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"Perciò chiunque ascolta queste mie parole e le mette in pratica,

è simile a un uomo saggio che ha costruito la sua casa sulla roccia.

Cadde la pioggia, strariparono i �umi, so�arono i venti e si

abbatterono su quella casa, ed essa non cadde, perché era fondata

sopra la roccia."





Introduzione

L'ubiquità dei sistemi di calcolo moderni e l'eterogeneità delle architetture hard-

ware su cui essi operano impongono, nel panorama dello sviluppo software contem-

poraneo, s�de sempre più complesse legate alla portabilità e alla distribuzione del

codice. Il Progetto Debian, da decenni pilastro della comunità open source, fonda la

propria �loso�a sulla garanzia di un sistema operativo universale, capace di adattar-

si a molteplici piattaforme hardware mantenendo inalterati standard di stabilità e

sicurezza. In parallelo, il laboratorio e la comunità di Virtualsquare (V 2) perseguono

l'ambizioso obiettivo di democratizzare la virtualizzazione, o�rendo strumenti che

permettano la creazione di reti e macchine virtuali in contesti privi di privilegi am-

ministrativi.

Il presente lavoro di tesi si colloca esattamente nell'intersezione tra queste due

�loso�e, nascendo dall'esigenza concreta di estendere l'accessibilità del progetto ssh-

lirp - un tool innovativo per la connettività TCP/IP in user-space - a un vasto spettro

di architetture, dai comuni amd64 e arm64, a port più speci�ci come riscv64.

La necessità di distribuire binari statici pronti all'uso per tali architetture, desti-

nati a operare su host remoti eterogenei, ha evidenziato le limitazioni degli approcci

tradizionali alla cross-compilazione, spesso vincolati da pesanti emulazioni di sis-

tema, dipendenze da privilegi root o infrastrutture cloud.

L'elaborato descrive quindi il percorso evolutivo che ha condotto alla proget-

tazione e all'implementazione di Rootless V 2CI (Rootless Virtual Square Continuous

Integration), un motore di integrazione continua distribuito, altamente con�gurabile

e nativamente indipendente da privilegi elevati. Tale sistema non si limita alla mera

automazione della cross-compilazione, ma rappresenta anche un ecosistema comple-

to in grado di gestire il ciclo di vita dei binari, dalla risoluzione delle dipendenze

in ambienti isolati alla loro rotazione e archiviazione, garantendo persistenza, idem-

potenza e sicurezza.

La trattazione dello sviluppo che ha portato a questo risultato è strutturata in un

percorso incrementale che rispecchia le fasi di ricerca e implementazione a�rontate.
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ii INTRODUZIONE

Nel primo capitolo verrà delineato il contesto tecnologico di origine, introducen-

do l'ecosistema Virtualsquare e il progetto sshlirp. Verranno inoltre analizzate le

motivazioni che rendono necessaria una distribuzione capillare e multi-architettura

di tale strumento, ponendo le basi per i requisiti del progetto.

Il secondo capitolo invece documenterà le fasi embrionali del lavoro, focalizzate

sulla pacchettizzazione Debian manuale. Saranno analizzate le criticità emerse dal-

l'uso di Qemu System Emulation per architetture obsolete e la transizione verso un

approccio più snello basato su Qemu User-Mode Emulation combinato a deboot-

strap. Si argomenterà inoltre la scelta di prediligere una soluzione di build locale

rispetto alle pipeline CI cloud-based (come Salsa CI), in virtù di una maggiore ne-

cessità di controllo sulle risorse e persistenza degli ambienti di compilazione.

Il terzo capitolo illustrerà il fondamentale passaggio dallo sviluppo manuale al-

l'automazione, attraverso l'analisi dei prototipi sshlirpCI e Rootless sshlirpCI. In

questa sede verranno esposte le soluzioni tecniche adottate per abbattere il vincolo

dei privilegi, sfruttando primitive del kernel Linux quali gli User Namespaces e l'as-

trazione dei permessi fornita da fakeroot. Si analizzeranno inoltre le vulnerabilità di

sicurezza intrinseche all'uso di sudo e system() e come queste siano state superate.

In�ne il quarto e ultimo capitolo è dedicato alla maturazione �nale del progetto

in Rootless V 2CI. Di questo se ne descriverà l'architettura �nale, caratterizzata da

un approccio concorrente che vede demoni indipendenti per ogni progetto coordinare

thread di compilazione speci�ci per architettura. Verranno quindi approfonditi as-

petti implementativi cruciali quali la gestione della concorrenza su risorse condivise,

il meccanismo di disaster recovery per la resilienza dei rootfs, e le politiche di ro-

tazione dei binari. In�ne, si presenterà l'integrazione del motore di CI con uno stack

ELK (Elasticsearch, Logstash, Kibana) containerizzato, progettato per o�rire una

monitorabilità centralizzata e granulare dei processi di build distribuiti, trasforman-

do log grezzi in dashboard visuali intuitive.

Rootless V 2CI si propone dunque non solo come soluzione tecnica a un problema

di ingegneria del software, ma come dimostrazione accademica di come sia possibile

orchestrare processi complessi, e solitamente privilegiati, in user-space, coniugando

e�cienza computazionale, sicurezza operativa e usabilità.
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Capitolo 1

Contesto di origine: Virtualsquare e

sshlirp

In questo primo capitolo si introdurrà il contesto di nascita di Rootless V 2CI,

illustrandone motivazioni e necessità madri e collocando queste all'interno del più

ampio scenario dello sviluppo software per progetti di virtualizzazione proposto da

Virtualsquare.

In particolare si illustrerà la principale origine dello sviluppo del progetto di tesi:

sshlirp. Di questo si esporrà il processo di nascita, le caratteristiche e le funzionalità

che ne permettono l'integrazione all'interno dell'architettura Virtualsquare. Inoltre

di quest'ultima verranno descritti gli scopi, i principi e la struttura generale, con par-

ticolare attenzione al suo sottoinsieme di componenti che interagiscono con sshlirp

e quindi per i quali il progetto di tesi è stato originariamente pensato.

L'intento iniziale di Rootless V 2CI infatti era quello di dare un contributo al

progetto Virtualsquare attraverso il rilascio di pacchetti multi-architettura di sshlirp.

1.1 Virtualsquare

Virtualquare è de�nibile e pensabile come un container di progetti, tool e librerie

il cui scopo è quello di permettere la creazione di un ambiente virtuale uni�cato in

cui sia garantita la comunicazione e l'interazione tra vari componenti quali macchine

virtuali, sistemi operativi in user space e stack di rete [1].

Al coltempo Virtualsquare rappresenta una comunità open source e un concetto

accademico originato all'interno dell'Università di Bologna, grazie alla ricerca e allo

sviluppo del fondatore Renzo Davoli.
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2 1. Contesto di origine: Virtualsquare e sshlirp

1.1.1 Origini di Virtualsquare

L'ambiziosa idea alla base di Virtualsquare fonda le sue origini, nel 2004, sulla

necessità accademica di permettere agli studenti universitari del corso di Laboratorio

di Sistemi Operativi dell'Università di Bologna, di sperimentare, amministrare e

con�gurare i propri sistemi operativi in un ambiente virtuale in cui non fossero

richiesti privilegi root e da cui, allo stesso tempo, fosse possibile l'accesso a risorse

di rete reali [2].

Originariamente infatti un sistema Virtual Square (V 2) era pensato come un

insieme di macchine virtuali connesse tramite reti virtuali e primariamente come

un'architettura governata da tre caratteristiche fondanti [2]:

� Coerenza di emulazione: il sistema virtuale nel suo insieme doveva compor-

tarsi e apparire a tutti gli e�etti come un insieme di host e connessioni di rete

reali, in cui lo strato di virtualizzazione aggiunto causava al più un overhead

prestazionale che si traduceva in un apparente rallentamento dei device;

� Possibilità di integrazione o isolamento: i vari componenti dell'ecosis-

tema V 2 erano pensati sia per comunicare con le reti e i sistemi reali sottostanti

in modo da poter essere integrati in essi consentendo l'accesso a risorse esterne,

che per essere isolati completamente da essi;

� Sicurezza: macchine e reti Virtual Square erano progettate per eseguire come

normali processi utente non privilegiati e per cui la garanzia di corretta co-

municazione con il sistema sottostante era data al più da con�gurazioni root-

required sull'host stesso.

Tali regole erano in principio implementate tramite un'ampia infrastruttura che

vedeva l'uso di host V 2 dedicati e di tool per la creazione di reti virtuali.

Host V 2

I nodi del network Virtual Square potevano essere implementati tramite vari tipi

di VMs, tra cui [2]:

� User-Mode Linux: questo emulatore non è altro che un kernel Linux ri-

compilato per eseguire come processo utente e per interfacciarsi con le risorse

del sistema host tramite sole system calls; questo tipo di mappatura virtuale
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accesso hardware ←→ system calls garantisce il funzionamento del kernel vir-

tuale di UML completamente in user-space, senza la necessità di privilegi di

root [2, 3].

� Qemu: un emulatore di macchine open source impiegato sia per l'emulazione

completa di architetture hardware (System Emulation) che per l'esecuzione di

singoli programmi compilati per architetture diverse da quella dell'host (User-

mode Emulation), con conseguente emulazione della CPU. Il cuore di ese-

cuzione di Qemu è il Tiny Code Generator (TCG), un traduttore dinamico di

codice che converte le istruzioni della CPU guest in istruzioni della CPU host,

impiegato sia in modalità System Emulation che in User-mode Emulation. Di

conseguenza, preso singolarmente, Qemu è classi�cabile come un emulatore

puro e perciò come un hypervisor di tipo 2 (hosted). In caso di integrazione

con KVM invece, Qemu permette di accedere a funzionalità di virtualizzazione

hardware rientrando nella categoria degli hypervisor di tipo 1 (bare-metal) e

permettendo full virtualization. Ciò, d'altro canto, esclude la possibilità em-

ulazione di CPU diverse da quella dell'host [4, 5]. L'impiego di Qemu nello

sviluppo del progetto Rootless V 2CI ha avuto un ruolo decisivo.

� Bochs: questo storico emulatore puro fornisce un sistema virtuale completo

i386, disponibile su più piattaforme ed eseguito in user-space. Essendo fondato

su tecniche di interpretazione delle istruzioni CPU standard, Bochs pecca di

prestazioni rispetto alle soluzioni più moderne.

� PearPC: un emulatore analogo a Bochs impiegato però per l'emulazione di

architettura PPC.

� MPS/µMPS: sviluppato per scopi accademici, anche questo host V 2 è un

sistema virtuale completo, minimale e leggero.

Reti V 2

Tra i tool di networking impiegati per la creazione di reti virtuali V 2 vi erano

[2]:

� VDE Virtual Distributed Ethernet: un'intera rete virtuale a user-level in

grado di instradare pacchetti ethernet tra macchine virtuali sullo stesso host,

macchine virtuali distribuite, sistemi operativi e, con semplici con�gurazioni

di rete root-required per l'utilizzo di interfacce di rete tuntap, anche su host
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reali tramite l'uso di switch, hubs e cavi virtuali. I nodi della rete VDE

erano collegati a questi componenti tramite i vde_plugs. Originariamente gli

host virtuali supportati da VDE erano UML, Qemu, Bochs e MPS/µMPS.

Successivamente è stato aggiunto supporto anche per Virtualbox [1].

� Supporto kernel TUN/TAP: questi device virtuali di rete, implementati

come moduli kernel, permettono la creazione di interfacce di rete virtuali che

operano a livello di link layer (TAP) o di network layer (TUN) e che, anzichè

inviare i pacchetti alla scheda di rete �sica dell'host, li reindirizzano a processi

utente.

� Slirp: un tool di rete originariamente pensato per permettere a utenti non

privilegiati di accedere da host reali a reti esterne tramite connessione PPP

simulata sopra una semplice connessione da terminale. Slirp, isolando quindi il

tra�co di rete del client da quello del server, anticipava già nel 1995 il concetto

di NAT [6] e acquisiva proprietà che gli avrebbero concesso in un secondo mo-

mento di essere impiegato come stack di rete user-space per macchine virtuali.

È importante sottolineare in�ne che da slirp è nato, nel Febbraio 2024 grazie

alle idee e allo sviluppo di Renzo Davoli e del team Virtualsquare, il successivo

progetto sshlirp [7], da cui Rootless V 2CI prende origine.

1.1.2 Virtualsquare oggi

Dopo più di 20 anni di ricerca e sviluppo, Virtualsquare non è più solamente un

insieme di host e connessioni virtuali pensate per scopi didattici, ma rappresenta un

ecosistema completo di tool e librerie open source pensate per la creazione di interi

ambienti virtuali complessi e personalizzabili.

Sebbene infatti i principi esposti nella precedente sezione siano rimasti le fondamenta

delle ambizioni Virtualsquare, i progetti esistenti si sono estesi e nuovi tool sono stati

sviluppati per permettere la creazione di ambienti virtuali sempre più complessi e

realistici. Questi obbiettivi appunto sono stati raggiunti attraverso un lungo processo

evolutivo diretto da linee guida di scalabilità, quali [8]:

� Re-use di tool esistenti;

� Modularità e compatibilità;

� Nessun vincolo di architettura richiesta.

In particolare, VDE ha visto l'integrazione di funzionalità innovative e il livello di

virtualizzione conseguibile dagli strumenti Virtual Square è stato dilatato a livello
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di sistema operativo, grazie allo sviluppo di VUOS, e sul piano di networking a livello

applicativo, per mezzo di IoTh.

Gli sviluppi di VDE

I principali progressi di VDE hanno coinvolto aspetti come:

� Compatibilità di vde_plug: come anticipato nella sezione 1.1.1, la possi-

bilità di impiegare il concetto di VDE del plug - che nel tempo è diventato

fondante - si è estesa a più host virtuali (tra cui VirtualBox) e a nuovi pro-

grammi che implementano stack di rete; inoltre lo stesso vde_plug è stato

integrato nella più estesa prospettiva di vdeplug4, una libreria C che fornisce

nativamente plug-ins sotto forma di librerie dinamiche per la connessione a un

ampio set di reti virtuali: vde, ptp, tap, vxlan, vxvde e udp; quest'ultime ven-

gono identi�cate dal plug tramite il cosidetto Virtual Network Locator (VNL),

una stringa che identi�ca la risorsa virtuale come un URL è in grado di fare

per una risorsa web [9].

� Isolamento e virtualizzazione di rete tramite namespace: grazie allo

sviluppo del nuovo tool vdens, VDE ha acquisito un'ulteriore caratteristica di

isolamento e virtualizzazione di rete, permettendo, tramite l'uso di network

namespaces, la creazione di reti virtuali completamente isolate da quella del-

l'host e collegabili a una rete VDE esistente tramite un VNL condiviso [1, 10].

� Scalabilità e distribuibilità con vxvde: attraverso il plug-in libvdepl

ug_vxvde, è stata aggiunta la possibilità di connettere nodi VDE posizionati

su host disgiunti - sebbene connessi alla medesima LAN - a reti distribuite

vxvde. Tale tool permette quindi di scalare orizzontalmente le reti virtuali

VDE, estendendone la portata oltre il singolo host �sico, senza la necessità di

host dedicati che espongano switch VDE e implementando quindi il concetto

di Local Area Cloud [1, 11].

� Connettività tramite libslirp: come anticipato nella sezione 1.1.1, l'impiego

di slirp si è integrato nell'ecosistema VDE grazie al modulo

libvdeplug_slirp, che ha permesso l'uso di slirp come stack di rete user-space

e router fornitore di NAT, DHCP, DNS e port forwarding che desse connet-

tività TCP/IP esterna a nodi VDE, grazie alla libreria interna libslirp (e

alla sua versione più recente libvdeslirp) [1, 12, 13]. Sarà poi da questa
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libreria che nascerà il progetto sshlirp, su cui fonderà le proprie origini lo

stesso Rootless V 2CI.

� Incapsulamento e sicurezza con plug-ins innestati: un'ulteriore avan-

zamento per VDE è stato lo sviluppo di plug-ins come vdeplug_agno e

vdeplug_vlan, che permettessero di sommare rispettivamente incapsulamen-

to crittogra�co e tagging VLAN al normale tra�co VDE, garantendo così

sicurezza e segregazione del tra�co all'interno delle reti virtuali [1].

VUOS

Una delle evoluzioni più importanti per il progetto Virtualsquare - sebbene secon-

daria per lo sviluppo di Rootless V 2CI - è stata la creazione di VUOS. Questo kernel

modulare e con�gurabile esegue in user-space, ricordando i concetti introdotti da

UML e introducendo al coltempo innovazione attraverso l'idea di "vista (view)" per

processo o thread. VUOS infatti è interpretabile non solo come �ltro e forwarder di

system calls - grazie al suo hypervisor umvu - ma anche come un sistema di gestione

delle risorse che permette di de�nire viste personalizzate per ogni processo o thread

in esecuzione che si intende virtualizzare [1]. Infatti, per mezzo di moduli quali

vufs, vufuse, vudev e vunet, VUOS aggiunge uno strato di virtualizzazione tra il

processo utente e il kernel host.

IoTh

Un'altra espansione dell'ecosistema Virtualsquare ha visto l'implementazione

dell'innovativa idea di conferire il ruolo di nodo Internet a singoli processi, o ad-

dirittura thread, utente. Questo cambio di prospettiva distribuisce i poteri di vir-

tualizzazione di rete concessi dai tool VDE a livello applicativo: un processo utente

ha ora accesso a uno o più stack di rete con�gurabili [1].

Anche questo sviluppo non è direttamente collegato a Rootless V 2CI ma rappresenta

comunque un passo avanti verso lo scopo comune di rendere accessibili a utenti e

processi non privilegiati funzionalità di virtualizzazione e networking avanzate.

1.2 sshlirp

Come accennato in precedenza, sshlirp costituisce il principio di avvio del pro-

cesso di sviluppo ed evoluzione che ha portato alla realizzazione di Rootless V 2CI.
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Questa tecnologia pone le sue origini nel progetto slirp, di cui si sono già introdotti

gli scopi.

Slirp: origini e funzionamento

Slirp nasce il 30 Marzo 1995 grazie allo sviluppo di Danny Gasparovski [6], e il

suo scopo era intrinsicamente legato al momento storico delle sue origini.

L'accesso a Internet era principalmente garantito tramite l'uso di terminali ed era

quindi comune connettersi ai propri account shell su server remoti per avere accesso

alla rete esterna [14]. Ciò chiaramente non permetteva ai client di avere un link

diretto alla rete né, conseguentemente, di utilizzare processi TCP/IP direttamente

sul proprio host.

Una semplice connessione PPP (Point to Point Protocol) invece integrava nativa-

mente tali servizi e, se il corrispondente ISP lo prevedeva, poteva essere usata per

accedere a Internet con un proprio indirizzo IP pubblico, permettendo tra�co in

entrata senza overhead di NAT o port forwarding.

D'altro canto, l'uso di PPP prevedeva costi maggiori rispetto a una semplice con-

nessione terminale [14, 15].

In tale contesto storico slirp si proponeva come un tool in grado di simulare

una connessione PPP sopra una semplice connessione terminale, permettendo così

a utenti non privilegiati di avere accesso a servizi TCP/IP senza la necessità di

sostenere i costi di un vero e proprio link PPP.

In generale un emulatore SLIP/PPP come slirp esegue soltanto sull'host remoto

su cui è quindi richiesta l'installazione dei protocolli TCP/IP. L'host locale invece,

a�nché possa comunicare correttamente con l'emulatore, deve integrare nel suo ker-

nel il protocollo PPP [16]. Dati questi requisiti, il client, una volta con�gurato il

ppp daemon (pppd) a�nché utilizzi il canale shell come link di rete, può e�ettuare

richieste PPP con la garanzia che l'emulatore sarà in grado di catturare e inviare

correttamente i pacchetti fuori sulla Rete. I dati in ingresso invece, con un processo

del tutto simmetrico, vengono catturati dall'emulatore sull'host remoto che si occu-

perà di inviarli sul collegamento SLIP/PPP simulato al client. In questo modo la

Rete continuerà a percepire il tra�co rete del client come proveniente dal modem

ospitante l'account shell remoto, mentre il client potrà utilizzare servizi TCP/IP

come se fosse connesso tramite un vero link PPP [16].
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Chiaramente questo approccio, per quanto innovativo ed economico per l'epoca,

presentava delle grosse limitazioni rispetto a un vero SLIP/PPP link. Ad esempio

il tra�co di rete del client, essendo incapsulato all'interno di una connessione ter-

minale, non poteva bene�ciare delle ottimizzazioni e delle funzionalità di sicurezza

o�erte da un vero link PPP.

Una connessione telnet-like implicava infatti che ogni dato venisse trasmesso in

chiaro, esponendo così il tra�co di rete del client a potenziali intercettazioni [16].

L'altro profondo svantaggio di un emulatore rispetto un vero SLIP/PPP è che al

client non veniva assegnato nessun indirizzo IP univoco, rendendo impossibile l'in-

stradamento di tra�co in entrata direttamente verso di esso e aggiungendo quindi

un overhead non indi�erente [16].

VDE slirp e libslirp

Nonostante le limitazioni appena esposte, l'idea di slirp di fornire connettività

TCP/IP a utenti non privilegiati ha ispirato, come anticipato nella sezione 1.1.1, lo

sviluppo di libslirp e della sua versione più recente libvdeslirp, mirati a essere

impiegati come stack di rete user-space per nodi VDE.[1].

sshlirp

Dalla fusione delle idee che hanno portato prima alla creazione di slirp, poi

allo sviluppo di VDE e in�ne di libvdeslirp, nasce sshlirp. Questo semplice tool,

sviluppato a partire dal Febbraio 2024 da Renzo Davoli, unisce [7, 17]:

� l'esigenza di connettività TCP/IP user-space grazie a connessioni tramite ac-

count shell a host remoti, alla base dell'ambizione di slirp;

� la possibilità di connettere nodi VDE alla rete reale, attraverso socket user-

space, introdotta da VDE attraverso libvdeslirp;

� di�usione, sicurezza e tunnelling SSH per l'accesso remoto a host shell;

sshlirp infatti si basa sull'idea di, dato un tunnel SSH tra un nodo VDE e un

host remoto, e tra�co TCP/IP del nodo incapsulato e mascherato sul canale di

STDIN/STDOUT fornito da SSH, decapsulare i pacchetti ricevuti attraverso libvdeslirp,

reindirizzarli allo stack di libslirp e, grazie a quest'ultimo, aprire socket user-space

per comunicare con la rete esterna.

Questo processo permette quindi a un nodo VDE non solo di avere connettività

TCP/IP esterna senza la necessità di privilegi di root, ma anche di usufruire della
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sicurezza e del tunnelling SSH per un servizio sia di NAT che di VPN [17].

L'uso tipico di sshlirp, che solitamente prevede la creazione di un network names-

pace tramite vdens sul client VDE, è intrinsecamente vincolato alla disponibilità del

binario di sshlirp, pronto all'uso, sull'host remoto.

1.3 Le origini di Rootless V 2CI: il contributo a ssh-

lirp

Oggi Rootless V 2CI si propone come strumento altamente con�gurabile, accessi-

bile e facilmente monitorabile, per l'automazione del processo di build in user space

non privilegiato di binari statici cross-compilati per architetture multiple e progetti

multipli.

Le sue origini però incarnavano una semplice soluzione alle più speci�che esigenze

dell'utilizzo di sshlirp, esposte nella precedente sezione.

Nato infatti come progetto di pacchettizzazione per il corso di Sistemi Virtuali del-

l'Università di Bologna, ha visto un eterogeneo processo di sviluppo che lo ha portato

dal semplice scopo di creare pacchetti multi-architettura di sshlirp, u�ciali e rilas-

ciabili attraverso un package manager a�nché fossero facilmente installabili su host

remoti, all'idea di un sistema di CI per sshlirp, mirato alla costruzione rootless di

binari pronti alla copia e all'uso da remoto, �no all'ambizione odierna di un tool

generalizzato e user-friendly per la consegna di binari cross-compilati statici aggior-

nati per progetti multipli.

Rootless V 2CI dà quindi corpo all'ambizione di contribuire, con uno sviluppo

open source regolato da licenza GPL-2.0, alla trasmissione e di�usione dei progetti

Virtualsquare, permettendone l'utilizzo distribuito su host remoti e agevolandone

di conseguenza l'espansione da sistema virtuale locale a infrastruttura virtuale de-

centralizzata, dandone un primo esempio con la sua comprovata applicabilità al

progetto di sshlirp.
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Capitolo 2

Pacchettizzazione Debian di sshlirp

La prima fase di sviluppo di Rootless V 2CI prende origine, come anticipato,

dalla semplice idea di costruire pacchetti .deb del progetto di sshlirp, per tutti

i principali port Debian, in modo che fosse conseguentemente possibile distribuirli

attraverso un package manager u�ciale e poi installarli facilmente su qualsiasi host

remoto, su cui si volesse utilizzare sshlirp.

Per il raggiungimento di questo scopo è stato quindi avviato un processo di pacchet-

tizzazione Debian manuale e in locale, che si è basato principalmente sull'utilizzo di

Debian Salsa GitLab, qemu e gbp.

Tale processo è stato preferito all'utilizzo di pipeline CI standard e distribuite su

cloud per le motivazioni che verranno esposte nella sezione 2.3.

In questo primo approccio, del tutto "manuale", la priorità è stata centrata sulla pos-

sibilità di una cross-compilazione e di una build dei pacchetti facilmente ripetibile.

Si sono quindi acerbamente impiegati tool standard e di facile utilizzo, trascurando

approcci più complessi che avrebbero invece garantito il funzionamento anche per

utenti non privilegiati.

Al �ne di riassumere e illustrare questo percorso di pacchettizzazione Debian

di sshlirp, è stato realizzato il seguente schema di �usso che include i principali

passaggi di ricerca teorica e sviluppo che hanno condotto dall'obbiettivo iniziale al

raggiungimento di una soluzione ottimizzata.

11
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Obbiettivo di sviluppare
pacchetti Debian

di sshlirp cross-compilati
staticamente

Studio dei tool Debian e
Virtualsquare per la

pacchettizzazione: Debian
Salsa GitLab

Documentazione della
struttura dei repository Salsa

e della directory centrale
debian/

Requisito di staticità Requisito di cross-
compilazione

Composizione della
repository Salsa e della
directory debian/ per

sshlirp secondo i requisiti

Studio delle metodologie per
cross-compilazione locale

Primo approccio: Qemu
System Emulation,
documentazione e

applicazione

Riscontro di problemi e
difficoltà

Secondo approccio definitivo:
Qemu User-Mode

Emulation e debootstrap,
documentazione e

applicazione

Confronto con pbuilder

Confronto con soluzioni
coud-based: Salsa CI

pipelines GitLab

Figura 2.1: Schema di �usso del processo di pacchettizzazione Debian di sshlirp

2.1 Impiego di Debian Salsa GitLab

Come già fatto per alcuni degli altri progetti �rmati Virtualsquare [1], anche per

la distribuzione dei pacchetti di sshlirp si è scelto di impiegare Debian Salsa GitLab.

Questo servizio di hosting GitLab, fornito dalla Debian Foundation, permette la

creazione di repository Git pubblici e privati per progetti open source legati a De-

bian, e o�re inoltre un'infrastruttura CI/CD integrata per l'automazione di build,

test e deployment di pacchetti Debian [18].
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Nel caso speci�co di sshlirp, Debian Salsa GitLab è stato impiegato principalmente

come repository remoto per il codice sorgente e per la directory debian/ di pacchet-

tizzazione, seguendo le direttive Virtualsquare [1]. Ciò ha permesso che il processo

di build incrociata dei pacchetti potesse essere eseguito in locale tramite l'uso, nati-

vamente complementare a Debian Salsa [18], di gbp.

2.1.1 Introduzione a Debian Salsa

Salsa, successore di git.debian.org e Alioth [19], come anticipato è l'istanza

GitLab u�ciale di Debian, ossia il server Git per lo sviluppo collaborativo dei pac-

chetti Debian. Si tratta di una piattaforma su cui i manutentori Debian collaborano,

versionano i sorgenti dei pacchetti, gestiscono merge request, CI, test e altre attività

legate al processo di pacchettizzazione [18, 19].

Essendo basata su GitLab Community Edition, fornisce inoltre molte delle caratter-

istiche standard di GitLab (repository Git, merge request, issue), integrandole con

componenti speci�ci per Debian, come Salsa CI, il sistema di continuous integration

custom per i pacchetti Debian, attraverso la quale i manutentori possono automa-

tizzare la compilazione su più architetture [19].

Nel contesto della pacchettizzazione Virtualsquare, Debian Salsa è impiegata

principalmente come servizio di hosting per i repository Git dei progetti, a partire

dai quali si esegue la build locale dei pacchetti Debian con gbp.

Sebbene questa scelta escluda l'uso delle pipeline CI integrate di Salsa, essa perme-

tte di mantenere il controllo completo sul processo di build e di eseguirlo in ambienti

personalizzati, come verrà illustrato nella sezione 2.3.

In generale lo sviluppo Virtualsquare basa il suo processo di distribuzione e

di�usione sull'uso di Debian Salsa GitLab secondo le linee guida esposte dalla Debian

Policy, dalla Debian wiki e nei documenti DEP [1, 21, 22, 23].

Come viene usata Debian Salsa nel progetto Virtualsquare

Un repository Virtualsquare su Debian Salsa GitLab è strutturato in tre branch

principali [1]:

� upstream: questo branch contiene il codice sorgente originale del proget-

to, ereditabile dal repository u�ciale di sviluppo (che solitamente è loca-

to su GitHub per i progetti Virtualsquare) grazie a un suo puntatore URL

git.debian.org
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(Repository) che può essere speci�cato nel �le upstream/metadata; infatti

questo branch è pensato per essere aggiornato automaticamente dai sorgenti

originali, senza commit manuali [19];

� debian/sid: questo branch de�nisce, in aggiunta al codice ereditato da upstream,

la directory debian, contenente una serie di �le che regolano il processo di pac-

chettizzazione Debian del progetto [1, 21, 23];

� pristine-tar: quest'ultimo branch (opzionale per Virtualsquare ma racco-

mandato sia dalla developers reference Debian che dai documenti DEP [23,

24]), contiene un archivio di �le binari delta che descrivono come ricostru-

ire il tarball dei sorgenti originale a partire dai �le presenti nell'upstream

branch; in sostanza, speci�cando l'opzione �-git-pristine-tar durante l'uso

di git-buildpackage, è possibile rigenerare il tarball �pulito� originale senza

dover conservare una sua versione compressa nel repository Git [24].

I branch dei repository Virtualsquare hostati su Debian Salsa GitLab provengono da

un �usso di lavoro standardizzato per lo sviluppo Virtualsquare, e conforme ai pro-

cessi di pacchettizzazione Debian, che prevede un'esecuzione ordinata di operazioni

preparatorie, compositorie, di debug, di test e in�ne di upload [1] quali:

1. Creazione di un repository Git pubblico su Debian Salsa GitLab;

2. Clone del repository u�ciale del progetto (solitamente su GitHub) in locale;

3. Creazione del branch upstream e push su Debian Salsa GitLab;

4. Aggiunta e push di tag di versione al branch upstream;

5. Creazione del branch debian/sid a partire da upstream e popolamento della

directory debian/ con i �le di pacchettizzazione;

6. Debug e test della build dei pacchetti in locale con gbp buildpackage -us

-uc;

7. Creazione del branch pristine-tar e popolamento con i �le delta generati;

8. Push di tutti i branch su Debian Salsa GitLab;

Questo processo ordinato è stato meticolosamente seguito anche per la pacchet-

tizzazione di sshlirp, la quale però, prevedendo il requisito aggiuntivo di cross-

compilazione statica per tutti i port u�ciali Debian, ha richiesto ulteriori accorg-

imenti, per quanto riguarda la composizione della directory debian, come verrà

esposto nella prossima sottosezione 2.1.2, e scelte progettuali addizionali per l'emu-

lazione delle architetture target, descritte nella sezione 2.2.
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2.1.2 Sviluppo della directory debian

I �le interni alla directory debian che permettono a gbp di eseguire la build di

pacchetti Debian sono molteplici. In particolare, quelli ritenuti fondamentali dalle

linee guida Virtualsquare [1], e quindi impiegati anche per la pacchettizzazione di

sshlirp, sono [22]:

� changelog: scritto in un formato speci�co, questo �le contiene la cronologia

delle modi�che apportate al pacchetto, con dettagli su ogni versione rilasciata,

come numero di versione, data di rilascio, autore e descrizione delle modi�che;

� control: questo �le di testo de�nisce le informazioni essenziali del pacchetto,

come nome, versione, mantenitore, dipendenze, descrizione e altri metadata;

è cruciale per il corretto funzionamento del package manager durante l'instal-

lazione e la gestione del pacchetto;

� copyright: in questo �le vengono speci�cate le informazioni sul copyright e

la licenza del pacchetto, indicando i diritti d'uso, distribuzione e modi�ca sia

del software originale del progetto che di quello aggiunto per il processo di

pacchettizzazione;

� rules: questo �le di testo, scritto in formato Make�le, contiene le istruzioni per

la compilazione e l'installazione del pacchetto; de�nisce i comandi necessari per

costruire il software dai sorgenti, installarlo temporaneamente in una directory

di staging e prepararlo per la creazione del pacchetto �nale;

� source/format: questo �le speci�ca il formato del pacchetto sorgente Debian

utilizzato, come 3.0 (quilt), che supporta l'uso di patch e altre funzionalità

avanzate per la gestione dei sorgenti;

� compat: in questo �le è reperibile la versione utilizzata di debhelper, un tool

di supporto per la creazione dei pacchetti Debian, che implementa in modo

standardizzato molte delle operazioni necessarie alla direzione del processo di

build;

� gbp.conf : questo �le di con�gurazione speci�ca le impostazioni per

git-buildpackage attraverso diverse sezioni, di cui le rincipali sono [25]:

� [DEFAULT]: questa sezione de�nisce opzioni che si applicano a tutti i

comandi di gbp, a meno che non vengano sovrascritte dalle sezioni suc-

cessive, speci�che per comando;
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� [buildpackage]: questa sezione sovrascrive le opzioni de�nite in

[DEFAULT] per il comando gbp buildpackage;

� [import-orig]: analogamente alla precedente, questa sezione sovrascrive

le opzioni per il comando gbp import-orig.

� watch: questo �le serve a monitorare gli aggiornamenti del software upstream

in modo da poter veri�care lo stato di sincronizzazione con le nuove releases

su GitHub;

� <bin>.install: questi �le - solitamente in numero corrispondente ai binari

presenti nel pacchetto - speci�cano quali �le devono essere installati e in quali

directory target del pacchetto �nale durante il processo di build; mentre il path

di origine relativo alla directory di staging è sempre obbligatorio, il path di

destinazione può essere omesso, nel qual caso viene "guessato" da dh_install

[26].

Trascurando gli aspetti implementativi dei �le changelog, copyright,

source/format, compat, gbp.conf e watch, la cui composizione ha seguito le di-

rettive standard della Debian Policy [22], con la sola aggiunta costumizzata di con-

�gurazioni speci�che per l'abilitazione del ramo pristine-tar (in particolare in

gbp.conf), i �le più rilevanti per la pacchettizzazione di sshlirp sono stati control,

rules e sshlirp.install, che sono stati sviluppati tenendo conto dei requisi-

ti speci�ci del progetto, quali la cross-compilazione per architetture multiple e la

creazione di binari statici.

Requisito di cross-compilazione e sviluppo della directory debian

La necessità di ottenere pacchetti cross-compilati di sshlirp per tutti i port u�-

ciali Debian - ossia amd64, arm64, armhf, armel, i386, ppc64el e s390x - a�nché

avessero massimo grado di usabilità per lo scopo pre�ssato del progetto stesso, ha

richiesto, a livello di sorgenti Debian, la sola accortezza di speci�care correttamente

l'architettura target nel �le control.

In un contesto di cross-compilazione manuale infatti l'opzione Architecture,

interna al �le control e de�nita nella sezione Package, deve essere impostata al

valore any, non solo per coerenza logica, ma anche per permettere al builder spec-

i�cato in gbp.conf di riconoscere correttamente l'architettura target del pacchetto

durante l'installazione senza necessità di cambiamenti ai sorgenti Debian [22].
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Per questo motivo, la sezione Package del �le control di sshlirp è stata sviluppata

come segue [22]:

Package: sshlirp

Architecture: any

Depends: ${shlibs:Depends}, ${misc:Depends}

Description: sshlirp creates an "instant VPN"

sshlirp converts a text based shell connection (e.g. ssh[1])

into a VDE virtual private network.

Requisito di staticità dei binari e sviluppo directory debian

Come anticipato nella sezione 1.3, una delle features attese più importanti per

i pacchetti di sshlirp consisteva nella staticità dei loro binari, anch'essa intrinsica-

mente legata allo scopo di di�usione e usabilità del progetto.

Questo requisito ha richiesto accortezze più sostanziali ai �le della directory debian,

derivate da uno studio preliminare delle dipendenze e del processo di compilazione

di sshlirp previsto dal suo CMakeLists.txt originale.

Da questa analisi sono emersi tre punti fondamentali che hanno inciso successi-

vamente sulla scrittura dei �le Debian:

1. sshlirp dipende da libglib2.0-dev, libpcre2-dev e libvdeslirp-dev per

la compilazione;

2. libvdeslirp-dev dipende dal pacchetto u�ciale libslirp-dev il quale, sebbene

distribuito da Debian, anche nelle releases più recenti non contiene nativamente

i �le .a, ossia gli archivi necessari per il linking statico [27];

3. la compilazione di sshlirp con make genera due binari distinti: sshlirp, cor-

rispondente al binario linkato dinamicamente, e sshlirp-<arch>, il binario

linkato staticamente per l'architettura host.

Il primo punto ha semplicemente richiesto l'aggiunta delle dipendenze di build al

�le control, nella sezione Build-Depends, che ha quindi assunto la seguente forma:

Build-Depends: debhelper (>= 10), cmake, libslirp-dev,

libglib2.0-dev, libpcre2-dev

Ciò ha garantito che gran parte delle dipendenze di build fossero installate automati-

camente dal package manager prima dell'inizio del processo di compilazione [22], e
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che fossero quindi resi disponibili i corrispondenti archivi statici necessari per la fase

di linking di sshlirp.

Il secondo punto invece non ha in�uito direttamente sulla scrittura dei �le De-

bian, quanto sulla fase di build vera e propria, rendendo necessaria la compilazione

manuale e l'installazione preliminare di libslirp per ogni architettura target, in

modo da ottenere gli archivi statici mancanti.

L'immediato e�etto di questa necessità non è stato solo l'incremento di complessità

nel processo di cross-build, come verrà esposto nella sezione 2.2, ma anche il con-

seguente bisogno di override delle direttive dh_shlibdeps di deb_helper.

Infatti, grazie a quanto emerso dal precedente studio del CMakeLists.txt di sshlirp

e riportato nel terzo punto, è stato possibile compiere la seguente deduzione: dal

momento che gli archivi di libslirp utilizzati sia per il linking dinamico che stati-

co sarebbero stati quelli generati dalla compilazione manuale del progetto stesso, si

sarebbe reso necessario evitare che deb_helper, durante la build dinamica, eseguisse

il check automatico della provenienza delle shared libraries (ossia degli archivi di-

namici .so) appunto attraverso dh_shlibdeps [22], che, in questo contesto speci�co,

sarebbe fallito a causa della "non tracciabilità" di libslirp.so.

Questo blocco funzionale a deb_helper è stato perciò implementato nel �le

debian/rules attraverso il seguente override:

override_dh_shlibdeps:

dh_shlibdeps --dpkg-shlibdeps-params=--ignore-missing-info

In�ne, il terzo punto, derivato dal CMakeLists.txt, ha in�uito sia sulla scrittura

di debian/rules che di debian/sshlirp.install.

Per quanto riguarda le direttive di build, la conoscenza preliminare della generazione

di due binari distinti ha permesso di escludere l'inserimento di �ag per cmake che

avrebbero forzato la compilazione statica globalmente.

Questi infatti, sebbene intuitivamente necessari e aderenti al requisito essenziale

di staticità, avrebbero in realtà compromesso la generazione del target dinamico

sshlirp, per il quale non era previsto, nel add_executable corrispondente del

CMakeLists.txt, il linking di simboli Sysprof, da cui dipendeva l'esito della com-

pilazione statica di glib-2.0, inserito comunque come target secondario.

