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Capitolo 1

Introduzione
Le galassie sono sistemi di proporzioni immense che legano gravitazionalmente stelle, gas e

l’enigmatica materia oscura. In termini di scala, una galassia contiene tipicamente un numero
di stelle che varia da circa 109 per i sistemi più piccoli fino a 1012 per le galassie giganti, con
masse totali che possono estendersi da 107 fino a 1014 masse solari [1]. Questi sistemi stellari
rappresentano, perciò, un ottimo esempio fisico dei cosiddetti sistemi a N-corpi.

La dinamica stellare è il campo di studio che mira alla comprensione qualitativa della struttura
e dell’evoluzione di questi sistemi, sviluppando metodi matematici (analitici e numerici) per
previsioni quantitative. Basata sui principi fondamentali di Newton della dinamica e sulla
gravitazione, questa disciplina è costruita a partire dalle equazioni differenziali del problema
degli N-corpi. Data la vastità del numero di stelle, la dinamica stellare deve però adottare
tecniche più potenti che vadano oltre l’utilizzo diretto di tali equazioni.
Un presupposto cruciale per la modellizzazione delle galassie deriva dalla stima del tempo
di rilassamento a due corpi (t2b), la quale dimostra che le galassie costituiscono sistemi non-
collisionali, in cui il potenziale gravitazionale può essere approssimato ad un valore medio.

In questo regime non collisionale, le galassie manifestano dinamiche diverse a seconda della loro
morfologia. Il presente lavoro introduce le caratteristiche principali del modello adottato per la
descrizione delle galassie e successivamente si focalizza sulla dinamica dei due gruppi principali:
galassie ellittiche, dinamicamente ”calde”, e galassie a spirale, dinamicamente ”fredde”.

Capitolo 2

Dinamica di Sistemi a N-corpi
2.1 Definizione dinamica della galassia
In questo capitolo vengono mostrate le proprietà dinamiche fondamentali che caratterizzano
una galassia e le conseguenze sulla sua struttura e evoluzione, attraverso lo studio del sistema
a N-corpi, del tempo di rilassamento a due corpi e del Teorema del Viriale applicati al caso
fisico della galassia. Una galassia è definita dinamicamente come un sistema autogravitante,
non-collisionale e virializzato [1]:

• Autogravitante: il potenziale gravitazionale totale Φ sotto cui si muovono le stelle è
generato dalla distribuzione di massa del sistema stesso (cioè dalle stelle, dal gas e dalla
materia oscura al suo interno);

• Non-collisionale: le collisioni geometriche e l’effetto cumulativo delle interazioni gra-
vitazionali a distanza sono trascurabili su scale temporali cosmologiche, e l’evoluzione
stellare è dominata dalle forze del campo gravitazionale liscio su larga scala;

• Virializzato: è un sistema in equilibrio stazionario in cui vale il Teorema del Viriale, che
stabilisce una relazione fondamentale tra l’energia cinetica totale e l’energia potenziale
totale e implica che l’energia totale baricentrica sia non positiva.

Per sostenere che le galassie siano descrivibili come sistemi a N-corpi, è innanzitutto necessario
verificare che siano formate da punti materiali e non da corpi estesi rispetto alla scala del si-
stema. Nell’Appendice A.1 è dimostrato che l’effetto delle collisioni geometriche è trascurabile.
La galassia può essere considerata dinamicamente come un ”oggetto fantasma”, principalmente
vuoto e costituito da stelle che possono essere trattate come punti materiali. Tuttavia, non

1



sono trascurabili le possibili interazioni gravitazionali.
Nelle prossime sezioni sono volte a mostrare i fondamenti di gravità di Newton su cui si basa la
dinamica stellare, dimostrare l’ipotesi di non-collisionalità e descrivere le proprietà dei sistemi
virializzati e le loro conseguenze sull’evoluzione degli ammassi stellari.

2.2 Fondamenti di Gravità Newtoniana
I punti di partenza della trattazione sono la Legge di Gravitazione Universale di Newton e i
metodi per calcolare le forze gravitazionali. La legge di gravità di Newton stabilisce che una
massa puntiforme M attrae una seconda massa m separata da essa dalla distanza r, variando
la velocità v di m in base a: d

dt
(mv) = −GmM

r3
r (2.1)

con G costante gravitazionale di Newton. Il principio di sovrapposizione afferma che
il campo (o la forza) gravitazionale totale esercitato su una stella da tutte le altre stelle è
semplicemente la somma vettoriale dei campi (o forze) gravitazionali esercitati individualmente
da ciascuna delle altre stelle sul punto in questione. Esso permette cos̀ı di calcolare, in un
ammasso di N stelle, la forza totale agente sulla stella α da tutte le altre N-1 stelle con masse
mα (α = 1, ..., N): d

dt
(mαvα) = −

∑
β,α̸=β

Gmαmβ

|xα − xβ|
(xα − xβ) (2.2)

La forza dell’ammasso su una stella di massa m in posizione x può essere scritta come gradiente
del potenziale gravitazionale Φ(x):

d

dt
(mv) = −m∇Φ(x), con Φ(x) = −

∑
α

Gmα

|x− xα|
per x ̸= xα (2.3)

dove si è scelto una costante di integrazione arbitraria in modo che Φ(x) → 0 a grandi distanze.
Se si pensa a una distribuzione continua della materia in un ammasso stellare, il potenziale nel
punto x è dato da un integrale sulla densità ρ(x′) in tutti gli altri punti, mentre la forza F per
unità di massa è data dal gradiente del potenziale:

Φ(x) = −
∫

Gρ(x′)

|x− x′|
d3x′, F (x) = −∇Φ(x) = −

∫
Gρ(x′)(x− x′)

|x− x′|3
d3x′ (2.4)

2.3 Sistema a N-corpi
Il punto di partenza della dinamica stellare è rappresentato dalle equazioni differenziali che
descrivono il problema degli N-corpi, derivate dall’applicazione della Legge di Gravitazione
Universale di Newton a un sistema di N masse puntiformi. L’equazione 2.2 mostra la formula-
zione newtoniana (in coordinate cartesiane) che descrive il moto di ciascuna delle N particelle
in un sistema di riferimento inerziale. Tuttavia, la loro soluzione analitica non è generalmente
disponibile per N ≥ 3, la soluzione non può essere ridotta a 6N − 1 integrazioni indipendenti
[1]. Nonostante la complessità intrinseca al problema dei N-corpi, per le galassie è possibile
adottare una descrizione ideale che semplifica la trattazione, sfruttando il concetto di tempo di
rilassamento a due corpi. In un sistema a N-corpi, la traiettoria di ogni stella è determinata
in linea di principio dall’influenza gravitazionale reciproca di tutte le altre stelle. Il compor-
tamento delle stelle in una galassia omogenea può essere inizialmente rappresentato da due
diverse descrizioni, schematizzate in Figura 2.1:

• Descrizione Ideale: le stelle si muovono su orbite influenzate da un potenziale ΦBoltz,
che rappresenta il poteziale medio dato da distribuzione di densità continua e in grado
di portare la trattazione 6N -dimensionale alla trattazione in uno spazio delle fasi 6-
dimensionale.

• Descrizione Reale: le orbite reali sono influenzate da un campo gravitazionale vero
Φtrue dato dalle stelle stesse e che possiede anche una componente irregolare, dovuta
alla granularità del sistema, ossia alle interazioni a breve raggio tra singole stelle.
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Figura 2.1: Rappresentazione della galassia co-
me un sistema a N-corpi: a sinistra è schema-
tizzata la descrizione reale discreta, a destra è
schematizzata la descrizione ideale continua.

Le orbite delle due descrizioni coincidono
finché non si accumulano gli effetti delle interazioni
gravitazionali a distanza, chiamate anche collisioni
gravitazionali o rilassamenti a due corpi. Questi
passaggi ravvicinati, sebbene deboli singolarmen-
te, lentamente trasferiscono energia e deviano le
orbite stellari dalla descrizione ideale. Dopo nu-
merosi incontri, la stella ”perde memoria” della
sua orbita originale e delle sue condizioni iniziali,
finendo su una nuova orbita random.
Il tempo caratteristico che impiegano le due orbite
per differenziarsi è chiamato tempo di rilassamento a due corpi t2b. Se il sistema che si sta
studiando possiede un ”età” minore al t2b allora questo è ancora descrivibile con il caso ideale
ed è detto sistema non-collisionale. Bisogna specificare però che, nonostante l’approccio
riduca drasticamente la complessità del problema originale, questo nuovo problema risulta an-
cora irrisolto [1].

