
fi

I file di configurazione

[’altro prerequisito essenziale al corretto avvio di tutti i servizi ELK, chiara-
mente, & la presenza di file di configurazione .yml specifici per ogni tecnologia imp-
iegata.

QQuesti file, montati come volumi di sola lettura all’interno dei container Docker, con-
tengono le direttive necessarie per I'abilitazione della comunicazione sicura tramite
SSL, lautenticazione mutua tra client e server Elastic, la definizione dei ruoli dei

nodi del cluster, le pipeline di ingestion di Logstash e le impostazioni di Kibana.

Configurazione di Elasticsearch e Kibana In un contesto containerizzato, la
redazione dei file di configurazione elasticsearch.yml - per ognuno dei nodi del
cluster - e kibana.yml, ha richiesto minimo sforzo.

Astraendo infatti dal sistema host sottostante, & stato possibile concentrarsi princi-

palmente sulla mera configurazione delle impostazioni di sicurezza e connessione.

Pipeline di Logstash 1l file logstash/pipeline/logstash.conf si pud consid-
erare il cuore pulsante della fase di ingestion e parsing dei log di Rootless V2CI.
Esso definisce infatti le pipeline che Logstash deve eseguire per processare i log in
arrivo, specificando gli input, i filter e gli output.

Trascurando per il momento la sezione che regola la comunicazione con eventuali
data shippers - di cui verra discusso invece al paragrafo 4.2.4 -, prima di illustrare
gli altri componenti della pipeline Logstash, si riporta un esempio di log monolinea
generato da Rootless V2CI:

[2025-10-30 23:52:32] [INFO] source: { client: { ip: 151.82.40.78,
os: GNU/Linux, arch: x86_64, agent: HP Laptop 15s-fqgé4xxx I,
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location: { file: /home/francesco/Scrivania/terzo_anno/Tesi
/rootless_V2CI/src/build_thread.c, line: 167 } }, project: sshlirp,
thread_arch: arm64, message:

Starting build process for architecture arm64 for project sshlirp...

A partire da questo formato di log, strutturato secondo quanto documentato nella
sottosezione 4.1.7, é stato necessario comporre una pipeline Logstash flessibile che
fosse in grado, non solo di ingerire e tipizzare gli attributi secondo valori standard,
ma anche di arricchire i documenti stoccati in Elasticsearch con informazioni ag-
giuntive come la derivazione geografica del log in base all’indirizzo IP del client e
flag/tag personalizzati per una piu agevole categorizzazione.

Il risultato di questo obbiettivo, figlio di un processo di debugging e test non trascur-

abile, é converso nella seguente pipeline logstash. conf:

# ... ilnput ...

# FILTER

filter {

grok {
match => {

# Impiego Grok per il parsing del log

i
# Aggiungo un tag in caso di fallimento del parsing con Grok

tag_on_failure =>

# Date filter per convertire [log][timestamp] in O@timestamp
if [event] [timezone] and [event][timezone] != {
date {
match => -MM-
target =>

timezone => "Y{ }
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+
} else {
date {
match => ["[log] [timestamp]", "YYYY-MM-dd HH:mm:ss"]
target => "Qtimestamp"
timezone => "${LOG_TIMEZONE:UTC}"

# GeoIP enrichment solo se 1’IP e’ valido
# in qual caso lo inserisco in [source][ip] e faccio il lookup
if [source][client][ip] and

[source] [client] [ip] =~

/7 (?:\d{1,33\.){3}\d{1,3}$ |~ [0-9A-Fa-f:]+$/

{
mutate {
copy => { "[source][client][ip]" => '"[source] [ip]" }
b
geoip {
source => "[source] [ip]"
target => "source"
tag_on_failure => ["_geoip_lookup_failure"]
+
+
# ... normalizzazione di altri campi ...
}
# OUTPUT
output {

elasticsearch {
# Connessione sicura al nodo data_hot del cluster
hosts => ["https://v2ci-es-hot-1:${ES_PORT:9200}"]
user => "elastic"
password => "${ELASTIC_PASSWORD}"
ssl_enabled => true

ssl_certificate_authorities =>
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# Specifico che i log vadano nel data stream di cui
# configurero’ il template in ILM_setup.sh
data_stream =>

