ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

Dipartimento di Fisica e Astronomia
Corso di Laurea in Astronomia

Dinamica delle (Galassie a Spirale
e delle GGalassie Ellittiche

Tesi di Laurea

Presentata da: Relatrice:
Francesco Montanari Prof.ssa Marcella Brusa

Sessione di laurea III
Anno Accademico 2024-2025



Indice

1 Introduzione

2 Dinamica di Sistemi a N-corpi
2.1 Definizione dinamica della galassia . . . . . . . . ... ...
2.2 Fondamenti di Gravita Newtoniana . . . . . . . . . . ... ... ... ......
2.3 Sistema a N-corpi . . . . . . . ...
2.4 Tempo di Rilassamento a Due Corpi . . . . . . . . . ... ... ... ......
2.4.1 Approccio cinetico al calcolo ditqy, . . . . . . . ...
2.4.2 Calcolo Approssimativo in Esempi Astrofisici . . . . . . . ... ... ...
2.5 Teorema del Viriale e Catastrofe Gravotermica . . . . . . . .. .. ... .. ...
2.5.1 Teorema del Viriale . . . . . . . .. ... ... . ... ...
2.5.2 Catastrofe Gravotermica . . . . . . . . . . . ... ... ...

3 Dinamica delle Galassie
3.1 Classificazione di Hubble . . . . . . . . . . . . ... ...
3.2 Dinamica delle Galassie Ellittiche . . . . . . . . . . . . . ... ... ... ...
3.2.1 Fotometria . . . . . . . ..
3.2.2 Motidellestelle . . . . . . . . . .
3.3 Dinamica delle Galassie a Spirale . . . . . . . . ... ... ... ...
3.3.1 Rotazione ordinata del Disco. . . . . . . . . . . ... ... .. ... ...
3.3.2 BracciaSpirale . . . .. ...

A Appendice
A.1 Probabilita Statistica di Urto Geometrico. . . . . . . . . . . . . . .. ... ...
A.2 Calcolo Approssimativo del to, . . . . . . . . ..o
A.3 Teorema Viriale Tensoriale . . . . . . . . . . . . .
A.4 Misura della curva di rotazione . . . . . . . .. ...



Capitolo 1

Introduzione

Le galassie sono sistemi di proporzioni immense che legano gravitazionalmente stelle, gas e
I’enigmatica materia oscura. In termini di scala, una galassia contiene tipicamente un numero
di stelle che varia da circa 10° per i sistemi pit1 piccoli fino a 10'? per le galassie giganti, con
masse totali che possono estendersi da 107 fino a 10'* masse solari [1]. Questi sistemi stellari
rappresentano, percio, un ottimo esempio fisico dei cosiddetti sistemi a N-corpi.

La dinamica stellare e il campo di studio che mira alla comprensione qualitativa della struttura
e dell’evoluzione di questi sistemi, sviluppando metodi matematici (analitici e numerici) per
previsioni quantitative. Basata sui principi fondamentali di Newton della dinamica e sulla
gravitazione, questa disciplina e costruita a partire dalle equazioni differenziali del problema
degli N-corpi. Data la vastita del numero di stelle, la dinamica stellare deve pero adottare
tecniche piu potenti che vadano oltre 'utilizzo diretto di tali equazioni.

Un presupposto cruciale per la modellizzazione delle galassie deriva dalla stima del tempo
di rilassamento a due corpi (tg), la quale dimostra che le galassie costituiscono sistemi non-
collisionali, in cui il potenziale gravitazionale puo essere approssimato ad un valore medio.

In questo regime non collisionale, le galassie manifestano dinamiche diverse a seconda della loro
morfologia. Il presente lavoro introduce le caratteristiche principali del modello adottato per la
descrizione delle galassie e successivamente si focalizza sulla dinamica dei due gruppi principali:
galassie ellittiche, dinamicamente ”calde”, e galassie a spirale, dinamicamente ”fredde”.

Capitolo 2

Dinamica di Sistemi a N-corpi

2.1 Definizione dinamica della galassia

In questo capitolo vengono mostrate le proprieta dinamiche fondamentali che caratterizzano
una galassia e le conseguenze sulla sua struttura e evoluzione, attraverso lo studio del sistema
a N-corpi, del tempo di rilassamento a due corpi e del Teorema del Viriale applicati al caso
fisico della galassia. Una galassia ¢ definita dinamicamente come un sistema autogravitante,
non-collisionale e virializzato [1]:

e Autogravitante: il potenziale gravitazionale totale ® sotto cui si muovono le stelle e
generato dalla distribuzione di massa del sistema stesso (cioe dalle stelle, dal gas e dalla
materia oscura al suo interno);

e Non-collisionale: le collisioni geometriche e I'effetto cumulativo delle interazioni gra-
vitazionali a distanza sono trascurabili su scale temporali cosmologiche, e 1’evoluzione
stellare ¢ dominata dalle forze del campo gravitazionale liscio su larga scala;

e Virializzato: ¢ un sistema in equilibrio stazionario in cui vale il Teorema del Viriale, che
stabilisce una relazione fondamentale tra ’energia cinetica totale e I’energia potenziale
totale e implica che 'energia totale baricentrica sia non positiva.

Per sostenere che le galassie siano descrivibili come sistemi a N-corpi, € innanzitutto necessario
verificare che siano formate da punti materiali e non da corpi estesi rispetto alla scala del si-
stema. Nell’Appendice A.1 ¢ dimostrato che l'effetto delle collisioni geometriche ¢ trascurabile.
La galassia puo essere considerata dinamicamente come un ” oggetto fantasma”, principalmente
vuoto e costituito da stelle che possono essere trattate come punti materiali. Tuttavia, non



sono trascurabili le possibili interazioni gravitazionali.

Nelle prossime sezioni sono volte a mostrare i fondamenti di gravita di Newton su cui si basa la
dinamica stellare, dimostrare I'ipotesi di non-collisionalita e descrivere le proprieta dei sistemi
virializzati e le loro conseguenze sull’evoluzione degli ammassi stellari.

2.2 Fondamenti di Gravita Newtoniana

I punti di partenza della trattazione sono la Legge di Gravitazione Universale di Newton e i
metodi per calcolare le forze gravitazionali. La legge di gravita di Newton stabilisce che una
massa puntiforme M attrae una seconda massa m separata da essa dalla distanza 7, variando
la velocita v di m in base a: d L m) = Gm.MF (2.1)
dt r3 '
con G costante gravitazionale di Newton. Il principio di sovrapposizione afferma che
il campo (o la forza) gravitazionale totale esercitato su una stella da tutte le altre stelle ¢
semplicemente la somma vettoriale dei campi (o forze) gravitazionali esercitati individualmente
da ciascuna delle altre stelle sul punto in questione. Esso permette cosi di calcolare, in un
ammasso di N stelle, la forza totale agente sulla stella a da tutte le altre N-1 stelle con masse

Mg, (Oé = ]-7 7N) d GTTL mg
ala) = = o—T 2.2
dt m v, ;755 ’xa — Z‘ﬁ‘ xﬁ) ( )

La forza dell’ammasso su una stella di massa m in posizione T puo essere scritta come gradiente
del potenziale gravitazionale ®(T):

;i(mv) = —mV®(T), con ®(T Z 7o per T # Tq (2.3)

dove si ¢ scelto una costante di integrazione arbitraria in modo che @(m) — 0 a grandi distanze.
Se si pensa a una distribuzione continua della materia in un ammasso stellare, il potenziale nel
punto Z & dato da un integrale sulla densita p(Z') in tutti gli altri punti, mentre la forza F per
unita di massa ¢ data dal gradiente del potenziale:

O(7) = — GplT) &7, F(T)=-Vo(T) = — / Gp (fl)(f__ E,)d%’ (2.4)

T — 7| |z —7'3

2.3 Sistema a N-corpi

Il punto di partenza della dinamica stellare e rappresentato dalle equazion:i differenziali che
descrivono il problema degli N-corpi, derivate dall’applicazione della Legge di Gravitazione
Universale di Newton a un sistema di N masse puntiformi. I’equazione 2.2 mostra la formula-
zione newtoniana (in coordinate cartesiane) che descrive il moto di ciascuna delle N particelle
in un sistema di riferimento inerziale. Tuttavia, la loro soluzione analitica non e generalmente
disponibile per N > 3, la soluzione non puo essere ridotta a 6 N — 1 integrazioni indipendenti
[1]. Nonostante la complessita intrinseca al problema dei N-corpi, per le galassie & possibile
adottare una descrizione ideale che semplifica la trattazione, sfruttando il concetto di tempo di
rilassamento a due corpi. In un sistema a N-corpi, la traiettoria di ogni stella ¢ determinata
in linea di principio dall’influenza gravitazionale reciproca di tutte le altre stelle. Il compor-
tamento delle stelle in una galassia omogenea puo essere inizialmente rappresentato da due
diverse descrizioni, schematizzate in Figura 2.1:
e Descrizione Ideale: le stelle si muovono su orbite influenzate da un potenziale ® g,
che rappresenta il poteziale medio dato da distribuzione di densita continua e in grado
di portare la trattazione 6/N-dimensionale alla trattazione in uno spazio delle fasi 6-
dimensionale.
e Descrizione Reale: le orbite reali sono influenzate da un campo gravitazionale vero
®,,... dato dalle stelle stesse e che possiede anche una componente irregolare, dovuta
alla granularita del sistema, ossia alle interazioni a breve raggio tra singole stelle.