2.4 Tempo di Rilassamento a Due Corpi

2.4.1 Approccio cinetico al calcolo di t2b
L’approccio cinetico adottato per il calcolo del tempo di rilassamento a due corpi è basato su
risultati del problema dei due corpi e sul calcolo dell’effetto fionda [2].
Questo approccio si concentra sull’interazione di una massa di test con ognuna delle N masse
appartenenti al sistema a N-corpi. Ci si pone in un sistema di riferimento inerziale S0. Si prende
una stella mtest con una certa velocità vt e si studia la sua interazione con una stella di massa
mfield e con velocità vf , ignorando le altre N − 1 masse. La soluzione è un’orbita iperbolica
nel caso di forza gravitazionale. Si studia l’interazione per ciascuna delle masse del sistema
e si ottiene un fascio di orbite, da cui, eventualmente, è possibile ricavare asintoticamente la
traiettoria vera.

Figura 2.2: Sistema di riferimento dell’orbita relativa.

Ogni interazione deflette la mt dalla
sua traiettoria originale. Come prima co-
sa ci si occupa di calcolare la variazione
dell’energia di mt da un’interazione con
la massa del sistema mf , adottando il si-
stema di riferimento dell’orbita relati-
va, ovvero il sistema in cui mf è fermo
(Figura 2.2) . L’orbita relativa r = xt−xf , è uguale per tutti i sistemi di riferimento inerziali
e caratterizzata dall’equazione differenziale µr̈ = −∇U , in cui µ =

mtmf

mt+mf
è la massa ridotta.

In questo modo si studia solo la velocità relativa ν. Dopo l’interazione, la ν ruota, ovvero
cambia direzione, ma il suo modulo rimane lo stesso (||νi|| = ||νf ||) perché l’energia dell’orbita
relativa Er è conservata [2]. Il parametro d’impatto b rappresenta la distanza minima alla
quale le due stelle passerebbero se non interagissero, quantità diversa dalla distanza minima
rmin che raggiungono durante l’urto. Oltre ad una componente parallela alla velocità iniziale,
la velocità finale possiede una componente perpendicolare. Misurando la variazione dell’energia
cinetica delle due componenti dopo l’interazione, si nota che l’orbita relativa si è ””scaldata”
perpendicolarmente e si è ”raffreddata” parallelamente, conservando l’energia.
Nel calcolo del t2b nel caso gravitazionale è necessario svolgere una complicata integrazione
dell’orbita iperbolica poiché bisogna considerare l’effetto di una forza variabile nel tempo
e un intervallo di tempo infinito. Perciò viene adottata l’approssimazione impulsiva detta
”Born Approximation”, che assume l’azione di una forza costante nel tempo ||F⊥|| = Gmtmf

b2
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in un intervallo di tempo finito ∆t = 2b/||ν||. I valori approssimati sono basati su para-
metri intriseci del problema: b e ||ν|| = ||νi|| ed è tanto più corretta quanto più grande è la
distanza tra le due stelle, ovvero quanto più l’urto è lontano Si calcola la sommatoria dei riscal-
damenti perpendicolari, schematizzando la galassia come un sistema infinito e omogeneo
con densità n, sistema non realistico ma utile per la trattazione:∑

||∆vt,⊥||2 = T8πG2nm2
f lnΛΨ(||vt||) (2.5)

in cui lnΛ ∼ 15 è il valore medio del logaritmo di Coulomb e Ψ(||vt||) è il potenziale di
Rosenbluth [2]. Il t2b rappresenta il tempo cumulativo T necessario affinché il riscaldamento
perpendicolare sia pari all’energia cinetica iniziale della massa di test:

∑
||∆vt,⊥||2 = ||vt||2.

Si ottiene:
t2b =

||vt||2

8πG2nm2
f lnΛΨ(||vt||)

(2.6)

Si distinguono cos̀ı i due tipi di sistemi:
• Sistema non-collisionale è un sistema con età minore del t2b. Le interazioni tra le
stelle non influenzano in modo significativo le loro orbite nel corso della loro ”vita” e la
dinamica è derivata dal campo gravitazionale complessivo della galassia. Dal
punto di vista dinamico, la galassia è considerata un ”soggetto giovane”.

• Sistema collisionale è un sistema con età maggiore del t2b. Le interazioni a due corpi
sono sufficientemente frequenti e intense da redistribuire significativamente l’energia tra
le stelle, portando il sistema verso un equilibrio termodinamico.

Tuttavia, è importante sottolineare che il t2b non è un valore universale e che non rappre-
senta una transizione immediata, bens̀ı un processo di accumulo.

2.4.2 Calcolo Approssimativo in Esempi Astrofisici
Per poter verificare la non-collisionalità delle galassie si utilizza una formula approssimativa
per il calcolo del t2b ricavata dal Teorema del Viriale, un argomento approfondito meglio
nella prossima sezione.
Si considera una galassia come un sistema autogravitante sferico all’equilibrio, con massa totale
M = Nm, data dalle sue N stelle assunte con massa uguale m, e con raggio R e con disper-
sione delle velocità σ. Per mostrare un confronto del t2b tra diversi sistemi si introduce il
tempo dinamico tdyn = 2R

σ
, un tempo di riferimento intrinseco della galassia necessario a una

stella con velocità σ per attraversare tutto il sistema. Il rapporto tra i due tempi è:
t2b
tdyn

=
0.1N

lnN
(2.7)

La formula è dimostrata nell’Appendice A.2. Le galassie rappresentano sistemi che contengono
in media N = 1011 stelle e posseggono un tdyn = 250 Myr [3]. Il rapporto approssimato è
t2b
tdyn

= 1010 perciò si ricava approssimativamente t2b = 2.50 · 1018 yr. Ciò significa che il t2b di

una galassia è di gran lunga maggiore dell’età dell’Universo, determinata con alta precisione
tramite le moderne misurazioni cosmologiche t0 ∼ 13.7 · 109yr [4]. Al contrario, per sistemi
stellari come gli ammassi globulari, più piccoli delle galassie e con N ∼ 106 stelle, il tempo
di rilassamento a due corpi è minore a parità di tdyn:

t2b
tdyn

∼ 104. Perciò gli ammassi aperti

sono considerati sistemi dinamicamente più vecchi delle galassie.

2.5 Teorema del Viriale e Catastrofe Gravotermica
In questa sezione è descritto brevemente il fenomeno dell’ evaporazione gravitazionale, una
conseguenza termodinamica che caratterizza l’evoluzione a lungo termine dei sistemi collisionali
quali gli ammassi globulari. Si tratta di un fenomeno teoricamente e praticamente inosservabile
nelle galassie su scale temporali cosmologiche. Questa mancanza è la conferma attesa (e neces-

4



saria) del fatto che le galassie sono eccellenti esempi di sistemi perfettamente non-collisionali.
Prima di illustrare tale fenomeno è necessario introdurre il Teorema del Viriale.

2.5.1 Teorema del Viriale

Figura 2.3: Piano Viriale. Ad alti U corrispon-
dono i sistemi più concentrati mentre a bassi U si
posizionano sistemi più allargati. Ad alti T cor-
rispondono sistemi più caldi mentre a bassi T si
trovano sistemi più freddi.

Il Teorema del Viriale costituisce un insieme in-
finito di identità tensoriali. La traccia della più
semplice identità è 2T = −U , in cui T rappresen-
ta l’energia cinetica calcolata nel centro di massa
del sistema descritto e U l’energia potenziale del si-
stema. L’applicabilità del teorema deve rispettare
due requisiti:

• Sistema Autogravitante: tutti gli ele-
menti del sistema sono mossi esclusivamente
sotto azione di tale campo.

• Forza Virializzata: la forza che agisce
sugli elementi deve avere un andamento
proporzionale a 1

R2 .

È necessario specificare che un sistema detto ”all’equilibrio dinamico” coincide con un sistema
detto ”virializzato”, mentre non si può dire lo stesso con un sistema detto ”rilassato”. Un
sistema rilassato, oltre ad essere virializzato, ha raggiunto uno stato termodinamico dove la
distribuzione di velocità dei suoi elementi segue la curva di Maxwell–Boltzmann (caso di siste-
mi collisionali). Per studiare l’evoluzione di un sistema è utile il grafico del Piano Viriale, il
quale mette in relazione l’energia cinetica totale T con l’energia potenziale gravitazionale U ,
in cui il sistema fisico è rappresentato con un punto [2]. Il piano è mostrato in Figura 2.3.