data_stream_type =>

data_stream_dataset =>

data_stream_namespace =>

Il setup iniziale

Il file di script bash cluster_setup.sh, eseguito come primo servizio da Docker
Compose e basato sull’assunzione di volumi persistenti accessibili e file di configu-
razione corretti, ha il compito di preparare I’ambiente del cluster Elastic, integrando

dentro di sé 3 principali funzionalita:

e La generazione dei certificati SSL per la comunicazione sicura tra i nodi del

cluster e per 'autenticazione mutua tra client e server Elastic;

e L’impostazione di regole globali ereditate dalla progettazione concettuale,
quali I'esclusione di repliche per gli shard - per evitare che il cluster tenti di
allocare copie ridondanti di indici di sistema, per comportamento predefinito
al suo avvio - e la definizione delle policy di Index Lifecycle Management
(ILM) per la retention dei log, entrambe svolte tramite le API RESTful di

Elasticsearch;

e La creazione - sempre per mezzo delle API - degli utenti di sistema pre-

definiti, con le relative password, per 'accesso autenticato ai servizi Elastic.

Il seguente estratto di codice bash riassume 'implementazione di tali funzionalita

all’interno di cluster_setup.sh:

#!/usr/bin/env bash
# ... (variabili e funzioni helper per logging

# e check variabili da .env)

# Generazione della CA se non presente, tramite certutil e in
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# formato .pem, al fine di ottimizzare una gestione

# trasparente dei .crt e .key

if [[ ! -f "${CERT_DIR}/ca.zip" 1]; then
bin/elasticsearch-certutil ca --silent --pem -out "${CERT_DIR}/ca.zip"
unzip "${CERT_DIR}/ca.zip" -d "${CERT_DIR}"

fi

# Generazione dei certificati per le istanze se non presenti
if [[ ' -f "${CERT_DIR}/certs.zip" 1]; then
bin/elasticsearch-certutil cert --silent --pem \
-out "${CERT_DIR}/certs.zip" --in "${CERT_DIR}/instances.yml"
unzip "${CERT_DIR}/certs.zip" -d "${CERT_DIR}"
fi

# ... (impostazione permessi file e attesa disponibilita’

# Elasticsearch tramite curl --ca-cert)

log "Setting cluster default index.number_of_replicas=0"

curl --cacert "${CA_CERT}" -u "elastic:${ELASTIC_PASSWORD}" \
-H "Content-Type: application/json" \
-X PUT "${ES_HOST}/_template/default" \

-d ’{"index_patterns": ["x"], "settings": {"number_of_replicas": 0}}’

log "Setting kibana_system password"

until curl -s -X POST --cacert "${CA_CERT}" \
-u "elastic:${ELASTIC_PASSWORD}" \
-H "Content-Type: application/json" \
"${ES_HOST}/_security/user/kibana_system/_password" \
-d "{\"password\":\"${KIBANA_PASSWORD}\"}" | grep -q ’~{}’; do
sleep 10

done

log "Set ILM policies with ILM_setup.sh script"
bash /usr/share/elasticsearch/ILM_setup.sh

Lo script ILM_setup.sh, a cui si appoggia in modo evidente I'esecuzione dell’inizial-
izzatore bash sopra riportato, oltre a creare una vera e propria policy di ciclo di

vita degli indici con una configurazione completa di retention e rollover, si occupa
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anche di comporre U'essenziale index template per i log di Rootless V2CI, il quale ne
definisce il mapping e la struttura all’interno di Elasticsearch.

Per questo specifico obbiettivo si é deciso di optare per una configurazione che
prevedesse 'uso di data stream - a cui si ha accennato nella sottosezione 4.2.1 - e
dynamic mapping. La prima scelta ha permesso di semplificare la gestione degli
indici, delegando a Elasticsearch la creazione automatica di nuovi indici fisici e la
rotazione dei precedenti in backing indezes [67], mentre la seconda ha evitato di
dover definire a priori il mapping di ogni singolo campo dei log, lasciando che fosse

Elasticsearch a dedurlo automaticamente in fase di ingestion.