Le orbite delle due descrizioni coincidono
finché non si accumulano gli effetti delle interazioni
gravitazionali a distanza, chiamate anche collisioni
gravitazionali o rilassamenti a due corpi. Questi
passaggi ravvicinati, sebbene deboli singolarmen-
te, lentamente trasferiscono energia e deviano le
orbite stellari dalla descrizione ideale. Dopo nu- Figura 2.1: Rappresentazione della galassia co-
merosi incontri, la stella ”perde memoria” della ™Me un sistema a N-corpi: a sinistra ¢ schema-
sua orbita originale e delle sue condizioni iniziali, tizzata h descrizione .r?ale d iscreta, a destra ¢

schematizzata la descrizione ideale continua.
finendo su una nuova orbita random.
Il tempo caratteristico che impiegano le due orbite
per differenziarsi e chiamato tempo di rilassamento a due corpi ty,. Se il sistema che si sta
studiando possiede un ”eta” minore al tq, allora questo € ancora descrivibile con il caso ideale
ed ¢ detto sistema non-collisionale. Bisogna specificare pero che, nonostante ’approccio
riduca drasticamente la complessita del problema originale, questo nuovo problema risulta an-
cora irrisolto [1].

2.4 Tempo di Rilassamento a Due Corpi

2.4.1 Approccio cinetico al calcolo di ty,

L’approccio cinetico adottato per il calcolo del tempo di rilassamento a due corpi e basato su
risultati del problema dei due corpi e sul calcolo dell’effetto fionda [2].

Questo approccio si concentra sull’interazione di una massa di test con ognuna delle N masse
appartenenti al sistema a N-corpi. Ci si pone in un sistema di riferimento inerziale Sy. Si prende
una stella my.; con una certa velocita 7, e si studia la sua interazione con una stella di massa
Mtiela © con velocita vy, ignorando le altre N — 1 masse. La soluzione ¢ un’orbita iperbolica
nel caso di forza gravitazionale. Si studia 'interazione per ciascuna delle masse del sistema
e si ottiene un fascio di orbite, da cui, eventualmente, ¢ possibile ricavare asintoticamente la

traiettoria vera. M Vel
Ogni interazione deflette la m; dalla |
sua traiettoria originale. Come prima co- b

sa ci si occupa di calcolare la variazione
dell’energia di m,; da un’interazione con
la massa del sistema m ¢, adottando il si-
stema di riferimento dell’orbita relati- Figura 2.2: Sistema di riferimento dell’orbita relativa.
va, ovvero il sistema in cui my ¢ fermo

(Figura 2.2) . L’orbita relativa ¥ = T, — 7y, ¢ uguale per tutti i sistemi di riferimento inerziali
e caratterizzata dall’equazione differenziale yr = —VU, in cui pu = % e la massa ridotta.
In questo modo si studia solo la velocita relativa 7. Dopo l'interazione, la 7 ruota, ovvero
cambia direzione, ma il suo modulo rimane lo stesso (||7!]| = |[7”||) perché I'energia dell’orbita
relativa E,. ¢ conservata [2]. Il parametro d’impatto b rappresenta la distanza minima alla
quale le due stelle passerebbero se non interagissero, quantita diversa dalla distanza minima
Tmin Che raggiungono durante I'urto. Oltre ad una componente parallela alla velocita iniziale,
la velocita finale possiede una componente perpendicolare. Misurando la variazione dell’energia
cinetica delle due componenti dopo l'interazione, si nota che 'orbita relativa si e ””scaldata”
perpendicolarmente e si ¢ "raffreddata” parallelamente, conservando |’energia.

Nel calcolo del t5, nel caso gravitazionale ¢ necessario svolgere una complicata integrazione
dell’orbita iperbolica poiché bisogna considerare 'effetto di una forza variabile nel tempo
e un intervallo di tempo infinito. Percio viene adottata I'approssimazione impulsiva detta

. . . . - G
” Born Approzimation” , che assume I’azione di una forza costante nel tempo [|F || = =55




in un intervallo di tempo finito At = 2b/||7||. T valori approssimati sono basati su para-
metri intriseci del problema: b e |[7|| = ||7']| ed & tanto piu corretta quanto piu grande ¢ la
distanza tra le due stelle, ovvero quanto piu I'urto e lontano Si calcola la sommatoria dei riscal-
damenti perpendicolari, schematizzando la galassia come un sistema infinito e omogeneo
con densita n, sistema non realistico ma utile per la trattazione:

D 1AD L |P = T87GPnmInAW (|[v]]) (2.5)

in cui InA ~ 15 & il valore medio del logaritmo di Coulomb e ¥(|[7;||) ¢ il potenziale di
Rosenbluth [2]. Tl ¢y, rappresenta il tempo cumulativo T necessario affinché il riscaldamento
perpendicolare sia pari all’energia cinetica iniziale della massa di test: Y [|Av, 1 ||* = ||v]]?.
C ot ene: =112
Si ottiene: by = HQUtH _ (2.6)
8rGEnmin AV (|[v]])
Si distinguono cosi i due tipi di sistemi:

e Sistema non-collisionale ¢ un sistema con eta minore del ty,. Le interazioni tra le
stelle non influenzano in modo significativo le loro orbite nel corso della loro "vita” e la
dinamica e derivata dal campo gravitazionale complessivo della galassia. Dal
punto di vista dinamico, la galassia ¢ considerata un ”soggetto giovane”.

e Sistema collisionale ¢ un sistema con eta maggiore del to,. Le interazioni a due corpi
sono sufficientemente frequenti e intense da redistribuire significativamente 1’energia tra
le stelle, portando il sistema verso un equilibrio termodinamico.

Tuttavia, ¢ importante sottolineare che il {5, non € un valore universale e che non rappre-
senta una transizione immediata, bensi un processo di accumulo.

2.4.2 Calcolo Approssimativo in Esempi Astrofisici

Per poter verificare la non-collisionalita delle galassie si utilizza una formula approssimativa
per il calcolo del ty;, ricavata dal Teorema del Viriale, un argomento approfondito meglio
nella prossima sezione.

Si considera una galassia come un sistema autogravitante sferico all’equilibrio, con massa totale
M = Nm, data dalle sue N stelle assunte con massa uguale m, e con raggio R e con disper-
sione delle velocita o. Per mostrare un confronto del ¢y, tra diversi sistemi si introduce il
tempo dinamico 4, = %, un tempo di riferimento intrinseco della galassia necessario a una

stella con velocita o per attraversare tutto il sistema. Il rapporto tra i due tempi e:

tn 0LV 2.7)

tdyn InN
La formula e dimostrata nell’Appendice A.2. Le galassie rappresentano sistemi che contengono
in media N = 10" stelle e posseggono un t4,, = 250 Myr [3]. Il rapporto approssimato &
% = 10'9 percio si ricava approssimativamente ty, = 2.50 - 10*® yr. Cio significa che il ty, di
una galassia e di gran lunga maggiore dell’eta dell’Universo, determinata con alta precisione
tramite le moderne misurazioni cosmologiche ¢ty ~ 13.7 - 10%r [4]. Al contrario, per sistemi
stellari come gli ammassi globulari, pit piccoli delle galassie e con N ~ 10° stelle, il tempo
di rilassamento a due corpi ¢ minore a parita di fgyn: % ~ 10*. Percid gli ammassi aperti
sono considerati sistemi dinamicamente pilt vecchi delle galassie.

2.5 Teorema del Viriale e Catastrofe Gravotermica

In questa sezione ¢ descritto brevemente il fenomeno dell’ evaporazione gravitazionale, una
conseguenza termodinamica che caratterizza I’evoluzione a lungo termine dei sistemi collisionali
quali gli ammassi globulari. Si tratta di un fenomeno teoricamente e praticamente inosservabile
nelle galassie su scale temporali cosmologiche. Questa mancanza ¢ la conferma attesa (e neces-



saria) del fatto che le galassie sono eccellenti esempi di sistemi perfettamente non-collisionali.
Prima di illustrare tale fenomeno e necessario introdurre il Teorema del Viriale.

