
Alma Mater Studiorum · Università di Bologna

DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

Corso di Laurea in Ingegneria e Scienze Informatiche

ACCELERARE I RAGGI COSMICI
SULLA GPU

Relatore:
Chiar.mo Prof.
Moreno Marzolla

Correlatore:
Chiar.mo Prof.
Claudio Gheller

Presentata da:
Alessandro Ronchi

Sessione 27/11/2025
Anno Accademico 2024/2025

Sommario

I raggi cosmici sono particelle ad alta energia scoperte un centinaio di

anni fa, e tutt’ora si è incerti sulla loro origine esatta. Lo studio di queste

particelle tramite le sole osservazioni astronomiche è complicato, in quanto

la loro sorgente non può essere tracciata in modo diretto, e i dati a nostra

disposizione non hanno ancora una qualità sufficiente per dare una conferma

definitiva ai modelli teorici che descrivono la loro formazione. Per questo

motivo, in parallelo ad osservazioni astronomiche sempre più accurate, re-

centemente si è affermata la disciplina dell’astrofisica computazionale, il cui

obiettivo è utilizzare gli strumenti e le tecnologie offerte dall’informatica per

ricreare i fenomeni astronomici mediante simulazioni di vario tipo. Nello

specifico, per lo studio dei raggi cosmici si utilizzano simulazioni idrodina-

miche che riproducono il comportamento dei cluster di galassie, consentendo

di osservare la loro evoluzione nel tempo. A partire da queste simulazioni è

possibile ricavare dei dati che possono essere direttamente confrontati con le

osservazioni astronomiche reali, in modo da verificare la validità dei modelli

teorici elaborati. Spesso, le simulazioni di questo tipo comportano tempi di

calcolo molto elevati, dovuti al gran numero di computazioni effettuate al

loro interno, e ciò rende più complicato attuare gli approcci sperimentali che

ne prevedono l’utilizzo. Per far fronte a questo problema, si ricorre a tecniche

di high performance computing, che consentono di sfruttare il parallelismo

offerto dalle architetture hardware moderne per migliorare le prestazioni dei

programmi utilizzati, riducendo notevolmente i tempi di esecuzione.

In tale contesto, all’interno di questa tesi si considera un programma che

i

consente di generare delle osservazioni sui raggi cosmici a partire dai risul-

tati di una simulazione idrodinamica svolta in precedenza. In particolare,

il programma considerato implementa il metodo di Chang-Cooper che con-

sente di risolvere computazionalmente l’equazione di Fokker-Planck per il

calcolo dello spettro di emissione delle particelle della simulazione. In que-

sto programma è già presente un tipo di parallelismo che utilizza le risorse

hardware della CPU (Central Processing Unit) per ridurre il tempo di cal-

colo. L’obiettivo della tesi è valutare l’efficienza del parallelismo CPU già

implementato nel codice, misurando le prestazioni attuali, per poi realizzare

una versione del programma che sfrutta l’elevata capacità computazionale

delle GPU (Graphics Processing Unit). Quest’ultima versione è realizzata

facendo uso della libreria OpenMP, che utilizza un approccio ad alto livello

basato sulle direttive e consente di produrre codice portabile su più architet-

ture differenti. Si intende dunque valutare l’efficacia e la facilità di utilizzo

di OpenMP nell’ottimizzare sulla GPU un codice di grandi dimensioni. Il

lavoro presentato in questa tesi prevede quindi una prima fase di analisi del-

le caratteristiche del codice di riferimento, seguita da una valutazione delle

prestazioni allo stato attuale, e infine una fase di implementazione del codi-

ce GPU basata sull’approccio a direttive offerto da OpenMP. Le ultime due

fasi sono state svolte sfruttando l’architettura ad alte prestazioni del super-

computer Leonardo, messo a disposizione dal CINECA. Al termine di questa

tesi, si considerano vantaggi e svantaggi dell’utilizzo di OpenMP rispetto a

tecnologie più consolidate per il calcolo parallelo sulla GPU, quali CUDA,

OpenCL, ROCm e OpenACC, e si illustrano i possibili sviluppi futuri legati

alla versione GPU realizzata.

Indice

Sommario i

1 Introduzione 1

1.1 I raggi cosmici e la loro origine 2

1.2 Osservazioni astronomiche . 5

1.2.1 Osservazioni dirette . 6

1.2.2 Osservazioni indirette 6

1.3 Simulare i raggi cosmici . 8

1.3.1 L’equazione di Fokker-Planck per il calcolo dello spettro 11

1.3.2 Il metodo di Chang-Cooper 13

2 Codice di riferimento 17

2.1 Caratteristiche . 17

2.1.1 Input . 18

2.1.2 Output . 18

2.1.3 Algoritmo e complessità 20

2.1.4 Parallelismo . 22

2.2 Test iniziali . 23

2.3 Valutazione delle prestazioni del codice CPU 26

2.3.1 Speedup e strong scaling efficiency 27

2.3.2 Weak scaling efficiency 30

2.3.3 Considerazioni . 31

iii

iv INDICE

3 Versione GPU 33

3.1 Architettura di una GPU . 33

3.2 Programmazione GPU con OpenMP 35

3.2.1 Gerarchia di parallelismo 36

3.2.2 Mapping dei dati . 37

3.3 Strategia di parallelismo adottata 38

3.4 Implementazione . 40

3.4.1 Caratteristiche della versione ridotta 40

3.4.2 Inserimento delle direttive 42

3.4.3 Refactoring del codice 47

3.4.4 Compilazione . 50

3.5 Esecuzione del codice e debugging 51

4 Conclusioni 55

4.1 Considerazioni sui risultati ottenuti 55

4.2 Sviluppi futuri . 57

4.2.1 Valutazione delle prestazioni del codice CPU 57

4.2.2 Versione GPU . 57

A Lavorare nell’ambiente di Leonardo 61

A.1 Cenni sull’architettura di Leonardo 61

A.2 Utilizzo del file system . 62

A.3 Scheduler e creazione di job 64

A.4 Gestione dei moduli . 67

A.5 Consumo delle risorse . 68

Bibliografia 72

Capitolo 1

Introduzione

I raggi cosmici sono particelle che si muovono nello spazio interstellare a

velocità molto elevate, prossime a quella della luce. Queste particelle rico-

prono un ruolo fondamentale nell’evoluzione delle galassie, in quanto, lungo

il loro percorso, interagiscono continuamente con i vari corpi celesti che le

compongono. Il loro studio ci consente quindi di far luce su diversi inter-

rogativi riguardo i fenomeni che accadono nell’Universo e gli oggetti in essi

coinvolti. Negli anni, sono state proposte diverse teorie riguardo gli oggetti

astronomici che possono essere in grado di produrre i raggi cosmici: dal no-

stro Sole, ai resti di supernova, o “supernova remnants”, fino ai buchi neri

supermassivi che si trovano al centro delle galassie. Per cercare di verificare

queste teorie e studiare i fenomeni ad esse correlati, sono stati realizzati di-

versi tipi di strumenti di osservazione, come telescopi e satelliti, che hanno

consentito di osservare i raggi cosmici sia direttamente, grazie alla rivelazione

delle particelle che li compongono, sia indirettamente attraverso le particelle

secondarie e le radiazioni da essi prodotte. Le sole osservazioni, tuttavia, non

consentono ancora di ottenere una quantità di dati sufficiente ad analizzare

tali fenomeni in modo esaustivo. Inoltre, la verifica sperimentale dei modelli

che descrivono la formazione dei raggi cosmici non può essere effettuata in

laboratorio, in quanto i processi analizzati coinvolgono oggetti astronomici

di grandi dimensioni, come i cluster di galassie, il cui comportamento non

1

2 1. Introduzione

è replicabile su scale ridotte. Questo è il motivo per cui, oltre a cercare di

ottenere osservazioni di qualità sempre più elevata, si ricorre a simulazioni

che consentono di ricreare i fenomeni ritenuti responsabili della formazione

dei raggi cosmici.

1.1 I raggi cosmici e la loro origine

Le particelle che compongono i raggi cosmici sono di varia natura. La

maggior parte dei raggi cosmici è formata da nuclei di atomi altamente io-

nizzati e carichi positivamente. Molti di questi sono semplici protoni prove-

nienti da atomi di idrogeno, ma in percentuali minori si hanno anche nuclei

più pesanti, dall’elio fino al piombo. Meno comunemente, tra i raggi cosmi-

ci si osservano anche altri tipi di particelle subatomiche, come gli elettroni,

aventi carica negativa, e i positroni. L’energia di queste particelle, espres-

sa in elettronvolt (eV), è generalmente molto elevata, ma può variare in un

intervallo molto ampio, che va da decine di MeV fino a quasi un ZeV [6].

Sin dalla loro scoperta, si è cercato di identificare le possibili origini dei

raggi cosmici. Già da tempo, il nostro Sole è stato identificato come fonte di

raggi cosmici ad energia relativamente ridotta, pari ad un centinaio di MeV.

Queste particelle sono denominate SAP (Solar Energetic Particles), e vengo-

no rilasciate nel corso delle tempeste solari. Non è ancora del tutto chiaro,

invece, come vengano prodotti i raggi cosmici con livelli di energia più eleva-

ti, dell’ordine dei GeV o PeV, che si originano al di fuori del nostro sistema

solare e prendono il nome di “raggi cosmici galattici”. Una volta rilasciati

dalla loro fonte, i raggi cosmici galattici viaggiano nello spazio interstellare,

che ha una densità di materia molto bassa, ed essendo carichi vengono de-

viati dai campi magnetici al suo interno. L’influenza del campo magnetico

sulla loro traiettoria rende difficile risalire in modo diretto all’origine di que-

ste particelle, ed è uno dei motivi per cui tutt’ora si è incerti sui fenomeni

responsabili della loro formazione. Le teorie più accreditate fanno risalire

l’origine dei raggi cosmici a due tipi di oggetti che si trovano nell’Universo:

1.1 I raggi cosmici e la loro origine 3

i resti di supernova, o “supernova remnants” [1], e i buchi neri supermassi-

vi che si trovano al centro delle galassie, detti anche AGN (Active Galactic

Nuclei) [4]. Entrambi, infatti, soddisfano i requisiti di energia necessari per

la produzione dei raggi cosmici, ma mentre i supernova remnants riescono a

produrre particelle con energia pari al massimo ad un PeV, gli AGN sono in

grado di emettere protoni ed elettroni aventi un’energia ancora più elevata.

Il comportamento di questi oggetti astronomici può essere modellato con

tre processi principali:

• Collasso Gravitazionale.

• Shock Acceleration.

• Emissione di radiazione di sincrotrone.

Il Collasso Gravitazionale è un processo che converte l’energia gravitazionale

in energia termica e cinetica, provocando l’aggregazione di oggetti di pic-

cole dimensioni in strutture aventi una massa e un’energia più elevata. In

particolare, durante questo processo, la forza gravitazionale che agisce su un

oggetto astronomico di grandi dimensioni ne provoca la compressione verso il

proprio centro di gravità. Il collasso gravitazionale è fondamentale nell’evo-

luzione dell’Universo, ed è responsabile, tra le altre cose, della formazione di

supernovae e buchi neri. Inoltre, può portare all’emissione di grandi quantità

di energia sotto forma di “shock”, delle “onde d’urto” che si muovono nello

spazio interstellare, e si osservano anche in corrispondenza di supernovae e

AGN.

La Shock Acceleration è il processo che porta all’accelerazione di ioni ed

elettroni, a partire dall’energia generata durante uno shock. In particolare,

durante lo spostamento di uno shock nello spazio interstellare, le particelle

che si trovano al suo interno attraversano ripetutamente i campi magnetici

che si formano in corrispondenza del piano dello shock, subendo un’accele-

razione. Queste particelle si muovono da una parte all’altra del piano dello

shock con oscillazioni sempre più consistenti, e quando la quantità di energia

4 1. Introduzione

in esse contenute è sufficiente, vengono espulse dalla regione di accelerazione

e diventano raggi cosmici.

L’emissione di radiazione di sincrotrone, infine, descrive il fenomeno per

cui una particella carica con energia relativistica che si trova in un campo

magnetico emette una certa quantità di radiazioni. Queste radiazioni possono

essere emesse in una varietà di lunghezze d’onda, tra cui quelle di onde radio,

raggi X e raggi gamma. L’insieme di frequenze in cui vengono emesse tali

radiazioni costituisce lo spettro di emissione della particella.

Per quanto riguarda le supernovae, esse si formano quando stelle di massa

molto elevata raggiungono la fine del loro ciclo vitale. Solitamente, ciò accade

una volta che la stella è arrivata a produrre, all’interno del suo nucleo, degli

atomi di ferro. Il ferro, infatti, è uno degli elementi più stabili nell’universo,

e la sua fusione richiede una quantità di energia più elevata di quella che

sprigiona. Dunque, una volta che il nucleo della stella contiene una quantità

elevata di ferro, la reazione termonucleare si ferma, e la stella subisce un col-

lasso gravitazionale, in cui tutto il materiale di cui è composta viene attirato

verso il nucleo. Questo evento dà origine alla supernova, un’esplosione che

provoca la formazione di shock nella regione che circonda la stella. Gli shock

generati costituiscono i supernova remnants, che continuano a muoversi nello

spazio interstellare.

I buchi neri supermassivi che costituiscono gli AGN si formano in un

processo simile a quello delle supernovae, in cui il collasso gravitazionale

provoca la concentrazione di una massa enorme in un volume molto piccolo.

La forte attrazione gravitazionale di questi buchi neri fa s̀ı che essi siano

circondati da un’elevata quantità di materiale, che si dispone in strutture

dette dischi di accrescimento. Parte del materiale viene, inoltre, espulso

dagli AGN in getti che si muovono lungo gli assi di rotazione dei dischi.

È in corrispondenza di questi dischi e getti che si ritiene che le particelle

vengano accelerate a velocità estremamente elevate, fino a raggiungere livelli

di energia superiori ad un PeV.

1.2 Osservazioni astronomiche 5

1.2 Osservazioni astronomiche

La scoperta dei raggi cosmici risale al 1912, quando Victor Hess osservò,

tramite una serie di esperimenti condotti con dei palloni aerostatici, che il

livello di radiazioni ionizzanti rilevate nell’atmosfera aumenta man mano che

si sale di altitudine, e non diminuisce né durante la notte, né durante un’eclissi

solare. Tale risultato dimostrava che il livello di radiazioni nell’atmosfera

terrestre è dovuto non solo alla radioattività della Terra o all’attività del

Sole, ma anche ad una sorgente che si trova al di fuori del nostro Sistema

Solare. Da allora, sono state condotte numerose osservazioni con l’obiettivo

di analizzare le caratteristiche dei raggi cosmici e risalire alla loro origine.