L’applicazione tramite API di queste politiche al cluster Elasticsearch ha quindi

conferito a ILM_setup.sh la seguente struttura:

#!/bin/bash

# ... (setup variabili d’ambiente e check credenziali)

# Definizione della policy JSON: rollover giornaliero o a 1GB,
# delete dopo 30 giorni
cat >/tmp/compiler-logs-ilm.json <<’EQF’

{
"policy": {
"phases": {
"hot": {
"actions": {
"rollover": {
"max_age": "14",
"max_primary_shard_size": "1gb"
¥
+
i
"delete": {
"min_age": "304",
"actions": { "delete": {} }
+
+
+
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EQF
# Applicazione della policy tramite API PUT _ilm/policy
curl -s -o /dev/null -u "elastic:${ELASTIC_PASSWORD}" \
--cacert "${CA_CERT}" \
-H "Content-Type: application/json" -X PUT \
"${ES_URL}/_ilm/policy/compiler-logs-ilm" \
-d @/tmp/compiler-logs-ilm.json

# Definizione del template JSON: pattern per data stream,
# mapping dinamico e associazione alla policy ILM creata sopra

cat >/tmp/logs-compiler-default-template.json <<’EQF’

{
"index_patterns": [ "logs-compiler-*", ".ds-logs-compiler-*" ],
"data_stream": {},
"template": {
"settings": {
"index.lifecycle.name": "compiler-logs-ilm",
"index.number_of_shards'": 1,
"index.number_of_replicas": O,
"index.codec": "best_compression"
T
"mappings": { "dynamic": true }
+
}
EQF

# Applicazione del template tramite API PUT _index_template
curl -s -o /dev/null -u "elastic:${ELASTIC_PASSWORD}" \
--cacert "${CA_CERT}" \
-H "Content-Type: application/json" -X PUT \
"${ES_URL}/_index_template/logs-compiler-default-template" \
-d @/tmp/logs-compiler-default-template.json

4.2.4 Scelta degli agenti di monitoring e configurazioni per
architettura sia distribuita che centralizzata
Un passo successivo - all'implementazione dell’elastic-stack.service - nel-

Iintegrazione del sistema di Continuous Integration con 1'Elastic Stack, é stata la

selezione e la configurazione degli agenti di monitoring incaricati di raccogliere e
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inoltrare i log generati dal motore di build verso Logstash.

La scelta di escludere nella sezione input di Logstash il semplice meccanismo stan-
dard di File - introdotto nella sottosezione 4.2.1 - ¢é figlia dell’ambizione gia ampia-
mente anticipata di permettere all’utente utilizzatore di distribuire il sistema, di mon-
itoraggio in due scenari distinti: All-in-One (singolo host) e Distributed (Builder +
Monitor Remoto).

Quindi la constatata essenzialita di data shippers, per I'implementazione di questo
progetto, si ¢ andata immediatamente a combinare con la natura dei documenti
prodotti da Rootless V2CI da ingerire, escludendo a priori forwarder di metriche e
prediligendo Filebeat per la gestione computazionalmente impercettibile dei time-

series dell’infrastruttura di CI.

Questa scelta, che ha permesso di potenziare enormemente la predisposizione
allo scaling-out della combinazione Rootless V2CI + ELK, ha richiesto prima di
tutto la strutturazione della sezione di input di logstash.conf per 'accettazione

di connessioni sicure provenienti da Filebeat, come mostrato di seguito:

Successivamente ¢ stato necessario preimpostare un file . env per le variabili di ambi-
ente di Filebeat - essenziale per parametri quali 'indirizzo ip raggiungibile dell’host
su cui é in esecuzione elastic-stack.service, password condivisa per 'autenti-
cazione sicura e path assoluto dei certificati da copiare tramite scp -, redigere il
file di configurazione filebeat.docker.yml e infine, in modo del tutto analogo a
quanto fatto per i servizi ELK, comporre degli script di setup, avvio e stop che si
occupassero di eseguire in modo ordinato tutte le operazioni necessarie al linking di
Filebeat a Logstash e alla raccolta dei log di Rootless V2CI.
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Mentre risulta superfluo mostrare gli script start.sh, stop.sh e install.sh
- in quanto di logica simile a quelli illustrati nella sezione precedente e di im-
plementazione standard secondo la documentazione Elastic [67] -, ¢ fondamentale
specificare che una prima fase di categorizzazione e parsing avviene proprio nel file
filebeat.docker.yml, il quale appunto si occupa di definire i 5 tipi di log prodotti
da Rootless V2CI, arricchirli con campi distintivi e inviarli al cluster Elasticsearch

passando per Logstash.

filebeat.inputs:

# --- INPUT 1: Main process logs ---
- type: filestream

id: main-process-logs

paths:

- ${V2CI_BUILD_DIR}/logs/main.log
# ... (impostazioni standard: scan_frequency, recursive_glob)
parsers:

- multiline:

type: pattern
# Pattern per timestamp [YYYY-MM-DD HH:mm:ss]
pattern: ’~\[\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\]"’
negate: true
match: after
fields:

log_type: main_process

service_name: main

’event.timezone’: ${FILEBEAT_TIMEZONE:UTC}

fields_under_root: true

--- INPUT 2..4: Project, Cronjob & Host Thread logs ---
Configurazione analoga a INPUT 1, con paths specifici per
ogni componente:

- ${vV2CI_BUILD_DIR}/#*/logs/worker.log

- ${V2CI_BUILD_DIR}/*/logs/binaries_rotation_cronjob.log
- ${v2CI_BUILD_DIR}/*/logs/*-worker.log

H O OH O H = = O H®

# --- INPUT 5: Threads logs inside chroot ---

- type: filestream
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id: project-chroot-thread-logs
paths:
- ${V2CI_BUILD_DIR}/*-chroot/home/*/logs/worker.log
# ... (parser multiline e impostazioni standard come sopra)
fields:
log_type: project_chroot_thread
service_name: project-thread
’event.timezone’: ${FILEBEAT_TIMEZONE:UTC}

fields_under_root: true

# Outputs
output.logstash:
hosts: ["v2ci-logstash:${LOGSTASH_PORT:5044}"]
ssl.enabled: true

ssl.certificate_authorities: ["/usr/share/filebeat/certs/ca.crt"]

setup.kibana:
host: "https://v2ci-kibana:${KIBANA_PORT:56013}"
ssl.enabled: true

ssl.certificate_authorities: ["/usr/share/filebeat/certs/ca.crt"]

4.2.5 Testing e risultati: visualizzazione su Kibana

Sebbene, come anticipato, lo sviluppo containerizzato di un’infrastruttura ELK
dalle dimensioni limitate sia stato estremamente piit agevole rispetto a una vera e
propria installazione locale dei servizi distribuita su cluster multi-server, é stato co-
munque necessario affrontare considerevoli sfide di debugging e testing, soprattutto

per quanto riguarda la corretta integrazione con Rootless V2CI.

Una volta perod "plug-ato" correttamente Filebeat sia alla produzione di log del
motore di cross-compilazione, che all’interfaccia di parsing ed enrichment fornita da
Logstash, é stato possibile interagire attraverso Kibana con un cluster, si semplice e
poco persistente, ma healthy e perfettamente funzionante anche per macchine dalle

risorse limitate.

Un riflesso tangibile e apprezzabile - dal punto di vista di un eventuale utente

utilizzatore - di questo corretto funzionamento dell’intera infrastruttura, pit che nei
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log di sitema dei servizi Elastic o nell’analisi dei consumi delle risorse, si trova nell’-
effettiva visualizzazione dello stato del cluster e dei log, e nella tangibile possibilita
di creare dashboard complete - attraverso ['uso di tool avanzati e integrati in Kibana
quali Canvas e Lens - e ottimizzate per lo sfruttamento di tutte le funzionalita di
strutturazione dei documenti offerte dalle configurazioni di Filebeat e Logstash, e
dalla grezza formattazione iniziale operata dallo stesso Rootless V2CI.

I seguenti sreenshots mostrano quindi due interfacce di overview dello stato del
cluster Elastic, quella di discover dei logs e un esempio di dashboard creata per

monitorare attivita di build.

@ elastic

= B custers  vacicluster Enter setupmode 9 Alerts and rules
Cluster overview B> Last1s minutes @ 105

v2ci-cluster
= Elasticsearch
Overview Nodes: 4 Indices: 36 Logs

Health ® Healthy

Documents 992
® Nolog data found
Version 914 DiskUsage  41MB
Set up Filebeat , then configure your Elasticsearch
Uptime 10 minutes Primary Shards 36 output to your monitoring cluster.
License Basic Replica Shards 0

¥ Kibana e Heaitny

Overview Instances: 1

Requests 2 Connections 1

Max. Response Time 88 ms Memory Usage 15.60%
646.4MB/4.0GB
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strutturati di Rootless V2CI
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Figura 4.15: Esempio di dashboard personalizzata per il monitoraggio delle build di
Rootless V2CI su Kibana Canvas; realizzata tramite Lens e rappresentativa di vari

grafici e mappe geografiche

4.2.6 Analisi dei requisiti di sistema per 'integrazione ELK

La coesistenza di container Docker multipli mirati al funzionamento dell’Elas-
tic Stack, in aggiunta alla gia dispendiosa esecuzione del motore di Rootless V2CI,

ha chiaramente portato a scenari di consumo di risorse computazionali per niente
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trascurabili.