Per questo motivo, il �le debian/rules ha assunto la seguente struttura �nale,

conforme agli standard Virtualsquare [28]:

#!/usr/bin/make -f
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# output every command that modifies files on the build system.

export DH_VERBOSE = 1

# Enable all hardening options

export DEB_BUILD_MAINT_OPTIONS = hardening=+all

# Compile with multiple jobs in parallel

export DEB_BUILD_OPTIONS = parallel=$(shell nproc)

# Instruct the linker not to include unnecessary shared libraries

export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed

# Variables for CMake

CMAKE_FLAGS = -DCMAKE_BUILD_TYPE=RelWithDebInfo

# Use the CMake build system for dh

%:

dh $@ --buildsystem=cmake

# Advanced configuration with CMake

override_dh_auto_configure:

dh_auto_configure -- $(CMAKE_FLAGS)

# Specify the installation path

override_dh_auto_install:

dh_auto_install --destdir debian/tmp

# Bypass the dependency provenance check (if I had to manually

# compile a project for a certain architecture, dh will complain)

override_dh_shlibdeps:

dh_shlibdeps --dpkg-shlibdeps-params=--ignore-missing-info

Per quanto riguarda invece il �le sshlirp.install, la distinzione tra i due binari

prodotti ha semplicemente permesso di selezionare, in fase di loro installazione nel

pacchetto, il solo binario statico, come segue:

usr/bin/sshlirp-*
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2.2 Costruzione dei pacchetti sshlirp

Il passo successivo allo sviluppo della directory debian/ è stata l'esecuzione del

processo di build vero e proprio tramite gbp.

Dopo un primo test di build in locale per l'architettura host (amd64), che ha per-

messo di veri�care la correttezza dei �le Debian e di debuggare eventuali errori, si è

proceduto alla costruzione cross-compilata dei pacchetti per tutte le altre architet-

ture target che, come anticipato, corrispondevano ai port Debian arm64, armel,

armhf, i386, mips64el, ppc64el, riscv64 e s390x.

Per l'esecuzione di questo processo "architetturalmente incrociato", è stato neces-

sario impiegare strumenti di emulazione che, solo in un secondo momento, sono stati

scelti con maggior consapevolezza.

Un primo sviluppo dei pacchetti di sshlirp si è infatti appoggiato sull'uso grezzo di

Qemu System Emulation, che, sebbene molto potente e versatile, si è presto rive-

lato essere una soluzione "over-dimensionata" per lo scopo di una semplice cross-

compilazione.

2.2.1 Approcci iniziali: Qemu System Emulation

Come anticipato nella sezione 1.1.1, Qemu System Emulation permette di emu-

lare interi sistemi hardware, inclusi CPU, memoria, dispositivi di I/O e periferiche,

consentendo l'esecuzione di sistemi operativi completi all'interno di macchine virtu-

ali e fornendo un ambiente isolato per testare e sviluppare software su architetture

diverse da quella host, grazie all'impiego diretto del suo TCG [4].

Inizialmente si è pensato che l'impiego di Qemu System Emulation potesse cos-

tituire una soluzione pratica e ripetibile al problema della cross-compilazione di

sshlirp, in quanto avrebbe permesso non solo di eseguire la build incrociata ma

anche di seguire le pratiche di virtualizzazione documentate da Virtualsquare, che

prediligono odiernamente l'uso di Qemu come host virtuale [1].

Nonostante ciò, durante la costruzione del pacchetto di sshlirp per la particolare ar-

chitettura armel, si è concluso che l'uso di Qemu System Emulation introduceva non

solo un sostanziale overhead in termini di risorse di sistema e tempi di esecuzione,

ma anche una complessità di gestione delle con�gurazioni e delle dipendenze che

rendeva il processo di build meno agevole e ripetibile, specialmente per port meno

documentati e/o obsoleti.
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Questa prima strategia è stata quindi presto abbandonata dopo la sperimen-

tazione di solo due delle architetture target: arm64 e appunto armel. Infatti, sebbene

l'emulazione e la cross-compilazione per la prima fossero andate a buon �ne senza

particolari di�coltà, l'architettura armel ha introdotto numerosi ostacoli, per quan-

to riguarda sia la con�gurazione e l'avvio dell'host Qemu che il processo di build di

sshlirp, dovuti principalmente alla sua obsolescenza e alla conseguente scarsità di

supporto, in particolare per lo scopo di una sua emulazione di sistema.

Nonostante ciò, l'esperienza acquisita durante l'impiego di Qemu System Emulation

per queste due architetture ha permesso di a�rontare la soluzione successiva con

maggior consapevolezza, in particolare per quanto riguarda le di�coltà che si sareb-

bero comunque dovute a�rontare per la risoluzione delle dipendenze di build statica.

Per comprendere al meglio i motivi che hanno portato al celere abbandono di

questa prima strategia è bene illustrare:

1. il funzionamento generale dell'avvio di un'emulazione di sistema tramite Qemu,

che ha fatto emergere i primi limiti sostanziali di questo approccio applicato

a port obsoleti;

2. le di�erenze di emulazione che hanno introdotto al successo del primo tentativo

di emulazione per arm64 e al fallimento del secondo per armel;

3. le di�coltà di risoluzione delle dipendenze di build statica riscontrate per il

port più datato, correlate con l'emulazione di sistema e determinanti nella

scelta di passare a Qemu User-Mode Emulation.

Avvio di un host Qemu

L'avvio di un intero host virtuale Debian per un'architettura speci�ca attraverso

Qemu, richiede la disponibilità e l'impiego di componenti fondamentali senza i quali

l'hypervisor stesso non si può avviare [29]:

� Un kernel minimale di una versione Debian speci�ca, compilato per l'ar-

chitettura target e necessario per l'avvio dell'installer. Questo kernel può es-

sere fornito sia da un'immagine CD ISO di installazione che direttamente da

un �le binario vmlinuz;

� Un initrd (initial ramdisk), ossia un archivio .gz caricato in RAM al mo-

mento dell'avvio del kernel, che contenga gli strumenti e i driver necessari per

l'installazione e il montaggio del �lesystem root. Anche questo componente è

derivabile da un'ISO o da un �le dedicato;
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� Un metodo di avvio, che può essere basato su BIOS, UEFI o Direct Linux

Boot, a seconda dell'architettura target e delle sue speci�che di boot;

� Un'immagine di disco virtuale, che funga da storage primario per l'host

Qemu e sulla quale l'installer scriverà il sistema operativo Debian, dopo le

prime fasi di setup.

Dipendentemente dall'architettura target, la guida u�ciale di installazione Debian

su Qemu [29] suggerisce speci�che per l'avvio profondamente diverse.

Per l'emulazione di architetture moderne e odiernamente supportate il metodo sug-

gerito risiede in una combinazione di ISO netinst + UEFI (EDK II) + qcow2. L'uso

di un'immagine ISO di tipo netinst (Network Install) permette infatti di avviare

un'installazione minimale e personalizzabile del sistema operativo, che scarichi in

fase di setup solo i pacchetti necessari, riducendo così i tempi di setup iniziali [30].

Inoltre l'adozione di un sistema di avvio tramite UEFI pittosto che BIOS, consente

un boot più prestazionale. Per questo motivo, in ambito di emulazione di sistema

Qemu, si sceglie solitamente di installare edk2 di TianoCore, l'implementazione di

riferimento dell'UEFI sviluppata da Intel®, e di utilizzarne i �le AAVMF_CODE.fd e

AAVMF_VARS.fd - rispettivamente il codice e le variabili del �rmware - per l'avvio

della macchina virtuale [31, 32]. In�ne, l'uso di un'immagine di disco virtuale in

formato qcow2 o�re funzionalità avanzate di allocazione di spazio sparsa, compres-

sione e crittogra�a, ottimizzando così l'uso delle risorse di archiviazione [33].

Un approccio più tradizionale, suggerito invece per l'emulazione di architetture

più datate o meno di�use, prevede una somma di netboot + Direct Linux Boot +

qcow2. In questo caso, sebbene l'impiego di un disco virtuale moderno sia comunque

supportato, l'avvio dell'host virtuale Qemu avviene tramite boot diretto del kernel,

ossia caricando direttamente in memoria sia il �le vmlinuz che l'initrd [29, 34],

seguendo quindi un approccio di tipo netboot.

Ostacoli preliminari per l'avvio dell'host armel e di�erenze con arm64

L'errata supposizione che un'emulazione di sistema fosse il giusto approccio per

il problema della cross-compilazione di sshlirp è stata sfortunatamente validata dal-

l'iniziale successo della sua applicazione per l'architettura arm64, derivato da un'ese-

cuzione di un processo standardizzato, documentatamente corretto e funzionante per

questo port moderno [29]:
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1. Download dell'immagine ISO: seguendo le linee guida Debian, è stata

scelta un'immagine di tipo netinst;

2. Creazione dell'immagine di disco virtuale: anche per questo punto è

stato seguito il suggerimento di un'immagine qcow2;

3. Installazione di un UEFI arm64 sull'host: qemu-efi-aarch64

di TianoCore EDK II;

4. Installazione del sistema operativo Debian arm64: attraverso il coman-

do qemu-system-aarch64 si è avviato un processo in cui sono stati selezionati

gli attributi di partizionamento, con�gurata la rete e installato il software di

base;

5. Avvio della macchina virtuale, clone dei repository e build del pac-

chetto: una volta completata l'installazione dell'OS sull'immagine qcow2, si

è avviata la macchina virtuale. Al suo interno si è poi dovuto clonare il repos-

itory Git di libslirp per il soddisfacimento del requisito di staticità, come

esposto nella sezione 2.1.2. Dopo la sua conseguente compilazione - con allega-

ta risoluzione di dipendenze innestate - e installazione a livello di sistema dei

suoi archivi statici, si è clonato il repository Debian Salsa GitLab di sshlirp

- costruito come descritto nella sezione 2.1.2 - e si è in�ne eseguita la build del

pacchetto .deb;

6. Trasferimento del pacchetto tramite port forwarding: una volta gen-

erato il pacchetto .deb di sshlirp, si è proceduto al suo trasferimento sull'host

reale tramite l'uso di scp, abilitato da un port forwarding della porta SSH

della macchina virtuale Qemu verso l'host reale.

L'immediato buon esito di questo piano, ha lasciato spazio al tentativo disinfor-

mato di applicarlo anche all'architettura armel, per cui però è fallito al punto 4.

Tale insuccesso è stato quindi seguito da una successiva analisi che ha portato alla

luce quanto detto nella sezione precedente.

Infatti, sebbene per tale port datato fossero forniti da Debian sia un'immagine ISO

netinst (per la release bookworm 12.12.0 [35]) che un UEFI compatibile

(qemu-efi-arm [32]), è noto che i kernel Debian per armel non includono il supporto

EFI stub. Un bug Debian nota osserva infatti: �Per avviare un kernel in modalità

UEFI, deve essere compilato con CONFIG_EFI. Ma nessun kernel Debian armel (es.

linux-image-marvell, linux-image-rpi) è costruito con CONFIG_EFI�, rendendo così il

GRUB UEFI per armel praticamente inutilizzabile [36].

Questa conclusione ha logicamente reso necessaria la sostituzione del metodo di avvio
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ISO netinst + UEFI EDK II con la combinazione netboot + Direct Linux Boot,

che però ha obbligato al dowonload manuale di un kernel vmlinuz e di un initrd più

datati. Ciò a sua volta ha introdotto di�coltà nella risoluzione delle dipendenze di

build di libslirp.

Build statica su armel e interruzione d'uso di Qemu System Emulation

Come osservato nella sezione 2.1.2, le di�coltà relative all'adempienza del requi-

sito di staticità si sono concentrate sulla compilazione manuale di libslirp. A sua

volta, una grossa fetta dello svolgimento di questo compito appartiene al caso parti-

colare del tentativo di compilazione di tale libreria per l'architettura armel emulata

con Qemu System Emulation.

Infatti, l'impiego di un kernel e un initrd datati ha portato con sé il limite di un

mirror Debian obsoleto. Ciò ha signi�cato il sorgere di innumerevoli con�itti di ver-

sioning tra le dipendenze di libslirp stesso.

Quando è stato evidente che la catena di compilazione manuale delle dipendenze,

necessaria per risolvere tali problemi di versioning, avrebbe assunto dimensioni in-

gestibili per lo scopo di una pacchettizzazione da ripetere per tutti i port Debian,

si è deciso di abbandonare l'approccio basato su Qemu System Emulation in favore

di una strategia più leggera e speci�ca per la cross-compilazione: Qemu User-mode

Emulation.

2.2.2 Impostazione dell'approccio de�nitivo: uso di Qemu

User-mode Emulation combinato a debootstrap

La scoperta di Qemu User-Mode Emulation ha permesso di superare tutti i

limiti legati alla riproduzione dell'hardware di sistema, concentrandosi invece sul-

l'emulazione di una compilazione per architetture diverse da quella host, aderendo

perfettamente all'ambizione di distribuzione globale di pacchetti statici di sshlirp.

In modalità User-Mode Emulation Qemu infatti non fa altro che tradurre codice

user-space del programma guest in codice equivalente compatibile con il sistema

host, non intervenendo quindi con l'emulazione di sistemi operativi né tantomeno di

hardware [37].
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Intuizione teorica sull'impiego di Qemu User-Mode Emulation

Sostanzialmente, Qemu User-Mode Emulation è stato impiegato per intercettare,

grazie al suo JIT TCG, le chiamate di sistema del programma guest, pensabile per

semplicità come il compilatore binario per sshlirp compilato per un'architettura di-

versa da quella host, mapparle in systemcalls equivalenti sul sistema host (adeguando

endian e formati a 32/64 bit) ed eseguirle direttamente su sshlirp.

Il risultato è stato un binario di sshlirp compilato da un compilatore che traduce

codice sorgente in istruzioni macchina dello stesso tipo delle istruzioni macchina che

lo compongono, ossia un binario di sshlirp cross-compilato per l'architettura dello

stesso compilatore. E ciò che ha consentito l'esecuzione di tale compilatore su un

sistema host di architettura di�erente è stata proprio l'emulazione a run-tim svolta

da Qemu.

Quindi, assumendo che:

� la notazione CL0
L1,L0 rappresenti un compilatore scritto in un linguaggio L0 che

traduce codice L1 in codice L0;

� la notazione IL0L1 rappresenti un interprete scritto in un linguaggio L0 che esegue

codice L1;

� la notazione PL0 rappresenti un programma scritto in un linguaggio L0;

Possiamo ridurre:

� il programma di pacchettizzazione di sshlirp per un'architettura target (e.g.

gbp per armel) a un compilatore Ct
s,t scritto in linguaggio macchina target che

traduce codice sorgente in codice target;

� il TCG di Qemu a un interprete Iht , scritto in linguaggio macchina host che

esegue codice target;

� il codice di sshlirp a un programma Ps scritto in linguaggio sorgente;

E in�ne concludere che il processo di cross-compilazione, esposto poc'anzi, è rapp-

resentabile attraverso la seguente espressione formale:

Iht
(
Ct

s,t(P
s)
)
= Pt

La validità di questa similitudine si appoggia però su un tassello fondamentale non

ancora introdotto: un ambiente isolato in cui il compilatore Ct
s,t possa essere eseguito

dall'interprete Iht senza con�itti di dipendenze; ossia, parafrasando, un �lesystem

minimale Debian in cui il processo di pacchettizzazione incrociata, svolto da gbp,

possa essere mappato dal TCG di Qemu e eseguito correttamente.
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L'impiego di debootstrap

In precedenza, l'ottenimento di un ambiente Debian isolato e di architettura

straniera per la pacchettizzazione incrociata era già incorporato nella soluzione di

Qemu System Emulation.

Con Qemu User-Mode Emulation invece, la creazione di tale ambiente è stata resa

possibile dall'uso di debootstrap.

Questo strumento - che necessita nativamente di privilegi root - permette infatti

di installare un �lesystem Debian minimale in una directory speci�cata, scaricando

e con�gurando i pacchetti di base necessari per il funzionamento di un ipotetico

sistema operativo per un'architettura target [38].

Tale processo, nel contesto di "cross-debootstrapping" [38], viene svolto in due fasi

principali:

1. Download ed estrazione dei pacchetti di base con

debootstrap �-foreign: debootstrap scarica i pacchetti essenziali

dall'archivio u�ciale speci�cato, estraendoli nella directory di destinazione da-

ta dall'utente, e installa nel sistema base una copia del suo stesso programma

che sarà utilizzata nella seconda fase; questo primo processo viene eseguito "es-

ternamente" al �lesystem in costruzione ed è avviabile attraverso il comando

[39]:

debootstrap --arch=<architettura_target> --foreign

<release> <destinazione> <mirror>

2. Con�gurazione dei pacchetti e del �lesystem con �-second-stage: una

volta estratti i pacchetti, debootstrap con�gura il �lesystem minimale, impo-

stando le directory di sistema, i �le di con�gurazione e le dipendenze necessarie

per l'esecuzione di base. Questo passo, a di�erenza del primo, viene eseguito

"internamente" al �lesystem in costruzione in quanto richiede l'esecuzione di

alcuni dei binari estratti per il completamento dell'installazione.

Per questo motivo è necessario copiare preventivamente l'eseguibile di Qe-

mu User-Mode Emulation, corrispondente all'architettura target, all'interno

del �lesystem minimale o installare binfmt-support sul sistema host. Questo

semplice tool permette infatti di registrare i binari di Qemu come interpreti per

i �le eseguibili di architettura straniera, consentendo così l'esecuzione traspar-

ente di tali binari all'interno del �lesystem debootstrap-ato [40].
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Una volta predisposto l'ambiente si può quindi chroot-are in esso per eseguire

in�ne il comando [39]:

/debootstrap/debootstrap --second-stage

Il risultato di questo iter è un rootfs Debian chroot-able per l'architettura target, che

ha concesso al processo di pacchettizzazione incrociata di sshlirp un ambiente dove

la cross-compilazione potesse eseguire correttamente e più agevolmente rispetto a

quanto accadeva nei sistemi emulati integralmente con Qemu System Emulation.

Risoluzione delle dipendenze su port datati

Nonostante la compilazione manuale di libslirp e molte delle sue dipendenze sia

rimasta un compito necessario per il soddisfacimento del requisito di staticità, l'uso

di Qemu User-Mode Emulation combinato a debootstrap ha ridotto notevolmente

la "lunghezza" e la "larghezza" della catena di archivi statici .a dipendenti tra loro,

su port datati come armel, armhf e i386.

Infatti la facilità di setup e utilizzo di questi strumenti, che si è palesata ad esempio

nella possibilità di scegliere intuitivamente l'architettura target, la release e il mirror

oltre che nelle prestazioni di emulazione ottimizzate, ha rivelato anche un alto grado

di supporto e aggiornamento.

2.2.3 Vantaggi rispetto a pbuilder

Un'altra soluzione al problema della cross-compilazione altamente documentata

è rappresentata dal wrapper di pbuilder, qemubuilder [41, 42].

pbuilder è lo strumento alla base dello stack di build Debian e permette, appog-

giandosi anch'esso a debootstrap, un processo di pacchettizzazione "pulito", alta-

mente automatizzato e ripetibile con semplici comandi di create, build e update

[41].

Sebbene le avanzate funzionalità built-in di risoluzione delle dipendenze rendano

questo strumento altamente a�dabile, il suo wrapper qemubuilder introduce com-

plessità aggiuntive - quali creazione di un'intera immagine qemu e avvio di un host

virtuale con tanto di kernel e initrd [42] - che lo etichettano come "ridondante",

anche nella stessa wiki Debian [41], rispetto alla più moderna soluzione basata su

Qemu User-Mode Emulation e debootstrap.
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2.2.4 Considerazioni sull'approccio �nale

L'adozione di Qemu User-Mode Emulation combinato a debootstrap e chroot

ha sancito il con�ne tra la fase di sviluppo e testing "manuale" dei pacchetti di

sshlirp e quella di automazione del processo di build incrociata dei binari.

Infatti questo approccio �nale estremamente leggero, prestazionale e ripetibile ha

permesso di intravedere la possibilità di automatizzare l'intero processo di cross-

compilazione e delivery dei binari di sshlirp.

La prima soluzione che implementerà quest'idea, documentata nel capitolo 3, sarà

sshlirpCI. Questa sarà poi rimpiazzata dalle successive evoluzioni a causa del suo

limite principale, nato proprio dall'adozione di questo approccio combinato Qemu-

debootstrap-chroot: la necessità di privilegi elevati per l'esecuzione di debootstrap

e chroot.

L'unica alternativa nativamente "rootless" all'uso di questi strumenti sarebbe

stato lo switch da uno sviluppo in locale a uno cloud-based, sfruttando le pipeline

di Continuous Integration di Salsa CI.

Essendo però questo requisito di "rootlessness" sorto solo in un secondo momento

ben successivo alla fase di pacchettizzazione manuale, lo si è escluso in principio.

Inoltre, anche dopo un confronto a posteriori, sarebbe stata confermata la scelta di

un approccio locale e validata la supremazia - per il caso d'uso speci�co - della sua

versione �nale Rootless V 2CI.

2.3 Confronto tra build in locale e uso delle pipeline

di CI di GitLab

Come anticipato nella sezione 2.1, l'istanza GitLab di Debian, Salsa, fornisce un

sistema di Continuous Integration (CI) che permette di automatizzare il processo di

build, test e deployment dei pacchetti Debian [44].

Questa modernissima tecnologia quindi non mira solo alla costruzione di pacchetti

.deb una tantum, ma consente anche di creare intere pipeline di build che, dalla

fase di commit del codice sorgente �no al rilascio del pacchetto, eseguono in contain-

er Docker [43] in cui l'intero processo, comprensivo dell'installazione dei pacchetti

necessari e della risoluzione delle dipendenze, viene svolto automaticamente sotto le

direttive speci�cate in un �le .gitlab-ci.yml [44].
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Sebbene questo strumento di CI sia il più avanzato e largamente impiegato per la

costruzione di pacchetti Debian, come sottolineato nella precedente sezione, si è con-

cluso a posteriori che, per il requisito speci�co di costruzione e delivery di pacchetti

cross-buildati staticamente una tantum, un approccio locale rimanesse comunque

preferibile.

Inoltre, le motivazioni che hanno portato a validare la soluzione locale per il sod-

disfacimento dei requisiti di pacchettizzazione, sono rimaste vive anche in presenza

dei successivi requisiti di cross-compilazione statica automatizzata, premiando allo

stesso modo la soluzione �nale di Rootless V 2CI rispetto a un'ipotetica pipeline di

CI in Salsa.

Tali motivazioni, de�nibili quindi "globali", sono riassunte di seguito.

2.3.1 Prestazioni

Dal momento che le pipeline di CI in Salsa eseguono il processo di build all'in-

terno di container Docker ospitati su macchine virtuali condivise [43], le risorse di

sistema assegnate a tali container sono limitate e soggette a variazioni in base al

carico del server.

Inoltre, Salsa CI, per ogni fallimento di build, reimposta completamente l'ambiente

di esecuzione del container, costringendo a ripetere l'installazione delle dipendenze

e la con�gurazione dell'ambiente da zero.

Questo vincolo, in una prima fase di studio e testing del processo di pacchettizazz-

ione, avrebbe rallentato notevolmente il ciclo di sviluppo. Per esempio, al veri�carsi

di un semplice fallimento di build causato da frequenti e probabili errori di dipenden-

za e versioning, mentre lo sviluppo locale sarebbe potuto proseguire con compilazioni

iterative, con Salsa CI si sarebbero ottenuti innumerevoli jobs falliti e ampi tempi

di attesa dovuti alla ricostruzione degli ambienti containerizzati.

2.3.2 Monitorabilità e debugging

La necessità di testare e correggere costantemente il processo di pacchettizzazione

incrociata, al �ne di studiarne le pediculiarità e i requisiti speci�ci per ogni architet-

tura in questa prima fase di build manuale, si traduceva nell'esigenza di reperibilità

e completezza dei log di sistema.

Sebbene Salsa CI fornisca un sistema di logging integrato che consente di visualizzare

i log di build direttamente nell'interfaccia web [44], l'analisi e il debugging di errori

complessi o ricorrenti possono risultare di�cili a causa della natura temporanea dei
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container Docker e della limitata esposizione dei log di sistema degli stessi.

La build in locale invece ha portato massimo grado di controllo e monitorabilità,

accellerando e permettendo di a�nare il processo di sviluppo.

2.3.3 Re-use delle risorse di build

Come accennato nella sottosezione 2.3.1, la natura e�mera dei container Docker

in Salsa CI implica che ogni build inizi con un ambiente "pulito", privo di qualsiasi

pacchetto o con�gurazione precedentemente installata [44].

Questo non solo rallenta il processo di build, come già scritto, ma impedisce anche il

riutilizzo di risorse precedentemente con�gurate, come cache di pacchetti o librerie

compilate.

Nel contesto di sviluppo locale invece, la persistenza dei rootfs debootstrap-ati ha

permesso di ottimizzare l'impiego delle risorse di sistema e di mantenere uno stato di

build coerente tra le diverse iterazioni, senza doverlo rigenerare per ogni insuccesso.



Capitolo 3

sshlirpCI e Rootless sshlirpCI

La seconda fase di sviluppo di Rootless V 2CI è sostanzialmente �glia di un cam-

bio dei requisiti e delle necessità che avevano avviato la prima di pacchettizzazione

e che sono stati soddisfatti dalla corrispondente soluzione �nale che ha previsto,

come già ampiamente discusso, la combinazione tra Qemu User-mode Emulation,

debootstrap e chroot.

Questa espansione di requisiti ha visto quindi una proporzionata e simmetrica espan-

sione della soluzione, la cui forma �nale, che ha preso il nome di Rootless sshlirpCI,

ha poi permesso di intravedere la possibilità di un'ulteriore generalizzazione.

L'essenzialità di questa fase intermedia risiede proprio in questo: con sshlirpCI e

successivamente Rootless sshlirpCI, non solo si sono costruite le principali fondamen-

ta del risultato �nale introducendo automazione e "rootlessness", ma si sono anche

modellati i mattoni che compongono l'architettura di Rootless V 2CI. Quest'ultimo

infatti si baserà sul concetto di esecuzione sincrona di molteplici processi "Rootless

sshlirpCI - like".

Dal momento che questi due prototipi intermedi sono stati comunque generati

da un lungo processo di progettazione e sviluppo, risulta necessario dare una visione

dall'alto introduttiva del percorso seguito, attraverso il seguente schema. sshlirpCI-

RootlessSshlirpCIRoadMap.drawio.pdf
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Figura 3.1: Roadmap di sviluppo di sshlirpCI e Rootless sshlirpCI

Per fornire una descrizione completa del processo che ha portato allo sviluppo

di questi due motori per la cross-compilazione di sshlirp, è innanzitutto necessario

esporre quali requisiti sono cambiati e come e quali si sono aggiunti rispetto alla fase

precedente.



3.1 I nuovi requisiti e l'evoluzione del contesto 33

3.1 I nuovi requisiti e l'evoluzione del contesto

Partendo da sshlirpCI, il contesto non è più stato focalizzato su uno sviluppo

manuale e su operazioni di testing, debugging e risoluzione delle dipendenze con

lunghe catene di compilazioni in locale; bensì si è evoluto prima nella ricerca di una

soluzione concettualmente aderente ai nuovi requisiti, e dopo nella sua implemen-

tazione.

Partendo quindi dai requisiti sorgente, è possibile descrivere come tale contesto è

passato dal compito di pacchettizzazione di sshlirp alla modellazione di una pri-

ma soluzione, elencando di questi le tre principali di�erenze rispetto alle necessità

precedenti:

� Compatibilità: dopo un'analisi più precisa del problema legato alla dis-

tribuzione di sshlirp su host remoti, si è concluso che la produzione di pacchetti

statici anche per architetture obsolete e meno di�use nel contesto Virtual-

square fosse ridondante e che quindi si rendesse necessaria una riduzione del

numero di port per cui costruire i binari. Per questo motivo si è deciso di

limitare la produzione alle architetture più supportate di amd64, arm64, armhf

e riscv64. La scelta di escludere in particolare armel ha sollevato il contesto

di sviluppo da molte delle di�coltà legate alla risoluzione delle dipendenze.

� Produzione di binari: sempre grazie a un orientamento più mirato alla

risoluzione del problema speci�co, si è concluso che la costruzione di interi

pacchetti .deb fosse super�ua e troppo problematica rispetto a un semplice

processo di cross-compilazione e distribuzione di binari statici.

Questa considerazione è anche �glia del limite imposto da libslirp, di cui si è

discusso nella sezione 2.1.2: essendo il suo archivio statico libslirp.a assente

dal pacchetto Debian u�ciale libslirp-dev, la compilazione "manuale" di

tale libreria e il suo linking statico con sshlirp avrebbero �rmato sshlirp stesso

come un pacchetto non a�dabile e quindi non distribuibile tramite repository

u�ciali Debian, vani�cando così lo scopo di una pacchettizzazione standard.

Tale problema invece non sarebbe sussistito per la semplice costruzione e dif-

fusione di binari statici su archivi esterni.

� Automazione: combinando la semplicità e ripetibilità della soluzione basata

su Qemu User-Mode Emulation, debootstrap e chroot con la riduzione del nu-

mero di port e la sempli�cazione del processo di build, si è potuto intravedere

la possibilità di automatizzare l'intero processo di cross-compilazione e deliv-
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ery dei binari statici di sshlirp.

Quest'idea, di cui la prima �nalizzazione sshlirpCI si sarebbe basata principal-

mente sulla semplice trascrizione in script Bash e �le C dei comandi eseguiti per

portare a termine il processo di build descritto nella sezione 2.2.2 del capitolo

precedente, ha dato avvio a una nuova fase di sviluppo focalizzata sull'imple-

mentazione di un demone che eseguisse in sequenza e in modo autonomo le

operazioni di cross-compilazione per i port target, operando in una directory

di build, trasferendo i binari �nali in una destinazione speci�ca e veri�cando la

presenza di eventuali aggiornamenti al codice sorgente di sshlirp ogni intevallo

di durata fornita dall'utente.

È importante sottolineare che, sebbene l'introduzione di questi nuovi requisiti abbia

portato a un'evoluzione sensibile del progetto, la prima risposta a tali necessità non

era stata ancora pensata per un'esecuzione "rootless".

3.2 sshlirpCI: prima automazione root-required

Creazione root-required dei rootfs per port target, chroot privilegiato in essi,

clone dei repository necessari, risoluzione delle dipendenze e compilazione di sshlirp

sono le operazioni presenti nell'insieme intersezione tra lo sviluppo manuale dei

pacchetti svolto in precedenza e l'esecuzione del sistema di continuous integration

implementato da sshlirpCI.

L'idea che risiede alla base di questo motore per la cross-compilazione consiste infatti

nell'ereditare le soluzioni adottate in precedenza, riadattarle in script e programmi C

per soddisfare i requisiti di compatibilità e produzione di binari, e in�ne orchestrare

l'esecuzione di tali componenti in un demone che operi in un contesto con�gurabile

dall'utente.

3.2.1 Struttura, funzionalità e gestione delle risorse

Come accennato in precedenza, sshlirpCI è stato progettato per eseguire le oper-

azioni di cross-compilazione e delivery in background, fornendo diverse funzionalità,

in modo che un utente privilegiato potesse:

� con�gurare preliminarmente l'esecuzione del demone stesso, speci�cando di-

versi parametri quali:

� gli URL dei repository Git da cui e�ettuare il clone iniziale e i pull di

aggiornamento per la produzione dei binari statici di sshlirp;
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� la directory di build in cui sshlirpCI avrebbe debootstrap-ato i rootfs

per ogni architettura richiesta, posizionato i sorgenti e generato i �le di

compilazione;

� la directory di destinazione dei binari �nali;

� avviare sshlirpCI e delegargli la produzione e l'aggiornamento dei binari statici

di sshlirp;

� interrompere l'esecuzione del demone in modo sicuro e coerente;

� riavviare sshlirpCI con garanzia di idempotenza, ossia con la certezza che

sia in presenza che in assenza di un ambiente già precedentemente setup-ato,

le funzionalità o�erte dal motore di cross-compilazione potessero riprendere

correttamente e restituire i risultati desiderati.

Sebbene gli unici punti di contatto tra l'utente �nale e sshlirpCI siano rappresen-

tati da quanto descritto poc'anzi, le funzionalità che permettono la sussistenza e la

garanzia di tali punti sono molteplici e articolate.

Per fornire una visione d'insieme di queste, prima di scendere in una loro descrizione

più dettagliata e focalizzata sull'implementazione delle stesse, è possibile a�ermare

che l'architettura di sshlirpCI è stata costruita principalmente sui seguenti compo-

nenti e sotto-componenti:

� Il loader della con�gurazione e il setupper: questo elemento del processo

principale - ossia il processo che esegue per primo dopo l'avvio di sshlirpCI da

parte dell'utente - si occupa di caricare le impostazioni - di cui si è accennato

nel precedente elenco puntato - fornite in un �le di con�gurazione ci.conf

ed utilizzarle, dopo essersi demonizzato, per settare una tantum il "guscio"

dell'ambiente di build che, in sshlirpCI, si assume rimanga persistente ad ogni

ciclo di esecuzione.

� Il loop principale: il cuore di sshlirpCI risiede in questo ciclo in�nito che si

occupa periodicamente di svolgere le seguenti operazioni:

� clone o pull dei sorgenti sull'host: in caso di primo avvio di sshlirpCI,

il demone clona i repository speci�cati nella con�gurazione all'interno

della directory di build. In caso invece di esecuzione avviata o riavviata

con un ambiente di build già esistente, sshlirpCI e�ettua un pull dei

sorgenti per veri�care la presenza di nuovi commit al solo codice sorgente
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di sshlirp, trascurando la veri�ca dello stato di aggiornamento della sua

dipendenza libslirp;

� setupper dei thread builder per ogni port target: internamente al

main loop, se dal componente precedente risulta che siano stati e�ettuati

dei cambiamenti al codice sorgente di sshlirp, sshlirpCI procede ad avviare

per ogni architettura target un thread builder che si occuperà di svolgere

tutte le operazioni cardine necessarie alla cross-compilazione di sshlirp

dentro ambienti chroot. A�nché tale processo sincrono avvenga corret-

tamente per ogni thread, il main dovrà costruire preliminarmente anche

una struttura dati da passare ai thread builder, contenente le informazioni

necessarie per la loro corretta esecuzione nei rootfs corrispondenti;

� join dei thread builder e merge concatenato dei log prodotti: una

volta avviati tutti i thread builder, il main attende la loro terminazione in

seguito alla quale procede a raccogliere i log di build prodotti da ciascuno

di essi, concatenandoli in un unico �le di log principale salvato nella

directory di build e contenente i log precedentemente prodotti dal resto

dei componenti, in modo da fornire una visione d'insieme completa di

tutte le operazioni svolte in ogni ciclo di build;

� move dei binari �nali: in�ne, una volta completate le operazioni di

build per ogni port target, sshlirpCI si occupa di trasferire i binari statici

prodotti dai thread builder in una sotto-directory "versionata" della di-

rectory di destinazione speci�cata nella con�gurazione, sovrascrivendo i

�le esistenti e garantendo così che per ogni tag del codice sorgente esista

un path che contenga sempre le ultime versioni dei binari;

� sleep e amministrazione dei segnali di interruzione: essendo, come

anticipato, prerequisito essenziale per sshlirpCI la possibilità di essere

interrotto in modo sicuro e coerente, durante il conclusivo ciclo di sleep

tra un'iterazione e l'altra del main loop, il demone si predispone a ricevere

segnali di interruzione da parte dell'utente.

� I thread builder: questi componenti innestati nel cuore del �usso di ese-

cuzione del main loop, si occupano di svolgere idempotentemente per ogni

port target le operazioni ordinate di:

1. creazione del rootfs debootstrap-ato per l'architettura speci�ca, qualora

non fosse già presente nella directory di build, in caso di primo avvio;
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2. creazione, se non già esistenti, delle directory e dei �le di build all'interno

del rootfs corrispondente, contestualmente alla prima iterazione del main

loop;

3. copia dei sorgenti di sshlirp e libslirp all'interno dell'ambiente chroot;

4. installazione delle dipendenze necessarie e cross-compilazione di libslirp

e sshlirp internamente al rootfs chroot-ato;

5. rimozione dei sorgenti di copia dal rootfs una volta completata la build.

Al �ne di riassumere ed esporre gra�camente l'architettura di sshlirpCI, è stato

realizzato il seguente diagramma rappresentante le componenti principali e le loro

interazioni:
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Figura 3.2: Diagramma architetturale di sshlirpCI

A partire da questa descrizione generale è possibile scendere nella delineazione

di alcuni aspetti implementativi fondamentali che permettono il corretto funziona-

mento dell'intero sistema e l'interazione tra i componenti rappresentati.

In particolare si analizzeranno:
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� i meccanismi di loading delle variabili di con�gurazione;

� il funzionamento del sistema di logging che ha ispirato l'importante espansione

lato monitoring in Rootless V 2CI;

� il sistema di versioning adottato per la gestione e il delivery dei binari �nali;

� i meccanismi di comunicazione con cui i thread builder amministrano l'uso

delle risorse di sistema e quello con cui interagiscono in fase di setup e ritorno

con il main loop;

� il metodo di gestione dei segnali di interruzione per l'arresto sicuro e coerente

del demone;

� l'approccio adottato per l'esecuzione di operazioni direttamente sul �lesystem

host e su quelli chroot-ati.

Loading delle variabili di con�gurazione e setup

SshlirpCI, come anticipato, basa la sua esecuzione su alcuni parametri di con�g-

urazione che ne modellano il comportamento e le risorse impiegate.

Infatti, per motivi di utilizzo delle risorse di sistema, monitorabilità, correttezza di

funzionamento e grado di compabilità e aggiornamento, l'utente ha il compito pre-

liminare - all'avvio del demone - di speci�care nel �le ci.conf i seguenti parametri:

# Gli URL dei repository Git da cui effettuare il clone

# iniziale e i pull di aggiornamento:

SSHLIRP_REPO_URL=https://github.com/virtualsquare/sshlirp.git

LIBSLIRP_REPO_URL=https://gitlab.freedesktop.org/slirp/libslirp.git

# La directory di build in cui si desidera che sshlirpCI crei

# i rootfs, posizioni i sorgenti e salvi i log:

MAIN_DIR=/home/sshlirpCI

# Il file di versioning che si desidera venga utilizzato per

# tenere traccia delle versioni dei binari prodotti:

VERSIONING_FILE=/home/sshlirpCI/versions.txt

# Rispettivamente, la directory target in cui i thread builder

# posizioneranno provvisoriamente i binari all'interno dei rootfs

# chroot-ati (indicata con path relativo al rootfs), e la directory

# dell'host in cui si desidera che sshlirpCI esponga i binari finali:
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THREAD_CHROOT_TARGET_DIR=/home/sshlirpCI/thread_binaries

TARGET_DIR=/home/sshlirpCI/binaries

# Le directory dell'host in cui si voglia che sshlirpCI

# salvi i sorgenti:

SSHLIRP_SOURCE_DIR=/home/sshlirpCI/sshlirp

LIBSLIRP_SOURCE_DIR=/home/sshlirpCI/libslirp

# Il file di log principale, su cui sshlirpCI concatenera' i

# log di tutti i componenti:

LOG_FILE=/home/sshlirpCI/log/main_sshlirp.log

# A scopo di monitoring a run-time, rispettivamente, la

# directory in cui i thread builder salveranno i loro log di

# esecuzione sull'host e il file dei log prodotti da ciascun

# thread builder durante la loro esecuzione interna al rootfs

# chroot-ato (indicato con path relativo al rootfs):

THREAD_LOG_DIR=/home/sshlirpCI/log/threads

THREAD_CHROOT_LOG_FILE=/home/sshlirpCI/log/thread_sshlirp.log

# L'intervallo di polling per la verifica di aggiornamenti ai sorgenti

# e le architetture target per la build:

POLL_INTERVAL=3600 # secondi -> 1 ora

ARCHITECTURES=amd64,arm64,armhf,riscv64

Tali variabili verranno lette dal loader attraverso una funzione di parsing

conf_vars_loader() che, presi in input puntatori a variabili vuote corrispondenti

ai parametri di con�gurazione e allocate dal main con dimensioni pre�ssate global-

mente, aprirà il �le ci.conf, ne leggerà riga per riga il contenuto e assegnerà i valori

letti alle variabili puntate.

Successivamente, il setupper controllerà se è attiva una sua altra istanza - veri�cando

la presenza di un pid �le atteso in /tmp - e in caso negativo procederà a demonizzarsi

tracciando la sua esistenza con la creazione del pid �le.