Lo scopo delle osservazioni è ricavare una serie di dati utili per lo studio di

queste particelle, tra cui:

• La loro composizione.

• Lo spettro di energia.

• La direzione di provenienza.

Lo spettro di energia descrive, per ogni livello energetico, il flusso di raggi

cosmici, cioè il numero di particelle che transitano in una certa area nell’unità

di tempo. Questa misura ci consente di capire la quantità di raggi cosmici

che si possono rilevare in un arco di tempo, a seconda della loro energia.

La maggior parte delle osservazioni che si effettuano per lo studio dei raggi

cosmici è basata sulla rilevazione delle radiazioni emesse da queste particelle

quando si trovano all’interno di un campo magnetico. Le osservazioni di que-

sto tipo consentono di osservare gli oggetti astronomici su diverse lunghezze

d’onda, in particolare quelle della luce visibile e quelle di onde radio, raggi

X e raggi gamma, e pur non concentrandosi direttamente sui raggi cosmici,

sono fondamentali per studiare i fenomeni che li producono. Queste osser-

vazioni sono inoltre complementate da tecniche che consentono di rilevare i

raggi cosmici nel momento in cui interagiscono con la Terra. Le tecniche di

rilevazione dei raggi cosmici sono distinte in due classi:

6 1. Introduzione

• Osservazioni dirette.

• Osservazioni indirette.

1.2.1 Osservazioni dirette

Le osservazioni dirette sfruttano le interazioni dei raggi cosmici all’inter-

no dei rivelatori di particelle, come gli spettrometri e i calorimetri. Questi

strumenti hanno la necessità di interagire con i raggi cosmici prima che essi

entrino in contatto con l’atmosfera, e per questo motivo le osservazioni dirette

sono solitamente condotte tramite esperimenti posti su satelliti, stazioni spa-

ziali orbitanti come la ISS (International Space Station), o palloni aerostatici

che raggiungono altitudini molto elevate. Gli esperimenti di questo tipo sono

soggetti a diversi vincoli tecnici, legati al fatto che gli oggetti inviati in orbita

o caricati su palloni aerostatici non possono avere un volume e una massa

troppo eccessivi. Ciò limita la superficie di rivelazione a disposizione degli

strumenti utilizzati, impedendo di rilevare i raggi cosmici con flusso ridotto.

Infatti, minore è il flusso dei raggi cosmici ad una certa energia, maggiore è la

superficie di rivelazione necessaria per individuarli. In generale, il flusso dei

raggi cosmici diminuisce all’aumentare della loro energia, e di conseguenza le

osservazioni dirette consentono di osservare solo le particelle con un’energia

minore di 100 TeV, che giungono sulla Terra in maggiori quantità. I raggi

cosmici osservati al di sotto di questo livello energetico provengono dalla Via

Lattea, e quindi sono detti di origine galattica.

1.2.2 Osservazioni indirette

Quando i raggi cosmici entrano nell’atmosfera terrestre, collidono con

i nuclei di aria al suo interno, generando sciami di particelle secondarie che

prendono il nome di Extensive Air Showers (EAS). Le EAS sono costituite da

milioni o miliardi di particelle che si muovono “a cascata” nell’atmosfera e si

formano a partire da una singola particella primaria. In particolare, quando

un raggio cosmico collide con un nucleo di aria, l’interazione genera fino a

1.2 Osservazioni astronomiche 7

diverse centinaia di particelle secondarie. Ognuna di queste può poi decadere

in un altro tipo di particella oppure continuare ad interagire, dando origine ad

ulteriori particelle che contribuiscono a loro volta alla crescita esponenziale

dell’EAS. Tra i tipi di particelle che si formano in questo processo si hanno

pioni, muoni, adroni e neutrini. In Figura 1.1 è mostrato uno schema che

illustra questo processo.

Figura 1.1: Schema che mostra la formazione di un EAS a partire da una
particella primaria. Fonte: [5].

Le osservazioni indirette si basano sulla rilevazione di queste particelle

secondarie mediante strumenti come i rivelatori di Cherenkov e gli scintillato-

ri. Queste osservazioni sono condotte in esperimenti effettuati sulla superficie

terrestre oppure in laboratori sotterranei, e consentono di rilevare anche i rag-

gi cosmici a più alta energia, come gli UHECRs (Ultra-High Energy Cosmic

Rays), aventi un’energia superiore ad un EeV. Infatti, in questi esperimenti

il flusso ridotto dei raggi cosmici più energetici è compensato dall’utilizzo

di array di rivelatori di particelle che agiscono su un’area molto ampia. Le

8 1. Introduzione

osservazioni indirette consentono quindi di osservare anche i raggi cosmici di

origine extragalattica.

Da decenni, i raggi cosmici ad alta energia vengono rilevati regolarmente

grazie a queste tecniche, ma il loro studio rimane complicato, soprattutto

per quanto riguarda la direzione di provenienza. Infatti, essendo che i rag-

gi cosmici di origine extragalattica vengono rilevati tramite le EAS, le loro

proprietà possono essere ricavate solo indirettamente a partire dalle carat-

teristiche delle particelle secondarie da essi originate. Inoltre, a causa delle

deviazioni dovute ai campi magnetici, la loro direzione di arrivo non può

essere determinata in modo certo.

1.3 Simulare i raggi cosmici

Nell’astrofisica moderna, i metodi di osservazione appena illustrati sono

affiancati da simulazioni che riproducono il verificarsi di fenomeni astrono-

mici su larga scala, altrimenti impossibili da replicare in un laboratorio. Ciò

facilità l’applicazione di un’approccio sperimentale allo studio dei raggi co-

smici, consentendo un’analisi più approfondita dei processi che coinvolgono

queste particelle.

Le simulazioni utilizzate in tale ambito hanno lo scopo di modellare il

comportamento dei cluster di galassie: oggetti di grandi dimensioni aventi

una massa pari a 1014 o 1015 volte quella del Sole e costituiti da un insie-

me di galassie legate tra loro dall’attrazione gravitazionale. L’evoluzione nel

tempo dei cluster di galassie viene modellata sfruttando i processi di collasso

gravitazionale, shock acceleration ed emissione di radiazione di sincrotrone

descritti in precedenza. L’utilizzo delle simulazioni consente quindi di ri-

creare computazionalmente le condizioni che determinano la produzione e

l’emissione di raggi cosmici all’interno di questi enormi oggetti astronomici.

A partire dai cluster simulati, è poi possibile generare osservazioni ottiche,

radio, a raggi X o a raggi gamma, che possono essere confrontate con le os-

servazioni astronomiche reali per verificare la correttezza dei modelli teorici

1.3 Simulare i raggi cosmici 9

e quantificare i parametri in essi utilizzati. La Figura 1.2 mostra i risultati

che si possono ottenere da una di queste simulazioni.

Figura 1.2: Risultati di una simulazione idrodinamica di cluster di galassie. A
sinistra, 6 proiezioni che mostrano la densità dei gas all’interno delle galassie
simulate. A destra, le corrispondenti osservazioni radio. Fonte: Nishiwaki et
al. (in prep.).

La modellazione dei cluster di galassie si basa su diversi tipi di schemi nu-

merici, a seconda del tipo di interazioni considerate. In particolare, si hanno

due tipi di modelli: quelli che si concentrano sulla forza gravitazionale e quelli

che considerano le forze idrodinamiche. Per quanto riguarda le simulazioni

idrodinamiche, esse si distinguono a loro volta in due tipi di approcci [2]:

• I metodi senza griglia, o Lagrangiani, che modellano i cluster sfrut-

tando il movimento nello spazio di particelle Lagrangiane, dette anche

traccianti.

• I metodi a griglia, o Euleriani, che suddividono lo spazio in celle all’in-

terno delle quali viene calcolata l’evoluzione degli elementi del cluster.

I metodi Lagrangiani hanno il vantaggio di non essere legati ad una rappre-

sentazione a griglia, e quindi consentono di ottenere una risoluzione spaziale

molto più elevata rispetto ai metodi Euleriani. Inoltre, a differenza, dei me-

todi a griglia, i metodi Lagrangiani consentono di tracciare il movimento

di ogni singola particella nella simulazione. D’altra parte, in genere questi

metodi comportano una qualità più bassa dal punto di vista dei fenomeni

fisici simulati, mentre quelli Euleriani risultano più accurati. Solitamente,

10 1. Introduzione

quindi, i metodi Euleriani sono utilizzati in simulazioni su scala più ampia

che richiedono un minor livello di dettaglio, ma una maggiore accuratezza a

livello fisico, mentre quelli Lagrangiani sono utilizzati nelle situazioni in cui

è richiesta una risoluzione spaziale elevata, e vengono applicati a casi più ri-

stretti come cluster di piccole dimensioni o porzioni di essi. Più recentemente

è stata introdotta la tecnologia dell’Adaptive Mesh Refinement (AMR), che

consente di aumentare il livello di dettaglio dei metodi Euleriani senza com-

portare un maggior costo computazionale. L’AMR si basa infatti su celle a

dimensione variabile, che consentono di avere una griglia a grana più fine nelle

aree della simulazione con maggiore densità, in cui è richiesta una risoluzione

più alta, e a grana più grossa nelle aree a minore densità. Questa tecnica

consente quindi di risparmiare risorse computazionali, in quanto effettua un

campionamento dettagliato solo delle parti più “interessanti” della simulazio-

ne. Tuttavia, l’AMR presenta alcuni svantaggi legati al fatto che la gestione

della griglia adattiva è complessa, e le simulazioni presentano delle inaccura-

tezze nelle interfacce tra porzioni di griglia a diversa risoluzione. Inoltre, le

simulazioni AMR sono difficili da parallelizzare, e di conseguenza soffrono di

una scarsa scalabilità. Nonostante abbia portato diversi vantaggi all’approc-

cio a griglia, quindi, l’introduzione dell’AMR non ha sostituito l’utilizzo dei

metodi Lagrangiani, che in determinati casi sono preferibili rispetto a quelli

Euleriani.

Per consentire lo studio dei raggi cosmici, nei metodi di simulazione illu-

strati è necessario integrare dei modelli che riproducono l’emissione di queste

particelle da parte dei cluster di galassie. Rappresentare l’evoluzione dei clu-

ster e l’emissione di raggi cosmici in un unico modello, tuttavia, è complesso,

e molte simulazioni non lo supportano. In questi casi, quindi, si divide il

processo di simulazione in due fasi, che per i metodi Lagrangiani sono:

1. Una prima simulazione che calcola l’evoluzione dei cluster nel tempo,

in base alle caratteristiche fisiche di ogni tracciante.

2. Un’operazione di post-processing che, per ogni istante di tempo del-

la simulazione, calcola la quantità di raggi cosmici emessi da ogni

1.3 Simulare i raggi cosmici 11

tracciante, generando un’osservazione simulata.

In questa tesi, ci si focalizza sulla seconda fase, implementata dal codice di

riferimento considerato.

1.3.1 L’equazione di Fokker-Planck per il calcolo dello

spettro

L’emissione di raggi cosmici e radiazioni di sincrotrone da parte delle

particelle traccianti può essere descritto come un processo di diffusione at-

traverso l’equazione di Fokker-Planck [7]. La risoluzione di questa equazione

ci consente di calcolare lo spettro di emissione delle particelle traccianti della

simulazione, generando dei dati osservabili che, se confrontati con le effet-

tive osservazioni astronomiche, consentono di stimare con più accuratezza i

parametri legati al fenomeno diffusivo. In questo modo, è possibile ottenere

una maggior comprensione della natura dei processi di accelerazione dei raggi

cosmici.

Per evitare ambiguità, nel resto di questa tesi verrà usato il termine “rag-

gio cosmico” per fare riferimento ad una particella emessa durante il proces-

so di diffusione e il termine “particella” per riferirsi ad un tracciante nella

simulazione idrodinamica.

L’equazione è espressa in funzione di due variabili: il tempo t e la variabile

x, che può rappresentare l’energia oppure la quantità di moto. L’equazione

per il calcolo dello spettro delle particelle è la seguente:

du

dt
=

1

A(x)

d

dx

(
C(x)

du

dx
+B(x)u

)
− u

T (x)
+Q(x) (1.1)

dove u corrisponde alla funzione u(x, t), e u(x, t)A(x) dx descrive il numero

di raggi cosmici emessi nell’intervallo [x, x+dx] al tempo t. A(x) rappresenta

il fattore di fase, e il suo valore dipende dal significato della variabile x. In

particolare, A(x) è pari a 1 se x rappresenta l’energia, e 4πx2 se x rappre-

12 1. Introduzione

senta la quantità di moto. B(x), C(x), T (x) e Q(x), invece, sono coefficienti

determinati dalle condizioni fisiche di ciascuna particella. In particolare:

• C(x) è il coefficiente di diffusione.

• B(x) è il coefficiente di avvezione, che esprime la tendenza dei raggi

cosmici a subire una deriva verso l’alto o verso il basso.

• T (x) è il tasso di fuga dei raggi cosmici, che descrive il tempo necessario

affinché un raggio cosmico con una certa energia venga rilasciato dalla

sorgente.

• Q(x) è il tasso di iniezione dei raggi cosmici, che descrive il tempo

impiegato da ioni ed elettroni per raggiungere un’energia sufficiente a

diventare raggi cosmici e partecipare nel processo di diffusione.

Nella formulazione di Fokker-Planck mostrata nell’equazione 1.1, questi coef-

ficienti non dipendono da t, ma solo da x, in quanto si assume che il tempo

in cui variano sia maggiore dell’intervallo di tempo considerato dal modello.

Inoltre, con x nell’intervallo [0,∞[, si assume che i coefficienti abbiano le

seguenti caratteristiche:

• A(x) e C(x) devono essere > 0.

• T (x) e Q(x) devono essere ≥ 0.

• B(x) può avere un valore qualsiasi nell’intervallo]−∞,∞[.

Il termine:

C(x)
du

dx
+B(x)u (1.2)

rappresenta il flusso di raggi cosmici, e si indica con F (x, t).