In scenari di test "All-in-One", in cui sia il motore di Continuous Integration che
Iinfrastruttura di monitoraggio risiedevano sulla stessa macchina fisica impiegata
gia precedentemente per le analisi sui consumi di sistema da parte di Rootless V2CI
- discussi nella sottosezione 4.1.6 -, si ¢ potuto osservare come I'overhead aggiuntivo
introdotto dall’Elastic Stack incida in media per un ulteriore 30% di CPU per ogni
core e 25% di RAM.

Questi A di consumo mostrano come su un host con processore 11th Gen Intel®
Core™ 15-1155G7 x 8 e 16 GB di RAM, l'esecuzione totale non lasci molto margine
in termini di risorse disponibili.

In scenari piu stressful - come ad esempio la cross-compilazione multi-threaded per
4 architetture per un solo progetto contemporanea al bootstrap del cluster ELK - si
¢ infatti raggiunto il 100% di utilizzo della CPU su tutti gli 8 core logici e si sono
toccati picchi di consumo di RAM fino a 14.7 GB su 16 GB totali, con conseguente

swap intensivo e rallentamenti percepibili.

Nonostante cio, sebbene lo scenario di impiego "Distributed" della combinazione
Rootless V2CI + ELK sia raccomandabile rispetto a quello su singolo host, 'use
case generale di quest’ultimo prevede - come verra illustrato nel tutorial conclusi-
vo - prima un’esecuzione preliminare del sistema di CI e solo in seguito il setup
dell'infrastruttura di monitoraggio, consentendo cosi di mitigare in parte I'impat-
to sulle risorse computazionali e assorbire in modo del tutto accettabile I'overhead
introdotto dall’Elastic Stack.

4.3 Valutazioni total

In quest’ultima sezione conclusiva, si intende fornire una valutazione complessiva
dell’integrazione del sistema di Continuous Integration Rootless V2CI con I'Elastic
Stack, analizzando i principali aspetti qualitativi e quantitativi che ne caratterizzano
I'implementazione e ’efficacia.

Come verra illustrato dalle seguenti sottosezioni, da questa "somma' di consider-
azioni € emerso che, pur con limiti di natura tecnica e computazionale, Rootless
V2CI con integrazione ELK rappresenta una soluzione valida e promettente per
I’automazione e il monitoraggio dei processi di cross-compilazione in ambienti etero-
genei, caratterizzata, lato infrastruttura CI, da resilienza, sicurezza, portabilita,

scalabilita, configurabilita e architettura ottimizzata, e, lato monitoring, da stan-
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dardizzazione, persistenza, gestione ottimizzata delle risorse, usabilita, accessibilita,
scalabilita e capacita di raccolta, analisi e visualizzazione avanzata e user-friendly
dei log.

Di questi aspetti, in particolare, si analizzeranno quelli comuni ad entrambe le tec-
nologie, i quali si configurano quindi come i principali punti di forza dell’intera

soluzione integrata.

4.3.1 Resilienza delle risorse

Il primo pregio di questa complesssa architettura risiede nella sua resilienza, inte-
sa sia come capacita di adattarsi e rispondere efficacemente a variazioni impreviste
dell’ambiente, che come predisposizione a un’operativita idempotente, continua e
priva di incoerenze.

Da un lato, Rootless V2CI, grazie sia all’attenta gestione delle risorse contese tramite
flock() e file di stato, che alla garanzia di interruzione coerente per mezzo di un
programma v2ci_stop granulare ma permissivo, esclude scenari di corruzione delle
risorse condivise e assicura che ogni build possa essere ripresa o riavviata senza rischi
di incoerenza.

Inoltre, con i suoi ultimi aggiornamenti inclusivi di meccanismi di disaster recovery
e binaries rotation, si configura come un sistema di cross-CI "bullet-proof", capace
di mantenere l'integrita dei dati e la continuita operativa grazie alla sua massima

fault tolerance e configurabilita.