In�ne, a partire dalle variabili di con�gurazione caricate, procederà a creare - se non

già esistenti - la directory di build, il �le di versioning, la directory di log sull'host e il

log �le principale all'interno di essa, predisponendo così l'ambiente per l'esecuzione

del main loop.
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Il sistema di logging

SshlirpCI è stato progettato per fornire sia una singola interfaccia di logging di

riferimento per l'utente �nale, utile alla visualizzazione completa di tutte le oper-

azioni svolte dal demone e alla veri�ca, a termine di ogni iterazione, dell'esito della

cross-compilazione, che processi di logging distribuiti per ogni thread builder, essen-

ziali per scopo di debugging e monitorabilità a run-time.

In generale, sia i log centrali appartenenti al �le de�nito dalla variabile di con�g-

urazione LOG_FILE, che quelli distribuiti sui �le "personali" di ogni thread builder,

sono generati attraverso il semplice meccanismo di apertura di un FILE stream per

il path speci�cato, di stampa su di esso tramite fprintf, e di chiusura dello stesso

al termine del processo che se ne serve:

FILE* log_fp = fopen(log_file, "a");

if (!log_fp) {

return 1;

}

fprintf(log_fp, "Log message here\n");

...

fclose(log_fp);

Inoltre, l'obbiettivo di fornire un unico log �le centrale all'utente che desiderasse

veri�care l'esito complessivo di ogni iterazione del main loop, è stato �nalizzato at-

traverso l'uso di log "speciali" che permettessero di comprendere l'intero processo

di esecuzione di sshlirpCI, tramite separazioni chiare tra le sezioni di log prodotte

dai diversi componenti - concatenate al termine del join dei thread builder - e times-

tamps per ogni operazione fondamentale quale l'inizio di un'iterazione del main loop,

il completamento del processo di build per ogni port target, la conclusione dell'iter-

azione e l'eventuale interruzione del ciclo di sleep �nale.

È importante sottolineare che l'inserimento di timestamps formattati ha anticipato

l'idea di un sistema di monitoring più avanzato, che sarebbe stato implementato in

Rootless V 2CI, e che avrebbe permesso di trasmettere i log prodotti dal demone a

un sistema esterno di analisi e visualizzazione.
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Versioning e gestione dei binari �nali

A scopo di organizzazione, tracciabilità e aggiornamento dei binari statici prodot-

ti, sshlirpCI si occupa di mantenere una struttura di sotto-directory "versionate"

all'interno della directory di destinazione speci�cata nella con�gurazione.

Per fare ciò, oltre a servirsi di un �le di versioning su cui vengono progressivamente

scritti i nuovi tag dei sorgenti di sshlirp a cui corrisponeranno i binari prodotti nel-

la stessa iteazione di build, sshlirpCI istanzia, preliminarmente al main loop, due

strutture dati commit_status_t:

typedef struct {

int status;

char *new_release;

} commit_status_t;

In quest'ultime verranno salvati l'esito e il tag dell'ultimo commit rilevato - "unstable"

se assente - rispettivamente per l'operazione di check_host_dirs() iniziale - che si

occupa per il primo avvio di sshlirpCI di clonare i sorgenti - e per ogni successivo

pull e�ettuato nel main loop attraverso la funzione check_new_commit().

In questo modo, al termine di ogni iterazione del main loop, sshlirpCI, indipen-

dentemente dal contesto di primo avvio o di esecuzione continuativa, potrà creare

una sotto-directory nella directory di destinazione con nome corrispondente al tag

dell'ultimo commit rilevato, e spostare in essa i binari prodotti dai thread builder,

sovrascrivendo quelli eventualmente già presenti.

// main loop

while (1) {

...

// 6. Controllo se ci sono le directory dell'host e i repository git

if (round == 0) {

log_time(log_fp);

fprintf(log_fp, "Avvio del demone per la prima volta...\n");

// return.status:

// 0 -> tutto ok, le repo esistono gia'

// 1 -> errore

// 2 -> le repo sono state clonate ora

initial_check = check_host_dirs(target_dir, sshlirp_source_dir,
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libslirp_source_dir, log_file, sshlirp_repo_url,

libslirp_repo_url, thread_log_dir, log_fp, versioning_file

);

// Nota: questa funzione non fa nulla se

// le dirs sono gia' esistenti e se esiste

// gia' la repo git (possibile causa crash o interruzione)

...

}

// 6.1. Se non e' il primo avvio (e quindi avevo gia' clonato e

// ho atteso poll_interval secondi) o se la repo era gia' clonata,

// tento di pullare eventuali nuovi commit

if (round > 0 || initial_check.status == 0) {

new_commit = check_new_commit(sshlirp_source_dir,

sshlirp_repo_url, libslirp_source_dir,

libslirp_repo_url, log_file, log_fp, versioning_file

);

}

// 7. Se e' il primo avvio e ho effettivamente clonato o se ho

// trovato nuovi commit, preparo i thread per la build

if ((round == 0 && initial_check.status == 2) ||

new_commit.status == 2

) {

...

// 7.5. Sposto i binari in target_dir/initial_check.new_release

// (oppure in target_dir/new_commit.new_release)

for (int i = 0; i < num_archs; i++) {

...

if (new_commit.status == 2) {

snprintf(final_target_dir, sizeof(final_target_dir), "%s/%s",

target_dir, new_commit.new_release

);

} else {

snprintf(final_target_dir, sizeof(final_target_dir), "%s/%s",

target_dir, initial_check.new_release

);

}
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...

}

}

...

}

Thread builder: sincronizzazione e gestione delle risorse

Nel caso in cui il demone di sshlirpCI constati la necessità di eseguire una nuova

iterazione di build - a seguito del primo avvio o della rilevazione di nuovi commit

- il main loop procederà ad avviare per ogni architettura target un thread builder

a cui delegherà l'esecuzione dell'intero processo di cross-compilazione per il port

corrispondente.

A tal �ne, il main costruirà preliminarmente un numero di strutture dati

thread_args_t pari al numero di architetture target, ognuna delle quali conterrà le

informazioni necessarie per l'esecuzione del thread builder associato:

#define MAX_ARCHITECTURES 9

#define MAX_CONFIG_LINE_LEN 512

#define MAX_CONFIG_ATTR_LEN 256

#define MAX_COMMAND_LEN 2048

#define MAX_VERSIONING_LINE_LEN 128

typedef struct {

int pull_round;

char arch[16];

char sshlirp_host_source_dir[MAX_CONFIG_ATTR_LEN];

char libslirp_host_source_dir[MAX_CONFIG_ATTR_LEN];

char chroot_path[MAX_CONFIG_ATTR_LEN];

char thread_chroot_main_dir[MAX_CONFIG_ATTR_LEN];

char thread_chroot_sshlirp_dir[MAX_CONFIG_ATTR_LEN];

char thread_chroot_libslirp_dir[MAX_CONFIG_ATTR_LEN];

char thread_chroot_target_dir[MAX_CONFIG_ATTR_LEN];

char thread_chroot_log_file[MAX_CONFIG_ATTR_LEN];

char thread_log_file[MAX_CONFIG_ATTR_LEN];

pthread_mutex_t *chroot_setup_mutex;

} thread_args_t;
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Come è possibile dedurre dalla struttura dati soprastante, l'unica operazione per cui

è risultata necessaria una serializzazione tra i thread builder tramite mutex è stata

la creazione dei rootfs tramite debootstrap.

Infatti, essendo questa operazione particolarmente dispendiosa in termini di risorse

di sistema e tempo di esecuzione, si è deciso di permettere che solo un thread per

volta potesse eseguirla, in modo da evitare un sovraccarico di I/O e CPU che avrebbe

potuto compromettere la stabilità dell'intero sistema host.

void *build_worker(void *arg_ptr) {

thread_args_t* args = (thread_args_t*)arg_ptr;

...

fprintf(thread_log_fp, "Worker started for arch %s. Pull round: %d.\n",

args->arch, args->pull_round

);

if (args->pull_round == 0) {

fprintf(thread_log_fp, "First run (pull_round 0). Checking and

eventually setting up chroot for %s.\n", args->arch

);

pthread_mutex_lock(args->chroot_setup_mutex);

int setup_status = setup_chroot(args, thread_log_fp);

pthread_mutex_unlock(args->chroot_setup_mutex);

...

}

...

}

In assenza di quest'accortezza si sono infatti sperimentati numerosi fallimenti di

avvio di build per l'ultimo thread lanciato, a causa di una saturazione delle risorse

di sistema nel contesto di esecuzione su host Ubuntu 24.04.3 LTS con processore

11th Gen Intel® Core� i5-1155G7 Ö 8 e 16 GB di RAM.

In�ne, per quanto riguarda il ritorno dei thread builder al main loop, si è deciso

di impiegare una semplice struttura dati che permettesse di trasmettere l'esito del

thread stesso e un eventuale messaggio di errore, in modo che il main potesse loggare

tali informazioni nel �le di log centrale al termine del join di tutti i thread e fornire

così un resoconto completo e granulare dell'esito di ogni iterazione di build.

typedef struct {
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int status;

char *error_message;

} thread_result_t;

Interruzione sicura e coerente del demone

Attraverso la compilazione di sshlirpCI tramite cmake, l'utente ottiene due es-

eguibili distinti:

� sshlirp_ci_start, che si occupa di avviare il demone;

� sshlirp_ci_stop, che invia un segnale di interruzione al demone in ese-

cuzione.

Per permettere a quest'ultimo di arrestare in modo sicuro e coerente l'esecuzione di

sshlirpCI, si è deciso di predisporre il main loop alla ricezione del segnale SIGTERM

solo durante la fase di sleep tra un'iterazione e l'altra.

Questa funzionalità è �glia di un'interazione particolare tra il processo di start e

quello di stop che non si basa solo su operazioni di read e write sul pid �le e sull'invio

di segnali, ma che prevede anche il salvataggio dello stato di esecuzione del demone

in un �le STATE_FILE, al path /tmp/sshlirp_ci.state, in cui vengano registrati

i valori WORKING o SLEEPING, a seconda che il demone stia eseguendo un'iterazione

del main loop o stia attendendo il completamento del ciclo di sleep.

In questo modo, il processo di stop potrà veri�care lo stato corrente del demone

leggendo tale �le e, nel caso in cui risulti SLEEPING, inviare il segnale di interruzione

SIGTERM; in caso contrario, attenderà un intervallo di tempo pre�ssato e ripeterà la

lettura del �le di stato, per un numero di tentativi totali de�nito.

while (attempts < MAX_WAIT_SECONDS) {

...

char current_state[50] = {0};

state_file_ptr = fopen(STATE_FILE, "r");

...

if (state_file_ptr) {

if (fgets(current_state, sizeof(current_state),

state_file_ptr) == NULL

) {...}

...

}

if (strcmp(current_state, DAEMON_STATE_SLEEPING) == 0) {
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printf("Il demone e' in stato SLEEPING. Invio SIGTERM...\n");

if (kill(daemon_pid, SIGTERM) == 0) {

printf("Segnale SIGTERM inviato con successo.\n");

// Attendo un po' che il demone termini e pulisca i suoi file

sleep(3);

...

printf("Demone sshlirp_ci terminato.\n");

fclose(state_file_ptr);

return 0;

} else {

...

fclose(state_file_ptr);

return 1;

}

} else {

if (attempts == 0) {

printf("Il demone e' attualmente in stato '%s'. Quindi

attendo...\n", strlen(current_state) > 0 ? current_state

: "UNKNOWN"

);

}

sleep(1);

attempts++;

}

fclose(state_file_ptr);

}

Lato processo start invece, il main, durante l'esecuzione della funzione di demoniz-

zazione, setta un handler per SIGTERM che imposta una variabile globale

terminate_daemon_flag a 1 in caso di ricezione del segnale, in modo che il ciclo di

sleep, se interrotto, possa veri�care il valore di tale �ag ed eventualmente terminare

l'esecuzione di sshlirpCI, pulendo il pid �le e il �le di stato.

volatile sig_atomic_t terminate_daemon_flag = 0;

static void sigterm_handler(int signum) {

if (signum == SIGTERM) {

terminate_daemon_flag = 1;

}
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}

static void cleanup_daemon_files() {

remove(PID_FILE);

remove(STATE_FILE);

}

static void update_daemon_state(const char *state) {

FILE *fp = fopen(STATE_FILE, "w");

if (fp) {

fprintf(fp, "%s", state);

fclose(fp);

} else {

perror("Failed to update daemon state file");

}

}

static void daemonize() {

...

signal(SIGTERM, sigterm_handler);

...

}

int main() {

...

daemonize();

atexit(cleanup_daemon_files);

...

while(1) {

update_daemon_state(DAEMON_STATE_WORKING);

...

update_daemon_state(DAEMON_STATE_SLEEPING);

log_time(log_fp);

fprintf(log_fp, "Demone in attesa per %d secondi...\n",

poll_interval

);

// Ciclo di sonno e gestione dei segnali di interruzione

unsigned int time_left = poll_interval;

while(time_left > 0) {

time_left = sleep(time_left);

if (terminate_daemon_flag) {

fprintf(log_fp, "Sleep interrotto da segnale di
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terminazione.\n"

);

break;

}

if (time_left > 0) {

fprintf(log_fp, "Sleep interrotto, %u secondi rimanenti,

continuo ad attendere...\n", time_left

);

}

}

round++;

}

...

}

Operazioni su �lesystem ed esecuzione degli script

Per garantire la corretta esecuzione delle operazioni di setup e build all'interno

degli ambienti chroot-ati, sshlirpCI si a�da all'esecuzione di comandi shell, invocati

tramite la funzione system().

In particolare, le operazioni di clone e pull dei sorgenti, di setup degli ambienti chroot

da parte dei thread, di copia dei sorgenti dall'host ai rootfs, di cross-compilazione e

di rimozione dei sorgenti dagli ambienti debootstrap-ati, si appoggiano tutte all'ese-

cuzione di eseguibili .sh.

Quest'ultimi vengono generati a run-time, posizionati nella directory /tmp con un

path univoco - settato tramite la funzione mkstemp() -, popolati attraverso la copia

in essi di script embedded in stringhe - costanti e de�nite in componenti header

dedicati - e invocati tramite system().

Ad esempio, nel �le sorgente di sshlirpCI

src/include/scripts/remove_source_copy_script.h, è de�nito lo script di ri-

mozione dei sorgenti di sshlirp e libslirp dai rootfs chroot-ati, sotto forma di stringa:

#ifndef REMOVE_SOURCE_COPY_SCRIPT_H

#define REMOVE_SOURCE_COPY_SCRIPT_H

static const char remove_source_copy_script_content[] =

"#!/bin/bash\n"

"\n"

"chroot_path=$1\n"
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"chroot_sshlirp_dir=$2\n"

"chroot_libslirp_dir=$3\n"

"logfile=$4\n"

"\n"

"..."

"exit 0\n";

#endif

Questo verrà poi invocato da ogni thread builder - con lo scopo di "pulire" il proprio

rootfs al termine della build - attraverso la funzione

remove_sources_copy_from_chroot(), la quale, a sua volta, farà riferimento a un

metodo di utilità execute_embedded_script_for_thread(), che si occuperà ap-

punto della generazione, della scrittura e dell'esecuzione dello script corrispondente.

Questo approccio, basato su script shell embedded, è stato inizialmente predilet-

to rispetto all'invocazione diretta di script esterni per motivi di portabilità e in-

dipendenza dal �lesystem. Infatti, l'incapsulamento degli stessi script all'interno

del binario �nale di sshlirpCI e la loro riproduzione su �le .sh temporanei hanno

sollevato lo sviluppo da problematiche legate sia alla distribuzione a compile-time

di un'eventuale directory script/ in una destinazione sicura, che alla gestione dei

permessi di scrittura ed esecuzione degli script esterni, che, in caso di salvataggio

permanente e invocazione diretta, sarebbero stati invece soggetti a modi�che acci-

dentali o malevole da parte di utenti o processi non autorizzati.

Nonostante sshlirpCI si possa considerare un sistema di automazione di build

incrociata per sshlirp abbastanza completo, diverse scelte implementative e architet-

turali hanno fatto emergere limiti e vincoli che hanno successivamente spinto allo

sviluppo di una versione potenziata e allo stesso tempo più leggera e sicura: Rootless

sshlirpCI.

3.2.2 Limitazioni, vincoli e privilegi

Le principali restrizioni che rendono sshlirpCI un'architettura valida ma non

ottimale per lo scopo di cross-compilazione automatizzata di sshlirp si basano prin-

cipalmente su sei fattori:

1. Composizione frammentata e over-ingegnerizzata;

2. Amministrazione non persistente delle risorse di build;
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3. Fragilità e vulnerabilità legate a con�gurabilità eccessivamente granulare;

4. Impossibilità di interruzione forzata e pulita durante le operazioni di build;

5. Aspetti di sicurezza e limiti legati all'uso di sudo;

6. Complicazioni correlate all'impiego di script shell embedded e alla loro ese-

cuzione tramite system();

Frammentazione dell'architettura

Come è possibile osservare dal diagramma architetturale di sshlirpCI 3.2, la

struttura di questo primo sistema di continuous integration per sshlirp presenta una

composizione piuttosto frammentata.

In particolare la scomposizione dei task per ogni thread in diversi componenti -

e conseguentemente in molteplici script shell - sebbene abbia permesso di isolare

e incapsulare le singole operazioni di build, ha al contempo introdotto un ecces-

sivo grado di complessità e over-ingegnerizzazione, che non solo ha reso di�cile la

manutenzione del codice e l'individuazione di bug, ma che ha anche avuto un impat-

to negativo sulla performance complessiva del sistema, a causa del numero elevato

di operazioni di I/O e di creazione e distruzione di processi �glio per l'esecuzione

degli script.

Dal momento che ogni thread builder lavora in modo indipendente dagli altri, un'ar-

chitettura "monolitica" in cui ogni worker esegue un unico script di build che rac-

chiuda tutte le operazioni necessarie - dalla creazione del rootfs allo spostamento dei

binari �nali - avrebbe permesso di sempli�care notevolmente il �usso di esecuzione.

Persistenza e coerenza delle risorse

Un altro aspetto critico di sshlirpCI riguarda la gestione debole delle risorse di

sistema durante le fasi di setup sia del main loop che dei thread builder.

Infatti, per quanto i metodi setupper check_host_dirs() - interno al main - e

setup_chroot() e check_worker_dirs() - interni ai thread builder e addetti rispet-

tivamente alla creazione dei rootfs e alla veri�ca delle directory di lavoro - permet-

tano di evitare operazioni ridondanti in caso di esecuzione avviata, garantendo co-

munque idempotenza al riavvio, trascurano l'eventualità di una perdita o rimozione

a run-time delle risorse di build.

Se ad esempio durante il primo ciclo di sleep del main loop venissero rimossi i rootfs,

al termine di questo e all'avvio della seconda iterazione di build, i thread, ricevendo
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un thread_args_t* args tale per cui args->pull_round > 0, darebbero per as-

sunta l'esistenza dei rootfs e tenterebbero di copiare i sorgenti dall'host a directory

non esistenti, causando un fallimento della build.

Allo stesso tempo anche il sistema di reperimento dei sorgenti basato sulla com-

binazione di clone iniziale sull'host, copia e rimozione post-build nei rootfs, sebbene

permetta di minimizzare il carico di storage richiesto, il tempo di setup e il tra�co

di rete, introduce molteplici rischi di incoerenza. Per esempio, una modi�ca acciden-

tale ai sorgenti sull'host durante l'esecuzione di una build potrebbe compromettere

l'integrità del processo di cross-compilazione per tutti i threads. Ancora più critico

sarebbe il caso in cui sshlirpCI venisse arrestato forzatamente con sudo kill -9

<pid> prima che i thread potessero rimuovere i sorgenti dai rispettivi rootfs. In

questo scenario, al successivo avvio del demone, il main potrebbe pullare una nuova

versione dei sorgenti, mentre i therad builder, attestando l'esistenza della directory

.git dei sorgenti all'interno degli ambienti chroot-ati, non sovrascriverebbero i �le

presenti con quelli aggiornati, portando a un'incoerenza tra i sorgenti usati per la

build e quelli presenti sull'host.

Con�gurabilità granulare e possibilmente incoerente

Durante la prima fase di progettazione di sshlirpCI, si è pensato che fornire

all'utente la possibilità di con�gurare in modo granulare ogni aspetto dell'esecuzione

del demone potesse essere un vantaggio in termini di �essibilità e adattabilità a

diversi contesti di utilizzo.

Tuttavia, in seconda analisi, si è compreso che questa scelta avrebbe potuto portare

a situazioni di incoerenza e vulnerabilità.

In particolare, la possibilità di settare path innestati arbitrariamente avrebbe potuto

causare errori di esecuzione in caso di directory mancanti o non scrivibili.

Assenza di un killer

Un'altra limitazione di sshlirpCI riguarda l'impossibilità di interrompere forzata-

mente e comunque in modo pulito il demone durante le operazioni di build.

Infatti, come descritto nella sezione 3.2.1, dedicata all'interruzione sicura del de-

mone, sshlirpCI può essere arrestato solo durante la fase di sleep tra un'iterazione e

l'altra del main loop.

Ciò implica che l'utente, nel caso in cui desideri terminare l'esecuzione del demone
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durante una fase di build, debba attendere il completamento di tutte le operazioni

di cross-compilazione per ogni architettura target o, in alternativa, forzare l'inter-

ruzione del processo con sudo kill -9 <pid>, rischiando però di lasciare risorse di

build in uno stato incoerente, come descritto nella sezione precedente.

Sicurezza e privilegi

L'impiego di sudo in sshlirpCI, necessario sia per la creazione dei rootfs tramite

debootstrap che per l'esecuzione di chroot, espone il sistema host a potenziali

rischi di escalation dei privilegi.

SshlirpCI è stato sviluppato nel corso di Giugno 2025, in un contesto in cui sudo

non era ancora stato aggiornato alla versione 1.9.17p1 [45]. Prima di tale release,

sudo - anche nella sua versione appena precedente 1.9.17 - era a�etto da una vul-

nerabilità di sicurezza che riguardava proprio il suo uso combinato con chroot e le

sue equivalenti �ag -R e �-chroot [46].

Come descritto dalla voce Common Vulnerabilities and Exposures CVE-2025-32463

[46] e come confermato dal relativo commit di patch a sudo fdafc2c [47], l'ele-

vazione dei privilegi seguita da un'operazione di "spostamento radicale" della root

directory del processo comportava che sudo eseguisse prima il cambio di root e dopo

la risoluzione di utenti e gruppi servendosi del �le /etc/nsswitch.conf interno al

chroot, caricando così sull'host le librerie condivise speci�cate in esso, al momento

dell'esecuzione di lookup NSS (Name Service Switch).

Questa falla permetteva a un utente o a un processo non privilegiato malevolo di

de�nre un �le nsswitch.conf costum all'interno dell'ambiente chroot - qualora

quest'ultimo gli fosse accessibile - che facesse riferimento a moduli dinamici arbi-

trari - ad esempio una shared library che contenesse codice per lanciare una shell

con UID 0 - ottenendo così, grazie all'uso di sudo combinato a chroot da parte di

un programma innocuo, un'escalation di privilegi.

Sebbene questa vulnerabilità sia stata successivamente risolta con la release di sudo

1.9.17p1, l'uso di sudo in sshlirpCI, come illustrato dal precedente scenario, può

comunque rappresentare un punto debole dell'architettura, oltre a imporre all'utente

la necessità di disporre di privilegi root e a esporre il sistema host a rischi legati a

errori di con�gurazione e bugs.
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Complicazioni da script embedded e system()

Come anticipato nella sottosezione 3.2.1 dedicata all'illustrazione del meccanis-

mo di esecuzione degli script shell embedded in sshlirpCI, l'uso di tale approccio

ha sì privilegiato portabilità e indipendenza dal �lesystem ma compromettendo si-

curezza e prestazioni.

Infatti, sebbene l'invocazione di script temporanei avvenga direttamente dal bi-

nario sshlirp_ci_start con passaggio di parametri �ssati, escludendo quindi in

gran parte il rischio di Command Shell injection, il posizionamento di tali �le .sh

nella directory /tmp espone sshlirpCI a potenziali attacchi di tipo TOC/TOU (Time-

of-check/Time-of-use): in un sistema multi-utente, un processo malevolo potrebbe

intercettare la creazione di questi script temporanei e sostituirli con eseguibili o sym-

link arbitrari, portando, anche in questo caso, a un'escalation di privilegi o a danni

al sistema host.

Ad aumentare la vulnerabilità di questo approccio vi è inoltre l'uso di system(), il

quale lancia a run-time una shell che eredita tutte le variabili di ambiente dal pro-

cesso chiamante. In un ambiente "sporco" o compromesso, questo potrebbe portare

all'esecuzione di comandi il cui e�etto di�erisce da quello atteso, causando mal-

funzionamenti o, ancora peggio, permettendo l'esecuzione di codice malevolo. Per

questi motivi, l'impiego di system(), specialmente in programmi dotati di privilegi

elevati, è generalmente sconsigliato in favore di chiamate di sistema più sicure e

dirette, come execve() [48].

In�ne, la generazione di script shell "usa e getta" in combinazione con la loro ese-

cuzione tramite system() e la frammentazione architetturale di sshlirpCI, di cui si

è parlato poc'anzi, introduce un overhead signi�cativo in termini di performance, a

causa del numero elevato di operazioni di I/O e di apertura e chiusura di processi

�glio, che si ripercuote negativamente sul consumo di risorse di sistema e sul tempo

totale di build.

Tutte queste vulnerabilità e limitazioni sono state sorpassate grazie a una

re-ingegnerizzazione completa dell'architettura e a una considerevole sempli�cazione

dell'implementazione di sshlirpCI, le quali, con anche una maggiore attenzione alle

problematiche di sicurezza e coerenza, hanno portato allo sviluppo di Rootless ssh-

lirpCI.
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3.3 Evoluzione in Rootless sshlirpCI

Ciò che ha primariamente spinto sshlirpCI a evolversi in una soluzione più si-

cura, che si sarebbe poi dimostrata anche più leggera, scalabile e performante, è

stata l'introduzione del nuovo requisito di "rootlessness", rispetto alle già soddisfat-

te prerogative di compatibilità, produzione di binari e automazione, discusse nella

sezione 3.1.

A scopo di �nalizzare tale ambizione, con lo sviluppo di Rootless sshlirpCI, si sono

esplorate molteplici soluzioni escludenti l'uso di debootstrap e chroot tramite sudo,

di cui quella adottata ha assunto una struttura più robusta, snella, sicura ed e�-

cente, divenendo così la candidata perfetta per il ruolo di componente di base per

la successiva e �nale evoluzione in Rootless V 2CI.

3.3.1 Rimozione di sudo: impiego di fakeroot, proot e un-

share

Come anticipato nelle precedenti sezioni, l'impiego sia di debootstrap che di

chroot richiedeva, per l'utilizzo di sshlirpCI, il possesso di privilegi root sull'host.

Con lo scopo di eliminare questa dipendenza sono stati esplorati diversi tool alter-

nativi, di cui quelli mantenuti nella soluzione �nale sono stati fakeroot e unshare.

Uso di fakeroot per debootstrap

Per quanto riguarda la creazione di ambienti rootfs, l'uso di sudo risulta neces-

sario dal momento che - per con�gurazione standard - debootstrap non crea solo

directory e �le necessari ad emulare un �lesystem Debian minimale - scaricando pac-

chetti essenziali dal mirror speci�cato ed estraendoli nel base system - ma tenta anche

di impostare permessi e proprietà degli stessi in modo coerente con quelli previsti

da un'installazione Debian nativa, ossia con ownership impostata a root:root.

Inoltre debootstrap, usato singolarmente senza l'aggiunta di �ag opzionali né in

combinazione con altri tool di emulazione di privilegi, esegue anche operazioni di

mknod() per device essenziali. La funzione di cui si serve per fare ciò è

setup_devices() il cui contenuto prevede infatti di default la creazione di nodi

device attraverso setup_devices_simple():[49]

# create the static device nodes

setup_devices () {
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if doing_variant fakechroot; then

setup_devices_fakechroot

return 0

fi

case "$HOST_OS" in

kfreebsd*)

;;

freebsd)

;;

hurd*)

;;

*)

setup_devices_simple

;;

esac

}

...

setup_devices_simple () {

# The list of devices that can be created in a container

# comes from src/core/cgroup.c in the systemd source tree.

mknod -m 666 $TARGET/dev/null c 1 3

mknod -m 666 $TARGET/dev/zero c 1 5

mknod -m 666 $TARGET/dev/full c 1 7

mknod -m 666 $TARGET/dev/random c 1 8

mknod -m 666 $TARGET/dev/urandom c 1 9

mknod -m 666 $TARGET/dev/tty c 5 0

mkdir $TARGET/dev/pts/ $TARGET/dev/shm/

ln -s pts/ptmx $TARGET/dev/ptmx

ln -s /proc/self/fd $TARGET/dev/fd

ln -s /proc/self/fd/0 $TARGET/dev/stdin

ln -s /proc/self/fd/1 $TARGET/dev/stdout

ln -s /proc/self/fd/2 $TARGET/dev/stderr

}

Debootstrap quindi non nasce con il solo scopo di generare in user-space un �lesys-

tem tree "�ttizio" per l'esecuzione di processi isolati tramite l'impiego di risorse

dell'host, ma è stato pensato per essere impiegato come strumento preliminare all'in-

stallazione e alla con�gurazione di sistemi Debian completi, comprensivi di device,
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dischi partizionati e bootloader.

Operazioni di questo tipo richiedono necessariamente privilegi di amministrazione e

operano su risorse del rootfs debootstrap-ato che, per coerenza e correttezza, devono

quindi essere di proprietà dell'utente root.

Perciò, essendo debootstrap di per sé un tool che non svolge operazioni root-

required - se non il setup di device minimali - ma che richiede tali privilegi princi-

palmente per conformità, si è pensato di poter aggirare il vincolo sui permessi dei

�le creati impiegando fakeroot e trascurare completamente la creazione dei nodi

device, i quali non sarebbero stati strettamente necessari per l'esecuzione di processi

chroot-ati eseguibili in user-space, quali la cross-compilazione di sshlirp.

fakeroot infatti, attraverso una libreria condivisa

/usr/lib/*/libfakeroot-*.so, caricata tramite il meccanismo di LD_PRELOAD, in-

tercetta chiamate di sistema relative alla manipolazione di �le, quali getuid(),

chown() e stat(), e le sostituisce con implementazioni "simulate" che permettono

a un processo di operare come se avesse privilegi di root, non modi�candone l'UID

né alterando i permessi dei �le sul �lesystem host, bensì mantenendo una tabella di

mapping interna che associa �le e directory a UID, GID e permessi "�ttizi" [50].

L'astrazione che fakeroot permette di introdurre sulle operazioni svolte da

debootstrap è inoltre nativamente supportata da quest'ultimo, il quale, in ambi-

enti con "privilegi simulati", trascura automaticamente la creazione dei device con

mknod, sostituendola con setup_devices_fakechroot() che si limita a creare dei

link simbolici tra la directory /dev dell'host e quella del rootfs debootstrap-ato [49]:

setup_devices_fakechroot () {

rm -rf "$TARGET/dev"

ln -s /dev "$TARGET"

}

L'impiego di fakeroot ha quindi permesso di eseguire debootstrap senza privilegi

di amministrazione, generando sì rootfs con �le e directory di proprietà dell'utente

corrente e privi di device "reali", ma superando comunque il primo ostacolo verso il

raggiungimento di un modello completamente rootless per sshlirpCI.
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Esplorazione di soluzioni rootless per chroot

L'altro grande ostacolo che impediva ancora a sshlirpCI di soddisfare il requisi-

to di rootlessness riguardava la necessità di eseguire processi isolati all'interno dei

rootfs debootstrap-ati.

Un primo tentativo disinformato di eseguire tale operazione senza privilegi di ammin-

istrazione - e quindi senza l'uso diretto di chroot - si è basato sulla sperimentazione

di fakeroot anche per questa fase del processo di build.

Tuttavia, l'assunzione che tale tool potesse permettere di astrarre anche le chiamate

di sistema relative al cambio di root directory si è presto scontrata con ciò che è anche

u�cialmente documentato nel manuale dello stesso fakeroot. Questo strumento,

come anticipato, non concede alcun tipo di capability aggiuntiva ai processi che es-

egue. Di conseguenza, un operazione di chroot, anche se wrappata da fakeroot,

fallirebbe nel caso in cui l'utente non disponga della capability CAP_SYS_CHROOT

[50, 51].

A seguito di questa constatazione, si è deciso di esplorare un'altra soluzione root-

less per l'emulazione di chroot: proot.

Questo strumento permette di eseguire processi in ambienti isolati senza richiedere

privilegi di amministrazione, sfruttando il meccanismo di ptrace per intercettare e

manipolare le chiamate di sistema e�ettuate dal processo �glio.

Di fatto proot non esegue un vero e proprio cambio di root directory, ma piuttosto

capta le chiamate di sistema che fanno riferimento a path assoluti e le riscrive in

modo che puntino alla directory speci�cata come "nuova root" [52].

Questo tool in user-space però, oltre ad avere grosse limitazioni legate alla sua natura

intrinseca di traduttore e manipolatore di systemcalls piuttosto che di meccanismo

di isolamento nativo del kernel, ha mostrato, nel corso della sua sperimentazione

alternativa a chroot, diversi problemi di compatibilità con Qemu User-Mode Emu-

lation e rootfs di architettura guest di�erente da quella host.

Infatti proot non solo ignora la presenza di qemu-<arch>-static tra gli interpreti

registrati tramite binfmt_misc - rendendo quindi necessaria la sua esplicita invo-

cazione tramite �ag -q - ma presenta anche problemi di risoluzione dei path, mount,

e gestione delle variabili di ambiente e delle librerie condivise [53, 54], rendendo com-

plicato, macchinoso, poco performante e per niente ripetibile il suo impiego in un

contesto di continuous integration per la cross-compilazione di sshlirp.
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Per questi motivi, dopo un ulteriore approfondimento delle alternative rootless

a chroot, si è deciso di adottare un approccio di�erente.

Upgrade verso gli user namespaces e l'impiego di unshare

L'isolamento di UID, GID, capabilities e privilegi o�erto dall'impiego degli user

namespaces del kernel Linux [55] ha rappresentato la soluzione de�nitiva al nuovo

requisito di rootlessness per sshlirpCI e funzionalmente alternativa all'impiego sia

di chroot che di proot.

Questo potente meccanismo di sandbxing permette infatti ad utenti non privilegiati

di guadagnare permessi di amministrazione all'interno di ambienti con�nati, senza

avere poteri aggiuntivi sul sistema host [55].

Sebbene questa funzionalità sia supportata nativamente dal kernel Linux per la mag-

gior parte delle distribuzioni, alcune di queste - al �ne di garantire una maggiore

sicurezza - applicano delle restrizioni aggiuntive. Ad esempio, su host Ubuntu 23.10

o di versione >= 24.04 LTS, il kernel è compilato di default con l'opzione AppArmor

apparmor_restrict_unprivileged_userns settata a 0, impedendo così agli utenti

non privilegiati di creare user namespaces [56].

Purtroppo in casi particolari come quest'ultimo, l'abilitazione degli user namespaces

per utenti non privilegiati richiede necessariamente l'intervento dell'admin [56].

Il tool che incarna al meglio l'uso degli user namespaces per l'esecuzione di pro-

cessi isolati, e che è stato impiegato nella soluzione �nale di Rootless sshlirpCI, è

unshare, il quale, con un ampia gamma di opzioni, permette di creare nuovi names-

paces non privilegiati per di�erenti risorse di sistema [57].

Combinazione delle soluzioni adottate: rootless-debootstrap-wrapper

La fusione di fakeroot e debootstrap combinata alla sostituzione di chroot

con unshare ha portato all'impiego di un nuovo �usso di operazioni per la creazione

di ambienti rootfs isolati e non privilegiati, che ha costituito la base per lo sviluppo

di Rootless sshlirpCI.

Grazie allo sviluppo di Alex Bradbury [58, 59] è stato infatti possibile riciclare, al-

l'interno di Rootless sshlirpCI, una sua ambiziosa e brillante implementazione della

soluzione, di cui si è poc'anzi discusso, "fakeroot + debootstrap + unshare -

chroot", racchiusa in un wrapper script denominato

rootless-debootstrap-wrapper [59].
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Il cuore di questo componente, integralmente riportato nei sorgenti di Rootless ssh-

lirpCI, si occupa di [58, 59]:

1. Avviare la prima fase di debootstrap (�-foreign) wrappato da fakeroot -s

all'interno della directory e per l'architettura, la release e il mirror dati in

input;

2. Estrarre le variabili di ambiente di fakeroot, salvate durante lo step prece-

dente, all'interno della directory target;

3. Creare uno script _enter interno alla directory target, il quale permetta all'u-

tente di accedere a un usernamespace radicato nella directory target;

4. Accedere al rootfs parziale e completarne la costruzione attraverso la seconda

fase di debootstrap (�-second-stage).

#!/bin/sh

# Copyright Muxup contributors.

# Distributed under the terms of the MIT-0 license,

# see LICENSE for details.

# SPDX-License-Identifier: MIT-0

TARGET_DIR=""

SUITE=""

MIRROR=""

ARGSTR=""

...

echo "@@@@@@@@@@ [1] Starting first stage debootstrap @@@@@@@@@@"

TMP_FAKEROOT_ENV=$(mktemp)

fakeroot -s "$TMP_FAKEROOT_ENV" debootstrap $ARGSTR || error "Stage 1

debootstrap failed"

mv "$TMP_FAKEROOT_ENV" "$TARGET_DIR/.fakeroot.env"

...

echo "@@@@@@@@@@ [2] Extracting fakeroot for target @@@@@@@@@@"

cd "$TARGET_DIR" || error "cd failed"

fakeroot -i .fakeroot.env -s .fakeroot.env bash -e <<'EOF' ||

error "Failed to extract fakeroot for target"

for deb in ./var/cache/apt/archives/{libfakeroot_,fakeroot_}*.deb; do

...

done

ln -s fakeroot-sysv ./usr/bin/fakeroot

EOF
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cd "$OLDPWD" || error "cd failed"

echo "@@@@@@@@@@ [3] Creating _enter script @@@@@@@@@@"

cat <<'EOF' > "$TARGET_DIR/_enter"

#!/bin/sh

export PATH=/usr/sbin:$PATH

FAKEROOTDONTTRYCHOWN=1 unshare -fpr --mount-proc -R

"$(dirname -- "$0")" \

fakeroot -i .fakeroot.env -s .fakeroot.env "$@"

EOF

...

echo "@@@@@@@@@@ [4] Starting second stage debootstrap @@@@@@@@@@"

"$TARGET_DIR/_enter" debootstrap/debootstrap --second-stage

--keep-debootstrap-dir || error "Stage 2 debootstrap failed"

...

L'adozione di questo wrapper ha permesso a Rootless sshlirpCI di soddisfare il req-

uisito di rootlessness e, grazie alla sua forma pulita e robusta, è stato d'ispirazione

per l'avvio di un processo di sempli�cazione e ristrutturazione dell'architettura.

3.3.2 Ottimizzazioni e architettura �nale di Rootless sshlirp-

CI

Il superamento delle vulnerabilità e limitazioni di sshlirpCI legate all'uso di sudo,

descritte nella sezione 3.2.2, ha acceso l'ambizione di risolvere anche gli altri vincoli

architetturali e implementativi, portando a un considerevole miglioramento generale

del motore di continuous integration per la cross-compilazione di sshlirp.

Infatti, sebbene la struttura triangolare portante Loader - Main Loop - Thread

Builder alla base di sshlirpCI sia rimasta invariata anche in questa evoluzione, molti

dettagli sono stati re-ingegnerizzati a favore di un disegno e una realizzazione più

robusti, sicuri e performanti.

Oltre alla rootlessness nativa, le principali features di Rootless sshlirpCI, che sono

state sviluppate in parallelo ai punti deboli di sshlirpCI, riguardano principalmente

4 aspetti:

1. Architettura monolitica e compatta;

2. Gestione sicura, coerente e idempotente delle risorse di build;
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3. Con�gurabilità esterna del guscio di build e sviluppo interno delle strutture

innestate;

4. Introduzione di un killer per l'interruzione sicura del demone in qualsiasi fase

di esecuzione;

5. Sempli�cazione e sicurezza del sistema di esecuzione degli script.

Compattezza dell'architettura

La struttura di Rootless sshlirpCI si basa sull'idea che Quae sunt Thread-is,

Thread-i, ovvero tutto ciò che sia di competenza dei thread builder debba essere

svolto da questi il più compattamente possibile e con minor consumo di risorse.

In altre parole tutte le operazioni connesse all'esecuzione dei worker e "privatizzabili"

in un loro corrispondente ambiente di lavoro, non devono risiedere all'interno del

main, il quale, a causa della sua natura serializzata, le svolgerebbe più lentamente

impiegando mezzi aggiuntivi non necessari.