L’identità del teorema T = |U |
2

è rappresentata dalla ”retta del viriale” e costituisce la condi-
zione necessaria per l’equilibrio di un sistema. La bisettrice del piano rappresenta i sistemi con
energia totale E = T +U = 0 e separa il piano in sistemi con E > 0 (sopra la retta) e in siste-
mi con E < 0 (sotto la retta). Un sistema fuori equilibrio, se sottoposto a forze conservative
conserva l’energia totale E e perciò è rappresentato da un punto che si può muovere su una
retta T = E + |U |, parallela alla bisettrice. Anche se non si conosce l’evoluzione di un sistema
qualunque, è certo che questo si evolverà per raggiungere l’equilibrio, ovvero la retta del viriale.
Si nota che solo i sistemi conservativi con energia totale strettamente negativa E < 0, come i
sistemi gravitazionali, si trovano su rette che intersecano la retta del viriale e quindi hanno la
possibilità di trovarsi all’equilibrio.

2.5.2 Catastrofe Gravotermica
Il fenomeno della catastrofe gravotermica rappresenta una conseguenza diretta della termodi-
namica unica dei sistemi autogravitanti. Consiste nel processo attraverso il quale le regioni
centrali di un ammasso stellare subiscono una contrazione progressiva (detta core collapse)
mentre l’involucro esterno si espande, portando a un aumento illimitato della densità centrale
se non intervengono altre fonti di energia. In astrofisica, gli ammassi globulari sono gli ogget-
ti che mostrano meglio l’evoluzione stellare in sistemi collisionali. Un ammasso globulare con
N ∼ 106 stelle possiede generalmente un t2b molto breve (se tdyn = 1 Myr allora t2b = 1 Gyr,
secondo il calcolo approssimato dell’equazione 2.7) [1]. Questo tempo è sufficientemente breve
per permetterci di osservare ammassi globulari dinamicamente ”vecchi”, ovvero con età mag-
giore del t2b e in cui la termodinamica ha influenzato l’evoluzione dell’ammasso.
Con il tempo, le popolazioni stellari all’interno degli ammassi globulari si muovono verso un’e-
quilibrio termodinamico, formando una distribuzione di Maxwell delle velocità. I trasferimenti
di energia dalle interazioni a due corpi portano allo stabilirsi dell’equipartizione dell’energia
cinetica tra le diverse popolazioni, che richiede che l’energia cinetica media ⟨K⟩ = 1

2
m ⟨v2⟩ sia
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uguale per tutti gli elementi del sistema. Le stelle più pesanti perdono energia cinetica a favore
delle stelle più leggere, rallentando e affondando verso il centro dell’ammasso. Al contrario, le
stelle di piccola massa guadagnano energia cinetica e la loro velocità aumenta notevolmente,
posizionandosi nella coda ad alta velocità della distribuzione Maxwelliana. Superano la velocità
di fuga e abbandonano l’ammasso, provocando la cosiddetta evaporazione gravitazionale.
Un fenomeno osservabile che evidenzia l’evaporazione gravitazionale è la diminuizione del
rapporto luce-massa L

M
, poiché la fuoriuscita di piccole stelle comporta maggiormente una

perdita di luce L ∝ M3 [4]. La perdita di stelle ad alta velocità si traduce nella perdita di
energia cinetica totale T dell’ammasso globulare e anche una minima perdita di energia
potenziale totale U . Seguendo lo schema del Piano del Viriale, il sistema autogravitante si po-
siziona su una retta con enegia totale E minore e per tornare all’equilibrio tende a riscaldarsi
e contrarsi. L’accumulo di stelle pesanti al centro e la perdita di energia causata dall’evapo-
razione rendono il nucleo sempre più denso e caldo. L’instabilità creata, nota come instabilità
di equipartizione, accelera ulteriormente il collasso del nucleo. In questo processo ”a valanga”
il nucleo si disaccoppia dal resto dell’ammasso , evolvendo a stati di maggiore concentrazione e
dispersione di velocità, mentre parte dell’energia iniziale viene asportata dalle stelle evaporate.

Capitolo 3

Dinamica delle Galassie
3.1 Classificazione di Hubble

Figura 3.1: Diagramma della classificazione di Hubble.

Una delle classificazioni fondamentali per le
galassie, ancora ampiamente utilizzata, è la
Classificazione di Hubble, proposta da Ed-
win Hubble nel 1926 e successivamente nel
suo libro The Realm of the Nebulae del 1936
[5]. Questa classificazione morfologica divide
le galassie in categorie in base al loro aspetto
generale. Hubble organizzò queste categorie
in un celebre diagramma a diapason, che distingue tre tipi principali:

• Galassie Ellittiche (E): Appaiono come sistemi stellari lisci e privi di strutture come
i bracci a spirale o gas freddo. Sono divise in base alla loro ellitticità (ϵ), definita dal
rapporto tra l’asse minore e maggiore, da E0 (apparenza sferica) a E7 (la forma più
appiattita osservata).

• Galassie a Spirale (S) e Spirali Barrate (SB): Contengono un disco prominente
di stelle, gas e polvere, caratterizzato dalla presenza di bracci a spirale. Sono suddivise
in spirali normali (S o SA) e spirali barrate (SB), che possiedono una ”barra” stellare
centrale. La suddivisione lungo la sequenza (Sa, Sb, Sc, Sd, Sm) correla con il rapporto
di luminosità tra il bulge (rigonfiamento centrale) e il disco (Lbulge/Ldisk), il grado di
avvolgimento dei bracci a spirale, e la loro frammentazione. Le spirali di tipo Sa hanno
i bulge più prominenti e bracci più strettamente avvolti, mentre le Sc hanno bulge più
piccoli e bracci più aperti e frammentati.

• Galassie Irregolari (Irr o Im/Sm): Non presentano una morfologia ben definita e
mancano di una struttura organizzata a spirale. Esempi prototipici sono le Nubi di
Magellano.

Esiste anche una classe di transizione tra le due principali, le Galassie Lenticolari S0.
L’analisi dinamica rivela una netta dicotomia tra i principali tipi morfologici di galassie, che si
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manifesta nel modo in cui le loro strutture sono mantenute in equilibrio. Le galassie a spirale
sono strutture dinamicamente ”fredde” con stelle nel disco che seguono orbite quasi circolari
con una dispersione di velocità molto ridotta. Al contrario, le galassie ellittiche (dette ”early-
type” o sferoidali) sono sistemi dinamicamente ”caldi” sostenuti dai moti casuali delle stelle
(dispersione di velocità σ) e non dalla rotazione. Nelle prossime sezioni è illustrata la dinamica
di questi due tipi morfologici.

3.2 Dinamica delle Galassie Ellittiche
Le galassie ellittiche, pur essendo considerate i sistemi stellari più semplici, presentano una
notevole diversità e complessità strutturale e cinematica. Come suggerisce il loro nome, appa-
iono rotonde nel cielo e la loro luce è distribuita in modo uniforme, essendo prive di brillanti
ammassi di giovani stelle blu e delle macchie di polvere oscurante.
Il loro aspetto uniforme suggerirebbe che le loro stelle hanno abbiano avuto il tempo di rag-
giungere uno stato di equilibrio termodinamico. Inizialmente, la comprensione della loro
forma schiacciata, ovvero della loro cosiddetta ”ellitticità” ϵ, era correlata all’ipotesi che tali
sistemi si comportassero come sistemi collisionali e termalizzati e che lo schiacciamento fosse
direttamente causato dalla rotazione ordinata [3]. L’applicazione del Teorema del Viriale
tensoriale ha rivelato una realtà dinamica più complessa e le osservazioni successive hanno
stabilito che molte delle galassie ellittiche più luminose esibiscono rotazione media trascurabile
o significativamente più lenta di quanto previsto dall’ipotesi di schiacciamento sostenuto dalla
rotazione. La marcata ellitticità non rotazionale ha portato alla conclusione che le galassie
ellittiche non sono sistemi dinamici isotropi e che lo schiacciamento di questi oggetti non è
sostenuto dalla rotazione, ma è spiegabile grazie all’anisotropia del tensore di dispersione
delle velocità [1].
La prima parte di questa sezione è dedicata alla fotometria: come appaiono le immagini delle
galassie ellittiche nella luce visibile e cosa rivelano sulla distribuzione delle stelle al loro inter-
no. La parte successiva discute i moti stellari e come la rotazione di una galassia ellittica sia
collegata alle sue altre proprietà. La parte finale mostra l’applicazione del Teorema del Viriale
tensoriale e fornisce una spiegazione sull’ellitticità di queste galassie basata sul concetto di
anisotropia.