2.5.1 Teorema del Viriale " caui

Il Teorema del Viriale costituisce un insieme in-

finito di identita tensoriali. La traccia della piu B0 R

semplice identita ¢ 27" = —U, in cui T rappresen-

ta 'energia cinetica calcolata nel centro di massa

del sistema descritto e U I’energia potenziale del si- Freddi Beltadel At Ty

stema. L’applicabilita del teorema deve rispettare Larghi Concentrati

due requisiti:

* SISte,ma AUtOgraVItantei tUttl, gl ele- Figura 2.3: Piano Viriale. Ad alti U corrislt;)on—

menti del sistema sono mossi esclusivamente dono i sistemi piu concentrati mentre a bassi U si
sotto azione di tale campo. posizionano sistemi piu allargati. Ad alti T' cor-

e Forza Virializzata: la forza che agisce rispondono sistemi piti caldi mentre a bassi T si
sugli elementi deve avere un andamento trovano sistemi pit freddi.
proporzionale a %.

E necessario specificare che un sistema detto ”all’equilibrio dinamico” coincide con un sistema
detto "virializzato”, mentre non si puo dire lo stesso con un sistema detto "rilassato”. Un
sistema rilassato, oltre ad essere virializzato, ha raggiunto uno stato termodinamico dove la
distribuzione di velocita dei suoi elementi segue la curva di Mazwell-Boltzmann (caso di siste-
mi collisionali). Per studiare ’evoluzione di un sistema ¢ utile il grafico del Piano Viriale, il
quale mette in relazione I’energia cinetica totale 7' con l'energia potenziale gravitazionale U,
in cui il sistema fisico e rappresentato con un punto [2]. Il piano & mostrato in Figura 2.3.
L’identita del teorema T = % e rappresentata dalla ”retta del viriale” e costituisce la condi-
zione necessaria per ’equilibrio di un sistema. La bisettrice del piano rappresenta i sistemi con
energia totale £ =T + U = 0 e separa il piano in sistemi con £ > 0 (sopra la retta) e in siste-
mi con F < 0 (sotto la retta). Un sistema fuori equilibrio, se sottoposto a forze conservative
conserva l’energia totale E/ e percio e rappresentato da un punto che si puo muovere su una
retta T'= E + |U|, parallela alla bisettrice. Anche se non si conosce 1'evoluzione di un sistema
qualunque, e certo che questo si evolvera per raggiungere 'equilibrio, ovvero la retta del viriale.
Si nota che solo i sistemi conservativi con energia totale strettamente negativa F < 0, come i
sistemi gravitazionali, si trovano su rette che intersecano la retta del viriale e quindi hanno la
possibilita di trovarsi all’equilibrio.

2.5.2 Catastrofe Gravotermica

Il fenomeno della catastrofe gravotermica rappresenta una conseguenza diretta della termodi-
namica unica dei sistemi autogravitanti. Consiste nel processo attraverso il quale le regioni
centrali di un ammasso stellare subiscono una contrazione progressiva (detta core collapse)
mentre 'involucro esterno si espande, portando a un aumento illimitato della densita centrale
se non intervengono altre fonti di energia. In astrofisica, gli ammassi globulari sono gli ogget-
ti che mostrano meglio ’evoluzione stellare in sistemi collisionali. Un ammasso globulare con
N ~ 10° stelle possiede generalmente un ¢y molto breve (se tayn = 1 Myr allora ty, = 1 Gyr,
secondo il calcolo approssimato dell’equazione 2.7) [1]. Questo tempo ¢ sufficientemente breve
per permetterci di osservare ammassi globulari dinamicamente ”vecchi”, ovvero con eta mag-
giore del t9;, e in cui la termodinamica ha influenzato 1’evoluzione dell’ammasso.

Con il tempo, le popolazioni stellari all’interno degli ammassi globulari si muovono verso un’e-
quilibrio termodinamico, formando una distribuzione di Mazwell delle velocita. I trasferimenti
di energia dalle interazioni a due corpi portano allo stabilirsi dell’equipartizione dell’energia

cinetica tra le diverse popolazioni, che richiede che I'energia cinetica media (K) = $m (v?) sia



uguale per tutti gli elementi del sistema. Le stelle piu pesanti perdono energia cinetica a favore
delle stelle piu leggere, rallentando e affondando verso il centro dell’ammasso. Al contrario, le
stelle di piccola massa guadagnano energia cinetica e la loro velocita aumenta notevolmente,
posizionandosi nella coda ad alta velocita della distribuzione Maxwelliana. Superano la velocita
di fuga e abbandonano I'ammasso, provocando la cosiddetta evaporazione gravitazionale.
Un fenomeno osservabile che evidenzia 1’evaporazione gravitazionale ¢ la diminuizione del
rapporto luce-massa ﬁ, poiché la fuoriuscita di piccole stelle comporta maggiormente una
perdita di luce L oc M? [4]. La perdita di stelle ad alta velocita si traduce nella perdita di
energia cinetica totale 7' dell’ammasso globulare e anche una minima perdita di energia
potenziale totale U. Seguendo lo schema del Piano del Viriale, il sistema autogravitante si po-
siziona su una retta con enegia totale £ minore e per tornare all’equilibrio tende a riscaldarsi
e contrarsi. L’accumulo di stelle pesanti al centro e la perdita di energia causata dall’evapo-
razione rendono il nucleo sempre piu denso e caldo. L’instabilita creata, nota come instabilita
di equipartizione, accelera ulteriormente il collasso del nucleo. In questo processo ”a valanga”
il nucleo si disaccoppia dal resto dell’ammasso , evolvendo a stati di maggiore concentrazione e
dispersione di velocita, mentre parte dell’energia iniziale viene asportata dalle stelle evaporate.

Capitolo 3

Dinamica delle GGalassie
3.1 Classificazione di Hubble

Una delle classificazioni fondamentali per le o :;@ y
galassie, ancora ampiamente utilizzata, ¢ la @/’/’ @ %w%\ .
Classificazione di Hubble, proposta da Ed- o o o = o
win Hubble nel 1926 e successivamente nel °®»®  owE N _ w

suo libro The Realm of the Nebulae del 1936 9\@ _‘(_')

[5]. Questa classificazione morfologica divide oo Sty -

le galassie in categorie in base al loro aspetto Figura 3.1: Diagramma della classificazione di Hubble.
generale. Hubble organizzo queste categorie

in un celebre diagramma a diapason, che distingue tre tipi principali:

e Galassie Ellittiche (E): Appaiono come sistemi stellari lisci e privi di strutture come
i bracci a spirale o gas freddo. Sono divise in base alla loro ellitticita (¢), definita dal
rapporto tra l’asse minore e maggiore, da E0 (apparenza sferica) a E7 (la forma piu
appiattita osservata).

e Galassie a Spirale (S) e Spirali Barrate (SB): Contengono un disco prominente
di stelle, gas e polvere, caratterizzato dalla presenza di bracci a spirale. Sono suddivise
in spirali normali (S o SA) e spirali barrate (SB), che possiedono una ”barra” stellare
centrale. La suddivisione lungo la sequenza (Sa, Sb, Sc, Sd, Sm) correla con il rapporto
di luminosita tra il bulge (rigonfiamento centrale) e il disco (Lpuige/Laisk), il grado di
avvolgimento dei bracci a spirale, e la loro frammentazione. Le spirali di tipo Sa hanno
i bulge pitt prominenti e bracci piu strettamente avvolti, mentre le Sc hanno bulge piu
piccoli e bracci piu aperti e frammentati.

e Galassie Irregolari (Irr o Im/Sm): Non presentano una morfologia ben definita e
mancano di una struttura organizzata a spirale. Esempi prototipici sono le Nubi di
Magellano.

Esiste anche una classe di transizione tra le due principali, le Galassie Lenticolari SO.
L’analisi dinamica rivela una netta dicotomia tra i principali tipi morfologici di galassie, che si



manifesta nel modo in cui le loro strutture sono mantenute in equilibrio. Le galassie a spirale
sono strutture dinamicamente ”fredde” con stelle nel disco che seguono orbite quasi circolari
con una dispersione di velocita molto ridotta. Al contrario, le galassie ellittiche (dette ”early-
type” o sferoidali) sono sistemi dinamicamente ”caldi” sostenuti dai moti casuali delle stelle
(dispersione di velocita o) e non dalla rotazione. Nelle prossime sezioni ¢ illustrata la dinamica
di questi due tipi morfologici.

3.2 Dinamica delle Galassie Ellittiche

Le galassie ellittiche, pur essendo considerate i sistemi stellari pit semplici, presentano una
notevole diversita e complessita strutturale e cinematica. Come suggerisce il loro nome, appa-
iono rotonde nel cielo e la loro luce e distribuita in modo uniforme, essendo prive di brillanti
ammassi di giovani stelle blu e delle macchie di polvere oscurante.