Questa linea guida, assunta all'inizio della fase di progettazione, ha portato ha due

e�etti immediati:

1. Eliminazione della logica di gestione dei sorgenti basata sulla combinazione di

clone iniziale sull'host, copia e rimozione post-build nei rootfs;

2. Uni�cazione delle operazioni di creazione dei rootfs, reperimento in essi dei

sorgenti o di loro aggiornamenti, build e delivery dei binari statici di sshlirp

in un unico script invocato da ogni thread builder.

Il primo punto, sebbene privi Rootless sshlirpCI di una gestione centralizzata ed eco-

nomica dal punto di vista dello storage e del tra�co di rete, solleva l'intero sistema

non solo da inutili operazioni di I/O ma anche da tutte le vulnerabilità e pericolosità

di incoerenza discusse ampiamente nella sezione 3.2.2.

Il secondo punto, invece, aggrega sì molte operazioni in un'esecuzione poco gran-

ulare e quindi meno scalabile, ma evita che vengano aperti e chiusi troppo fre-

quentemente processi �glio per l'esecuzione dei componenti .sh e al coltempo che

sia il main a occuparsi sia del reperimento dei sorgenti di sshlirp e libslirp che

dello spostamento dei binari �nali nella target directory versionata, entrambi com-

piti di competenza dei thread in quanto coinvolgono directory e �le "privatizzabili"

e contestuali alla loro esecuzione.

Questa ristrutturazione architetturale, visibile dal diagramma nella �gura 3.3, è sta-

ta quindi implementata attraverso lo spostamento di tali operazioni in un unico
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componente script denominato cross_compilation_engine.sh che contenesse an-

che il setup dei rootfs tramite l'invocazione di rootless-debootstrap-wrapper e

l'esecuzione della build di sshlirp e libslirp.

Main setupper

(1...N)

Main loop

Thread 1

Setup dei thread per n architetture

Join dei
thread e
merge
dei log

Sleep e gestione delle interruzioni

Creazione
dei rootfs

Clone/pull
sorgenti

Cross-
compilazione

Move dei
binari finali

Thread 1

Creazione
dei rootfs

Clone/pull
sorgenti

Cross-
compilazione

Move dei
binari finali

Figura 3.3: Diagramma architetturale di Rootless sshlirpCI

La drastica uni�cazione delle operazioni ha poi permesso di apportare ulteriori

ottimizzazioni, quali:

� far convergere in un unico log �le sull'host, dedicato a un singolo thread, i
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logs prodotti dall'esecuzione di tale worker sia interna che esterna al rootfs

corrispondente;

� gestire il sistema di sincronizzazione per la creazione dei rootfs con un lock �le

globale (piuttosto che con un mutex c), generato appena un'istruzione prima

dell'invocazione di rootless-debootstrap-wrapper e rilasciato subito dopo

la sua conclusione, permettendo così ad ogni thread di minimizzare il tempo

di attesa per l'acquisizione del lock;

� amministrare la logica di versionamento della directory target attraverso l'es-

trazione del tag git corrente di sshlirp all'interno dello stesso script di build,

evitando così di dover passare tale informazione da un componente di update

.sh a un �le di versioning, al thread builder e in�ne al main.

Tutti questi perfezionamenti sono stati quindi implementati all'interno di

cross_compilation_engine.sh, il cui codice principale è riportato di seguito:

#!/bin/bash

...

debian_arch=$1

sshlirp_build_dir=$2

target_host_dir=$3

thread_log_file=$4

...

pull_round=1

...

exec >> "$thread_log_file" 2>&1

...

# Directory assoluta in cui risiede questo script

SCRIPT_DIR="$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")"

>/dev/null 2>&1 && pwd)"

WRAPPER="$SCRIPT_DIR/rootless-debootstrap-wrapper.sh"

...

# Lock file globale per la sola fase di creazione rootfs

LOCKFILE="$sshlirp_build_dir/.chroot_setup.lock"

if [ ! -d "$sshlirp_build_dir/$debian_arch-chroot" ]; then

exec {lockfd}> "$LOCKFILE"

flock "$lockfd"

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Creating rootfs at $sshlirp_build_dir/$debian_arch-chroot"
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"$WRAPPER" --target-dir="$sshlirp_build_dir/$debian_arch-chroot"

--arch="$debian_arch" --suite "$suite" --include=build-essential

...

pull_round=0

exec {lockfd}>&-

fi

if [ $pull_round -eq 0 ]; then

$sshlirp_build_dir/$debian_arch-chroot/_enter <<EOF

echo "[From cross_compilation_engine.sh inside $debian_arch-chroot

rootfs] First pull round: Installing required packages"

apt install -qq --assume-yes git meson cmake pkg-config

libglib2.0-dev libvdeplug-dev

EOF

...

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Cloning sshlirp and libslirp repositories"

(cd $sshlirp_build_dir/$debian_arch-chroot/root;

git clone https://gitlab.freedesktop.org/slirp/libslirp.git

)

...

(cd $sshlirp_build_dir/$debian_arch-chroot/root;

git clone https://github.com/virtualsquare/sshlirp.git

)

...

fi

if [ $pull_round -eq 1 ]; then

$sshlirp_build_dir/$debian_arch-chroot/_enter <<EOF

echo "[From cross_compilation_engine.sh inside

$debian_arch-chroot rootfs] installing updates"

apt-get update

apt-get upgrade -qq --assume-yes

EOF

...

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Pulling latest changes for sshlirp and libslirp"

(cd $sshlirp_build_dir/$debian_arch-chroot/root/sshlirp; git pull)

...

(cd $sshlirp_build_dir/$debian_arch-chroot/root/libslirp; git pull)
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...

fi

cd $sshlirp_build_dir/$debian_arch-chroot/root/sshlirp

current_tag=$(git describe --tags --abbrev=0)

if [ ! -n "$current_tag" ]; then

current_tag="unstable"

fi

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Starting build process"

$sshlirp_build_dir/$debian_arch-chroot/_enter << TAG

echo "[From cross_compilation_engine.sh inside $debian_arch-chroot

rootfs] Building libslirp"

cd /root/libslirp

meson build . --default-library=both

ninja -C build install

TAG

...

$sshlirp_build_dir/$debian_arch-chroot/_enter << TAG

echo "[From cross_compilation_engine.sh inside $debian_arch-chroot

rootfs] Building sshlirp"

mkdir -p /root/sshlirp/build

cd /root/sshlirp/build

cmake ..

make

TAG

...

# Verifica che il binario sia stato staticamente linkato

...

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Copying sshlirp binaries to $target_host_dir/v-$current_tag"

if [ ! -d "$target_host_dir/v-$current_tag" ]; then

mkdir -p "$target_host_dir/v-$current_tag"

fi

cp $binary "$target_host_dir/v-$current_tag"

exit 0

Lo spostamento di tutta la logica di esecuzione dei thread builder in questo singolo

componente .sh ha permesso di ri�esso di alleggerire notevolmente il corpo "esterno"
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dei worker, contenuto nel �le worker.c.

void *build_worker(void *arg_ptr) {

thread_args_t* args = (thread_args_t*)arg_ptr;

int *result = malloc(sizeof(int));

...

int script_status = execute_build_script_for_thread(

args->arch,

args->build_dir,

args->target_dir,

args->thread_log_file,

test_enabled,

thread_log_fp

);

if (script_status != 0) {

fprintf(thread_log_fp, "[Thread %s] Compile script failed

with status: %d\n", args->arch, script_status

);

*result = 1;

}

...

return result;

}

Persistenza delle risorse

L'immediato side e�ect della ristrutturazione dell'architettura di Rootless ssh-

lirpCI è stata la risoluzione delle criticità legate all'amministrazione non coerente

delle risorse di build in sshlirpCI, già criticata nella sezione 3.2.2.

Infatti, lo spostamento della maggior parte delle operazioni "thread-ful" - compresa

quella di setup dei rootfs - all'interno di un unico script esguito interamente da ogni

worker e per ogni iterazione del main loop, sebbene abbia introdotto una ridondanza

logica nei check di esistenza e validità delle risorse, ha permesso di garantire l'in-

tegrità di quest'ultime anche per le iterazioni di esecuzione avviata, le quali, sempre

grazie all'uso del pull_round simulato dai thread e grazie ai check su di esso e

sull'esistenza dei rootfs, rimangono anche idempotenti.
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Non modi�cabilità dell'albero del �lesystem interno alle risorse di build

Sulla scia della sempli�cazione architetturale e dell'ottimizzazione delle delle

risorse introdotta dalle due precedenti sottosezioni, si è deciso di scremare anche

il grado di con�gurabilità applicabile dall'utente esterno al sistema di continuous

integration.

Infatti, come già descritto nella sezione 3.2.2, sshlirpCI permetteva, troppo lasca-

mente, di con�gurare l'ambiente di build modi�cando arbitrariamente le variabili

contenute nel �le ci.conf, le quali però sarebbero poi state utilizzate per costruire

�le e directory anche innestate.

Questo approccio, sebbene avesse il pregio di essere estremamente �essibile, presen-

tava il difetto di esporre il sistema a potenziali errori di con�gurazione e a incon-

gruenze tra le variabili settate e l'e�ettiva struttura del �lesystem dell'host.

Per questo motivo, in Rootless sshlirpCI, si è deciso di limitare la con�gurabilità es-

terna alle sole variabili BUILD_DIR, TARGET_DIR, POLL_INTERVALL e ARCHITECTURES.

BUILD_DIR=/home/user/rootless_sshlirpCI

TARGET_DIR=/home/user/rootless_sshlirpCI/binaries

POLL_INTERVAL=3600 # secondi -> 1 ora

ARCHITECTURES=amd64,arm64,armhf,riscv64

. La costruzione dei path delle risorse di build più "interne" è stata invece delegata

all'esecuzione dei setupper del main e dei threads.

int main() {

// 0. Caricamento delle variabili dal file di configurazione

...

if(conf_vars_loader(

archs_list,

&num_archs,

build_dir,

target_dir,

&poll_interval) != 0

) {

fprintf(stderr, "Failed to load configuration

variables. Exiting.\n"

);

return 1;
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}

printf("Configuration loaded successfully.\n");

// Variabili da passare ai threads e costruibili dalle

// precedenti

char release_file[CONFIG_ATTR_LEN];

char log_dir[CONFIG_ATTR_LEN];

char log_file[CONFIG_ATTR_LEN];

char thread_log_dir[CONFIG_ATTR_LEN];

snprintf(release_file, sizeof(release_file), "%s/release.txt",

build_dir

);

snprintf(log_dir, sizeof(log_dir), "%s/log", build_dir);

snprintf(log_file, sizeof(log_file), "%s/log/main_sshlirp.log",

build_dir

);

snprintf(thread_log_dir, sizeof(thread_log_dir), "%s/log/threads",

build_dir

);

...

daemonize();

...

// 3. Creazione dei file principali (se non esistono):

// - la directory fondamentale

// (/home/user/rootless_sshlirpCI)

// - il file di release

// (/home/user/rootless_sshlirpCI/release.txt)

// - la directory dei log principali

// (/home/user/rootless_sshlirpCI/log)

// - il file di log principale

// (/home/user/rootless_sshlirpCI/log/main_sshlirp.log)

// - la directory dei log dei thread

// (/home/user/rootless_sshlirpCI/log/threads)

...

// 5. Avvio del loop principale nel demone

while (1) {

...

// 7.1. Preparazione dei thread

pthread_t threads[num_archs];
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thread_args_t args[num_archs];

// 7.2. Avvio dei thread di build

for (int i = 0; i < num_archs; i++) {

// Copia sicura del nome dell'architettura

strncpy(args[i].arch, archs_list[i], sizeof(args[i].arch) - 1);

args[i].arch[sizeof(args[i].arch) - 1] = '\0';

// Copia sicura del build_dir

snprintf(args[i].build_dir, sizeof(args[i].build_dir),

"%s", build_dir

);

// Copia sicura della target_dir

snprintf(args[i].target_dir, sizeof(args[i].target_dir),

"%s", target_dir

);

// Copia sicura del thread_log_file (ossia il log file su cui

// scrivera' il thread)

snprintf(args[i].thread_log_file, sizeof(args[i].thread_log_file),

"%s/%s-thread.log", thread_log_dir, archs_list[i]

);

// Creazione del file di log del thread

FILE* thread_log_fp = fopen(args[i].thread_log_file, "a");

...

if (pthread_create(&threads[i], NULL, build_worker, &args[i])

!= 0

) {

fprintf(log_fp, "Error: Error creating thread for

architecture %s.\n", args[i].arch

);

return 1;

} else {

fprintf(log_fp, "Thread created successfully for

architecture %s.\n", args[i].arch

);

}

}

...

}

}



3.3 Evoluzione in Rootless sshlirpCI 71

Implementazione di rootless_sshlirp_ci_instant_killer

Un'altra importante aggiunta a Rootless sshlirpCI riguarda l'introduzione di un

meccanismo sicuro per l'interruzione del demone in qualsiasi fase della sua ese-

cuzione.

Infatti, come seposto nella sezione 3.2.2, sshlirpCI non prevedeva alcun modo per

terminare in sicurezza il demone una volta avviato, se non attraverso l'uccisione

forzata del processo stesso tramite kill -9 <PID>.

Questo approccio, oltre a essere poco elegante, non permetteva di eseguire prelim-

inarmente operazioni di cleanup o di rilascio delle risorse in uso, rischiando così di

impedire il riavvio del demone.

Per colmare questa lacuna è stato sviluppato un componente accessorio, la cui com-

pilazione tramite cmake dà origine all'eseguibile

rootless_sshlirp_ci_instant_killer, e che, dopo un primo tentativo di inter-

ruzione tramite SIGTERM, ricorre all'invio del segnale SIGKILL al demone di Rootless

sshlirpCI e ne attende, per un numero di secondi �ssato, la terminazione de�nitiva.

#define TERM_WAIT_SECONDS 10

#define CHECK_INTERVAL_MS 200

#define KILL_WAIT_SECONDS 2

...

int main(void) {

...

// Primo tentativo: SIGTERM

// (terminazione sicura -> permette al codice di chiudere

// risorse se intercetta il segnale)

if (kill(daemon_pid, SIGTERM) != 0) {

fprintf(stderr, "Errore nell'invio di SIGTERM a %d: %s\n",

daemon_pid, strerror(errno)

);

} else {

printf("SIGTERM inviato. Attendo fino a %d secondi...\n",

TERM_WAIT_SECONDS

);

struct timespec ts;

ts.tv_sec = 0;

ts.tv_nsec = CHECK_INTERVAL_MS * 1000000L;

int waited_ms = 0;
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int max_wait_ms = TERM_WAIT_SECONDS * 1000;

while (waited_ms < max_wait_ms) {

if (!process_alive(daemon_pid)) {

printf("Daemon terminato dopo SIGTERM (%d ms).\n", waited_ms);

goto cleanup;

}

nanosleep(&ts, NULL);

waited_ms += CHECK_INTERVAL_MS;

}

printf("Il daemon non e' terminato entro %d secondi dopo

SIGTERM.\n", TERM_WAIT_SECONDS

);

}

// Escalation: SIGKILL

// Se il processo e' ancora vivo, ripeto il processo di invio

// del segnale SIGKILL e attesa di KILL_WAIT_SECONDS

...

cleanup:

// Pulizia pid e state file

...

return 0;

}

Esecuzione diretta degli script tramite system_safe()

Per eliminare le vulnerabilità connesse alla generazione a run-time di script, al

loro posizionamento in /tmp e alla loro esecuzione tramite system(), di cui si è già

ampiamente discusso nella sezione 3.2.2, si è deciso di tornare a considerare l'ese-

cuzione diretta degli script, anche se a discapito dei vantaggi o�erti dalla precedente

soluzione e resi noti nella sezione 3.2.1.

Infatti, anche a seguito della drastica riduzione di script esterni, si è pensato che la

loro esecuzione diretta e il loro salvataggio in �le .sh permanenti all'interno della

stessa directory dei sorgenti di Rootless sshlirpCI, avrebbero non solo potenziato le

prestazioni del demone ma anche assicurato che non potessero essere manomessi da

altri utenti o processi in esecuzione sullo stesso host ma privi dei permessi neces-

sari (assumendo che l'utente che intenda eseguire Rootless sshlirpCI abbia clonato

il repository corrispondente in una directory di sua proprietà e non abbia spostato
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la directory script/ in una destinazione accessibile ad altri utenti).

Per implementare questa soluzione si è reso necessario l'impiego di variabili globali,

che contenessero il path assoluto del principale script di build

cross_compilation_engine.sh, de�nite all'interno del �le

src/includes/types/types.h:

#ifndef TYPES_H

#define TYPES_H

#define ROOTLESS_SSHLIRPCI_SOURCE_DIR "path/to/rootless_sshlirpCI"

...

#define DEFAULT_CONFIG_PATH ROOTLESS_SSHLIRPCI_SOURCE_DIR "/ci.conf"

#define CROSS_COMPILATION_SCRIPT_PATH

ROOTLESS_SSHLIRPCI_SOURCE_DIR "/script/cross_compilation_engine.sh"

...

#endif // TYPES_H

Inoltre, mentre l'impiego di system() introduceva ulteriori fragilità in sshlirpCI, in

Rootless sshlirpCI la garanzia di non incorrere in attacchi di command injection o in

errori dovuti ad ambienti "sporchi" o corrotti, è stata data dall'uso di una funzione

di utilità denominata system_safe().

Questo metodo, de�nito nel �le execs.h del progetto Virtualsquare s2argv-execs

[60] e implementato come macro del metodo _system_common(), imita il comporta-

mento di system() seguendo però i suggerimenti guida di Debian per l'esecuzione

sicura di comandi di shell da codice C, ossia tramite la creazione di argv e l'invo-

cazione diretta di execv() [48].

Sebbene l'architettura �nale di Rootless sshlirpCI e i suoi perfezionamenti ab-

biano permesso di superare tutti i limiti di sshlirpCI, questo sistema di cross-

compilazione aggiornato e sempli�cato rimaneva ancora privo di un'importante com-

ponente utile alla veri�ca e alla distribuzione dei binari prodotti: il testing auto-

matico.

3.4 Testing dei binari

La crescente aderenza di Rootless sshlirpCI all'obbiettivo di un'infrastruttura

che permettesse la consegna di binari statici di sshlirp per port Debian multipli,

pronti per essere distribuiti e impiegati su host remoti per usufruire delle funzionalità
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native di sshlirp stesso, ha spinto a integrare nel sistema già esistente un componente

aggiuntivo che testasse automaticamente gli eseguibili prodotti, al �ne di garantire

non solo portabilità e compabilità, ma anche correttezza funzionale.

3.4.1 L'uso di vdens

Come già anticipato nella sezione 1.2, sshlirp, una volta copiato sul server re-

moto, che fungerà quindi da gateway, NAT e VPN provider, è pensato per essere

"pluggato", per mezzo di libvdeplug4, a un network namespace creato sul client

VDE tramite vdens.

L'immagine sottostante rappresenta lo scenario di utilizzo di vdens combinato a

slirp, pensato per dare connettività esterna a un nodo virtuale "pluggandone" un

network namespace VDE a un'istanza di slirp in esecuzione sul medesimo host.

Figura 3.4: Scenario di utilizzo di slirp con vdens per connettività esterna su uno

stesso host

Sshlirp non fa altro che spostare il provider, replicando quindi lo scenario rappre-

sentato in �gura, con la sola di�erenza di esecuzione su un server remoto piuttosto

che sullo stesso host del client VDE, fornendo conseguentemente un servizio di VPN

e NAT istantanei.

Normalmente, per ottenere questo risultato, come indicato dal repository u�ciale

di sshlirp [7], si svolgono in sequenza le seguenti operazioni:

# [1] Copia dell'eseguibile statico di sshlirp sull'host remoto:

$ scp sshlirp-x86_64 remote.mydomain.org:/tmp/sshlirp

# [2] Creazione del network namespace VDE sul client e

# connessione di esso al server sshlirp:

$ vdens -R 9.9.9.9 cmd://"ssh remote.mydomain.org /tmp/sshlirp"

# [3] Configurazione dell'indirizzo ip (garantita dal servizio di
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# DHCP offerto sempre da sshlirp):

$ /sbin/udhcpc -i vde0

# [4] Verifica della connettivita' esterna:

$ ping -c 4 8.8.8.8

3.4.2 Considerazioni sulle di�coltà di testing dei binari in

Rootless sshlirpCI

Lo scopo di automatizzare la fase di testing dei binari prodotti da Rootless ssh-

lirpCI, non ha trovato una soluzione immediata.

La natura stessa del progetto prevede infatti che Rootless sshlirpCI stesso possa

essere eseguito da chiunque, richiedendo i soli prerequisiti di possesso di un host

Debian-based e di connettività a internet.

La necessità di testare i binari prodotti invece, nello scenario standard esposto nel-

la precedente sottosezione, richiede anche l'accessibilità a un host remoto tramite

SSH.

Per aggirare questo vincolo, si è deciso di inserire testing automatico di sshlirp

tramite una procedura più "(vde + slirp)-like", ossia mantenendo lo stack simulato

da sshlirp sullo stesso host su cui esegue Rootless sshlirpCI e avviandolo tramite l'in-

terfaccia cmd:// dopo la creazione di un network namespace VDE tramite vdens,

connesso all'interfaccia stessa.

Infatti, come lasciato intuire nella wiki di Virtualsquare [1], l'avvio di un network

namespace VDE collegato, grazie all'interfaccia cmd://, a sshlirp, permette di far

�uire i pacchetti della rete virtuale sul canale di stdin/stdout verso il processo di

sshlirp stesso, il quale procederà a raccoglierli e restituire le risposte corrispondenti.

Questa scelta ha introdotto un problema addizionale, che però è stato risolto più

rapidamente e con il riciclo di tecnologie già impiegate.

Il tentativo di avviare più eseguibili di sshlirp cross-compilati per port multipli su uno

stesso host, infatti, ha in un primo momento portato a pensare che fosse necessario

svolgere la fase di test per ogni architettura internamente al rootfs corrispondente,

in modo da garantire la corretta esecuzione del binario nel suo ambiente nativo.

Questa supposizione però si è subito scontrata con quanto detto, nella sezione 3.3.1,

riguardo le limitazioni trascurabili introdotte da fakeroot durante l'invocazione di

debootstrap.

Infatti, l'assenza di device di rete "reali" negli ambienti chroot non privilegiati ha
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impedito l'invocazione di vdens e le operazioni di test basate su ping; d'altra parte

il requisito imprescindibile di rootlessness ha costretto a escludere la creazione di

questi in un secondo momento.

Tutti questi apparenti limiti sono stati però superati dalla memoria di Qemu

User-Mode Emulation.

Infatti, il semplice riutilizzo dei binari qemu-<arch>-static e la loro registrazione

come interpreti per mezzo di binfmt_misc hanno permesso di dedurre che la fase di

testing di sshlirp potesse essere eseguita direttamente sull'host, senza dover ricorrere

ai rootfs.

3.4.3 Soluzione adottata

A seguito delle precedenti scelte e deduzioni, si è quindi deciso di inserire nel �le

src/includes/types/types.h una variabile aggiuntiva TEST_ENABLED e, in caso di

abilitazione del testing tramite questa, di eseguire le operazioni esposte nella prece-

dente sotto-sezione direttamente a termine del componente principale dell'esecuzione

dei thread worker cross_compilation_engine.sh.

#!/bin/bash

...

debian_arch=$1

sshlirp_build_dir=$2

target_host_dir=$3

thread_log_file=$4

test_enabled=$5

...

pull_round=1

...

exec >> "$thread_log_file" 2>&1

...

# Fase di testing sull'host

if [ "$test_enabled" == "true" ]; then

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Running test for $binary"

# Create a vde network namespace and connect it

# to sshlirp through cmd://

vdens cmd://"$binary" /bin/bash <<EOF
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ip a

# Configure the vde0 interface with a static IP

ip addr add 10.0.2.15/24 dev vde0

ip link set vde0 up

# Ping the sshlirp default gateway to test connectivity

ping -c 4 10.0.2.2

EOF

if [ $? -eq 0 ]; then

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Test for $binary passed"

else

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Test for $binary failed"

fi

fi

echo "[From cross_compilation_engine.sh for $debian_arch arch]

Copying sshlirp binaries to $target_host_dir/v-$current_tag"

...

exit 0

Il raggiungimento di quest'ultimo obbiettivo ha completato il sistema di continuous

integration di sshlirp, portandolo a un alto livello di maturità e di aderenza agli

scopi pre�ssati.

La tentazione di scalare orizzontalmente Rootless sshlirpCI al �ne di ottenere un

motore di cross-compilazione sincrono per più progetti Virtualsquare - che avessero

gli stessi requisiti di build - e altamente disponibile, performante e sicuro è stata

soddisfatta dal successivo sviluppo di Rootless V 2CI.
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Capitolo 4

Rootless V 2CI e integrazione ELK

In quest'ultima fase di sviluppo ha preso forma, a partire dal lavoro svolto prece-

dentemente, il disegno di un sistema di continuous integration generalizzato per pro-

getti Virtualsquare multipli, in grado di produrne in parallelo binari cross-compilati

staticamente, secondo le medesime logiche e linee guida adottate durante l'assem-

blaggio dell'antenato Rootless sshlirpCI.

Questo sistema, denominato Rootless V 2CI, predisposto alla scalabilità e alla dis-

tribuibilità sin dalla prima progettazione, è stato poi a�ancato dall'ambiziosa idea di

rendere il suo impiego e, in particolare, il suo monitoraggio di esecuzione più "user-

friendly", attraverso un'integrazione con uno stack containerizzato e distribuito ad-

detto alla trasmissione, all'ingestion e alla creazione di visualizzazioni costum dei

log prodotti, basato sulle tecnologie ELK.

Il risultato �nale di queste aspirazioni, raggiunto dopo un lungo processo evoluti-

vo che ha spaziato dallo studio teorico dell'architettura alla scelta di strumenti e

tecniche implementative che ne permettessero la più alta a�dabilità, ha incarnato

il sogno di rendere fruibile e per di più intuitivo l'uso di un sistema di continuous

integration avanzato, il quale non solo è stato pensato per garantire massima per-

sistenza, con�gurabilità e performance, ma anche per essere distribuito e avviato su

più server, comunque con la possibilità di una supervisione centralizzata.

Come quanto fatto per le fasi evolutive precedenti, in particolar modo per questo

consistente snodo terminale, risulta utile rappresentare il processo di disegno e

sviluppo seguito attraverso un diagramma riassuntivo.

79
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Rootless V2CI

[1] Selezione
dell'architettura

Analisi dei due requisiti di
partenza

Sviluppo delle alternative e
primo confronto

Confronto parametrico

[2] Delineazione dei
dettagli architetturali e

implementativi

[6] Calcolo dei costi
computazionali

[7] Analisi sul consumo
reale di risorse

[4] Raffinamenti
implementativi

[5] Potenziamento del
sistema di logging

Ottimizzazione dei demoni
Rootless-sshlirpCI-like

Adattamento e
scomposizione dei threads

Raffinamento del sistema di
stop

Il nuovo main radice

Full build mode

Disaster recovery

Binaries rotation

Elastic Stack containerizzato

[4] Scelta e configurazione
dei data shippers per

deploy single hosted o
distribuito

[3] Implementazione del
cluster progettato

[5] Test e validazione
tramite Kibana

[7] Analisi sul consumo
aggiunto di risorse

[2] Sviluppo e
progettazione

dell'architettura
containerizzata del cluster

[1] Studio e
documentazione delle

tecnologie ELK

Il setup automatizzato dei
servizi tramite script

Implementazione delle
configurazioni dei servizi

Persistenza dei volumi con
device virtuali

Orchestrazione con docker
Compose

Analisi e primi tentativi di
architetture

Design planning e calcolo
delle risorse richieste

Kibana

Logstash

Elasticsearch

Beats e Filebeat

Figura 4.1: Diagramma riassuntivo del processo di design e sviluppo di Rootless

V 2CI e della sua integrazione con ELK

4.1 Rootless V 2CI: potenziamento ed espansione di

Rootless sshlirpCI

Il primo passo verso la realizzazione di questo complesso ecosistema che inte-

gra cross-compilazione e delivery di binari statici con monitoraggio e visualizzazione

avanzata dei log, è stato il perfezionamento e l'espansione orizzontale di Rootless

sshlirpCI.

Come già anticipato nel precedente capitolo, Rootless sshlirpCI, o per lo meno le
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sue fondamenta, hanno costituito i mattoni su cui è stato edi�cato Rootless V 2CI.

Questo potente motore è infatti basato sull'idea di avviare in parallelo, a seguito di

una lettura e di un parsing di un denso �le di con�gurazione, in cui siano speci�-

cati i progetti su cui l'utente intende avviare la build e per ognuno di essi dettagli

"privati" e scelte su come svolgere quest'ultima, processi "Rootless sshlirpCI-like"

multipli, ognuno "angelo custode" di uno dei progetti dati in input dall'utente.

Un'espansione orizzontale e sincrona di questo calibro è �glia dello scontro con nu-

merose di�coltà e di svariate scelte sia nel disegno che nell'implementazione del

sistema, in quanto, per preservare sicurezza e performance, si è reso necessario con-

siderare nuovi parametri di sviluppo quali la condivisione di risorse e il parallelismo

innestato.

4.1.1 Il disegno: scelte strutturali e di�coltà a�rontate

Il primo grande ostacolo fronteggiato durante lo sviluppo di Rootless V 2CI è

stato quello di de�nizione dell'architettura.

Prima che quest'ultima fosse tracciata, infatti, non era ancora chiaro quali com-

ponenti avrebbero svolto quali compiti e in che momento dell'esecuzione sarebbero

stati avviati.

Due soli requisiti erano certi:

1. l'utente �nale sarebbe dovuto essere in grado di impostare in modo semplice

e granulare il comportamento di Rootless V 2CI, avviarlo e ottenere i binari

statici per le architetture speci�cate per ogni progetto di input, circa nello

stesso tempo di esecuzione di Rootless sshlirpCI;

2. il nuovo ecosistema di Rootless V 2CI avrebbe dovuto riutilizzare i componenti

sviluppati per Rootless sshlirpCI, appoggiandosi alle sue solide fondamenta e

al suo collaudato �usso di esecuzione.

Ciò che ha risieduto alla base delle di�coltà legate alla progettazione concettuale e

che ha al coltempo guidato le scelte che ne hanno permessa la risoluzione, è stata

infatti la volontà di garantire all'utente �nale un grado di con�gurabilità tale da

poter vedere Rootless V 2CI come incarnazione di un sistema di CI generalizzato per

qualsiasi sorgente.

Inoltre, il desiderio di riciclare le idee e lo sviluppo alla base di Rootless sshlirpCI

ha automaticamente spinto a prediligere una piani�cazione che è rimasta alla base

del risultato �nale e che si è dimostrata, anche a seguito di valutazioni successive,

più aderente logicamente al primo requisito e maggiormente performante rispetto
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ad alternative che sembravano inizialmente paritarie.

Riassumendo, è possibile a�ermare che il processo di selezione dell'architettura

di Rootless V 2CI si è basato sulle segenti fasi:

1. Deduzione delle conseguenze logiche del primo requisito di con�gurabilità: for-

ma dell'input, ossia del �le di con�gurazione;

2. Delineazione dello scheletro generale dell'architettura a partire dal tipo di com-

posizione dell'input;

3. Progettazione concettuale di due possibili alternative architetturali che avreb-

bero permesso la corretta elaborazione dell'input, guidata dalla forma di quest'ul-

timo e dalla struttura dello scheletro generale di Rootless V 2CI;

4. Analisi comparativa delle possibili soluzioni sulla base dei parametri di perfor-

mance, coerenza logica con l'input e re-use dei componenti di Rootless sshlir-

pCI.

È inoltre possibile riassumere e illustrare tale procedimento analitico nel seguente

diagramma.
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Requisito di configurabilità
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Figura 4.2: Diagramma riassuntivo del processo di design architetturale di Rootless

V 2CI

Le origini del progetto architetturale: con�gurabilità e forma dell'input

Scendendo nei dettagli del primo requisito, ancor prima del disegno architetturale

si era deciso che il cliente di Rootless V 2CI dovesse essere in grado di speci�care il

path della build directory e per ogni progetto di cui intendeva ottenere i binari, non

solo le architetture di destinazione, il poll interval e il path della target directory, ma

anche un elenco di sorgenti da compilare - che comprendeva l'URL del repository

principale del progetto stesso e quelli delle sue eventuali dipendenze "manuali" -, i

relativi sistemi di build (cmake, make, meson, ecc.), una lista di pacchetti aggiuntivi

da installare preliminarmente nei rootfs e il tipo di trigger per l'avvio della compi-

lazione - che si poteva con�gurare come dipendente da aggiornamenti al sorgente

principale o ai progetti linkati.

Da tutto ciò è stato immediato intuire che il formato che avrebbe garantito all'u-

tente massima facilità di con�gurazione era yml e che quindi l'eventuale �le di input
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risultante avrebbe avuto la forma di un elenco di oggetti "progetto" contenenti nu-

merosi componenti innestati, come mostra il seguente esempio di config.yml per

la sola cross-compilazione di sshlirp:

# Directory in cui verranno salvati gli ambienti rootfs,

# i log e gli artefatti di build

# (l'utente deve avere permessi di scrittura qui)

build_dir: /home/francesco/v2ci_build

projects:

- name: sshlirp

# Directory in cui verranno salvati i binari statici finali

# (l'utente deve avere permessi di scrittura qui)

target_dir: /home/francesco/sshlirp_build/target_binaries

source:

main_repo:

git_url: https://github.com/virtualsquare/sshlirp

build_system: cmake

dependencies:

- pkg-config

- libglib2.0-dev

- libvdeplug-dev

dependency_repos:

- git_url: https://gitlab.freedesktop.org/slirp/libslirp.git

build_system: meson

# Lista dei pacchetti APT da installare all'interno di

# ogni ambiente rootfs

# per questa dipendenza

dependencies:

- meson

- ninja-build

- libssl-dev

- libglib2.0-dev

- libexpat1-dev

- libcap-ng-dev

- libseccomp-dev

build_config:

# Modalita' di build supportate: main

# (build solo se il repo principale ha nuovi commit),
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# dep (build se un qualsiasi repo di dipendenza ha nuovi commit)

build_mode: main

# Intervallo di tempo (in secondi) tra due controlli consecutivi

# per nuovi commit

poll_interval: 3600

architectures:

- amd64

- arm64

- armhf

- riscv64

Prime deduzioni generali e questioni cardine per la scelta del disegno

Sia dall'idea iniziale di realizzare un sistema di CI per cross-compilazione sincrona

per architetture e progetti multipli che dal primo requisito di con�gurabilità e dalle

conseguenti deduzioni sulla forma dell'eventuale �le di con�gurazione, si è intuito

che Rootless V 2CI avrebbe di certo assunto la forma di un processo, dall'esecuzione

limitata, che avrebbe avviato iterativamente sotto-processi, ognuno dei quali padre a

sua volta di threads multipli, identi�cati quindi da una coppia - non ancora ordinata

- <prj, arch>, ossia dal loro compito personale di cross-compilazione di un progetto

per una speci�ca architettura.

Le domande a cui però mancava ancora una risposta erano:

� A quale "contenitore concettuale" sarebbero corrisposti i worker? Alle ar-

chitetture coinvolte in tutto il processo di cross-build sincrono o ai progetti

speci�cati dall'utente?

� I thread "foglia" di questo albero di esecuzione invece sarebbero stati avviati

in parallelo per ogni progetto, occupandosi quindi della sua cross-compilazione

per ogni suo port speci�cato, o per ogni architettura, cross-compilando perciò

progetti diversi all'interno del medesimo rootfs?

� In che momento dell'esecuzione sarebbero stati setuppati gli ambienti chroot?

Durante la vita del main o all'interno di ogni worker? Oppure sarebbe stato

compito dei singoli thread �gli della combinazione <prj, arch>?

E proprio dai primi due interrogativi sono nate le principali due alternative architet-

turali concrete, su ognuna delle quali si è svolta un'analisi comparativa servendosi dei

parametri introdotti dal terzo interrogativo e, come anticipato, dal vincolo di re-use

dei componenti di Rootless sshlirpCI e dall'ambizione di performance ottimizzate.
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Prima soluzione: worker per architettura e threads per progetto

Il seguente seguente diagramma concettualizza alla perfezione la prima alterna-

tiva strutturale presa in considerazione per Rootless V 2CI.

Processo
main

Creazione di una
struttura dati

dizionario che
associa ad ogni

architettura
una lista di progetti
che l'utente intende
cross-compilare per

tale port

Lettura di 
config.yml

build_dir: /path/to/builddir
projects:
  - prj_1:
    name: . . .
    . . .
    architectures:
      - arch_1
      - arch_2
      - arch_3

  - prj_2:
    name: . . .
     . . .
    architectures:
      - arch_2
      - arch_3

  - prj_3:
    name: . . .
    . . .
    architectures:
      - arch_1
      - arch_2

  - prj_4:
    name: . . .
    . . .
    architectures:
      - arch_2

config.yml

fork ()

worker per
arch_1

worker per
arch_2

worker per
arch_3

ptherad_create() ptherad_create()

thread per
prj_1 su arch_1 

thread per
prj_3 su arch_1 

thread per
prj_1 su arch_2

thread per
prj_2 su arch_2

thread per
prj_3 su arch_2

thread per
prj_4 su arch_2

thread per
prj_1 su arch_3

thread per
prj_2 su arch_3

Figura 4.3: Schema concettuale della prima alternativa architetturale di Rootless

V 2CI: worker per architettura e threads per progetto

Questa soluzione architetturale si basava sull'idea di un processo main che, una

volta completata la lettura del �le di con�gurazione - di cui è ora evidente la forma

"object oriented" - avviasse un numero di demoni corrispondenti al numero di ar-

chitetture totali coinvolte nel processo di build. Questi si sarebbero poi occupati di

lanciare un thread per ogni progetto che avrebbe quindi acquisito il ruolo di cross-

compiler per quel solo sorgente all'interno di quel solo rootfs cross-debootstrap-ato.

L'idea di un'architettura di questo tipo è stata inizialmente sviluppata e apprezzata
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in quanto permetteva di isolare logicamente e implementativamente la gestione di

ogni rootfs, a�dandola a un demone dedicato ed evitando che processi diversi, o

ancora peggio thread �gli di worker diversi, potessero interferire tra loro e operare

in ambienti condivisi. Infatti il timore di dover amministrare concorrenza e gestione

delle risorse di disco tra processi non comunicanti tra loro - ossia non interni allo

scope di un medesimo processo padre - aveva spinto a prediligere quest'architettura

che spostava al livello di "threads fratelli" le problematiche derivanti dal parallelis-

mo.

Sebbene un albero di esecuzione di questo tipo permettesse massimo isolamento

e "privatizzazione", una sua valutazione più approfondita, riguardante in particolare

lo studio delle scelte implementative che ne avrebbero permessa la realizzazione, ha

fatto emergere scogli di contraddizione logica e di abbattimento delle prestazioni che

hanno portato a ricercare una soluzione addizionale.

In particolare, l'analisi ha evidenziato le seguenti criticità:

� Gestione di strutture dati complesse e ridondanti: la forma "contro

natura" della gestione dell'input - che considerava infatti le architetture come

"contenitori concettuali" di progetti - non solo avrebbe violato le aspetta-

tive logiche dell'utente, ma avrebbe costretto, come si evince dal diagram-

ma 4.3, a dover costruire strutture dati complesse per cui un eventuale oggetto

architecture, input per ogni demone, avrebbe dovuto contenere una lista di

oggetti project con i loro dettagli compreso un ridondante riferimento alle

architetture per cui sarebbero stati cross-compilati. Da ciò si è dedotto che

l'impiego di risorse di allocazione e di calcolo sarebbe stato eccessivo, special-

mente in scenari in cui molti progetti avrebbero richiesto una cross-build per

architetture diverse: in quest'ultimo caso si sarebbe infatti dovuta gestire l'al-

locazione di oggetti project identici o, ancora peggio, il riferimento a liste di

progetti condivise;

� Parallelismo per progetti con poll_interval diversi: l'idea di eseguire in

parallelo per una stessa architettura progetti diversi si scontrava con il requisito

della con�gurabilità: progetti diversi sarebbero dovuti essere con�gurabili per

avere poll_interval diversi e questo avrebbe complicato di gran lunga la

gestione del parallelismo. Le seguenti due possibili soluzioni a questo scenario

infatti avrebbero solo aumentato complessità e tagliato le prestazioni:

� Soluzione 1: rimozione del multi-threading: questa alternativa

avrebbe previsto un'esecuzione del demone associato all'architettura "salte-
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rina", ossia temporizzata tramite più intervalli di sleep, uno per ogni pro-

getto interno allo scope del demone stesso. In tal caso non sarebbe stato

più necessario avviare threads diversi ma sarebbe stato su�ciente eseguire

in un ciclo di build il processo di cross-compilazione più volte a distanza

di di�erenze di ∆ secondi e ripetuto con project di input diversi. Ques-

ta soluzione, oltre ad avere minimo grado di eleganza, avrebbe portato a

ritardi e sfasamenti tra le operazioni di build dovuti al tempo richiesto

per ogni cross-compilazione, sì approssimabile ma comunque dipendente

da fattori non sempre prevedibili (latenza di rete e risorse computazionali

di sistema);

� Soluzione 2: sleep di attesa interno ad ogni thread: questa opzione,

sebbene più elegante e di facile implementazione della precedente, si

sarebbe basata sul concetto di un main "greedy" che avrebbe lanciato

tutti i thread ogni volta che il minor poll_interval tra i progetti di

sua competenza scadeva. Dopo di che ogni thread con poll_interval

maggiore sarebbe entarto in uno stato di sleep per una di�erenza di ∆

secondi dal poll_interval minore. Un'alternativa di questo tipo non

solo avrebbe comportato l'aggiunta di un attributo delta alla struttura

dati di input di ogni thread, ma avrebbe costretto il main a trascurare il

join dei �gli lanciati, andando così incontro a rischi per niente accettabili

nel contesto di sviluppo di un sistema di CI robusto e ottimizzato.