3.2.1 Fotometria

Figura 3.2: A sinistra, un’immagine di NGC 5846,
galassia ellittica di tipo E0. A destra, le sue isofote
nella banda R [3].

Per la classificazione morfologica delle galas-
sie è fondamentale il concetto di isofote, defi-
nite come i contorni di luminosità superficiale
costante su un’immagine di galassia. Le isofo-
te delle galassie ellittiche sono notevolmente
vicine ad essere vere ellissi. Il rapporto tra
il semiasse maggiore a e il semiasse minore b
quantifica quanto l’isofota differisce da un cer-
chio: l’ellitticità è definita come ϵ = 1 − b

a
.

Spostandosi dalle isofote interne luminose ai contorni esterni deboli, solitamente l’ellitticità ri-
mane abbastanza costante e la posizione del centro e la direzione dell’asse maggiore rimangono
stabili.
Queste ci permettono di classificare le galassie ellittiche secondo il tipo di Hubble En, dove
n = 10(1 − b

a
); le galassie E0 appaiono circolari nel cielo, mentre per una galassia E5 il dia-

metro corto dell’immagine è la metà del diametro lungo. L’indice n è solitamente arrotondato
al numero intero più vicino, che corrisponde all’incirca alla precisione con cui possiamo clas-
sificare le galassie a occhio nudo dalle lastre fotografiche. A differenza della classificazione di
una galassia a disco, il tipo di Hubble di una galassia ellittica dipende dalla nostra direzione
di osservazione. La luce nelle galassie ellittiche è studiata attraverso il profilo di luminosità
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superficiale delle galassie. Viene usata la la formula empirica di Sersic, una tra le formule
più efficaci, utile in particolare per i bulge delle galassie a spirale e per le galassie ellittiche di
grandi dimensioni. La formula è anche nota come profilo di de Vaucouleurs generalizzato R1/m.
Più comunemente è utilizzata la forma che collega collega la luminosità direttamente al raggio
effettivo Re, raggio entro il quale è contenuta metà della luce dell’immagine della galassia [4]:

I(R) = I(Re)exp

[
− b(m)

(
R

Re

)1/m

− 1

]
(3.1)

3.2.2 Moti delle stelle
A differenza delle galassie a disco, le stelle delle galassie ellittiche non seguono un modello
di rotazione ordinato. Al contrario, la maggior parte della loro energia cinetica è investita in
movimenti casuali. Proprio come la luminosità di una galassia a spirale è legata alla sua velocità
di rotazione, le galassie ellittiche più luminose hanno una maggiore dispersione di velocità [3].

Legge di Faber-Jackson

L’intervallo della dispersione di velocità σ per le galassie ellittiche è simile a quello per la
velocità di rotazione massima delle galassie a disco. Proprio come per le spirali, le stelle si
muovono più velocemente nelle galassie più luminose. Al centro delle ellittiche luminose, la
dispersione può raggiungere σ ∼ 500 kms−1, mentre negli oggetti meno luminosi σ ∼ 50 kms−1.
La relazione relazione di Faber-Jackson descrive il rapporto tra luminosità e dispersione di
velocità di una galassia ellittica [4]: LV

2 · 1010L⊙ ≈
(

σ

200kms−1

)4

(3.2)

Come la relazione di Tully-Fisher per le spirali, la relazione di Faber-Jackson può essere utiliz-
zata per stimare la distanza di una galassia dalla misura della sua dispersione di velocità.
Tuttavia, è difficile determinare la quantità totale di luce che riceviamo da una galassia poiché
gran parte di essa proviene dalle parti esterne più deboli; le distanze derivate dalla relazione
di Faber-Jackson non sono molto precise.

Rotazione delle galassie ellittiche

Inizialmente, si riteneva che l’appiattimento (ellitticità ϵ) osservato nelle galassie ellittiche fosse
causato principalmente dalla loro rotazione, in analogia con quanto avviene nei sistemi fluidi
o gassosi. In un fluido comune, gli urti tra le particelle sono frequentissimi e l’energia cinetica
in eccesso lungo una direzione verrebbe rapidamente ridistribuita attraverso gli urti moleco-
lari, portando il sistema a una distribuzione sferica. Inoltre, se un sistema fluido ruota,
l’equilibrio richiede che esso si appiattisca lungo l’asse di rotazione. Le teorie sviluppate per
descrivere le masse fluide rotanti prevedevano una relazione diretta tra l’appiattimento (ellit-
ticità) e la velocità di rotazione.
Tale relazione è derivata dal teorema del viriale tensoriale 2 ⟨Kξzz⟩+ ⟨Uξzz⟩ = 0, di cui è
esposto un breve calcolo nell’Appendice A.3. Le parentesi angolari indicano una media a lun-
go termine mentre z indica la componente in cui è espressa la relazione. Equazioni analoghe
valgono per le componenti x e y del moto. Questo teorema stabilisce che non solo le energie
cinetica e potenziale medie devono essere in equilibrio, ma anche che i contributi nelle diverse
direzioni devono essere separatamente uguali. Se una galassia è molto appiattita, Uξzz sarà di
grandezza molto minore rispetto a Uξxx e l’energia nelle velocità casuali nella direzione z deve
essere minore di quella del moto casuale e della rotazione che costituiscono la componente x
dell’energia cinetica.
Si suppone che una galassia ellittica sia assialsimmetrica, con una densità delle stelle e che
ruoti attorno all’asse di simmetria z. Allora si suddivide l’energia cinetica nella direzione x
nella somma dei moti di rotazione e casuali. Con l’ipotesi che la velocità di rotazione V
e le dispersioni di velocità σx e σx in queste due direzioni siano quasi costanti in tutta la
galassia, si ottiene:
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⟨Uξzz⟩
⟨Uξxx⟩

=
⟨Kξzz⟩
⟨Kξxx⟩

≈ σ2
z

1
2
V 2 + σ2

x

(3.3)

poiché l’energia cinetica di rotazione è suddivisa tra le direzioni x e y. Il rapporto tra i due
termini di energia potenziale dipende solo dal rapporto tra gli assi B/A o dall’ellitticità
ϵ ≡ 1 − B/A e non è influenzato dalla distribuzione della massa all’interno della galassia [3].
Approssimativamente: ⟨Uξzz⟩

⟨Uξxx⟩
≈ (B/A)0.9 = (1− ϵ)0.9. (3.4)

Poiché le osservazioni della rotazione galattica dipendono dalla sola componente della velocità
lungo la linea di vista (velocità radiale), la velocità di rotazione media misurata Vmax è infe-
riore alla velocità di rotazione totale V . Per correggere questa sottostima dovuta all’effetto
di proiezione e stimare la velocità intrinseca, si applica un fattore di correzione geometrico
approssimativo: Vmax ≈ πV/4. Se i moti casuali sono isotropici, σx = σz = σ, l’equazione 3.3
diventa:

(
Vmax

σ

)
=

(
V

σ

)
iso

≡ π

4

√
2[(1− ϵ)−0.9 − 1] ≈

√
ϵ/(1− ϵ) (3.5)

l’approssimazione è valida quando ϵ è piccolo. Secondo questa relazione, anche le galassie ab-
bastanza rotonde dovrebbero ruotare piuttosto velocemente; ad esempio, B/A = 0.7 dovrebbe
implicare Vmax/σ ≈ 0.68. Il rapporto teorico atteso Vmax/σ doveva aumentare significati-
vamente con l’appiattimento ϵ.
Si cercarono le prove di questo legame teorico tra rotazione e attraverso le osservazioni, e si
scopr̀ı che molte galassie ellittiche (in particolare quelle più luminose e massicce) mostravano
un rapporto Vmax/σ significativamente inferiore a quanto previsto per la loro ellitticità
apparente. Le galassie ellittiche ruotano molto più lentamente di quanto dovrebbero se fossero
rotatori isotropi. Ciò indicò che il movimento ordinato non era la causa dominante
della loro forma, e che, per mantenere il loro stato di equilibrio virializzato, l’appiattimento
doveva essere compensato da un’energia cinetica interna maggiore nella direzione del piano
galattico rispetto alla direzione perpendicolare (σx ≫ σz).
Si concluse, quindi, che l’appiattimento delle galassie ellittiche luminose non è causato dalla
rotazione ma è sostenuto dall’anisotropia del tensore di dispersione di velocità, carat-
teristica principale dei sistemi non collisionali. In altre parole, la dispersione di velocità (la
”temperatura” dinamica) non è uguale in tutte le direzioni e l’appiattimento è mantenuto dal
fatto che le stelle sono ”più calde” lungo l’asse maggiore del sistema e ”più fredde” lungo l’asse
minore. Poiché il loro tempo di rilassamento a due corpi è enormemente lungo (milioni di
volte l’età dell’universo), non avviene la termalizzazione, e questa disuniformità non viene
annullata. In un fluido collisionale, invece, questa anisotropia scomparirebbe rapidamente.
Questo risultato è stato di notevole impatto in astrofisica e ha stabilito che le galassie ellittiche
sono in larga misura sistemi supportati dal ”disordine” piuttosto che dalla rotazione ordinata.
Vengono definite come sistemi ”fossili” che conservano il loro stato dinamico risultante dai
processi di formazione di miliardi di anni fa [1].