L’equazione 1.1 presenta delle singolarità per x = 0 e x = ∞, e ciò rende

problematico valutarla numericamente su tali valori di x. Per questo mo-

tivo, la soluzione dell’equazione viene svolta in un intervallo [x0, xM], dove

0 < x0 < xM < ∞, e sugli estremi x0 e xM si impongono delle opportune

1.3 Simulare i raggi cosmici 13

condizioni. In particolare, una condizione che fornisce una buona approssi-

mazione dei fenomeni fisici descritti dall’equazione è quella per cui il flusso

dev’essere nullo in questi due valori, cioè:

F (x0, t) = F (xM , t) = 0 (1.3)

Il vantaggio di questa condizione è il fatto che, rispetto alla rappresentazione

che considera l’intervallo [0,∞[, mantiene inalterato il numero complessivo

di raggi cosmici emessi al tempo t, espresso come:

N(t) =

∫ ∞

0

A(x) dxu(x, t) (1.4)

1.3.2 Il metodo di Chang-Cooper

Il metodo di Chang-Cooper è un metodo numerico di risoluzione dell’e-

quazione di Fokker-Planck che appartiene alla classe degli schemi a differenze

finite [3]. Per poter risolvere numericamente l’equazione di Fokker-Planck, i

metodi di questa classe operano una discretizzazione dei valori di t e x. In

particolare, l’intervallo di tempo è diviso in vari timestep, dove il timestep

con indice n è indicato come tn, mentre l’intervallo [x0, xM] è diviso in M +1

punti indicati come xm, dove l’indice m va da 0 a M . A ciascun punto xm

corrisponde un intervallo di energia o quantità di moto, che prende il nome

di “bin”. Questa classe di metodi prevede di risolvere l’equazione per ogni

singolo timestep, calcolando la soluzione al timestep tn+1 a partire da quella

calcolata per tn. La risoluzione ad un certo timestep consiste nel calcolare il

numero di raggi cosmici emessi per ogni bin.

L’intervallo di tempo tra due timestep è indicato come:

∆t = tn+1 − tn (1.5)

e non è costante al variare di n, quindi dev’essere calcolato per ogni coppia

di timestep.

14 1. Introduzione

Il punto medio tra due punti su x è individuato dalla semplice media

aritmetica:

xm+1/2 = (xm+1 + xm)/2 (1.6)

La definizione del punto medio ci consente di definire l’ampiezza del bin

corrispondente ad ogni punto xm. Tale ampiezza è espressa come:

∆xm = (xm+1 − xm−1)/2 (1.7)

Per i coefficienti che dipendono solo da x, si utilizza la notazione:

Am = A(xm) (1.8)

mentre per i termini che dipendono sia da x che da t, si scrive:

un
m = u(xm, tn) (1.9)

In base a questa notazione, l’equazione di Fokker-Planck può essere di-

scretizzata nel modo seguente:

un+1
m − un

m

∆t
=

1

Am

F n+1
m+1/2 − F n+1

m−1/2

∆xm

− un+1
m

Tm

+Qm (1.10)

per ogni m = 0, . . . ,M , dove F n+1
m+1/2 = (F n+1

m + F n+1
m+1)/2.

I diversi schemi a differenze finite si distinguono in base al modo in cui

definiscono il flusso al timestep successivo, cioè F n+1
m . In ognuno di essi,

sostituendo il flusso nell’equazione di Fokker-Planck discretizzata, si ottiene

un sistema tridiagonale di equazioni lineari, che può essere scritto come:{
−amu

n+1
m−1 + bmum

n + 1− cmu
n+1
m+1 = rm

a0 = cM = 0
(1.11)

dove rm è una funzione di un
m. Questo sistema può essere risolto tramite un

algoritmo di eliminazione Gaussiana con sostituzione all’indietro, che per i

1.3 Simulare i raggi cosmici 15

sistemi tridiagonali presenta una variante efficiente avente una complessità

di O(M) invece che O(M3) [8].

In particolare, il metodo di Chang-Cooper definisce una discretizzazione

del flusso che considera per il termine C(x) una differenza centrata tra un+1
m+1

e un+1
m , e per il termine B(x) una differenza pesata in base ad un termine δm.

L’equazione del flusso è quindi la seguente:

F n+1
m+1/2 = Bm+1/2[(1− δm+1/2)u

n+1
m+1 + δm+1/2u

n+1
m] + Cm+1/2

un+1
m+1 − un+1

m

∆xm+1/2

(1.12)

dove ∆xm+1/2 = xm+1 − xm, e δm+1/2 è definito come:

δm+1/2 =
1

wm+1/2

− 1

exp(wm+1/2)− 1
(1.13)

con:

wm+1/2 =
Bm+1/2

Cm+1/2

∆xm+1/2 (1.14)

Questa formulazione, con qualche aggiustamento per adattarla all’aritmetica

a virgola mobile, fornisce un metodo accurato e numericamente stabile per

il calcolo dello spettro, consentendone l’utilizzo in applicazioni pratiche che

richiedono un’elevata precisione nella risoluzione di Fokker-Planck su molti

ordini di grandezza di x [7].

Capitolo 2

Codice di riferimento

Il codice considerato in questa tesi si inserisce nel contesto di una simula-

zione idrodinamica di cluster di galassie basata su un metodo Lagrangiano.

In particolare, l’obiettivo del codice è implementare l’operazione di post-

processing che consente di calcolare la quantità di raggi cosmici e radiazioni

emesse da ogni particella della simulazione. Questa operazione è necessaria

in quanto la simulazione idrodinamica non supporta le computazioni con i

raggi cosmici. Tale simulazione calcola l’evoluzione delle galassie su diversi

timestep, e per ciascuno di essi restituisce in output le caratteristiche fisiche

di ogni particella. Per ciascuna particella, il codice di riferimento calcola lo

spettro di emissione risolvendo l’equazione di Fokker-Planck su tutti i time-

step della simulazione. La risoluzione di Fokker-Planck è svolta sfruttando il

metodo di Chang-Cooper, e considerando x come la quantità di moto. Per

questo motivo, i bin su x prendono il nome di “momentum bin”.

2.1 Caratteristiche

Il codice è scritto in linguaggio C, e si compone di diversi moduli che

implementano le funzioni matematiche per il calcolo dello spettro delle par-

ticelle.

17

18 2. Codice di riferimento

2.1.1 Input

I dati di input derivati dalla simulazione iniziale si trovano in formato

HDF5, che prevede un’organizzazione gerarchica dei dati ed è particolar-

mente adatto per memorizzare dataset di grandi dimensioni. Ogni file di

input contiene le informazioni sullo stato della simulazione in uno specifico

istante di tempo. In particolare, in ogni file sono memorizzati una serie di

array monodimensionali, ognuno dei quali contiene i valori di una determi-

nata grandezza fisica per tutte le particelle della simulazione. Alcune delle

grandezze fisiche considerate sono temperatura, densità di massa e velocità.

Oltre ai file contenenti i dati da elaborare, l’input del programma si com-

pone di un file di configurazione in formato testuale, che consente di gestire

diversi aspetti legati all’esecuzione del codice. I parametri presenti in tale

file comprendono:

• Il percorso in cui si trovano i file di input.

• Il percorso in cui memorizzare i file di output.

• Il numero di particelle nella simulazione.

• Gli istanti di tempo (o timestep) iniziali e finali della simulazione.

• Una serie di parametri che configurano il modello matematico.

• Una serie di parametri legati al parallelismo, tra cui il numero di thread

OpenMP.

2.1.2 Output

L’output del programma è costituito da tre array tridimensionali che con-

tengono i dati relativi agli spettri di emissione delle particelle per quanto ri-

guarda elettroni, protoni e radiazione di sincrotrone. Le tre dimensioni degli

array sono:

• Indice della particella.

2.1 Caratteristiche 19

• Istante di tempo.

• Momentum bin.

Quindi, in ogni elemento di uno di questi array è memorizzata la quantità di

raggi cosmici o radiazioni emesse da una data particella, in un dato istante

di tempo e ad un certo momentum bin. Il numero di bin, corrispondente al

parametro M del metodo di Chang-Cooper, è costante, e pari a 128, mentre

il numero di particelle e istanti di tempo varia a seconda della simulazione. I

dati contenuti nei tre array di output vengono salvati in altrettanti file in for-

mato binario. Per ottimizzare i tempi di elaborazione e scrittura, gli array di

output vengono in realtà gestiti come array bidimensionali, ricavati unendo

due degli assi originali in uno solo. In questa rappresentazione, l’asse delle

righe corrisponde all’indice della particella, mentre l’asse delle colonne è in-

dicizzato moltiplicando l’istante di tempo per il bin. Di conseguenza, l’array

finale contiene una riga per ogni particella, e in ogni riga sono memorizzati

gruppi di 128 valori, ognuno contenente le informazioni su tutti i bin in un

dato istante di tempo. Quindi, le prime 128 celle corrispondono allo spettro

nell’istante iniziale, le seguenti 128 contengono lo spettro nell’istante succes-

sivo, e cos̀ı via. In Figura 2.1 è mostrata una rappresentazione schematica

della struttura degli array di output.

Figura 2.1: Struttura degli array di output.

20 2. Codice di riferimento

2.1.3 Algoritmo e complessità

Per agevolare le spiegazioni riportate nei paragrafi seguenti, introduciamo

la seguente notazione:

N numero di particelle nella simulazione.

ti istante di tempo iniziale della simulazione.

tf istante di tempo finale della simulazione.

Nt numero di timestep nella simulazione. I timestep considerati sono una

discretizzazione dell’intervallo [ti, tf].

In fase di lettura, i dati presenti nei file di input vengono memorizzati in

una serie di array bidimensionali, uno per ogni grandezza fisica. Ogni array

contiene un numero di righe pari al numero di timestep nella simulazione

e un numero di colonne pari al numero di particelle. Di conseguenza, la

computazione effettuata dal programma viene svolta su una serie di matrici

bidimensionali, la cui dimensione è pari a Nt × N . La Figura 2.2 mostra la

struttura degli array appena descritti.

Figura 2.2: Struttura degli array bidimensionali utilizzati durante le compu-
tazioni.

2.1 Caratteristiche 21

La struttura generale dell’algoritmo per il calcolo dello spettro di emis-

sione delle particelle è la seguente:

for i := 0 to N − 1 do

Inizializza lo spettro iniziale per la particella i

Normalizza lo spettro iniziale per i

for j := 0 to Nt − 1 do

Imposta i coefficienti di Chang-Cooper per particella i e timestep j

Applica Chang-Cooper per i e j

Il ciclo esterno itera su tutte le particelle, mentre il ciclo interno calcola lo

spettro di emissione di una specifica particella per ogni timestep. Il codice

deve quindi risolvere un’equazione di Fokker-Planck per ogni iterazione del

ciclo interno. Le computazioni svolte nel corpo di tale ciclo, che applicano

il metodo di Chang-Cooper risolvendo il relativo sistema tridiagonale me-

diante eliminazione Gaussiana, sono quelle più onerose per quanto riguarda

il carico di lavoro. Tuttavia, sia le fasi di inizializzazione e normalizzazione

dello spettro iniziale che quelle di risoluzione dell’equazione di Fokker-Planck

hanno una complessità espressa in funzione di M , che essendo costante non

dipende dalla dimensione del problema. La complessità asintotica dell’algo-

ritmo corrisponde quindi a Θ(N ×Nt). Ciò è dovuto al fatto che per ognuna

delle N particelle è necessario eseguire Nt volte il calcolo dello spettro in uno

specifico timestep. Le operazioni svolte all’interno dei cicli non pesano sulla

complessità asintotica perché la loro complessità è costante.

22 2. Codice di riferimento

2.1.4 Parallelismo

Nel codice di riferimento sono implementati due tipi di parallelismo CPU,

grazie all’utilizzo di apposite librerie per il calcolo parallelo. Infatti, il codice

sfrutta sia il parallelismo a memoria condivisa offerta da OpenMP, sia il

parallelismo a memoria distribuita di MPI.

Il parallelismo di OpenMP prevede che le unità di esecuzione siano co-

stituite da thread che fanno parte di un unico processo e che condividono

un unico spazio di memoria in cui immagazzinare i dati. La condivisione

della memoria consente ai vari thread di comunicare tra loro sfruttando delle

variabili globali, e quindi lo scambio di informazioni avviene in modo rapido

e relativamente semplice.

MPI, invece, è utilizzato su architetture a memoria distribuita, in cui le

unità di esecuzione sono spesso costituite da dispositivi connessi per mezzo

di una rete. In MPI, l’esecuzione del codice avviene su più processi diver-

si, ognuno avente un proprio spazio di memoria separato rispetto agli altri.

L’assenza di uno spazio di memoria condiviso impedisce l’utilizzo di varia-

bili globali, e comporta la necessità di gestire la comunicazione tra processi

mediante lo scambio esplicito di messaggi. Ciò rende le operazioni di co-

municazione più costose in termini di prestazioni, ma consente di sfruttare

contemporaneamente la potenza di calcolo di più dispositivi.

Attraverso i parametri del file di configurazione, è possibile specificare

quale tipo di parallelismo utilizzare, e si ha anche la possibilità di usarli in

combinazione per ottenere un ulteriore speedup.

La strategia di suddivisione del carico di lavoro utilizzata dai due tipi

di parallelismo è molto simile: sia nel caso MPI che nel caso OpenMP, le

particelle da elaborare sono equamente distribuite tra le varie unità di esecu-

zione disponibili. Ogni unità di esecuzione, dunque, svolge le computazioni

sul proprio sottoinsieme di particelle. Questa suddivisione è resa possibile

dal fatto che il calcolo dello spettro sulle diverse particelle è embarassingly

parallel, e ciò vuol dire che ogni particella può essere elaborata in modo in-

dipendente rispetto alle altre. La differenza tra i due tipi di parallelismo

2.2 Test iniziali 23

implementati nel codice di riferimento risiede, quindi, unicamente nel para-

digma di programmazione parallela adottato. Applicando in combinazione

OpenMP ed MPI, le particelle vengono suddivise dapprima tra i vari nodi

MPI, e successivamente tra i vari thread all’interno di ogni nodo.

2.2 Test iniziali

Per verificarne il corretto funzionamento, il codice di riferimento è stato

testato su due architetture differenti. In particolare, i test e la successiva

valutazione delle prestazioni sono stati effettuati sia su un PC convenzionale,

sia sul supercomputer Leonardo, messo a disposizione dal CINECA. In Ta-

bella 2.1 sono riportate le caratteristiche hardware di entrambe le macchine.

Le specifiche di Leonardo sono relative ad un singolo nodo della partizione

Booster, dotata di GPU. Le GPU usate da Leonardo utilizzano un chip ba-

sato sull’architettura Ampere A100 di Nvidia e leggermente modificato per

ottenere prestazioni migliori rispetto ad un A100 convenzionale [9].