Il loro aspetto uniforme suggerirebbe che le loro stelle hanno abbiano avuto il tempo di rag-
giungere uno stato di equilibrio termodinamico. Inizialmente, la comprensione della loro
forma schiacciata, ovvero della loro cosiddetta ”ellitticita” €, era correlata all’ipotesi che tali
sistemi si comportassero come sistemi collisionali e termalizzati e che lo schiacciamento fosse
direttamente causato dalla rotazione ordinata [3]. L’applicazione del Teorema del Viriale
tensoriale ha rivelato una realta dinamica pit complessa e le osservazioni successive hanno
stabilito che molte delle galassie ellittiche pitt luminose esibiscono rotazione media trascurabile
o significativamente piu lenta di quanto previsto dall’ipotesi di schiacciamento sostenuto dalla
rotazione. La marcata ellitticita non rotazionale ha portato alla conclusione che le galassie
ellittiche non sono sistemi dinamici isotropi e che lo schiacciamento di questi oggetti non &
sostenuto dalla rotazione, ma ¢ spiegabile grazie all’anisotropia del tensore di dispersione
delle velocita [1].

La prima parte di questa sezione ¢ dedicata alla fotometria: come appaiono le immagini delle
galassie ellittiche nella luce visibile e cosa rivelano sulla distribuzione delle stelle al loro inter-
no. La parte successiva discute i moti stellari e come la rotazione di una galassia ellittica sia
collegata alle sue altre proprieta. La parte finale mostra I'applicazione del Teorema del Viriale
tensoriale e fornisce una spiegazione sull’ellitticita di queste galassie basata sul concetto di
anisotropia.

3.2.1 Fotometria

Per la classificazione morfologica delle galas-
sie ¢ fondamentale il concetto di isofote, defi-
nite come i contorni di luminosita superficiale
costante su un’immagine di galassia. Le isofo-
te delle galassie ellittiche sono notevolmente

vicine ad essere vere ellissi. Il rapporto tra = - . ) S
Figura 3.2: A sinistra, un’immagine di NGC 5846,

il semiasse maggiore a e il semiasse minore b galassia ellittica di tipo EO. A destra, le sue isofote

quantifica quanto l'isofota differisce da un cer-  pella banda R [3].
b

chio: Dellitticita ¢ definita come ¢ = 1 — 2.
Spostandosi dalle isofote interne luminose ai contorni esterni deboli, solitamente 'ellitticita ri-
mane abbastanza costante e la posizione del centro e la direzione dell’asse maggiore rimangono
stabili.

Queste ci permettono di classificare le galassie ellittiche secondo il tipo di Hubble En, dove
n = 10(1 — g), le galassie E0 appaiono circolari nel cielo, mentre per una galassia E5 il dia-
metro corto dell’immagine ¢ la meta del diametro lungo. L’indice n ¢ solitamente arrotondato
al numero intero piu vicino, che corrisponde all’incirca alla precisione con cui possiamo clas-
sificare le galassie a occhio nudo dalle lastre fotografiche. A differenza della classificazione di
una galassia a disco, il tipo di Hubble di una galassia ellittica dipende dalla nostra direzione

di osservazione. La luce nelle galassie ellittiche e studiata attraverso il profilo di luminosita




superficiale delle galassie. Viene usata la la formula empirica di Sersic, una tra le formule
piu efficaci, utile in particolare per i bulge delle galassie a spirale e per le galassie ellittiche di
grandi dimensioni. La formula ¢ anche nota come profilo di de Vaucouleurs generalizzato RY™.
Pit comunemente e utilizzata la forma che collega collega la luminosita direttamente al raggio
effettivo R., raggio entro il quale & contenuta meta della luce dell'immagine della galassia [4]:

R 1/m
I(R) = I(Re)exp{ — b(m) (E) - 11 (3.1)
3.2.2 Moti delle stelle

A differenza delle galassie a disco, le stelle delle galassie ellittiche non seguono un modello
di rotazione ordinato. Al contrario, la maggior parte della loro energia cinetica e investita in
movimenti casuali. Proprio come la luminosita di una galassia a spirale ¢ legata alla sua velocita
di rotazione, le galassie ellittiche piti luminose hanno una maggiore dispersione di velocita [3].

Legge di Faber-Jackson

L’intervallo della dispersione di velocita o per le galassie ellittiche ¢ simile a quello per la
velocita di rotazione massima delle galassie a disco. Proprio come per le spirali, le stelle si
muovono piu velocemente nelle galassie piu luminose. Al centro delle ellittiche luminose, la
dispersione puo raggiungere o ~ 500 kms~!, mentre negli oggetti meno luminosi o ~ 50 kms~1.
La relazione relazione di Faber-Jackson descrive il rapporto tra luminosita e dispersione di

velocita di una galassia ellittica [4]: f,, o 4
2 100Lg (200km31)
Come la relazione di Tully-Fisher per le spirali, la relazione di Faber-Jackson puo essere utiliz-
zata per stimare la distanza di una galassia dalla misura della sua dispersione di velocita.
Tuttavia, e difficile determinare la quantita totale di luce che riceviamo da una galassia poiché

gran parte di essa proviene dalle parti esterne piu deboli; le distanze derivate dalla relazione
di Faber-Jackson non sono molto precise.

(3.2)

Rotazione delle galassie ellittiche

Inizialmente, si riteneva che l'appiattimento (ellitticita €) osservato nelle galassie ellittiche fosse
causato principalmente dalla loro rotazione, in analogia con quanto avviene nei sistemi fluidi
o gassosi. In un fluido comune, gli urti tra le particelle sono frequentissimi e I’energia cinetica
in eccesso lungo una direzione verrebbe rapidamente ridistribuita attraverso gli urti moleco-
lari, portando il sistema a una distribuzione sferica. Inoltre, se un sistema fluido ruota,
I’equilibrio richiede che esso si appiattisca lungo I'asse di rotazione. Le teorie sviluppate per
descrivere le masse fluide rotanti prevedevano una relazione diretta tra 'appiattimento (ellit-
ticita) e la velocita di rotazione.

Tale relazione e derivata dal teorema del viriale tensoriale 2 (K¢,.) + (U¢,,) =0, di cui &
esposto un breve calcolo nell’Appendice A.3. Le parentesi angolari indicano una media a lun-
go termine mentre z indica la componente in cui e espressa la relazione. Equazioni analoghe
valgono per le componenti x e y del moto. Questo teorema stabilisce che non solo le energie
cinetica e potenziale medie devono essere in equilibrio, ma anche che i contributi nelle diverse
direzioni devono essere separatamente uguali. Se una galassia € molto appiattita, U&,, sara di
grandezza molto minore rispetto a U&,, e ’energia nelle velocita casuali nella direzione 2z deve
essere minore di quella del moto casuale e della rotazione che costituiscono la componente x
dell’energia cinetica.

Si suppone che una galassia ellittica sia assialsimmetrica, con una densita delle stelle e che
ruoti attorno all’asse di simmetria z. Allora si suddivide I'energia cinetica nella direzione x
nella somma dei moti di rotazione e casuali. Con l'ipotesi che la velocita di rotazione V'
e le dispersioni di velocita o, e 0, in queste due direzioni siano quasi costanti in tutta la
galassia, si ottiene:



poiché I'energia cinetica di rotazione e suddivisa tra le direzioni x e y. Il rapporto tra i due
termini di energia potenziale dipende solo dal rapporto tra gli assi B/A o dall’ellitticita
e =1— B/A e non ¢ influenzato dalla distribuzione della massa all’interno della galassia [3].
Approssimativamente: (UE,.) ~ (BJA = (1— 09, (3.4)

(Ubsa)
Poiché le osservazioni della rotazione galattica dipendono dalla sola componente della velocita
lungo la linea di vista (velocita radiale), la velocita di rotazione media misurata V,,,, ¢ infe-
riore alla velocita di rotazione totale V. Per correggere questa sottostima dovuta all’effetto
di proiezione e stimare la velocita intrinseca, si applica un fattore di correzione geometrico
approssimativo: V., &~ 7V/4. Se i moti casuali sono isotropici, o, = 0, = o, ’equazione 3.3

diventa: (Vmw) _ (K) = %m[u — 9 — 1~ /e/(1—e) (3.5)

g g 150

I’approssimazione e valida quando € e piccolo. Secondo questa relazione, anche le galassie ab-
bastanza rotonde dovrebbero ruotare piuttosto velocemente; ad esempio, B/A = 0.7 dovrebbe
implicare V4, /0 =~ 0.68. Il rapporto teorico atteso V,,,,/0 doveva aumentare significati-
vamente con 'appiattimento e.

