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Abstract

Developing software libraries that operate seamlessly across heterogeneous plat-
forms and programming languages remains a desirable, yet complex challenge in
modern Software Engineering. In distributed systems, where heterogeneous de-
vices must coordinate across language boundaries, this challenge intensifies as
components need to dynamically maintain consistent semantics while adapting
to platform and language-specific requirements. Beyond these challenges, there
remains the desire to express reusable, unified core logic in an idiomatic, concise,
and type-safe language—the quintessential goal of software engineering. However,
language mismatches and platform-specific constraints often hinder interoperabil-
ity, forcing developers to compromise on their ideal choice for expressing core logic
to meet deployment requirements or leverage specific language ecosystems.

This work addresses this challenge within Scala, a language renowned for its
expressiveness, type safety, and rich language abstractions. A general architecture
and implementation strategy are presented that enable cross-platform and polyglot
software library development in Scala. The proposed approach allows core logic
to be expressed idiomatically in Scala while interoperating with multiple target
languages and platforms, facilitating broader adoption and reuse of Scala-based
libraries across diverse software ecosystems.

To validate the approach, it is applied to the Aggregate Computing framework,
a paradigm for coordinating large-scale distributed systems through functional
field-based abstractions.
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1 Introduction

When building a new system, Software Architects face critical decisions regarding
programming language and target platform selection to meet system requirements.
This decision is crucial, most of the time irreversible and mainly driven by two or-
thogonal factors: the technical requirements and expected use cases of the system,
and the surrounding ecosystem each language and platform offers. The first con-
cerns the constraints and capabilities of the target deployment environment where
the software needs to operate. Consider edge computing and IoT: many of these
systems must run on devices with diverse hardware characteristics—different pro-
cessing architectures, memory hierarchies, and power constraints. On the other
side, the ecosystem encompasses the available libraries, frameworks, tools, and
community support that can significantly influence development speed, maintain-
ability, and overall success of the project, making certain languages and platforms
more appealing for specific domains or industries. Moreover, the choice can be
influenced by external factors, such as team expertise and organizational prefer-
ences.

This often conflicts with software engineers’ goal of encoding business logic and
use cases once, using a high-level, expressive, type-safe programming language that
supports concise, maintainable, and idiomatic code—an approach made difficult
by the constraints described above.

These aspects become even more critical when developing libraries and frame-
works for distributed systems, where software must serve diverse users with vary-
ing needs and constraints across multiple platforms and programming languages,
while ensuring components can interoperate seamlessly and maintain consistent
semantics during execution.

Of course, maintaining multiple, separate codebases for each target platform
and language is not a viable solution, as it would lead to increased maintenance
burden, code duplication, and inconsistencies across versions. Instead, modern
programming languages increasingly support diverse compilation targets. Scala
exemplifies this trend as a powerful, multi-paradigm language originally built for
the Java Virtual Machine (JVM) and later expanded to compile to JavaScript and
bare metal environments. Moreover, Scala has established itself as a leading lan-
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guage for building distributed systems applications and frameworks by combining
functional programming principles with object-oriented programming, offering a
powerful type system and concise syntax that facilitate the development of robust,
scalable, and maintainable applications. Not by chance, notable distributed com-
puting frameworks and libraries, such as Apache Spark |Zah+16| and AkkaEL are
built using Scala. Therefore, Scala represents an ideal candidate for developing
distributed systems libraries that can target multiple platforms. However, despite
its cross-compilation capabilities, Scala’s polyglot potential remains untapped due
to the fragmentation of projects providing multi-platform support and the lack
of a unified framework for achieving multi-language interoperability. This thesis
addresses this gap by exploring strategies and techniques to develop cross-platform
and polyglot distributed systems libraries in Scala, enabling seamless integration
and interoperability across systems written in different programming languages
and running on heterogeneous distributed platforms—all while maintaining a uni-
fied codebase. The main contribution is the presentation of a general architec-
ture for achieving this goal, along with its concrete reification in the context of
Aggregate Computing [BPV15|, an emergent research paradigm for engineering
large-scale distributed collective systems. In this domain, device heterogeneity
and multi-language support are paramount for fostering real-world adoption and
leveraging the diverse ecosystem of tools and libraries available across different
programming languages and platforms.
More specifically, this thesis contributions include:

e the design of a Scala general serialization binding for expressing format-
agnostic encoding and decoding capabilities as context bound in distribution-
aware API signatures. This enables flexible serialization strategies by defer-
ring the choice of concrete serialization format to the end-user, and facilitates
polyglot interoperability while preserving type-safety and capturing serial-
ization concerns at the type level;

e the conceptualization of an abstract Scala architecture for building cross-
platform and polyglot distributed system libraries that clearly separates the
core library software product—encompassing core agnostic business logic
and platform-specific technological concerns—from the user-facing API layer,
which does not add new functionalities but rather widens accessibility of the
API from multiple programming languages;

e the proposal of a Scala-based Polyglot Abstraction Layer that interposes
between the software product and the library users, constituting the user in-

"https://akka.io/
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terface. By employing language-agnostic Portable Types and corresponding
Scala isomorphisms that abstract away language-specific details and seman-
tic differences, this layer enables the definition and exposure of a consistent
API across multiple programming languages, handling language mismatches
like differences in memory management or execution model;

e the implementation of an automated integration testing framework that ver-
ifies exposed polyglot APIs across multiple target languages, validating the
correctness and consistency of the API surface presented to end users;

e the reification of the proposed polyglot architecture and the implementation
of cross-platform distribution support to ScaFi3—a novel Scala 3 reimple-
mentation of Aggregate Computing—which thereby enables the core field-
calculus library to be used in applications written in different programming
languages and deployed on heterogeneous devices.

Thesis structure. This thesis is structured in chapters. Chapter [2| intro-
duces the background concepts of software portability and language interoperabil-
ity, providing a general overview of existing approaches and techniques to achieve
them, as well as an insight into Scala’s cross-compilation capabilities. Chapter
delves into the motivations inspiring this work and its application to the Aggre-
gate Computing paradigm, discussing the main theoretical foundations. Chapter
and Chapter [5| present the main contributions of this thesis: the proposed archi-
tecture for cross-platform and polyglot distributed libraries in Scala, the main
library-agnostic implementation details and its specific reification in the context
of Aggregate Computing. Chapter [0] describes the employed validation strategies
and assess the effectiveness and efficiency of the proposed solution through a real-
world demonstration. Finally, Chapter [7] concludes the thesis by summarizing the
key findings and outlining the directions for future research in this area.
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2 Background and Related Work

This chapter provides the reader the background behind the concepts of software
portability, multi-platform software development and interoperability between pro-
gramming languages, unfolding how these concepts play a crucial role in the com-
prehensive software lifecycle and why they are relevant in modern software engi-
neering. Finally, the main cross-platform polyglot languages are reviewed, with a
particular focus on Scala.

2.1 The role of portability in Software Engineering

Software portability refers to the ability of a software artifact to be used in a di-
verse range of platforms and environments. In this context, the term platform
primarily denotes the combination of hardware architecture and operating system,
though it is often extended to include the execution runtime |El-+17]. The term
environment, instead, represents the broader collection of external elements with
which the software interacts, including system interfaces and libraries. In essence,
a software artifact is portable, i.e., it exhibits portability, when the cost required to
design and implement it for porting to multiple platforms does not exceed the cost
of re-development for each of them [Moo|. Portability is, therefore, about engi-
neering software products to maximize components reuse while ensuring consistent
behavior across target platforms.
Portability spans over multiple levels [Moo]:

e source portability occurs when the software is adapted to the underlying
platform by changing the source code, which is then recompiled for the target
platform. This is the most common form of portability;

e binary portability involves porting software in its compiled binary format.
This is the most advantageous form of portability, though it is also the most
difficult to achieve and is limited to specific cases;

o intermediate-level portability is a middle-ground between source and binary
portability and entails porting an intermediate representation of the software,
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2.1. The role of portability in Software Engineering

sitting between the source and binary code.

Portability has always been a relevant concern in software engineering since
the early days of computing, when the landscape of hardware architectures and
operating systems was extremely fragmented and heterogeneous, and software was
tightly coupled to the underlying platform, requiring full rewrites when moving to
a different one [Ran20]. Over time, the situation has profoundly changed thanks
to a series of innovations and efforts: from the standardization of operating sys-
tems interfaces, such as POSIX, to the widespread introduction of increasingly
higher-level programming languages and the diffusion of modern paradigms, like
the World Wide Web, that inherently fostered portability.

From a programming language perspective, one influential shift addressing
portability has been the move from compilation-based to virtual machine-based
approaches, such as the Java Virtual Machine (JVM) and the Common Language
Runtime (CLR) for .NET. These emerged to overcome the limitations of tradi-
tional compilation-based approaches, like C and C++-, that require developers to
create and maintain separate binaries for each target platform, often with platform-
specific code and complex build configurations—a costly and time-consuming pro-
cess. Virtual machine approaches addressed these challenges through an additional
abstraction layer, decoupling the software from the underlying platform by com-
piling programs into an Intermediate Representation (IR), like the Java bytecode,
that is then interpreted or just-in-time compiled by a platform-specific runtime.
This approach has found widespread adoption, with the JVM and CLR becom-
ing the backbone of entire ecosystems of modern languages and frameworks and
enabling the famous “write once, run anywhere” paradigm—the promise that appli-
cations would be portable across any platform supporting the respective runtime.

However, the technical reality proved to be more nuanced: different virtual ma-
chine implementations can exhibit subtle differences in behavior, and, in resource-
constrained environments, the overhead imposed by the virtual machine may be
prohibitive.

Contemporary portability solutions continue this abstraction progression, with
modern languages supporting multi-target compilation to various platforms, in-
cluding JVM, JavaScript, WebAssembly and native binaries using IRs.

However, despite the advancements in portability techniques and tools, achiev-
ing portability remains a complex challenge as it requires ensuring consistent be-
havior across diverse platforms and environments that often differ in their capabil-
ities and constraints. To illustrate, consider the differences between platforms in
terms of concurrency models. Nowadays, most applications are designed to take
advantage of multicore architectures and heavily rely on concurrency to speed up
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2.1. The role of portability in Software Engineering

computations or to handle multiple tasks simultaneously. Nevertheless, not all
platforms support this feature equally. For instance, the Node JS platform, widely
used for server-side and web applications, is based on a single-threaded event loop
model where blocking operations cannot be performed, requiring a completely
different paradigm based on Continuation-Passing Style and asynchronous pro-
gramming.

Such fundamental differences in platform capabilities are concern permeating
all stages of the software lifecycle, from design to release, requiring careful analysis.

Design and implementation. When designing software, architects must con-
sider the targeted platforms’ constraints and capabilities to minimize the abstrac-
tion gap between the domain problem and platform abstractions. The greater the
abstraction gap is, the more challenging it becomes to implement the required
functionalities in a clean, well-structured and maintainable way. In this context,
the maturity of a platform’s ecosystem, in terms of libraries and frameworks avail-
ability, significantly reduces the abstraction gap developers must bridge, influenc-
ing the platform choice. For example, if a software product requires advanced
data analysis and machine learning capabilities, targeting a platform with a rich
ecosystem in this domain, such as Python, would be a wise choice.

This is particularly relevant when targeting multiple platforms, as the abstrac-
tion gap may be significantly higher with respect to a single platform scenario.
As Doeraene notes in |Doel8|, portability is not enough: even if a language is
portable, unless the ecosystem publishes portable libraries, it remains difficult to
develop applications spanning multiple runtimes because of development costs.

Testing. Having a multi-platform stack significantly impacts the testing strat-
egy, as artifacts need to be tested on each of the targeted platforms to ensure
they behave correctly and consistently across them. Furthermore, different archi-
tectures may behave differently under the same platform (e.g., ARM vs. x86 in
native execution), requiring additional testing efforts to cover all the supported
architectures.

Release. Releasing a multi-platform software product introduces significant com-
plexity, as each platform has its own conventions and requirements for packaging,
distributing, versioning and deployment. For example, JVM artifacts are dis-
tributed as JARs via Maven Central, JavaScript applications via npm bundles
such as Webpack, and Python packages as wheels via PyPI.

Despite the challenges, portability remains a crucial aspect of modern software
engineering, driven by the need to reach heterogeneous infrastructures and reduce
the burden of maintaining or re-implementing software for different platforms.

6 Chapter 2. Background and Related Work



2.2. Language interoperability

Without it, developers face fragmentation, inconsistencies between the different
versions and increased maintenance costs.

2.2 Language interoperability

Portability is only one side of the coin. Orthogonally to the platform dimension,
language interoperability is equally important, as it refers to the ability to commu-
nicate with other languages on each targeted platform, guaranteeing uniformity in
semantics across them |Doel8|. Having portability without interoperability is of
limited practical use: while portability make it possible to use software artifacts in
different platforms, the lack of interoperability with their APIs and libraries would
make the software product isolated and unable to interact with the surrounding
ecosystem. For example, developing an application targeting the JavaScript plat-
form without being able to access its specific functionalities, such as manipulating
the DOM, handling user events or performing file system operations leveraging
Node.js API, would make portability largely theoretical rather than practical.
Interoperability, however, extends beyond accessing native APIs: it entails
the responsibility for library developers to expose the library interfaces in the
target language. This enables the widest possible developers’ audience to use the
library and, most importantly, to let them integrate it with the full power of the
underlying ecosystem. This is particularly relevant because platform ecosystems
have been evolved in silos over the years; they often lack interoperability with
each other, and each of them is focused and optimized for specific domains and
use cases. Language interoperability therefore allows, together with portability,
developers to choose the best platform and, consequently, the best library API for
their specific needs, minimizing the risk of incurring in incompatibility issues.
Crafting a “good” language-interoperable layer is a complex task whose main
difficulty lies in the mismatch between the run-time semantics and abstractions
of the involved languages. This includes, among others, dealing with different
memory management strategies (e.g., garbage collection vs manual memory man-
agement), type systems (e.g., static vs dynamic typing, strong vs weak typing),
and error handling mechanisms (e.g., exceptions vs error codes). Sometimes, these
differences cannot be fully bridged: some features of the source language can be
dropped or limited on a case-by-case basis if they cannot be mapped to the tar-
get language and are not essential for the target ecosystem. For example, most
of the runtime reflection capabilities available in JVM-based languages may not
be fully supported when interoperating with other languages. However, the key
point about interoperability is that the implemented features must be complete

Chapter 2. Background and Related Work 7



2.3. Approaches to multi-platform and polyglotism

with respect to the semantics of the host language, ensuring compatibility with
any library in its ecosystem [Doel§|.

2.3 Approaches to multi-platform and polyglotism

While various categorizations of cross-platform approaches exist in literature |El-
+17|, two fundamental mechanisms can be distinguished: cross-compilation and
wrapper-based approaches.

In the cross-compilation approach, the source code is written in a sort of “su-
perset” language that is automatically compiled and/or transpiled to different
platform-specific targets thanks to a dedicated toolchain, generating platform-
specific artifacts. In this approach the source language itself is designed to provide
both portability and interoperability with each target platform and is referred to
as cross-platform language |Doel8|. Despite having a single super language that
can be cross-compiled to different targets, that does not mean that all the code
can be shared across all the platforms. Thus, when embracing this approach, the
main goal is to design the software product to maximize the reusability of its com-
ponents across the different targeted platforms and fill the abstraction gap with
each environment via minimal platform-specific code, leveraging, whenever possi-
ble, cross-platform libraries. The primary advantage of this approach is that it
enables sharing a substantial portion of the codebase across different platforms.
Indeed, when core business logic is designed to be technologically agnostic—as
best practices prescribe—it can typically be, for the most part, if not completely,
shared across all the platforms. In this respect, striving to maximize code shar-
ing, though it may require more effort initially, pays off in the long run as it is
synonymous with better design.

The other approach is the wrapper-based one, which consists in developing the
software product on a main platform and language, and exposing its functional-
ities to others via a dedicated interoperability layer, typically implemented as a
wrapper library through Foreign Function Interfaces (FFI). These interfaces re-
quire dedicated runtime support and often rely on C as a common interoperability
lingua franca, due to its widespread use in interfacing with low-level operating
system APIs and system libraries. For example, many interpreted languages, such
as Python, include mechanisms for executing extensions modules written in lower-
level languages like C or C++, which are dynamically loaded into the high-level
language’s virtual machine at runtime [Gri+18].

Over the years, automated binding generation tools have been developed to
simplify the creation of interoperability layers. A well known example is the Sim-
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plified Wrapper and Interface Generator (SWIG) |Bea03|, which can generate lan-
guage bindings from C and C++ header files to a variety of high-level languages,
including Python, Java, JavaScript, Ruby and others. Another notable example
is Py4J[] a library that enables Python programs to interact with Java objects
running in a JVM through a bridge gateway. This tool is widely used in projects
like PySpark?| to allow Python developers to leverage the Apache Spark engine,
written in Scala and Java.

Unlike the cross-compilation approach, in the absence of automated tools,
wrapper modules must be implemented manually—a process that can be com-
plex, error-prone and that does not scale well if the number of target languages
increases.