3.3 Dinamica delle Galassie a Spirale
Le galassie a spirale o a a disco sono caratterizzate dalla presenza di un disco stellare esteso
in cui il moto dominante è la rotazione ordinata. Le stelle si muovono sotto l’influenza
del potenziale gravitazionale medio e liscio del sistema. In questa configurazione, la velocità
angolare Ω diminuisce con il raggio, una proprietà nota come rotazione differenziale.
Tradizionalmente, per l’analisi orbitale si ricorreva a un’approssimazione di simmetria assiale
per il potenziale, utilizzando strumenti come la teoria epiciclica per descrivere le orbite stellari
come piccole oscillazioni radiali e verticali attorno a un centro guida rotante. Tuttavia, le galas-
sie a spirale presentano una struttura a bracci a spirale luminosa e una barra centrale lineare.
Queste caratteristiche sono intrinsecamente non assisimmetriche e mettono in crisi l’ipotesi di
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un sistema in perfetto equilibrio stazionario. Il principale enigma dinamico è rappresentato dal
problema dell’avvolgimento: a causa della rotazione differenziale, qualsiasi struttura materiale
dovrebbe avvolgersi rapidamente in una spirale strettissima in un tempo breve rispetto all’età
della galassia, rendendo necessario un meccanismo di rinnovamento continuo della struttura a
spirale. Di conseguenza, la dinamica delle galassie a spirale deve essere compresa non in ter-
mini di equilibrio assisimmetrico stabile, ma attraverso l’interazione tra la rotazione ordinata
del disco e le strutture non assisimmetriche come la barra centrale e le spirali.

3.3.1 Rotazione ordinata del Disco
Le stelle nel disco seguono orbite quasi circolari con pochissimo movimento casuale e la ro-
tazione ordinata rappresenta quasi tutta l’energia del movimento, con velocità casuali che
contribuiscono meno del 5%: il disco è dinamicamente ”freddo” [3]. Nelle galassie più picco-
le, i movimenti casuali sono proporzionalmente più grandi, ma la maggior parte dell’energia
cinetica del disco è ancora in rotazione. Poiché le stelle hanno poco movimento verticale per-
pendicolare al piano del disco, il disco può essere piuttosto sottile.
Questa sezione mostra lo studio della curva di rotazione del disco galattico, sia da un punto di vi-
sta interno come nel caso del calcolo per la Via Lattea, sia per galassie lontane. Successivamente
è trattata brevemente la Teoria degli Epicicli.

Misura della curva di rotazione

Figura 3.3: A sinistra, un disco rotante visto dall’alto.
L’azimut ϕ dà la posizione di una stella nella sua orbita.
A destra, la linea di vista dell’osservatore crea l’angolo
i con l’asse di rotazione z del disco.

Per studiare il comportamento cinematico e
dinamico del disco delle galassie a spirale, si
prende in esempio il disco della nostra galas-
sia, laVia Lattea. Le stelle più vicine al cen-
tro galattico completano le loro orbite in me-
no tempo rispetto a quelle più lontane. Que-
sta rotazione differenziale è stata scoperta per
la prima volta nella Via Lattea considerando
i moti propri delle stelle vicine. Guardando
verso l’interno, si osservano stelle che ci sor-
passano nelle loro orbite; il loro movimento
rispetto a noi è nella stessa direzione della velocità orbitale del Sole V0. Guardando verso
l’esterno, si vedono stelle cadere dietro di noi, quindi hanno movimenti propri nella direzione
opposta. Le stelle con lo stesso raggio galattocentrico orbitano alla stessa velocità del Sole,
quindi mantengono una distanza fissa e hanno un movimento ”laterale”. Questo modello era
stato notato già nel 1900; l’astronomo olandese Jan Oort lo spiegò nel 1927 come un effetto
della rotazione galattica [3].
All’interno di una galassia, è possibile calcolare la velocità radiale Vr e il moto proprio Vt di
una stella o di una nube di gas a distanza d dall’ossevatore che si avvicina o si allontana, sup-
ponendo che tutti gli oggetti compiano orbite esattamente circolari. I calcoli di tali quantità
sono riportati nell’Appendice A.4. Si ottengono:

Vr ≈ dAsin(2l), Vt ≈ d[Acos(2l) +B] (3.6)

con l distanza angolare dell’oggetto dal centro galattico e con A = [−R
2
(V
R
)′]R0 e B =

−1
2
[ 1
R
(RV )′]R0 , valori che rappresentano la prima e la seconda costante di Oort. Ponen-

do l’osservatore nella posizione del Sole nella Via Lattea, le costanti calcolate sono A =
14.8 ± 0.8 kms−1kpc−1 e B = −12.4 ± 0.6 kms−1kpc−1 [3]. Le costanti di Oort A e B mi-
surano rispettivamente la deviazione dalla rotazione rigida e il gradiente del momento angolare
nel disco.
Se si potesse misurasse la velocità Vr per le stelle di nota distanza sparse in tutto il disco, si
potrebbe lavorare all’indietro per trovare V (R), la curva di rotazione della Via Lattea. Sfortu-
natamente, la luce visibile delle stelle del disco e degli ammassi è bloccata dalla polvere. Per la
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Galassia interna (R < R0), il metodo del punto tangente elude questa difficoltà e permette
di trovare la curva di rotazione. La velocità angolare V/R scende con il raggio. Quindi l’equa-
zione Vr = R0sin(l)(

V
R
− V0

R0
) dice che, quando si guarda nel disco lungo una direzione fissa con

0◦ < l < 90◦, la velocità radiale Vr(l, R) è maggiore nel punto tangente T dove la linea di vista
passa più vicino al centro galattico. Qui si ha R = R0sin(l), V (R) = Vr + V0sin(l). Quindi, se
il gas emette in ogni punto del disco, si può trovare V (R) misurando la massima velocità alla
quale si vede l’emissione per ogni longitudine l. Se il punto tangente cade vicino a un braccio,
allora la velocità di rotazione trovata usando l’equazione precedente sarà diversa dalla velocità
media di un’orbita a quel raggio.
Misurare la velocità di rotazione nella Galassia esterna è più difficile. Le distanze delle stelle
sono stimate con metodi della parallasse spettroscopica o fotometrica mentre la loro velocità Vr
viene misurata dalle linee di emissione di gas caldo o freddo intorno alle stesse stelle [3]. Per
studiare la curva di rotazione di una galassia a disco da un punto di vista esterno, si suppone
di osservare un disco in rotazione circolare pura, inclinato di un angolo i a faccia in su, come
in Figura 3.3. È possibile specificare la posizione di una stella o di una nube di gas in base
al suo raggio R e azimut ϕ, misurata nel disco dal diametro AB che giace perpendicolare alla
direzione di visione dell’osservatore. Tutto ciò che si può rilevare di questo movimento è la
velocità radiale Vr verso o lontano dall’osservatore; il suo valore al centro della galassia, Vsys,
è la velocità sistemica. La velocità radiale è:

Vr(R, i) = Vsys + V (R)sin(i)cos(ϕ) (3.7)

Da questa equazione cinematica, si possono graficare linee che collegano punti con stesso Vr,
ipotizzando una specifica funzione V (R) e un angolo di inclinazione i. Questi valori sono poi
aggiustati utilizzando un processo di fitting con dati osservativi, in modo che le ”linee di
isovelocità” (il modello teorico) si sovrappongano il più fedelmente possibile a quelle misurati
[3]. Quando il fitting è ottimale, la curva V (R) e l’inclinazione i sono considerate determinate,
permettendo di ”deproiettare” la velocità radiale osservata per ottenere la vera velocità di
rotazione della galassia. Un esempio di la curva di rotazione V (R) è riportato nella Figura 3.4.
Questa rotazione differenziale è tipica delle galassie a spirale.