Dall’altro lato, I’Elastic Stack, anche se privato di HA in favore di una gestione
economica delle risorse di sistema, in scenari, probabilisticamente parlando, frequen-
ti e standard, grazie al salvataggio dei volumi persistenti su disco simulato e alla
garanzia di accesso ad essi tramite loop-back devices, permette di recuperare lo stato
del cluster e i dati in esso contenuti anche in caso di crash improvvisi o riavvii non

pianificati, assicurando cosi la persistenza e I'integrita delle informazioni raccolte.

4.3.2 Architettura ottimizzata

Sia Rootless V2CI che il suo plug-in ELK, sono figli di un’attenta progettazione,
derivata da lunghe fasi di studio e sperimentazioni di alternative architetturali, test-
ing e analisi delle risorse.

Infatti, la struttura di Rootless V2CI basata su chroot setup iterativo + demoni per

progetto + thread per architettura ha consentito, rispettando ogni singolo requisito
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progettuale, di sorpassare problemi di overhead computazionale e di parallelismo
da cui sarebbe stata invece affetta una qualsiasi altra configurazione dei medesimi

componenti.

Analogamente, lo studio architetturale pedantemente condotto per l'integrazione
con I’Elastic Stack, ha portato alla definizione di un sistema di monitoraggio estrema-

mente contenuto, economico e, conseguentemente, abbastanza portabile.

4.3.3 Scalabilita

Uno dei principali punti forti dell’intero ecosistema risiede nella predisposizione
allo scaling-out.
Rootless V2CI, grazie alla sua natura modulare e alla gestione indipendente dei pro-
getti e delle architetture, permette di aggiungere facilmente nuovi input di grandezza
variabile garantendo comunque tempi di esecuzione ridotti.
L’Elastic Stack, d’altro canto, grazie alla sua architettura distribuita e alla capacita
di bilanciare il carico tra i nodi del cluster, consente di scalare orizzontalmente 1'in-

frastruttura su host pitt performanti e, possibilmente, dedicati.

Ma il vero ventaggio dell’integrazione di questi due servizi, risiede appunto nella
loro combinazione che consente a un utente proprietario di piu server o macchine
virtuali sufficientemente prestanti, di distribuire il carico di lavoro in modo ottimale
attraverso il deploy di istanze Rootless V2CI su nodi dedicati alla compilazione,
I’assegnamento agli stessi server dei leggeri data shippers Filebeat, e 'aggregazione
centralizzata dei log sull’host dell’Elastic Stack.

In questo scenario, la facilitd di distribuzione dei vari servizi si dimostra anche il

miglior modo per 1'uso ottimizzato delle risorse di sistema.

4.3.4 Usabilita

Un altro aspetto di rilievo dell’architettura creata ¢ la sua usabilita.
Come verra mostrato nel tutorial conclusivo, I'inizializzazione di Rootless V?2CI
richiede all’utente di interfacciarsi principalmente solo con il file config.yml, strut-
turato e leggibile, consetendogli di personalizzare il comportamento del sistema in
modo semplice e intuitivo.
Anche il setup dei servizi containerizzati Elastic é stato pensato come un semplice

eseguibile unico, capace di impostare anche servizi systemd - sia per Elastic Stack
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che per Filebeat - in modo da permettere all'utente di avviare, fermare e monitorare
Iinfrastruttura con comandi standard e familiari.

Infine, 'interfaccia web di Kibana, con i suoi tool integrati per la visualizzazione del-
lo stato del cluster e I’analisi dei log, rende 'interazione con i dati raccolti semplice,

accessibile e anche gradevole.

4.4 Tutorial

Quest’ultima sezione fornisce le istruzioni operative per 'installazione, la con-
figurazione e I'integrazione "plug and play" del sistema di Continuous Integration
Rootless V2CI con il sistema di monitoraggio Elastic Stack.

Verranno coperti entrambi gli scenari operativi: distribuzione su singolo host (All-

in-One) e distribuzione distribuita (Builder + Monitor Remoto).

4.4.1 Prerequisiti comuni

Indipendentemente dallo scenario scelto, il primo passo € preparare 'ambiente
per il motore di compilazione.
Questo infatti deve essere installato ed eseguito almeno una volta per generare la

struttura delle directory di log necessarie a Filebeat.