PC Leonardo
Processore AMD Ryzen 7 3700X Intel Ice Lake Xeon

Platinum 8358
Frequenza di clock CPU 3.59 GHz 2.60 GHz
Numero di core fisici 8 32

GPU Nvidia GTX 1660 Super 4 x Nvidia Ampere
A100 custom

Tabella 2.1: Caratteristiche dell’hardware utilizzato

Per verificare la correttezza dei risultati sia in questa fase che in fase di

test del codice GPU, è stato realizzato un codice in linguaggio C che confron-

ta l’output di riferimento con l’output restituito dal programma. Il confronto

viene effettuato prendendo in considerazione una certa soglia di tolleranza:

se la differenza tra due valori è maggiore della tolleranza specificata, il codi-

ce segnala l’errore in un file di log. L’utilizzo di questa soglia di tolleranza

24 2. Codice di riferimento

consente di limitare il numero di falsi positivi dovuti agli errori di approssima-

zione dell’aritmetica discreta, che si possono verificare se si modifica l’ordine

delle operazioni oppure si effettuano test su architetture diverse. Per visua-

lizzare i risultati, è stato inoltre realizzato un codice in linguaggio Python

con l’obiettivo di mostrare in un grafico lo spettro di emissione di una o più

particelle in un determinato istante di tempo. I grafici sono stati realizzati

sfruttando il modulo matplotlib.pyplot. Il dataset di test, su cui sono state

anche valutate le prestazioni del programma CPU, comprende 5233 particel-

le, ti = 13 e tf = 113. Di conseguenza, la computazione viene svolta su Nt

= 100 timestep. Sebbene questo dataset abbia dimensioni ridotte rispetto ai

casi reali, il tempo di esecuzione del codice seriale su tutti i timestep risulta

piuttosto elevato (da 3 a 10 ore, a seconda dell’architettura). Per questo

motivo, i primi test di verifica sono stati effettuati limitando il numero di

timestep, in modo che su ogni particella venissero svolte poche iterazioni. Il

codice è stato testato prima sul PC, e successivamente su Leonardo. Do-

po aver verificato la correttezza sul caso ridotto, si è passati all’esecuzione

del codice sull’intero dataset, quindi impostando il timestep finale a 113.

Eseguendo il codice di visualizzazione dati sull’output, si ottengono i grafici

riportati in Figura 2.3, nei quali è mostrato lo spettro di emissione relativo

agli elettroni. I grafici sono rappresentati in scala logaritmica, e mostrano

come lo spettro descriva una legge di potenza, cioè una linea retta, che va

poi a decadere nei bin più alti. Questo è il risultato che ci aspettiamo di

osservare da questo tipo di simulazione.

2.2 Test iniziali 25

Figura 2.3: Grafici dello spettro di emissione di elettroni per tutte le particelle
del dataset in diversi istanti di tempo t (14, 50, 100 e 113). Nel grafico, n è
il numero di elettroni emessi, mentre p/mec rappresenta il momentum bin.
Ogni linea sul grafico descrive lo spettro di una singola particella.

26 2. Codice di riferimento

2.3 Valutazione delle prestazioni del codice

CPU

La valutazione delle prestazioni del codice di riferimento ha due obiettivi

principali:

• Valutare le prestazioni del parallelismo OpenMP, in modo da poterlo

successivamente confrontare con il parallelismo GPU.

• Confrontare l’efficienza dei due tipi di parallelismo già implementati

nel codice.

Come già detto, il parallelismo OpenMP e quello MPI operano la stessa

suddivisione del carico di lavoro, e ciò consente un confronto accurato tra

due diversi approcci di programmazione parallela. Le prestazioni del codice

sono state misurate in termini di speedup, strong scaling efficiency e weak

scaling efficiency.

Lo speedup è una misura che fornisce un criterio di confronto tra un’imple-

mentazione seriale e una parallela. In particolare, lo speedup con p processori,

indicato come S(p), si definisce nel modo seguente:

S(p) =
T (1)

T (p)
(2.1)

dove p è il numero di processori, T (1) è il tempo di esecuzione del program-

ma parallelo eseguito con un processore e T (p) è il tempo di esecuzione del

programma parallelo eseguito con p processori.

La strong scaling efficiency misura l’efficienza dell’implementazione paral-

lela all’aumentare del numero di processori utilizzati per risolvere lo stesso

problema. Il calcolo della strong scaling efficiency richiede quindi di mantene-

re fissa la dimensione del problema e aumentare progressivamente il numero

di unità di esecuzione. Il valore dell’efficienza per ogni misura effettuata

viene calcolato come:

E(p) =
S(p)

p
(2.2)

2.3 Valutazione delle prestazioni del codice CPU 27

La weak scaling efficiency, invece, misura l’efficienza del programma pa-

rallelo mantenendo costante il carico di lavoro svolto da ciascuna unità di

esecuzione. Per misurarla, dunque, è necessario definire un’unità di lavoro,

cioè la quantità di lavoro che dev’essere assegnata ad ogni processore, ed

effettuare le misure aumentando la dimensione del problema in modo pro-

porzionale al numero di unità di esecuzione. Il valore della weak scaling

efficiency viene poi ricavato nel modo seguente:

W (p) =
T1

Tp

(2.3)

Dove T1 è il tempo impiegato da un processore per eseguire una singola unità

di lavoro, e Tp è il tempo impiegato da p processori per eseguire p unità di

lavoro. I tempi di esecuzione sono stati misurati sul dataset di test già citato

in precedenza.

2.3.1 Speedup e strong scaling efficiency

Il calcolo di speedup e strong scaling efficiency è stato effettuato su due

diversi casi di test: il primo avente timestep finale pari a 14, quindi Nt = 1,

e il secondo con timestep finale pari a 113, che dunque considera il dataset

completo. Entrambi i casi di test sono stati eseguiti su tutte le 5233 particelle.

Per il primo caso di test, su entrambe le macchine riportate in Tabella 2.1,

sono state valutate sia le prestazioni di OpenMP, sia quelle di MPI. Per

poter svolgere la valutazione di MPI, l’output del codice è stato leggermente

modificato in modo da stampare il tempo di esecuzione medio tra i vari

nodi. Su Leonardo, le prestazioni di MPI sono state misurate aumentando

il numero di nodi fisici del cluster e allocando su ognuno di essi un solo core

fisico (quindi mantenendo OMP NUM THREADS = 1). Sul PC, invece, si

dispone di una sola CPU, quindi i nodi MPI corrispondono ai diversi core fisici

al suo interno. La Figura 2.4 riporta l’andamento di tempo di esecuzione,

speedup e strong scaling efficiency nel primo caso di test.

28 2. Codice di riferimento

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

p

T
(p
)
(s
)

Tempo di esecuzione

OpenMP PC
OpenMP Leonardo

MPI PC
MPI Leonardo

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

p

S
(p
)

Speedup

OpenMP PC
OpenMP Leonardo

MPI PC
MPI Leonardo

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

p

E
(p
)

Strong Scaling Efficieny

OpenMP PC
OpenMP Leonardo

MPI PC
MPI Leonardo

Figura 2.4: Tempo di esecuzione, speedup e strong scaling efficiency con
tf = 14. Nei grafici, p fa riferimento al numero di unità di esecuzione (core
per OpenMP, nodi per MPI), mentre T (p), S(p) e E(p) fanno riferimento
rispettivamente a tempo di esecuzione, speedup e strong scaling efficiency
con p unità. Il tempo di esecuzione è espresso in secondi (s).

Per il secondo caso di test, che costituisce il dataset completo, le presta-

zioni sono state valutate unicamente su Leonardo. In questo modo, è stato

possibile effettuare i test in un tempo ragionevole, sfruttando un grado di

parallelismo più elevato rispetto a quello offerto dalla CPU del PC. Anche in

questo caso sono state misurate sia le prestazioni di OpenMP che quelle di

MPI. Anche in questo caso sono state misurate sia le prestazioni di OpenMP

che quelle di MPI. Dato il numero relativamente elevato di core disponibili in

un nodo di Leonardo, si è scelto di aumentare le unità di esecuzione in modo

2.3 Valutazione delle prestazioni del codice CPU 29

esponenziale, via via raddoppiando il valore di p, fino ad un massimo di 32.

Per la valutazione con MPI, i test con 16 e 32 nodi sono stati effettuati su 8

nodi fisici lanciando più processi su ogni nodo. La scelta di limitare il numero

di nodi fisici a 8 è stata fatta per evitare di allocare una quantità eccessiva

di risorse del cluster. La Figura 2.5 mostra i risultati dei test eseguiti sul

dataset completo.

1 2 4 8 16 32
0

50

100

150

200

250

p

T
(p
)
(m

in
)

Tempo di esecuzione

OpenMP
MPI

1 2 4 8 16 32
0

5

10

15

20

25

p

S
(p
)

Speedup

OpenMP
MPI

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

p

E
(p
)

Strong Scaling Efficieny

OpenMP
MPI

Figura 2.5: Tempo di esecuzione, speedup e strong scaling efficiency del
codice eseguito sul dataset completo su Leonardo. In questo caso, il tempo
di esecuzione è espresso in minuti (min).

30 2. Codice di riferimento

2.3.2 Weak scaling efficiency

Il calcolo della weak scaling efficiency richiede di aumentare il carico di

lavoro dell’algoritmo in modo proporzionale al numero di unità di esecuzione.

Come già spiegato in precedenza, il costo computazionale dell’algoritmo può

essere definito come Θ(N × Nt); dunque, il carico di lavoro può essere mo-

dificato sia aumentando il numero di particelle considerate, sia aumentando

il numero di timestep su cui vengono svolte le computazioni. A causa delle

caratteristiche del codice, l’approccio più immediato è quello di mantenere

invariato il numero di particelle e aumentare il numero di timestep in modo

proporzionale. L’unità di lavoro scelta per effettuare i test corrisponde a tre

timestep per unità di esecuzione. Quindi, ad ogni unità di esecuzione è asse-

gnato un carico di lavoro costante pari a N × 3. La valutazione della weak

scaling efficiency è stata effettuata su Leonardo, confrontando le prestazioni

di OpenMP ed MPI. Inoltre, come nel caso precedente, le misure con 16 e

32 nodi MPI sono state effettuate allocando 8 nodi fisici con più processi per

ogni nodo. La Figura 2.6 mostra l’andamento della weak scaling efficiency

per entrambi i tipi di parallelismo.

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

p

W
(p
)

Weak Scaling Efficieny

OpenMP
MPI

Figura 2.6: Weak scaling efficiency del programma eseguito con OpenMP ed
MPI. Nel grafico, W (p) fa riferimento alla weak scaling efficiency con p unità
di esecuzione.

2.3 Valutazione delle prestazioni del codice CPU 31

2.3.3 Considerazioni

Dai risultati ottenuti nella fase di valutazione delle prestazioni, si evin-

ce che i due tipi di parallelismo implementati nel codice sono molto simili

per quanto riguarda l’efficienza. I test sul dataset completo, con Nt = 100,

mostrano in entrambi casi valori massimi di speedup superiori a 20. Inoltre,

osservando il grafico della strong scaling efficiency, si nota che l’andamento

dell’efficienza per i due tipi di parallelismo è quasi analogo, e l’unica differenza

significativa si riscontra nel caso con 32 unità di esecuzione, in cui il paral-

lelismo OpenMP risulta più efficiente rispetto a quello MPI. Questa perdita

di efficienza del parallelismo MPI nel caso con 32 nodi è legata all’overhead

causato dall’elevato numero di operazioni di comunicazione e sincronizzazione

necessarie per implementare il parallelismo a memoria distribuita. Per quan-

to riguarda la weak scaling efficiency, notiamo che l’andamento dell’efficienza

del parallelismo OpenMP risulta più lineare rispetto all’efficienza della ver-

sione MPI, soprattutto per valori intermedi di p (4 e 8). Tuttavia, nei test con

p = 32, possiamo notare come la weak scaling efficiency della versione MPI

sia leggermente superiore rispetto a quella della versione OpenMP. Quindi,

se si mantiene costante il carico di lavoro su ogni nodo, il parallelismo MPI

riesce a scalare leggermente meglio rispetto al parallelismo OpenMP. Osser-

vando i grafici di strong scaling e weak scaling efficiency nel caso Nt = 100, si

nota, inoltre, che per p = 2 l’efficienza è superiore a 1, indicando uno speedup

superlineare. Molto probabilmente, ciò è dovuto al fatto che, nel caso con

p = 2, la quantità di cache totale a disposizione raddoppia rispetto al caso

seriale, riducendo il numero di accessi in memoria centrale e quindi miglio-

rando l’efficienza. Questo effetto non è presente, tuttavia, per valori di p più

alti, in quanto l’overhead causato dalle operazioni di comunicazione e sin-

cronizzazione supera i benefici apportati da una maggior quantità di cache.

Un’ulteriore considerazione che si può fare confrontando i dati della strong

scaling efficiency tra i due casi di test considerati (Nt = 1 e Nt = 100) è il

fatto che, soprattutto nel caso di MPI, il codice ha un’efficienza più elevata

per dataset di dimensioni maggiori. Questo è un risultato che ci si aspetta,

32 2. Codice di riferimento

ed è dovuto all’overhead legato alla gestione del parallelismo. Su dataset di

piccole dimensioni, infatti, le operazioni di allocazione e sincronizzazione dei

thread o dei nodi occupano una percentuale più alta del tempo di esecuzione

rispetto ai casi con molti dati, riducendo l’efficienza del programma.

Capitolo 3

Versione GPU

Effettuata l’analisi del codice di riferimento, si è passati all’implementa-

zione di una versione in grado di sfruttare il parallelismo massivo delle GPU.

La realizzazione di tale versione è stata svolta facendo uso di una tecnologia

relativamente recente: le funzionalità OpenMP per la programmazione GPU.

Dunque, l’obiettivo di questa fase è stato valutare l’efficacia di OpenMP nel

parallelizzare tramite GPU un codice di produzione complesso e di grandi

dimensioni, come quello che si considera in questa tesi.

3.1 Architettura di una GPU

Una GPU (Graphics Processing Unit) è un dispositivo di calcolo spe-

cializzato per l’esecuzione di applicazioni grafiche e per il calcolo parallelo

ad alte prestazioni. Nello specifico, le GPU moderne prendono il nome di

GPGPU (General-Purpose GPU), in quanto sono dotate di un’architettura

che consente di sfruttare la loro capacità computazionale per scopi che van-

no oltre il solo rendering grafico. L’elevata capacità computazionale delle

GPU è dovuta all’elevato grado di parallelismo in esse implementato, che le

rende ideali per eseguire computazioni embarassingly parallel su una grande

quantità di dati. L’architettura generale di una GPU si compone di:

33

34 3. Versione GPU

• Un numero elevato di Streaming Multiprocessor (SM), unità di calcolo

dotate di numerosi core e in grado di eseguire in parallelo.

• Una cache L2 condivisa tra i vari SM.

• Una memoria globale di grandi dimensioni utilizzata per immagazzinare

tutti i dati necessari per svolgere le computazioni.

Ciascuno Streaming Multiprocessor dispone di un numero elevato di core,

ognuno in grado di eseguire operazioni elementari su un insieme ridotto di

dati. Oltre ai core, l’architettura di uno SM comprende:

• Un numero elevato di registri, utilizzati dai vari core per svolgere le

computazioni.

• Una cache L1 condivisa tra i vari core, detta anche Shared Memory.