2.3.1 The case of Scala

Scala is a modern multi-paradigm programming language seamlessly integrating
both object-oriented and functional programming, whose powerful static type sys-
tem and advanced language abstraction features make it suitable for crafting com-
plex and maintainable software systems in a concise, elegant and expressive way.

Originally designed to run on the JVM and interoperate with Java, Scala has
evolved to support also native and JavaScript platforms making it a cross-platform
language. Despite other languages, Scala’s cross-platform capabilities are not tied
to the language itself but, rather, demanded by dedicated projects, each with its
own compiler plugins and toolchains that extend the Scala compiler and ecosystem.

Scala.js

Scala.jsE] is the project, introduced in 2013 at EPFL, meant to compile Scala code
to JavaScript with the goal of enabling developers to write rich web applications en-
tirely in Scala and having them compiled to ready to run JavaScript code [Doel§].
Over the years Scala.js has matured into a stable project that allows to target
both web browsers and the Node.js backend environment, making it suitable for
developing full-stack applications entirely in Scala. More recently, an experimental
support for WebAssembly has also been introduced]

Compilation to JavaScript is achieved via a pipeline of stages, shown in Fig-
ure [2.1], performed after the Scala frontend compiler have parsed and type-checked
the source code:

"https://www.pydj.org
Zhttps://spark.apache.org/docs/latest/api/python/index.html
Shttps://www.scala-js.org
“https://www.scala-js.org/doc/project/webassembly.html
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Dependencies
(e.g., external
libraries)

S IR ¢

files
Scala . (.sjsir) . L. Code A
source Scala compiler Linker Optimizer .[mljs
code generator

Figure 2.1: Scala.js simplified compiler pipeline.

e in the first stage the Scala.js compiler turns Scala Abstract Syntax Tree
(AST) into an IR (.sjsir) specifically designed to provide both portability
and interoperability;

e then, .sjsir files are linked together, type-checked and optimized. Opti-
mizations include, among others, methods inlining at call sites and dead
code elimination to make sure only exported API is kept, significantly re-
ducing the final code size;

e finally, the optimized IR is compiled into a single . [m] js file containing the
JavaScript code ready to be executed in the JavaScript environment.

The fact this compilation pipeline is attached to the standard Scala compiler
allows supporting whole Scala language, including all advanced features and ab-
stractions.

As for interoperability, Scala.js seamlessly integrates with existing JavaScript
libraries and frameworks, thanks to a dedicated interoperability layer enabling
both the consumption of JavaScript APIs and the exposure of Scala.js libraries to
JavaScript code. Scala.js-specific code can therefore invoke JavaScript functions
and interact with any library available in the JavaScript ecosystem, including
the Node.js standard library, through typed facades mapping JavaScript APIs to
Scala.js types and abstractions. These can be manually written or, more com-
monly, automatically generated using ScalablyTypedE], a tool that converts Type-
Script declaration files (.d.ts) into Scala.js facades via a Scala Build Tool (sbt)
plugin. Conversely, software products APIs can be exposed to JavaScript code
by annotating Scala.js classes and methods, instructing the compiler to generate
the necessary bindings. Unfortunately, the project does not support automatic
generation of TypeScript type definitions from Scala.js APIs, which would greatly
facilitate the consumption of Scala.js libraries from TypeScript code (and there
are no plans to support this in the futureﬂ).

Shttps://scalablytyped.org/
Shttps://github.com/scala-js/scala-js/issues/3836#issuecomment-551273036
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To maximize code reuse across the JVM and JavaScript platforms, subsets
of the Scala and Java standard libraries have been re-implemented to work na-
tively in the JavaScript environment, providing almost equivalent semantics of
their JVM counterparts: some differences are due to the inherent distinctions be-
tween the two platforms (e.g., the fact only Doubles are supported as numeric
types in JavaScript) |[Doel8|. A notable example of reusable standard library
API is the Future-based concurrency model which, under the hood, impacts the
JavaScript event-loop model while exposing the same API available on the JVM
platform. Nevertheless, not all the JVM standard library can be ported; for
instance, blocking I/O operations are incompatible with the JavaScript’s asyn-
chronous, non-blocking I/O model. When designing a cross-platform library, it
is therefore essential to carefully evaluate which parts of the code can be shared
and which need to be platform-specific, ensuring shared code relies only on cross-
platform abstractions; for example, no blocking calls are performed.

Scala Native

Following the success of Scala.js, the Scala Nativd'| project moved their first steps
in 2017 as a research project at EPFL. Its goal is to compile Scala code directly
to bare metal machine code without the need for the JVM, making it suitable
for resource-constrained environments where the overhead imposed by the JVM
in terms of memory footprint and startup time cannot be tolerated. Since the 0.5
release, published in 2024 with the introduction of native concurrency primitives,
the project has reached a decent level of maturity and stability, making it viable
for production use.

Scala Native is both an ahead of time (AOT) compiler and standalone runtime.

The AOT compiler translates Scala code into native machine code leveraging
the LLVM toolchain [LA], a widely adopted modular compiler infrastructure for
producing optimized machine code for multiple architectures. Compilation pro-
ceeds, similarly to Scala.js, through a pipeline of stages, shown in Figure [2.2]
performed after the Scala frontend compiler, producing IR files from which the
final machine code is generated:

e the first stage of the pipeline is performed by the nscplugin that, inspecting
the AST, translates the Scala code into a strongly typed Native IR (NIR)
consisting of a subset of LLVM IR instructions enriched with additional
information to support Scala high level abstractions;

"https://www.scala-native.org/
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Figure 2.2: Scala Native simplified compiler pipeline.

e NIR files are then linked together with those generated from external libraries
and optimized;

e finally, the optimized NIR is translated to low-level LLVM instructions that
are then compiled by the LLVM backend to platform-specific machine code.

Other than the compiler itself, Scala Native includes a lightweight runtime layer
that supplies essential services for the program execution. Most notable features
provided by the runtime are:

e a configurable garbage collector for automatic memory management of heap-
allocated Scala objects;

e a threading model, based on native OS threads, which maps Scala’s con-
currency abstractions to the underlying platform while striving to maintain
maximum semantic compatibility with the JVM;

e most of the Scala and Java standard libraries re-implemented to work na-
tively with the same semantics (Scala Native treats any differences in seman-
tics between the two platforms as a bug).

e foreign function and a subset of C interoperability primitives to interface
with existing C or C++ libraries and native code through type facades.
These can be generated, similarly to Scala.js, via the sbt binding generator
pluginf|, which processes C header files and produces Scala Native facades.
Scala Native can also expose its libraries to C code via annotations, though
currently only static object methods and properties (via accessor methods)
can be exported and no automatic generation of C headers is provided.

Concerning the supported architectures and operating systems, Scala Native
can target AMD64 (x86-64) and ARM64 (aarch64) architectures on Linux, ma-
cOS and Windows operating systems, also thanks to cross-compilation support—
the ability to compile code for a different target architecture and/or OS than
the one of the host machine where the compilation is performed. This covers the

8https://sn-bindgen.indoorvivants.com
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vast majority of modern desktop and server environments, including some System-
on-Chip (SoC) architectures, like Raspberry Pi devices. Experimental or partial
support exists for FreeBSD, OpenBSD, and NetBSD, though sometimes limited
to particular architectures (e.g., only AMD64 on OpenBSD). Moreover, with the
0.5 release, Scala Native introduced experimental support for 32-bit architectures,
like ARMv7. Mobile platforms (such as Apple devices) and microcontroller archi-
tectures (like ESP32 architecture) are not supported: the first due to the lack of
support for Objective-C or Swift interoperability, required for accessing Apple’s
frameworks, and the latter because of the limited resources offered by these devices.
While the first limitation could be overcome in the future, the second will hardly
be addressed because of the usage of limited or not fully mature LLVM support
and the fact that compiled executable include a runtime layer that, alone, requires
a few megabytes of memory that typically microcontrollers cannot accommodate.

Cross-platform ecosystem

The Scala ecosystem exhibits fragmentation due to separate projects targeting
native and JavaScript platforms, each with independent release cycles and varying
maturity levels. Comparing Scala.js and Scala Native, it is evident the former has
reached a higher level of maturity and stability, driven by its broader audience
and interest in web development. For this reason, the level of library support
for Scala.js is higher with respect to Scala Native. Nevertheless, native platform
has made significant progress in recent years, and since the introduction of native
concurrency primitives, many libraries—such as those in the popular ZIOE] and
Typeleve]m ecosystems—have been ported or are in the process of being ported.
Of course, porting libraries across all platforms requires time and effort, especially
when done retrospectively. Therefore, it is expected that in the coming years,
the landscape of cross-platform Scala libraries will continue to improve and the
number of libraries supporting both Scala.js and Scala Native will increase, driven
by the growing adoption and success of both platforms.

Concerning language interoperability, the Scala ecosystem currently lacks pro-
duction ready libraries exposing a unified and coherent cross-platform, polyglot
API. However, despite the challenges and limitations introduced above that will
be discussed in the next chapters, both Scala.js and Scala Native provide layers of
interoperability that, if properly leveraged, provide a foundation for such solutions,
on which this thesis aims to contribute.

https://zio.dev
Onttps://typelevel.org
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2.3.2 Related works

Besides Scala, several other languages and frameworks target multiple platforms
and provide language interoperability features. Notable examples include Kotlin
Multiplatform, Gleam, Haxe and Flutter/Dart. From a research perspective, a
significant contribution to cross-platform polyglot development is the Basilisk ar-
chitectural pattern, introduced by Bertolotti et al. in [Ber+24]. In the following,
these works are briefly reviewed.

Kotlin Multiplatform

Kotlin Multiplatform[T] is Scala’s primary competitor in both the JVM and cross-
platform ecosystems, as it supports object-oriented and functional paradigms—
albeit with less advanced abstractions than Scala—and targets comparable archi-
tectures: rooted in the JVM, it supports JavaScript, native platforms via LLVM,
and, experimentally, WebAssembly.

Officially supported by JetBrains, Kotlin Multiplatform has gained significant
traction in recent years, particularly in mobile development, after Google adopted
it as the official language for Android. Its widespread use in the mobile devel-
opment community, where cross-platform development is crucial, together with
JetBrains’ unified management, has fostered the growth of a robust, rich and
continuously improving ecosystem that is expected to further expand in the com-
ing years. Notable production-ready frameworks demonstrating the ecosystem’s
breadth are Compose Multiplatform['?, a declarative UI framework for building
cross-platform user interfaces, and Kto™®] a framework for building asynchronous
server-side and client-side applications.

Thanks to its mobile-oriented focus, Kotlin Multiplatform also provides robust
support for native Apple platforms (i10S, macOS), a capability currently missing
in Scala Native. However, similarly to Scala, it cannot target microcontroller
architectures because its large runtime requirements and limited LLVM support.

In terms of language interoperability, Kotlin Multiplatform offers strong inte-
gration with JavaScript, C, and Swift/Objective-C, other than Java. As in Scala,
API exposure is achieved via annotations, instructing the compiler to generate the
necessary bindings. Notable toolchain features in this context include the auto-
matic generation of C headers and, experimentally, TypeScript declaration files,
thereby minimizing manual integration effort.

Hhttps://www.jetbrains.com/help/kotlin-multiplatform-dev/
Znttps://www. jetbrains.com/lp/compose-multiplatform/
Bhttps://ktor.io
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Gleam

Gleam["]is an emergent general-purpose, statically-typed functional programming
language. Guided by a minimalistic design philosophy, it emphasizes simplicity
and ease of use, forgoing object-oriented constructs and advanced functional ab-
stractions, such as type classes, in favor of first-class functions, algebraic data
types and pattern matching.

The language provides two distinct compilation targets: the BEAM virtual
machine and JavaScript. Targeting the BEAM VM allows Gleam to leverage
server-side battle-tested Erlang ecosystem, renowned for its fault-tolerance, mas-
sive actor-based concurrency capabilities and distributed computing features. On
the other hand, the JavaScript target enables Gleam to be used in web develop-
ment, both on the client and server-side via Node.js.

Gleam targets these platforms employing a source-to-source transpilation ap-
proach, whereby it transpiles its source code into human-readable and pretty-
printed Erlang or JavaScript code with TypeScript declaration files. This allows
full interoperability with the BEAM and JavaScript ecosystems through annota-
tions and type facades, and allows developers to inspect and debug the generated
code directly. However, since the lack of hierarchical modules structure like Scala’s
or Kotlin’s, this architectural choice introduces significant limitations when deal-
ing with platform-specific incompatible abstractions, like I/O and concurrency.
When targeting the Erlang’s platform, concurrency is managed transparently by
the BEAM runtime. In contrast, the JavaScript target requires explicit handling
of concurrency via promises or callbacks to accommodate the event-loop model.
Consequently, programming styles and constructs differ between targets: code em-
ploying Erlang-style concurrency I/0 cannot be transpiled to JavaScript and vice
versa. Therefore, libraries that make use of concurrent I/O need to decide whether
to target one platform or the other, limiting code sharing.

These positions Gleam as a language suitable for full-stack development, al-
lowing developers to write both backend and frontend code in the same language,
rather than offering complete cross-platform capabilities.

Haxe

HaxePf] is general-purpose cross-platform language, primarily designed to target a
large variety of platforms and programming languages, including JavaScript, PHP,
Python, Lua, C++, Java and C#, on a wide range of architectures and operat-

“https://gleam.run
5https://haxe.org
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ing systems, including Android and Apple iOS. The language is strictly-typed,
object-oriented, featuring an ECMAScript-oriented syntax, similar to JavaScript
and Java.

Its cross-platform capabilities are achieved via a hybrid compilation strategy.
The Haxe language can both compile into bytecode to be executed on JVM or
its own Virtual Machines (HashLink and NekoVM) and it can also transpile into
other high-level languages. It features a platform-agnostic standard library and
an ecosystem of cross-platform libraries, supporting most of the necessary func-
tionalities for general-purpose programming, including data structures, file 1/0,
networking and concurrency. Platform-specific code can be written using condi-
tional compilation directives, similarly to C-style preprocessor macros.

Concerning interoperability, Haxe allows to interface with target-specific syntax
and APIs creating, like all presented languages, typed facades. However, unlike
Scala and Kotlin, these facades are not automatically generated for most of the
platforms, requiring manual effort to create them. Moreover, for integrating with
native libraries, no unified mechanism exists. Instead, each target platform needs
to rely on its own build tool to link with external libraries, which may complicate
the build process when targeting many platforms.

Although not as popular as other languages, Haxe has found a niche in video
game development and, thanks to its broad platform coverage, is a viable op-
tion for projects prioritizing maximum platform coverage over advanced language
abstractions or reliance on specific ecosystems.

Flutter /Dart

Dart® represents another notable approach to cross-platform development. Devel-
oped by Google, Dart is a statically-typed, object-oriented language best known
for powering Flutter, a framework that enables cross-platform application devel-
opment for mobile, desktop, and web from a single codebase. It targets native
platforms (including Android and Apple devices) via Ahead-of-Time (AOT) com-
pilation and web platforms through transpilation to JavaScript and WebAssembly.

Interoperability in Dart is achieved through different mechanisms depending
on the target platform. On native, Dart both provides an asynchronous message-
passing mechanism for communication with platform-specific code, and a Foreign
Function Interface (FFI) enabling more direct and efficient invocation of native
code from Dart. On web platforms, interoperability is provided through JavaScript
interoperability mechanisms allowing Dart code to call JavaScript functions and
vice versa.

nttps://dart.dev
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These characteristics make Flutter and Dart primarily well-suited for Ul-centric
and client-side applications, especially in mobile applications, where the framework
has reached significant maturity and adoption.

Basilisk

Basilisk |[Ber+24| is a high-level architectural pattern specifically designed to fa-
cilitate the development of cross-platform and polyglot software systems. It pro-
poses a modular architecture in which core business logic is encapsulated, and
platform-specific functionalities are exposed through well-defined interfaces, form-
ing the abstraction layer. The system API is expressed through a Domain Specific
Language (DSL) that is automatically transpiled to target languages via a dedi-
cated transpilation infrastructure, which bridges the user-facing API and platform
specific logic through Foreign Function Interfaces (FFIs). For example, in Scala
output code transpilation, JNA (Java Native Access)m is used to interface with C
libraries on native platforms, while in Python ctypes{r_g] is employed for the same
purpose. This approach avoids the complexity of transpiling the entire codebase
by limiting transpilation to the DSL layer only. While this effectively separates
concerns between platform compatibility and language interoperability, it intro-
duces significant complexity derived from the development and maintenance of
the transpilation infrastructure and the DSL itself, representing a substantial up-
front investment if not factored into an external framework on top of which to
build the software product.

2.3.3 Comparative Analysis of Language Ecosystems

Table presents a systematic comparison of the analyzed cross-platform lan-
guages and their main characteristics. The comparison evaluates each language
across several dimensions: supported target platforms, employed approach for
cross-platform support (whether cross-compilation, transpilation, or hybrid), lan-
guage interoperability, and maturity levels in terms of ecosystem and toolchain.
Maturity assessments are based on qualitative evaluations: ecosystem maturity
considers the availability of libraries and frameworks along with community sup-
port, while toolchain maturity evaluates the stability and robustness of devel-
opment tools. Primary target platforms indicate each language’s original design
focus, which typically exhibits the most mature tooling and library support. Ex-
perimental features represent capabilities under active development that are not

1"https://github.com/java-native-access/jna
¥https://docs.python.org/3/library/ctypes.html
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yet complete or production-ready. Finally, indirect interoperability indicates that
interaction with certain languages is achieved through a companion or intermedi-

ate language rather than direct support. For example, TypeScript interoperability
is typically provided through JavaScript via TypeScript’s declaration files, rather
than direct TypeScript support.