Si cercarono le prove di questo legame teorico tra rotazione e attraverso le osservazioni, e si
scopri che molte galassie ellittiche (in particolare quelle piti luminose e massicce) mostravano
un rapporto Vj,../o significativamente inferiore a quanto previsto per la loro ellitticita
apparente. Le galassie ellittiche ruotano molto piu lentamente di quanto dovrebbero se fossero
rotatori isotropi. Cio indico che il movimento ordinato non era la causa dominante
della loro forma, e che, per mantenere il loro stato di equilibrio virializzato, ’appiattimento
doveva essere compensato da un’energia cinetica interna maggiore nella direzione del piano
galattico rispetto alla direzione perpendicolare (o, > 0,).

Si concluse, quindi, che 'appiattimento delle galassie ellittiche luminose non ¢ causato dalla
rotazione ma ¢ sostenuto dall’anisotropia del tensore di dispersione di velocita, carat-
teristica principale dei sistemi non collisionali. In altre parole, la dispersione di velocita (la
"temperatura” dinamica) non € uguale in tutte le direzioni e 'appiattimento & mantenuto dal
fatto che le stelle sono ”pit calde” lungo 1’asse maggiore del sistema e ”piu fredde” lungo 1’asse
minore. Poiché il loro tempo di rilassamento a due corpi ¢ enormemente lungo (milioni di
volte l'eta dell’universo), non avviene la termalizzazione, e questa disuniformita non viene
annullata. In un fluido collisionale, invece, questa anisotropia scomparirebbe rapidamente.
Questo risultato e stato di notevole impatto in astrofisica e ha stabilito che le galassie ellittiche
sono in larga misura sistemi supportati dal ”disordine” piuttosto che dalla rotazione ordinata.
Vengono definite come sistemi ”fossili” che conservano il loro stato dinamico risultante dai
processi di formazione di miliardi di anni fa [1].

3.3 Dinamica delle Galassie a Spirale

Le galassie a spirale o a a disco sono caratterizzate dalla presenza di un disco stellare esteso
in cui il moto dominante ¢ la rotazione ordinata. Le stelle si muovono sotto I'influenza
del potenziale gravitazionale medio e liscio del sistema. In questa configurazione, la velocita
angolare () diminuisce con il raggio, una proprieta nota come rotazione differenziale.

Tradizionalmente, per ’analisi orbitale si ricorreva a un’approssimazione di simmetria assiale
per il potenziale, utilizzando strumenti come la teoria epiciclica per descrivere le orbite stellari
come piccole oscillazioni radiali e verticali attorno a un centro guida rotante. Tuttavia, le galas-
sie a spirale presentano una struttura a bracci a spirale luminosa e una barra centrale lineare.
Queste caratteristiche sono intrinsecamente non assisimmetriche e mettono in crisi l'ipotesi di



un sistema in perfetto equilibrio stazionario. Il principale enigma dinamico e rappresentato dal
problema dell’avvolgimento: a causa della rotazione differenziale, qualsiasi struttura materiale
dovrebbe avvolgersi rapidamente in una spirale strettissima in un tempo breve rispetto all’eta
della galassia, rendendo necessario un meccanismo di rinnovamento continuo della struttura a
spirale. Di conseguenza, la dinamica delle galassie a spirale deve essere compresa non in ter-
mini di equilibrio assisimmetrico stabile, ma attraverso I'interazione tra la rotazione ordinata
del disco e le strutture non assisimmetriche come la barra centrale e le spirali.

3.3.1 Rotazione ordinata del Disco

Le stelle nel disco seguono orbite quasi circolari con pochissimo movimento casuale e la ro-
tazione ordinata rappresenta quasi tutta l’energia del movimento, con velocita casuali che
contribuiscono meno del 5%: il disco ¢ dinamicamente ”freddo” [3]. Nelle galassie piu picco-
le, i movimenti casuali sono proporzionalmente pit grandi, ma la maggior parte dell’energia
cinetica del disco ¢ ancora in rotazione. Poiché le stelle hanno poco movimento verticale per-
pendicolare al piano del disco, il disco puo essere piuttosto sottile.

Questa sezione mostra lo studio della curva di rotazione del disco galattico, sia da un punto di vi-
sta interno come nel caso del calcolo per la Via Lattea, sia per galassie lontane. Successivamente
e trattata brevemente la Teoria degli Epicicli.

Misura della curva di rotazione

Per studiare il comportamento cinematico e
dinamico del disco delle galassie a spirale, si
prende in esempio il disco della nostra galas-
sia, la Via Lattea. Le stelle piu vicine al cen-
tro galattico completano le loro orbite in me-
no tempo rispetto a quelle piu lontane. Que-
sta rotazione differenziale e stata scoperta per o . .

. . . Figura 3.3: A sinistra, un disco rotante visto dall’alto.
la prima volta nella Via Lattea considerando L’azimut ¢ da la posizione di una stella nella sua orbita.
i moti propri delle stelle vicine. Guardando A destra, la linea di vista dell’osservatore crea I’angolo
verso l'interno, si osservano stelle che ci sor- i con I'asse di rotazione z del disco.
passano nelle loro orbite; il loro movimento
rispetto a noi e nella stessa direzione della velocita orbitale del Sole V. Guardando verso
I’esterno, si vedono stelle cadere dietro di noi, quindi hanno movimenti propri nella direzione
opposta. Le stelle con lo stesso raggio galattocentrico orbitano alla stessa velocita del Sole,
quindi mantengono una distanza fissa e hanno un movimento ”laterale”. Questo modello era
stato notato gia nel 1900; 'astronomo olandese Jan Oort lo spiego nel 1927 come un effetto
della rotazione galattica [3].

All’interno di una galassia, € possibile calcolare la velocita radiale V, e il moto proprio V; di
una stella o di una nube di gas a distanza d dall’ossevatore che si avvicina o si allontana, sup-
ponendo che tutti gli oggetti compiano orbite esattamente circolari. I calcoli di tali quantita
sono riportati nell’Appendice A.4. Si ottengono:

V, ~ dAsin(2l), V; = d[Acos(2]) + B| (3.6)

con | distanza angolare dell'oggetto dal centro galattico e con A = [—Z(%)]r, e B =

—3[%(RV)']R,, valori che rappresentano la prima e la seconda costante di Oort. Ponen-
do l'osservatore nella posizione del Sole nella Via Lattea, le costanti calcolate sono A =
14.8 £ 0.8 kms lkpc™ e B = —12.4 + 0.6 kms 'kpc™' [3]. Le costanti di Oort A e B mi-
surano rispettivamente la deviazione dalla rotazione rigida e il gradiente del momento angolare
nel disco.

Se si potesse misurasse la velocita V,. per le stelle di nota distanza sparse in tutto il disco, si
potrebbe lavorare allindietro per trovare V(R), la curva di rotazione della Via Lattea. Sfortu-

natamente, la luce visibile delle stelle del disco e degli ammassi ¢ bloccata dalla polvere. Per la
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Galassia interna (R < Ry), il metodo del punto tangente elude questa difficolta e permette
di trovare la curva di rotazione. La velocita angolare V/R scende con il raggio. Quindi I'equa-
zione V, = Rosin(l)(% — —O) dice che, quando si guarda nel disco lungo una direzione fissa con
0° < 1< 90°, la velocita radiale V(I R) ¢ maggiore nel punto tangente 7" dove la linea di vista
passa piu vicino al centro galattico. Qui si ha R = Rysin(l), V(R) =V, + Vysin(l). Quindi, se
il gas emette in ogni punto del disco, si puo trovare V(R) misurando la massima velocita alla
quale si vede 'emissione per ogni longitudine /. Se il punto tangente cade vicino a un braccio,
allora la velocita di rotazione trovata usando ’equazione precedente sara diversa dalla velocita
media di un’orbita a quel raggio.