La presenza della shared memory consente di ottimizzare le operazioni di let-

tura e scrittura sui dati, limitando il numero di accessi alla memoria centrale,

più lenta. Infatti, i core di uno stesso SM possono lavorare su dati condivisi

in shared memory e trasferirli in memoria centrale solo quando necessario.

La Figura 3.1 mostra uno schema semplificato dell’architettura descritta.

Figura 3.1: Schema semplificato dell’architettura di una GPU.

3.2 Programmazione GPU con OpenMP 35

La presenza di numerosi core su ogni SM consente di ottenere un pa-

rallelismo a grana fine, basato sull’esecuzione simultanea di molte operazioni

semplici. Questa caratteristica distingue il parallelismo GPU da quello CPU,

basato invece su un numero ridotto di unità di esecuzione che svolgono in

parallelo operazioni più complesse. Inoltre, a differenza di quello CPU, il

parallelismo GPU è gerarchico, in quanto può essere gestito sia a livello degli

SM, sia a livello dei singoli core all’interno di ciascun SM.

Nelle sezioni seguenti, verrà usato il termine “host” per fare riferimento

alla CPU e alla sua memoria, e il termine “device” per indicare la GPU.

3.2 Programmazione GPU con OpenMP

Come accennato in Sottosezione 2.1.4, OpenMP è una libreria di C, C++

e Fortran per il calcolo parallelo ad alte prestazioni nata per consentire il pa-

rallelismo CPU secondo un paradigma a memoria condivisa. A partire dalla

versione 4.0, OpenMP supporta anche il parallelismo su sistemi eterogenei,

in particolare sulle GPU, e quindi ha recentemente affiancato tecnologie più

consolidate quali:

• CUDA, la libreria proprietaria di Nvidia.

• ROCm, che consente di programmare su GPU AMD.

• OpenCL, un’alternativa portabile e open source.

• OpenACC, una libreria che offre un maggior livello di astrazione rispet-

to alle precedenti.

Allo stesso modo di OpenACC, OpenMP offre funzionalità più ad alto livello,

che consentono di eseguire codice sulla GPU in modo indipendente dall’ar-

chitettura dell’hardware utilizzato. L’obiettivo di OpenMP è quindi quello

di fornire un maggior grado di portabilità e una maggior facilità di utilizzo

rispetto a tecnologie più convenzionali.

36 3. Versione GPU

OpenMP, come OpenACC, sfrutta un approccio basato sulle direttive.

Questo vuol dire che il suo utilizzo non prevede di scrivere codice in modo

esplicito, bens̀ı di inserire nel codice esistente delle opportune direttive che

comunicano al compilatore quali porzioni del programma devono essere pa-

rallelizzate. Sulla base delle direttive inserite, il compilatore si occupa poi

di svolgere le opportune modifiche e ottimizzazioni per ottenere il risultato

richiesto.

3.2.1 Gerarchia di parallelismo

OpenMP fornisce un parallelismo basato su diversi livelli di astrazione,

che riflettono l’organizzazione gerarchica dell’architettura di una GPU. L’u-

nità di esecuzione di base è rappresentata dal thread. Ogni thread ese-

gue autonomamente una data sezione di codice, e può condividere dei dati

con altri thread, attraverso l’utilizzo della shared memory. Ciascun thread

OpenMP corrisponde ad uno o più core sulla GPU. I thread sono poi rag-

gruppati in team, delle unità di esecuzione di livello più alto che operano

in modo indipendente. Quindi, mentre i thread di uno stesso team possono

sincronizzarsi e condividere gli stessi dati, più team diversi sono completa-

mente indipendenti tra loro. Di conseguenza, non esistono meccanismi nativi

di condivisione dati e sincronizzazione tra team. Questa separazione tra th-

read e team presenta diversi vantaggi, in quanto fornisce al programmatore

un maggior controllo sul grado di parallelismo adottato, e consente anche

di ottimizzare gli accessi in memoria, migliorando le prestazioni. Infatti, se

più thread di uno stesso team leggono i dati dalla shared memory, si limita

molto il numero di accessi alla memoria centrale, i quali rappresentano un’o-

perazione molto onerosa in termini di prestazioni. Nel paradigma OpenMP,

la gestione della shared memory a disposizione dei thread è completamente

trasparente al programmatore, in quanto è svolta dal compilatore in modo

automatico. Un altro vantaggio dei team è la possibilità di far eseguire più

team diversi sullo stesso SM, in modo che condividano le risorse hardware.

In questo modo, quando un team è in attesa di operazioni di input/output,

3.2 Programmazione GPU con OpenMP 37

gli altri possono sfruttare la potenza di calcolo dei core, riducendo la latenza

nelle operazioni di accesso in memoria. Oltre a team e thread, OpenMP offre

un livello di parallelismo ancora più fine, rappresentato dalle istruzioni SI-

MD, che forniscono un parallelismo di tipo vettoriale. Questo meccanismo

consente di eseguire la stessa istruzione su più dati contemporaneamente, au-

mentando ulteriormente l’efficienza. Mediante opportune direttive, OpenMP

dà la possibilità di scegliere il livello di parallelismo da utilizzare in ciascun

punto del codice.

3.2.2 Mapping dei dati

Un altro aspetto fondamentale da considerare quando si scrive codice per

la GPU è il trasferimento dei dati dal dispositivo host al device e viceversa.

Quando l’esecuzione giunge in corrispondenza di una regione parallela sulla

GPU, cioè una porzione di codice che deve eseguire in parallelo, OpenMP si

occupa di trasferire sul device tutti i dati necessari per la corretta esecuzione

del codice. In particolare, i dati considerati da OpenMP sono quelli relativi

a variabili dichiarate fuori dalla regione parallela e richiamate al suo interno.

Su questi dati, OpenMP opera una distinzione in tre tipi:

Scalar: Semplici valori numerici interi o in virgola mobile.

Pointer: Puntatori ad una determinata locazione di memoria.

Aggregate: Dati più complessi, come array statici o strutture.

Il comportamento di default di OpenMP prevede che ogni dato venga copia-

to dall’host alla GPU all’inizio della regione parallela e poi trasferito nuova-

mente sull’host una volta che l’esecuzione del codice GPU è terminata. Se la

quantità di dati da trasferire è elevata, questa gestione può comportare pro-

blemi di efficienza dovuti a trasferimenti superflui di dati tra host e device,

specialmente se il collegamento tra i due dispositivi avviene per mezzo di un

bus di comunicazione con banda limitata. In generale, infatti, non tutti i dati

che vengono passati in input alla GPU necessitano di essere copiati sull’host

38 3. Versione GPU

al termine delle computazioni. Un altro aspetto problematico del compor-

tamento di default è legato alla gestione dei puntatori ad aree di memoria

allocate dinamicamente. Infatti, mentre i dati di tipo “aggregate” vengono

copiati nella loro interezza, per i puntatori viene copiato solo l’indirizzo di

memoria a cui fanno riferimento. Di conseguenza, il contenuto degli array

dinamici non viene copiato automaticamente sulla GPU.

Per far fronte a questi problemi, OpenMP mette a disposizione delle ap-

posite direttive di mapping, che consentono di specificare il modo con cui

i dati devono essere mappati sulla GPU. Il mapping esplicito dei dati vie-

ne effettuato mediante il costrutto map, che consente di specificare i dati da

mappare sulla GPU e il tipo di mapping da utilizzare. I principali tipi di

mapping disponibili sono:

to: Copia i dati dall’host al device.

from: Copia i dati dal device all’host.

tofrom: Copia i dati dall’host al device all’inizio della regione parallela e

poi dal device all’host al termine. Questa è l’impostazione di default

di OpenMP.

alloc: Alloca semplicemente la memoria sul device, senza trasferire dati.

L’utilizzo opportuno di queste politiche di mapping consente di limitare il

numero di trasferimenti effettuati, aumentando l’efficienza del programma.

Inoltre, le direttive di mapping consentono di specificare al compilatore la di-

mensione delle aree di memoria che devono essere copiate, rendendo possibile

l’utilizzo di array dinamici.

3.3 Strategia di parallelismo adottata

Come mostrato nel Capitolo 2, i dati di input hanno una struttura bidi-

mensionale, e il codice di riferimento organizza le computazioni in due cicli

annidati. Apparentemente, la suddivisione del carico di lavoro tra i thread

3.3 Strategia di parallelismo adottata 39

della GPU potrebbe essere svolta su qualsiasi delle due dimensioni del pro-

blema. Tuttavia, la natura stessa del metodo di Chang-Cooper mostra che

mentre le computazioni sulle singole particelle possono essere svolte in modo

indipendente, lo stesso non si può dire delle computazioni sui diversi timestep.

Infatti, l’algoritmo che implementa tale metodo presenta delle loop-carried

dependencies, per le quali il calcolo dello spettro ad uno specifico timestep

dipende dallo spettro calcolato per il timestep precedente. Di conseguenza,

se per ogni particella si suddividessero i diversi timestep tra le unità di esecu-

zione disponibili, il risultato finale presenterebbe delle incongruenze dovute

alla violazione delle dipendenze descritte: senza la garanzia che le iterazioni

sui timestep vengano eseguite in ordine, si avrebbero delle situazioni in cui

un thread cercherebbe di leggere i dati dello spettro al timestep preceden-

te prima che questi siano stati scritti dal thread corrispondente. Inoltre, in

generale si ha che Nt è molto minore di N , e quindi la suddivisione del ca-

rico di lavoro basata sui timestep non consentirebbe di sfruttare appieno le

potenzialità del parallelismo GPU.

Per questo motivo, si è scelto di parallelizzare il codice di riferimento

secondo un approccio simile a quello utilizzato nel parallelismo CPU già

implementato: le particelle da elaborare vengono suddivise tra i vari thread

a disposizione, in modo che ogni thread si occupi di svolgere le computazioni

su tutti i timestep di su una singola particella. In questo modo, è possibile

sfruttare in modo efficace l’elevata granularità del parallelismo offerto dalla

GPU.

Una possibile limitazione di questo approccio è il fatto che l’elevata com-

plessità delle computazioni effettuate da ciascun thread sulla propria parti-

cella può comportare problemi di prestazioni. Infatti, l’hardware della GPU è

progettato per eseguire in parallelo una quantità elevata di istruzioni sempli-

ci; di conseguenza, se le operazioni eseguite dai thread sono troppo complesse,

l’efficienza del parallelismo GPU potrebbe risentirne.

40 3. Versione GPU

3.4 Implementazione

L’implementazione della versione GPU è stata svolta interamente nell’am-

biente di Leonardo, il quale dispone già dei moduli necessari per lo sviluppo

di codice GPU con OpenMP. Nello specifico, durante la fase di sviluppo

è stato utilizzato il modulo nvhpc, che fornisce vari strumenti utili per la

compilazione e il debugging di programmi destinati a GPU Nvidia. Tra gli

strumenti inclusi in tale modulo vi è il compilatore NVC, che consente di

compilare codice che fa uso di librerie directive-based per la programmazione

GPU, in particolare OpenACC e OpenMP. A causa dell’elevata complessità

del codice, ci si è focalizzati su una versione ridotta del programma, nella

quale sono state selezionate solo alcune delle funzioni necessarie per il calcolo

dello spettro. Ciò ha consentito di facilitare lo sviluppo e il debugging di una

prima versione di base, che può poi rappresentare un punto di partenza per

una versione completa del codice.

3.4.1 Caratteristiche della versione ridotta

La versione ridotta è stata ricavata a partire dal codice originale com-

mentando diverse funzioni di calcolo presenti nel ciclo principale, che itera

su tutte le particelle della simulazione. Sono state quindi mantenute solo le

funzioni indispensabili per la corretta esecuzione del codice. In particolare,

le principali funzioni richiamate nella versione ridotta sono le seguenti:

• CRe_Norm() e CRp_Norm(): Implementano l’operazione di normalizza-

zione dello spettro iniziale per elettroni e protoni rispettivamente.

• CC1D_Coef(): Imposta i coefficienti necessari per lo svolgimento del

metodo di Chang-Cooper.

• CC_1D(): Applica il metodo di Chang-Cooper in base ai coefficienti

precedentemente calcolati, risolvendo il relativo sistema tridiagonale

secondo il metodo di eliminazione Gaussiana.

3.4 Implementazione 41

La funzione CC1D_Coef() è stata inoltre modificata in modo che utilizzi dei

parametri fittizi, cos̀ı da semplificare la verifica dei risultati. Tali parametri

fanno s̀ı che nel risultato della versione ridotta, lo spettro a qualsiasi time-

step sia uguale allo spettro iniziale della particella. Le operazioni di calcolo

vengono comunque svolte, ma risolvono ad ogni iterazione un’equazione che

costituisce un’identità. Oltre a quelle riportate, che implementano le opera-

zioni principali, si hanno anche una serie di funzioni utilizzate per il calcolo

dei parametri fisici del problema:

• c_sound()

• v_Alfven()

• B_dynamo()

• dv_limit()

Dalla versione ridotta sono state quindi escluse, tra le altre cose, tutte le

funzioni per il calcolo dello spettro delle radiazioni di sincrotrone.

Nella versione originale del codice è inoltre presente un’invocazione al-

la funzione rand() avente lo scopo di inizializzare con un valore casuale

la variabile on_start_index, utilizzata per determinare quante iterazioni

devono essere effettuate all’interno dei seguenti cicli, eseguiti nel corso di

un’iterazione su un singolo timestep:

// off //

for (nsblp = 0; nsblp < on_start_index; nsblp++){

// proton //

CC_1D(1, np, dt_sb, CCp_off, Qpi, CRp);

// electron //

CC_1D(-1, npe, dt_sb, CCe_off, Inje, CRe);

}

// on //

for (nsblp = on_start_index; nsblp < on_end_index; nsblp++){

// proton //

42 3. Versione GPU

CC_1D(1, np, dt_sb, CCp, Qpi, CRp);

// electron //

CC_1D(-1, npe, dt_sb, CCe, Inje, CRe);

}

// off //

for (nsblp = on_end_index; nsblp < N_subloop; nsblp++){

// proton //

CC_1D(1, np, dt_sb, CCp_off, Qpi, CRp);

// electron //

CC_1D(-1, npe, dt_sb, CCe_off, Inje, CRe);

}

In questi cicli viene invocata la funzione CC_1D() per il calcolo dello spettro

di protoni ed elettroni. Anche il valore della variabile on_end_index è deter-

minato in modo casuale, in quanto corrisponde a: on_start_index + N_on,

dove N_on ha un valore intero e non nullo. La funzione rand(), tuttavia, non

è thread-safe, e ciò vuol dire che il suo utilizzo all’interno di una regione paral-

lela non è sicuro. Per questo motivo, tale funzione è stata momentaneamente

esclusa dal codice, in modo che la variabile on_start_index venga inizializ-

zata sempre al valore 0. La conseguenza di questa modifica è il fatto che il

numero di iterazioni dei cicli che invocano CC_1D() diventa deterministico,

ma ciò non causa problemi dal punto di vista dei risultati ottenuti.