Table 2.1: Cross-platform languages comparison

Language Paradigm(s) Supported Primary Language Ecosystem Toolchain
Environments Approach interoperability maturity maturity
Scala OOP + FP JVM, Cross- Java, JS: JS: Mature,
JS, compilation C and C++"7, Mature, Native:
WASMT, JS and TS™ Native: Developing
Native, Growing
Android™
Kotlin OOP+FP JVM, Cross- Java, Mature Mature
MP JS, WASMT, compilation ~ C and C++",
Native, Obj-C/Swift,
Mobile (Android, JS and TS™

Gleam FP

Haxe OOP

Flutter /  OOP
Dart

Apple)

BEAM,
JS

JS,
Native,
.NET,
JVM,
PHP,
Python,
Lua

Mobile
(Android,
Apple),
Native,

JS,

WASM

Transpilation Erlang and Elixir, Emerging Developing
JS and TS™

Hybrid C++, Growing Developing
C#'/
Java,
PHP,
Python,
Lua,
JS and TS™

Cross- C and C++"7, Established Production-
compilation Obj-C/Swift, Grade
JS and TS™

Bold: Primary target platform
. Experimental feature
~: Indirectly, via a "companion"

language

Ecosystem maturity: Emerging (limited libraries and
adoption), Growing (expanding libraries, active
development, limited community support), Mature (rich
ecosystem), Established (extensive packages, widely used
in industry)

Toolchain maturity: Ezperimental (minimal tooling,
unstable), Developing (basic tools, some instability),
Mature (production-ready), Production-Grade (robust,
widely adopted in production)
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Context and Motivations

This chapter sets the context and motivations behind the thesis work. First, the
fundamentals of Aggregate Computing are introduced. Next, interest in portability
and language interoperability in this field is explained, along with the motivations
behind this thesis project. Finally, an overview of the Scala 3 implementation of
Aggregate Computing is provided, which will be extended in this work.

3.1 Aggregate computing: a bird’s eye view

In the realm of complex large-scale systems composed of many interconnected de-
vices, such as Internet of Things (IoT) ecosystems and swarm robotics, traditional
approaches to programming individual devices struggle to cope with the scala-
bility, composability, fault-tolerance and declarativeness required to manage such
systems effectively.

Aggregate Computing [BPV15| is an emergent research paradigm aiming at
programming such systems through the lens of macro-programming |Cas23|. Its
core philosophy grounds on the idea of programming the collective behavior of
the system as a whole rather than on the individual behavior of its components.
Following this principle, developers can write a single program representing the
desired global behavior, which emerges in a self-organized manner from the in-
teractions of individual devices. The paradigm embraces functional programming
principles to ensure composability and modularity of programs, allowing develop-
ers to build complex systems in a succinct and declarative manner, abstracting
away low-level details about communication and coordination among devices.

Aggregate Computing model

The Aggregate Computing model is based on a collection of interconnected devices
capable of exchanging information between themselves according to a neighboring
relation. This establishes a dynamic network topology that can evolve over time as
a result of mobility, failure and network delays. Each device’s dynamics is modelled
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Figure 3.1: Visual representation of a computational field and phases of a round.

as a sequence of asynchronous, discrete computational rounds, each consisting of
three phases, as illustrated in Figure |3.1;

i. sense: the device collects information from the most recent messages received
from its neighbors and from its local sensors, through which it can observe
its local environment;

ii. compute: execute the aggregate program using the updated local context to
produce an output (the program’s return value) and the messages to be sent
to neighbors;

iii. snteract: the program executes its actuations and sends the messages pro-
duced in the compute phase to neighboring devices.

Core Calculus and Operator Semantics

The main abstraction, formalized through the Field Calculus [Aud+19)|, is that of
a computational field, more briefly referred to as a field. A field is a distributed data
structure mapping each device to a local value in a specific point in space-time.
Aggregate programs are expressed in terms of fields since they represent the first-
class citizens of the paradigm, embodying the "everything is a field" philosophy:
for example, the program controlling the movement of a swarm of robots can be
encoded as a field of vectors, where each device has an associated vector indicating
the direction and speed it is moving.

Computations, in this context, are performed by manipulating fields through
stateful evolution, neighborhood interaction and domain partitioning constructs.
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Those can be expressed by the exchange primitive and conditional expressions, as
formalized in the Ezchange Calculus (XC) [Aud+24], a tiny core calculus allowing
to express the overall behavior of Aggregate Computing systems:

e stateful evolution of fields over time (rounds) and neighborhood interaction
are achieved through the exchange primitive:

exchange(ei7 (n) = return e, send es)

that is evaluated, for each round, as follows:
i. the expression e; is computed to produce the local initial value [;;

ii. n represents the Neighboring Values (also called NValues) received from
nearby devices for this exchange. Notationally, Neighboring Values are
underlined to distinguish them from local values. Note that, since a de-
vice is always considered a neighbor of itself, its own last local value for
this exchange from the previous round is also included in n. For those
neighbors for which no value has been received [; is used as default. The
expression e, is evaluated to the value to be returned by the exchange,
allowing to evolve state over rounds based on the neighborhood context;

iii. the expression e, is evaluated to produce the values to be sent to neigh-
bors for this exchange in the next round.

Often, e, and e, coincide; in that case the retsend shorthand is used:
exchange(e;, (n) = retsend e)
e domain partitioning to manage different sub-collectivities within the overall
system:
if (condition) {eue} else {€farse}
that evaluates the condition expression on each device and, depending on

its truth value, evaluates either the true branch or the false branch, effectively
partitioning the computational field into two sub-fields.

Exchange is powerful enough to express also the Field Calculus constructs:

e nbr, used to access neighbor’s values:
nbr(e : A) : A = exchange(e, (n) = returnn, send e)
e rep, used to make evolve the local state over rounds based on the result of
the same expression in the previous round:

rep(e; : A){(z) = e,} : A = exchange(e;, (n) = retsend e,[z := self(n)])

e share, used to access neighbors’ values while computing a new value based
on the previous result:
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share(e; : A){(z) = e,} : A = self(exchange(e;, (n) = retsend e,,))

On top of these constructs, a set of higher-level building blocks and libraries can
be built to facilitate the development of aggregate programs in a composable and
declarative manner. These include self-healing gradient functions for distance es-
timation, information spreading mechanisms, state management and time-related
constructs to handle stateful and temporal behaviors.

Alignment

Both exchange and domain partitioning constructs to work properly rely on align-
ment, the mechanism ensuring the values produced by an exchange are processed
only by the corresponding exchanges of neighboring devices, namely those in the
same position within the program structure. This prevents different exchanges
from interfering with one another and causing inconsistent or erroneous behav-
ior when a program contains multiple exchange expressions, possibly in different
branches of a conditional.

As an illustrative example, the program presented in Figure contains two
nbr located in separate branches of a conditional statement. In any round, each
device always evaluates the same branch of the conditional depending on the value
of its identifier. When evaluating the Neighboring Values, however, only the values
produced by devices executing the same nbr in the same branch should be consid-
ered. Otherwise, the program would mix values coming from different contexts,
resulting in incorrect outcomes. Those devices are said to be aligned with each
other.

As a result, when evaluating exchange-based expressions, the field of Neigh-
boring Values is restricted to include only those coming from aligned devices.
In Figure 3.2] when evaluating the nbr expression, each device can only observe
Neighboring Values coming from devices with the same identifier parity.

Alignment is achieved by tracking the program’s AST, namely the Value Tree
produced at each evaluation round, and propagating it to neighboring devices so
that they can identify aligned devices and values in subsequent rounds.
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Figure 3.2: Alignment example. The upper part shows a Moore grid of intercon-
nected devices, where each device is connected to its eight neighboring cells and
identified by a unique integer. The lower part provides an enlarged view of the four
devices in the upper-left corner of the grid, showing their program structure rep-
resented as an AST. Grey dashed branches denote the conditional branches that
a device does not evaluate. During the evaluation of the nbr expression, aligned
devices—connected by solid lines—are those whose identifiers share the same par-
ity: devices with even identifiers align only with others having even identifiers, and
likewise for odd ones.
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3.2 Portability and interoperability in Aggregate
Computing

Aggregate Computing targets large-scale distributed systems made up of many
heterogeneous devices, from wearables to embedded and mobile ones, each with
distinct hardware and software capabilities. Ensuring portability is therefore a
primary concern for deploying aggregate programs effectively.

Historically, the first implementation of Aggregate Computing was Protelis
[PBV17], a JVM-based, Java-interoperable external domain-specific language (DSL)
providing a higher-order aggregate programming language. Then, ScaFi (Scala
Fields) |CV16| was introduced as a Scala 2 strongly-typed internal DSL leveraging
Scala’s powerful type system and functional programming features.

Over the years, several other implementations have been developed—or are cur-
rently being developed—in different languages, including FCPP |Aud20| in C++,
Collektive [Tro23]|Cor24] in Kotlin and Rufi [Mic24] in Rust. These implemen-
tations aim to support the widest range of platforms, enabling real-world deploy-
ments on edge devices, while taking advantage of each language’s and ecosystem’s
strengths, such as C++ performance optimizations or Python machine and deep
learning libraries. However, they were created from scratch, with neither code
reuse nor compatibility in mind. Moreover, the lack of a common framework has
led to fragmentation of the aggregate ecosystem, leading to a situation where each
implementation has its own set of libraries, ad hoc extensions and maturity level.

To address these issues, there has been growing interest towards a framework
capable of targeting multiple platforms while offering interoperability with other
languages. Such a framework requires a foundational language that can effectively
and idiomatically express the abstractions and computational model of Aggregate
Computing. Critically, cross-platform support must not come at the expense of
expressiveness. Scala emerges as an ideal "super"-language for this purpose, given
its strong type system allowing to build powerful DSLs and its functional pro-
gramming features enabling higher-order abstractions. Moreover, Scala’s growing
support for multiplatform development calls for an investigation into whether it
can be effectively used to build a portable Aggregate Computing framework.

More generally, abstracting away from AC, the goal of this work is to investigate
the feasibility of building a cross-platform and polyglot architecture for building
Scala distributed libraries and frameworks. Ultimately, such architecture could be
reified into the AC domain. Specifically, this exploration is meant to investigate:

e architectural strategies to design a portable and interoperable layer, while
maintaining core abstractions and semantics and enabling complete code
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reuse;

e interoperability and distribution strategies enabling seamless data exchange
and execution across heterogeneous devices and language runtimes;

e performance implications, idiomaticity of the resulting APIs and overall ef-
fort required to extend and maintain a cross-platform and polyglot API.

3.3 Scafi3 overview: a Scala 3 library for aggregate
programming

ScaFiiﬂ [Del24] is a modern Scala 3-grounded implementation of Aggregate Com-
puting. Born as a complete re-engineering of the original ScaF1i library to leverage
the new features and capabilities of Scala 3, it delivers full reified support for fields
alongside full implementation of XC constructs.

The project is organized into two modules: the core module, providing the core
aggregate language constructs and semantics, and the alchemist-incarnation
module, providing integration with Alchemist [PMV13|, a simulator for pervasive,
nature- and chemical-inspired, and aggregate computing systems that enable the
simulation of large-scale systems. The core module is implemented as a pure
Scala 3 module, meaning it has no dependencies on any platform-specific capabil-
ities, making it cross-platform by design. The alchemist-incarnation module,
instead, depends on the Alchemist simulator and the JVM platform, thus being
limited to JVM-based platforms.

ScaFi3 core DSL and libraries entry-points are implemented leveraging Scala
3 contextual abstractions |Ode+17|. More specifically, they are implemented as
pure functions in singleton objects, taking as implicit parameters the language
syntaxes, which provides the necessary capabilities to express the aggregate con-
structs. These are automatically injected by the ScaFi engine, which is responsible
for executing computational rounds: during each round, in the compute phase, the
aggregate context is created and implicitly provided when evaluating the aggregate
program.

In practice, to write an aggregate program in ScaFi3, the developer defines a
type alias representing the required language syntaxes, expressed as intersection
type composition, and then defines the aggregate program as a contextual func-
tion over that language. For example, in Figure |3.3| a simple aggregate program
computing a distance gradient from a source node is shown. The program requires

Ihttps://github.com/scafi/scafi3
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3.3. Scafi3 overview: a Scala 3 library for aggregate programming

access to field calculus syntax (the share construct) and the distance sensor, al-
lowing to sense the distance from neighboring devices. To achieve this, the Lang
type alias is defined as the intersection of the AggregateFoundation root syntax,
where the Deviceld type is specialized, the FieldCalculusSyntax, providing field
calculus constructs, and DistanceSensor, providing the distance sensor capability.

object Gradient: ID1 ID2
private type Language =
AggregateFoundation { type DeviceId = Int }
& FieldCalculusSyntax
& DistanceSensor [Double] . d=10
Import ¢  Dist Export ¢
def gradient (using Language): Double = ID1->o + ID1->13 ID1->8
share (Double.MaxValue): nvalues => %B%:Zg %B%:zée ID2—>8
val distances = senseDistance[Double] . ID3->8
val minDistance = (nvalues, distances) .E&EE__
.mapN(_ + _) - ID1->w
.withoutSelf.min ID2->%
P, A ID3->8
if isSource then 0.0 else minDistance
& Y ID3

Figure 3.3: On the left, a ScaFi3 aggregate program computing a distance gradient
from a source node. At each round, every device shares with its neighbors the
minimum distance among them, computed as the pointwise sum of the values
received from neighbors and the sensed distance to them (itself excluded). If the
device is a source node, it returns 0.0. Eventually, the gradient value converges
to the minimum distance from the nearest source node. On the right, a visual
representation of the gradient field computed by the program at round 1. The
source node is represented in yellow. Links are labeled with the sensed distance
values, while nodes are labeled with the computed gradient value.
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Contribution

This chapter presents the conceptualization of a proposed Scala-based architecture
for enabling the development of cross-platform, polyglot and distributed libraries
and frameworks.

Its discussion is structured as follows. First, the intents and application sce-
narios motivating the proposed architecture are discussed. Subsequently, the cor-
responding requirements and constraints are formalized. Thereafter, the elements
composing the architecture are presented. Finally, the implications of adopting
this design are analyzed.

4.1 Intents

The intents of the proposed architecture are to enable the development of dis-
tributed Scala libraries and frameworks to be both cross-platform, that is, able to
run on multiple platforms and runtimes; and polyglot, that is, designed to be able
to interoperate with its public interface from multiple programming languages.
Both intents are achieved while maintaining a unified version of the components
implementing the application logic of the software product.

4.2 Application scenarios

This architecture is well suited when the following scenarios arise:

e Application environment heterogeneity. The library or framework im-
plements functionalities that should be deployed and executed in heteroge-
neous environments, spanning across multiple platforms and runtimes. This
may arise from the heterogeneity of end-user deployment environments or the
requirement that platform and runtime selection remain contingent upon the
specific application context in which the library is used.

e Polyglot end-user base. The library is designed for developers working
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across different programming languages, enabling team diversity, facilitat-
ing integration with existing codebases in various languages, and leveraging
language-specific features and ecosystems.

e Unified application logic. The library exposes its functionalities through
a unified API, regardless of the target platform, runtime or programming
language. This ensures behavioral consistency across all supported envi-
ronments, enabling seamless interoperability between programs utilizing the
library.

4.3 Requirements

Requirements formally describe the boundary of applicability of the proposed ar-
chitecture. These can be categorized into wuser, system and implementation re-
quirements and address two types of stakeholders: library users, who are develop-
ers intending to use the libraries and frameworks designed following the proposed
architecture; and library developers, who design and implement such libraries and
frameworks.

User requirements

Ul. Library users must be able to interact with the library from multiple pro-
gramming languages through a consistent API, benefiting from language-
specific ecosystem features. Supported languages include:

e Scala;

e Java;

e JavaScript;
e TypeScript;
e Cand C++.

U2. The library must support execution across heterogeneous platforms and run-
times to accommodate diverse library user deployment environments. Li-
brary users must be able to implement their own solution by building upon
the library’s core functionalities:

e using Scala, with deployments possibly spanning across the following
platforms and runtimes:

— JVM,;
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— JavaScript environments, both browser-based and server-side (Node.js);

— Native environments, including desktop, server, and System on
Chip (SoC) devices running on 64-bit and ARM architectures.

e using other supported languages, targeting their respective platforms.
Except for Scala, Library Users should not need to compile code written
for one platform to run on another; e.g., compiling C code to run on

Node.js.

U3. Library users can distribute the execution of their application-specific code
across multiple machines, with each node potentially running on different
platforms, runtimes, and programming languages. The library provides dis-
tributed communication mechanisms that enable seamless interoperability
and coordination among them.

System requirements

S1. Library developers must be able to implement the library logic once and reuse
it across all supported platforms and runtimes. Modifications to the library
logic are automatically reflected across all target platforms and runtimes.