Grazie a queste valutazioni - aggiuntive a quelle che veranno compiute durante

l'ultima fase di confronto "parametrico" tra le due alternative architetturali - si è

deciso di spostare l'attenzione su un'opzione dalla logica invertita.

Seconda soluzione: worker per progetto e threads per architettura

Come fatto per la prima soluzione, prima di qualsiasi valutazione o descrizione,

risulta utile illustrare quest'opzione tramite un diagramma concettuale.
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Processo
main

Creazione di una
struttura dati

dizionario che
associa ad ogni

progetto
una lista di
architetture

per cui l'utente
intende

cross-compilare tale
progetto

Lettura di 
config.yml

build_dir: /path/to/builddir
projects:
  - prj_1:
   . . .
    architectures:
      - arch_1
      - arch_2
      - arch_3

  - prj_2:
    . . .
    architectures:
      - arch_2
      - arch_3

  - prj_3:
    . . .
    architectures:
      - arch_1
      - arch_2

  - prj_4:
    . . .
    architectures:
      - arch_2

config.yml

fork ()

thread per
arch_2 su prj_2

thread per
arch_3 su prj_2

worker per
prj_1

thread per
arch_2 su prj_1

ptherad_create() ptherad_create()

ptherad_create()

thread per
arch_1 su prj_1

thread per
arch_3 su prj_1

worker per
prj_2

worker per
prj_3

thread per
arch_3 su prj_1

thread per
arch_1 su prj_1

worker per
prj_4

thread per
arch_2 su prj_1

Figura 4.4: Schema concettuale della seconda alternativa architetturale di Rootless

V 2CI: worker per progetto e threads per architettura

Questa con�gurazione architetturale di Rootless V 2CI inverte l'esecuzione dei

componenti "padre" e "�glio" rispetto alla prima alternativa, a�dando a ogni de-

mone lanciato dal main il compito di cross-compilare un progetto per tutte le ar-

chitetture speci�cate nel �le di con�gurazione.

Tale scelta avrebbe permesso di risolvere le criticità emerse in precedenza, in parti-

colare, per quanto riguarda la gestione degli input, non sarebbe stato più necessario

comporre strutture dati complesse e ridondanti, bensì i thread avrebbero ricevuto

in input direttamente un argomento contentente un riferimento al progetto padre -

il quale sarebbe stato l'unico parametro di esecuzione anche per il demone - e all'ar-

chitettura di destinazione. Anche per quanto riguarda la gestione degli intervalli di

esecuzione, questa logica avrebbe sempli�cato drasticamente l'esecuzione del main

loop per ogni worker essendo quest'ultimo responsabile della build di un solo pro-

getto, associato a un solo poll_interval.
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Nonostante tali vantaggi, ciò che era garantito dalla logica a "scompartimenti su

disco" della soluzione precedente, in questa era negato: i threads fratelli non avreb-

bero operato su risorse di storage in comune, bensì avrebbero dovuto regolare la loro

esecuzione con altri eventuali threads associati a project diversi ma che operavano

sullo stesso rootfs. Ciò avrebbe chiaramente richiesto l'implementazione di un sis-

tema di locking per la gestione della concorrenza sui �le system chroot condivisi,

escludendo la possibilità di gestire le interferenze tramite semplici mutex pthread.

Sebbene già da questa prima analisi fosse emerso che di entrambe le soluzioni

architetturali proposte nessuna fosse perfetta e computazionalmente snella quanto

la logica alla base di Rootless sshlirpCI, era comunque già possibile intuire che la

seconda alternativa era la "favorita" in quanto, con un leggero aumento di com-

plessità nella gestione del parallelismo, avrebbe rimosso criticità più profonde che

avrebbero invece portato a cali evidenti di performance e imprecisioni inaccettabili.

Nonostante la competizione tra queste due opzioni strutturali avesse quindi già una

"vincitrice", un'ultima analisi comparativa, basata come anticipato sui tre parametri

di re-use dei componenti di Rootless sshlirpCI, performance e coerenza logica con

l'input, arricchiti con valutazioni sul setup degli ambienti rootfs e sulla scalabilità,

ha permesso di confermare questa scelta.

Ultima analisi comparativa e parametrica

Come accennato poc'anzi, dalla precedente delineazione di alto livello delle due

possibili soluzioni architetturali, oltre ai tre parametri comparativi già introdotti,

sono emersi altri due fattori di valutazione che hanno permesso di completare il

quadro analitico e di giungere a una decisione de�nitiva.

In particolare, si è deciso di considerare l'impatto che avrebbe avuto su ogni alter-

nativa il setup degli ambienti chroot, in quanto operazione maggiormente costosa, e

il grado di scalabilità orizzontale che ogni opzione avrebbe permesso.

Riassumendo quindi in cinque punti i criteri di valutazione adottati, è possibile

svolgere le seguenti considerazioni:

� Criticità del chroot setup: come anticipato, l'operazione di cross-debootstrap

è la più dispendiosa in termini di tempo e risorse di esecuzione, e per questo

motivo si è reso necessario valutare, per ogni alternativa, in che momento del-

l'esecuzione sarebbe stato più opportuno svolgerla in modo da escludere sia

ridondanze e sprechi dovuti ad eventuali setup multipli dello stesso rootfs che
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ritardi nell'avvio dei worker o complicazioni nella gestione della concorrenza.

In tale contesto, il principale vantaggio della prima soluzione architetturale,

ossia l'isolamento totale tra i rootfs, avrebbe intuitivamente permesso di es-

eguire tale operazione una sola volta, assegnandola al demone responsabile

dell'architettura corrispondente. Questo sì avrebbe richiesto un sistema di

locking aggiuntivo per il corretto assegnamento delle risorse computazionali,

ma avrebbe evitato che processi diversi potessero tentare di eseguire la medes-

ima operazione.

Se si fosse voluto poi escludere totalmente l'utilizzo di locking tra processi nella

prima soluzione, si sarebbe potuti ricorrere sempre a setup iterativi nel main,

ma questo avrebbe inevitabilmente svuotato di utilità funzionale i worker per

architetture diverse.

D'altra parte, il punto critico della seconda soluzione avrebbe in�uenzato di-

rettamente la sicurezza e la stabilità del processo di setup. Infatti il momento

in cui sarebbe stato più logico eseguire il cross-debootstrap, volendo sfruttare

il già esistente parallelismo del programma, sarebbe stato all'inizio dell'ese-

cuzione di ogni thread foglia.

In sostanza, ogni thread per una certa coppia <prj, arch> avrebbe potuto in-

izialmente veri�care la presenza del rootfs di sua competenza e, se necessario,

svolgerne il setup. Considerando però che il rischio di setup concomitante di

uno stesso rootfs da parte di threads �gli di progetti diversi - e quindi non

regolabili tramite mutex - sarebbe stato elevato, si sarebbe reso comunque

necessario un sistema di locking tra threads.

Anche per questa seconda alternativa sarebbe stato possibile pensare di adottare

un setup serializzato nel main. In questo caso non solo nessun componente

avrebbe perso di funzionalità, in quanto ogni worker avrebbe ricoperto il solo

ruolo di padre dei threads a prescindere, ma si sarebbe anche alleggerita l'ese-

cuzione dei threads ed eliminati i problemi di conocorrenza.

Andando a confrontare quindi i due posizionamenti migliori del chroot setup

per ogni alternativa, si è notato che, nonostante la seconda soluzione par-

tisse svantaggiata a causa di un parallelismo di gestione intrinsecamente meno

facile, l'opzione di una costruzione serializzata dei rootfs nel main per la secon-

da alternativa architetturale garantiva un'esecuzione dei demoni più leggera e

un'amministrazione della concorrenza basata su locking tra threads. L'opzione
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di setup concorrente per la prima alternativa avrebbe invece ritardato l'ese-

cuzione dei worker e richiesto l'impiego di locks, che si sarebbe aggiunto alla

già esistente necessità di mutex tra threads operanti nello stesso rootfs.

� Scalabilità: in questo contesto, con il termine "scalabilità" si vuole intendere

il grado di �essibilità da parte del sistema di CI ad ammettere l'aggiunta di più

progetti nel �le di con�gurazione da parte dell'utente. Infatti, mentre il numero

massimo di architetture per cui un utente può richiedere la cross-compilazione

rimane limitata superiormente da 4 (amd64, arm64, armhf e riscv64), il nu-

mero di progetti che possono essere speci�cati è virtualmente illimitato.

In questo senso, la prima alternativa architetturale avrebbe garantito mini-

mo grado di scalabilità. La de�nizione di un progetto aggiuntivo da parte

dell'utente avrebbe infatti implicato che:

1. il main avrebbe allocato un nuovo oggetto project

2. per ogni struttura dati architecture passata in input ai demoni, il main

avrebbe aggiunto alla lista di progetti per quella architettura una copia

allocata dell'oggetto project o, ancora peggio, un riferimento a quello

già allocato, causando nel primo caso ridondanze e sprechi e nel secondo

condivisione di puntatori tra processi diversi.

D'altra parte, la seconda alternativa avrebbe garantito massimo grado di scal-

abilità. Infatti l'aggiunta di un progetto nel �le di con�gurazione avrebbe

richiesto al main la sola allocazione di un nuovo oggetto project, il quale

sarebbe stato passato in input a un nuovo demone, senza dover appesantire

strutture dati esistenti e gestire ridondanze o puntatori condivisi.

� Re-use dei componenti di Rootless sshlirpCI: come anticipato, uno dei

requisiti per la progettazione di Rootless V 2CI era quello di minimizzare lo

sforzo di re-implementazione di componenti già sviluppati, dando quindi pri-

orità a un'implementazione modulare.

Una struttura basata su workers per architettura e threads per progetto avrebbe

totalmente stravolto la logica alla base di Rootless sshlirpCI, arricchendo il

contesto di esecuzione di ogni demone con l'eventualità di sorgenti diversi e

privandolo del concetto di cross-compilazione per architetture multiple.

La seconda alternativa invece rispettava alla perfezione il requisito di impiego

di processi "Rootless sshlirpCI-like", permettendo quindi di reimpiegare molte

delle idee genitori dell'implementazione dell'antenato di Rootless V 2CI.

Infatti, come è possibile dedurre dalle analisi svolte poc'anzi circa la gestione
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della concorrenza e il setup dei rootfs, si sarebbe reso necessario solo aggiun-

gere un servizio di locking per l'amministrazione di threads di progetti diversi

per una stessa architettura e spostare la creazione degli ambienti chroot in un

ciclo interno al main, eliminando la necessità di locking per questa fase.

� Performance: tutte le considerazioni svolte in precedenza hanno condotto a

dedurre che le prestazioni di una qualsiasi con�gurazione della prima opzione

architetturale sarebbero state inferiori rispetto a quelle della seconda.

L'allocazione di strutture dati duplicate o condivise avrebbe di certo avuto un

impatto negativo sul tempo di esecuzione e sulle risorse richieste dai demoni.

Anche entrambe le possibili soluzioni al problema di concorrenza tra threads

di progetti diversi, con poll_interval diversi, avrebbe portato all'abuso di

cicli di sleep. Per di più, il mancato riciclaggio dei componenti di Rootless

sshlirpCI avrebbe inevitabilmente privato il sistema di ottimizzazioni già col-

laudate. In�ne l'impiego sia di locks per la fase di chroot setup concorrente

che di mutex per la cross-compilazione in ambienti condivisi da threads fratelli,

avrebbe appesantito ulteriormente l'esecuzione della prima opzione architet-

turale, rispetto alla sola necessità di servizi di locking tra threads "cugini" per

la cross-compilazione in ambienti condivisi, necessaria nella seconda alternati-

va.

� Coerenza logica con l'input: come già accennato, un'architettura del pri-

mo tipo sarebbe stata "contro la natura" dell'input e, oltre a introdurre tutte

le limitazioni di cui si è già discusso, avrebbe aumentato la curva di apprendi-

mento per l'utente �nale, oltre a rallentare la fase di sviluppo del sistema

stesso.

La seconda alternativa invece avrebbe aderito perfettamente alla forma del-

l'input fornito dall'utente e alle aspettative logiche di quest'ultimo, facilitando

così il passaggio da con�gurazione a strutture dati nell'implementazione, l'ese-

cuzione del sistema stesso e la sua comprensione.

Al termine di questa lunga analisi comparativa, è stata evidente la superiorità del-

la seconda alternativa architetturale, che, sebbene presentasse lo svantaggio di non

essere a "scompartimenti su disco", è stata comunque adottata come struttura por-

tante di Rootless V 2CI.

Nonostante questa prima selezione abbia permesso di escludere molti scenari che si

sarebbero dimostrati problematici, il lavoro di progettazione e implementazione del

sistema era appena iniziato.
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4.1.2 Dettagli architetturali e aspetti implementativi

La lunga fase implementativa di Rootless V 2CI ha visto in parallelo anche la

traccia dei dettagli strutturali del sistema stesso. In particolare il primo sviluppo è

stato guidato da quattro fasi principali, successive al primo disegno architetturale:

1. Progettazione e implementazione del nuovo main radice, in modo che potesse

svolgere i compiti assegnatigli dalla precedente delineazione generale;

2. Ottimizzazione di alcuni aspetti dei demoni "Rootless sshlirpCI-like" in modo

che sgravassero i thread �gli da check ridondanti e da operazioni non di loro

competenza;

3. Adattamento e scomposizione dei threads builder al �ne di un'esecuzione per

progetto meno monolitica e ridondante e allo stesso tempo più performante e

facilmente interrompibile, mantenendo sicurezza, coerenza e idempotenza;

4. Ra�namento del sistema di stop, mirato all'interruzione sia di un eventuale

processo main preparatorio che di tutti i demoni in esecuzione.

Il nuovo main: interfaccia tra utente e demoni

Il processo main di Rootless V 2CI avrebbe svolto pochi e semplici compiti, as-

sumendo solo alcune delle responsabilità del main dell'antenato Rootless sshlirpCI

e garantendo una vita più leggera ai demoni �gli.

In particolare questo nuovo processo radice avrebbe avuto la seguente forma:

Parsing del file di
configurazione e
costruzione delle

strutture dati

Costruzione della
build_dir generale e
di un piccolo logfile

Demonizzazione

Setup iterativo dei
rootfs con gestione di

fallimenti

Avvio dei worker figli
attraverso fork e
passaggio delle

strutture dati costruite

Main

Figura 4.5: Schema concettuale del main di Rootless V 2CI
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I due componenti più complessi di questo processo dall'esecuzione limitata sareb-

bero stati il parser del �le di con�gurazione e il sistema di setup dei rootfs.

Per quanto riguarda il parser, la di�coltà principale è stata quella di trovare un

metodo di tokenizzazione che fosse �essibile per la lettura di un �le dalla struttura

"object oriented" e innestata.

Un input di tipo .yml infatti permetteva sì all'utente di impostare il comporta-

mento di Rootless V 2CI in modo granulare e ordinato, con�gurandosi come miglior

opzione di interfaccia tra il motore di cross-compilazione e l'utilizzatore �nale, ma

comportava anche la necessità di un parser completo e robusto in grado di leggere

correttamente ogni sezione, elenco, chiave e valore del �le e tradurre il tutto in strut-

ture dati C adeguate.

Il primo passo naturale, importante e preliminare alla composizione di questo

strumento essenziale è stato appunto quello di plasmare tali strutture dati sul-

la forma dello stesso �le di con�gurazione. Analizzando il contenuto ipotetico di

quest'ultimo, riportato precedentemente, è stata evidente la necessità di impiego di

tre strutture dati principali: Config, project e manual_dependency.

typedef struct manual_dependency {

char git_url[MAX_CONFIG_ATTR_LEN];

char build_system[MIN_CONFIG_ATTR_LEN];

char *dependencies[MAX_DEPENDENCIES];

int dep_count;

struct manual_dependency *next;

} manual_dependency_t;

typedef struct project {

char name[64];

// <cfg.build_dir>/<project.name>

char main_project_build_dir[CONFIG_ATTR_LEN];

// <main_project_build_dir>/logs/worker.log

char worker_log_file[MAX_CONFIG_ATTR_LEN];

// Path assoluto ricavato dal file di configurazione

char target_dir[CONFIG_ATTR_LEN];

char repo_url[MAX_CONFIG_ATTR_LEN];

char main_repo_build_system[CONFIG_ATTR_LEN];
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char build_mode[MIN_CONFIG_ATTR_LEN];

int poll_interval;

char *architectures[MAX_ARCHITECTURES];

int arch_count;

char *dependency_packages[MAX_DEPENDENCIES];

int dep_count;

manual_dependency_t *manual_dependencies;

int manual_dep_count;

struct project *next;

} project_t;

typedef struct {

char build_dir[MIN_CONFIG_ATTR_LEN];

char main_log_file[CONFIG_ATTR_LEN];

project_t *projects;

int project_count;

} Config;

A partire da queste strutture dati e dalla forma del �le di con�gurazione è stato

poi necessario ricercare un metodo di tokenizzazione dell'input che fosse in grado di

popolare correttamnte i dati di esecuzione sopra illustrati.

Per fare ciò è stato deciso di adottare la libreria libyaml [61], la quale permette di

gestire la lettura di complessi �le .yml attraverso l'emissione e la cattura di eventi.

Senza entrare nei dettagli di questo tool di parsing, è possibile mostrarne l'utilità,

e l'impiego nello sviluppo del programma di riconoscimento dei pattern interni al

config.yml, riportando alcuni estratti principali della funzione load_config() che

si sarebbe appunto occupata di posizionare in una struttura dati Config il path della

build_dir principale e una lista di project, caricati tramite la funzione ausiliaria

load_project.

// Funzione helper per il parsing di un singolo oggetto 'project'

static int load_project(project_t *prj, yaml_parser_t *parser) {

// Variabili di stato per tracciare sezioni (es. source, git) e chiavi

int depth = 1; // Profondita' di annidamento corrente

yaml_event_t ev;

// Ciclo annidato: consuma eventi finche' non si chiude il project

while (depth > 0) {

// La funzione yaml_parser_parse fa avanzare il parser e popola 'ev'
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if (!yaml_parser_parse(parser, &ev)) { ... }

switch (ev.type) {

case YAML_SCALAR_EVENT:

// L'evento SCALAR indica la lettura di una chiave o di un valore

char *val = (char *)ev.data.scalar.value;

// Se siamo dentro una sequenza (es. architectures),

// aggiungiamo il valore alla lista

if (seq == SEQ_ARCH) {

add_string(prj->architectures, ..., val);

}

// Altrimenti controlliamo l'ultima chiave letta per assegnare

// il valore al campo corretto

else {

if (strcmp(last_key, "name") == 0) {

snprintf(prj->name, sizeof(prj->name), "%s", val);

} else if (strcmp(last_key, "repo_url") == 0) {

snprintf(prj->repo_url, sizeof(prj->repo_url), "%s", val);

}

// ... gestione altri campi (build_mode, ecc.) ...

}

break;

case YAML_MAPPING_START_EVENT:

depth++; // Entrata in una sotto-sezione (es. 'source:')

// ... logica per aggiornare lo stato della sezione corrente ...

break;

case YAML_MAPPING_END_EVENT:

depth--; // Uscita da una sotto-sezione

break;

case YAML_SEQUENCE_START_EVENT:

// Inizio di una lista (es. 'architectures:', 'dependencies:')

// ... aggiornamento stato sequenza attiva ...

break;

// ...

}

yaml_event_delete(&ev);

}

return 0;

}
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// Funzione principale di caricamento della configurazione

int load_config(Config *cfg) {

// ... apertura file e inizializzazione strutture ...

// Inizializzazione del parser libyaml

yaml_parser_t parser;

yaml_parser_initialize(&parser);

yaml_parser_set_input_file(&parser, config_file);

// Ciclo principale di parsing del file

while (!done) {

yaml_parser_parse(&parser, &ev); // Fetch del prossimo evento

switch (ev.type) {

case YAML_SCALAR_EVENT:

// Lettura chiavi globali (es. 'build_dir')

if (!in_projects && strcmp(top_last_key, "build_dir") == 0) {

snprintf(cfg->build_dir, ..., val);

}

break;

case YAML_SEQUENCE_START_EVENT:

// Rilevamento inizio lista 'projects'

if (strcmp(top_last_key, "projects") == 0) {

in_projects = 1;

}

break;

case YAML_MAPPING_START_EVENT:

// Se siamo dentro la lista 'projects', inizia un nuovo oggetto

if (in_projects) {

project_t *prj = calloc(1, sizeof(project_t));

// ... linking del nuovo progetto alla lista in cfg ...

// Delega il parsing del contenuto del progetto alla funzione,

// helper passando il parser per continuare la lettura

load_project(prj, &parser);

}

break;

case YAML_STREAM_END_EVENT:

done = 1; // Fine del file

break;

}

yaml_event_delete(&ev);
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}

// ... cleanup parser e chiusura file ...

return 0;

}

Grazie allo sviluppo di questo parser potenziato e �essibile, il main era ora dotato

della capacità di estrarre correttamente, in una variabile Config cfg, i dati di ese-

cuzione forniti dall'utente, creare la cfg.build_dir, il suo log �le

cfg.main_log_file, demonizzarsi esattamente come veniva fatto in Rootless sshlir-

pCI - settando quindi anche un handler temporaneo per catturare eventuali SIGTERM

durante successive operazioni consistenti - e procedere con il setup dei rootfs.

La seconda operazione più densa, dopo il parsing del �le config.yml e il load

delle variabili di con�gurazione, era appunto il setup degli ambienti chroot,

che, a seguito delle valutazioni svolte nella sottosezione 4.1.1, si era deciso di es-

eguire in modo serializzato nel main, attraverso l'invocazione diretta di uno script

chroot_setup.sh.

Chiaramente, per realizzare tale operazione, è stato necessario inserire, tra la fase

di demonizzazione e quella di costruzione dei rootfs, l'estrazione delle architetture,

richieste da tutti i progetti della lista cfg.projects e non ripetute. Quest'op-

erazione addizionale, rispetto a quelle richieste da un alternativo setup sincrono

svolto dai singoli threads, ha aggiunto un minimo overhead in termini di tempo di

computazione, ma ha anche alleggerito drasticamente l'esecuzione dei demoni �gli.

La scelta di un setup iterativo nel main ha però fatto risorgere i problemi di coeren-

za legati alla costruzione di ambienti chroot una tantum, che rendevano sshlirpCI

soggetto a errori in scenari di rimozione a run-time delle risorse di build.

Tale criticità è stata risolta solo in un secondo momento, grazie a ra�namenti e

accorgimenti implementativi che verranno discussi nella sezione 4.1.4.

Anche in questo primo sviluppo però si è tentato di migliorare la sicurezza del sis-

tema e garantire che non ci fossero contraddizioni tra l'esito delle operazioni del

main e l'esecuzione dei demoni �gli. Infatti, durante il chroot setup iterativo, si è

deciso di tener traccia delle architetture per cui il setup fosse fallito, provvedendo

in seguito a rimuoverle dalla lista di architetture di ogni progetto. In questo modo

si è quanto meno garantito che nessun demone �glio avrebbe tentato di operare in

un ambiente chroot non correttamente costruito.
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Le successiva e conclusiva operazione di avvio iterativo dei worker per progetto,

sempre interna al main, avrebbe portato a termine il compito di quest'ultimo, pas-

sando il controllo ai processi forkati, attraverso riferimenti ai corrispondenti project.

Questa prima versione del main di Rootless V 2CI, integrando in essa i ruoli di "in-

terfaccia utente", loader, setupper e orchestratore, ha quindi assunto la seguente

forma:

int main() {

// 0. Caricamento delle variabili dal file di configurazione

Config cfg;

if(load_config(&cfg) != 0) { ... }

// 1. Creazione di directory e file principali (se non esistono)

// ...

// 2. Demonizzazione del processo

daemonize();

// 3. Unione delle architetture necessarie da tutti i progetti

// in una singola lista di architetture uniche

char *archs_list[MAX_ARCHITECTURES];

int num_archs = 0;

project_t *current = cfg.projects;

for (int i = 0; i < cfg.project_count; i++) {

// ... logica di unione architetture ...

}

// 4. Setup iterativo del chroot per ogni architettura

char *failed_chroots[MAX_ARCHITECTURES];

int num_failed_chroots = 0;

for (int i = 0; i < num_archs; i++) {

// I setup del chroot sono le operazioni piu' dispendiose,

// quindi se viene ricevuto un segnale di terminazione,

// esce immediatamente

if (terminate_main_flag) { ... }

// ... preparazione path chroot ...

if (chroot_setup(archs_list[i], chroot_dir, cfg.main_log_file,

log_fp) != 0

) {

// ... gestione errore setup ...

failed_chroots[num_failed_chroots] = archs_list[i];

num_failed_chroots++;
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}

}

// ... controllo se tutti i setup sono falliti ...

// 5. Avvio iterativo dei builder di progetto tramite fork

// (nuovo processo per ogni progetto)

current = cfg.projects;

for (int i = 0; i < cfg.project_count; i++) {

// Prima di lanciare un nuovo worker, controlla se e' stato

// ricevuto un segnale di terminazione

if (terminate_main_flag) { ... }

pid_t pid = fork();

if (pid < 0) {

// ... errore fork ...

} else if (pid == 0) {

// Processo figlio: lancia il worker del progetto solo con

// le architetture per cui il setup del chroot ha

// avuto successo

int failed_removal = remove_failed_archs_from_project(current,

failed_chroots, num_failed_chroots

);

// ...

int result = project_worker(current, cfg.build_dir);

exit(result);

} else {

// Processo padre: continua al prossimo progetto

current = current->next;

}

}

// ... chiusura log e rimozione pid file ...

return 0;

}

I demoni per progetto: processi Rootless sshlirpCI ottimizzati

Meno rivoluzionarie sono state le modi�che apportate al corpo del main loop

di Rootless sshlirpCI, quasi integralmente reimpiegato nei demoni �gli di Rootless

V 2CI.

Infatti, sebbene la fase di demonizzazione e di setup degli ambienti chroot risiedesse
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ora all'interno del nuovo main generale, la forma dei demoni di Rootless V 2CI ha

permesso di rispettare ampiamente il requisito di re-use dei componenti antenati.

Come nella struttura portante di sshlirpCI e Rootless sshlirpCI, anche alla base dei

worker di questo nuovo motore risiedevano:

� un setup iniziale del sotto-albero di �lesystem dedicato al progetto speci�co

di ogni worker;

� un loop in�nito che eseguisse periodicamente l'avvio dei threads builder per

ogni architettura richiesta dal progetto.

Tre sole sono state le ottimizzazioni e le modi�che necessarie apportate a questa

struttura di base, precedentemente collaudata, e riassumibili nel seguente schema

comparativo che mostra a confronto i main di sshlirpCI e Rootless sshlirpCI con il

componente "demone per progetto", impiegato invece in Rootless V 2CI:

Main setupper

(1...N)

Main loop

Thread 1

Setup dei thread per n architetture

Clone o pull dei sorgenti

Join dei
thread e
merge
dei log

Move dei binari finali

Sleep e gestione delle interruzioni

Creazione
dei rootfs

Setup
dell'ambiente

Copia dei
sorgenti

Cross-
compilazione

Rimozione
dei sorgenti

Thread n

Creazione
dei rootfs

Setup
dell'ambiente

Copia dei
sorgenti

Cross-
compilazione

Rimozione
dei sorgenti

if 
(ro

un
d 

==
 0

)

Main setupper

(1...N)

Main loop

Thread 1

Setup dei thread per n architetture

Join dei
thread e
merge
dei log

Sleep e gestione delle interruzioni

Creazione
dei rootfs

Clone/pull
sorgenti

Cross-
compilazione

Move dei
binari finali

Thread 1

Creazione
dei rootfs

Clone/pull
sorgenti

Cross-
compilazione

Move dei
binari finali

Main setupper

(1...N)

Main loop

Thread 1

Setup dei thread per n architetture

Check delle condizioni di build

Join dei
thread

Thread n

Check sui sorgenti principali

Check sulle dipendenze

if(cfg.build_mode)
== "main"

if(cfg.build_mode)
== "dep" Sleep e gestione delle interruzioni

if(failure)

if(failure)

Sleep e gestione delle interruzioni

Figura 4.6: Confronto tra rispettivamente il main di sshlirpCI, quello di Rootless

sshlirpCI e il demone per progetto di Rootless V 2CI

In particolare, come suggerito dal diagramma soprastante, è possibile ampliare

la descrizione delle novità e delle variazioni introdotte in tre punti principali:

� Spostamento del check delle condizioni di build dallo script di ese-

cuzione dei thread al main: per quanto questa operazione di trasferimento

dei controlli di presenza o aggiornamento dei sorgenti possa rievocare la strut-

tura scomposta e frammentata di sshlirpCI, è bene sottolineare che in questo

nuovo contesto non sarebbe più convenuto eseguire in un unico script tutte le

operazioni di competenza di un singolo thread. Il vantaggio di un'esecuzione
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monolitica in Rootless sshlirpCI derivava infatti dalla possibilità di delegare

ai singoli thread anche gli stessi setup dei rootfs. In Rootless V 2CI invece

l'esecuzione dei thread è separata dalla costruzione degli ambienti di build ed

è quindi più logico cercare di estrarre tutte le operazioni "generalizzabili" ap-

pena successive.

Infatti un semplice check esterno alla fase di cross-compilazione vera e propria,

non comprensivo di alcun clone e�ettivo ed eseguito sul primo rootfs setup-ato

dal main, non solo non trasgredisce la linea guida Quae sunt Thread-is, Thread-

i , ma permette anche di regolare l'avvio del processo di cross-compilazione in

base al nuovo parametro di modalità di build. Avendo infatti il demone ac-

cesso diretto alla variabile prj->build_mode, risulta conveniente che sia lui

stesso a invocare un metodo check_for_updates_inside_chroot() con gli

argomenti corretti, i quali comunque verranno poi passati a un componente

check_updates.sh eseguito all'interno del chroot.

� Gestione degli errori e delle interruzioni: il main process sia di sshlirpCI

che di Rootless sshlirpCI, in caso di fallimento di una qualsiasi sua operazione,

ritornava errore e terminava la sua esecuzione. In Rootless V 2CI invece si è

deciso di dotare i demoni della capacità di entrare anticipatamente nel ciclo

di sleep tramite una funzione sleep_and_handle_interrupts() e, al suo ter-

mine, ritentare direttamente l'ultima operazione fallita. Questo approccio è

stato adottato solo nel contesto di operazioni maggiormente network-dependent

come il check delle condizioni di build.

Contestualmente a questo potenziamento, che avrebbe permesso al demone

di un certo progetto di proseguire la sua esecuzione in caso di errori saltuari,

si è deciso inoltre di irrobustire il sistema di cattura dei segnali SIGTERM. La

predisposizione alla ricezione e all'elaborazione di tali segnali è stata infatti

aggiunta in corrispondenza di ogni attesa, come è possibile intuire dal nome

della funzione poc'anzi citata. Questa ottimizzazione è conseguenza logica

della presenza più di�usa delle fasi di sleep: di per sé un ciclo di esecuzione

del demone con esito positivo non impiega troppo tempo se non appunto per

l'attesa del join dei tread �gli - la cui predisposizione all'interruzione tramite

SIGTERM verrà discussa nella sottosezione successiva -, per un eventuale loop

in�nito generatosi da un bug persistente e per il ciclo di sleep conclusivo di

ogni iterazione. Queste ultime due sorgenti di attesa occupano probabilmente

più del 50% della vita del demone e quindi sono intrinsecamente più inclini a
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ricevere segnali di interruzione da parte di un utente.

Quindi, quest'ultimo, grazie a tale accorgimento avrebbe potuto servirsi più

frequentemente del programma di stop piuttosto che di un eventuale killer,

garantendo al demone l'opportunità di una terminazione sì pulita ma anche

coerente.

� Rimozione del concatenazione dei logs: parallelamente alla riscrittura

del main loop interno ad ogni demone, si è pensato che l'operazione di con-

catenazione dei logs prodotti dai threads �gli in un unico log �le "personale"

del demone padre, avrebbe aggiunto vantaggi minimi per l'utente rispetto al

più consistente overhead introdotto dalle frequenti operazioni di I/O, special-

mente nel contesto di un'esecuzione generale con due gradi di concorrenza

e, conseguentemente, caratterizzata da un elevato numero di processi in ese-

cuzione contemporaneamente.

Per questo motivo si è deciso di abbandonare completamente la gestione e il

popolamento di un unico log �le di riferimento per un certo progetto, mante-

nendo invece su disco quello personale di ciascun thread lanciato.

La ripresa quasi in toto dell'antenato main.c di Rootless sshlirpCI con l'aggiunta di

queste modi�che marginali, ha portato alla creazione di un �le project_worker.c

dalla seguente forma:

// ... include, gestori di segnali e helper per file di stato ...

static void sleep_and_handle_interrupts(int poll_interval,

char *STATE_FILE, FILE *log_fp, const char *project_name

) {

update_worker_state(PROJECT_WORKER_STATE_SLEEPING, STATE_FILE);

unsigned int time_left = poll_interval;

while(time_left > 0) {

time_left = sleep(time_left);

// Controllo segnale di terminazione durante lo sleep

if (terminate_worker_flag) {

break;

}

}

update_worker_state(PROJECT_WORKER_STATE_WORKING, STATE_FILE);

}

int project_worker(project_t *prj, char *main_build_dir) {
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// ... Setup logging, PID file, gestori segnali, directory ...

// Loop principale

while (1) {

if (terminate_worker_flag) break;

// 1. Controllo aggiornamenti direttamente nel demone

int need2update = 0;

// ... setup percorsi chroot ...

if (strcmp(prj->build_mode, "main") == 0) {

// ... estrazione nome repo ...

int update_result = check_for_updates_inside_chroot(...,

&need2update, ...

);

if (update_result != 0) {

// 2. Gestione errori tramite sleep e riprova

sleep_and_handle_interrupts(prj->poll_interval, ...);

continue;

}

} else if (strcmp(prj->build_mode, "dep") == 0) {

// ... logica simile per le dipendenze ...

}

if (!need2update) {

sleep_and_handle_interrupts(prj->poll_interval, ...);

continue;

}

// 3. Avvio thread (nessuna concatenazione log, logging diretto)

pthread_t threads[prj->arch_count];

thread_arg_t args[prj->arch_count];

for (int i = 0; i < prj->arch_count; i++) {

// ... setup argomenti ...

if (pthread_create(&threads[i], NULL, build_thread,

&args[i]) != 0

) {

// Gestione errore creazione

sleep_and_handle_interrupts(prj->poll_interval, ...);

continue;

}

}

// Attesa dei thread
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for (int j = 0; j < i; j++) {

pthread_join(threads[j], ...);

// ... log risultato thread ...

}

// Sleep prima della prossima iterazione

sleep_and_handle_interrupts(prj->poll_interval, ...);

}

// ... Pulizia ...

return 0;

}

Adattamento e scomposizione dei thread builder

I ri�essi più importanti dell'architettura di Rootless V 2CI, scalata orizzontal-

mente rispetto a quella dell'antenato Rootless sshlirpCI, si sono maggiormente no-

tati nell'adattamento dei thread builder al nuovo contesto "variabile".

Sia in sshlirpCI che in Rootless sshlirpCI infatti, il contesto di esecuzione dei thread

per architettura era tracciato: essendo il sorgente da cross-compilare �ssato su

sshlirp, dipendenze, tool di compilazione e pacchetti richiesti erano noti a pri-

ori e l'esecuzione del processo di build in base a questi era quindi costante.

Una sequenza di operazioni �ssa e di competenza dei soli threads aveva senso di

essere racchiusa in un unico script monolitico, come era stato fatto in Rootless ssh-

lirpCI; ma in Rootless V 2CI, con la moltiplicazione dei progetti, la variabilità delle

loro caratteristiche e l'aggiunta di sorgenti multipli per ognuno di essi, questa rigid-

ità avrebbe costretto a una manipolazione degli argomenti di input per l'ipotetico

script centrale per niente immediata, che avrebbe previsto:

1. una traduzione integrale da parte del demone, o di ogni suo thread, della

complessa struttura dati project in una serie di argomenti stringa;

2. l'invocazione dello script di build con la complessa lista di parametri;

3. la decodi�ca, da parte dello script, di questi argomenti in variabili locali e

strutture dati interne, per poter eseguire correttamente le operazioni di cross-

compilazione.

Queste operazioni sarebbero state evidentemente molto costose in termini di tempo

di sviluppo e di performance, oltre a essere soggette a errori di traduzione e inter-

pretazione dei dati.

Per questo motivo si è deciso di scomporre il monolite di Rootless sshlirpCI in una
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serie di funzioni C, ognuna delle quali si sarebbe occupata di un singolo compito

all'interno del processo di build, tornando alla struttura più modulare e �essibile di

sshlirpCI, senza però aumentare l'overhead dovuto alle operazioni di I/O su �le di

script - che come in Rootless sshlirpCI sarebbero stati comunque eseguiti diretta-

mente - né abbattere le performance a causa dell'abuso di system() - che sarebbe

stato sostituito da system_safe() come quanto fatto per Rootless sshlirpCI.

Perciò, per ogni operazione che avrebbe avuto un alto grado di variabilità negli ar-

gomenti di input, in quanto non solo sarebbe stata invocata su progetti diversi ma

anche su sorgenti di input multipli internamente allo scope di uno stesso project,

si è deciso di creare uno script .sh dedicato e invocarlo come utility pittosto che

motore comprensivo di tutte le funzionalità.

In particolare, ogni thread builder di Rootless V 2CI avrebbe eseguito in ordine:

� install_packages_in_chroot.sh, invocato sia per l'installazione delle dipen-

denze di sistema richieste dal progetto principale che per l'installazione di

quelle delle sue dipendenze "manuali";

� clone_or_pull_for_project.sh, lanciato per ogni sorgente da cross-compilare,

sia esso il repository principale o uno di quelli delle dipendenze manuali;

� cross_compiler.sh che, come nei precedenti casi, sarebbe stato eseguito per

ogni sorgente, occupandosi della vera e propria compilazione incrociata per il

repository di input, attraverso il metodo di build speci�cato dal parametro

build_system. Per questo componente è bene speci�care che è stato neces-

sario inserire anche una fase di selezione euristica del toolchain da utilizzare

per la compilazione e un processo di scelta dei binari statici �nali, se prodotti

dalla build. Inoltre questo script, nel caso in cui il sorgente fosse stato una

dipendenza, avrebbe proceduto a una sua installazione all'interno del rootfs,

In caso contrario, avrebbe spostato l'eseguibile selezionato in una directory di

staging interna al chroot e poi nella destinazione target versionata, sull'host.