4.4.2 Preparazione del sistema host builder

Eseguire i seguenti comandi sull’host destinato alla compilazione:

sudo apt update
sudo apt upgrade
sudo apt install debootstrap \
gemu-user-static binfmt-support build-essential \

cmake git libexecs-dev libyaml-dev cron

Accortezza per utenti Ubuntu > 24.04:
A causa delle restrizioni di AppArmor sui namespace utente, ¢ necessario eseguire

il seguente comando prima di procedere:

sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0
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Compilazione di Rootless V2CI

1. Clonare ed entrare nella directory (si assume che il sorgente sia scaricato in
rootless_V2CI):

cd rootless_V2CI

2. Modificare i percorsi di default in src/include/types/types.h con i path

assoluti corretti per il proprio ambiente:

#define DEFAULT_CONFIG_PATH
"/path/assoluto/a/.config/v2ci/config.yml"

#define SCRIPTS_DIR_PATH
"/path/assoluto/a/rootless_V2CI/scripts"

3. Compilare il progetto:

mkdir build && cd build
cmake ..

make

Troubleshooting per la compilazione: Se si verificano errori di linking con
libyaml o libexecs, modificare il CMakeLists.txt specificando i percorsi assoluti
alle librerie statiche (.a).

Prima esecuzione obbligatoria

Prima di installare lo stack Elastic, avviare il motore per generare i log:

chmod +x ../scripts/*

./v2ci_start

Attendere che il sistema completi almeno un ciclo di inizializzazione o build, quindi,

se si desidera, fermarlo:

./v2ci_stop

4.4.3 Scenario 1: deploy su singolo host (All-in-One)

In questo scenario, sia il motore di CI (Rootless_V2CI) che lo stack di monitor-

aggio (Elastic Stack) risiedono sulla stessa macchina fisica o virtuale.
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Requisiti specifici
Assicurarsi che 'host abbia:

1. Docker e Docker Compose installati;

2. Risorse minime: 4 CPU, 12 GB RAM, 30 GB spazio disco libero.

Step 1: configurazione variabili di ambiente

Navigare nelle directory del repository rootless_v2ci_logs_ingestion_system,

quindi:

1. Modificare elastic-log-monitoring/.env:

e Impostare le porte e le credenziali desiderate per Kibana/Elasticsearch.

2. Modificare filebeat-log-monitoring/.env:

e Impostare il path assoluto della directory di build di V2CI (dove risiedono
i log generati al punto 1.3);

e Poiché siamo su singolo host, assicurarsi che Filebeat punti a localhost

o al nome del servizio Docker di Logstash.

Step 2: avvio Elastic Stack (Backend)

Avviare FElasticsearch, Logstash e Kibana:

cd elastic-log-monitoring

sudo chmod +x ./*.sh ./scripts/*.sh
sudo ./install.sh

sudo systemctl enable elastic-stack
# Verifica stato

sudo systemctl status elastic-stack

Step 3: avvio Filebeat (Agent)

Avviare I'agente che legge i log locali e 1i invia allo stack:

cd ../filebeat-log-monitoring
sudo chmod +x ./*.sh
sudo ./install.sh

sudo systemctl enable v2ci-filebeat
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# Verifica stato

sudo systemctl status v2ci-filebeat

Step 4: accesso

Accedere a Kibana via browser: https://localhost:5601 (o IP dell’host).
Accettare il certificato SSL autofirmato se richiesto, o, se segnalata connessione non

sicura, inserirlo tra i certificati browser

4.4.4 Scenario 2: deploy su host remoti ma comunicanti (Dis-
tributed)

In questo scenario, Rootless_V2CI gira sull’Host A (Builder), mentre Elastic
Stack gira sull’Host B (Monitor). Filebeat verra installato sull'Host A per inviare i
log all’Host B.