Misurare la velocita di rotazione nella Galassia esterna ¢ piu difficile. Le distanze delle stelle
sono stimate con metodi della parallasse spettroscopica o fotometrica mentre la loro velocita V.
viene misurata dalle linee di emissione di gas caldo o freddo intorno alle stesse stelle [3]. Per
studiare la curva di rotazione di una galassia a disco da un punto di vista esterno, si suppone
di osservare un disco in rotazione circolare pura, inclinato di un angolo ¢ a faccia in su, come
in Figura 3.3. E possibile specificare la posizione di una stella o di una nube di gas in base
al suo raggio R e azimut ¢, misurata nel disco dal diametro AB che giace perpendicolare alla
direzione di visione dell’osservatore. Tutto cio che si puo rilevare di questo movimento e la
velocita radiale V, verso o lontano dall’osservatore; il suo valore al centro della galassia, Vs,

¢ la velocita sistemica. La velocita radiale e:
Vi (R, i) = Vs + V(R)sin(i)cos(¢) (3.7)

Da questa equazione cinematica, si possono graficare linee che collegano punti con stesso V.,
ipotizzando una specifica funzione V(R) e un angolo di inclinazione i. Questi valori sono poi
aggiustati utilizzando un processo di fitting con dati osservativi, in modo che le "linee di
isovelocita” (il modello teorico) si sovrappongano il piu fedelmente possibile a quelle misurati
[3]. Quando il fitting ¢ ottimale, la curva V(R) e I'inclinazione i sono considerate determinate,
permettendo di "deproiettare” la velocita radiale osservata per ottenere la vera velocita di
rotazione della galassia. Un esempio di la curva di rotazione V(R) ¢ riportato nella Figura 3.4.
Questa rotazione differenziale ¢ tipica delle galassie a spirale.
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Figura 3.4: I punti rappresentano la curva di rota-

zione di NGC 7331, le barre verticali mostrano incer- Figura 3.5: Curve di rotazione per galassie disco
tezza. Il gas CO (punteggiato), osservato con una ri- di vario tipo. I cerchi aperti mostrano la lunghezza
soluzione spaziale piu fine, traccia un aumento piu ve-  della scala hr del disco stellare e la velocita di rota-
loce. Le curve solide inferiori mostrano i contributi a  zione di picco V;,4, per ogni galassia. Le curve sono
V(R). Un alone scuro (trattini) deve essere aggiunto  tracciate in unitad di R/hg, mostrando V(R) per il
prima che la velocita di rotazione combinata (curva pit  disco esponenziale [3].

alta) corrisponda alle velocita misurate [3].

Materia Oscura nelle Galassie a Disco

Per un sistema sferico, la velocita V in un’orbita circolare a raggio R & correlata alla massa

. . 5 . _ RV?2 . . .
(< R) interna a quel raggio dall’equazione esatta M(< R) = “%-. Per orbite in un disco
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piatto, questa formula da M (< R) entro il 10% -15% [3]. Poiché V(R) non diminuisce, la
massa della Via Lattea deve aumentare quasi linearmente con il raggio, anche molto oltre il
Sole dove vi sono pochissime stelle. Ci si riferisce a questo problema come il ” problema della
massa mancante” o della "materia oscura”. Le galassie presumibilmente contengono una
grande quantita di materia che non emette alcuna luce e che si presume si trovi in un alone
scuro non rilevabile, se non attraverso la sua attrazione gravitazionale. Poiché i dischi stellari e
gassosi sono appiattiti, la loro forza puo puntare verso 'interno o verso l'esterno. Solitamente,
a R < 6 kpc, la forza dal disco del gas e verso 'esterno, dando un contributo negativo a
V2(R). La Figura 3.4 mostra la curva di rotazione osservata della galassia a disco NGC 7331 e
i contributi delle varie componenti della galassia. La curva etichettata "halo” mostra come un
alone sferico di materia oscura potrebbe fornire una forza verso l'interno sufficiente a spiegare
la velocita di rotazione misurata. Almeno il 75% della massa totale sembra essere oscura. La
Figura 3.5 mostra le curve di rotazione di un certo numero di galassie a disco di vario tipo,
trovate osservando il gas HI.

e L ]
Relazione di Tully-Fisher ” 500 - ; O;L L, .. A
Una curva di rotazione piatta implica che & i |
la massa contenuta all’interno di un rag- = i |
gio R sia proporzionale a V2, R/G, con %
Vinae quantita ricavabile tramite osserva- ‘3 100 - .
zioni di radiotelescopio. 9 C ]
Le galassie pitt luminose ruotano in me- % 50 - ° -
dia pitt velocemente, il che ci dice che & [ O | |
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sono piu massicce. B. Tully e J. R. Fi- 14
sher hanno dimostrato che la velocita di
rotazione di una galassia aumenta con la
sua luminosita, approssimativamente co-
me L oc V., con o ~ 4: questa ¢ la re-
lazione empirica di Tully—Fisher (TFR)
[3]. La Figura 3.6 traccia la larghezza del profilo globale rispetto alla magnitudine apparente
misurata a K ~ 2,2 um per le galassie del gruppo Maggiore dell’Orsa; la luminosita aumenta
poco piu lentamente della quarta potenza di V..

Poiché V., € stabilita in gran parte dalla massa totale (inclusa la materia oscura), mentre
la luminosita L deriva dalla massa stellare visibile (il disco), il fatto che L e V4, siano cosi
strettamente correlate suggerisce che la quantita di materia oscura € in qualche modo
coordinata con la massa luminosa, un rompicapo chiave per la comprensione della dinami-
ca e della formazione galattica. La TFR e uno strumento dinamico essenziale per quantificare
le proprieta delle galassie a spirale: permette di stimare le masse delle galassie a spirale grazie
alla misurazione di V., e puo essere utilizzata per stimare le distanze delle galassie e dei
gruppi di galassie, contribuendo alla definizione della scala delle distanze cosmiche.

me (magnitudes)
Figura 3.6: Per le galassie nel gruppo maggiore dell’Or-
sa. Le galassie a bassa luminosita superficiale (cerchi aper-
ti) seguono la stessa relazione di quelle ad alta luminosita
superficiale (cerchi pieni) [3].

Teoria degli Epicicli

La teoria degli epicicli descrive il moto di una stella attorno al centro galattico sotto 'ipotesi
di un potenziale liscio assialsimmetrico, orbite quasi-circolari e nessuna variazione radiale nella
densita delle stelle. Questo moto e approssimato come la combinazione di due componenti:
il movimento del centro guida R, che ¢ un’orbita perfettamente circolare attorno al centro
galattico con una velocita angolare Q(R), e piccole oscillazioni della stella attorno a questo
deferente. Viene illustrato matematicamente. Usando le coordinate galattocentriche (R, ¢, z),
si ha 0®/0¢ = 0: non c’e forza nella direzione ® e una stella conserva il suo momento angolare
attorno all’asse z L, = R?¢ = cost. 1l potenziale ® = ®(R,z) non cambia con il tempo
e l'equazione del moto nella direzione radiale puo essere scritta in funzione del cosiddetto
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P L?
88;%#’ Q. =P(R, 2) + QRZ?
Moltiplicando per R e integrando mostra che, per una stella che si muove nel piano centrale
z =0, %RZ + ®.pf(R,z = 0; L,) = cost, con R? > 0. Il termine centrifugo del O, ss diverge
per R — 0 e la stella e respinta dall’asse perché il moto ¢ limitato a F > ®.¢;. La stella ¢
confinata da un raggio perigalattico in cui R2=0¢ E = ®.s¢. La stella ¢ anche confinata
da un limite esterno, il raggio apogalattico, se ’energia E ¢ minore dell’energia di fuga.

Tra queste due distanze e de-
finito il centro guida R,, detto
anche deferente, ovvero il punto di ¢
equilibrio che corrisponde al rag-
gio dell’orbita perfettamente cir-
colare per un dato momento an-
golare assiale. Questo ha velocita
angolare Q(R) appropriata a tale T
raggio e in esso si trova il minimo & ,/ Q(Re)
del potenziale efficace (Pesyr). R (a) (b)
La teoria dell’Epiciclo ¢ un’espan- Figura 3.7: (a) Il potenziale effettivo ®.¢s (curva superiore) per
sione di Taylor di @, ff al secon- una stella con momento angolare L, = 0.595, in orbita in un ”poten-

do ordine intorno al minimo (R, ziale di Plummer” & (curva inferiore).
z=0), valida per piccoli sposta- (b) La stella si muove in un epiciclo ellittico attorno al suo centro gui-
) . .
menti radiali (x = R — R,). Le da a (x =0,y = 0), che viene trasportato attorno al centro galattico
= )

T 9 con velocita angolare Q(Rg).

equazioni del moto nella direzione
radiale (R) si riduce a quelle di un oscillatore armonico semplice. La stella esegue piccole
oscillazioni attorno deferente e il moto radiale diventa & ~ —k?(R,)x dove k ¢ la frequenza
epiciclica (o radiale), che determina la frequenza di oscillazione della stella dentro e fuori dal
raggio del centro guida.