Figura 3.4: I punti rappresentano la curva di rota-
zione di NGC 7331, le barre verticali mostrano incer-
tezza. Il gas CO (punteggiato), osservato con una ri-
soluzione spaziale più fine, traccia un aumento più ve-
loce. Le curve solide inferiori mostrano i contributi a
V (R). Un alone scuro (trattini) deve essere aggiunto
prima che la velocità di rotazione combinata (curva più
alta) corrisponda alle velocità misurate [3].

Figura 3.5: Curve di rotazione per galassie disco
di vario tipo. I cerchi aperti mostrano la lunghezza
della scala hR del disco stellare e la velocità di rota-
zione di picco Vmax per ogni galassia. Le curve sono
tracciate in unità di R/hR, mostrando V (R) per il
disco esponenziale [3].

Materia Oscura nelle Galassie a Disco

Per un sistema sferico, la velocità V in un’orbita circolare a raggio R è correlata alla massa
(< R) interna a quel raggio dall’equazione esatta M(< R) = RV 2

G
. Per orbite in un disco
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piatto, questa formula dà M(< R) entro il 10% -15% [3]. Poiché V (R) non diminuisce, la
massa della Via Lattea deve aumentare quasi linearmente con il raggio, anche molto oltre il
Sole dove vi sono pochissime stelle. Ci si riferisce a questo problema come il ”problema della
massa mancante” o della ”materia oscura”. Le galassie presumibilmente contengono una
grande quantità di materia che non emette alcuna luce e che si presume si trovi in un alone
scuro non rilevabile, se non attraverso la sua attrazione gravitazionale. Poiché i dischi stellari e
gassosi sono appiattiti, la loro forza può puntare verso l’interno o verso l’esterno. Solitamente,
a R ≪ 6 kpc, la forza dal disco del gas è verso l’esterno, dando un contributo negativo a
V 2(R). La Figura 3.4 mostra la curva di rotazione osservata della galassia a disco NGC 7331 e
i contributi delle varie componenti della galassia. La curva etichettata ”halo” mostra come un
alone sferico di materia oscura potrebbe fornire una forza verso l’interno sufficiente a spiegare
la velocità di rotazione misurata. Almeno il 75% della massa totale sembra essere oscura. La
Figura 3.5 mostra le curve di rotazione di un certo numero di galassie a disco di vario tipo,
trovate osservando il gas HI.

Relazione di Tully-Fisher

Figura 3.6: Per le galassie nel gruppo maggiore dell’Or-
sa. Le galassie a bassa luminosità superficiale (cerchi aper-
ti) seguono la stessa relazione di quelle ad alta luminosità
superficiale (cerchi pieni) [3].

Una curva di rotazione piatta implica che
la massa contenuta all’interno di un rag-
gio R sia proporzionale a V 2

maxR/G, con
Vmax quantità ricavabile tramite osserva-
zioni di radiotelescopio.
Le galassie più luminose ruotano in me-
dia più velocemente, il che ci dice che
sono più massicce. B. Tully e J. R. Fi-
sher hanno dimostrato che la velocità di
rotazione di una galassia aumenta con la
sua luminosità, approssimativamente co-
me L ∝ V α

max, con α ∼ 4: questa è la re-
lazione empirica di Tully–Fisher (TFR)
[3]. La Figura 3.6 traccia la larghezza del profilo globale rispetto alla magnitudine apparente
misurata a K ≈ 2, 2 µm per le galassie del gruppo Maggiore dell’Orsa; la luminosità aumenta
poco più lentamente della quarta potenza di Vmax.
Poiché Vmax è stabilita in gran parte dalla massa totale (inclusa la materia oscura), mentre
la luminosità L deriva dalla massa stellare visibile (il disco), il fatto che L e Vmax siano cos̀ı
strettamente correlate suggerisce che la quantità di materia oscura è in qualche modo
coordinata con la massa luminosa, un rompicapo chiave per la comprensione della dinami-
ca e della formazione galattica. La TFR è uno strumento dinamico essenziale per quantificare
le proprietà delle galassie a spirale: permette di stimare le masse delle galassie a spirale grazie
alla misurazione di Vmax e può essere utilizzata per stimare le distanze delle galassie e dei
gruppi di galassie, contribuendo alla definizione della scala delle distanze cosmiche.

Teoria degli Epicicli

La teoria degli epicicli descrive il moto di una stella attorno al centro galattico sotto l’ipotesi
di un potenziale liscio assialsimmetrico, orbite quasi-circolari e nessuna variazione radiale nella
densità delle stelle. Questo moto è approssimato come la combinazione di due componenti:
il movimento del centro guida Rg, che è un’orbita perfettamente circolare attorno al centro
galattico con una velocità angolare Ω(R), e piccole oscillazioni della stella attorno a questo
deferente. Viene illustrato matematicamente. Usando le coordinate galattocentriche (R, ϕ, z),
si ha ∂Φ/∂ϕ = 0: non c’è forza nella direzione Φ e una stella conserva il suo momento angolare
attorno all’asse z Lz ≡ R2ϕ = cost. Il potenziale Φ = Φ(R, z) non cambia con il tempo
e l’equazione del moto nella direzione radiale può essere scritta in funzione del cosiddetto
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potenziale efficace:
R̈ = Ṙϕ2 − ∂Φeff

∂R
, Φeff ≡ Φ(R, z) +

L2
z

2R2
(3.8)

Moltiplicando per R e integrando mostra che, per una stella che si muove nel piano centrale
z = 0, 1

R
Ṙ2 + Φeff (R, z = 0;Lz) = cost, con Ṙ2 ≥ 0. Il termine centrifugo del Φeff diverge

per R → 0 e la stella è respinta dall’asse perché il moto è limitato a E ≥ Φeff . La stella è
confinata da un raggio perigalattico in cui Ṙ2 = 0 e E = Φeff . La stella è anche confinata
da un limite esterno, il raggio apogalattico, se l’energia E è minore dell’energia di fuga.

Figura 3.7: (a) Il potenziale effettivo Φeff (curva superiore) per
una stella con momento angolare Lz = 0.595, in orbita in un ”poten-
ziale di Plummer” Φ (curva inferiore).
(b) La stella si muove in un epiciclo ellittico attorno al suo centro gui-
da a (x = 0, y = 0), che viene trasportato attorno al centro galattico
con velocità angolare Ω(Rg).

Tra queste due distanze è de-
finito il centro guida Rg, detto
anche deferente, ovvero il punto di
equilibrio che corrisponde al rag-
gio dell’orbita perfettamente cir-
colare per un dato momento an-
golare assiale. Questo ha velocità
angolare Ω(R) appropriata a tale
raggio e in esso si trova il minimo
del potenziale efficace (Φeff ).
La teoria dell’Epiciclo è un’espan-
sione di Taylor di Φeff al secon-
do ordine intorno al minimo (Rg,
z=0), valida per piccoli sposta-
menti radiali (x = R − Rg). Le
equazioni del moto nella direzione
radiale (R) si riduce a quelle di un oscillatore armonico semplice. La stella esegue piccole
oscillazioni attorno deferente e il moto radiale diventa ẍ ≈ −κ2(Rg)x dove κ è la frequenza
epiciclica (o radiale), che determina la frequenza di oscillazione della stella dentro e fuori dal
raggio del centro guida.

Figura 3.8: M100, galassia di tipo Sbc. In alto,
banda B (sinistra) e banda I (destra); in queste im-
magini negative, le strisce di polvere scura appena
all’interno dei bracci a spirale luminosi appaiono
come sottili filamenti di luce. I pannelli inferiori
mostrano il colore B - K. Le aree chiare sono blu
con giovani stelle massicce e le regioni scure mo-
strano regioni rosse in cui le corsie di polvere si
snodano nel centro della galassia [3].

L’epiciclo è generalmente un’ellisse il cui moto
è retrogrado (in senso opposto) rispetto al moto di
rotazione del centro guida. La traiettoria risultan-
te della stella, vista da un sistema di riferimento
inerziale, è tipicamente una figura a rosetta, a me-
no che il rapporto tra la frequenza epiciclica (κ)
e la velocità angolare (Ω) non sia un rapporto di
numeri interi [3].

3.3.2 Bracci a Spirale
Quasi tutte le galassie giganti con gas nei loro di-
schi hanno una sorta di spirale, anche se semplici
argomentazioni implicano che i bracci a spirale do-
vrebbero scomparire rapidamente. Due proprietà
del disco sembrano essere essenziali: la rotazione
differenziale, che fa s̀ı che qualsiasi braccio ma-
teriale venga rapidamente avvolto in una spirale
sempre più stretta, e l’auto-gravità, che alimenta
le spirale.