In base a quanto appena descritto, è possibile rappresentare la forma generale di un

thread builder di Rootless V 2CI con il seguente diagramma:
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Thread_i

Installazione dei pacchetti

Installazione dei pacchetti necessari
per il progetto principale 

Installazione dei pacchetti necessari ad
ogni dipendenza manuale

install_packages_in_chroot.sh

install_packages_in_chroot.shInstallazione dei pacchetti necessari
per la dipendenza corrente 

Clone o pull dei sorgenti

Clone o pull 
per il progetto principale 

Clone o pull per ogni dipendenza
manuale

clone_or_pull_for_project.sh

clone_or_pull_for_project.shClone o pull per la dipendenza
corrente 

Cross compilazione dei sorgenti su arch_i

Cross-compilazione per il sorgente
principale

Cross-compilazione per ogni
dipendenza manuale

cross_compiler.sh

cross_compiler.shCross-compilazione per la dipendenza
corrente 

Figura 4.7: Schema concettuale di un thread builder di Rootless V 2CI

Come è possibile evincere dallo schema soprastante, ciò che ha permesso l'in-

terazione tra questi script di "utility" e la necessità dei thread builder di portare a

termine una cross-compilazione completa, sono state funzioni intermedie, dedite a

estrarre i dati necessari dalla struttura project e a eseguire iterativamente su og-

ni "input atomico" i componenti .sh sopracitati, che non avrebbero quindi dovuto

occuparsi di alcun parsing o interpretazione di argomenti complessi.

Questa scelta, quasi obbligata, di scomporre il monolite di Rootless sshlirpCI ha

portato con sé due vantaggi addizionali, �gli anche di arricchimenti e ottimizzazioni
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implementative:

� Maggior interrompibilità dei thread builder tramite stop: sebbene

non sia stato precedentemente speci�cato, in questo nuovo contesto anche la

struttura dati di input di ogni thread thread_arg_t è stata modi�cata non

solo a�nché contenesse un riferimento necessario al suo project padre, ma

anche per includere la �ag di terminazione condivisa con il demone genitore.

Infatti, come accennato nella sottosezione precedente, una delle operazioni

più time-consuming del worker per progetto sarebbe stata l'attesa della termi-

nazione dei suoi thread �gli. L'assenza di un metodo di interruzione ordinato e

granulare per quest'ultimi avrebbe costretto l'utente a servirsi direttamente di

un eventuale killer, senza garanzia di terminazione coerente. Invece, con la con-

divisione della terminate_worker_flag, de�nita nel �le project_worker.c,

e grazie alla nuova struttura modularmente scomposta dei threads builder,

questi avrebbero potuto controllare periodicamente la presenza di un seg-

nale di interruzione per il genitore, interrompendo la loro esecuzione prima

di una qualsiasi operazione consistente o network-dependant. La precedente

esecuzione monolitica adottata in Rootless sshlirpCI invece non avrebbe per-

messo di usufruire di questo meccanismo, costringendo l'utente ad attese più

lunge o terminazioni forzate.

� Tracciabilità degli errori e dello stato di avanzamento: un secondo

vantaggio derivante dalla scomposizione dell'esecuzione dei threads per ar-

chitettura è stata la possibilità di amministrare gli scenari di terminazione in

modo più completo, ritornando al project worker non solo un exit code - che

nel caso di Rootless sshlirpCI assumeva i soli valori di 0 o 1 rispettivamente

in caso di successo o fallimento - ma anche un messaggio e un nuovo attrib-

uto char *stats, in modo che la scomodità derivante dalla mancanza di un

log �le centralizzato per ogni worker fosse compensata da una tracciabilità di

eventuali errori potenziata. Ovviamente per permettere ciò è stato ripreso e

arricchito da sshlirpCI l'impiego della struttura dati thread_result.

L'ultima modi�ca sostanziale al corpo dei threads builder di Rootless V 2CI è stata

l'aggiunta del sistema di locking per l'amministrazione di operazioni sui rootfs con-

divisi con threads "cugini", come introdotto nella sottosezione 4.1.1, dedicata alla

descrizione della seconda alternativa architetturale.

Infatti, sebbene threads per la stessa architettura e �gli di project di�erenti non

avrebbero mai condiviso directory o �le all'interno del rootfs comune, l'operazione
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di installazione delle dipendenze di sistema tramite apt, se eseguita contemporanea-

mente da più processi, avrebbe portato quest'ultimi a tentare di scrivere simul-

taneamente su /usr/local/var/lib/dpkg/status. dpkg, per escludere incoerenze

e corruzioni del database dei pacchetti, impone un lock esclusivo su questo �le du-

rante le operazioni di installazione [62], e un qualsiasi processo che tenti di acquisirlo

mentre è già detenuto da un altro fallisce immediatamente.

Quindi, per evitare terminazioni precoci da parte dei threads builder a causa di

questa eventualità, in Rootless V 2CI si è deciso di atomizzare l'operazione di instal-

lazione dei pacchetti tramite due funzioni lock_package_manager_in_chroot()

e unlock_package_manager_in_chroot(), che si sarebbero entrambe servite di

flock().

La nuova carrozzeria dei thread builder di Rootless V 2CI, che ha preso il posto

del monolite di Rootless sshlirpCI, ha quindi assunto la seguente forma �nale:

// ... include e funzioni helper per il locking ...

void *build_thread(void *arg) {

// Estrazione argomenti e preparazione risultato

thread_arg_t *targ = (thread_arg_t *)arg;

project_t *prj = targ->project;

volatile sig_atomic_t *terminate_flag = targ->terminate_flag;

thread_result_t *result = malloc(sizeof(thread_result_t));

// ... inizializzazione result e logging ...

// Creazione directory e file necessari nel chroot

// ... (mkdir ricorsivi per build_dir, log_file, target_dir) ...

// 1. Installazione dipendenze con locking

if (*terminate_flag) { ... return (void *)result; }

// Acquisizione lock per evitare conflitti apt/dpkg tra processi

int lock_fd = lock_package_manager_in_chroot(

targ->thread_chroot_dir, ...

);

if (lock_fd == -1) { ... return (void *)result; }

// Installazione dipendenze principali

if (install_packages_list_in_chroot(prj->dependency_packages, ...)

!= 0

) {

// ... gestione errore ...
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return (void *)result;

}

// Installazione dipendenze manuali (iterativa)

manual_dependency_t *cur_manual = prj->manual_dependencies;

while (cur_manual) {

if (install_packages_list_in_chroot(

cur_manual->dependencies, ...

) != 0

) {

// ... gestione errore ...

return (void *)result;

}

cur_manual = cur_manual->next;

}

// Rilascio lock

unlock_package_manager_in_chroot(lock_fd, ...);

// 2. Clone o pull dei sorgenti (principale e dipendenze)

if (*terminate_flag) { ... return (void *)result; }

if (clone_or_pull_sources_inside_chroot(targ, log_fp) != 0) {

// ... gestione errore ...

return (void *)result;

}

// 3. Avvio processo di build (compilazione dipendenze e progetto)

if (*terminate_flag) { ... return (void *)result; }

if (build_in_chroot(targ, log_fp) != 0) {

// ... gestione errore ...

return (void *)result;

}

// Successo

result->stats = "Progress: 100%";

result->status = 0;

return (void *)result;

}

Potenziamento del sistema di stop

Ultima modi�ca sostanziale all'ecosistema di Rootless sshlirpCI è stata la ri-

mozione del metodo di terminazione tramite killer e l'implementazione di un sis-
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tema di stop ordinato e granulare, che avrebbe permesso all'utente di interrompere

l'esecuzione del motore in modo pulito e coerente.

Infatti, come deducibile dalle tre sottosezioni precedenti, la possibilità di interrompre

in modo granulare il breve processo di "decollo" - ossia il nuovo main genitore dei

worker -, i processi demoni e gli stessi threads "foglia", grazie all'impiego più consis-

tente di �ags di terminazione e a check più frequenti per le operazioni maggiormente

time-consuming, ha permesso lo sviluppo di un programma stop.c che, per qualsiasi

stadio di esecuzione, fosse in grado di terminare tutti i processi di cross-compilazione

avviati minimizzando il tempo di attesa richiesto e massimizzando la pulizia e co-

erenza delle risorse lasciate "inattive" sul disco.

In particolare il nuovo programma di stop si occupa di:

1. inviare un segnale SIGTERM all'eventuale processo main ancora vivo;

2. caricare le variabili di con�gurazione dal �le di input config.yml;

3. ricostruire il percorso dei pid �le di ogni demone per project e inviare a

ognuno di questi un segnale di terminazione senza attenderne la loro reale

morte con pesanti veri�che iterative.

Quest'ultimo punto conferma che la predisposizione di ogni processo avviato a una

ricezione granulare di interrupt, consente all'utente di avere un riscontro dell'esito

del processo di stop in tempo reale e la garanzia di terminazione ordinata e rapida

di Rootless V 2CI.

int main() {

// 1. Tentativo di terminazione del processo main (se esiste)

const char *MAIN_PID_FILE = "/tmp/rootless_v2ci.pid";

if (access(MAIN_PID_FILE, F_OK) == 0) {

// ... lettura pid da file ...

kill(main_pid, SIGTERM);

}

// 2. Caricamento configurazione per ricostruire i path dei PID file

Config cfg;

if(load_config(&cfg) != 0) return 1;

// 3. Iterazione sui progetti e invio SIGTERM ai worker

project_t *current = cfg.projects;

for (int i = 0; i < cfg.project_count; i++) {

char PID_FILE[256];

snprintf(PID_FILE, sizeof(PID_FILE), "/tmp/%s-worker.pid",

current->name
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);

if (access(PID_FILE, F_OK) == 0) {

// ... lettura pid del worker ...

kill(pid, SIGTERM);

printf("Sent termination signal to project %s.\n",

current->name

);

}

current = current->next;

}

// ... cleanup memoria ...

return 0;

}

4.1.3 Diagramma �nale

Le scelte architetturali e implementative prese durante l'intero processo di svilup-

po di Rootless V 2CI, hanno dato vita a un'infrastruttura di CI completa, altamente

scalabile, con�gurabile e sicura, che combina all'interno dei suoi componenti dis-

tribuiti l'assenza di ridondanze e la granularità caratterizzanti sshlirpCI con l'idem-

potenza e la performance del suo successore Rootless sshlirpCI, introducendo anche

nuovi meccanismi di gestione degli errori e delle interruzioni.

I seguenti diagrammi concettuali riassumono la forma �nale di questo ecosistema,

illustrandone rispettivamente la struttura generale e la composizione interna di un

suo componente worker.
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Parsing del file di configurazione e
costruzione delle strutture dati

Costruzione della build_dir 
generale e di un piccolo logfile

Demonizzazione

Setup iterativo dei rootfs con
gestione di fallimenti

Avvio dei worker figli attraverso 
fork e passaggio delle strutture 

dati costruite

Main di "decollo"

build_dir:
/path/to/builddir
projects:
  - prj_1:
   . . .
    architectures:
      - arch_1
      - arch_2
      - arch_3
  - prj_2:
    . . .
    architectures:
      - arch_2
      - arch_3
  - prj_3:
    . . .
    architectures:
      - arch_1
      - arch_2
  - prj_4:
    . . .
    architectures:
      - arch_2

co
nf

ig
.y

m
l

woker per prj_1 woker per prj_2 woker per prj_3 woker per prj_4

Figura 4.8: Schema concettuale generale di Rootless V 2CI, con main espanso e

demoni per progetto rappresentati come contenitori logici opachi
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Main setupper

Main loop

Setup dei thread per 2 architetture

Check delle condizioni di build

Join dei
thread

Check sui sorgenti principali

Check sulle dipendenze

if(cfg.build_mode)
== "main"

if(cfg.build_mode)
== "dep" Sleep e gestione delle interruzioni

if(failure)

if(failure)

Sleep e gestione delle interruzioni

Thread
per prj_2 su arch_2

Installazione dei pacchetti

Installazione dei pacchetti necessari
per il progetto principale 

Installazione dei pacchetti necessari ad
ogni dipendenza manuale

install_packages_in_chroot.sh

install_packages_in_chroot.shInstallazione dei pacchetti necessari
per la dipendenza corrente 

Clone o pull dei sorgenti

Clone o pull 
per il progetto principale 

Clone o pull per ogni dipendenza
manuale

clone_or_pull_for_project.sh

clone_or_pull_for_project.shClone o pull per la dipendenza
corrente 

Cross compilazione dei
sorgenti su arch_i

Cross-compilazione per il sorgente
principale

Cross-compilazione per ogni
dipendenza manuale

cross_compiler.sh

cross_compiler.shCross-compilazione per la dipendenza
corrente 

Installazione dei pacchetti

Installazione dei pacchetti necessari
per il progetto principale 

Installazione dei pacchetti necessari ad
ogni dipendenza manuale

install_packages_in_chroot.sh

install_packages_in_chroot.shInstallazione dei pacchetti necessari
per la dipendenza corrente 

Clone o pull dei sorgenti

Clone o pull 
per il progetto principale 

Clone o pull per ogni dipendenza
manuale

clone_or_pull_for_project.sh

clone_or_pull_for_project.shClone o pull per la dipendenza
corrente 

Cross compilazione dei
sorgenti su arch_i

Cross-compilazione per il sorgente
principale

Cross-compilazione per ogni
dipendenza manuale

cross_compiler.sh

cross_compiler.shCross-compilazione per la dipendenza
corrente 

woker per prj_2

Thread
per prj_2 su arch_3

Figura 4.9: "Scorcio interno" del demone per il secondo progetto di esempio ereditato

dalla rappresentazione generale di Rootless V 2CI precedente
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4.1.4 Ra�namenti e completezza: full build mode, disaster

recovery e rotazione dei binari

Sebbene la forma raggiunta da Rootless V 2CI attraverso il processo di sviluppo e

assemblaggio, descritto nella sottosezione 4.1.2 e riassunto dai diagrammi 4.8 e 4.9,

fosse già su�cientemente completa, funzionale e robusta, al �ne di a�nare questo

sistema di CI distribuito �no a renderlo potenzialmente adatto a un contesto di

produzione reale, si è deciso di implementare tre ulteriori funzionalità secondarie,

ma non meno importanti: il full build mode, un meccanismo di disaster recovery e

un sistema di rotazione dei binari prodotti.

Questi meccanismi, dall'implementazione piuttosto semplice ma dai vantaggi con-

sistenti, sono stati introdotti per ottimizzare tre aspetti principali di Rootless V 2CI,

rispettivamente il grado di con�gurabilità, la persistenza delle risorse e la gestione

dello spazio su disco.

Full build mode

Una delle prime ottimizzazioni implementative che un contesto di produzione

avrebbe richiesto per Rootless V 2CI, sarebbe stata la possibilità di avviare il pro-

cesso di cross-compilazione nel caso di aggiornamenti sia ai sorgenti del progetto

principale che a quelli delle sue dipendenze, e non esclusivamente nel caso di una

sola condizione delle due.

Per maggiore chiarezza, nella versione �nale di Rootless V 2CI si intendeva permet-

tere all'utente di speci�care, per l'attributo build_mode del �le di con�gurazione, un

terzo possibile valore full, attraverso il quale il demone del progetto corrispondente

avrebbe eseguito i check di aggiornamento sia per il repository principale che per

quelli delle dipendenze manuali, avviando il processo di build nel caso in cui almeno

uno di questi fosse risultato assente o superato da commit più recenti.

L'implementazione di questa funzionalità si è rivelata piuttosto semplice, richiedendo

esclusivamente l'inserimento di minimi controlli aggiuntivi nel �le project_worker.c:

int project_worker(project_t *prj, char *main_build_dir) {

// ... Setup logging, PID file, gestori segnali, directory ...

// Main loop

while (1) {

// ... creazione dei percorsi e setup variabili ...

need2update = 0;
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if (strcmp(prj->build_mode, "main") == 0 ||

strcmp(prj->build_mode, "full") == 0

) {

// ... estrazione nome repo ...

int update_result = check_for_updates_inside_chroot(

..., &need2update, ...

);

// ... gestione errori ...

}

if (strcmp(prj->build_mode, "dep") == 0 ||

(strcmp(prj->build_mode, "full") == 0 && !need2update)

) {

manual_dependency_t *cur_manual = prj->manual_dependencies;

while (cur_manual) {

// ... estrazione nome repo ...

int update_result = check_for_updates_inside_chroot(

..., &need2update, ...

);

// ... gestione errori ...

if (need2update) {

break;

}

cur_manual = cur_manual->next;

}

if (terminate_worker_flag) {

break;

}

}

if (!need2update) {

sleep_and_handle_interrupts(...);

continue;

}

// ... avvio thread builder ...

}

// ...

}
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Disaster recovery

Questo secondo miglioramento implementativo è stato quello che ha apportato

maggior stabilità, persistenza, garanzia di idempotenza e di coerenza, rispetto a

tutti i precedenti accorgimenti introdotti nell'architettura di Rootless V 2CI.

Infatti, come accennato nella sottosezione 4.1.2, la scelta, quasi obbligata, di as-

segnare il compito di un setup dei rootfs iterativo al main process, piuttosto che

all'esecuzione del main loop di ogni demone �glio, avrebbe privato Rootless V 2CI

della capacità di ripristinare autonomamente gli ambienti chroot qualora fossero

stati corrotti o rimossi tra un'iterazione e l'altra del ciclo di build, capacità invece

in dotazione all'antenato monolitico Rootless sshlirpCI.

Per questo motivo, e ispirandosi all'alto grado di coerenza già introdotto al-

l'interno dei demoni dalla funzionalità aggiuntiva di gestione dei fallimenti della

costruzione dei rootfs, discussa nella sottosezione 4.1.2, si è deciso di implementare

un meccanismo di disaster recovery che fosse in grado di ripetere l'intero processo

di setup dei chroot al presentarsi di fallimenti critici durante le operazioni che ne

avrebbero richiesto l'accesso.

Questa accortezza ha inevitabilmente aumentato il livello di di�coltà nella ges-

tione della concorrenza: esattamente come sarebbe stato necessario per regolare un

eventuale chroot setup a livello dei threads foglia, anche in questo caso si è reso

indispensabile evitare, tramite locking, che più demoni tentassero di eseguire con-

temporaneamente un'operazione di ricostruzione dello stesso rootfs.

Nonostante ciò, il guadagno apportato da questo meccanismo di disaster recovery,

in termini di persistenza, idempotenza e sicurezza a run-time, ha permesso di su-

perare anche l'alto grado di a�dabilità garantito già da Rootless sshlirpCI, il quale

appunto mancava di una vera e propria gestione degli errori tramite recovery delle

risorse.

L'implementazione di questa ottimizzazione, sebbene un po' più laboriosa rispet-

to a quella del full build mode, ha previsto la sola aggiunta di due funzioni statiche

handle_recovery() e recovery() internamente al �le project_worker.c, con l'in-

serimento di loro invocazioni nelle sezioni di gestione degli errori a seguito di oper-

azioni sui rootfs.

// Funzione core di recovery: ricrea directory e rilancia chroot_setup

static int recovery(project_t *prj, FILE **log_fp, char *main_build_dir)



4.1 Rootless V 2CI: potenziamento ed espansione di Rootless sshlirpCI 119

{

// 1. Ricreazione directory fondamentali (build_dir, log_file...)

// ... (omesso per brevita') ...

// 2. Per ogni architettura, esegue il setup del chroot se mancante

for (int i = 0; i < prj->arch_count; i++) {

if (terminate_worker_flag) break;

// ... setup path chroot ...

if (chroot_setup(prj->architectures[i], chroot_dir,

prj->worker_log_file, *log_fp) != 0

) {

// Log errore setup

return 1;

}

}

return 0;

}

// Wrapper per gestire la concorrenza tra worker durante il recovery

static int handle_recovery(FILE **log_fp, project_t *prj,

char *main_build_dir

) {

// Lock tramite file di stato per evitare recovery simultanei

// su risorse condivise o sovraccarico host

char recovery_state_file[] = "/tmp/worker.recovery";

while (access(recovery_state_file, F_OK) == 0) {

// Attesa attiva se un altro worker sta facendo recovery

sleep(60);

}

// Creazione lock file

FILE *recovery_fp = fopen(recovery_state_file, "w");

if (!recovery_fp) return 1;

// Avvio operazioni di recovery

int recovery_result = recovery(prj, log_fp, main_build_dir);

// Cleanup lock file

fclose(recovery_fp);

remove(recovery_state_file);

return recovery_result;

}
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int project_worker(project_t *prj, char *main_build_dir) {

// ... Setup logging, PID file, gestori segnali ...

while (1) {

// ...

// 1. Controllo aggiornamenti (logica full/main/dep)

// In caso di errore nel check (es. chroot corrotto), tenta recovery

if (check_for_updates_inside_chroot(...) != 0) {

while (handle_recovery(&log_fp, prj, main_build_dir) == 1) {

// Se il recovery fallisce, riprova dopo poll_interval

sleep_and_handle_interrupts(prj->poll_interval, ...);

if (terminate_worker_flag) break;

}

if (terminate_worker_flag) break;

// Se recovery ok, riprova il check immediatamente

continue;

}

// ... Se non ci sono aggiornamenti, sleep e continue ...

// 2. Avvio thread builder e join

// ... (creazione thread e join come in precedenza) ...

// 3. Verifica esito build

if (failed_builds > 0) {

// Se le build falliscono (es. dipendenze rotte nel chroot),

// tenta il recovery dell'ambiente

while (handle_recovery(&log_fp, prj, main_build_dir) == 1) {

sleep_and_handle_interrupts(prj->poll_interval, ...);

if (terminate_worker_flag) break;

}

if (terminate_worker_flag) break;

// Riavvia il ciclo per ritentare la build

continue;

}

// ... Successo e sleep finale ...

}

// ... Cleanup ...

return 0;
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}

Rotazione dei binari

Un'eventualità a cui un contesto di produzione reale sarebbe potuto andare in-

contro è la saturazione dello spazio su disco a causa dell'accumulo di versioni multiple

dei binari prodotti dai processi di cross-compilazione, specialmente nel caso in cui

questi fossero stati eseguiti con una frequenza elevata e su numerosi sorgenti, tutti

soggetti a costanti aggiornamenti e mirati a un numero di architetture target mas-

simo.

Non tanto per evitare il veri�carsi di questo scenario - che nel contesto accademico di

Rootless V 2CI sarebbe comunque stato piuttosto raro - quanto per conferire ulteriore

robustezza e �essibilità a questo ecosistema distribuito, si è deciso di ristrutturare

il sotto-albero di fs interno alla target directory di ogni progetto e implementarvi

un meccanismo di rotazione dei binari prodotti, basato su politiche di daily, weekly,

monthly, yearly retention, frequency interval e disk usage limit con�gurabili dall'u-

tente, sempre tramite il �le di input config.yml.

In particolare, per ogni progetto l'utente avrebbe potuto de�nire una macro-

sezione binaries_config contenente a sua volta due sottosezioni:

� interval, la quale avrebbe contenuto per ogni scaglione temporale (weekly,

monthly e yearly) l'intervallo minimo in minuti tra due versioni consecutive

da conservare - non necessario per lo scaglione daily, il cui valore sarebbe

stato semanticamente già implicito nel poll_interval;

� mem_limit, che avrebbe invece speci�cato, sempre per tutti gli scaglioni tem-

porali, una soglia massima di spazio su disco occupabile dai binari conservati

in quella categoria, espressa in kilobyte.

build_dir: /home/francesco/v2ci_build

projects:

- name: sshlirp

target_dir: /home/francesco/sshlirp_build/target_binaries

binaries_config:

interval:

weekly: 1440 # e.g. 1440 minutes = 1 day

monthly: 10080 # e.g. 10080 minutes = 7 days

yearly: 43200 # e.g. 43200 minutes = 30 days
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mem_limit:

daily: 10000 # 10000 in KB -> 10 MB

weekly: 50000 # 50 MB

monthly: 200000 # 200 MB

yearly: 1000000 # 1 GB

source:

# ...

A partire da queste nuove direttive si sarebbe dovuto modi�care lo script di compi-

lazione cross_compiler.sh e arricchire il comportamento del demone di Rootless

V 2CI, integrandolo con un cronjob.

Nello speci�co della fase di spostamento dei binari statici �nali, interna

allo script di compilazione invocato da ogni thread builder per i sorgenti del pro-

getto di sua competenza, non si sarebbe più potuta applicare la logica di version-

ing ereditata da sshlirpCI tramite Rootless sshlirpCI che, come descritto nella sot-

tosezione 3.2.1, prevedeva il salvataggio degli eseguibili compilati a partire da un

certo tag dei sorgenti in una sotto-directory della destinazione target, nominata

appunto target_dir/tag. Bensì si sarebbe reso necessario, al termine dell'ese-

cuzione di cross_compiler.sh sui sorgenti principali di un certo progetto, svolgere

le seguenti operazioni:

1. creare, se non esistente, la directory target_dir/daily;

2. installarvi il binario selezionato, rinominandolo

target_dir/prj_name-release_version-debian_arch;

3. eliminare iterativamente gli eseguibili meno recenti, solo se necessario, �no a

quando il mem_limit su daily non fosse rispettato;

Queste ottimizzazioni, riportate di seguito, avrebbero, per le prime iterazioni di

Rootless V 2CI, solo impostato l'ambiente di salvataggio dei binari, trascurando an-

cora la necessità di una rotazione ordinata e rispettosa dei vincoli imposti dall'u-

tente.

#!/bin/bash

# ... (parsing degli argomenti e setup del logging) ...

# Ingresso nel chroot per eseguire la build

$thread_chroot_dir/_enter <<EOF
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# ... (rilevamento del sistema di build: cmake,

# autotools, meson, makefile) ...

# ... (compilazione e installazione delle dipendenze) ...

# Solo per il progetto principale: selezione del binario candidato

if [ "$main_project" = "yes" ]; then

# ... (euristica per trovare l'eseguibile linkato staticamente) ...

cp -f "\$selected_binary" \

"$thread_chroot_target_dir/$repo_name-$debian_arch"

fi

EOF

# Solo per il progetto principale, rotazione e salvataggio

if [ "$main_project" = "yes" ]; then

cd "$thread_chroot_dir$thread_chroot_build_dir/$repo_name"

current_tag=$(git describe --tags --abbrev=0 2>/dev/null)

release_version=${current_tag:-"unstable"}

# 1. Creazione della directory daily

mkdir -p "$project_target_dir/daily"

# 2. Installazione del binario con nome versionato

install -m 0755 \

"$thread_chroot_dir$thread_chroot_target_dir/$repo_name-$debian_arch" \

"$project_target_dir/daily/$repo_name-$release_version-$debian_arch"

# 3. Applicazione del limite di memoria per le build giornaliere

total_daily_size=$(du -s "$project_target_dir/daily" | cut -f1)

while [ "$total_daily_size" -gt "$mem_limit" ]; do

oldest_file=$(ls -t "$project_target_dir/daily" | tail -n 1)

# Evita di cancellare il file appena aggiunto

if [ "$oldest_file" = \

"$repo_name-$release_version-$debian_arch" ]; then

break

fi

oldest_file_size=$(du -s \

"$project_target_dir/daily/$oldest_file" | cut -f1)

rm -f "$project_target_dir/daily/$oldest_file"
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total_daily_size=$((total_daily_size - oldest_file_size))

done

fi

exit 0

Per quanto riguarda invece la fase di rotazione dei binari ad esecuzione

avviata, si è deciso di servirsi del demone cron [63], addetto all'esecuzione periodica

di comandi o script a intervalli di tempo prede�niti, istruendolo attraverso l'editing

del �le /var/spool/cron/crontabs/<user> [64] personale dell'utente, tramite il

comando nativamente rootless crontab -u <user> <file> [65].

Per automatizzare questo processo di setup e creazione di un work temporizzato per

la rotazione dei binari, si è scelto di creare uno script bash

binaries_rotation_cronjob.sh, nel quale sarebbe stata contenuta la logica di

gestione degli eseguibili salvati, e sviluppare una funzione

set_binaries_rotation_cronjob, all'interno del �le project_worker.c, la quale,

una volta invocata durante la fase di setup iniziale del demone, avrebbe richiesto

un lock esclusivo tramite flock() - per non generare corruzioni sul �le crontab

dell'utente, possibili e probabili in un contesto di demoni multi-threaded concorrenti

- e svolto le seguenti operazioni, solo al seguito delle quali avrebbe rilasciato le risorse

detenute:

1. composizione - secondo i pattern de�niti dallo stesso manuale [64] - e salvatag-

gio in una variabile stringa dell'entry di crontab, la quale avrebbe invocato lo

script di rotazione dei binari ogni giorno a mezzanotte;

2. copia dei cronjobs esistenti in un �le temporaneo, escludendo ogni entry iden-

tica a quella appena composta;

3. aggiunta dell'entry di rotazione dei binari al �le temporaneo;

4. sostituzione del crontab dell'utente con il �le temporaneo, tramite il comando

crontab -u <user> <temp_crontab_file>.

Queste operazioni sono state implementate come segue:

static int set_binaries_rotation_cronjob(project_t *prj, FILE *log_fp) {

// 0. Acquisizione di un lock globale su /tmp per

// evitare race conditions tra i worker che tentano

// di modificare il crontab contemporaneamente

int lock_fd = open("/tmp/cronjob_lock.lock", O_CREAT | O_RDWR, 0644);

flock(lock_fd, LOCK_EX);
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// 1. Preparazione dell'entry cronjob per

// eseguire lo script ogni notte

/* Crontab entries have the following format:

* * * * * command to be executed

- - - - -

| | | | |

| | | | +----- Day of week (0 - 7) (Sunday=0 or 7)

| | | +------- Month (1 - 12)

| | +--------- Day of month (1 - 31)

| +----------- Hour (0 - 23)

+------------- Minute (0 - 59)

*/

char cronjob_entry[MAX_COMMAND_LEN];

snprintf(cronjob_entry, sizeof(cronjob_entry),

"0 0 * * * %s %s %s %s %d %d %d %d %d %d\n",

expand_tilde(CRONJOB_SCRIPT_PATH),

prj->name, prj->target_dir, prj->cronjob_log_file,

prj->binaries_limits->weekly_mem_limit, ...

);

// 2. Lettura dei cronjob esistenti tramite 'crontab -l' e copia in un

// file temporaneo, escludendo eventuali duplicati dell'entry corrente

FILE *cron_pipe = popen("/usr/bin/crontab -u $USER -l", "r");

FILE *cron_fp = fopen(temporary_crontab_file, "w");

while (fgets(line, sizeof(line), cron_pipe)) {

if (strcmp(line, cronjob_entry) != 0) {

fputs(line, cron_fp);

}

}

// ... chiusura pipe e file ...

// 3. Aggiunta della nuova entry al file temporaneo

cron_fp = fopen(temporary_crontab_file, "a");

fputs(cronjob_entry, cron_fp);

fclose(cron_fp);

// 4. Installazione del nuovo crontab
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char command[MAX_COMMAND_LEN];

snprintf(command, sizeof(command), "/usr/bin/crontab -u %s %s",

getenv("USER"), temporary_crontab_file

);

system_safe(command);

// 5. Rilascio del lock e pulizia

flock(lock_fd, LOCK_UN);

close(lock_fd);

remove(temporary_crontab_file);

return 0;

}

In�ne, lo script di rotazione dei binari binaries_rotation_cronjob.sh sarebbe

stato responsabile, per ogni sua invocazione, di operazioni di spostamento ed elimi-

nazione "a cascata", guidato dalle politiche de�nite dall'utente e procedendo secondo

una logica di funzionamento riassumibile nei seguenti passi:

1. Eliminazione dalla directory target_dir/yearly dei binari prodotti più di un

anno fa, a partire dalla data di esecuzione dello script;

2. Spostamento, tramite una funzione di utility rotation_engine(), dei binari

più vecchi di un mese dalla directory target_dir/monthly a

target_dir/yearly, con controlli e operazioni preliminari per il rispetto dei

vincoli sugli intervalli e sulle soglie di memoria. In particolare, tale funzione

avrebbe eliminato iterativamente i binari mensili meno recenti �no a quando

la distanza temporale tra il �le annuale più recente e quello mensile più vec-

chio non fosse stata almeno pari all'intervallo minimo de�nito per lo scaglione

temporale yearly; inoltre, prima di e�ettuare lo spostamento di un binario

candidato, avrebbe anticipatamente veri�cato che la soglia di memoria de�nita

per lo scaglione yearly non sarebbe stata superata, eliminando in tal caso i

�le annuali meno recenti che impedivano il rispetto del vincolo.

3. Ripetizione del passo precedente per lo spostamento dei binari più vecchi di

una settimana dalla directory target_dir/weekly a target_dir/monthly;

4. Rotazione dei binari più vecchi di un giorno dalla directory target_dir/daily

a target_dir/weekly, seguendo sempre la stessa logica.

A proposito dell'ordine di esecuzione delle operazioni sopra citate, è importante

sottolineare che l'inversione della sequenza di rotazione, partendo cioè dallo sposta-

mento dei binari giornalieri �no ad arrivare a quelli annuali, nonstante la sua maggior
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logicità apparente, avrebbe portato a e�ettuare eliminazioni premature di eseguibili

che invece, dopo un preventivo "cleanup" della directory successiva a quella di loro

appartenenza, sarebbero potuti essere ruotati comunque nei vincoli di memoria e di

intervallo temporale.

L'intero processo di rotazione vincolata è stato poi trascritto nel corrispondente

�le bash come segue:

#!/bin/bash

# ... (setup variabili e funzioni helper per calcolo date) ...

rotation_engine() {

local rotation_type=$1

local current_dir=$2

local later_dir=$3

# ... (impostazione limiti

# MEM_LIMIT,

# INTERVAL_LIMIT,

# MIN_AGE

# in base al tipo) ...

while true; do

oldest_current_file=$(ls -t "$current_dir" | tail -n 1)

# ... (check esistenza file e verifica eta' minima per rotazione) ...

# Verifica vincolo intervallo temporale con il file piu'

# recente nella directory successiva

recent_later_file=$(ls -t "$later_dir" | head -n 1)

if [ -n "$recent_later_file" ]; then

# ... (calcolo differenza temporale) ...

if [ "$minutes_diff" -lt "$INTERVAL_LIMIT" ]; then

# Vincolo non rispettato: elimino il file corrente

# (troppo frequente)

rm -f "$current_dir/$oldest_current_file"

continue

fi

fi
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# Verifica vincolo memoria nella directory di destinazione

# ... (calcolo dimensioni file e directory) ...

while [ "$forcasted_later_dir_mem_kb" -gt "$MEM_LIMIT" ]; do

# Elimina i file piu' vecchi nella directory successiva per

# fare spazio

oldest_later_file=$(ls -t "$later_dir" | tail -n 1)

rm -f "$later_dir/$oldest_later_file"

# ... (aggiornamento stima memoria occupata) ...

done

# Spostamento effettivo del file

mv "$current_dir/$oldest_current_file" "$later_dir/"

done

}

# ... (setup logging e check directory daily) ...

# 1. Pulizia directory YEARLY (elimina file piu' vecchi di un anno)

# ... (ciclo di rimozione basato su eta' file) ...

# 2. Rotazione MONTHLY -> YEARLY

mkdir -p "$yearly_dir"

rotation_engine "monthly" "$monthly_dir" "$yearly_dir"

# 3. Rotazione WEEKLY -> MONTHLY

mkdir -p "$monthly_dir"

rotation_engine "weekly" "$weekly_dir" "$monthly_dir"

# 4. Rotazione DAILY -> WEEKLY

mkdir -p "$weekly_dir"

rotation_engine "daily" "$daily_dir" "$weekly_dir"

È possibile in�ne speci�care che, essendo un processo non esente da bug o scenari di

fallimento, si è deciso di distribuire il sistema di logging di Rootless V 2CI - ancora

retaggio di Rootless sshlirpCI - anche all'interno di questo componente aggiuntivo,

che avrebbe quindi tracciato la sua esecuzione temporizzata su un log �le dedicato

e unico per l'esecuzione dell'intera infrastruttura.
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L'implementazione di questi tre ra�namenti ha terminato il lungo percorso di

sviluppo, originato dallo scopo di una semplice pacchettizzazione di sshlirp e con-

�uito in un sistema avanzato e ottimizzato di continuous integration per sorgenti

multipli e port target eterogenei.

La completezza di Rootless V 2CI, e la sua supremazia rispetto ai propri antenati in

termini di con�gurabilità, estensione, scalabilità, persistenza e sicurezza, è dovuta

però anche all'assunzione della disponibilità di una certa mole di risorse di sistema

computazionali e di storage, capaci di tollerare costi signi�cativi.

4.1.5 Calcolo dei costi di Rootless V 2CI

Parallelismo innestato, progetti multipli, architetture multiple, dipendenze di sis-

tema e sorgenti numerosi, sono tutti fattori variabili, dipendenti dalla con�gurazione

di input dell'utente, che possono determinare per Rootless V 2CI un'esecuzione con-

trollata o, al contrario, estremamente onerosa sia in termini di tempi di esecuzione

e di costi computazionali, che di consumo delle risorse di storage.

Analisi dei costi computazionali

Per lo svolgimento della seguente analisi computazionale e algoritmica di un solo

ciclo di build, si è ovviamente assunto lo scenario di Worst Case Execution Time

(WCET), ovvero che la build_mode sia impostata al valore full, da con�gurazione,

e che vengano rilevati aggiornamenti, innescando e�ettivamente il processo di build

per tutti i target.

Per questo motivo non è da intendersi come una media dei costi computazionali,

bensì come una stima del loro massimo globale.

De�nizioni delle Variabili Siano date le seguenti variabili di input de�nite nel

�le di con�gurazione config.yml:

� n: numero totale di progetti;

� m: numero di architetture target per progetto;

� k: numero di dipendenze manuali per progetto;

� j: numero di pacchetti di sistema per il progetto;

� y: numero di pacchetti di sistema per ogni dipendenza manuale;

� u: numero di architetture uniche nell'unione di tutti i progetti (1 ≤ u ≤ n×m).
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1. Analisi della fase di inizializzazione Il processo sequenziale di setup iniziale,

eseguito dal main.c prima del fork dei processi worker, come già precedentemente

descritto, è composto dalle seguenti sotto-fasi:

1. Parsing della con�gurazione: trascurabile rispetto al resto, in quanto lim-

itato dalla dimensione del solo �le config.yml.

2. Calcolo delle architetture Uniche: dal momento che il sistema itera su tut-

ti gli n progetti e le loro m architetture per creare una lista unica archs_list,

possiamo stimare un costo di O(n ·m).

3. Chroot setup sequenziale: in questo ciclo for, il main.c itera u volte

chiamando chroot_setup.sh e invocando debootstrap; identi�cando il costo

delle operazioni di quest'ultimo Tsetup, possiamo stimare una complessità di

O(u · Tsetup).

Costo totale dell'inizializzazione main: Winit ≈ O(n ·m+ u · Tsetup)

2. Analisi della vita dei demoni per progetto Una volta completato il setup,

il main fork-a n processi worker, il cui �usso di esecuzione con build_mode:full,

dopo un'inizializzazione della porzione di fs dedicata alla build del progetto, di cos-

to approssimabile a O(1), prevede la fase di controllo degli aggiornamenti sia per il

repository principale che per quelli delle sue dipendenze sorgenti.

Quindi, con un totale di 1 + k chiamate a check_updates.sh e un costo temporale

assunto di Tgit_check per le operazioni di git remote update e git rev-parse, ipo-

tizzando WCET, ossia esecuzione avviata e non check costante causa rootfs assente,

abbiamo:

Costo totale per progetto pre-thread: Wcheck ≈ O((1 + k) · Tgit_check).

3. Analisi della vita dei thread builder Considerando sempre il worst case

scenario, ognuno degli n demoni per progetto rileva un aggiornamento e procede

quindi a lanciare m thread builder, i quali si occupano di eseguire la build per ogni

architettura target, ognuno aggiungendo consistenti costi per le seguenti operazioni:

1. Installazione delle dipendenze di sistema: in questa fase vengono instal-

lati j pacchetti per il progetto e y pacchetti per ogni dipendenza, per un totale

di j + k · y pacchetti. Stimando un costo di installazione tramite apt di Tapt,

otteniamo quindi O((j + k · y) · Tapt);

2. Clone/pull dei sorgenti: il thread esegue il clone o il pull - di cui stimiamo

il costo con Tclone - del repository principale e di ogni dipendenza, per un costo

totale di O((1 + k) · Tclone);
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3. Cross-compilazione: in�ne, il thread esegue la compilazione delle k dipen-

denze e del progetto principale. Ipotizzando che il costo medio di una com-

pilazione da sorgente sia Cbuild, abbiamo un costo computazionale totale di

O(k · Cbuild + Cbuild) = O((k + 1) · Cbuild).

Costo totale per thread builder: Wthread = Winstall + Wclone + Wcompilation ≈
O((j + k · y) · Tapt + (1 + k) · Tclone + (k + 1) · Cbuild).