L’epiciclo e generalmente un’ellisse il cui moto
e retrogrado (in senso opposto) rispetto al moto di
rotazione del centro guida. La traiettoria risultan-
te della stella, vista da un sistema di riferimento
inerziale, e tipicamente una figura a rosetta, a me-
no che il rapporto tra la frequenza epiciclica (k)
e la velocita angolare (€2) non sia un rapporto di
numeri interi [3].

potenziale efficace: . Rng B

(3.8)

y

e
‘ ZQf(hc

X

0.2

0.4 1

3.3.2 Bracci a Spirale

Quasi tutte le galassie giganti con gas nei loro di-
schi hanno una sorta di spirale, anche se semplici
argomentazioni implicano che i bracci a spirale do-
vrebbero scomparire rapidamente. Due proprieta
del disco sembrano essere essenziali: la rotazione

Figura 3.8: M100, galassia di tipo Sbc. In alto,

differenziale, che fa si che qualsiasi braccio ma-
teriale venga rapidamente avvolto in una spirale
sempre piu stretta, e 'auto-gravita, che alimenta
le spirale.

Strutture a spirale osservate

I bracci di una galassia a spirale sono piu blu del
resto del disco poiché costituiscono siti di forma-
zione stellare attiva. Alcune galassie hanno uno
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banda B (sinistra) e banda I (destra); in queste im-
magini negative, le strisce di polvere scura appena
all’interno dei bracci a spirale luminosi appaiono
come sottili filamenti di luce. I pannelli inferiori
mostrano il colore B - K. Le aree chiare sono blu
con giovani stelle massicce e le regioni scure mo-
strano regioni rosse in cui le corsie di polvere si
snodano nel centro della galassia [3].



schema a fiocco di neve, con molti segmenti di braccio corti invece di una spirale continua. Le
galassie a spirale grand-design, invece, hanno ’architettura dei bracci di spirale ben organizzata
ed una struttura particolarmente definita e prominente. Questi bracci possono essere tracciati
per molti radianti in azimut e su una significativa estensione radiale. Usando le coordinate
polari galattocentriche (R, ¢), possiamo descrivere la forma di una spirale con m bracci con
Pequazione 3]: cos{m[o + f(R,1)]} = 1 (3.9)
La funzionef(R,t) descrive come la spirale ¢ avvolta: se |0f/OR| & grande, le braccia sono
strettamente avvolte, mentre se ¢ piccola, sono aperte. L’angolo di inclinazione ¢, ’angolo tra
il braccio e la tangente al cerchio al raggio R, ¢ dato da m = |R§—£ = |R% . Nelle spirali Sa,
¢ ha una media di circa 5°, mentre nelle galassie Sc ¢ generalmente nell’intervallo 10° < ¢ < 30°
[3]. Una spirale ¢ detta “leading”, se ha le punte dei bracci che puntano in avanti nella direzione
della rotazione della galassia, o “trailing”, se ha le punte rivolte nella direzione opposta alla
rotazione. Dove e possibile determinare il senso, i bracci a spirale quasi sempre trailing. Nella
Figura 3.8, le strette corsie di polvere sui lati interni concavi dei bracci a spirale mostrano che
il gas contenente polvere viene compresso li. Questo ¢ un segno che le braccia non contengono
una popolazione fissa di stelle e gas, ma formano un’onda di densita, un "ingorgo stellare”
in cui le stelle sono ”imballate” pitu densamente e si muovono piu lentamente lungo le orbite.
Uno dei motivi per cui si crede che molti bracci a spirale siano onde di densita ¢ il cosidde-
to "Problema dell’Avvolgimento”: se fossero oggetti fisici la rotazione differenziale della
galassia li avvolgerebbe rapidamente in un ricciolo molto stretto.
Per capire perché, si suppone che le stelle siano inizialmente
distribuite lungo una linea retta attraverso il centro della ga-
lassia, dato da ¢ = ¢y, mostrato in Figura 3.9. Ogni stella si
muove nella sua orbita con velocita V(R) e velocita angolare
Q(R) = V(R)/R. Dopo il tempo ¢ si trovano su una spirale data
dalla curva ¢ = ¢9 + Q(R)t. Nel linguaggio dell’equazione 3.9,
si ha f(R,t) = —¢o — Q(R)t. Poiché la velocita angolare Q(R)
generalmente scende con il raggio, allora, se si prende Q(R) > 0,
f(R,t) aumenta spostandosi lungo il braccio verso R piu grande,
quindi ¢ deve diminuire. Col passare del tempo, questa spirale Figura 3.9: In un disco rotante
diventa sempre piu avvolta. Dopo solo t = 1 Gyr, questa spirale in senso antiorario, dove la velo-
dovrebbe essere molto pil stretta di quelle osservate in galassie cita di rotazione Q(R,) cade con
. c .. . . raggio R, le stelle che inizialmen-
Sc come la nostra [3]. Qualsiasi modello iniziale a spirale fisica |~ © Jungo una linea ra-
subirebbe un simile avvolgimento e percio le stelle dei bracci iale sono avvolte in una spira-

a spirale devono essere continuamente rinnovate. le finale; 1'angolo i ¢ I’angolo di
inclinazione della spirale.

Teorie per le strutture a spirale

La struttura a spirale ¢ un fenomeno complesso ed & probabile che nessun singolo processo sia
responsabile dell’intera gamma di strutture osservate.

Un modello, chiamato modello a spirale cinematica, puo durare piu a lungo se le stelle che
lo compongono non sono su orbite circolari, ma sono disposte in un ordine particolare nei loro
percorsi leggermente eccentrici [3]. Come gia mostrato in questa sezione, la teoria degli epicicli
descrive il percorso di una stella su un’orbita quasi circolare come la somma del movimento
circolare di un centro guida, alla velocita Q(R,), e un’oscillazione epicicloidale che muove la
stella dentro e fuori. L’azimut del centro guida ¢ ¢, = Q2(R,)t, mentre il moto epicicloidale fa
variare il raggio della stella come:

R=R,+x=R,+ Xcos(kt + 1)) (3.10)

Qui X e ampiezza del moto radiale, x e la frequenza epicicloidale e la costante 1) indica il
raggio iniziale. Si inizia posizionando le stelle su diversi epicicli con i loro centri guida sparsi
attorno al cerchio in R, e si imposta 1) = 2¢4.(0) per ciascuna di esse, in modo che giacciano
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su un ovale con suo asse maggiore che punta lungo ¢ = 0. In questo modo si imposta una
perturbazione iniziale nel disco stellare. In un secondo momento ¢, i centri di guida si muovono,
in modo che ¢g.(t) = ¢4:(0) + 2. Le stelle avanzano sui loro epicicli al raggio R = R, + x,

dove: x = Xcos{rt + 2[¢,(t) — Qt]} = Xcos[(2Q — k)t — 2¢,.(1)] (3.11)
L’asse maggiore dell’ovale ora punta lungo la direzione in cui:
(2Q — k)t —2¢ =0, oppure ¢=(Q—kr/2)t=Qt (3.12)

Si definisce la velocita del modello €2, in mo-

do che la struttura costituita da stelle con centro
guida R, ritorni al suo stato originale dopo un tem-
po 2m/§),, anche se le singole stelle completano le
loro orbite attorno al centro nel tempo piu breve
27/Q. Una spirale a due braccia puo essere costi-
tuita da un insieme di ovali di stelle annidati con _
centri di guida a diversi raggi Ry, come mostrato Figura 3.10: Sinistra, orbite ovali nidificate per
a sinistra della Figura 3.10. Poiché la velocita del formare una spirale a due braccia. Destra, una
modello €2, varia con R,, questa spirale nel tempo spirale ad un braccio.
si avvolgera anche in un modello finale stretto, ma
lo fara piu lentamente di un fattore €2,/€2, che ¢ di circa 0.3 quando la curva di rotazione e
piatta.
Per descrivere una spirale con m braccia, si imposta 1) = m¢y.(0) nell’equazione 3.11; le stelle
con un dato centro di guida si trovano quindi su forme di m braccia che ruotano con una ve-
locita del modello €2, = Q — k/m. La Figura 3.10 mostra una spirale cinematica a due braccia
e una spirale a un braccio.