3.4.2 Inserimento delle direttive

Lo sviluppo della versione GPU ha richiesto l’inserimento nel codice delle

opportune direttive OpenMP per il calcolo GPU. Nel codice originale erano

già incluse delle direttive OpenMP, necessarie per implementare il paralleli-

smo CPU a memoria condivisa. In questa fase, quindi, le direttive già presenti

nel codice sono state sostituite con quelle necessarie per la programmazione

GPU.

3.4 Implementazione 43

Suddivisione del carico di lavoro

Per far s̀ı che le computazioni sulle particelle vengano svolte sulla GPU, il

ciclo principale è stato racchiuso all’interno della direttiva #pragma omp target {...},

che consente di trasferire l’esecuzione sulla GPU. La strategia di parallelismo

scelta prevede che le iterazioni del ciclo principale vengano distribuite tra i

vari thread della GPU, in modo che ogni thread svolga le computazioni di

una singola iterazione. A questo scopo, in corrispondenza del costrutto for

del ciclo principale, è stata inserita la direttiva:

#pragma omp teams distribute parallel for private(i, j)

Tale direttiva si compone di diversi costrutti utili a specificare il tipo di

parallelismo che si vuole ottenere. In particolare:

• teams mette in esecuzione più team indipendenti, e all’interno di ogni

team alloca un certo numero di thread.

• distribute suddivide le iterazioni del ciclo tra i vari team.

• parallel for specifica che i team allocati devono eseguire le varie

iterazioni in parallelo e in qualsiasi ordine.

• private(i, j) specifica che le variabili i e j dichiarate fuori dalla regio-

ne parallela devono essere private, e quindi ciascun thread deve averne

una copia locale.

Queste direttive fanno s̀ı che OpenMP generi un’apposita funzione, detta

funzione kernel, che implementa sulla GPU le operazioni effettuate nella re-

gione parallela, secondo il parallelismo specificato. Il solo inserimento di tali

direttive, tuttavia, non è sufficiente per il corretto funzionamento del codice.

Mapping dei dati

Oltre a comunicare ad OpenMP quali porzioni di codice devono essere

parallelizzate, è necessario specificare come dev’essere svolto il mapping di

44 3. Versione GPU

tutte le strutture dati utilizzate in fase di calcolo. Le strutture dati che

devono essere mappate includono:

• Gli array di input.

• Gli array di output.

• Gli array e le strutture dati di supporto.

Per gestire il mapping, in corrispondenza del costrutto target sono state

inserite delle clausole map, che descrivono le politiche di mapping da utilizzare

per ciascuna variabile richiamata nella regione parallela. L’inserimento delle

clausole map proprio in questo punto del codice fa s̀ı che il mapping rimanga

valido durante tutta l’esecuzione della regione parallela, limitando il numero

di trasferimenti da host a device e viceversa.

Come già spiegato, la politica di mapping di default è tofrom. Per evi-

tarlo, insieme alle clausole map è stata aggiunta la clausola defaultmap nel

modo seguente:

defaultmap(none:aggregate) defaultmap(none:pointer)

Questa clausola consente di sovrascrivere la politica di default utilizzata per

uno specifico tipo di dato. In questo caso, ai tipi aggregati e ai puntatori

è stato assegnato il valore none, che forza il programmatore a specificare

esplicitamente la politica di mapping per ogni variabile di un dato tipo,

generando un errore in fase di compilazione se una variabile non è stata

mappata.

Agli array di input è stato applicato un mapping di tipo to, cos̀ı che i dati

al loro interno vengano trasferiti solo all’inizio della regione parallela. Gli ar-

ray di output, invece, vengono inizializzati all’esterno della regione parallela,

e quindi fanno uso della politica tofrom, in modo che sulla GPU vengano

copiati i dati inizializzati. Spostando l’inizializzazione all’interno della re-

gione parallela, tuttavia, si potrebbe utilizzare la politica from, migliorando

l’efficienza del mapping. Per gestire correttamente il mapping degli array

dinamici è stata utilizzata la sintassi:

3.4 Implementazione 45

map(to: temp_node[0:INPUT_SIZE])

che consente di specificare esplicitamente la dimensione dell’area di memoria

allocata. Nell’esempio mostrato, temp_node è il puntatore all’array di input

contenente la temperatura delle particelle, e INPUT_SIZE è il numero di ele-

menti da mappare. Il primo valore presente tra parentesi quadre (in questo

caso 0) specifica l’offset della porzione di array da mappare rispetto al primo

elemento dell’array. Un offset di 0 specifica che l’area di memoria mappata

deve partire esattamente dall’elemento con indice 0.

Per quanto riguarda i dati di appoggio, essi sono gestiti attraverso struct

di diversi tipi:

• CRspectrum: Contiene due scalari double e 6 array statici di double

di lunghezza pari a M , e quindi 128.

• ChangCooper: Contiene tre variabili di tipo puntatore a double, utiliz-

zate nel codice per l’indirizzamento di altrettanti array di 128 elementi.

• FPloss: Contiene due scalari double e tre puntatori a double, anch’es-

si utilizzati per gestire degli array di 128 elementi.

Oltre a questi struct, il codice si avvale dei seguenti array di double, aventi

una lunghezza di 128:

• Qpi

• Qepri

• Qe_buff

• Inje

• epsSyn

• epsgamma

46 3. Versione GPU

Questi sono solo gli array di appoggio utilizzati nella versione ridotta: il co-

dice completo utilizza altri 9 array con le stesse caratteristiche, insieme a 4

array bidimensionali gestiti mediante delle variabili di tipo double**, cioè

doppi puntatori a double, e un array tridimensionale gestito con un triplo

puntatore a double. Nel codice originale, le strutture dati elencate vengono

dichiarate ed inizializzate subito prima del ciclo principale, e sono incluse

all’interno della regione parallela CPU. Ciò vuol dire che, nel codice di rife-

rimento, ogni thread OpenMP possiede la propria copia di tutte le strutture

dati ausiliarie. Essendo che tali strutture dati vengono riscritte ad ogni ite-

razione del ciclo principale, questa gestione locale è necessaria per evitare

race condition. Per questo motivo, nella versione GPU, le dichiarazioni delle

strutture ausiliarie sono state spostate nel corpo del ciclo principale, in modo

che ogni thread inizializzi le proprie strutture dati direttamente sulla GPU.

Cos̀ı facendo, non si ha la necessità di mappare i dati ausiliari sul device

all’inizio della regione parallela. Nel corso di questa modifica, tutti gli array

dinamici utilizzati sono stati convertiti in array statici, in quanto, sulla GPU,

l’allocazione di memoria tramite calloc() non è ammessa, mentre l’utilizzo

di malloc() può essere problematico in termini di prestazioni. Le uniche

strutture ausiliarie la cui dichiarazione non è stata spostata sulla GPU so-

no CRproton e CRelectron, di tipo CRspectrum. Queste strutture, infatti,

vengono inizializzate tramite l’invocazione di tre funzioni apposite, presenti

prima del ciclo principale. Per evitare di richiamare tali funzioni all’interno

del kernel GPU, si è scelto di lasciarle all’esterno della regione parallela e

mappare in modo esplicito le due strutture dati, aggiungendole alla clausola

map(to:). Inoltre, vista la necessità di mantenere private tali strutture, nella

direttiva con teams è stata aggiunta la clausola firstprivate(CRproton,

CRelectron). Tale clausola fa s̀ı che ogni thread erediti una copia locale e

già inizializzata delle due strutture.

3.4 Implementazione 47

Funzioni invocate sulla GPU

Il calcolo dello spettro all’interno del ciclo principale fa uso di diverse

funzioni definite negli altri moduli dell’applicazione, ed elencate in Sottose-

zione 3.4.1. Per far s̀ı che tali funzioni possano essere invocate all’interno del

codice GPU, è necessario comunicare ad OpenMP la necessità di generare

anche per esse una versione kernel. Ciò viene fatto inserendo delle specifi-

che direttive in corrispondenza delle dichiarazioni delle funzioni interessate.

In particolare, le dichiarazioni devono essere racchiuse tra la coppia di co-

strutti declare target e end declare target. Nel codice di riferimento,

tali direttive sono state inserite all’interno dei file di intestazione dei moduli

utilizzati.

3.4.3 Refactoring del codice

L’inserimento delle direttive OpenMP descritte non è sufficiente per il

corretto funzionamento della versione GPU, in quanto il codice originale pre-

senta alcune caratteristiche problematiche per l’esecuzione sul device. Oltre

all’aggiunta delle direttive, quindi, lo sviluppo della versione GPU ha richie-

sto una fase di refactoring del codice di riferimento. Di seguito, sono illustrate

tutte le modifiche apportate in questa fase.

Non contiguità degli array

Nel codice originale, gli array utilizzati per input e output sono array

dinamici bidimensionali, il cui indirizzamento in memoria è basato su variabili

di tipo double**. L’allocazione di questi array con malloc() e calloc()

viene quindi effettuata in due passaggi:

1. Allocazione di un array di puntatori a double contenente un numero

di elementi pari al numero di righe dell’array bidimensionale.

48 3. Versione GPU

2. Per ogni puntatore nel primo array allocato, allocazione di un ar-

ray di double avente lunghezza pari al numero di colonne nell’array

bidimensionale.

Sebbene questo metodo di allocazione risulti comodo dal punto di vista del-

l’utilizzo degli array, esso risulta problematico se tali array devono essere

elaborati da una GPU, in quanto non assicura che lo spazio di memoria al-

locato sia contiguo. Infatti, la memoria allocata con una singola chiamata a

malloc() o calloc() è contigua, ma non si può dire lo stesso per la memoria

allocata tramite più chiamate successive. Quando si opera su una GPU, lavo-

rare su aree di memoria contigue è fondamentale sia per rendere più efficienti

gli accessi in memoria, sia per effettuare correttamente il mapping dei dati

con OpenMP. Durante il mapping di un array dinamico con la clausola map,

infatti, OpenMP assume che la memoria da mappare sia contigua. In caso

contrario, il mapping viene effettuato su aree di memoria non inizializzate,

generando problemi di accesso durante l’esecuzione. Inoltre, l’architettura

della GPU gestisce gli accessi in memoria leggendo blocchi di dati conti-

gui, quindi il fatto che la memoria sia frammentata peggiora notevolmente

l’efficienza del codice.

Per questo motivo, il codice è stato modificato in modo che ogni array

venga gestito mediante un solo puntatore a double, e la memoria necessaria

venga allocata in modo contiguo con una sola chiamata a malloc(). Que-

sto approccio comporta anche una diversa modalità di accesso agli array:

se si vuole accedere all’elemento a riga i e colonna j di un array conti-

guo A, essendo A monodimensionale la sintassi da utilizzare non è A[i][j],

bens̀ı A[i * NUM_COLS + j], dove NUM_COLS è il numero di colonne dell’ar-

ray. Tutti gli accessi effettuati ad array di input o output nel codice sono

stati quindi modificati per rispettare tale sintassi.

Utilizzo di VLA

Un altro aspetto problematico del codice di riferimento è l’utilizzo, al-

l’interno di alcune funzioni di calcolo, di array di appoggio aventi lunghezza

3.4 Implementazione 49

variabile, cioè la cui dimensione è determinata a runtime in base al valore di

una variabile di input. Questi array prendono il nome di Variable Length Ar-

ray (VLA), e sono ammessi in alcuni standard del linguaggio C, tra cui il C17

con estensioni GNU, utilizzato per la compilazione del codice di riferimento.

Quando si scrive codice per la GPU, tuttavia, il loro utilizzo non è consenti-

to, in quanto la generazione delle funzioni kernel richiede che la dimensione

degli array locali a ciascun thread sia specificata a tempo di compilazione.

Questo vincolo consente al compilatore di conoscere a priori la quantità di

memoria che dovrà essere riservata a ciascun thread. Nel codice di riferi-

mento, i VLA vengono utilizzati all’interno delle funzioni Chang_Cooper() e

Coef_CC(), invocate rispettivamente all’interno di CC_1D() e CC1D_Coef().

Entrambe le funzioni determinano la dimensione dei VLA utilizzati in base al

valore di un parametro di input che specifica il numero di bin su cui svolgere

le computazioni. Nella versione GPU, questi VLA sono stati sostituiti con

array aventi una dimensione fissa. Tale conversione non altera il risultato del

codice, in quanto, nel main, il numero di bin che si utilizza è determinato con

la costante np definita tramite macro, il cui valore è noto già in fase di pre-

processing. Per eliminare i VLA è stato, quindi, sufficiente modificare la loro

dichiarazione, sostituendo il parametro di input con il valore definito nella

macro. Questa modifica è necessaria per il funzionamento del codice sulla

GPU, ma introduce una limitazione legata al fatto che il numero di bin su

cui lavorano Chang_Cooper() e Coef_CC() non può più essere determinato

a tempo di esecuzione, ma solo a tempo di compilazione.

Utilizzo di variabili e costanti esterne

Come già descritto in Sottosezione 2.1.1, il codice legge i parametri fisici

del problema da un file di configurazione passato in input. Durante la fase

di lettura, tali parametri vengono memorizzati in variabili definite in un

modulo apposito, le quali vengono poi utilizzate dagli altri moduli sotto

forma di variabili di tipo extern. In modo analogo vengono gestite anche

le costanti fisiche utilizzate. Questo approccio è problematico dal punto

50 3. Versione GPU

di vista dell’implementazione GPU, in quanto non consente ad OpenMP di

capire quali tra quelle variabili vengono utilizzate all’interno della regione

parallela. Come risultato, il compilatore non riconosce tali variabili nelle

sezioni di codice GPU in cui sono richiamate, e quindi genera una serie

di errori. Per sistemare questo problema, le funzioni invocate sulla GPU

sono state modificate in modo che tutte le variabili o costanti esterne in

esse utilizzate vengano specificate nella loro signature. In questo modo, ogni

invocazione di una di queste funzioni specifica in modo esplicito tutte le

variabili o le costanti che verranno utilizzate al suo interno, consentendo ad

OpenMP di mapparle correttamente sulla GPU.

3.4.4 Compilazione

Nel corso dello sviluppo, la compilazione del codice GPU è stata svolta

con due compilatori diversi: NVC e GCC. Entrambi i compilatori, infatti,

supportano le direttive OpenMP per la programmazione sulla GPU, ma han-

no caratteristiche diverse. GCC gode di una maggiore portabilità, in quanto

consente di generare codice sia per GPU AMD che per GPU Nvidia. NVC è

invece limitato alle schede Nvidia, ma ha un output più informativo rispet-

to a GCC, e per questo risulta più utile in fase di sviluppo. Se si lavora

in ambiente Nvidia, entrambi i compilatori convertono le direttive OpenMP

in codice CUDA. Le modalità di compilazione sono leggermente diverse a

seconda del compilatore che si utilizza.