Strutture a spirale osservate

I bracci di una galassia a spirale sono più blu del
resto del disco poiché costituiscono siti di forma-
zione stellare attiva. Alcune galassie hanno uno
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schema a fiocco di neve, con molti segmenti di braccio corti invece di una spirale continua. Le
galassie a spirale grand-design, invece, hanno l’architettura dei bracci di spirale ben organizzata
ed una struttura particolarmente definita e prominente. Questi bracci possono essere tracciati
per molti radianti in azimut e su una significativa estensione radiale. Usando le coordinate
polari galattocentriche (R, ϕ), possiamo descrivere la forma di una spirale con m bracci con
l’equazione [3]: cos{m[ϕ+ f(R, t)]} = 1 (3.9)

La funzionef(R, t) descrive come la spirale è avvolta: se |∂f/∂R| è grande, le braccia sono
strettamente avvolte, mentre se è piccola, sono aperte. L’angolo di inclinazione i, l’angolo tra
il braccio e la tangente al cerchio al raggio R, è dato da 1

tan(i)
= |R ∂ϕ

∂R
| = |R ∂f

∂R
|. Nelle spirali Sa,

i ha una media di circa 5◦, mentre nelle galassie Sc è generalmente nell’intervallo 10◦ < i < 30◦

[3]. Una spirale è detta “leading”, se ha le punte dei bracci che puntano in avanti nella direzione
della rotazione della galassia, o “trailing”, se ha le punte rivolte nella direzione opposta alla
rotazione. Dove è possibile determinare il senso, i bracci a spirale quasi sempre trailing. Nella
Figura 3.8, le strette corsie di polvere sui lati interni concavi dei bracci a spirale mostrano che
il gas contenente polvere viene compresso l̀ı. Questo è un segno che le braccia non contengono
una popolazione fissa di stelle e gas, ma formano un’onda di densità, un ”ingorgo stellare”
in cui le stelle sono ”imballate” più densamente e si muovono più lentamente lungo le orbite.
Uno dei motivi per cui si crede che molti bracci a spirale siano onde di densità è il cosidde-
to ”Problema dell’Avvolgimento”: se fossero oggetti fisici la rotazione differenziale della
galassia li avvolgerebbe rapidamente in un ricciolo molto stretto.

Figura 3.9: In un disco rotante
in senso antiorario, dove la velo-
cità di rotazione Ω(R) cade con
raggio R, le stelle che inizialmen-
te si trovano lungo una linea ra-
diale sono avvolte in una spira-
le finale; l’angolo i è l’angolo di
inclinazione della spirale.

Per capire perché, si suppone che le stelle siano inizialmente
distribuite lungo una linea retta attraverso il centro della ga-
lassia, dato da ϕ = ϕ0, mostrato in Figura 3.9. Ogni stella si
muove nella sua orbita con velocità V (R) e velocità angolare
Ω(R) = V (R)/R. Dopo il tempo t si trovano su una spirale data
dalla curva ϕ = ϕ0 + Ω(R)t. Nel linguaggio dell’equazione 3.9,
si ha f(R, t) = −ϕ0 − Ω(R)t. Poiché la velocità angolare Ω(R)
generalmente scende con il raggio, allora, se si prende Ω(R) > 0,
f(R, t) aumenta spostandosi lungo il braccio verso R più grande,
quindi ϕ deve diminuire. Col passare del tempo, questa spirale
diventa sempre più avvolta. Dopo solo t = 1 Gyr, questa spirale
dovrebbe essere molto più stretta di quelle osservate in galassie
Sc come la nostra [3]. Qualsiasi modello iniziale a spirale fisica
subirebbe un simile avvolgimento e perciò le stelle dei bracci
a spirale devono essere continuamente rinnovate.

Teorie per le strutture a spirale

La struttura a spirale è un fenomeno complesso ed è probabile che nessun singolo processo sia
responsabile dell’intera gamma di strutture osservate.
Un modello, chiamato modello a spirale cinematica, può durare più a lungo se le stelle che
lo compongono non sono su orbite circolari, ma sono disposte in un ordine particolare nei loro
percorsi leggermente eccentrici [3]. Come già mostrato in questa sezione, la teoria degli epicicli
descrive il percorso di una stella su un’orbita quasi circolare come la somma del movimento
circolare di un centro guida, alla velocità Ω(Rg), e un’oscillazione epicicloidale che muove la
stella dentro e fuori. L’azimut del centro guida è ϕgc = Ω(Rg)t, mentre il moto epicicloidale fa
variare il raggio della stella come:

R = Rg + x = Rg +Xcos(κt+ ψ) (3.10)

Qui X è l’ampiezza del moto radiale, κ è la frequenza epicicloidale e la costante ψ indica il
raggio iniziale. Si inizia posizionando le stelle su diversi epicicli con i loro centri guida sparsi
attorno al cerchio in Rg e si imposta ψ = 2ϕgc(0) per ciascuna di esse, in modo che giacciano
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su un ovale con suo asse maggiore che punta lungo ϕ = 0. In questo modo si imposta una
perturbazione iniziale nel disco stellare. In un secondo momento t, i centri di guida si muovono,
in modo che ϕgc(t) = ϕgc(0) + Ωt. Le stelle avanzano sui loro epicicli al raggio R = Rg + x,
dove: x = Xcos{κt+ 2[ϕgc(t)− Ωt]} = Xcos[(2Ω− κ)t− 2ϕgc(t)] (3.11)

L’asse maggiore dell’ovale ora punta lungo la direzione in cui:

(2Ω− κ)t− 2ϕ = 0, oppure ϕ = (Ω− κ/2)t ≡ Ωpt (3.12)

Figura 3.10: Sinistra, orbite ovali nidificate per
formare una spirale a due braccia. Destra, una
spirale ad un braccio.

Si definisce la velocità del modello Ωp in mo-
do che la struttura costituita da stelle con centro
guida Rg ritorni al suo stato originale dopo un tem-
po 2π/Ωp, anche se le singole stelle completano le
loro orbite attorno al centro nel tempo più breve
2π/Ω. Una spirale a due braccia può essere costi-
tuita da un insieme di ovali di stelle annidati con
centri di guida a diversi raggi Rg, come mostrato
a sinistra della Figura 3.10. Poiché la velocità del
modello Ωp varia con Rg, questa spirale nel tempo
si avvolgerà anche in un modello finale stretto, ma
lo farà più lentamente di un fattore Ωp/Ω, che è di circa 0.3 quando la curva di rotazione è
piatta.
Per descrivere una spirale con m braccia, si imposta ψ = mϕgc(0) nell’equazione 3.11; le stelle
con un dato centro di guida si trovano quindi su forme di m braccia che ruotano con una ve-
locità del modello Ωp = Ω− κ/m. La Figura 3.10 mostra una spirale cinematica a due braccia
e una spirale a un braccio.

Figura 3.11: La simulazione gravita-
zionale a N-corpi mostra come un disco
di 50 mila particelle che si attraggono
a vicenda per gravità sviluppa prima
un modello a spirale a due braccia, poi
una barra. Il rigonfiamento galattico e
l’alone scuro sono rappresentati da una
forza interna fissa [3].

La teoria delle onde di densità della struttura a spi-
rale si basa sulla premessa che l’attrazione gravitazionale
reciproca di stelle e nubi di gas a raggi diversi può compen-
sare la tendenza della spirale cinematica a finire e causerà
la crescita di un modello che ruota rigidamente con una sin-
gola velocità Ωp [3]. Un modo per verificare se un modello
a spirale può svilupparsi spontaneamente è quello di esami-
nare come influenzerebbe le orbite delle stelle del disco: la
spirale crescerà solo se le stelle rispondono alla sua
gravità muovendosi in modo da rafforzare il model-
lo. Il calcolo è lungo e scoprire come i moti forzati di tutte
le stelle influenzino a loro volta il potenziale gravitazionale
del disco della galassia è molto più difficile. Tale calcolo mo-
stra che le stelle rispondono in modo da rafforzare la spirale
solo se la frequenza perturbante m|Ωp − Ω(R)| è più lenta
della frequenza κ(R) a quel raggio. La Figura 3.11 mostra
una simulazione gravitazionale di N-corpi, seguendo ciò che accade a un disco di ”stelle” che
si attraggono a vicenda per gravità. Inizialmente è assisimmetrica, con le stelle su orbite quasi
circolari. Il modello a spirale crescente è a due braccia e si forma anche una barra centrale.
Man mano che le velocità casuali stellari crescono, il disco si ”riscalda” e la spirale alla fine
scompare. L’aggiunta continua di queste nuove stelle può essere importante per prolungare la
vita di un modello a spirale, o per ricrearlo periodicamente.
Infine, un’altra possibilità è che la spirale sia guidata dall’attrazione gravitazionale di una
galassia compagna. Infatti, le galassie con i migliori modelli a spirale grand-design hanno
compagni vicini. Il passaggio ravvicinato di una galassia vicina può creare almeno una spirale
a due braccia temporanea [3].