La teoria delle onde di densita della struttura a spi-
rale si basa sulla premessa che l'attrazione gravitazionale | & /
reciproca di stelle e nubi di gas a raggi diversi puo compen-
sare la tendenza della spirale cinematica a finire e causera
la crescita di un modello che ruota rigidamente con una sin-
gola velocita 2, [3]. Un modo per verificare se un modello |
a spirale puo svilupparsi spontaneamente ¢ quello di esami-
nare come influenzerebbe le orbite delle stelle del disco: la
spirale crescera solo se le stelle rispondono alla sua Figura 3.11: La simulazione gravita-
gravitd muovendosi in modo da rafforzare il model- Zonale a N-corpi mostra come un disco

N . . . .- di 50 mila particelle che si attraggono

lo. Il calcolo & lungo e scoprire come i moti forzati di tutte a vicenda per gravith sviluppa prima
le stelle influenzino a loro volta il potenziale gravitazionale ., modello a spirale a due braccia, poi
del disco della galassia € molto piu difficile. Tale calcolo mo- wuna barra. 11 rigonfiamento galattico e
stra che le stelle rispondono in modo da rafforzare la spirale !'alone scuro sono rappresentati da una
solo se la frequenza perturbante m|$2, — Q(R)| ¢ piu lenta forza interna fissa [3].
della frequenza k(R) a quel raggio. La Figura 3.11 mostra
una simulazione gravitazionale di N-corpi, seguendo cio che accade a un disco di "stelle” che
si attraggono a vicenda per gravita. Inizialmente & assisimmetrica, con le stelle su orbite quasi
circolari. Il modello a spirale crescente ¢ a due braccia e si forma anche una barra centrale.
Man mano che le velocita casuali stellari crescono, il disco si "riscalda” e la spirale alla fine
scompare. L’aggiunta continua di queste nuove stelle puo essere importante per prolungare la
vita di un modello a spirale, o per ricrearlo periodicamente.
Infine, un’altra possibilita & che la spirale sia guidata dall’attrazione gravitazionale di una
galassia compagna. Infatti, le galassie con i migliori modelli a spirale grand-design hanno
compagni vicini. Il passaggio ravvicinato di una galassia vicina puo creare almeno una spirale
a due braccia temporanea [3].
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Capitolo A

Appendice
A.1 Probabilita Statistica di Urto Geometrico

Viene presentato un semplice calcolo del cammino libero me-

dio )\ dopo il quale due stelle in una galassia si scontrano, al e ./_\
fine di mostrare che l'effetto delle collisioni geometriche & e e—m \
trascurabile. Una rappresentazione grafica utile ¢ presentata /" ° et
in Figura A.1. u ® o ® )\
Si assume come modello di galassia un sistema di N di stelle, \ R

ognuna caratterizzata da un raggio pari a quello del sole r = R, \e o ® o
distribuite omogeneamente in una sfera di raggio R. Il volume
della sfera che rappresenta la galassia e V' = %’NRS. Definendo la ~—___—
sezione d’urto geometrica per 'impatto tra due stelle 0 = 47r? Figura A.1: Rappresentazione
e il libero cammino medio tra le stelle )\, il volume efficace vale del calcolo di A.
anche V = N -47r? - \. Da queste due espressioni del volume si
ottiene: A R?

R Nr?
una stima del libero cammino medio rispetto alla dimensione della galassia. Assumendo come
valori del nostro modello ragionevole di galassia N = 10!, r = R. = 7-10'° ¢m, R = 3-10%2 ¢m,
il valore numerico calcolato ¢ % = 10%%.
Il libero cammino medio che separa le stelle in una generica galassia ¢ 10! volte la dimensio-
ne della galassia e percio la probabilita di urto ¢ mediamente nulla su scale temporali
cosmologiche. Tuttavia, € importante ricordare che in determinate situazioni astrofisiche ad
alta densita stellare (ad esempio nelle regioni centrali delle galassie) la probabilita di collisioni
geometriche tra le stelle non & trascurabile [1].

(A.1)

A.2 Calcolo Approssimativo del iy,

In questa sezione viene sviluppato un calcolo approssimativo del to, per poter verificare la non-
collisionalita delle galassie.

Si considera una galassia come un sistema autogravitante sferico all’equilibrio, con massa totale
M = Nm, data quindi dalle sue N stelle assunte con massa uguale m, e con raggio R. Si utilizza
inoltre la dispersione delle velocita degli elementi della galassia 0. Questa viene ricavata

dal teorema del Viriale: Mo — Gj\%ﬁ (A.2)
Nella formula del to, (eq. 2.6), si adotta come velocita ||v,|| = ||vf|| = o e come potenziale di
Rosenbluth ®(|[7;]|) = £, sapendo che a grandi ve%ocita U(|[Te]]) || HT> IIFltII [2]. Si ricava:
o Vt||#—00
topy = ————5——+ A3
2 8rGPmininA (A.3)

Si mostra un confronto del to, per diversi sistemi e percio si introduce nel calcolo un tempo

di riferimento intrinseco quale il tempo dinamico t4,, = %, ossia il tempo necessario a

una stella con velocita o per attraversare tutto il sistema. Quindi, si studia il rapporto tra i

tempi t%; Si assume una densita omogenea di stelle e si usa n = 4/3+R3. Si ottiene:
tgb RZO' 4 N

— A4
tayn  12G%m?2 InA (4.4)

16



GM

Sempre per il teorema del Viriale si nota che vale l'identitad (%%)* = 1 percio si semplifica

RoZ
I’espressione: tl%’ = 12112 < Anche il valore di logaritmo di Coulomb InA = by, /bmin PUO
yn
essere semplificato a InA = InN utilizzando le formule del problema a due corpi e il Teorema
del Viriale [2]. Si ricava: tyy  0.IN

= A.
tdyn InN ( 5)

A.3 Teorema Viriale Tensoriale

Viene ricavato il teorema viriale tensoriale in una direzione z. Il punto di partenza e
I’equazione 2.2 mostrata nel primo capitolo, che esprime la forza gravitazionale esercitata sulla
stella « nella posizione z, dalle altre stelle della galassia, nelle posizioni xz, con masse mg. Si
moltiplica la componente z dell’equazione per la coordinata z z, e si somma su tutte le stelle,

per ottenere: d Gmamg
T \MaVz0 )20 = — —— = (Za — Z8)%a A6
S S matea) Y i) (A.6)
« a,B,a#3
dove v,, € la componente z di v,, la velocita della stella «. Si potrebbe anche partire dalla
forza sulla stella 3: d Gmamg . _
> mpuap)as=— Y —— (%5 — Za)2s (A.7)
dt |To — Tp]
’8 OL,B,&#IB
Facendo la media di questi due si ottiene un’equazione simile:
1d%I
5 = =2K U A8
5 ap? .. +UE (A.8)
dove la componente z del momento di inerzia ¢ definita come I,, = > ma2a24, 'energia

cinetica associata al moto nella direzione z ¢ K¢, = %Za MaVsaVza, (6.24) e il contributo zz
, . . N _ 1 Gmamg (— = .)2

all’energia potenziale ¢ UE,. = — 3 5 .5 iﬁ(isa —Zg)°.

Se tutte le stelle sono legate all’interno della galassia, si puo scrivere:

dove le parentesi angolari indicano una media a lungo termine.

A.4 Misura della curva di rotazione

E illustrato il calcolo della curva di rotazione della Via Lattea dal
suo interno, ponendo I’osservatore sulla posizione del Sole. Si suppone
di osservare un oggetto che si avvicina o si allontana dall’osservatore
che segue un’orbita esattamente circolare; si veda Figura A.2.

Il Sole orbita a raggio Ry con velocita V[, mentre una stella P a
raggio R ha velocita orbitale V/(R). La stella si allontana da noi con
velocita V, = Veos(a) — Vpsin(l). Usando la regola del seno, si ha
sin(l/R) = sin(90 + a))/ Ry, e cosi:

VW
V. = Rysin(l) (E - E?)) (A.10)
Se la Via Lattea ruotasse rigidamente come un giradischi, le distanze

tra le stelle non cambierebbero e la V, sarebbe sempre zero. In effetti, Figura A.2

le stelle pit lontane dal centro impiegano piu tempo per completare le loro orbite; la velocita
angolare V/R scende con il raggio R. Quando la stella & vicina al Sole, in modo che d < R, si
puod trascurare i termini in d?; usando la regola del coseno per il triangolo S-P-GC quindi da
R ~ R0 — dcos(l). La velocita radiale dell’equazione A.10 diventa:

o i) (- s E(0)] cnnn

dove si usa il simbolo per la differenziazione rispetto a R. L’oggetto A ¢ la prima costante
di Oort, che calcolata ¢ A =14.8 +0.8 kms 'kpc™" [3].

9/
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Il moto proprio di una stella a P rispetto al Sole puo essere ricavato in modo simile. Dalla Figura
A2, la velocita tangenziale ¢ V; = Vsin(a) — Vycos(l). Notando che Rycos(l) = Rsin(a) + d,

si ha: Vo W d
_ —_ ) _y= A.12
Vi = Rycos(l) (R Ro) VR ( )
Vicino al Sole, si sostituisce Ry — R ~ dcos(l), per mostrare che V; varia quasi linearmente con
la distanza d: R/IV\' dl1 /
V; & dcos(21) [ ) (E) ]RO —5 [E(RV) L%O = d[Acos(2l) + B| (A.13)

dove B ¢ la seconda costante di Oort B = —12.4 + 0.6 kms 'kpc~! [3]. Le costanti di Oort
A e B misurano rispettivamente la deviazione dalla rotazione rigida e il gradiente del
momento angolare nel disco.
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