Compilazione con GCC

La compilazione con GCC della versione GPU avviene in modo simi-

le alla versione CPU. Innanzitutto, è necessario caricare i moduli necessari

nell’ambiente di Leonardo, in particolare:

• openmpi: contiene le librerie di MPI e il compilatore MPICC, un

wrapper di GCC che supporta la compilazione per MPI.

3.5 Esecuzione del codice e debugging 51

• hdf5: contiene i moduli necessari per il funzionamento della libreria

HDF5.

• gsl: contiene GSL, una libreria per il calcolo scientifico utilizzata nel

codice di riferimento.

Caricati i moduli, la compilazione avviene attraverso il comando mpicc. Per

far s̀ı che il codice compili correttamente sulla GPU, è necessario aggiunge-

re l’opzione -foffload=-lm, che seleziona la versione kernel delle funzioni

matematiche contenute nella libreria cmath.

Compilazione con NVC

Come già descritto, NVC fa parte del modulo nvhpc di Nvidia. Per

questo motivo, il suo utilizzo nell’ambiente di Leonardo richiede di caricare

le versioni compatibili con tale pacchetto dei moduli elencati in precedenza.

Per compilare con NVC è necessario utilizzare il relativo comando nvc. La

riga di comando di NVC non differisce molto rispetto a GCC, ma necessita

di alcune opzioni aggiuntive che specificano il tipo di target su cui si vuole

compilare:

-mp=gpu -target=gpu -Minfo=mp

In particolare, -mp=gpu e -target=gpu comunicano al compilatore la presen-

za nel codice di direttive OpenMP per la GPU, e -Minfo=mp fa s̀ı che nell’out-

put di compilazione vengano mostrate le informazioni sulla parallelizzazione

effettuata tramite OpenMP.

3.5 Esecuzione del codice e debugging

Per effettuare i test di esecuzione, il codice è stato compilato con entrambi

i compilatori precedentemente descritti. Tuttavia, a causa di un problema

con la gestione del modulo HDF5 da parte di NVC, i test sono stati effettuati

esclusivamente sulla versione compilata con GCC. Nel corso dei test, è emerso

52 3. Versione GPU

un problema durante l’esecuzione per il quale il codice GPU terminava con i

seguenti messaggi di errore:

libgomp: cuCtxSynchronize error: an illegal memory access

was encountered

libgomp: cuMemFree_v2 error: an illegal memory access

was encountered

Per investigare la causa di questo errore è stato utilizzato il comando

compute-sanitizer, incluso nel pacchetto nvhpc, che, se usato per lancia-

re un eseguibile, consente di visualizzare in modo dettagliato tutti gli errori

generati durante l’esecuzione del codice CUDA presente al suo interno. Ese-

guendo compute-sanitizer sulla versione GPU, l’output mostrava un errore

di stack overflow per ciascun thread allocato da OpenMP. Di conseguenza,

sono state effettuate diverse ipotesi sulla possibile causa di tale errore:

• Presenza di un errore di accesso in memoria in uno degli array utilizzati

nella regione parallela.

• Presenza di un errore nel mapping dei dati sulla GPU.

• Eccessiva complessità del codice, per cui la quantità elevata di variabi-

li locali e invocazioni di funzione comporterebbe un utilizzo eccessivo

dello stack di ciascun thread.

La prima ipotesi è stata esclusa attraverso un test che ha previsto la rimo-

zione dal codice di tutte le direttive di programmazione GPU, in modo da

verificare se le modifiche apportate in fase di refactoring avessero introdotto

un errore di gestione della memoria. Questo test non ha evidenziato errori, in

quanto i risultati ottenuti sono coerenti con quelli del codice di riferimento.

Anche eseguendo il codice con valgrind, un comando per il monitoraggio

dell’utilizzo della memoria da parte di un eseguibile, non sono stati trovati

memory leak o problemi di accesso in memoria.

3.5 Esecuzione del codice e debugging 53

Esclusa l’ipotesi di un errore nel refactoring, si è cercato di capire se il

problema fosse dovuto all’eccessiva complessità del codice GPU. A questo

scopo, il programma è stato testato commentando parti di codice della re-

gione parallela, in modo da escluderle dalla computazione. Da questi test,

è emerso che se si commenta una parte consistente del ciclo principale, l’e-

secuzione riesce a terminare correttamente. Questo risultato sembra quindi

avvalorare l’ipotesi di un codice troppo complesso. Si è deciso quindi di

controllare l’effettivo utilizzo dello stack mediante una specifica opzione di

compilazione disponibile in NVC: -gpu=ptxinfo, che consente di visualizza-

re la quantità di memoria occupata sullo stack da ciascuna funzione kernel

generata. Analizzando l’output di compilazione, si è visto che l’utilizzo dello

stack da parte di diverse funzioni, incluso il kernel del main, risultava piutto-

sto elevato. Uno dei fattori che contribuiva ad aumentare l’occupazione dello

stack è la grande quantità di array statici utilizzati come array di supporto

all’interno della regione parallela. La memoria occupata da tali array, infatti,

viene allocata interamente sullo stack locale di ciascun thread, e non viene

liberata fino alla fine della regione parallela. Per cercare di ridurre l’utilizzo

dello stack sono state quindi apportate delle modifiche al codice, in modo

da sostituire gli array statici locali con array globali dichiarati sulla CPU e

poi mappati sulla GPU. Per ognuno degli array statici di appoggio (aventi

una lunghezza di 128) è stato quindi definito un array globale dinamico con

lunghezza pari a 128 × N . In questo modo, ogni thread ha a disposizione

dei sottoarray di 128 elementi che può utilizzare liberamente per svolgere le

computazioni sulla propria particella. Per quanto riguarda il mapping, gli

array globali cos̀ı definiti sono stati mappati secondo la politica alloc, in

modo da allocare la memoria necessaria sulla GPU senza effettuare trasferi-

menti superflui di dati. Verificando l’output di NVC, si è notato che queste

modifiche hanno contribuito a ridurre notevolmente l’utilizzo dello stack da

parte del kernel del main. Infatti, la quantità di stack allocata per il main su

ogni thread è passata da più di 35.000 byte a poco meno di 400. Nonostante

ciò, tale soluzione non è stata sufficiente per eliminare il problema di stack

54 3. Versione GPU

overflow.

Un ulteriore tentativo effettuato in questa fase ha previsto la rimozione

dalla clausola map delle strutture dati CRproton e CRelectron, allo scopo

di capire se il problema sia dovuto ad un mapping errato di questi struct

da parte di OpenMP. In questo test, le due strutture dati sono state decom-

poste negli array in esse contenuti, che sono stati mappati singolarmente.

All’interno della regione parallela sono poi state inserite delle istruzioni per

ricostruire le due strutture dati, a partire dai valori degli array mappati. An-

che in questo caso, le modifiche effettuate non hanno consentito di risalire

alla causa principale del problema. Tuttavia, questo risultato non consente

di escludere del tutto l’assenza di errori nel mapping degli struct da parte di

OpenMP. Per approfondire questo aspetto, sarebbero quindi necessari degli

ulteriori test.

Nel corso dei test effettuati non è stato possibile escludere l’ipotesi secon-

do cui l’errore sarebbe causato da un problema nel mapping dei dati. Infatti,

la verifica di tale ipotesi richiederebbe un’analisi più approfondita e di basso

livello della gestione del mapping da parte di OpenMP. Tutto ciò, tuttavia,

va oltre gli obiettivi di questa tesi.

Capitolo 4

Conclusioni

Il lavoro presentato in questa tesi ha consentito di raggiungere con suc-

cesso gli obiettivi prefissati. È stato, infatti, possibile analizzare su diversi

casi di test le prestazioni di entrambi i tipi di parallelismo CPU implementa-

ti nel codice considerato. È stata poi realizzata una versione GPU secondo

l’approccio a direttive di OpenMP, consentendo di valutare pregi e difetti del-

l’utilizzo di questa libreria all’interno di un codice di produzione complesso

e non facilmente ottimizzabile con metodi convenzionali.

4.1 Considerazioni sui risultati ottenuti

La valutazione delle prestazioni effettuata sul codice di riferimento ha

mostrato che l’utilizzo di OpenMP ed MPI per l’ottimizzazione sulla CPU

offre già un buon grado di parallelismo. I test hanno inoltre mostrato che

i due approcci risultano molto simili tra loro in termini di prestazioni, e le

principali differenze sono causate dalle caratteristiche intrinseche dei due di-

versi paradigmi di parallelizzazione adottati. Nonostante questa somiglianza

nell’efficienza dei due approcci, è stato comunque possibile determinare quale

risulta più vantaggioso in specifici casi. In particolare, si è osservato che l’ap-

proccio di OpenMP ha una maggiore efficacia in termini di strong scaling,

mentre l’approccio MPI, con un numero di nodi elevato, offre prestazioni

55

56 4. Conclusioni

migliori nei casi in cui il numero di unità di esecuzione viene incrementato

proporzionalmente alla dimensione del problema.

Per quanto riguarda la versione GPU, si è osservato che, nonostante le pre-

messe, l’approccio a direttive offerto da OpenMP non è immediato, e richiede

potenzialmente molto lavoro per adattare il codice esistente all’esecuzione sul

device. Infatti, il solo inserimento delle direttive fornite dalla libreria non è

sufficiente ad ottenere un codice in grado di eseguire o persino di compilare

correttamente, e dev’essere quindi accompagnato da una serie di modifiche

al codice di partenza. Tutto il lavoro svolto nella fase di refactoring illustrata

in precedenza ha quindi l’obiettivo di supportare l’approccio a direttive nel

modo migliore possibile, ma non è stato sufficiente a consentire il corretto

funzionamento della versione GPU. Uno degli aspetti più problematici del-

l’utilizzo di OpenMP è il fatto che l’elevato livello di astrazione su cui si basa

rende difficile determinare l’effettiva modalità di ottimizzazione utilizzata.

Infatti, se confrontata con librerie più di basso livello, come CUDA, ROCm e

OpenCL, OpenMP offre al programmatore un minor controllo sulle operazio-

ni che vengono effettuate sulla GPU, complicando notevolmente la diagnosi

e la risoluzione di eventuali problemi riscontrati. D’altra parte, in molti ca-

si OpenMP consente di ottenere un parallelismo GPU attraverso l’aggiunta

di molte meno righe di codice rispetto alle librerie sopra citate. Inoltre, a

differenza di queste librerie, più legate all’hardware utilizzato, OpenMP van-

ta un’elevata portabilità, grazie all’approccio più ad alto livello. OpenACC

presenta caratteristiche simili ad OpenMP, ma ha il vantaggio di essere una

tecnologia più consolidata, e di conseguenza più ottimizzata in determinati

contesti. Tuttavia, attualmente OpenMP sta subendo un forte sviluppo, e in

futuro potrebbe riuscire a raggiungere o anche superare OpenACC in termini

di efficienza. Possiamo quindi concludere che OpenMP è un paradigma di

programmazione in grado di facilitare notevolmente la realizzazione di co-

dice GPU portabile, ma il suo utilizzo può essere problematico, e per nulla

semplice, se il programma da ottimizzare ha un elevato grado di complessità.

4.2 Sviluppi futuri 57

4.2 Sviluppi futuri

4.2.1 Valutazione delle prestazioni del codice CPU

Sebbene la valutazione delle prestazioni effettuata in questa tesi abbia già

consentito di ricavare molte informazioni sullo stato del parallelismo CPU,

esistono ulteriori test che si possono svolgere per migliorare l’accuratezza di

tali informazioni. Uno dei test che si possono effettuare è la misurazione delle

prestazioni che si ottengono combinando i due tipi di parallelismo implemen-

tati, quindi allocando diversi nodi MPI, ognuno su un nodo fisico del cluster,

con più core OpenMP su ogni nodo. In questo modo, sarebbe possibile va-

lutare l’efficienza del programma quando il parallelismo al suo interno viene

sfruttato al massimo delle potenzialità. Per migliorare la comprensione della

weak scaling efficiency del codice, si potrebbe inoltre effettuare un ulteriore

test di scalabilità in cui il carico di lavoro viene modificato incrementando

progressivamente il numero di particelle, invece che il numero di timestep.

4.2.2 Versione GPU

Un primo sviluppo possibile della versione GPU realizzata è rappresentato

dalla risoluzione del problema di stack overflow riscontrato. Ciò richiedereb-

be un’analisi più approfondita delle funzionalità di OpenMP, soprattutto per

quanto riguarda l’allocazione di memoria su ciascun thread. A tal scopo, ci

si potrebbe servire di strumenti di debugging più avanzati rispetto a quelli

utilizzati nel corso del lavoro presentato, in modo da monitorare con maggior

precisione le modalità di gestione della memoria utilizzate da OpenMP. Uno

di questi è CUDA-GDB, un’applicazione offerta da Nvidia che consente di

effettuare il debug di codice CUDA, compreso quello generato da OpenMP.

Tale strumento è già presente nell’ambiente di Leonardo, all’interno del mo-

dulo nvhpc. Oltre ad utilizzare debugger come questo, si potrebbe tentare di

eseguire il codice nella sua versione compilata con NVC. Quest’ultimo com-

pilatore, infatti, è più ottimizzato rispetto a GCC per quanto riguarda la

58 4. Conclusioni

compilazione su GPU Nvidia. L’utilizzo di NVC potrebbe quindi agevolare

le operazioni di debug o anche rimuovere del tutto il problema, nel caso in

cui questo sia dovuto ad un bug di GCC. Inoltre, tra i test che si possono

effettuare per identificare la causa del problema, si hanno:

• L’esecuzione del codice su dati fittizi di piccole dimensioni, in modo da

ridurre al minimo la quantità di memoria richiesta.

• La realizzazione di una versione minimale del codice GPU, nella quale

si limita il più possibile la quantità di dati mappati sul device. In tale

versione, si potrebbe ad esempio utilizzare un solo array di input e

uno di output, in modo da ridurre il numero di trasferimenti di dati.

Naturalmente, il risultato di tale versione non sarebbe corretto, ma

la sua esecuzione consentirebbe di capire se il problema sia legato al

mapping dei dati.

• La realizzazione di un codice di prova con lo scopo di verificare che

OpenMP effettui in modo corretto il mapping delle strutture dati spe-

cificate nella clausola map. In tale codice, si potrebbero creare delle

struct contenenti degli array statici, inizializzati con un certo valore.

Tali struct possono essere poi mappate sul device, in modo da ve-

rificare se i dati immagazzinati nei loro array vengono correttamente

copiati sulla GPU in fase di mapping.