4. Formula globale della complessità computazionale Possiamo ora formu-

lare il calcolo del lavoro totale Wtotal eseguito dal sistema in un ciclo completo:

Wtotal = Winit +
n∑

p=1

(
Wcheck,p +

m∑
a=1

Wthread,p,a

)

Espandendo i termini in base alle variabili n,m, k, j, y, u, Tsetup, Tgit_check, Tapt, Tclone, Cbuild,

otteniamo:

Wtotal ≈ O (n ·m+ u · Tsetup) +
n∑

p=1

(
O
(
(1 + kp) · Tgit_check

)
+

m∑
a=1

(
O ((ja,p + ka,p · ya,p) · Tapt + (1 + ka,p) · Tclone + (ka,p + 1) · Cbuild)

))
Considerando costanti i tempi di esecuzione Tsetup, Tgit_check, Tapt, Tclone, Cbuild e uni-

formi le variabili k, j, y per tutti i progetti e architetture, possiamo sempli�care la

formula come segue:

Wtotal ≈ O (n ·m+ u) + n ·O (1 + k) + n ·m ·O ((j + k · y) + (1 + k) + (k + 1))

Sempli�cando ulteriormente:

Wtotal ≈ O (n ·m+ u) +O (n · (1 + k)) +O (n ·m · (j + k · y + 2k + 2))

≈ O (n ·m) +O (n · k) +O (n ·m · (k · y + j + k))

≈ O (n ·m · (k · y + j + k))

≈ O (n ·m · k · y + n ·m · j + n ·m · k)

In�ne supponendo y ≈ j:

Wtotal ≈ O (n ·m · k · y)
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Analisi dei costi di storage

Più brevemente, è possibile stimare i costi di storage richiesti da Rootless V 2CI

ereditando le variabili de�nite nella precedente valutazione dei costi computazion-

ali e assumendo che Schroot sia lo spazio su disco occupato da un singolo rootfs

debootstrap-ato (considerabile uniforme per tutte le architetture), e che Sbuild_artifacts

sia la quota richiesta dai sorgenti clonati e dalle dipendenze installate all'interno del-

l'ambiente chroot.

Stotal ≈ (u · Schroot) +
(
n ·m · Sbuild_artifacts

)
Come prima, considerando il caso pessimo di u ≈ n ·m:

Stotal ≈ (n ·m · Schroot) +
(
n ·m · Sbuild_artifacts

)
≈ O

(
n ·m · (Schroot + Sbuild_artifacts)

)
4.1.6 Analisi sui consumi reali delle risorse di sistema

Per quanto Rootless V 2CI possa essere specchio di una perfetta armonia tra HA e

performance, la sua esecuzione, come intuito dalla precedente sottosezione, richiede

inevitabilmente l'impiego di risorse di calcolo e disco consistenti.

Infatti, al di là dei costi computazionali dipendenti da parametri di con�gurazione

variabili, nella maggior parte degli scenari d'uso, la fetta più signi�cativa di risorse

di sistema indispensabili per il funzionamento di Rootless V 2CI è da attribuire a

quei fattori, sì considerabili costanti, ma decisamente impattanti sul consumo totale

(Tsetup, Tgit_check, Tapt, Tclone e Cbuild).

Conducendo test di esecuzione per un solo progetto su host Ubuntu 24.04.3 LTS con

processore 11th Gen Intel® Core� i5-1155G7 Ö 8 e 16 GB di RAM, si sono infatti

potute svolgere diverse considerazioni aggiuntive e trarre conclusioni pratiche circa

i seguenti aspetti:

� Consumo delle risorse di calcolo durante il setup: come per Rootless

sshlirpCI, una delle principali fonti di spesa di risorse di sistema computazion-

ali durante l'esecuzione di Rootless V 2CI è legata alla fase di setup iterativo

dei rootfs; lo spostamento di questa da un contesto di concorrenza serializzata

a uno di esecuzione ciclica isolata ha però sia abbassato il consumo percentuale

di RAM che ridotto, anche se minimamente, l'impiego delle CPUs; in parti-

colare, i test condotti hanno mostrato per Rootless sshlirpCI un'occupazione
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aggiuntiva di circa un 2% di memoria (equivalente a 328MB sull'host di es-

ecuzione) rispetto a un solo 1, 2% (circa 197MB) richiesto invece dal main

setupper di Rootless V 2CI. Per quanto riguarda invece l'utilizzo delle CPUs

i due processi hanno mostrato consumi molto simili, corrispondenti a valori

che variavano per ogni core tra il 100% - quando il carico di lavoro veniva

distribuito dal sistema su una o due sole unità di calcolo - e il 22% - quando

invece le operazioni richieste dall'esecuzione di debootstrap venivano bilan-

ciate equamente tra tutti gli 8 core disponibili sull'host di test.

Queste osservazioni hanno portato a concludere che l'esecuzione della costruzione

dei rootfs in concomitanza all'esistenza in memoria di più threads builder -

come accadeva in Rootless sshlirpCI - comportava un leggero sovraccarico di

memoria, e che invece il suo spostamento in una fase di setup iterativo avrebbe

garantito un'economia più saggia e conveniente delle risorse computazionali.

Inoltre, essendo questa deduzione indipendente dal numero di project per cui

esegue Rootless V 2CI, si dimostra di valenza "globale" la supremazia dell'ar-

chitettura di quest'ultimo ecosistema sviluppato rispetto sia alla sua versione

alternativa, pensata nella sezione 4.1.1, che al monolite "thread-level" di Root-

less sshlirpCI.

Detto ciò, il consumo di risorse di calcolo durante questa fase è rimasto co-

munque non indi�erente, a causa della natura intrinseca di debootstrap, por-

tando l'host a completare l'operazione per 4 port target in circa 19 minuti.

� Consumo delle risorse di calcolo durante la build: sebbene si possa

pensare che il setup serializzato dei rootfs sia di gran lunga l'operazione più

dispendiosa, la preparazione degli ambienti di build e le cross-compilazioni in

parallelo hanno mostrato consumi di CPU e RAM ben più elevati, a causa del-

l'elevato grado di parallelismo raggiunto con l'esecuzione multi-threaded dei

builder, sia in Rootless sshlirpCI che in Rootless V 2CI.

Infatti, se si fosse tentato di impiegare tale grado di concorrenza anche per i ch-

root setup, almeno uno di questi sarebbe fallito, mostrando lo stesso comporta-

mento documentato per la prima versione di sshlirpCI nella sottosezione 3.2.1.

I processi di build invece, in quanto più "leggeri" presi singolarmente, sono

stati eseguiti integralmente in parallelo senza una regolazione delle risorse com-

putazionali, mostrando però un consumo di CPU e RAM molto elevato.

In particolare, i test condotti - sempre su un solo progetto e 4 architetture

target, ossia in un contesto ancora Rootless sshlirpCI-like - hanno generato,
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appunto durante la fase di build, un ∆ di occupazione RAM massimo del 9, 6%

(raggiunto durante la cross-compilazione), minimo del 4, 5% (durante la fase

di setup dei builder) e medio del 7, 1%, equivalente a circa 1, 16GB di memoria

aggiuntiva richiesta sull'host di test.

La percentuale di occupazione RAM si è inoltre rivelata estremamente connes-

sa al grado di impiego dei core, i quali, in modo del tutto simile, hanno tutti

contemporaneamente raggiunto picchi di utilizzo dell'80%, minimi del 12% e

medi del 53%, operando sempre in modo bilanciato.

Questi risultati hanno confermato come la natura altamente concorrente di

Rootless V 2CI sia sì in grado di completare le operazioni di build in appena 6

minuti, ma anche bisognosa di consistenti risorse di calcolo, in particolar modo

quando il numero di progetti e port target aumenta.

� Impiego del disco: a di�erenza di quanto detto per le risorse computazionali,

per quelle di storage è possibile a�ermare che il consumo più consistente deriva

dalla persistenza degli ambienti chroot sul �lesystem. Quest'ultimi infatti,

indipendentemente dalle loro origini - ovvero, sia che siano stati costruiti da

Rootless sshlirpCI che da Rootless V 2CI - richiedono in totale e in media circa

4, 8GB di spazio su disco, con rootfs che occupano da un minimo di 990MB

(per port più "semplici" come armhf) a un massimo di 1, 5GB (registrato per

riscv64).

A questa "spesa �ssa" si aggiunge poi lo spazio richiesto per i sorgenti e i

binari prodotti, il quale però, rispetto a quello necessario per gli ambienti

chroot, risulta decisamente trascurabile, in caso di progetti "leggeri" e non

troppo numerosi.

I risultati dei test genitori di queste considerazioni possono inoltre essere riassunti

nella seguente tabella:
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Aspetto Rootless sshlirpCI Rootless V 2CI Note

Max Min Medio Max Min Medio

RAM (Setup) N/A N/A ∼2% (328MB) N/A N/A ∼1,2% (197MB) Valori aggiuntivi rispetto al-

l'idle.

CPU (Setup) 100% 5% 22% 100% 5% 22% Bilanciamento variabile:

100% su 1-2 core, 22% se

distribuito su 8 core.

RAM (Build) 9,6% 4,5% 7,1% (∼1,16GB) 9,6% 4,5% 7,1% (∼1,16GB) Valori identici per singolo

progetto.

CPU (Build) 80% 12% 53% 80% 12% 53% Carico bilanciato equa-

mente su tutti gli 8 core.

Storage (Rootfs) 1,5GB 990MB ∼1,2GB 1,5GB 990MB ∼1,2GB Totale per 4 architetture:

∼4,8GB.

Tabella 4.1: Tabella riassuntiva dei consumi di risorse di sistema rilevati durante i

test.

Da queste analisi approfondite si è tornati a confermare la natura di Rootless

V 2CI: un potente motore estremamente avanzato ma, sebbene ottimizzato sotto

diversi aspetti e categorizzabile come prodotto �nito, anche a�etto da consumi di

"carburante" computazionale e di storage non trascurabili, e quindi non alla portata

di tutti gli ambienti di esecuzione.

4.1.7 Perfezionamento del sistema di logging: scopi dell'omo-

geneizzazione e arricchimento dei pattern

L'ultimo gradino aggiunto alla "scala evolutiva" di Rootless V 2CI ha consentito

di conquistare "user-friendliness" e monitorabilità avanzata.

Un'integrazione e una connessione con uno stack ELK dedicato all'ingestion, il pars-

ing, l'enrichment e la visualizzazione dei log prodotti, infatti non sarebbe stato pos-

sibile senza una normalizzazione di quest'ultimi.

Questa operazione, per quanto cruciale nel percorso verso il raggiungimento del

prodotto �nale, è stata di facile implementazione e di minimo impatto sui sorgenti

di Rootless V 2CI.

Nello speci�co, è stato su�ciente sostituire ogni fprintf di log interno ai componen-

ti .c - o analogo echo degli script .sh - con una funzione di utility formatted_log()

che si sarebbe occupata di arricchire ogni stampa con dati aggiuntivi, componendoli

in un log �nale dalla notazione JSON-like, come mostra il seguente estratto di codice

del componente utils.c:

void formatted_log(FILE *log_file, const char *log_level,

const char *source_file, int line_number, const char *project_name,
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const char *thread_arch, const char *format, ...) {

// Recupero informazioni sull'host (IP, OS, Arch, Modello)

// tramite esecuzione di comandi shell (curl, uname, hostnamectl)

char ip[128], os[128], arch[128], agent[128];

get_client_stats("curl ... https://api.ipify.org", ip, ...);

get_client_stats("uname -o", os, ...);

// ... (altre chiamate per architettura e modello hardware) ...

// Formattazione del messaggio variabile

char message_buffer[2048];

va_list args;

va_start(args, format);

vsnprintf(message_buffer, sizeof(message_buffer), format, args);

va_end(args);

// Stampa del log con timestamp e metadati in formato JSON-like

log_time(log_file);

fprintf(log_file, "[%s] source: { client: { ip: %s, os: %s, ... }, "

"location: { file: %s, line: %d } }, project: %s, "

"thread_arch: %s, message: %s\n",

log_level, ip, os, source_file, line_number,

project_name ? project_name : "N/A",

thread_arch ? thread_arch : "N/A",

message_buffer

);

}

Dopo quest'ultimo perfezionamento, Rootless V 2CI non solo aveva raggiunto la sua

forma de�nitiva, ma si era anche dotato di un sistema di logging strutturato e

omogeneo, pronto per essere ingerito e processato da stack di monitoraggio esterni.

4.2 Integrazione con stack ELK

La scoperta delle tecnologie ELK - acronimo di ElasticSearch, Logstash e Kibana

- ha permesso di ambire a un grado di usabilità di Rootless V 2CI che, con i soli stru-

menti impiegati �no a questo momento, sarebbe stato impossibile da raggiungere.
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L'adozione di un'architettura containerizzata distribuita per l'esecuzione di questi

servizi, la scelta degli agenti di monitoring più adatti al contesto di Rootless V 2CI

e il processo di con�gurazione per l'invio, l'elaborazione e la visualizzazione dei log

prodotti, hanno sì introdotto la necessità innegabile di ulteriori risorse di sistema e

di privilegi elevati, ma hanno anche permesso di completare il quadro di un sistema

di continuous integration user-friendly, monitorabile in tempo reale e distribuibile.

Senza quest'accessoria fase di sviluppo infatti, Rootless V 2CI non avrebbe potuto

vantare di un metodo di controllo e analisi di esecuzione centralizzato in scenari di

istanziazione contemporanea su più server o macchine virtuali; e anche se eseguito

su un singolo host, la scelta ottimizzata di non uni�care in un unico log �le tutte

le stampe prodotte dai suoi componenti, avrebbe reso estremamente complessa la

lettura e l'interpretazione dei dati di esecuzione.

L'architettura compatta dei servizi elastic ha quindi permesso sia di rendere più ac-

cessibile la veri�ca a run-time dell'infrastruttura di CI, che di facilitarne la raccolta e

l'analisi di log generati da sue istanze multiple, in un'ottica di scalabilità orizzontale

e di orchestrazione sempli�cata.

4.2.1 Cenni a ELK

Lo stack ELK è una suite di strumenti open-source [66] sviluppata da Elastic

N.V., progettata per sempli�care drasticamente la gestione e l'analisi di dati time-

series, come logs e metriche [67].

Il fulcro e la fonte di sviluppo di questi strumenti è rappresentato da Elasticsearch,

il quale funge da indicizzatore distribuito per i dati raccolti.

Inoltre, la sua integrazione con Logstash consente di ingerire, trasformare e arricchire

i dati provenienti da molteplici fonti, mentre quella con Kibana o�re un'interfaccia

gra�ca intuitiva per la visualizzazione e l'analisi interattiva di tali dati.

In�ne, un tassello fondamentale per la raccolta dei log in ambienti distribuiti è

rappresentato da Beats, una collezione di agenti leggeri progettati per inviare dati

direttamente alle pipelines di Elasticsearch o per farli transire preliminarmente da

Logstash.

ElasticSearch

Impiegato da importanti community e piattaforme come Wikimedia [68], Mozzil-

la [69], GitHub [70] e Net�ix [71], Elasticsearch è un motore di ricerca e analisi

distribuito, open source e sviluppato in Java, costruito sulla libreria Apache Lucene
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[66, 72].

Rilasciato inizialmente nel 2010, si è a�ermato come standard industriale per la

ricerca full-text, l'analisi di log strutturati e non strutturati e la gestione di dati

geospaziali. A di�erenza dei tradizionali RDBMS, Elasticsearch è classi�cato come

un database NoSQL orientato ai documenti con un'architettura progettata per of-

frire scalabilità orizzontale, HA e capacità di gestione di grandi volumi di dati in

NRT (Near Real-Time), con una latenza tipica di un secondo tra l'indicizzazione del

documento e la sua disponibilità per la ricerca [72].

Per comprendere il funzionamento dell'architettura intrinsecamente distribuita

di Elasticsearch, è necessario de�nire i concetti logici e �sici che governano il sistema

[67]:

� Nodi: quest'unità alla base dell'infrastruttura è sostanzialmente una singo-

la istanza del server Elasticsearch in esecuzione, la cui composizione multipla

prende il nome di Cluster.

Ogni cluster è identi�cato da un nome univoco e orchestra automaticamente

la distribuzione dei dati e delle query tra i nodi disponibili.

Inoltre ogni nodo può essere con�gurato per svolgere ruoli speci�ci (come

master, data_content, data_hot, data_warm, data_cold, ecc.), ottimizzan-

do così le prestazioni e la gestione delle risorse in base ai carichi di lavoro

previsti e alle politiche di retention e rollover dei dati.

� Indici e Documenti: a livello logico, i dati sono organizzati in Indici. Un

indice è una collezione di documenti che condividono caratteristiche simili ed

è analogo a una "tabella" in un database relazionale, sebbene questa analogia

sia puramente funzionale.

All'interno di un indice, i dati sono memorizzati sotto forma di Documenti,

serializzati in formato JSON.

� Shard primari e Replica: per garantire sia scalabilità orizzontale che HA,

Elasticsearch implementa il concetto di Sharding. Un indice può essere sud-

diviso in più frammenti chiamati shards. Ogni shard, che è essenzialmente

un'istanza autonoma e completa di Apache Lucene, può essere classi�cato in

due tipi:

� Primary Shard: dove avvengono le operazioni di scrittura originali.

� Replica Shard: copie dei primary shard, utilizzate per aumentare la

disponibilità del sistema (failover) e per parallelizzare le operazioni di
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lettura, migliorando il throughput delle ricerche, a discapito però di un

leggero aumento del carico di scrittura e dello spazio richiesto su disco.

In questo contesto architetturale, è fondamentale speci�care che i Nodi sono compo-

nenti che non necessariamente devono essere deploy-ati su server multipli. Chiara-

mente in un contesto di produzione aziendale, pratiche di sharding e replicamento

mirate all'HA perderebbero di senso se eseguite su uno stesso host, ma nel contesto

di sviluppo di Rootless V 2CI, dato lo scope intrinsecamente accademico, si è deciso

di distribuire i nodi Elasticsearch come container Docker su un host centralizzato.

Una caratteristica rilevante di Elasticsearch per lo sviluppo dell'integrazione ELK

a Rootless V 2CI, riguarda la sua usabilità: l'interazione con questo motore di

ricerca avviene tramite un'API RESTful completa. In aggiunta, per le interrogazioni

complesse, lo strumento ELK fornisce un potente linguaggio dedicato chiamatoDSL

(Domain Speci�c Language), basato su JSON, che permette di combinare �ltri,

query full-text e aggregazioni analitiche in un'unica richiesta [67, 72].

Logstash

Logstash è un motore di elaborazione dati che funge da componente di ingestion

nella moderna architettura di gestione dei log, sviluppato in Java e Ruby [66].

La sua dinamica di funzionamento è accostabile a quella di una pipeline ETL (Ex-

tract, Transform, Load): acquisisce dati da molteplici sorgenti simultaneamente, li

trasforma per normalizzarli e arricchirli, e in�ne li invia a una o più destinazioni,

tipicamente Elasticsearch [73]. In sostanza, Logstash è generalmente impiegato per

risolvere il problema della normalizzazione di dati eterogenei: dal momento che i

log di sistema, i messaggi applicativi e le metriche di rete vengono generati in for-

mati disparati, esso agisce come strato di mediazione logica prima dell'archiviazione

persistente. In Rootless V 2CI invece, questo strumento è stato impiegato prin-

cipalmente per permettere l'ingestion e il parsing dei log già strutturati prodotti

dall'infrastruttura di CI, al �ne di renderli interrogabili e visualizzabili in Kibana.

Per quanto riguarda l'architettura della pipeline di Logstash, ognuno dei suoi tre

stadi è gestito da plugin speci�ci che operano all'interno del ciclo di vita dell'evento.

Con il primo stadio di Input, responsabile dell'ingestion vera e propria, Logstash si

occupa di covertire i dati in un formato interno basato su eventi, "mettendosi in

ascolto" su una o più fonti di dati [73]:
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� File: lettura in tailing di �le di log, simile al comando Unix tail -f;

� Syslog: ascolto su porte standard (es. 514) per messaggi di sistema conformi

all'RFC3164 [74];

� Beats: ricezione di dati inviati da data shippers leggeri installati sugli edge

node;

� TCP/UDP: gestione generica di socket di rete.

Lo stadio di Filter invece rappresenta il nucleo computazionale di Logstash. Qui

avvengono la strutturazione e l'arricchimento dei dati grezzi tramite �ltri che ven-

gono applicati condizionalmente e in sequenza [73]:

� Grok: è il �ltro più rilevante per la strutturazione di testo non strutturato.

Utilizza pattern basati su RegEx per estrarre campi semantici (es. indirizzi

IP, timestamp) da stringhe di testo arbitrarie;

� Mutate: permette di rinominare, rimuovere, sostituire e modi�care i campi

dati;

� GeoIP: arricchisce i dati contenenti indirizzi IP aggiungendo coordinate ge-

ogra�che (latitudine/longitudine) consultando database interni (es. MaxMind);

In�ne lo stadio terminale di Output instrada i dati elaborati verso la destinazione

speci�cando l'identi�cativo dell'host target, il formato con cui salvare i dati (index,

per targettizzare un indice speci�co, o data stream per delegare a Elasticsearch la

gestione di piccoli backing indexes tramite l'incapsulamento in un unico �usso) ed

eventuali con�gurazioni di connessione ssl.

Sebbene Elasticsearch sia l'output primario nell'ecosistema Elastic, Logstash sup-

porta l'invio verso email, �le system, servizi cloud o altri broker di messaggistica

come Kafka [73].

Kibana

Kibana, ultimo componente cardine dello stack ELK, è un'applicazione frontend,

sviluppata principalmente in Node.js [66], che funge da interfaccia utente per l'Elas-

tic Stack [75]. Il suo ruolo non è limitato alla semplice presentazione gra�ca; Kibana

agisce come un client amministrativo e analitico per Elasticsearch, traducendo le in-

terazioni visive dell'utente in query RESTful complesse inviate al cluster sottostante,

permettendo l'esplorazione operativa dei dati, l'analisi dei time-series e la gestione

della sicurezza del cluster.

Nello sviluppo di Rootless V 2CI, Kibana è stato uno strumento fondamentale per le

fasi di veri�ca degli indici, di testing e di creazione delle dashboards.
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Beats

Nelle moderne architetture distribuite, la centralizzazione dei log richiede data

shippers installati direttamente sui nodi edge di origine.

La piattaforma Beats è una famiglia di agenti leggeri, scritti in Go [66].

Mentre Logstash opera come aggregatore server-side, i Beats operano secondo il

paradigma di forwarder : raccolgono i dati localmente e li inviano verso Logstash

(per un'elaborazione complessa) o direttamente verso Elasticsearch [76].

Sebbene esistano diversi Beat specializzati (come Metricbeat per le metriche e Pack-

etbeat per i dati di rete), il componente più di�uso e cruciale per la gestione dei log

è Filebeat.

Questo agente leggero, progettato per inoltrare e centralizzare log e �le di testo,

sostituisce tradizionali strumenti di monitoraggio pesanti o script artigianali, o�ren-

do una gestione robusta degli errori e della rotazione dei �le [77].

Il suo funzionamento interno si basa su un'architettura di tipo producer-consumer,

governata da due componenti logici principali:

� Input: è il componente responsabile della gestione dei localizzatori. L'Input

scansiona i percorsi de�niti nella con�gurazione (es. /var/log/*.log) per

rilevare nuovi �le o modi�che a �le esistenti;

� Harvester: avviato per ogni �le rilevato dall'Input, questo componente apre

il documento, ne legge il contenuto e invia i dati al bu�er di uscita (Spooler).

Un aspetto tecnico fondamentale è che l'Harvester, �nché attivo, mantiene

ogni fd aperto, mantenendo il �le allocato su disco e garantendo la persistenza

dei log in lettura.

Inoltre, per garantire che nessun dato venga perso o duplicato, Filebeat mantiene

un �le di stato locale chiamato Registry [77]. Il Registry mappa il percorso di ogni

suo �le di input al corrispondente inode e all'o�set, permettendo a Filebeat di ge-

stire correttamente eventuali operazioni terze di renaming (dovute ad esempio a log

rotation).

In�ne, per sempli�care l'ingestione di formati comuni, Filebeat introduce il con-

cetto di Moduli, ossia pacchetti precon�gurati per la localizzazione, il preparsing,

la selezione delle pipelines interne a Elasticsearch e la visualizzazione in Kibana di

logs comuni (come quelli di Apache, Nginx o PostgreSQL) [77].
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Nel contesto di sviluppo presente, l'impiego di data shippers distribuibili ha

consentito di separare (facoltativamente) i pesanti servizi di ingestion, indexing e

visualization dall'altrettanto dispendiosa cross-compilazione multi-process e multi-

threaded condotta da Rootless V 2CI, permettendo per quest'ultima l'esecuzione

diretta su server distribuiti e la sorveglianza centralizzata su un host separato.

Diagramma riassuntivo dell'infrastruttura ELK

Figura 4.10: Diagramma riassuntivo della composizione dell'ELK stack

4.2.2 Scelta di architettura containerizzata distribuita e de-

sign planning del cluster

Per l'allestimento di un Elastic Stack completo dedicato alla monitorabilità di

Rootless V 2CI, si è deciso di adottare un'architettura distribuita su più container

Docker - uno per ogni servizio e nodo del cluster Elasticsearch - e orchestrata tramite

Docker Compose.

Tale scelta, sconsigliata per ambienti di produzione aziendale e suggerita per scopi

accademici di sviluppo e test locale su singoli server [67], ha aderito perfettamente

all'obbiettivo di permettere all'utente utilizzatore sia di istanziare agevolmente il

motore di cross-compilazione e lo stack ELK sul medesimo host, che di monitorare

i log generati da più istanze distribuite di Rootless V 2CI da un unico server super-

visore.

Nonostante ciò, la scelta, quasi obbligata, di un'infrastruttura ELK compattizzata

per un'esecuzione integrale su singolo host ha imposto non poche limitazioni pro-

gettuali.
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Trade-o� del deploy containerizzato su singolo host

Come anticipato nella precedente sottosezione 4.2.1, il deploy dei nodi Elastic-

search - così come dei container associati ai servizi di Logstash e Kibana - su un

unico host, ha di certo mantenuto limitati i prerequisiti di funzionamento dell'intera

infrastruttura, ma ha anche escluso a priori la possibilità - o per lo meno il senso

- di adottare tecniche di replicamento degli shard, compromettendo così l'HA e la

tolleranza ai guasti dei container aventi il ruolo di data_content.

Questo compromesso però, considerando il contesto di sviluppo e di probabile ap-

plicazione locale uni�cata a Rootless V 2CI, si è considerato del tutto accettabile.

Allo stesso tempo, la più verosimile eventualità di eseguire Rootless V 2CI con

"plugin" ELK su un unico server, ha però costretto a una progettazione del cluster

Elastic estremamente economica che ha propagato l'assenza di HA anche a livello

di servizi.

Nello speci�co, una prima progettazione over-stimata ha previsto l'adozione per

Elasticsearch di un totale di 7 nodi, di cui:

� 3 necessariamente con ruolo di master_eligible: necessario per tollerare

guasti del cluster e garantire l'elezione automatica del nodo master in caso di

crash di uno di essi, escludendo quindi scenari di split-brain [78];

� 2 con ruolo di data_hot: per consentire ai log ingeriti più recentemente di

godere di una permanenza sicura (ossia caratterizzata da replicas e HA) su

nodi ottimizzati per l'indicizzazione, prima di ruotare su nodi e�cienti per lo

stoccaggio [67];

� 2 con ruolo di dat_warm: per ospitare i log meno recenti e loro repliche, con mi-

nori requisiti di performance, ma comunque ancora soggetti a query frequenti

[67].

Tale architettura, era sì tecnicamente valida, aderente alle best-practices di Elastic

e altamente disponibile grazie alla ridondanza dei nodi, ma, in esecuzione combi-

nata ai servizi di Logstash, Kibana e Rootless V 2CI, ha avuto l'immediato e�etto

collaterale di saturare tutte le risorse computazionali al punto da causare trashing

a livello di sistema operativo host.

Questo fallimento dei test su hardware apprezzabile ma comunque limitato (proces-

sore 11th Gen Intel® Core� i5-1155G7 Ö 8 e 16 GB di RAM), ha inevitabilmente

indotto a una revisione dell'architettura che permettesse un drastico abbattimento

dei servizi in esecuzione, attraverso un pedante calcolo delle risorse strettamente
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necessarie per il funzionamento di ogni container.

Per questo motivo però, come verrà esposto nella prossima sottosezione, la proget-

tazione del cluster Elastic per l'ingestion dei log di Rootless V 2CI ha escluso il setup

di nodi ridondanti, rinunciando quindi a qualsiasi forma di HA, non solo a livello di

host ma anche di servizi containerizzati.

Design planning

La fase di progettazione concettuale e la piani�cazione dei volumi del cluster Elas-

tic ha seguito un approccio top-down: partendo da stime verosimili di produzione

di log da parte di Rootless V 2CI, si è proceduto a calcolare - seguendo le indicazioni

pratiche suggerite dall'architetto Elasticsearch Dave Moore [79] - le risorse minime

necessarie per ogni servizio containerizzato.

L'unica decisione progettuale impostata a priori, come anticipato, è stata quella di

economizzare al massimo il numero di data_content. Pertento, a seguito di una

valutazione del contesto e dello scope pratico di questa integrazione ELK, in aggiun-

ta a previsioni e stime derivanti dai test svolti e falliti sulla precedente architettura

over-ingegnerizzata, si è deciso di dotare il cluster Elasticsearch di una struttura

minimale composta da un totale di 4 nodi:

� 3 con ruolo di master_eligible, per garantire comunque il corretto funzion-

amento del cluster e un minimo di fault tolerance;

� 1 solo con ruolo di data_content, in hot tier, in modo da minimizzare le

ridondanze e al coltempo permettere indicizzazione ottimizzata, per 30 giorni

di retention, valore che si è pensato fosse su�ciente all'utente per stimare

in modo completo una media degli esiti delle operazioni di Rootless V 2CI,

eseguite per la compilazione dei binari più recenti. In particolare questa scelta

è �glia anche dell'assunzione che esecuzioni legate alla build di binari presenti

in target_dir/yearly siano poco rilevanti a scopo di monitorabilità della

fornitura di versioni aggiornate e corrette.

L'approccio migliore per illustrare le successive operazioni meticolose di size planning

è quello di mostrare le seguenti tabelle riassuntive delle stime dei volumi iniziali,

delle de�nizioni di eventuali requisiti di usabilità, dei calcoli del dimensionamento

del cluster e delle risorse �nali da assegnare ad ogni container Docker.
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Attributo Calcolo
valore per hot

data node
nota

log/giorno 3750 · 2 · 15 112500

Basato sull'assunzione di un

massimo di 1/4 delle righe

totali prodotte (circa 15000)

per ogni progetto e per og-

ni ciclo (i log sono multilin-

ea). Considerando un caso

pessimo di 2 cicli al giorno

per progetto, comprensivi di

chroot setup (primo avvio o

recovery) e build, e 15 pro-

getti.

Dimensione

log (KB)
� 1

Stima molto rilassata (so-

lo per log multilinea molto

grandi)

Dati grezzi al

giorno (GB)

Logs/Day · Log Size/10242

112500 · 1/10242
0.1125

Calcolato secondo le linee

guida [79]

Fattore JSON � 1.5 �

Fattore Indice � 1.1 �

Fattore Com-

pressione
� 0.3 �

Fattore espan-

sione netta

JSON · Indexing · Compression

1.5 · 1.1 · 0.3
0.495

Calcolato secondo le linee

guida [79]

Memoria per

data node

(GB)

� 1 �

Rapporto

Memoria:dati
� 0.03333333333

Ricavato dal rapporto

memoria:dati di 1 : 30 delle

linee guida [79]

Retention

(giorni)
� 30

In questa architettura leg-

gera si assume una retention

massima di 30 giorni

Repliche � 0
Nessuna replica (i log rimar-

ranno disponibili sugli host)

Tabella 4.2: Assunzioni e Stime dei Dati
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Calcolo
Volume dati

(GB)

Volume

storage

(GB)

Nodi dati

hot tier

Dtot = Raw ·Days · Exp · (Repl+ 1)

Dtot = 0.1125 · 30 · 0.495 · 1

Stot = Dtot · (1 + 0.15 + 0.05)

Stot = 1.670625 · 1.2

N = ⌈Stot/Mem/Ratio⌉+ 1

N = 2.00475 · 0.0333/1 + 1

1.670625 2.00475 1.066825

totale � 1.670625 2.00475 1.066825

Tabella 4.3: Dati, Storage e Nodi

Ruoli

Risorse com-

putazionali

(vCPU)

Memoria prin-

cipale (GB

RAM)

Storage (GB)

Servizio 1 Master dedicato 1 1 2

Servizio 2 Master dedicato 1 1 2

Servizio 3 Master dedicato 1 1 2

Servizio 4 Dati Hot 2 1 2.879174185

Servizio 5 Logstash 2 1 1

Servizio 6 Kibana 2 1 1

Totale �

≈4/5cores con
hyperthread-

ing

6 10.87917419

Tabella 4.4: Ruoli dei Servizi e Risorse

Come è possibile evincere da queste tre tabelle fondamentali per la progettazione

del cluster ELK, i calcoli cardine hanno validato l'iniziale preclusione progettuale di

servirsi di un solo data_content, per l'indicizzazione in hot tier.

Infatti, partendo da assunzioni sul volume dei dati prodotti da Rootless V 2CI in un

contesto di impiego intensivo, per 30 giorni di retention in hot tier si è dimostrato

necessario esattamente un solo nodo, validando così l'architettura scelta.

In�ne, come è possibile osservare dall'ultima tabella, sia i calcoli esatti che le assun-

zioni su risorse computazionali e di disco (valutate empiricamente grazie al fallimento

dei test precedentemente svolti sull'architettura over-dimensionata), hanno mostra-

to la reale possibilità di eseguire questa ambiziosa integrazione ELK anche su host
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limitati.

Al �ne di illustrare l'architettura �nale di questo cluster è stato realizzato il

seguente diagramma.
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Figura 4.11: Diagramma architetturale del cluster Elastic impiegato per il monitor-

ing di Rootless V 2CI

4.2.3 Aspetti implementativi del setup, delle con�gurazioni e

della gestione delle risorse per i servizi ELK container-

izzati

Come anticipato in precedenza, l'integrazione ELK per Rootless V 2CI si basa

sull'orchestrazione tramite Docker Compose di 5 container, generati a partire dalle

immagini Docker u�ciali di Elastic [80], regolati da �le di con�gurazione .yml e

setup-ati - con linking ai propri volumi e agli altri container in esecuzione - per

mezzo di script .sh.

Tale orchestrazione è stata inoltre progettata per essere incapsulata in un unico

servizio systemd - elastic-stack.service - che prevede anche fasi di preparazione

preliminare e pulizia conclusiva all'esecuzione dei servizi ELK, garantendo così al-

l'utente che intenda utilizzare ELK associato a Rootless V 2CI massima comodità e

resilienza.
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Orchestrazione con Docker Compose

Il �le docker-compose.yml contiene la logica per un avvio ordinato e funzionale

dei servizi ELK [81].

Nello speci�co, per il corretto raggiungimento dello stato healthy del cluster, sareb-

bero state necessarie non solo attente con�gurazioni ai singoli servizi - di cui verrà

discusso nelle prossime sezioni - ma, primariamente, anche caute sequenze di oper-

azioni per l'avvio dei container stessi. In particolare, qualsiasi cluster Elastic [67]

necessita di start-are in ordine:

1. Tutti i nodi master_eligible, per permettere l'elezione del nodo master;

2. I nodi data_content, che si registrano al cluster una volta che il master è

stato eletto;

3. In�ne, i servizi di Logstash e Kibana, che si connettono al cluster Elasticsearch

solo dopo che quest'ultimo è operativo.

Per ogni container, durante la fase di avvio, Docker Compose ha anche l'essenziale

compito di montare i volumi di persistenza dati, de�nire variabili di ambiente -

ereditate da un �le .env dedicato e trasferite ai volumi dei servizi - e speci�care un

healthcheck che, a intervalli regolari e limitato da un numero massimo di tentativi

e da un timeout, veri�chi lo stato di salute del container, in modo che, una volta

completate con successo le operazioni di sua competenza, possa "sbloccare" l'avvio

dei container dipendenti [81].

Per il caso d'uso speci�co di monitoring di Rootless V 2CI, è stato quindi com-

posto il �le docker-compose.yml che, a seguito della redazione dei �le di con�gu-

razione delle tecnologie ELK, dell'archivio .env delle variabili di ambiente, e degli

script bash per il setup dei nodi Elastic, ha assunto la seguente forma:

services:

# Servizio effimero di setup per la generazione dei certificati SSL

# e la configurazione iniziale delle policy di retention (ILM)

setup:

image: elasticsearch:${STACK_VERSION}

volumes:

- ./certs:/usr/share/elasticsearch/config/certs

- ./scripts/cluster_setup.sh:/usr/share/

elasticsearch/cluster_setup.sh:ro
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# ... (variabili d'ambiente per credenziali) ...

command: [

"bash", "-c", "/usr/share/elasticsearch/cluster_setup.sh \

&& tail -f /dev/null"

]

healthcheck:

# Prima di considerarsi sano attende la

# generazione dei certificati SSL

test:

[

"CMD-SHELL", "[

-f config/certs/v2ci-es-master-1/v2ci-es-master-1.crt

]"

]

interval: 1s

timeout: 5s

retries: 120

# Nodo Master 1 (Rappresentativo per i 3 nodi master del cluster)

v2ci_es_master_1:

depends_on:

setup:

condition: service_healthy

image: elasticsearch:${STACK_VERSION}

volumes:

# Montaggio certificati generati dal setup

- ./certs:/usr/share/elasticsearch/config/certs

# Configurazione specifica del nodo master

- ./elasticsearch/master/config/elasticsearch.yml:

/usr/share/elasticsearch/config/elasticsearch.yml:ro

# Volume dati persistente

- v2ci_es-master_1_data:/usr/share/elasticsearch/data

ports:

- ${ES_PORT}:${ES_PORT}

environment:

- NODE_NAME=v2ci-es-master-1

- CLUSTER_NAME=${CLUSTER_NAME}

# Rispetto della progettazione delle risorse di memoria
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# tramite variabili d'ambiente

- ES_JAVA_OPTS=-Xms${MASTER_HEAP} -Xmx${MASTER_HEAP}

# ...

healthcheck:

# Verifica connettivita' sicura al nodo master

test:

[

"CMD-SHELL",

"curl -s --cacert config/certs/ca/ca.crt \

https://$$NODE_NAME:$$ES_PORT | grep -q \

'missing authentication credentials'",

]

# ...

# ... (v2ci-es-master-2, v2ci-es-master-3, v2ci-es-hot-1

# v2ci-logstash e v2ci-kibana, con volumi e healthcheck

# omessi per brevita' e per configurazione simile) ...

volumes:

# Esempio di definizione volume con driver locale bind-mount

v2ci_es_master_1_data:

driver: local

driver_opts:

type: "none"

device: "/var/lib/elastic-stack/es-master-1-data"

o: "bind"

# ... (altri volumi omessi) ...

Come anticipato e constatabile dal codice YAML soprastante, i tre aspetti cardine

- non ancora discussi - attorno ai quali ruota tutta l'esecuzione di docker compose

up -d - che avrebbe permesso di avviare l'intero stack -, riguardano la gestione

dei volumi persistenti, il setup iniziale, regolato dal servizio temporaneo setup per

mezzo di cluster_setup.sh, e i �le di con�gurazione .yml dei singoli servizi Elastic.

Persistenza dei volumi

Uno dei prerequisiti fondamentali per l'avvio del processo di orchestrazione dei

container Docker è la disponibilità di volumi persistenti per ogni servizio che ne
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necessiti.

Dal momento che lo stack ELK per il monitoring di Rootless V 2CI, come anticipato,

è stato pensato per essere avviato come servizio systemd, si è stabilito che il momen-

to più aderente alla necessità di una fase di setup dei volumi fosse l'ExecStartPre

dello stesso elastic-stack.service.

In corrispondenza di questa direttiva è infatti invocato uno script LVM_setup.sh

che, con lo scopo accessorio di garantire persistenza, coesione e �essibilità nell'or-

ganizzazione dei dati, si serve di LVM (Logical Volume Manager) [82], al �ne di

dimensionare preliminarmente i volumi da associare ai servizi Elastic, seguendo la

progettazione svolta nella sottosezione 4.2.2.