S2. Library API must be consistent across all supported languages and behaves
uniformly regardless of the target platform, runtime and programming lan-
guage.

Implementation requirements

I1. Developers implement the library taking advantage of the full Scala language
features and capabilities, enabling them to harness functional programming,
type-safe abstractions, expressive syntax and compositional design patterns
to facilitate the development of robust, scalable and distributed software
systems.

I2. The bridge layer between programming languages should not rely on remote
procedure calls (RPC) or inter-process communication (IPC) mechanisms to
not incur in the performance penalties associated with these techniques.

4.4 Constraints

The proposed architecture imposes a fundamental constraint that significantly in-
fluences architectural decisions: all dependencies must support cross-compilation
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to all target platforms. Where such multi-platform support is unavailable, platform-
specific implementations must be provided explicitly to bridge the abstraction gap.
If an existing Scala library heavily relies on platform-specific dependency or its de-
sign is tightly coupled with a specific platform or runtime, adapting it to the
proposed architecture may prove impractical or require substantial reengineering
efforts. For example, a distributed Scala library built on Akka[] and utilizing its
remoting and clustering capabilities would require substantial redesign to support
multi-platform execution, as Akka targets only the JVM. However, this challenge
can be mitigated if these dependencies have been carefully abstracted as replace-
able components. Furthermore, when platform-specific dependencies provide crit-
ical non-functional properties—such as fault tolerance or scalability—that multi-
platform alternatives cannot yet match, adapting to a cross-platform architecture
becomes not merely impractical but potentially unfeasible. In these cases, the
tight coupling to a specific platform represents an architectural constraint rather
than an implementation detail, and the proposed architecture may not constitute a
suitable approach for such libraries without revisiting their core design principles.

4.5 Architectural elements

The proposed architecture, presented in Figure 4.1} is composed of three main
components:

1. a pure core module, implementing the application logic of the library. This
module is designed to be platform-agnostic and independent of any specific
technology or runtime;

2. a cross-platform infrastructure module, responsible for enabling the
distribution of the library functionalities across multiple end nodes. This
includes a general cross-platform and polyglot serialization binding,
providing the capability to marshal and unmarshal data structures exchanged
between different platforms, runtimes and programming languages;

3. apolyglot abstraction layer, exposing a simplified and consistent interface
API to library users through different programming languages.

The core module and the cross-platform infrastructure module together con-
stitute the Software Product, which implements the library’s core functionalities
and delivers its primary value. The polyglot abstraction layer, by contrast, forms
part of the User Interface, providing the programmatic interface through which

'https://akka.io
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Figure 4.1: Proposed reference architecture for cross-platform, polyglot and dis-
tributed Scala libraries and frameworks.

N
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library users interact with the software product using any of the supported pro-
gramming languages. This separation enables library users to interact seamlessly
with the library in their preferred programming language, accessing its functional-
ities through native packages generated by the polyglot library abstraction layer.
Library developers, meanwhile, can focus on implementing the core logic without
being concerned about language-specific details.

Once applied, library users can take advantage of the library as depicted in Fig-
ure[4.2] They can implement their application logic directly in Scala, leveraging its
full language features and capabilities and cross-compiling it to all target platforms
and runtimes, by consuming the respective library artifact from a Central reposi-
tory (e.g., Maven Central). Alternatively, they can program their application logic
in any of the supported programming languages, utilizing the corresponding arti-
facts generated by the polyglot abstraction layer and published to the respective
platform-specific package repositories.
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Figure 4.2: Library usage workflow enabled by the proposed architecture.

Pure library core module

The core module is the heart of the library, implementing its core application
logic and functionalities in terms of domain modeling, business rules and applica-
tion use cases. Its architecture is deliberately designed to be both platform- and
technology-agnostic, ensuring the core logic to be reusable across multiple execu-
tion environments without requiring any modification or adaptation. This design
can be achieved by adhering to the Hexagonal (Ports & Adapters) Architectural
pattern |Coc05|, which promote the decoupling of the core logic from external de-
pendencies by defining clear interfaces (ports) and isolating the core logic from
infrastructural concerns (adapters).

Implemented as a Scala pure multi-platform module, it enables the cross-
compilation of the core logic to all target platforms and supported runtimes.

Cross-platform infrastructure module

This is the component dealing with infrastructural concerns. Despite the fact it
is conceptually represented as a single module, depending on the complexity of
the library and its requirements, it can be decomposed into multiple modules,
each addressing specific infrastructural aspects. Its core responsibilities include
the implementation of a distributed communication mechanism and a general se-
rialization binding.
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Cross-platform distribution module

For distributed communication, the library can leverage different underlying tech-
nologies and protocols depending on specific use cases and requirements, such as
peer-to-peer or publish-subscribe messaging patterns. Regardless of the chosen
communication model, the design must maximize code reuse across all supported
platforms and runtimes. This is achieved through well-defined Platform Interfaces
that abstract platform-specific capabilities and services, isolating them from the
shared library logic. These interfaces are designed to satisfy both the library’s
functional requirements and the native paradigms of each target platform. For
example, the interfaces use asynchronous API patterns that can be uniformly
implemented across all supported environments. Platform-specific adapters then
implement these interfaces, encapsulating only the minimal necessary platform-
dependent code. Whenever possible, existing multi-platform libraries and frame-
works should be leveraged. Conversely, when no suitable multi-platform library
exists, custom platform-specific implementations must be developed by interacting
directly with the underlying platform capabilities and ecosystem via Scala Native
or Scala.js interoperability features. In both cases, all implementation adapters
must conform to the defined Platform Interfaces to ensure maintainability and
facilitate the integration of alternative platform-specific implementations.

Polyglot serialization binding

Concerning the serialization binding, it must be designed to be format-agnostic
and interoperable across different programming languages and platforms. Format
agnosticism is desirable to ensure flexibility and interchangeability of serialization
formats, while cross-platform interoperability is a strict requirement. Indeed, if the
serialization format is not compatible across all supported languages and platforms,
the library would not be able to consistently exchange messages between different
end nodes, thus undermining its distributed nature.

Selecting a serialization format requires evaluating multiple factors. Perfor-
mance and efficiency trade-offs between textual and binary formats must be weighed
against compatibility with all supported programming languages and platforms.
Additionally, the choice between schema-based and schema-less formats affects
the flexibility and evolvability of serialized data structures. A critical consider-
ation is the degree of automation in serializer and deserializer generation: while
automatic code generation simplifies development, it may limit the ability to de-
fine custom data types and structures that leverage language-specific abstractions.
This tension is particularly relevant given that different programming languages
offer distinct abstractions that cannot always be straightforwardly mapped.
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Polyglot library abstraction layer

The polyglot abstraction layer exposes a uniform interface enabling cross-language
interaction with the library’s core functionalities. Two critical challenges converge
to demand the presence of this layer: type system mismatches and limited type
construct mapping.

Type system mismatches. Mismatches arise because both Scala Native and
Scala.js address language semantics differences by reifying them into new types.
For example, Scala.js introduce the js.Map type to represent JavaScript maps,
distinct from Scala’s Map type. Similarly, both projects define platform-specific
types for interoperability: Scala.js provides js.UndefOr for nullable types and
js.FunctionN for JavaScript functions, while Scala Native uses null for nullable
types and CFuncPtrN for C function pointers. While this approach preserves type-
safety, guarantees correct usage, and makes users aware of the underlying platform
constraints and peculiarities, it prevents exposing a unified API across all sup-
ported languages. Without this layer, library developers would be forced to create
different facades for both JavaScript and C, leading to code duplication, increased
maintenance effort and potential inconsistencies.

Limited type construct mapping. This is a consequence of the fact that only
a subset of Scala type constructs can be mapped and exposed to JavaScript and
C. Indeed, while Scala code can be cross-compiled to both JavaScript and native
binaries, not all Scala type constructs have a direct counterpart in these target
languages. Consequently, the ability to cross-compile a Scala construct does not
guarantee it can be exposed to or utilized by other programming languages. For
example, Scala’s rich type system includes Path Dependent Types [ARO14] and
Implicit parameters [Ode+17], which have no direct equivalents in other program-
ming languages.

The proposed polyglot abstraction layer tackles these challenges by introducing
abstract, language-independent types that are isomorphic to Scala types. They
are decoupled from any specific programming language or platform, yet maintain
a one-to-one mapping to corresponding Scala types. Referred to as Portable
Types, these are then instantiated within each supported platform, providing
language-specific implementations and dedicated bidirectional conversion between
them and their corresponding Scala equivalents.

Using this approach the core library API is exposed to library users through
portable types, providing simplified interfaces as a thin wrapper around the core li-
brary API. Within the polyglot abstraction layer, the conversion between portable
types and the corresponding Scala types used by the core library is handled. The
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exposed interfaces—referred to as Portable Libraries—can then be exported,
packed and distributed as native packages for each supported programming lan-
guage, since, during cross-compilation, Portable Types are translated to the cor-
responding language-specific types. Essentially, Portable Types act as a small
standard library for this module, written in a "de-powered" version of Scala that
is limited, in its expressiveness, to the constructs that can be mapped and exported
to all supported programming languages.

Beyond collection-types, each Portable Library can extend the set of portable
types by defining domain-specific data types to model the library domain, mirror-
ing standard type definition practices. These must maintain the same isomorphic
mapping principle, ensuring seamless conversion between platform-specific incar-
nations and Scala types.

Implementation-wise, Portable Libraries are structured as a thin wrapper around
the core library API, using only Portable Types in their public interface. Inter-
nally, the logic is delegated to the core library after converting Portable Types to
their corresponding Scala types using the provided isomorphic mappings, as shown

in Figure (4.3

User Interface Software Product
(implemented in "de-powered" Scala code) . (implemented using full Scala code)

polyglot-api
EI core-lib @

shared

deleg'ates
) . using Core
— calls ———» Portable Lib .
i ortabte Libraries portable libraries
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Portable Types .
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Figure 4.3: Clients interact with the core library API through Portable Libraries,
which expose a simplified interface using Portable Types. Thanks to language-
specific instantiations of Portable Types and appropriate isomorphisms, Portable
Libraries simply delegate to the core library API their implementation.

Notably, the polyglot abstraction layer must account for fundamental differ-
ences among all supported programming languages, modeling and abstracting
these distinctions to present them through a unified API. These differences en-
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compass:
e error handling mechanisms, such as exceptions in JavaScript and error codes
in C;
e API design paradigms, including asynchronous and synchronous styles;
e cquality and hashing semantics;
e memory management models.

Chapter 5| presents how Portable Types and Portable Libraries can be implemented
to model and abstract these language-level differences.

4.6 Consequences

This architecture enables the development of cross-platform, polyglot and dis-

tributed Scala libraries and frameworks by addressing the challenges associated

with platform heterogeneity, language interoperability and distributed communi-

cation. Its main focus is to maximize code sharing and reuse across all supported

platforms and languages, and provide a consistent and unified API to library users.
Some considerations and trade-offs are presented hereafter.

1. API Maintenance. While every code change in the core library is auto-
matically reflected across all supported platforms and runtimes, the addition
of new API functionalities requires extending the polyglot abstraction layer
to expose the new features to library users. Despite not being a significant
overhead, since the polyglot abstraction layer is designed to be thin and
minimal, it still requires some additional effort to maintain and evolve.

2. Performance Overhead. Interoperability across programming languages
is achieved through type conversion, which may introduces performance over-
head if compared with native implementations, particularly when handling
complex data structures or large data volumes. However, this overhead is
significantly lower than RPC or IPC approaches, which require additional
serialization and boundary crossing costs.

3. Data Expressiveness. The expressiveness of exchanged messages between
nodes is limited to the capabilities of the adopted cross-platform and polyglot
serialization format. This normally does not pose significant limitations since
exchanged messages are represented as records——immutable data classes
composed of fields with no additional behavior. However, complex data
structures or language-specific constructs may not be fully representable and
may require simplifications or alternative representations.
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This chapter presents the implementation of the abstract architecture proposed
in Chapter 4l The discussion is divided in two main sections: the first focuses
on implementation details that are library-independent, i.e., applicable to any li-
brary aiming to provide cross-platform and polyglot capabilities; the second section
delves into specific implementation details within the ScaFi3 (henceforth simply
ScaF1i) library.

5.1 Library-Independent Module Details

The general implementation strategy to provide cross-platform and polyglot capa-
bilities is centered around the implementation of a general cross-platform serial-
ization bindings and a polyglot API layer.

5.1.1 Serialization binding

Any distributed Scala library, in spite of its specific network protocol or commu-
nication model, requires serialization and deserialization capabilities to exchange
messages between parties. A general design can be adopted to provide these ca-
pabilities while being agnostic to the specific used serialization format.
Technically, this is achieved via a combination of Scala 3 type classes [OMO10|
and type lambdas. The core design is based on Encodable and Decodable type
classes, shown in Listing [5.1] whose purpose is to express the capability of a type
to be, respectively, encoded to and decoded from arbitrary serialization formats.
Expressing them as type lambdas enables their usage as context bounds on the
value parameters of functions dealing with distribution, like presented in Listing[5.2]
for the exchange construct. Beyond the AC logic presented therein, the exchange
represents a typical example of a distribution-related primitive requiring encoding
and decoding capabilities for its value type in order to fulfill its functionality.
Additionally, depending on the specific semantics of each primitive, only one side of
the serialization process may be required. For instance, alignedMessages requires
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only encoding capabilities, while writeValue requires only decoding. Thanks to
ad-hoc polymorphism, this ensures that distribution-related primitives can only be
used with values having the required encoding and decoding capabilities in scope.

Listing 5.1: Encodable and Decodable type classes and type lambda definitions.

trait Encodable[-From, +Tol]:
def encode(value: From): To

trait Decodable[-From, +To]:
def decode(data: From): To

trait Codable[Message, Format] extends Encodable[Message, Format]
with Decodable [Format, Messagel

// Encodable and Decodable type lambdas to be used as type bounds
type CodableFromTo [Format] = [Msg] =>> Codable[Msg, Format]

type EncodableTo[Format] = [Msg] =>> Encodable[Msg, Format]

type DecodableFrom[Format] = [Msg] =>> Decodable[Format, Msg]

\S

Listing 5.2: Example of encoding and decoding capabilities at work in the ex-
change construct.
p

// inside this function, Values can be both encoded and decoded
def exchange[Format, Value: CodableFromTo [Format]](
initial: SharedDatal[Value]
) (
f: SharedData[Value] => ReturnSending[SharedData[Valuel]
): SharedData[Value] =
alignmentScope ("exchange"): () =>
val messages = alignedMessages
val field = Field(init(localIld), messages)
val (ret, send) = f(field)
writeValue (send.default, send.alignedValues)
ret

// Get and decode neighbor messages using Value Decodable instance
def alignedMessages[Format, Value: DecodableFrom[Format]]
Map [DeviceId, Value] =

// Encode + send neighbor messages using Value Encodable instance
def writeValue[Format, Value: EncodableTo[Format]](

default: Value,

overrides: Map[DeviceId, Value]
): Unit =
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User-side, to provide encoding and decoding capabilities for a specific data

type and serialization format, it is sufficient to provide implicit instances of the
Codable type class in scope (which combines Encodable and Decodable capabil-
ities) for those types. The Scala compiler will automatically summon the correct
instance based on the type information available at compile time, ensuring users to
call the distribution-related primitives without having to manually pass encoding
and decoding functions around or explicitly specify format types. Examples of
user-defined instances of the Encodable and Decodable type classes for different
serialization formats are shown in Listing [5.3|

Listing 5.3: User-defined Encodable and Decodable instances for custom data
types.

// A Codable that does not perform any transformation on the
messages , leaving them as-is - useful for testing or
simulation

given forInMemoryCommunications[Message]

Codable [Message, Message] with
inline def encode(msg: Message): Message = msg
inline def decode(msg: Message): Message msg

// A Codable for encoding and decoding stringified messages in
binary format
given forStringsInBinaryFormat
Codable [String, Array[Bytel] with
def encode(msg: String): Array[Byte] = msg.getBytes (UTF_8)
def decode(bytes: Array[Bytel]): String =
new String(bytes, UTF_8)

// A Codable for encoding and decoding Protobuf messages in
binary format
given forProtobufInBinaryFormat[T <: GeneratedMessage](
using companion: GeneratedMessageCompanion [T]
): BinaryCodable[T] = new BinaryCodable[T]:
def encode(value: T): Array[Byte] = value.toByteArray
def decode(data: Array[Byte]): T = companion.parseFrom(data)

(S

The general implementation of the type classes with respect to the serialization

format allows:

e to leave its choice to the library user, who can choose the most appropriate
format for their specific use case. For example, in Listing [5.3| a production-
ready Protobuf-based binary format is provided using ScalaPHH, a popular

"https://scalapb.github.io
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cross-platform Scala library to work with Protocol Buffers;

e to employ in-memory Codable instances that do not perform any transforma-
tion on the messages, leaving them as-is, in non-distributed environments,
like simulation and local testing where usually networking operations are
mocked or bypassed, making the serialization process unnecessary. More-
over, leveraging Scala 3 inline mechanism, the compiler is able to completely
eliminate encoding and decoding operations in such scenarios avoiding any
runtime overhead.