15



Capitolo A

Appendice
A.1 Probabilità Statistica di Urto Geometrico

Figura A.1: Rappresentazione
del calcolo di λ.

Viene presentato un semplice calcolo del cammino libero me-
dio λ dopo il quale due stelle in una galassia si scontrano, al
fine di mostrare che l’effetto delle collisioni geometriche è
trascurabile. Una rappresentazione grafica utile è presentata
in Figura A.1.
Si assume come modello di galassia un sistema di N di stelle,
ognuna caratterizzata da un raggio pari a quello del sole r = R⊙,
distribuite omogeneamente in una sfera di raggio R. Il volume
della sfera che rappresenta la galassia è V = 4

3
πR3. Definendo la

sezione d’urto geometrica per l’impatto tra due stelle σ = 4πr2

e il libero cammino medio tra le stelle λ, il volume efficace vale
anche V = N · 4πr2 · λ. Da queste due espressioni del volume si
ottiene: λ

R
=

R2

Nr2
(A.1)

una stima del libero cammino medio rispetto alla dimensione della galassia. Assumendo come
valori del nostro modello ragionevole di galassia N = 1011, r = R⊙ = 7·1010 cm, R = 3·1022 cm,
il valore numerico calcolato è λ

R
= 1013.

Il libero cammino medio che separa le stelle in una generica galassia è 1013 volte la dimensio-
ne della galassia e perciò la probabilità di urto è mediamente nulla su scale temporali
cosmologiche. Tuttavia, è importante ricordare che in determinate situazioni astrofisiche ad
alta densità stellare (ad esempio nelle regioni centrali delle galassie) la probabilità di collisioni
geometriche tra le stelle non è trascurabile [1].

A.2 Calcolo Approssimativo del t2b
In questa sezione viene sviluppato un calcolo approssimativo del t2b per poter verificare la non-
collisionalità delle galassie.
Si considera una galassia come un sistema autogravitante sferico all’equilibrio, con massa totale
M = Nm, data quindi dalle sueN stelle assunte con massa ugualem, e con raggio R. Si utilizza
inoltre la dispersione delle velocità degli elementi della galassia σ. Questa viene ricavata
dal teorema del Viriale:

Mσ2 =
GM2

R
(A.2)

Nella formula del t2b (eq. 2.6), si adotta come velocità ||vt|| = ||vf || = σ e come potenziale di
Rosenbluth Φ(||vt||) = 1

σ
, sapendo che a grandi velocità Ψ(||vt||) −→

||vt||2→∞
1

||vt|| [2]. Si ricava:

t2b =
σ3

8πG2m2
fnlnΛ

(A.3)

Si mostra un confronto del t2b per diversi sistemi e perciò si introduce nel calcolo un tempo
di riferimento intrinseco quale il tempo dinamico tdyn = 2R

σ
, ossia il tempo necessario a

una stella con velocità σ per attraversare tutto il sistema. Quindi, si studia il rapporto tra i
tempi t2b

tdyn
. Si assume una densità omogenea di stelle e si usa n = N

4/3πR3 . Si ottiene:
t2b
tdyn

=
R2σ4

12G2m2

N

lnΛ
(A.4)
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Sempre per il teorema del Viriale si nota che vale l’identità (GM
Rσ2 )

2 = 1 perciò si semplifica
l’espressione: t2b

tdyn
= N

12lnΛ
. Anche il valore di logaritmo di Coulomb lnΛ = bmax/bmin può

essere semplificato a lnΛ = lnN utilizzando le formule del problema a due corpi e il Teorema
del Viriale [2]. Si ricava: t2b

tdyn
=

0.1N

lnN
(A.5)

A.3 Teorema Viriale Tensoriale
Viene ricavato il teorema viriale tensoriale in una direzione z. Il punto di partenza è
l’equazione 2.2 mostrata nel primo capitolo, che esprime la forza gravitazionale esercitata sulla
stella α nella posizione xα dalle altre stelle della galassia, nelle posizioni xβ, con masse mβ. Si
moltiplica la componente z dell’equazione per la coordinata z zα e si somma su tutte le stelle,
per ottenere: ∑

α

d

dt
(mαvzα)zα = −

∑
α,β,α̸=β

Gmαmβ

|xα − xβ|3
(zα − zβ)zα (A.6)

dove vzα è la componente z di vα, la velocità della stella α. Si potrebbe anche partire dalla
forza sulla stella β: ∑

β

d

dt
(mβvzβ)zβ = −

∑
α,β,α̸=β

Gmαmβ

|xα − xβ|3
(zβ − zα)zβ (A.7)

Facendo la media di questi due si ottiene un’equazione simile:
1

2

d2Izz
dt2

= 2Kξzz + Uξzz (A.8)

dove la componente z del momento di inerzia è definita come Izz ≡
∑

αmαzαzα, l’energia
cinetica associata al moto nella direzione z è Kξzz ≡ 1

2

∑
αmαvzαvzα, (6.24) e il contributo zz

all’energia potenziale è Uξzz ≡ −
∑

α,β,α̸=β
1
2

Gmαmβ

|xα−xβ |3
(zα − zβ)

2.

Se tutte le stelle sono legate all’interno della galassia, si può scrivere:

2 ⟨Kξzz⟩+ ⟨Uξzz⟩ = 0 (A.9)

dove le parentesi angolari indicano una media a lungo termine.

A.4 Misura della curva di rotazione

Figura A.2

È illustrato il calcolo della curva di rotazione della Via Lattea dal
suo interno, ponendo l’osservatore sulla posizione del Sole. Si suppone
di osservare un oggetto che si avvicina o si allontana dall’osservatore
che segue un’orbita esattamente circolare; si veda Figura A.2.
Il Sole orbita a raggio R0 con velocità V0, mentre una stella P a
raggio R ha velocità orbitale V (R). La stella si allontana da noi con
velocità Vr = V cos(α) − V0sin(l). Usando la regola del seno, si ha
sin(l/R) = sin(90 + α)/R0, e cos̀ı:

Vr = R0sin(l)

(
V

R
− V0
R0

)
(A.10)

Se la Via Lattea ruotasse rigidamente come un giradischi, le distanze
tra le stelle non cambierebbero e la Vr sarebbe sempre zero. In effetti,
le stelle più lontane dal centro impiegano più tempo per completare le loro orbite; la velocità
angolare V/R scende con il raggio R. Quando la stella è vicina al Sole, in modo che d≪ R, si
può trascurare i termini in d2; usando la regola del coseno per il triangolo S-P-GC quindi dà
R ≈ R0− dcos(l). La velocità radiale dell’equazione A.10 diventa:

Vr ≈ R0sin(l)

(
V

R

)
(R−R0) ≈ dsin(2l)

[
− R

2

(
V

R

)′]
R0

≡ dAsin(2l) (A.11)

dove si usa il simbolo ”′” per la differenziazione rispetto a R. L’oggetto A è la prima costante
di Oort, che calcolata è A = 14.8± 0.8 kms−1kpc−1 [3].
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Il moto proprio di una stella a P rispetto al Sole può essere ricavato in modo simile. Dalla Figura
A.2, la velocità tangenziale è Vt = V sin(α)− V0cos(l). Notando che R0cos(l) = Rsin(α) + d,
si ha:

Vt = R0cos(l)

(
V

R
− V0
R0

)
− V

d

R
(A.12)

Vicino al Sole, si sostituisce R0 −R ≈ dcos(l), per mostrare che Vt varia quasi linearmente con
la distanza d:

Vt ≈ dcos(2l)

[
− R

2

(
V

R

)′]
R0

− d

2

[
1

R
(RV )′

]
R0

≡ d[Acos(2l) +B] (A.13)

dove B è la seconda costante di Oort B = −12.4 ± 0.6 kms−1kpc−1 [3]. Le costanti di Oort
A e B misurano rispettivamente la deviazione dalla rotazione rigida e il gradiente del
momento angolare nel disco.
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