Nello speci�co, dal momento che LVM necessita nativamente di un device dedica-

to e formattato su cui operare per creare e amministrare volumi logici, LVM_setup.sh

procede come mostrato di seguito:

1. per prima cosa si tenta di rilevare il block device secondario (e.g. /dev/sdb)

dichiarato dalla variabile di ambiente ESDATA_PV_DEVICE; in caso di sua man-

canza, lo script crea un'immagine disco /var/lib/elasticsearch-disk.img

- di capienza pari alla somma dello storage richiesto da ogni servizio Elastic -

e la collega a un loop-back device in modo che anche gli host dotati di un

singolo disco possano comunque imitare un data driver dedicato [82];

2. successivamente viene aggiornata la cache del device mapper , in modo che

eventuali modi�che precedenti ai block device vengano riconosciute;

3. si inizializza il physical volume - solo quando necessario, ossia se non è già

stato svolto un LVM setup sulla stessa .img in precedenza;

4. viene assemblato il volume group esdata-vg, garantendo riesecuzioni idem-

potenti;

5. per ogni componente dell'Elastic Stack, lo script predispone poi un logical

volume dimensionato secondo la piani�cazione delle risorse precedente, lo

formatta con XFS (il �lesystem raccomandato da Elastic per carichi di lavoro

ad alta concorrenza [67]) e aggiunge un'entry persistente in /etc/fstab

con quote utente abilitate;

6. dopo il mount, vengono applicati limiti di quota per-servizio per l'UID 1000,

impedendo a Elasticsearch, Logstash o Kibana di sottrarre risorse agli altri
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servizi ELK, e in�ne viene impostata correttamente l'ownership in modo che

i servizi containerizzati possano scrivere senza escalation di privilegi.

Queste operazioni, eseguite in sequenza, garantiscono che ogni servizio Elastic dispon-

ga di un volume logico dedicato, persistente e dimensionato secondo le necessità

progettuali.

#!/bin/bash

# Definizione variabili (device paths, nome volume group, mount root)

DATA_PV_DEVICE=${ESDATA_PV_DEVICE:-/dev/sdb}

DISK_IMAGE=${ESDATA_LOOP_IMAGE:-/var/lib/elasticsearch-disk.img}

DATA_VG_NAME=esdata-vg

MOUNT_ROOT=/var/lib/elastic-stack

# ...

# [1] Se il device specificato non esiste, crea e

# collega un loopback device

if [ ! -b "${DATA_PV_DEVICE}" ]; then

# ... (creazione file .img e associazione tramite losetup) ...

DATA_PV_DEVICE=${LOOP_DEVICE}

fi

# [2] Aggiornamento cache LVM

sudo pvscan --cache "${DATA_PV_DEVICE}" >/dev/null 2>&1 || true

# Definizione dei Logical Volumes in base alla pianificazione

declare -A LV_SPECS=(

[es-master-1-data]=2G

[es-master-2-data]=2G

[es-master-3-data]=2G

[es-hot-data]=3G

[logstash-data]=1G

[kibana-data]=1G

)

# [3] & [4] Inizializzazione Physical Volume e Volume Group

if ! sudo vgs ...; then

# ... (pvcreate se necessario) ...

sudo vgcreate "${DATA_VG_NAME}" "${DATA_PV_DEVICE}"
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fi

sudo vgchange -ay "${DATA_VG_NAME}" >/dev/null 2>&1 || true

# [5] Creazione Logical Volumes, formattazione XFS e aggiornamento fstab

for lv_name in "${!LV_SPECS[@]}"; do

# ... (setup variabili size e path) ...

# Creazione LV se non esiste

sudo lvcreate -L "${lv_size}" -n "${lv_name}" "${DATA_VG_NAME}"

# Formattazione XFS se necessaria

sudo mkfs.xfs -f "${lv_path}" >/dev/null

# Aggiunta entry persistente in fstab con quote abilitate

fstab_entry="${lv_path} ${mount_point} xfs defaults,uquota 0 2"

echo "${fstab_entry}" | sudo tee -a /etc/fstab >/dev/null

done

sudo mount -a

# [6] Configurazione quote XFS e ownership per UID 1000

for lv_name in "${!LV_SPECS[@]}"; do

# ...

sudo xfs_quota -x -c "limit -u bsoft=${lv_size}" \

"bhard=${lv_size} 1000" \

"${mount_point}"

done

sudo chown -R 1000:0 "${MOUNT_ROOT}"

echo "Volume setup completed."

Chiaramente, la scelta di collegare l'immagine disco contenente i volumi logici a

un dispositivo a blocchi virtuale che risiede in memoria, causa inevitabilmente la

perdita del collegamento device↔immagine ogni qualvolta che l'host si riavvia.

Senza ulteriori salvaguardie quindi, il sistema potrebbe fallire il mount dei logical

volumes al boot successivo, in quanto, sebbene l'immagine

/var/lib/elasticsearch-disk.img sia persistente, il loop-back che ne garantiva

l'accessibilità come block device, non esiste più.
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Per evitare questo problema, è stata aggiunta la direttiva ExecStopPost all'unit

elastic-stack.service, la quale si occupa di invocare LVM_teardown.sh.

Questo script, fratello del precedente, assicura arresti e riavvii del servizio idempo-

tenti e puliti, eseguendo le seguenti operazioni:

1. smonta i logical volumes sotto /var/lib/elastic-stack, rimuovendo i

mount points corrispondenti e le entries in /etc/fstab;

2. disattiva il volume group esdata-vg, ossia lo scollega dal block device

virtuale;

3. scollega il loop-back associato all'immagine disco.

Eseguiti in questo ordine, questi passaggi garantiscono uno smantellamento bottom-

up che preserva l'integrità dei dati e la coerenza del sistema.

#!/bin/bash

# ... (definizione variabili e funzione di logging) ...

# [1] Smontaggio dei volumi e rimozione persistenza in fstab

for lv in "${LV_NAMES[@]}"; do

mount_point="${MOUNT_ROOT}/${lv}"

lv_path="/dev/${DATA_VG_NAME}/${lv}"

# Unmount se montato

if mountpoint -q "${mount_point}"; then

umount "${mount_point}" || true

fi

# Rimozione entry da /etc/fstab per evitare errori al boot

if [[ -f /etc/fstab ]]; then

sed -i "\|^${lv_path}[[:space:]]\+${mount_point}[[:space:]]|d" \

/etc/fstab

fi

rm -rf "${mount_point}"

done

# [2] Disattivazione del Volume Group

if vgdisplay "${DATA_VG_NAME}" >/dev/null 2>&1; then

vgchange -an "${DATA_VG_NAME}" >/dev/null 2>&1 || true



4.2 Integrazione con stack ELK 155

fi

# [3] Distacco del loop device associato all'immagine disco

if [[ -f "${DISK_IMAGE}" ]]; then

loopdev=$(losetup -j "${DISK_IMAGE}" | cut -d: -f1 | head -n1)

if [[ -n "${loopdev}" ]]; then

losetup -d "${loopdev}" >/dev/null 2>&1 || true

fi

fi

I �le di con�gurazione

L'altro prerequisito essenziale al corretto avvio di tutti i servizi ELK, chiara-

mente, è la presenza di �le di con�gurazione .yml speci�ci per ogni tecnologia imp-

iegata.

Questi �le, montati come volumi di sola lettura all'interno dei container Docker, con-

tengono le direttive necessarie per l'abilitazione della comunicazione sicura tramite

SSL, l'autenticazione mutua tra client e server Elastic, la de�nizione dei ruoli dei

nodi del cluster, le pipeline di ingestion di Logstash e le impostazioni di Kibana.

Con�gurazione di Elasticsearch e Kibana In un contesto containerizzato, la

redazione dei �le di con�gurazione elasticsearch.yml - per ognuno dei nodi del

cluster - e kibana.yml, ha richiesto minimo sforzo.

Astraendo infatti dal sistema host sottostante, è stato possibile concentrarsi princi-

palmente sulla mera con�gurazione delle impostazioni di sicurezza e connessione.

Pipeline di Logstash Il �le logstash/pipeline/logstash.conf si può consid-

erare il cuore pulsante della fase di ingestion e parsing dei log di Rootless V 2CI.

Esso de�nisce infatti le pipeline che Logstash deve eseguire per processare i log in

arrivo, speci�cando gli input, i �lter e gli output.

Trascurando per il momento la sezione che regola la comunicazione con eventuali

data shippers - di cui verrà discusso invece al paragrafo 4.2.4 -, prima di illustrare

gli altri componenti della pipeline Logstash, si riporta un esempio di log monolinea

generato da Rootless V 2CI:

[2025-10-30 23:52:32] [INFO] source: { client: { ip: 151.82.40.78,

os: GNU/Linux, arch: x86_64, agent: HP Laptop 15s-fq4xxx },
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location: { file: /home/francesco/Scrivania/terzo_anno/Tesi

/rootless_V2CI/src/build_thread.c, line: 167 } }, project: sshlirp,

thread_arch: arm64, message:

Starting build process for architecture arm64 for project sshlirp...

A partire da questo formato di log, strutturato secondo quanto documentato nella

sottosezione 4.1.7, è stato necessario comporre una pipeline Logstash �essibile che

fosse in grado, non solo di ingerire e tipizzare gli attributi secondo valori standard,

ma anche di arricchire i documenti stoccati in Elasticsearch con informazioni ag-

giuntive come la derivazione geogra�ca del log in base all'indirizzo IP del client e

�ag/tag personalizzati per una più agevole categorizzazione.

Il risultato di questo obbiettivo, �glio di un processo di debugging e test non trascur-

abile, è converso nella seguente pipeline logstash.conf:

# ... input ...

# FILTER

filter {

grok {

match => {

# Impiego Grok per il parsing del log

"message" => [

"^\[%{TIMESTAMP_ISO8601:[log][timestamp]}\]

\[(?<[log][level]>%{LOGLEVEL}|INTERRUPT)\]

source: { client: { ip: %{IPORHOST:[source][client][ip]}

...}, ... }, ..., message: %{GREEDYDATA:[log][message]}"

]

}

# Aggiungo un tag in caso di fallimento del parsing con Grok

tag_on_failure => [ "_grokparsefailure" ]

}

# Date filter per convertire [log][timestamp] in @timestamp

if [event][timezone] and [event][timezone] != "" {

date {

match => ["[log][timestamp]", "YYYY-MM-dd HH:mm:ss"]

target => "@timestamp"

timezone => "%{[event][timezone]}"
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}

} else {

date {

match => ["[log][timestamp]", "YYYY-MM-dd HH:mm:ss"]

target => "@timestamp"

timezone => "${LOG_TIMEZONE:UTC}"

}

}

# GeoIP enrichment solo se l'IP e' valido

# in qual caso lo inserisco in [source][ip] e faccio il lookup

if [source][client][ip] and

[source][client][ip] =~

/^(?:\d{1,3}\.){3}\d{1,3}$|^[0-9A-Fa-f:]+$/

{

mutate {

copy => { "[source][client][ip]" => "[source][ip]" }

}

geoip {

source => "[source][ip]"

target => "source"

tag_on_failure => ["_geoip_lookup_failure"]

}

}

# ... normalizzazione di altri campi ...

}

}

# OUTPUT

output {

elasticsearch {

# Connessione sicura al nodo data_hot del cluster

hosts => ["https://v2ci-es-hot-1:${ES_PORT:9200}"]

user => "elastic"

password => "${ELASTIC_PASSWORD}"

ssl_enabled => true

ssl_certificate_authorities =>
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"/usr/share/logstash/config/certs/ca/ca.crt"

# Specifico che i log vadano nel data stream di cui

# configurero' il template in ILM_setup.sh

data_stream => true

data_stream_type => "logs"

data_stream_dataset => "compiler"

data_stream_namespace => "default"

}

}

Il setup iniziale

Il �le di script bash cluster_setup.sh, eseguito come primo servizio da Docker

Compose e basato sull'assunzione di volumi persistenti accessibili e �le di con�gu-

razione corretti, ha il compito di preparare l'ambiente del cluster Elastic, integrando

dentro di sé 3 principali funzionalità:

� La generazione dei certi�cati SSL per la comunicazione sicura tra i nodi del

cluster e per l'autenticazione mutua tra client e server Elastic;

� L'impostazione di regole globali ereditate dalla progettazione concettuale,

quali l'esclusione di repliche per gli shard - per evitare che il cluster tenti di

allocare copie ridondanti di indici di sistema, per comportamento prede�nito

al suo avvio - e la de�nizione delle policy di Index Lifecycle Management

(ILM) per la retention dei log, entrambe svolte tramite le API RESTful di

Elasticsearch;

� La creazione - sempre per mezzo delle API - degli utenti di sistema pre-

de�niti, con le relative password, per l'accesso autenticato ai servizi Elastic.

Il seguente estratto di codice bash riassume l'implementazione di tali funzionalità

all'interno di cluster_setup.sh:

#!/usr/bin/env bash

# ... (variabili e funzioni helper per logging

# e check variabili da .env) ...

# Generazione della CA se non presente, tramite certutil e in
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# formato .pem, al fine di ottimizzare una gestione

# trasparente dei .crt e .key

if [[ ! -f "${CERT_DIR}/ca.zip" ]]; then

bin/elasticsearch-certutil ca --silent --pem -out "${CERT_DIR}/ca.zip"

unzip "${CERT_DIR}/ca.zip" -d "${CERT_DIR}"

fi

# Generazione dei certificati per le istanze se non presenti

if [[ ! -f "${CERT_DIR}/certs.zip" ]]; then

bin/elasticsearch-certutil cert --silent --pem \

-out "${CERT_DIR}/certs.zip" --in "${CERT_DIR}/instances.yml" ...

unzip "${CERT_DIR}/certs.zip" -d "${CERT_DIR}"

fi

# ... (impostazione permessi file e attesa disponibilita'

# Elasticsearch tramite curl --ca-cert) ...

log "Setting cluster default index.number_of_replicas=0"

curl --cacert "${CA_CERT}" -u "elastic:${ELASTIC_PASSWORD}" \

-H "Content-Type: application/json" \

-X PUT "${ES_HOST}/_template/default" \

-d '{"index_patterns": ["*"], "settings": {"number_of_replicas": 0}}'

log "Setting kibana_system password"

until curl -s -X POST --cacert "${CA_CERT}" \

-u "elastic:${ELASTIC_PASSWORD}" \

-H "Content-Type: application/json" \

"${ES_HOST}/_security/user/kibana_system/_password" \

-d "{\"password\":\"${KIBANA_PASSWORD}\"}" | grep -q '^{}'; do

sleep 10

done

log "Set ILM policies with ILM_setup.sh script"

bash /usr/share/elasticsearch/ILM_setup.sh

Lo script ILM_setup.sh, a cui si appoggia in modo evidente l'esecuzione dell'inizial-

izzatore bash sopra riportato, oltre a creare una vera e propria policy di ciclo di

vita degli indici con una con�gurazione completa di retention e rollover, si occupa
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anche di comporre l'essenziale index template per i log di Rootless V 2CI, il quale ne

de�nisce il mapping e la struttura all'interno di Elasticsearch.

Per questo speci�co obbiettivo si è deciso di optare per una con�gurazione che

prevedesse l'uso di data stream - a cui si ha accennato nella sottosezione 4.2.1 - e

dynamic mapping. La prima scelta ha permesso di sempli�care la gestione degli

indici, delegando a Elasticsearch la creazione automatica di nuovi indici �sici e la

rotazione dei precedenti in backing indexes [67], mentre la seconda ha evitato di

dover de�nire a priori il mapping di ogni singolo campo dei log, lasciando che fosse

Elasticsearch a dedurlo automaticamente in fase di ingestion.

L'applicazione tramite API di queste politiche al cluster Elasticsearch ha quindi

conferito a ILM_setup.sh la seguente struttura:

#!/bin/bash

# ... (setup variabili d'ambiente e check credenziali) ...

# Definizione della policy JSON: rollover giornaliero o a 1GB,

# delete dopo 30 giorni

cat >/tmp/compiler-logs-ilm.json <<'EOF'

{

"policy": {

"phases": {

"hot": {

"actions": {

"rollover": {

"max_age": "1d",

"max_primary_shard_size": "1gb"

}

}

},

"delete": {

"min_age": "30d",

"actions": { "delete": {} }

}

}

}

}
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EOF

# Applicazione della policy tramite API PUT _ilm/policy

curl -s -o /dev/null -u "elastic:${ELASTIC_PASSWORD}" \

--cacert "${CA_CERT}" \

-H "Content-Type: application/json" -X PUT \

"${ES_URL}/_ilm/policy/compiler-logs-ilm" \

-d @/tmp/compiler-logs-ilm.json

# Definizione del template JSON: pattern per data stream,

# mapping dinamico e associazione alla policy ILM creata sopra

cat >/tmp/logs-compiler-default-template.json <<'EOF'

{

"index_patterns": [ "logs-compiler-*", ".ds-logs-compiler-*" ],

"data_stream": {},

"template": {

"settings": {

"index.lifecycle.name": "compiler-logs-ilm",

"index.number_of_shards": 1,

"index.number_of_replicas": 0,

"index.codec": "best_compression"

},

"mappings": { "dynamic": true }

}

}

EOF

# Applicazione del template tramite API PUT _index_template

curl -s -o /dev/null -u "elastic:${ELASTIC_PASSWORD}" \

--cacert "${CA_CERT}" \

-H "Content-Type: application/json" -X PUT \

"${ES_URL}/_index_template/logs-compiler-default-template" \

-d @/tmp/logs-compiler-default-template.json

4.2.4 Scelta degli agenti di monitoring e con�gurazioni per

architettura sia distribuita che centralizzata

Un passo successivo - all'implementazione dell'elastic-stack.service - nel-

l'integrazione del sistema di Continuous Integration con l'Elastic Stack, è stata la

selezione e la con�gurazione degli agenti di monitoring incaricati di raccogliere e
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inoltrare i log generati dal motore di build verso Logstash.

La scelta di escludere nella sezione input di Logstash il semplice meccanismo stan-

dard di File - introdotto nella sottosezione 4.2.1 - è �glia dell'ambizione già ampia-

mente anticipata di permettere all'utente utilizzatore di distribuire il sistema di mon-

itoraggio in due scenari distinti: All-in-One (singolo host) e Distributed (Builder +

Monitor Remoto).

Quindi la constatata essenzialità di data shippers, per l'implementazione di questo

progetto, si è andata immediatamente a combinare con la natura dei documenti

prodotti da Rootless V 2CI da ingerire, escludendo a priori forwarder di metriche e

prediligendo Filebeat per la gestione computazionalmente impercettibile dei time-

series dell'infrastruttura di CI.

Questa scelta, che ha permesso di potenziare enormemente la predisposizione

allo scaling-out della combinazione Rootless V 2CI + ELK, ha richiesto prima di

tutto la strutturazione della sezione di input di logstash.conf per l'accettazione

di connessioni sicure provenienti da Filebeat, come mostrato di seguito:

input {

beats {

port => "${LOGSTASH_PORT:5044}"

ssl_enabled => true

ssl_certificate => "/usr/share/logstash/config/

certs/v2ci-logstash/v2ci-logstash.crt"

ssl_key => "/usr/share/logstash/config/certs/

v2ci-logstash/v2ci-logstash.key"

}

}

Successivamente è stato necessario preimpostare un �le .env per le variabili di ambi-

ente di Filebeat - essenziale per parametri quali l'indirizzo ip raggiungibile dell'host

su cui è in esecuzione elastic-stack.service, password condivisa per l'autenti-

cazione sicura e path assoluto dei certi�cati da copiare tramite scp -, redigere il

�le di con�gurazione filebeat.docker.yml e in�ne, in modo del tutto analogo a

quanto fatto per i servizi ELK, comporre degli script di setup, avvio e stop che si

occupassero di eseguire in modo ordinato tutte le operazioni necessarie al linking di

Filebeat a Logstash e alla raccolta dei log di Rootless V 2CI.
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Mentre risulta super�uo mostrare gli script start.sh, stop.sh e install.sh

- in quanto di logica simile a quelli illustrati nella sezione precedente e di im-

plementazione standard secondo la documentazione Elastic [67] -, è fondamentale

speci�care che una prima fase di categorizzazione e parsing avviene proprio nel �le

filebeat.docker.yml, il quale appunto si occupa di de�nire i 5 tipi di log prodotti

da Rootless V 2CI, arricchirli con campi distintivi e inviarli al cluster Elasticsearch

passando per Logstash.

filebeat.inputs:

# --- INPUT 1: Main process logs ---

- type: filestream

id: main-process-logs

paths:

- ${V2CI_BUILD_DIR}/logs/main.log

# ... (impostazioni standard: scan_frequency, recursive_glob) ...

parsers:

- multiline:

type: pattern

# Pattern per timestamp [YYYY-MM-DD HH:mm:ss]

pattern: '^\[\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\]'

negate: true

match: after

fields:

log_type: main_process

service_name: main

'event.timezone': ${FILEBEAT_TIMEZONE:UTC}

fields_under_root: true

# --- INPUT 2..4: Project, Cronjob & Host Thread logs ---

# Configurazione analoga a INPUT 1, con paths specifici per

# ogni componente:

# - ${V2CI_BUILD_DIR}/*/logs/worker.log

# - ${V2CI_BUILD_DIR}/*/logs/binaries_rotation_cronjob.log

# - ${V2CI_BUILD_DIR}/*/logs/*-worker.log

# --- INPUT 5: Threads logs inside chroot ---

- type: filestream
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id: project-chroot-thread-logs

paths:

- ${V2CI_BUILD_DIR}/*-chroot/home/*/logs/worker.log

# ... (parser multiline e impostazioni standard come sopra) ...

fields:

log_type: project_chroot_thread

service_name: project-thread

'event.timezone': ${FILEBEAT_TIMEZONE:UTC}

fields_under_root: true

# ================== Outputs ===================

output.logstash:

hosts: ["v2ci-logstash:${LOGSTASH_PORT:5044}"]

ssl.enabled: true

ssl.certificate_authorities: ["/usr/share/filebeat/certs/ca.crt"]

setup.kibana:

host: "https://v2ci-kibana:${KIBANA_PORT:5601}"

ssl.enabled: true

ssl.certificate_authorities: ["/usr/share/filebeat/certs/ca.crt"]

4.2.5 Testing e risultati: visualizzazione su Kibana

Sebbene, come anticipato, lo sviluppo containerizzato di un'infrastruttura ELK

dalle dimensioni limitate sia stato estremamente più agevole rispetto a una vera e

propria installazione locale dei servizi distribuita su cluster multi-server, è stato co-

munque necessario a�rontare considerevoli s�de di debugging e testing, soprattutto

per quanto riguarda la corretta integrazione con Rootless V 2CI.

Una volta però "plug-ato" correttamente Filebeat sia alla produzione di log del

motore di cross-compilazione, che all'interfaccia di parsing ed enrichment fornita da

Logstash, è stato possibile interagire attraverso Kibana con un cluster, sì semplice e

poco persistente, ma healthy e perfettamente funzionante anche per macchine dalle

risorse limitate.

Un ri�esso tangibile e apprezzabile - dal punto di vista di un eventuale utente

utilizzatore - di questo corretto funzionamento dell'intera infrastruttura, più che nei
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log di sitema dei servizi Elastic o nell'analisi dei consumi delle risorse, si trova nell'-

e�ettiva visualizzazione dello stato del cluster e dei log, e nella tangibile possibilità

di creare dashboard complete - attraverso l'uso di tool avanzati e integrati in Kibana

quali Canvas e Lens - e ottimizzate per lo sfruttamento di tutte le funzionalità di

strutturazione dei documenti o�erte dalle con�gurazioni di Filebeat e Logstash, e

dalla grezza formattazione iniziale operata dallo stesso Rootless V 2CI.

I seguenti sreenshots mostrano quindi due interfacce di overview dello stato del

cluster Elastic, quella di discover dei logs e un esempio di dashboard creata per

monitorare l'attività di build.

Figura 4.12: Panoramica dello stato del cluster Elasticsearch su Kibana > Stack

Monitoring

Figura 4.13: Dettagli sui nodi del cluster Elasticsearch visualizzabili tramite la fun-

zionalità di stack monitoring su Kibana
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Figura 4.14: Interfaccia di Discover di Kibana per l'esplorazione diretta dei log

strutturati di Rootless V 2CI

Figura 4.15: Esempio di dashboard personalizzata per il monitoraggio delle build di

Rootless V 2CI su Kibana Canvas; realizzata tramite Lens e rappresentativa di vari

gra�ci e mappe geogra�che

4.2.6 Analisi dei requisiti di sistema per l'integrazione ELK

La coesistenza di container Docker multipli mirati al funzionamento dell'Elas-

tic Stack, in aggiunta alla già dispendiosa esecuzione del motore di Rootless V 2CI,

ha chiaramente portato a scenari di consumo di risorse computazionali per niente
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trascurabili.

In scenari di test "All-in-One", in cui sia il motore di Continuous Integration che

l'infrastruttura di monitoraggio risiedevano sulla stessa macchina �sica impiegata

già precedentemente per le analisi sui consumi di sistema da parte di Rootless V 2CI

- discussi nella sottosezione 4.1.6 -, si è potuto osservare come l'overhead aggiuntivo

introdotto dall'Elastic Stack incida in media per un ulteriore 30% di CPU per ogni

core e 25% di RAM.

Questi ∆ di consumo mostrano come su un host con processore 11th Gen Intel®

Core� i5-1155G7 Ö 8 e 16 GB di RAM, l'esecuzione totale non lasci molto margine

in termini di risorse disponibili.

In scenari più stressful - come ad esempio la cross-compilazione multi-threaded per

4 architetture per un solo progetto contemporanea al bootstrap del cluster ELK - si

è infatti raggiunto il 100% di utilizzo della CPU su tutti gli 8 core logici e si sono

toccati picchi di consumo di RAM �no a 14.7 GB su 16 GB totali, con conseguente

swap intensivo e rallentamenti percepibili.

Nonostante ciò, sebbene lo scenario di impiego "Distributed" della combinazione

Rootless V 2CI + ELK sia raccomandabile rispetto a quello su singolo host, l'use

case generale di quest'ultimo prevede - come verrà illustrato nel tutorial conclusi-

vo - prima un'esecuzione preliminare del sistema di CI e solo in seguito il setup

dell'infrastruttura di monitoraggio, consentendo così di mitigare in parte l'impat-

to sulle risorse computazionali e assorbire in modo del tutto accettabile l'overhead

introdotto dall'Elastic Stack.

4.3 Valutazioni totali

In quest'ultima sezione conclusiva, si intende fornire una valutazione complessiva

dell'integrazione del sistema di Continuous Integration Rootless V 2CI con l'Elastic

Stack, analizzando i principali aspetti qualitativi e quantitativi che ne caratterizzano

l'implementazione e l'e�cacia.

Come verrà illustrato dalle seguenti sottosezioni, da questa "somma" di consider-

azioni è emerso che, pur con limiti di natura tecnica e computazionale, Rootless

V 2CI con integrazione ELK rappresenta una soluzione valida e promettente per

l'automazione e il monitoraggio dei processi di cross-compilazione in ambienti etero-

genei, caratterizzata, lato infrastruttura CI, da resilienza, sicurezza, portabilità,

scalabilità, con�gurabilità e architettura ottimizzata, e, lato monitoring, da stan-
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dardizzazione, persistenza, gestione ottimizzata delle risorse, usabilità, accessibilità,

scalabilità e capacità di raccolta, analisi e visualizzazione avanzata e user-friendly

dei log.

Di questi aspetti, in particolare, si analizzeranno quelli comuni ad entrambe le tec-

nologie, i quali si con�gurano quindi come i principali punti di forza dell'intera

soluzione integrata.

4.3.1 Resilienza delle risorse

Il primo pregio di questa complesssa architettura risiede nella sua resilienza, inte-

sa sia come capacità di adattarsi e rispondere e�cacemente a variazioni impreviste

dell'ambiente, che come predisposizione a un'operatività idempotente, continua e

priva di incoerenze.

Da un lato, Rootless V 2CI, grazie sia all'attenta gestione delle risorse contese tramite

flock() e �le di stato, che alla garanzia di interruzione coerente per mezzo di un

programma v2ci_stop granulare ma permissivo, esclude scenari di corruzione delle

risorse condivise e assicura che ogni build possa essere ripresa o riavviata senza rischi

di incoerenza.

Inoltre, con i suoi ultimi aggiornamenti inclusivi di meccanismi di disaster recovery

e binaries rotation, si con�gura come un sistema di cross-CI "bullet-proof", capace

di mantenere l'integrità dei dati e la continuità operativa grazie alla sua massima

fault tolerance e con�gurabilità.

Dall'altro lato, l'Elastic Stack, anche se privato di HA in favore di una gestione

economica delle risorse di sistema, in scenari, probabilisticamente parlando, frequen-

ti e standard, grazie al salvataggio dei volumi persistenti su disco simulato e alla

garanzia di accesso ad essi tramite loop-back devices, permette di recuperare lo stato

del cluster e i dati in esso contenuti anche in caso di crash improvvisi o riavvii non

piani�cati, assicurando così la persistenza e l'integrità delle informazioni raccolte.

4.3.2 Architettura ottimizzata

Sia Rootless V 2CI che il suo plug-in ELK, sono �gli di un'attenta progettazione,

derivata da lunghe fasi di studio e sperimentazioni di alternative architetturali, test-

ing e analisi delle risorse.

Infatti, la struttura di Rootless V 2CI basata su chroot setup iterativo + demoni per

progetto + thread per architettura ha consentito, rispettando ogni singolo requisito
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progettuale, di sorpassare problemi di overhead computazionale e di parallelismo

da cui sarebbe stata invece a�etta una qualsiasi altra con�gurazione dei medesimi

componenti.

Analogamente, lo studio architetturale pedantemente condotto per l'integrazione

con l'Elastic Stack, ha portato alla de�nizione di un sistema di monitoraggio estrema-

mente contenuto, economico e, conseguentemente, abbastanza portabile.

4.3.3 Scalabilità

Uno dei principali punti forti dell'intero ecosistema risiede nella predisposizione

allo scaling-out.

Rootless V 2CI, grazie alla sua natura modulare e alla gestione indipendente dei pro-

getti e delle architetture, permette di aggiungere facilmente nuovi input di grandezza

variabile garantendo comunque tempi di esecuzione ridotti.

L'Elastic Stack, d'altro canto, grazie alla sua architettura distribuita e alla capacità

di bilanciare il carico tra i nodi del cluster, consente di scalare orizzontalmente l'in-

frastruttura su host più performanti e, possibilmente, dedicati.

Ma il vero ventaggio dell'integrazione di questi due servizi, risiede appunto nella

loro combinazione che consente a un utente proprietario di più server o macchine

virtuali su�cientemente prestanti, di distribuire il carico di lavoro in modo ottimale

attraverso il deploy di istanze Rootless V 2CI su nodi dedicati alla compilazione,

l'assegnamento agli stessi server dei leggeri data shippers Filebeat, e l'aggregazione

centralizzata dei log sull'host dell'Elastic Stack.

In questo scenario, la facilità di distribuzione dei vari servizi si dimostra anche il

miglior modo per l'uso ottimizzato delle risorse di sistema.

4.3.4 Usabilità

Un altro aspetto di rilievo dell'architettura creata è la sua usabilità.

Come verrà mostrato nel tutorial conclusivo, l'inizializzazione di Rootless V 2CI

richiede all'utente di interfacciarsi principalmente solo con il �le config.yml, strut-

turato e leggibile, consetendogli di personalizzare il comportamento del sistema in

modo semplice e intuitivo.

Anche il setup dei servizi containerizzati Elastic è stato pensato come un semplice

eseguibile unico, capace di impostare anche servizi systemd - sia per Elastic Stack
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che per Filebeat - in modo da permettere all'utente di avviare, fermare e monitorare

l'infrastruttura con comandi standard e familiari.

In�ne, l'interfaccia web di Kibana, con i suoi tool integrati per la visualizzazione del-

lo stato del cluster e l'analisi dei log, rende l'interazione con i dati raccolti semplice,

accessibile e anche gradevole.

4.4 Tutorial

Quest'ultima sezione fornisce le istruzioni operative per l'installazione, la con-

�gurazione e l'integrazione "plug and play" del sistema di Continuous Integration

Rootless V 2CI con il sistema di monitoraggio Elastic Stack.

Verranno coperti entrambi gli scenari operativi: distribuzione su singolo host (All-

in-One) e distribuzione distribuita (Builder + Monitor Remoto).

4.4.1 Prerequisiti comuni

Indipendentemente dallo scenario scelto, il primo passo è preparare l'ambiente

per il motore di compilazione.

Questo infatti deve essere installato ed eseguito almeno una volta per generare la

struttura delle directory di log necessarie a Filebeat.

4.4.2 Preparazione del sistema host builder

Eseguire i seguenti comandi sull'host destinato alla compilazione:

sudo apt update

sudo apt upgrade

sudo apt install debootstrap \

qemu-user-static binfmt-support build-essential \

cmake git libexecs-dev libyaml-dev cron

Accortezza per utenti Ubuntu ≥ 24.04:

A causa delle restrizioni di AppArmor sui namespace utente, è necessario eseguire

il seguente comando prima di procedere:

sudo sysctl -w kernel.apparmor_restrict_unprivileged_userns=0
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Compilazione di Rootless_V2CI

1. Clonare ed entrare nella directory (si assume che il sorgente sia scaricato in

rootless_V2CI):

cd rootless_V2CI

2. Modi�care i percorsi di default in src/include/types/types.h con i path

assoluti corretti per il proprio ambiente:

#define DEFAULT_CONFIG_PATH

"/path/assoluto/a/.config/v2ci/config.yml"

#define SCRIPTS_DIR_PATH

"/path/assoluto/a/rootless_V2CI/scripts"

3. Compilare il progetto:

mkdir build && cd build

cmake ..

make

Troubleshooting per la compilazione: Se si veri�cano errori di linking con

libyaml o libexecs, modi�care il CMakeLists.txt speci�cando i percorsi assoluti

alle librerie statiche (.a).

Prima esecuzione obbligatoria

Prima di installare lo stack Elastic, avviare il motore per generare i log:

chmod +x ../scripts/*

./v2ci_start

Attendere che il sistema completi almeno un ciclo di inizializzazione o build, quindi,

se si desidera, fermarlo:

./v2ci_stop

4.4.3 Scenario 1: deploy su singolo host (All-in-One)

In questo scenario, sia il motore di CI (Rootless_V2CI) che lo stack di monitor-

aggio (Elastic Stack) risiedono sulla stessa macchina �sica o virtuale.
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Requisiti speci�ci

Assicurarsi che l'host abbia:

1. Docker e Docker Compose installati;

2. Risorse minime: 4 CPU, 12 GB RAM, 30 GB spazio disco libero.

Step 1: con�gurazione variabili di ambiente

Navigare nelle directory del repository rootless_v2ci_logs_ingestion_system,

quindi:

1. Modi�care elastic-log-monitoring/.env:

� Impostare le porte e le credenziali desiderate per Kibana/Elasticsearch.

2. Modi�care filebeat-log-monitoring/.env:

� Impostare il path assoluto della directory di build di V2CI (dove risiedono

i log generati al punto 1.3);

� Poiché siamo su singolo host, assicurarsi che Filebeat punti a localhost

o al nome del servizio Docker di Logstash.

Step 2: avvio Elastic Stack (Backend)

Avviare Elasticsearch, Logstash e Kibana:

cd elastic-log-monitoring

sudo chmod +x ./*.sh ./scripts/*.sh

sudo ./install.sh

sudo systemctl enable elastic-stack

# Verifica stato

sudo systemctl status elastic-stack

Step 3: avvio Filebeat (Agent)

Avviare l'agente che legge i log locali e li invia allo stack:

cd ../filebeat-log-monitoring

sudo chmod +x ./*.sh

sudo ./install.sh

sudo systemctl enable v2ci-filebeat
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# Verifica stato

sudo systemctl status v2ci-filebeat

Step 4: accesso

Accedere a Kibana via browser: https://localhost:5601 (o IP dell'host).

Accettare il certi�cato SSL auto�rmato se richiesto, o, se segnalata connessione non

sicura, inserirlo tra i certi�cati browser

4.4.4 Scenario 2: deploy su host remoti ma comunicanti (Dis-

tributed)

In questo scenario, Rootless_V2CI gira sull'Host A (Builder), mentre Elastic

Stack gira sull'Host B (Monitor). Filebeat verrà installato sull'Host A per inviare i

log all'Host B.

Host B (Monitor): installazione Elastic Stack

Eseguire questi comandi sul server dedicato al monitoraggio:

1. Con�gurare elastic-log-monitoring/.env assicurandosi che le porte di

Logstash (solitamente 5044) siano esposte per accettare connessioni

dall'esterno;

2. Avviare lo stack:

cd elastic-log-monitoring

sudo chmod +x ./*.sh ./scripts/*.sh

sudo ./install.sh

sudo systemctl enable elastic-stack

Host A (Builder): installazione Filebeat

Eseguire questi comandi sulla macchina dove gira Rootless_V2CI:

1. Con�gurazione fondamentale: modi�care il �le

filebeat-log-monitoring/.env:

� LOG_DIR: Path assoluto dei log di V2CI sull'Host A.;

� LOGSTASH_HOST: Inserire l'indirizzo IP dell'Host B (es. 192.168.1.50).

https://localhost:5601
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2. Avviare Filebeat:

cd filebeat-log-monitoring

sudo chmod +x ./*.sh

sudo ./install.sh

sudo systemctl enable v2ci-filebeat

4.4.5 Gestione operativa

Rotazione binari

Lo script v2ci_start installa automaticamente un cronjob per la pulizia dei

binari vecchi. Per rimuoverlo:

crontab -e

# Rimuovere la riga relativa a v2ci

Reset dei servizi

Se necessario resettare l'intero stack di monitoraggio (attenzione: cancella i

dati):

� Su Host Monitor (o unico host):

cd elastic-log-monitoring

sudo ./reset.sh

sudo systemctl restart elastic-stack

� Su Host Builder (o unico host) per Filebeat:

cd filebeat-log-monitoring

sudo systemctl stop v2ci-filebeat

sudo docker volume rm registry

sudo systemctl start v2ci-filebeat



Conclusioni

In questa trattazione si è cercato di illustrare, con rigore metodologico e at-

tenzione ai dettagli tecnici, il processo evolutivo che ha condotto alla realizzazione

dell'infrastruttura di Rootless V 2CI e alla sua successiva integrazione con i servizi

di monitoraggio ELK. L'analisi ha ripercorso le tappe fondamentali dello sviluppo,

partendo dalle prime sperimentazioni manuali di pacchettizzazione �no al consoli-

damento di un'architettura software distribuita e resiliente, ponendo l'accento sulle

scelte progettuali dettate da vincoli di sicurezza, performance e usabilità.

La genesi di Rootless V 2CI, radicata nella necessità di espandere la frontiera di

connettività dei progetti Virtualsquare tramite la distribuzione capillare di sshlirp,

ha dimostrato come un'istanza speci�ca e circoscritta possa evolvere in un sistema

generalizzato. Il passaggio dalle soluzioni intermedie - sshlirpCI e la sua variante

Rootless - ha segnato un percorso di maturazione tecnica guidato dalla volontà di

superare i limiti imposti dai privilegi di sistema. L'adozione di primitive quali user

namespaces e l'uso combinato di fakeroot e unshare hanno permesso di disaccop-

piare de�nitivamente il processo di costruzione del software dai permessi ammin-

istrativi dell'host, raggiungendo l'obiettivo primario di una "rootlessness" nativa e

sicura.

L'architettura �nale, basata su un modello concorrente di demoni per progetto

e thread per architettura, ha validato l'e�cacia di un approccio modulare. At-

traverso test empirici e misurazioni dei consumi di sistema, si è comprovato come

Rootless V 2CI riesca a garantire scalabilità e velocità di esecuzione, pur mantenen-

do un'impronta computazionale gestibile. L'introduzione di meccanismi avanzati

quali il disaster recovery autonomo e la rotazione intelligente dei binari conferisce

al sistema un grado di fault tolerance che lo rende idoneo a operare in continuità.

In�ne, la decisione di arricchire l'ecosistema con un layer di osservabilità basato

sullo stack Elastic ha colmato il divario tra la complessità delle operazioni di basso

livello e l'accessibilità utente. L'orchestrazione di container Docker per l'ingestion e

la visualizzazione dei log, unita all'impiego di Filebeat come data shipper leggero,
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ha trasformato Rootless V 2CI da mero strumento di compilazione a piattaforma

monitorabile in tempo reale, capace di fornire insight immediati sullo stato delle

build distribuite.

In de�nitiva, sebbene Rootless V 2CI presenti requisiti di risorse che potrebbero

limitarne l'impiego in contesti hardware estremamente vincolati, l'infrastruttura re-

alizzata soddisfa pienamente gli obiettivi accademici e pratici pre�ssati. Essa rapp-

resenta una soluzione valida e innovativa nel panorama della Continuous Integration,

proponendosi come un'alternativa sicura, portabile e trasparente per la produzione

automatizzata di software cross-compilato, fedele alla �loso�a open source e ai prin-

cipi di libertà e accessibilità promossi da Virtualsquare.
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