While the library remains unopinionated about the serialization format to be
used, with format selection impacting exclusively library user code rather than
library internals, the only requirement for enabling polyglotism is that the serial-
ization format supports cross-language interoperability. Meeting this requirement,
Protocol Buffers has been adopted for all practical implementations and examples
in this work.

Protocol Buffers (Protobuf)ﬂ is a widely adopted, schema-driven binary seri-
alization framework developed by Google for efficient encoding of structured data
in distributed systems. Its use is justified by several factors:

e Multi-language support. Protobuf is schema-driven, meaning it uses
schemas (. proto files) to define the structure of the data being serialized, em-
ploying a language-agnostic Interface Definition Language (IDL) that serves
as contract between parties. Starting from a schema definition, Protobuf
compiler (protoc) can generate the corresponding classes ready to be used for
serialization and deserialization in multiple programming languages, includ-
ing, but not limited to, C, C++, Scala, Java, Python, JavaScript, TypeScript
and C#. An example of Protobuf schema definition is shown in Listing
showcasing the syntax and major features of Protobuf IDL.

e Efficiency and performance. Serializing data into a binary format, Proto-
buf achieves compact message sizes. This results in smaller payloads, making
it more efficient than text-based formats, like JSON, both in terms of net-
work bandwidth and storage requirements. Moreover, Protobuf is designed
for high performance, enabling fast serialization and deserialization opera-
tions, which is crucial in distributed systems where low latency is often a
requirement.

e Backward and forward compatibility. Protobuf supports schema evo-
lution, allowing developers to add or remove fields from message definitions
without breaking existing implementations: unknown fields are ignored, and

’https://protobuf.dev
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missing fields are treated as having default values. This is particularly im-
portant in distributed systems where different components may be updated
independently over time.

e Scala cross-platform libraries support. The Scala ecosystem provides
cross-platform Protobuf support through the ScalaPB library, which targets
JVM, JS, and Native platforms, making it a suitable choice for ScaFi’s cross-
platform goals.

Listing 5.4: Example of Protobuf schema definition for a sensor data message.

syntax = "proto3";

// Imports Google’s Timestamp from the Protocol Buffers "Well-

Known Types"

import "google/protobuf/timestamp.proto";

// Main message representing a temperature sensor reading
message TemperatureMeasurement {

// Unique identifier for the sensor

string sensor_id = 1;

// Temperature value in Celsius using double precision

double temperature_celsius = 2;

// Timestamp from Google’s library ensuring consistent time
format across different programming languages

google.protobuf.Timestamp recorded_at = 3;

// Optional field: location may be omitted

optional string location = 4;

// Repeated field: allows multiple tag values per measurement

repeated string tags = 5;

// Optional nested message

optional Metadata metadata = 6;

// Contains technical metadata about the sensor device
message Metadata {

// Firmware version identifier
string firmware_version = 1;

// Optional battery level

optional double battery_level = 2;
// Signal strength indicator

int32 signal_strength = 3;

The Protobuf IDL is highly expressive, supporting complex data structures

with nested messages, enumerations, optional and repeated fields, maps, and well-
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known types like timestamps. However, as anticipated in Section [4.5] the usage
of a schema-driven serialization framework like Protobuf, despite its advantages,
reduces the expressiveness of the data types that can be exchanged between devices
to the ones supported by the library schema definition language. In the case of
Protobuf, this constrains data exchange to record-like structures. In the context of
AC, for example, this prevents exchanging higher-order functions, like lambdas or
closures, unless only their method references are exchanged, assuming the remote
device has the corresponding function implementation available locally—but this
is beyond the scope of this work.

™N
N

syntax = "proto3";

message TemperatureSensor {
string id = 1;
float temperature = 2;

b Il
I
Protobuf message schemas

protoc code generation
St N
—writes— *,
</> </> </>1 </>!
Programmer
Scala TS C header and
case classes classes structs

uses uses USIGS
| |

Scala TS c
p I"Og ram p FOg ram P rog ram
T i T |

Figure 5.1: Protobuf-based serialization/deserialization aggregate programming
workflow.

The designed workflow for Protobuf-based serialization and deserialization is
illustrated in Figure [5.1] First, the programmer defines the Protobuf schemas
for the data types and messages to be exchanged. Then, using language specific
plugins, the Protocol Buffers compiler generates language-specific stubs contain-
ing ready-to-use serialization and deserialization logic. Depending on the target
language, protoc generates different artifacts: for example, for Scala it generates
case classes, while for C it generates header files with struct definitions and .c
files with serialization and deserialization functions. Finally, the programmer im-
plements the program in their language of choice using the library’s exported API
and the generated record-like data types for data exchange.
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Implementing codable instances in other languages differs from Scala’s ap-
proach. While Scala uses context bounds, other supported programming languages
(notably, Java, JavaScript and C) lack an equivalent mechanism. Therefore, their
APIs express codable capabilities via upper type bounds on values, which are
made interoperable with Scala’s context bounds using isomorphisms, as discussed
in Section[5.1.2] In particular, for JavaScript and TypeScript, exchanged value are
expected to conform to a generic contract expressed as an interface with encode
and decode methods, as shown in Listing [5.5]

Listing 5.5: Codable interface definitions for JavaScript and TypeScript.

trait JSCodable extends js.Object:
def encode(message: js.Any): js.Any
def decode(data: js.Any): js.Any

In C, codable requirements on the value are expressed leveraging struct-based
polymorphism with function pointers: a BinaryCodable struct defines the re-
quired operations as function pointers, as shown in Listing [5.6] concrete value
types embed this struct as their first member, allowing pointers to be safely cast
to BinaryCodable, thereby achieving polymorphic behavior through a common
interface.

Listing 5.6: Codable struct definition for C.

typedef struct BinaryCodable {
const uint8_t* (*encode) (const void *data, size_t *size);

r

const void* (*xdecode) (const uint8_t *buffer, size_t size);

void (*xfree) (void* data);
} BinaryCodable;

// Example: SensorReading type implementing BinaryCodable
typedef struct {

BinaryCodable codable;

uint64_t timestamp;

float temperature;

float humidity;
} SensorReading;

// Function prototypes for SensorReading creation, encoding,

decoding, and freeing...
. Y

In Java, instead, values are expected to implement the Scala Codable trait
directly, as Scala and Java are interoperable on the JVM platform.

Chapter 5. Implementation 43



5.1. Library-Independent Module Details

To simplify the creation of codable instances for Protobuf-generated types from
other languages, the library can provide automatic JavaScript conversions and C
helper functions automatically mapping Protobuf generated types to their corre-
sponding codable representations. As a result, users can use Protobuf-generated
types directly in their programs or create codable instances from them via helper
functions, avoiding any manual encoding/decoding implementation. Concrete ex-
amples will be shown in Chapter [6] when discussing polyglot ScaFi real-use cases.

5.1.2 Polyglot API module

The goal of this module is to implement the polyglot abstraction layer presented
in Section [4.5 Its core components are the definition of Portable Types, their iso-
morphisms with Scala counterparts, and the implementation of Portable Libraries.
The general design is illustrated in Figure and discussed hereafter.

shared

Portable types among different languages,
along with their Scala isomorphisms.

|

All the exported APIs must use

ﬁ Base trait for all portable library definitions.
only portable types.

® «trait»
PortableTypes
o type Map[K, V] . . «rait»
o given [K, V] => Iso[MaplK, V], collection.Map[K, V1] mixed in @ PortableLibrary
o type Function1[T1, R] portable library API definitions
o given [T1, R] => Iso[Function1[T1,R], T1 => R] SV ﬁ u
e - / \
7 \

native\ j \
T R A .
«trait» " q «trait» . «trait» q
Native Types <} _@Natlvelerary ®JSTypes<}— _@JSlerary VMTypes<t- @JVMlerary

—

‘ Platform-specific libraries entry points Iﬁ

Figure 5.2: Portable Types and libraries general design.

Portable Types are implemented as Abstract Type Members |[OZ05| in a trait
with deferred abstract given isomorphisms between them and their Scala counter-

parts (see Listing [5.7)).
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Listing 5.7: Portable Types trait with deferred isomorphisms.

(// Portable types that can be used across different languages
trait PortableTypes:

export it.umnibo.scafi.utils.libraries.Iso

export it.unibo.scafi.utils.libraries.Iso.given

// A portable Map, isomorphic to Scala’s collection.Map
type Mapl[K, V]

// A portable Sequence isomorphic to Scala’s collection.Seq
type SeqlV]
given [V] => Iso[Seql[V], collection.Seq[V]] = deferred

// A portable l-arg function type, isomorphic to Scala’s T1
type Functioni[T1, R]
given toScalaFunctionl[T1, R]
Conversion[Functionl1[T1, R], T1 => R]
// other types...

(S

given [K, V] => Iso[Map[K, V], collection.Map[K, V]] = deferred

=> R

Listing 5.8: Iso type class representing an isomorphism between two types, A and

B.

trait Iso[A, B]:
def to(a: A): B
def from(b: B): A

object Iso:

inline def apply[A, B](
inline toFn: A => B,
inline fromFn: B => A
): Iso[A, B] = IsoImpl(toFn, fromFn)

class IsoImpl[A, B](val toFn: A => B, val fromFn: B => A)
extends Iso[A, B]:
override def to(a: A): B = toFn(a)
override def from(b: B): A = fromFn(b)

// automatic conversions
given [A, B]l(using iso: Iso[A, B]): Conversion[A, B] with
inline def apply(a: A): B = iso.to(a)

given [A, B]l(using iso: Iso[A, B]): Conversion[B, A] with
inline def apply(b: B): A = iso.from(b)

S
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An Isomorphism is a bidirectional conversion, represented as a type class, be-
tween two types that preserves the structure and semantics of the data being
converted (see Listing . Where only one-way conversions are sufficient, simple
Scala Conversions are used instead. Indeed, while isomorphisms provide a more
general and powerful abstraction for bidirectional conversions, not always both
directions are needed. For example, for function types, they are usually used only
to express callbacks. Therefore, converting portable function types to Scala’s reg-
ular types suffices, since the library only calls user-provided callbacks and never
requires the reverse conversion.

Thanks to Scala 3 Abstract Types and deferred givens, the actual implemen-
tations of the isomorphisms are deferred to platform-specific modules, allowing to
provide different implementations for each target language. For example, in the
Scala Native module, the isomorphisms are implemented using C native types and
data structures, as shown in Listing [5.9) Equivalently, on JVM and JavaScript,
standard Java and Scala.js types and data structures are used, respectively. When
no specific language type is available in the respective platform, like for Sequence
on Native, custom implementations can be provided.

Listing 5.9: Fragment of the C native implementation of Portable Types.

trait NativeTypes extends PortableTypes:

// Portable sequence is mapped to a C generic array struct
override type Seql[V] = Ptr[CArray]
override given [V] => Iso[Seql[V], collection.Seql[V]] = Iso(
cArray =>
for i <- 0 until (!cArray).size.tolnt
yield (!cArray).items (i),
scalaSeq =>

val arr = freshPointer [CArray]

(larr) .size = scalaSeq.length.toCSize

(ltarr) .items = freshPointer [Ptr[Bytel]l(scalaSeq.length)
scalaSeq.zipWithIndex.foreach((v, i) => (larr).items(i) = v)
arr,

// Portable l-arg function is mapped to a C function pointer:
// R (x£)(T1)
override type Functionl1[T1, R] = CFuncPtr1[T1, R]
given toScalaFunctionl[T1, R]
Conversion[Function1[T1, R], T1 => R] with
inline def apply(f: Functionl[T1, R]): T1 => R = f.apply

/7
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When implementing Portable Types isomorphisms, it is important to be aware
of subtle differences in the behavior of certain data structures across target lan-
guages. For example: JVM Maps collections rely on equals and hashCode methods
for key comparison, while JavaScript objects use reference equality. This is gen-
erally not an issue when dealing with primitive types, but can lead to unexpected
behaviors when using complex user-defined types as keys. In this case, a possi-
ble solution is to wrap user-defined types in a JVM wrapper class that overrides
equals and hashCode methods to provide the desired behavior.

As shown in Figure[5.2] Portable Libraries result in traits mixing in the Portable
Types trait to gain access to them and their isomorphisms. Ultimately, Portable
Libraries are implemented in platform-specific modules incarnating the abstract
Portable Types with the actual target language implementations. The resulting li-
braries expose APIs exclusively relying on Portable Types in their signatures, while
internally leveraging the provided isomorphisms to fall back to Scala types when
needed, fully exploiting the Scala type system. This solution allows cross-language
support. Indeed, during cross-compilation, at the entry points of platform-specific
library classes, where refinements are present, abstract type members are substi-
tuted with the concrete target language types and made visible throughout the
scopes in which those refinements apply. Public API methods are then exported
using target platform appropriate annotations, respectively @JSExport for Scala.js
and Qexported for Scala Native, ensuring the generated artifacts emit the correct
symbols for being consumable from the target language. For Scala.js annota-
tions, they can be placed directly into the shared code where Portable Libraries
are defined. Indeed, Scala.js provides these annotations as a provided dependency
containing only annotation definitions. This allows annotated shared code to com-
pile on all platforms, while the actual annotation processing happens only during
Scala.js compilation. Unfortunately, Scala Native does not provide such mech-
anism (though it can be implemented as a future improvement). Consequently,
Native-specific annotations need to be placed in the Native module, where the
actual platform-specific library entry points are defined.

In the following, two important implementation aspects of the polyglot API
layer are discussed: how Portable Types can deal with synchronous and asyn-
chronous mismatches, and how memory management can be handled to avoid
burdening the library user.
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Portable types can abstract over synchronous and asynchronous mis-
matches

It is common for APIs to accept or export functions and callbacks for deferred in-
vocation by the library, which may perform suspending operations such as network
access or file I/O. The problem in representing such callbacks as regular functions
with their corresponding Portable Types is that, in the JavaScript platform, sus-
pending operations are represented using asynchronous constructs, while on JVM
and Native platforms they are typically represented as blocking operations. For
example, consider the callback fed to the Runtime ScaFi Engine for reacting to
cach round result, presented in Listing [5.10} after processing the result, the call-
back suspends for one second before indicating whether to continue or stop the
computation. In JavaScript, that callback must be represented as an asynchronous
function returning a Promise, while in JVM and Native, it can be represented as
a regular function performing a blocking sleep operation.

Listing 5.10: Example of round result callback function in TypeScript.

await Runtime.engine(deviceld, port, neighbors, (lang) =>
aggregateProgram(lang), async (result) => {
console.log(‘Round ${currentRoundl}: ${result});
await sleep(1_000);
return currentRound++ < rounds;

IO

\. Y

To overcome this mismatch, Portable Types can be used to abstract over syn-
chronous and asynchronous function types. This is achieved by defining a new
Portable Type, called Outcome, that maps to a Promise-based type in JavaScript
and to a regular type in JVM and Native, and having a corresponding isomorphism
with Scala Futures (Listing [5.11]). The Outcome type enables defining ScaFi en-
gine-like function, allowing callbacks to be represented uniformly across all target
platforms while respecting their asynchronous or synchronous nature. As a col-
lateral consequence, the implementation of these functions, must be programmed
using asynchronous constructs (using Scala Futures) to uniformly handle both
synchronous and asynchronous callbacks.

Listing 5.11: Definition of the Outcome portable type.

trait PortableTypes:
type Outcome[T]
given [T] => Iso[Outcome[T], Future[T]] = compiletime.deferred

trait JSTypes extends PortableTypes:
override type Outcome[T] = js.Promise[T] | T
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override given [T] => Iso[Outcome[T], Future[T]] = Iso(
{
case p: js.Promise[?] => p.toFuture.asInstanceOf [Futurel[T]]
case v => Future.successful(v.asInstanceOf[T])
3,
f =>
given ExecutionContext = JSExecutionContext.queue
js.Promise[T]: (resolve, reject) =>
f.onComplete:
case Success(value) => resolve(value)
case Failure(exception) => reject(exception),
)
trait NativeTypes extends PortableTypes:
override type Outcome[T] = T
override given [T] => Iso[Outcome[T], Futurel[T]] =
Iso(Future.successful, Await.result(_, Duration.Inf))

trait PortableRuntime:

def engine[Result](
localld: Deviceld,
port: Imnt,
neighbors: Map[DeviceId, Endpoint],
program: Functionl[AggregateLibrary, Result],
onResult: Functionl [Result, Outcome[Boolean]],
): Outcome [Unit]

Memory Management

Another important aspect to carefully consider when designing the polyglot API
layer is the memory management. Unlike JVM and JavaScript platforms, which
provide automatic memory management via garbage collection, Native platforms
offer only partially automatic memory management. Indeed, Scala Native provides
two levels of memory management:

e automatic memory management for Scala-allocated objects on the heap, via
a configurable Native Garbage Collector ensuring that Scala objects are au-
tomatically collected when no longer reachable (see Appendix [A]);

e semi-automatic memory management mechanism for C-allocated data struc-
tures, bound to a temporary delimited scope, via the Zone context manager.
Programmers can allocate C data structures within a Zone context, ensur-
ing that all allocated memory is automatically freed when exiting the Zone
scope. An example is shown in Listing
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Listing 5.12: Example of Scala Native Zone usage for C memory management.

r

((

Zomne:
// converts the Scala Byte Array into a C structure using the C
// decoder which accepts a uint8_tx*
decode (bytes.toUint8Array, bytes.length.toCSize)

// < here memory deallocation happen

extension (bytes: Array[Bytel)
def toUint8Array(using Zone): Ptr[uint8_t] =
// alloc requests memory sufficient to contain the received
// bytes; memory is automatically freed when exiting the Zone
alloc[uint8_t] (bytes.length).tap(writeTo)

def writeTo(ptr: Ptr[uint8_t]): Unit =
for i <- bytes.indices do !(ptr + i) = bytes(i).toUByte

)

Unfortunately, when interoperating with C code, memory management be-
comes more complex since both C and Scala Native sides must explicitly allocate
unmanaged memory to share data structures. In such scenarios, developers must
manually allocate and deallocate memory to avoid memory leaks and dangling
pointers. This is tedious and error-prone, often requiring careful tracking of own-
ership and lifetimes of allocated memory, which can easily become unmanageable
in complex interoperability scenarios. For example, in the context of the Field Cal-
culus library, Fields are exchanged and converted several times in a single round of
computation and need to be freed only after the entire round completes, at which
point the original reference is typically no longer reachable.