Host B (Monitor): installazione Elastic Stack

Eseguire questi comandi sul server dedicato al monitoraggio:

1. Configurare elastic-log-monitoring/.env assicurandosi che le porte di
Logstash (solitamente 5044) siano esposte per accettare connessioni

dall’esterno;

2. Avviare lo stack:

cd elastic-log-monitoring
sudo chmod +x ./*.sh ./scripts/*.sh
sudo ./install.sh

sudo systemctl enable elastic-stack

Host A (Builder): installazione Filebeat

Eseguire questi comandi sulla macchina dove gira Rootless_V2CI:

1. Configurazione fondamentale: modificare il file

filebeat-log-monitoring/.env:
e LOG_DIR: Path assoluto dei log di V2CI sull’Host A.;
e LOGSTASH_HOST: Inserire 'indirizzo IP dell’'Host B (es. 192.168.1.50).


https://localhost:5601
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2. Avviare Filebeat:

cd filebeat-log-monitoring
sudo chmod +x ./*.sh
sudo ./install.sh

sudo systemctl enable v2ci-filebeat

4.4.5 Gestione operativa
Rotazione binari
Lo script v2ci_start installa automaticamente un cronjob per la pulizia dei

binari vecchi. Per rimuoverlo:

crontab -e

# Rimuovere la riga relativa a v2ci

Reset dei servizi

Se necessario resettare 'intero stack di monitoraggio (attenzione: cancella i
dati):

e Su Host Monitor (o unico host):

cd elastic-log-monitoring
sudo ./reset.sh

sudo systemctl restart elastic-stack
e Su Host Builder (o unico host) per Filebeat:

cd filebeat-log-monitoring
sudo systemctl stop v2ci-filebeat
sudo docker volume rm registry

sudo systemctl start v2ci-filebeat



Conclusioni

In questa trattazione si é cercato di illustrare, con rigore metodologico e at-
tenzione ai dettagli tecnici, il processo evolutivo che ha condotto alla realizzazione
dell’infrastruttura di Rootless V2CT e alla sua successiva integrazione con i servizi
di monitoraggio ELK. L’analisi ha ripercorso le tappe fondamentali dello sviluppo,
partendo dalle prime sperimentazioni manuali di pacchettizzazione fino al consoli-
damento di un’architettura software distribuita e resiliente, ponendo ’accento sulle
scelte progettuali dettate da vincoli di sicurezza, performance e usabilita.

La genesi di Rootless VV2CI, radicata nella necessita di espandere la frontiera di
connettivita dei progetti Virtualsquare tramite la distribuzione capillare di sshlirp,
ha dimostrato come un’istanza specifica e circoscritta possa evolvere in un sistema
generalizzato. Il passaggio dalle soluzioni intermedie - sshlirpCI e la sua variante
Rootless - ha segnato un percorso di maturazione tecnica guidato dalla volonta di
superare i limiti imposti dai privilegi di sistema. L’adozione di primitive quali user
namespaces e 'uso combinato di fakeroot e unshare hanno permesso di disaccop-
piare definitivamente il processo di costruzione del software dai permessi ammin-
istrativi dell’host, raggiungendo I'obiettivo primario di una "rootlessness" nativa e
sicura.

L’architettura finale, basata su un modello concorrente di demoni per progetto
e thread per architettura, ha validato Iefficacia di un approccio modulare. At-
traverso test empirici e misurazioni dei consumi di sistema, si ¢ comprovato come
Rootless V2CI riesca a garantire scalabilita e velocita di esecuzione, pur mantenen-
do un’impronta computazionale gestibile. L’introduzione di meccanismi avanzati
quali il disaster recovery autonomo e la rotazione intelligente dei binari conferisce
al sistema un grado di fault tolerance che lo rende idoneo a operare in continuita.

Infine, la decisione di arricchire ’ecosistema con un layer di osservabilita basato
sullo stack Elastic ha colmato il divario tra la complessita delle operazioni di basso
livello e ’accessibilita utente. L’orchestrazione di container Docker per I'ingestion e

la visualizzazione dei log, unita all'impiego di Filebeat come data shipper leggero,
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ha trasformato Rootless V2CI da mero strumento di compilazione a piattaforma
monitorabile in tempo reale, capace di fornire insight immediati sullo stato delle
build distribuite.

In definitiva, sebbene Rootless VV2CI presenti requisiti di risorse che potrebbero
limitarne I'impiego in contesti hardware estremamente vincolati, I'infrastruttura re-
alizzata soddisfa pienamente gli obiettivi accademici e pratici prefissati. Essa rapp-
resenta una soluzione valida e innovativa nel panorama della Continuous Integration,
proponendosi come un’alternativa sicura, portabile e trasparente per la produzione
automatizzata di software cross-compilato, fedele alla filosofia open source e ai prin-

cipi di liberta e accessibilita promossi da Virtualsquare.
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