Fortunately, in some contexts, it is possible to implement the polyglot API
layer such that memory management is handled internally and transparently to
the library user. This is achieved by identifying clear memory management bound-
aries within the library’s computation model where deallocation can safely oc-
cur. For instance, in ScaFi, the round-based execution makes it possible to define
such boundaries at the beginning and end of each computation round. Conse-
quently, the polyglot layer can internally track all C-allocated data structures
created within each execution scope and automatically free them at the scope’s
end (e.g., in ScaFi, at the end of each round). This mechanism relieves the library
user from the burden of manually managing memory, simplifying the API usage
and reducing the risk of memory-related issues.

The implementation of this mechanism is encapsulated in the MemorySafeCon-
text trait presented in Listing [5.13] which provides a scoped memory region for
C-allocated data structures. On Native platforms, it is implemented by leveraging
the C standard library’s memory allocation functions (malloc, free), while on
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JVM and JavaScript platforms it is implemented as a no-op.

Listing 5.13: MemorySafeContext trait for memory-safe operations in a scoped

trait Allocator:
type ManagedObject
type Disposer = ManagedObject => Unit

private var trackedObjects
Map [ManagedObject , Option[Disposer]] = Map.empty

// Track an object for auto disposal when the arena is collected
def track(obj: ManagedObject) (disposer: Disposer): Unit =
synchronized(trackedObjects += (obj -> Some(disposer)))

// Disposes all managed objects tracked by this arena

def collect(): Unit = synchronized:
trackedObjects.foreach((o, d) => d.fold(dispose) (_(0)))
trackedObjects = Map.empty

// Default disposal action for managed objects
def dispose(obj: ManagedObject): Unit

trait MemorySafeContext:
type Arena <: Allocator

// Executes the given block safely within an ‘Arena‘ context.
def safelyRun[T](block: Arena ?=> T): T

// a shorthand to avoid summononing the arena at call site
inline def collect () (using arena: Arena): Unit = arena.collect ()

\. y

When the identified boundary is started, a new MemorySafeContext is created
and passed implicitly to all components involved in the computation, which can
use it to safely allocate C data structures. Allocating memory allows the context
to track all allocated pointers, ensuring they can be freed later. At the end of
the execution scope, all allocated memory within the context is automatically
disposed, ensuring no memory leaks occur. Notably, this mechanism, differently
from the Zone context manager, is able to track and manage memory allocated by
library users during the computation scope. This can be achieved by implementing
isomorphisms conversion to track all C-allocated data structures when converting
from Portable Types to Scala types. In this last case, values are expected to be
allocated, C-side, as a struct embedding the freeing logic as a function pointer, like
shown in Listing for the BinaryCodable struct. For example, in ScaFi, Fields
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created by user-defined functions within the aggregate program are tracked when
performing conversions and disposed in its entirety, including all codable values
contained therein, at the end of the round.

To show a concrete example of how the MemorySafeContext is used in prac-
tice, Listing[5.14] presents a fragment of the ScaFi Portable Engine implementation,
showcasing how the context is created at the beginning of each round of computa-
tion and passed implicitly to all components involved in the round execution. In
the end, when the round completes, all C-allocated data structures created during
the round are freed.

Listing 5.14: Memory Safe Context usage in the ScaFi Portable Engine.

r

/(

trait ScafiEngineBinding extends PortableRuntime:
self: PortableTypes =>

inline override def engine[Result](
deviceld: Deviceld,
port: Imnt,
neighbors: Map[DeviceId, Endpoint],
program: Functionl [AggregateLibrary, Result],
onResult: Functionl [Result, Outcome[Boolean]],

): Outcome[Unit] = safelyRun: // creates safe memory region
val network = socketNetwork(deviceId, port, neighbors)
network

.start ()
.flatMap: _ =>

ScafiEngine (network, exchangeContextFactory) (
program(library) // program is used in the safe context
).cycling (onResult.apply)
.andThen(_ => Future (network.close()))
.andThen (reportAnyFailure)

extension [Result](engine: Engine[Result])
def cycling(onResult: Result => Future[Boolean]) (using Arena):
Future [Unit] =
for
cycleResult <- Future(engine.cycle())
outcome <- onResult(cycleResult)
= collect() // allocated tracked memory is disposed
<- if outcome then engine.cycling(onResult) else
successful (())
yield ()
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5.2 ScaFi3-specific Implementation Details

Building upon the ScaFi library architecture presented in Section [3.3] this work
extends it to support distributed aggregate computing and polyglot capabilities.
Figure illustrates the module structure of the ScaFi architecture and the de-
pendencies among them, which comprise:

e a distribution module, handling distributed communication, messages ex-
change, and serialization and deserialization;

e a polyglot API module, providing polyglot capabilities to the library;

e an integration module, where integration tests are performed to ensure
the correct functioning of the polyglot and distributed capabilities.

g ]
«pure»

:scafi3-core

«fuil»
:scafi3-distributed

f

g ] I
«full» - «test»
:scafi3-polyglot-api :scafi3-integration

Figure 5.3: UML component diagram of the ScaFi architecture.
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5.2.1 Distribution module

Enabling distribution in ScaFi requires implementing an abstract network manager
that is able to send and receive Value Trees from and to neighbor devices. The AC
framework abstract over the specific protocol used to communicate with neighbors
and their discovery mechanism, allowing the implementation of different network
managers for different protocols and scenarios.

As an initial step in ScaFi’s evolution toward full-featured distributed capa-
bilities, a socket-based network manager has been implemented. This foundation
layer employs stream, TCP-based connection-oriented sockets, intentionally pri-
oritizing core communication reliability over advanced distributed features, which
remain subjects for future work. Indeed, despite the low-level nature of sockets,
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they provide a foundational abstraction layer that many higher-level protocols ul-
timately rely upon (such as HTTP, MQTT, etc.), making them a suitable starting
point for building extensible communication mechanisms. Consequently, as shown
in Figure , each device is bound to a specific endpoint (IP address and port)
and communicates point-to-point with its neighbors.

~
Device Device R

Socket-based Socket-based
Network Manager Network Manager

» _
}{Map[ID >ValueTreel
o
S S
- ~

Map [ID->ValueTree]

\ — 7 = ,

Last message (ID, ValueTree) Iﬁ
buffering and
dropping

A

Figure 5.4: Socket-based network manager high level architecture.

The UML class diagram of the socket-based network manager is shown in Fig-
ure 5.5 It adopts an asynchronous API design leveraging Scala Futures, with two
primary components operating concurrently to handle bidirectional communica-
tion:

e the incoming connection Listener, continuously listening for incoming mes-
sages from neighbor devices. Received Value Trees are stored in a thread-safe
Map that retains only the most recent one from each neighbor, according to
a configurable Retention Policy that defines, in absence of new messages,
how long a message should be retained before being discarded. The up-to-
date view of all the received neighbors’ Value Trees is made available to the
ScaFi Engine through the receive method at the beginning of each round
of computation;

e the outgoing message channel, providing a non-blocking interface for mes-
sage transmission. Upon the end of each round of computation, the ScaFi
Engine invokes the send method of the network manager to dispatch the
device’s current Value Tree to all its neighbors. For each neighbor, the Value
Tree is pushed through the channel and, asynchronously, dispatched to the
corresponding destination. To resolve neighbor addresses the socket-based
network manager is mixed in with a NeighborhoodResolver, which provides
the necessary endpoint resolution capabilities.
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Figure 5.5: UML class diagram of the socket-based network manager design.

Remote socket-based communication logic are demanded to the ConnectionOri-
entedNetworking trait and their platform-specific implementations. Since the ab-
sence of a cross-platform socket library supporting both client and server socket
programming, two distinct implementations are provided:

e one for JVM and Native platforms, leveraging the java.net package avail-
able in the Java standard library. This is possible because Scala Native
has reimplemented the java.net package to provide socket programming
capabilities on native platforms, allowing programmers to use the same API
on both JVM and Native platforms without any code divergence, like they
would do in pure Scala JVM applications;
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e one for JavaScript platforms, leveraging Node.js’s net module through a
Scala.js facade. A portion of this facade is shown in Listing [5.15] It trans-
poses Node.js API definitions into Scala traits and classes using Scala.js
types, as well as interoperability annotations such as @JSImport to binds
Scala.js to a JavaScript module and js.native to indicate methods pro-
vided by the underlying JavaScript runtime. When linked, these bindings
allow Scala.js code to call the underlying Node.js API.

Listing 5.15: Portion of the Scala.js facade for the Node.js net module.

-
@js.native

@JSImport("net", JSImport.Namespace)
object Net extends js.Object:

def connect (port: Int, host: String): Socket = js.native

def createServer (
connectionlListener: js.Functionl[Socket, Unit]

): Server = js.native
\ J

Despite targeting all three platforms, the design differs only in platform-specific
networking logic, isolated within respective SocketNetworking traits. This sep-
aration leverages Scala’s mixin composition and the template method pattern,
defining common logic in abstract trait (ConnectionOrientedTemplate) while
deferring platform-specific details to specialized implementations.

5.2.2 Serialization binding

Since ScaFi devices exchange pairs of Device Identifiers and their corresponding
Value Trees, serialization and deserialization mechanisms must be provided for
both data types. The main challenge lies in the encoding and decoding of Value
Trees since they can contain arbitrary user-defined values whose types cannot be
known beforehand. Consequently, a universal serialization mechanism cannot be
provided, as each data type requires its own (de)serialization implementation.

To this end, the following protocol is adopted (exemplified in Figure :

1. during the execution of the aggregate program, when the Value Tree is built,
each value is inserted as encoded using a specific serialization format (e.g.,
JSON, Byte Array, etc.) provided by the library user. This is possible since,
during the evaluation of the aggregate constructs, the type information of
the exchanged values is available in that context;

2. at the end of each round of computation, when the Value Tree is sent to
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neighbors, it is serialized as a whole structure, given that all values are
already encoded;

3. upon receiving a Value Tree from a neighbor device, it is deserialized as
a whole structure whose values remain encoded in the specific serialization
format;

4. finally, assuming the neighbor device is aligned, when evaluating the aligned
aggregate construct, the corresponding neighboring value is extracted by the
Value Tree and decoded from the specific serialization format back to the
original data type, given that the type information of the expected value is
known in that context.

branch (localld.isEven) { branch (localld.isEven) {
nbr(true) nbr(true)
A A
nbr(localld) nbr(localld)
+ +
Device 0 Device 2 4 Device 1 \

Aligned Devices Aligned Devices
Device 0 Device 2 Device 1

I I I

o o e

[ | :
decode as Boolean decode as Int
Device @ —> true Device 1 —> 1

Device 2 —> true

Figure 5.6: Example of the serialization/deserialization protocol for Value Trees.

This protocol requires library users to provide type-specific encoding and de-
coding functions for each exchanged data type, with the Scala API ensuring type-
safe matching between the provided encoders and decoders and their corresponding
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types.
This is achieved by leveraging the previously presented codables design, dis-

cussed in Section In the context of ScaFi3 library, the previously discussed
design enables another important but peculiar feature: the ability to bypass en-
coding and decoding operations using in-memory Codable instances. This proves
to be particularly useful when the distributed primitives are used only to make
the state evolve over rounds without actual neighbor communication, like in the
evolve, to not force library users to deal with encoding and decoding capabilities
for such operations.

5.2.3 ScakFi polyglot API layer

This section focuses on the implementation providing polyglot support for the
ScaFi Branching and Field Calculus API, presented in Section

As already introduced in Section [3.3] ScaFi libraries API are implemented as
functions taking as implicit parameters the language syntaxes to be used. Pro-
grammers implement their aggregate program as a context function with required
syntaxes as implicit parameters. Library functions can then be invoked without ex-
plicitly passing syntax instances, relying on Scala’s implicit resolution mechanism.
However, this design is not directly portable to other programming languages, as
they do not support Scala’s equivalent mechanism for implicit parameters and
context functions. Two alternatives are possible to overcome this limitation:

e explicitly passing the syntax instances as regular parameters. This is, actu-
ally, what Scala internally does when compiling code using implicit parame-

ters:
share(lang, initialValue, (f) =>{ ... })

e define library functions as methods of classes encapsulating the syntax in-
stances as members. This enables programmers to invoke library methods
directly on the syntax instance, like in plain object-oriented programming:

lang.share(initialValue, (f) => { ... })

In pursuit of a more ergonomic API design, the second approach was selected.
Unlike the Scala API, due to the lack of a general mechanism to define a type
out of a composition of intersecting interfaces, the language instance encapsulates
all the required library methods as members. In practice, the aggregate program
is turned as a regular function, representable in terms of Portable Types, which
takes a Language instance as input and returns a value. Like the regular Scala
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Figure 5.7: UML class diagram of the ScaFi polyglot API layer and its relation

with the core ScaFi library.
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core library, the aggregate program is then fed to the ScaFi Engine, injecting the
corresponding language instance for the target platform and executing it.

The UML class diagram of the ScaFi polyglot API layer is shown in Figure

It comprises:

e a PortableLibrary trait defining the basic declaration for all portable li-

braries. It defines an abstract type member Language representing the
portable aggregate language syntax to which delegate the libraries imple-
mentations. This trait also defines a portable definition of SharedData and
Codec, along with their isomorphism with their Scala counterparts;

a PortableFieldCalculusLibrary trait extending PortableLibrary and
defining the portable Field Calculus API;

a PortableBranchinglibrary trait extending PortableLibrary and defin-
ing the portable Branching API;

a FullPortableLibrary trait aggregating all the portable libraries in a sin-
gle entry point. This is the abstract trait corresponding to the language
instance that programmers will use to implement their aggregate programs,
encompassing all the required syntaxes as members.

By having all libraries extend the PortableLibrary trait, ensures they all share

the same Portable Types, their isomorphisms and are able to access the Language
instance implementing all the ScaFi core functionalities. Therefore, developing
the Portable Libraries simply involves delegating to the corresponding core ScaFi
library functions the actual logic, using the provided language instance.

Listing 5.16: Fragment of the FullPortableLibrary implementation delegating
to the core ScaFi library the implementation of API methods.

-
trait FullPortablelLibrary[Lang <: AggregateFoundation &
BranchingSyntax & FieldCalculusSyntax](using

lang: Lang,

extends PortableCommonLibrary

with PortableBranchinglibrary
with PortableFieldCalculusLibrary:

self: PortableTypes =>
override type Language = Lang
override val language: Language = lang

inline override def evolve[Value](initial: Value) (

evolution: Functionl[Value, Valuel]
Value = lang.evolve(initial) (evolution)
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inline override def sharel
Format ,
Value <: Codec[Value, Format]
J(initial: Value) (
shareAndReturn: Functionl[SharedDatal[Value], Valuel
): Value =
lang.share(initial) (shareAndReturn(_)) (using codecOf (initial))

/]
\. Y

Following the same pattern, a simplified version of the ScaFi Engine API has
been implemented to configure and run the distributed aggregate computation.

5.2.4 Limitations

Despite being able to provide polyglot capabilities, three main technical limitations
have been identified in the current implementation of this Portable layer that will
be discussed hereafter, along with possible future improvements to overcome them.

Scala Native exported annotation gaps. Currently, Scala Native do not al-
low annotating exported methods in shared source sets. Consequently, they must
be re-declared in the Native module—either by hand or by generating them from
header files (as discussed in Appendix |[A)—with appropriate annotation and del-
egation to the shared implementation. Despite the wrapper logic being unified
and not duplicated, this introduces additional boilerplate code for the exported
method signatures that could easily be avoided if Scala Native provided a mecha-
nism similar to Scala.js provided annotations.

Delegation also made evident that higher-order exported functions need Portable
Type conversions in their declaration context, as the Native compiler generates
the type information there required for the conversion to work properly. This can
be achieved by inlining the delegation method (see Listing . However, this
prevents applying @JSExport annotations, as Scala.js does not support inlining
annotated methods. A possible workaround is to separate functions declaration,
with annotations, from their inlined implementations.

Nevertheless, this is more a collateral effect of the lack of provided annotations
in shared code rather than a fundamental limitation of the polyglot API layer and
it would be solved if Scala Native provided such mechanism.
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Scala Native missing method exports.

Another limitation of Scala Native is the lack of direct support for exporting
classes’ methods. This can be worked around by exporting a C struct representing
the class and function pointers for each method, as shown in Listing [5.17] This
requires to save in a statically reachable location, e.g., a private object, the instance
of the class to be able to invoke its methods from the exported functions (see
Listing [5.18]). Pertaining to ScaFi, this is not a significant limitation since the
Aggregate Context, representing the language instance, is instantiated afresh at
each round of computation.

Listing 5.17: Aggregate Library API exported as a C struct with function pointers.

-
typedef struct Aggregatelibrary {
FieldBasedSharedData Field; // Field factory accessor

DeviceId (*local_id) (void);

const void* (*xbranch) (bool condition, const void* (%
true_branch) (void), const void* (xfalse_branch) (void));

const void* (*evolve) (const void* initial, const voidx* (*
evolution) (const voidx));

const BinaryCodable* (*share) (const BinaryCodable* initial,
const BinaryCodablex (*f) (const Field* field));

const Field* (*neighbor_values) (const BinaryCodable* value);
} Aggregatelibrary;

\S

Listing 5.18: Adopted workaround for exporting class methods in Scala Native.

// Invoked at each round start when creating Aggregate Context
def asNative: Ptr[CAggregatelibrary] =
libraryRef .set (this) // statically reachable library instance
val 1lib = allocateTracking[CAggregatelibrary]
// populate function pointers
('1ib) .evolve =
(init: Ptr[Byte]l, evol: Functionl[Ptr[Bytel, Ptr[Bytell]) =>
libraryRef.get () .evolve(initial) (evolution)
(!'1ib) .neighbor_values = (value: Ptr[CBinaryCodable]) =>
libraryRef .get () .neighborValues (value)
//
1ib
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Java Abstract Type Members erasure.

The latter limitation is present on the Java side, rooted in the fact that Abstract
Type Members have no Java equivalent——they are erased to java.lang.0Object in
JVM bytecode, appearing to Java library users simply as Object. This prevents
Java library from correctly resolve Portable Types in Portable Libraries, unless
their signatures are overridden in the platform-specific implementations where ac-
tual JVM types instantiations are available. Despite this task is largely mechanical
and facilitated by IDEs auto-completion features, it introduces additional boiler-
plate code. A possible future improvement, eliminating this limitation, is the
automatic generation of Java override method with super delegation thanks to a
custom tiny pre-processing plugin integrated into the build process.
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This chapter describes how the implemented system has been validated to ensure it
meets the specified requirements and functions correctly in various scenarios. The
validation process includes unit testing, integration testing, and a demonstration
of the system’s capabilities.

6.1 Testing

Testing is a crucial aspect of the validation process of a software system, ensuring
all components function as intended and interact correctly. In the following, the
testing strategies employed to validate the cross-platform and polyglot capabilities
of the library are described. Although demonstrated here using the ScaFi library,
these apply to any library or application employing the presented cross-platform
and polyglot architecture.

6.1.1 Unit testing

All developed components of the library have been subjected to automated unit
testing to ensure the correctness of individual code units in all three supported
targets (JVM, JavaScript, and Native). ScalaTestE] has been used as the reference
testing framework for writing idiomatic Scala tests that can run seamlessly across
all targets.

Beyond cross-target testing, thanks to Continuous Integration (CI) pipelines,
tests are automatically executed, upon each code push on the repository, on all
major operating systems (Linux, Windows, and macOS). This ensures that the li-
brary maintains its functionality and reliability across different environments and
platforms as development progresses and identify any issues early in the develop-
ment cycle.

Ihttps://www.scalatest.org
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6.1.2 Integration testing

In addition to unit testing, integration testing has been performed to ensure all
exported language APIs work as intended. This involves compiling and running
example applications that utilize the ScaFi library in each of the target languages.

Before introducing how integration tests are structured and implemented, it is
important to highlight the requirements that these aim to validate:

e they must operate against the exported APIs of the Portable libraries and be
implemented in each target language rather than in Scala. This ensures tests
validate the actual API surface exposed to end-users and not the internal
Scala side. This prevents situations where subtle bugs may infiltrate between
the boundary of the Scala implementation and the target language API;

they must run in the corresponding language target environment (e.g., Node.js
for JavaScript, bare metal for Native) to accurately reflect real-world us-
age scenarios. Since the library is designed to be cross-platform, it is ex-
pected that developer hosts are equipped with the three target environments
toolchains;

they must cover both core and distributed functionalities of the library to
ensure comprehensive validation of its capabilities;

they should minimize repetition of test setup and configuration, e.g., network
and runtime engine initialization, to enhance maintainability and readability
of the test code. Developers should focus only on the specific logic being
tested.

To meet the above requirements, a small test framework has been developed to
facilitate the creation and execution of integration tests. The framework operates
as follows:

e cach program under test is implemented in one or more sources and saved

in a specific folder in the integration test module resources;

only one source code file for each target language is written, containing the
test setup and configuration logic that can be shared across all programs
under test. Test-specific parts (e.g., in ScaFi, the configuration of device
identifier, port number, and neighborhood) are parameterized and populated
at runtime through a simple templating mechanism ({{...}}). Essentially,
this source file act as a test template to be reused across all programs under
test for the same target language;

a Scala Test component is responsible for integrating and coordinating the
execution of the tests, by performing the following steps for each program:
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1. it creates a temporary folder where the test template source file is
copied, along with the necessary build configuration files;

2. it injects into the test template the program under test and its spe-

cific parameters in the appropriate template placeholders, generating a

complete test source file;

3. it builds and runs the generated test source file in a distributed test

environment, capturing its output;

4. it verifies the captured output against the expected results to determine

if the test passes or fails.

The overall workflow of the integration testing process is illustrated in Fig-

ure [6.11
Template with common Resolved Program
logic and placeholders Under Test
AN PAN
main.template.c main.c

Y

Aggregate —» Compilation
{1 | 5
rogram

injection and terrjplates resolution

~

~

~

const voidx aggregate_program(
const AggregatelLibrary*x lang
) {

}

Collection of tested aggregate programs

Execution —>  Output

Figure 6.1: Integration testing workflow.

Listing and Listing shows, respectively, the test template for JavaScript
integration tests and an example of an aggregate program testing the branch

semantic.
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Listing 6.1: Test template for JavaScript integration tests.

|| const { Runtime } = await import("./main.mjs");

const deviceId = {{ deviceId }};
const port = {{ port 1}};
5|| const neighbors = new Map({{ neighbors 1}});

7|l let lastResult null;

s||let iterations = 10;

9||await Runtime.engine(deviceld, port, neighbors, lang =>
aggregateProgram(lang), async result => {

10 lastResult = result;

11 await sleep(1_000);

12 return iterations-- > 0;

3 3);

i5|| console.log(lastResult.toString());

\

Listing 6.2: Aggregate program under test for restricted exchange integration test.

1 || function aggregateProgram(lang) {

2 return lang.branch(

3 lang.localld % 2 === 0,

! () => lang.neighborValues (1),
5 () => lang.neighborValues (0),
6 )

7|}

(S

Scala Test side, the integration component is implemented in the PlatformTest
trait, shown in Listing . It leverages Refinement Typesﬂ [JV20]and a small DSL
to allow users to define template resolution and test execution in a concise and
type-safe manner, as showcased in Listing (lines 19-22). This example demon-
strates the creation of a Von Neumann grid of devices executing a given aggregate
program with template resolution parameters that map template patterns to their
corresponding values.

Znttps://iltotore.github.io/iron/docs/
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6.1. Testing

Listing 6.3: Root component for integration testing across languages.

r

(S

object PlatformTest:
type ProgramOutput = String
type Pattern = String :| (StartWith["{{"] & EndWith["}}"])
type Substitution = (Pattern, String)

class SubstitutionBuilder:
private var _substitutions = Set.empty[Substitution]
private [PlatformTest] def add(key: Pattern, value: String) =
_substitutions += (key, value)
def substitutions: Set[Substitution] =
_substitutions.view.toSet

extension (pattern: Pattern)
infix inline def ->(value: String) (using builder: SubstitutionBuilder): Unit
builder.add(pattern, value)

trait PlatformTest extends Matchers with 0S with FileSystem:

// Run a test for the specified program

def testProgram(testName: String) (
addSubstitutions: SubstitutionBuilder ?7=> Unit

): Try[ProgramQOutput] =

given builder: SubstitutionBuilder = SubstitutionBuilder ()
addSubstitutions
for

workingDir <- createTempDirectory(testName)
<- resolveTemplates (testName, workingDir, builder.substitutions)
_ <- compile(workingDir)
out <- run(workingDir)
= delete(workingDir)
yield out.trim()

//
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Listing 6.4: Cross-language integration test component.

1 || trait CrossLanguageTest:

2

3 def neighborsDiscoveryTest(): Unit =

4 "Neighbors discovery program" should "spread local values to neighborhood"
5 sequence:

6 aggregateResult ("neighbors-discovery", rows = 2, cols = 2)

7 .futureValue should contain theSameElementsAs Seq(

8 0 -> fieldRepr (default = 0, neighbors = Map(0 -> 0, 1 -> 1, 2 -> 2)),
9 1 -> fieldRepr (default = 1, neighbors = Map(0 -> 0, 1 -> 1, 3 -> 3)),
10 2 -> fieldRepr(default = 2, neighbors = Map(0 -> 0, 2 -> 2, 3 -> 3)),
11 3 -> fieldRepr(default = 3, neighbors = Map(l -> 1, 2 -> 2, 3 -> 3)),
12 )

13

14 def aggregateResult(testName: String, rows: Int, cols: Int)

15 : Seq[Future[(Int, ProgramOutput)]] =

16 val ports = FreePortFinder.get(rows * cols)

17 vonNeumannGrid (rows, cols): (id, neighbors) =>

18 Future:

19 testProgram(testName) :

20 "{{ deviceId }}" -> id.toString

21 "{{ port }}" -> ports(id).toString

2 "{{ neighbors }}" -> neighborsAsCode(id, neighbors, ports)

3 .map(res => id -> res.getOrElse(fail(s"Test ’$testName’ failed on device
$id’: ${res.failed.get.getMessagel}")))

> O

2

2: def neighborsAsCode(id: ID, neighbors: Set[ID], ports: Seq[Port]): String

26

27 def fieldRepr[Value](default: Value, neighbors: Map[ID, Value]): String

28

29 || trait JSTests extends PlatformTest:

30

31 override def compile(workingDir: Path): Try[Stringl = Success("JS does not
require compilation")

32

33 override def run(workingDir: Path): Try[String] =

34 execute (workingDir, (if isWindows then "npm.cmd" else "npm") :: "start"

silent" :: Nil)

35 //

in:

’

6.2 Demonstration

The final validation of the cross-platform and polyglot capabilities of the ScaFi
library introduced in this work is demonstrated through a simple real-world dis-
tributed application implementing a gradient diffusion algorithm by hop count.

6.2.1 Application

At the application level, the program is similar to the one presented in Figure [3.3]
where the sensed distance from each neighbor is always considered equal to 1. The
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result is a gradient field where each device value represents the minimum number
of hops required to reach the source device.

The following presents four versions of the same aggregate program imple-
menting the gradient diffusion algorithm, one for each supported target language,
showcasing the polyglot capabilities of the ScaFi library. Each of these, have been
programmed using only the respective target language API and relying on the Pro-
tobuf schema presented in Listing to represent and exchange distance values
between neighbors.

Listing 6.5: Protobuf schema for the gradient example.

syntax = "proto3";

message Distance {
float value = 1;

}

The Scala version is shown in Listing [6.6] It is the most idiomatic and con-
cise and leverages ScalaPB generated case classes for representing the Distance
message type in conjunction with the BinaryCodable presented in Listing [5.3]

Listing 6.6: Scala implementation.

r

given Ordering[Distance] = (x, y) => x.value.compare(y.value)
given UpperBounded[Distance] = new UpperBounded[Distancel]:
override def upperBound: Distance = Distance(Float.MaxValue)

def aggregateProgram(using Lang): Distance =
share(Distance (Float.MaxValue)): nvalues =>
val minDistance = nvalues.withoutSelf .min.value + 1

if isSource then Distance(0) else Distance(minDistance)

The JavaScript version, presented in Listing [6.7] uses the generated Protobuf
functions generated by protobuf.js’| to create and manipulate Distance messages.
This relies on the default codable implementation provided by the Polyglot ScaF'i
layer for Protobuf messages.

3https://github.com/protobufjs/protobuf.js/
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Listing 6.7: JavaScript implementation.

1 || function aggregateProgram(lang) {
2 return lang.share(distanceOf (Infinity), (nvalues) => {
const minDistance = nvalues.withoutSelf

.map ((dist) => dist.value)

7 )
s}

0| function distanceOf (distance) {
11 return proto.Distance.create({ value: distance 1});

2 ||
S

.reduce ((min, d) => Math.min(min, d), Infinity) + 1.0;
6 return isSource ? distanceOf (0) : distanceOf (minDistance);

In Listing is shown the C implementation of the gradient algorithm. Not
surprisingly, this is the most verbose implementation due to the low-level nature
of the C language, which pushes developers to implement solutions imperatively
rather than declaratively. Moreover, due to the lack of generics in C, they are
represented as void* pointers, which require explicit casting to the appropriate
type when accessing their fields. Despite this verbosity, note the automatic mem-
ory management handled by the polyglot layer. Concerning message encoding and
decoding, the C implementation uses Protobuf—Cﬁ and relies on proto_of, a ready-
to-use function that simplifies the creation of codable instances from Protobuf-C-
generated structures, similarly to what has been presented for JavaScript. Unlike
JavaScript, however, C does not support runtime type inspection, hence the need
to explicitly use a helper function to create these instances.

“https://github.com/protobuf-c/protobuf-c
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Listing 6.8: C implementation.

B
1 || const BinaryCodable* distance_of (float wvalue) {

2 Distance* d = malloc(sizeof (Distance)) ;

3 if ('d) return NULL;

distance__init (d);

5 d->value = value;

6 return (const BinaryCodablex*) proto_of(d, distance);

9|l float min(Array* nvalues) {
10 float min_distance = FLT_MAX;

11 for (size_t i = 0; 1 < nvalues->size; i++) {

12 const ProtobufValue* d = nvalues->items[i];

13 float dist = ((const Distancex*)d->message)->value;

14 min_distance = dist < min_distance 7 dist : min_distance;
15 }

16 return min_distance;

19|l const void* aggregate_program(const AggregatelLibrary* lang) {
20 return lang->share(

21 distance_of (FLT_MAX),

22 fn(const BinaryCodablex*, (const Fieldx* f), {

23 float min_distance = min(without_self(f)) + 1.0;

24 return is_source 7 distance_of (0.0) : distance_of(
min_distance) ;

25 »

26 )

27 || }

(S

Finally, in Listing is presented the TypeScript implementation of the gradi-
ent algorithm. In this case, differently from JavaScript, a different library for Pro-
tobuf handling has been used, protobuf—esﬂ which generates idiomatic TypeScript
classes for each Protobuf message type. This showcase how the polyglot layer can
seamlessly interoperate with different serialization libraries and formats. Since us-
ing a custom class for representing the Distance message type, it is necessary to
implement the Codec interface to provide encoding and decoding capabilities to
it and allow the polyglot layer to handle message serialization and deserialization
during network communication.

Shttps://github.com/bufbuild/protobuf-es
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Listing 6.9: TypeScript implementation.

|| function aggregateProgram(lang: Language) {

2 return lang.share(new Distance(Infinity), (nvalues) => {
3 const minDistance = nvalues.withoutSelf

.map ((dist) => dist.value)

6 return isSource ? new Distance(0) : new Distance(

minDistance) ;

7 IO

10|l class Distance implements Codec<Distance, Uint8Array> {
11 private instance: ProtoDistance;

13 constructor (value: number) {

14 this.instance = create(DistanceSchema, { value });
15 }

16

17 get codable(): Codable<Distance, Uint8Array> {

18 return Distance.codable;

19 }

21 get value(): number {
22 return this.instance.value;

5 .reduce ((min, d) => Math.min(min, d), Infinity) + 1.0;

23 }
24
25 static codable: Codable<Distance, Uint8Array> = {
26 typeName: "Distance",
27 encode: (sensor) => toBinary(DistanceSchema, sensor.
instance),
28 decode: (bytes) => {
29 const decodedDistance = fromBinary(DistanceSchema,
bytes) ;
30 return new Distance(decodedDistance.value);
31 },
32 };
33 }
(S

6.2.2 Deployment

Deployment wise, the application is executed on a heterogeneous grid of devices,
running on different platforms and hardware architectures. Specifically, a network
composed of six Raspberry Pi single-board computers has been created with a Von
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Neumann topology, where each device is connected via sockets to its four orthogo-
nal neighbors (up, down, left, right) as shown in Figure . Each device executes
an instance of the gradient aggregate program using a distinct platform-language
combination, as summarized in Figure [6.2 Other than demonstrating the poly-
glot capabilities of the ScaFi library, this deployment showcases its cross-platform
capabilities by cross-compiling and running the Scala version of the application
both on bare metal (Scala Native) and on JavaScript (Scala.js).

DEVICE 1 DEVICE 4
DEVICE o0 Raspberry Pi 3B+ Raspberry Pi 3B+
Raspberry Pi Ow C (bare metal) Scala (Jvm)

Scala.js (Node.js)

SOURCE

DEVICE 2 DEVICE 3

Raspberry Pi Ow Raspberry Pi 0w
JavaScript (Node.js) TypeScript (Node.js) DEVICE 5

Raspberry Pi 3
Scala Native (bare metal)

Figure 6.2: Deployment topology for the gradient diffusion demonstration. The
device in the bottom-right corner (Device 5) is the one acting as the source from
which all other devices compute their distance.

The Raspberry Pi models and specifications used in the deployment are detailed
in Table 6.1l

Model Cores RAM Architecture Year
Raspberry Pi Zero W 1 512 MB  ARMv6 (32-bit) 2017
Raspberry Pi 3 4 1 GB  ARMvVS (64-bit) 2016
Raspberry Pi 3B+ 4 1 GB  ARMvVS8 (64-bit) 2018

Table 6.1: Technical specifications of Raspberry Pi models employed in the de-
ployment.
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6.2.3 Qualitative analysis

The node acting as the source device is the Device 5 (Scala Native on Raspberry
Pi 3), while all other devices compute their hop-count distance from it. To make
evident the correct functioning of the program each Raspberry Pi is equipped with
a display showing the current computed distance value from the source device, up-
dated in real-time as the aggregate computation proceeds. Initially, all devices are
up and running except for the Device 3 and the source device (Figure . Once
the source device connects, distance values propagate from the source to all other
devices until they stabilize at the correct minimal hop-count distance values, as
shown in Figure [6.3b] If Device 2 goes offline for any reason, the network parti-
tions into two subnetworks after a brief transient period: one containing the source
device and one without, where distance values become infinite (see Figure [6.3d).
Upon reconnection of all devices, the distance values update to reflect the new
network topology, demonstrating the adaptability of aggregate computation to
dynamic network changes (see Figure .

6.2.4 Performance Evaluation

While the primary focus of this work was on achieving cross-platform and poly-
glot capabilities for a prototypal version of the ScaFi library without focusing on
optimization and performances, a preliminary evaluation has been conducted to
understand the different performances obtained by the various target platforms
and the overheads introduced by the polyglot layer.

Performance was evaluated in terms of memory usage across 2,500 rounds—1
executed every 250ms, totaling over 10 minutes—of the gradient diffusion appli-
cation presented in the previous section, running on a Raspberry Pi 3B+ device
with three neighbors. The performance measurements were conducted for each
target platform and language combination—C and Scala Native for bare metal
environments, Scala JVM for the JVM environment, and Scala.js and JavaScript
for the JavaScript environment—with 10 runs executed per configuration to obtain
statistically significant results. Concerning the Native target, the BoehmE] garbage
collector with default configuration is used. Results are presented in Figure [6.4]

As expected, the application running on bare metal (C and cross-compiled
Scala Native) exhibits the lowest memory usage, nearly 4x lower than the JVM
version. The Scala Native version shows better performance compared to the C
version. The difference can be attributed to the overhead imposed by the polyglot
layer for the necessary conversions between C and Scala data structures, which

Shttps://www.hboehm.info/gc/
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(c)

Figure 6.3: Gradient diffusion demonstration showing network topology changes

(d)

and distance value updates.
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are not necessary in the Scala Native version, where data structures are written as
plain Scala and compiled to machine code directly. The JS-based implementations
show higher memory usage compared to Native but lower than the JVM version,
with the plain JS version surprisingly outperforming the cross-compiled Scala.js
version despite the expected overhead introduced by the polyglot layer.

These performance evaluations revealed that one aspect with potential for im-
provement, expected to moderately impact JVM and Native performance, is the
network layer. Initially, the network was implemented with a one-thread-per-client
approach on both JVM and Native platforms, which limits scalability and intro-
duces performance overhead. This implementation approach was chosen initially
because the asynchronous socket API from Java’s standard library is not avail-
able in Native. Implementing it would require using native-level primitives and
bindings using C Posix library, which would have demanded significantly more
development time and effort. However, this is surely needed for future work to
enhance the library’s performance and scalability. Moreover, on JVM platform,
the use of Virtual Threads-based executonl] could enhance scalability and perfor-
mance of the network layer by allowing many concurrent connections with minimal
resource consumption.

"https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html
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Conclusions and Future Works

This work explored the possibility of creating a general framework for developing
Scala cross-platform and polyglot libraries. The main goal was to conceive an ar-
chitecture to run Scala-based software products on heterogeneous computational
platforms and enabling programmers to leverage it from various programming
languages—chosen based on business goals, preferences, or ecosystem features that
provide competitive advantages for their specific use cases. All of this while pro-
gramming a unified version of the software product in Scala, one of the main
leading, powerful and expressive programming language to build reliable, scalable
and distributed libraries and applications.

First, current frameworks and languages for multi-platform and polyglot devel-
opment were analyzed. Then, the Scala ecosystem and capabilities were explored
in terms of cross-compilation and languages interoperability. Driven by the desire
to provide a solution completely grounded on Scala language features, and in light
of present limitations of the Scala cross-platform capabilities, a general architecture
has been conceived. To test its feasibility, this architecture was instantiated within
the ScaFi3 implementation in the Aggregate Computing research field, revealing
main challenges, solution spaces, and improvement areas that must be addressed
for the approach to be fully effective. Finally, to validate the work, a real-world
demonstration on top of heterogeneous devices and platforms has been conducted
to fully understand its capabilities and effectiveness.

Preliminary results show this architecture provides cross-platform and polyglot
capabilities to Scala software libraries, allowing developers to write the software
product once, using a cross-platform approach, and export it to different pro-
gramming languages through a minimal polyglot abstraction layer. This allows to
maximize code reuse and minimize maintenance effort.

However, this work is only a first step towards a fully-fledged framework for
building cross-platform and polyglot Scala libraries. Following the limitations iden-
tified in Section and the demonstration and validation results, several areas
for future work have been identified. These can be categorized into improvements
to the current ScaFi3 library (L), and long-term enhancements to the overall archi-
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tecture (A) and tooling (T), which would benefit not only the ScaFi3 library but
also other Scala-based projects aiming for cross-platform and polyglot capabilities.

A+T.

A+T+L.

A+T+L.

Allow Native @exported methods to be used both in shared and platform-
specific code. This would avoid redefining signatures in platform-specific
source sets just to be able to annotate and export them.

. Develop a plugin to automatically generate header files from Scala Native

Q@exported methods. This would streamline the process of creating native
bindings without manually writing C header files.

. Enhance the polyglot layer to automatically generate, using an appropriate

automation tool, Java override method declarations, overcoming the Ab-
stract Type Members erasure issue.

Create a tool to automatically generate Python bindings from Scala Native
Qexported methods and validate it by generating the Python bindings for
the ScaFi3 Native API. If successful, this would boost the adoption of the
presented architecture.

Improve the type-safety of the Native API by providing a C++ or Rust
facade over the current C implementation, leveraging templates for compile-
time type checking and eliminating unsafe casts. This limitation affects all
libraries using Scala Native, which targets C-based interoperability. Address-
ing it would require investigating a broader solution, possibly necessitating
the creation of a dedicated automated tool for generating such facades.

Support an asynchronous networking module for the Scala Native platform
allowing to avoid the current one-thread-per-connection approach, which lim-
its scalability when many neighbors are present. Moreover, more advanced
network protocols could be supported, such as MQTT.

Finally, the whole architecture would undoubtedly benefit from the Scala Na-
tive 2.0 interoperability proposa]ﬂ including first-class export annotations, even

though since the long-standing nature of the proposal appears unlikely to materi-
alize in the foreseeable future.

Ihttps://github.com/scala-native/scala-native/issues/897
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Cross-platform Development in
Scala

This appendix provides a brief guide on the main concepts and tools available for
building cross-platform applications and libraries in Scala.

Build Configuration

Cross-platform development is enabled by SBT Cross Project Pluginl| which al-
lows defining cross-platform Scala projects targeting JVM, JavaScript and Native
platforms. An example of SBT cross-build configuration is provided in Listing[A.1]
Notable configuration options to pay attention to include:

e Flavor. Programmers can choose between two different flavors of cross-
projects: Pure and Full. The first is intended for code that does not depend
directly on any platform-specific libraries or functionality, though it may rely
on third-party cross-platform libraries. The latter allows defining platform-
specific code and dependencies, while still sharing common code across all
platforms

e Native GC. On the Native platform, the Garbage Collector (GC) is respon-
sible for automatically managing heap-allocated Scala objects.

e Link Time Optimization (LTO). On the Native platform, LTO can be
enabled to optimize the final binary by performing optimizations across mod-
ule boundaries during the linking phase. This can lead to smaller and faster
executables, at the cost of increased compilation time. Beware on some
architectures (like Raspberry Pi ARMv7) LTO may not be fully supported.

e Native Build Target. On the Native platform, Build Target option al-
lows choosing between building an executable application or a shared /static

'https://github.com/portable-scala/sbt-crossproject
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library. In the first case, the output is a standalone binary that can be ex-
ecuted directly on the target platform. With static or shared library, the
output is a .a or .so file that can be linked and used by other applications
(it requires exported definitions);

e JS Module Initializer. On Scala.js platform, the module initializer option
instructs the Scala.js compiler to generate a JavaScript module that auto-
matically invokes the application main method when the resulting JavaScript
file is loaded.

Listing A.1: Example of SBT cross-build configuration for Scala cross-platform
development.

lazy val crossModule = crossProject(JSPlatform, JVMPlatform, NativePlatform)
.crossType (CrossType.Full)
.in(file("crossModule"))
.settings(
// common settings here, including dependencies (use %%%)
)
.jsSettings (
// Scala.js specific settings
)
.jvmSettings (
// JVM specific settings
)
.nativeSettings( // Native specific settings
nativeConfig ~= {

_.withGC(GC.immix) // or boehm | commix | none
.withLTO(LTO.full) // link time optimization: thin | none
.withMode (Mode.releaseSize) // or debug | releaseFull
.withBuildTarget (BuildTarget.libraryDynamic) // application

libraryStatic

Project Structure and code organization

Once applied, depending on the chosen flavor, the plugin organizes the project
structure accordingly:

e Pure Cross-Project: the project structure contains a single shared source
set, under the canonical src/ directory, containing all the application or li-
brary code. No platform-specific source code is allowed, and the programmer
can only rely on cross-platform libraries and functionalities;

e Full Cross-Project:

— shared/: contains source code that can be shared across all platforms.
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If some functionality is not supported on a specific platform the pro-
grammer needs to provide platform-specific implementations in appro-
priate directories;

— jvm/, js/, native/: contain platform-specific source code and depen-
dencies for JVM, JavaScript and Scala Native platforms respectively.
Inside these directories the programmer can directly access platform-
specific libraries and functionalities, like Node.js APIs in Scala.js or C
type system abstractions in Scala Native;

— jvm-native/, js-native/ and all other combinations: contain source
code and dependencies shared between a subset of platforms.

Despite other cross-platform programming languages, Scala does not provide
an explicit mechanism for building platform-specific contracts and implementa-
tions, like Kotlin’s Multiplatform expect/actual mechanism. However, a similar
mechanism can be achieved using standard trait definitions in the shared code
and providing platform-specific implementations in the appropriate source sets.
Indeed, as long as each supported platform provides an implementation of a given
concept, the shared code can reference and use it without concern for platform-
specific details, provided that no platform-dependent functionality leaks through
the abstract interface. For example, Listing shows how can be defined an
abstract contract for asynchronous sleep operation in the shared code, and how to
provide platform-specific implementations for JVM and JavaScript platforms. De-
spite Async object being defined in platform-specific source sets, the shared code
can reference and use it transparently as long as it is implemented for all target
platforms.

Listing A.2: Example of how to implement platform-specific contracts and imple-
mentations in Scala cross-platform development.

P
trait AsyncOperations:

def sleep(duration: FiniteDuration): Future[Unit]

[3

// JUM & Native implementation under ‘jvm-native‘ source set

object Async:

def operations: AsyncOperations = new AsyncOperations:
given ExecutionContext = ExecutionContext.fromExecutor (
Executors.newCachedThreadPool ())

override def sleep(duration: FiniteDuration): Future[Unit] =
Future (blocking (Thread.sleep (duration.toMillis)))
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// JS implementation under ‘js‘ source set
object Async:
def operations: AsyncOperations = duration =>

val p = Promise[Unit] ()
setTimeout (duration) (p.success (())): Unit
p-future
// In ‘shared‘ source set you can access Async object
for
_ <- Async.operations.sleep(2.seconds)

yield

\S

Scala Native Interoperability

Scala Native interoperability with C code is provided by using Scala Native’s an-
notations and type system abstractions for C language constructs. The interaction
is bidirectional: Scala Native code can call C functions and libraries, while C code
can call Scala Native exported functions. The key mechanisms include:

e Qextern annotations, applied to object definitions, define C function bind-
ings in Scala. Like C header files, they declare function signatures that the
compiler maps to actual C implementations in linked libraries, allowing Scala
code to call C functions directly;

e @link annotation specifies which native libraries should be linked when com-
piling, enabling Scala Native to resolve external C function calls at link time;

e Qexported annotations mark Scala Native functions that should be visible
and callable from C code, making them available when linking Scala Native
code as a library. Currently, it only supports static object methods and
properties. A proposal exists to add a @struct annotation for exporting
classes as C struct§?, but this has been blocked due to issues in passing
structs by value.

C interoperability relies on Scala Native’s type abstractions in the scala-
native.unsafe package, which provides Scala representations for C constructs,
including, but not limited to, CStructN for structures and Ptr[T] for pointers.
Primitive type aliases, like CString, enable direct manipulation of C data while
maintaining Scala’s type safety.

’https://github.com/scala-native/scala-native/issues/897
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While both Scala Native type facades and exporting mechanisms can be written
manually, the Scala Native Bindgen pluginﬂ can be used to automatically gener-
ate Scala Native bindings from C header files. Its usage significantly reduces the
effort required to interface with existing C libraries by automating the generation
of necessary Scala Native code that otherwise would need to be written by hand.
Listing illustrates an SBT configuration employing the Bindgen plugin to gen-
erate Scala Native bindings from the ScaFi C header file located in the resources/
directory.

Listing A.3: SBT configuration for the Polyglot Abstraction Layer using the Scala
Native Bindgen plugin to generate C bindings.

-
lazy val ‘scafi3-polyglot-api® = crossProject(JSPlatform, JVMPlatform,

NativePlatform)
.crossType (CrossType.Full)
.in(file("scafi3 -polyglot -api"))
.dependsOn (
‘scafi3-core‘ ¥ "compile->compile;test->test",
‘scafi3-distributed ¢ % "compile->compile;test->test"
)
.nativeEnablePlugins (BindgenPlugin)
.nativeSettings(
commonNativeSettings,
bindgenBindings += Binding(
header = (Compile / resourceDirectory).value / "include" / "scafi3.h",
packageName = "it.unibo.scafi.nativebindings",
)
)

(S

Unfortunately, the automation of header file generation from Scala Native ex-
ported functions is not currently supported. Indeed, developers are expected to
manually write the header files declaring the exported functions to be used in
C code and then generate the corresponding Scala Native code with appropriate
annotations using the Bindgen plugin.

Several key aspects of interoperability should be noted:

e While theoretically possible to expose Scala objects and classes directly to C
code, via an opaque pointer mechanism, representable as Ptr [Byte] in Scala
Native, this approach is not suggested due to the complexity of managing
object lifetimes and memory safety across language boundaries. Indeed,
Scala objects are managed by Scala Native’s Garbage Collector, which may
lead to issues if C code holds references to Scala objects that have been
collected. If necessary, it is necessary to maintain references to Scala objects
in Scala code to prevent their collection while they are still needed by C
code.

3https://sn-bindgen.indoorvivants.com
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e Generic types can be represented, in Scala Native exported functions, as
Ptr[Byte] pointers (void* in C). The direct usage of type parameters, while
not prohibited, is discouraged since they are erased to java.lang.Object in
the generated code and therefore not correctly represented as Scala Native
Ptr[T] abstractions. As a result, Scala Native expects JVM object references
to be passed, which may lead to runtime errors if the actual type is a native
type, like a pointer.

Scala JS Interoperability

Similarly to Scala Native, Scala.js provides interoperability mechanisms to interact
with JavaScript code:

e Q@js.native annotation define type-safe Scala interfaces for JavaScript APIs.
Like @extern objects in Scala Native, they map Scala types to JavaScript
objects and functions, enabling statically-typed access to JavaScript code;

e @JSImport and @JSGlobal specify module imports and global object access,
serving a similar role to @link by declaring which JavaScript code to bind
against;

e QJSExport and @JSExportTopLevel expose Scala.js members and top-level
definitions to JavaScript for making Scala code callable from the host lan-
guage.

Automated binding generation is also available through Scalably Typed], which
generates Scala.js facades from TypeScript definition files.

“https://scalablytyped.org
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