È, infine, necessario tenere presente che il codice del ciclo parallelizzato è par-

ticolarmente complesso, e quindi il problema potrebbe essere legato proprio

all’eccessiva complessità delle operazioni al suo interno. In tal caso, la sua

risoluzione richiederebbe di modificare la strategia di parallelizzazione adot-

tata oppure la struttura stessa del codice, in modo che ogni thread possa

svolgere operazioni più semplici.

Un altro possibile sviluppo è la progressiva estensione dell’implementa-

zione GPU all’intero codice, includendo tutte le funzioni del ciclo principale

che non sono state prese in considerazione nella versione ridotta. L’esten-

sione prevede di effettuare sul resto del codice una fase di refactoring simile

4.2 Sviluppi futuri 59

a quella riportata in Sottosezione 3.4.3, per poi aggiungere le direttive ag-

giuntive necessarie per il corretto funzionamento del programma sulla GPU.

Un dettaglio importante da considerare in questa fase è l’inclusione nel ciclo

parallelizzato della funzione rand, richiamata in ogni thread per generare

numeri casuali. Tale funzione, infatti, non è thread-safe, e per questo mo-

tivo, nell’implementazione GPU completa, va sostituita con un metodo di

generazione di numeri casuali compatibile con l’esecuzione sul device. Un

approccio possibile potrebbe essere l’adozione di cuRAND, una libreria di

CUDA che consente di generare sequenze casuali sulla GPU. Tuttavia, es-

sendo cuRAND legata ad Nvidia, il suo utilizzo limiterebbe la portabilità

del codice realizzato, impedendo di sfruttare alcuni dei vantaggi offerti dal

paradigma di OpenMP.

Realizzata la versione completa dell’implementazione GPU, sarà poi pos-

sibile svolgere la valutazione delle sue prestazioni ed effettuare un confronto

con il precedente parallelismo CPU, in modo da determinare l’efficienza del-

l’approccio offerto da OpenMP. Nel caso in cui la strategia di parallelizzazione

illustrata in Sezione 3.3 risulti poco efficiente, a causa dell’elevata complessità

del ciclo principale, in futuro si potrà tentare di ottimizzare il codice secondo

un parallelismo a granularità più fine, in cui ogni thread esegue operazioni

più semplici, per meglio assecondare le caratteristiche dell’architettura hard-

ware della GPU. A tal proposito, può essere utile una fase preliminare di

misurazione del tempo di esecuzione di ognuna delle funzioni di calcolo ri-

chiamate nel ciclo principale, con lo scopo di identificare quali sezioni del

codice devono essere ottimizzate con maggiore priorità.

Appendice A

Lavorare nell’ambiente di

Leonardo

In questa appendice sono illustrate informazioni utili per lavorare all’in-

terno dell’ambiente di esecuzione del supercomputer Leonardo. Le infor-

mazioni riportate sono tratte dalla documentazione sull’utilizzo dei sistemi

HPC messa a disposizione dal CINECA, e alcune di esse possono essere sog-

gette a modifiche nel tempo. Si rimanda quindi a tale documentazione per

indicazioni più precise riguardo gli argomenti qui trattati.

A.1 Cenni sull’architettura di Leonardo

Leonardo è un Cluster di Processori, e in quanto tale è composto da un

numero elevato di nodi indipendenti interconnessi tra loro mediante una rete

ad alte prestazioni. I nodi di Leonardo sono divisi in due partizioni aventi

caratteristiche diverse:

Partizione Booster: Partizione dotata di GPU basate sull’architettura Am-

pere A100 di Nvidia. Le specifiche di un nodo in questa partizione sono

indicate in Tabella 2.1.

61

62 A. Lavorare nell’ambiente di Leonardo

Partizione DCGP (Data Centric General Purpose): Partizione priva

di GPU, ma in cui ogni nodo è dotato di due processori Intel Sapphire

Rapids che offrono complessivamente 112 core per nodo.

La partizione utilizzata nel corso del lavoro svolto in questa tesi è la Booster,

e per questo motivo le sue specifiche sono riportate in modo più dettagliato.

L’accesso ai nodi di calcolo delle due partizioni è gestito da degli appositi

nodi di login, ai quali ci si connette da terminale mediante il protocollo SSH.

Attraverso questi nodi, è possibile accedere al file system del cluster ed inviare

comandi ai nodi di calcolo. Un altro tipo di nodi è costituito dai Datamovers,

che hanno il compito di gestire il trasferimento di grandi quantità di dati tra

il cluster e l’esterno.

A.2 Utilizzo del file system

La gestione dello spazio di archiviazione di Leonardo si basa su un file

system distribuito che permette ai diversi nodi del cluster di condividere gli

stessi dati. Ciò consente di mantenere la struttura logica del file system

consistente su tutti i nodi. Lo spazio di archiviazione è diviso in diverse aree,

che possono essere classificate in vari modi. In particolare, le aree possono

essere:

temporanee: I dati al loro interno sono accessibili solo per un certo periodo

di tempo, dopo il quale vengono cancellati.

permanenti: I dati immagazzinati sono accessibili per tutta la durata del

progetto, e fino a sei mesi dopo la sua fine.

Inoltre, le aree possono essere classificate in base alla visibilità dei dati al

loro interno:

user specific: I dati sono accessibili solo ad un utente specifico.

shared: I dati sono condivisi tra tutti gli utenti di uno stesso progetto.

A.2 Utilizzo del file system 63

open: I dati sono accessibili a tutti gli utenti del cluster.

Tra le aree presenti nel file system di Leonardo si hanno:

$HOME La home directory dell’utente, un’area permanente e user specific

di dimensioni ridotte e soggetta a backup giornalieri.

$WORK Un’area permanente e shared con 1TB di memoria a disposizione.

$FAST Come $WORK, ma utilizza dischi più veloci, che consentono mi-

gliori prestazioni nelle operazioni di input/output.

$SCRATCH Un’area temporanea e user specific, concepita per i file tem-

poranei usati dalle applicazioni.

Ogni area può essere acceduta attraverso la corrispondente variabile di am-

biente nella shell di lavoro, che contiene il suo percorso assoluto. Ciò consen-

te di spostarsi in una specifica area passando al comando cd il valore della

variabile corrispondente, ad esempio:

cd $FAST

La modalità di utilizzo raccomandata per queste aree prevede di salvare su

$HOME i file importanti di piccole dimensioni, come script, codice o esegui-

bili, e mantenere su $WORK i file di grandi dimensioni, ad esempio quelli

contenenti i dati da elaborare o i risultati di un’esecuzione che si intende

conservare. Inoltre, $WORK è shared, e quindi può anche essere utilizzata

per immagazzinare i file che si vuole condividere con gli altri collaboratori del

progetto. Essendo più lenta, tuttavia, quest’area non è consigliata per l’uti-

lizzo in lettura/scrittura da parte dei programmi in esecuzione. Per questo

motivo, durante l’esecuzione si raccomanda di utilizzare $FAST per imma-

gazzinare i dati necessari e i risultati prodotti, in modo che le applicazioni

possano accedervi in modo efficiente.

64 A. Lavorare nell’ambiente di Leonardo

A.3 Scheduler e creazione di job

L’esecuzione di codice sui nodi di Leonardo avviene secondo modalità

diverse da quelle convenzionali: il cluster è utilizzato contemporaneamente

da un gran numero di utenti, e per questo motivo si serve di un sistema di job

scheduling per gestire l’allocazione delle risorse hardware necessarie a ciascun

programma. Per eseguire un programma su Leonardo è quindi necessario

definire un opportuno job, che specifica i comandi da eseguire sul cluster e

le risorse necessarie per l’esecuzione. Una volta creato, il job viene inserito

dallo scheduler in una coda di attesa, e successivamente messo in esecuzione

non appena le risorse richieste diventano disponibili. Lo scheduler utilizzato

dal cluster è Slurm (Simple Linux Utility for Resource Management), un

sistema open-source con un’elevata scalabilità. L’allocazione di job tramite

Slurm può avvenire secondo due modalità:

Modalità batch: Alloca un job definendo l’insieme di comandi che devono

essere eseguiti e le risorse necessarie per eseguirli. Una volta avviato

il job, l’insieme dei comandi specificati al suo interno non può essere

modificato. Questa modalità è usata per le esecuzioni di produzione e

per test che comportano tempi di esecuzione elevati.

Modalità interattiva: Alloca le risorse richieste e fornisce all’utente una

console interattiva dalla quale è possibile inviare comandi al cluster.

Questa modalità è solitamente utilizzata per test veloci e debugging.

Per utilizzare la modalità batch è necessario scrivere un apposito script che

specifica sia i comandi da eseguire, sia i parametri di allocazione del job.

Questi ultimi sono specificati mediante una serie di direttive #SBATCH, e

comunicano allo scheduler una serie di informazioni tra cui:

• Le risorse necessarie.

• I file in cui ridirezionare standard output e standard error del program-

ma.

A.3 Scheduler e creazione di job 65

• Il tempo massimo di allocazione.

Mediante le direttive si ha anche la possibilità di specificare la mail dell’u-

tente, in modo che il sistema invii automaticamente le notifiche sullo stato

del job.

La modalità interattiva prevede, invece, di richiedere l’allocazione delle

risorse del cluster mediante il comando salloc. Questo comando ha una serie

di opzioni che corrispondono alle direttive della modalità batch. In entrambe

le modalità, per far s̀ı che un comando venga effettivamente eseguito sui nodi

del cluster, è necessario lanciarlo attraverso il comando srun, che accetta i

seguenti parametri:

• Il nome del comando o dell’eseguibile da lanciare sul cluster.

• I parametri di input del comando o dell’eseguibile.

Tutti i comandi che non sono eseguiti con srun vengono eseguiti sul login

node in cui si trova l’utente, invece che sul cluster.

Di seguito, è mostrato un esempio di script sbatch utilizzato per eseguire

il codice di riferimento su 32 nodi MPI sfruttando 8 nodi della partizione

Booster e 4 core fisici per nodo:

#!/bin/bash

#SBATCH --output=output.log

#SBATCH --error=error.log

#SBATCH --job-name=tracer_CPU_test_32_nodes # Descriptive job name

#SBATCH --time=12:00:00 # Maximum wall time (hh:mm:ss)

#SBATCH --ntasks=32

#SBATCH --nodes=8 # Number of nodes to use

#SBATCH --ntasks-per-node=4

#SBATCH --cpus-per-task=1 # Number of CPU cores per task

#SBATCH --partition=boost_usr_prod # GPU-enabled partition

#SBATCH --qos=normal # Quality of Service

#SBATCH --mem=4G

66 A. Lavorare nell’ambiente di Leonardo

#SBATCH --account=account_number # Project account number

#SBATCH --mail-user=your@mail.com

#SBATCH --mail-type=ALL

module load hdf5

module load gsl

module load openmpi

srun ./tracer_mpi_eval.out params.txt 0

Nello script, --ntasks specifica il numero di nodi MPI che si vogliono alloca-

re, --nodes indica il numero di nodi fisici del cluster e --ntasks-per-node

specifica che su ogni nodo fisico devono essere eseguiti 4 nodi MPI, sotto

forma di processi logicamente separati.

Il seguente, invece, è un esempio di comando salloc che consente di

richiedere l’allocazione di un job interattivo su un singolo nodo, utilizzando

una delle GPU al suo interno:

salloc -n 1 --mem-per-cpu=4G --gres=gpu:1 -A account_number \

-p boost_usr_prod -q boost_qos_dbg -t 00:10:00

Questo comando imposta un tempo massimo di allocazione di 10 minuti, dopo

il quale la console del job viene chiusa automaticamente. La limitata quantità

di risorse e tempo di utilizzo richiesti fa s̀ı che il job venga allocato in tempi

brevi, consentendo di svolgere in modo rapido test di piccole dimensioni.

Il comando squeue consente di controllare in ogni momento lo stato della

coda di scheduling, e l’opzione -u fa s̀ı che vengano visualizzati solo i job

richiesti dall’utente. I job già allocati possono inoltre essere gestiti mediante

i comandi scontrol e scancel. scontrol, oltre a fornire informazioni più

dettagliate su uno specifico job, dà anche la possibilità, mediante il sottoco-

mando hold, di impedirne momentaneamente l’esecuzione. Un job in hold

può poi essere rilasciato mediante il sottocomando release, in modo che

possa essere messo in esecuzione. Il comando scancel consente invece di

A.4 Gestione dei moduli 67

cancellare uno o più job nella coda. Sia scontrol che scancel accettano

come parametro aggiuntivo l’ID del job da gestire.

A.4 Gestione dei moduli

Nell’ambiente di Leonardo, i pacchetti software di terze parti sono instal-

lati secondo un meccanismo a moduli. Per poter utilizzare un determinato

comando, eseguibile o libreria nel sistema, è quindi necessario caricare nel

proprio ambiente di lavoro il modulo software corrispondente. La gestione

dei moduli caricati avviene mediante il comando module, le cui funzioni sono

accessibili mediante specifici sottocomandi. I principali sottocomandi sono:

module avail stampa una lista di tutti i moduli disponibili nell’ambiente

di Leonardo.

module load <nome modulo> carica il modulo con il nome specificato.

module list consente di vedere tutti i moduli attualmente caricati nella

sessione corrente.

module unload <nome modulo> rimuove il modulo specificato dalla sessione

corrente.

module purge rimuove tutti i moduli caricati nella sessione corrente.

I moduli restano caricati nell’ambiente di lavoro dell’utente fino alla fine del-

la sessione. Quindi, ad ogni nuovo accesso al sistema è necessario caricare

nuovamente tutti i moduli necessari. Inoltre, quando si richiede l’esecuzione

di un job sul cluster, è necessario caricare in modo esplicito tutti i moduli in

esso utilizzati. Per la modalità batch, ciò viene fatto inserendo nello script i

comandi module load prima dell’invocazione del comando principale, men-

tre nella modalità interattiva basta invocare tali comandi direttamente sul

terminale. Il comando modmap è molto utile per cercare un determinato soft-

ware all’interno dell’ambiente di Leonardo. Infatti, se invocato con l’opzione

68 A. Lavorare nell’ambiente di Leonardo

-m seguita dal nome di un eseguibile, un comando o una libreria, stampa una

lista di tutti i moduli in cui è installato il software specificato.

A.5 Consumo delle risorse

Le risorse che il cluster mette a disposizione degli utenti non sono illimita-

te: ogni progetto dispone di un budget espresso in numero massimo di ore di

esecuzione consentite e condiviso tra tutti gli utenti che ne fanno parte. Ogni

mese, gli utenti associati ad un progetto hanno a disposizione una quota di

ore pari al budget totale, diviso la durata complessiva in mesi del progetto.

Le risorse di cui può usufruire ciascun utente dipendono quindi dai progetti

in cui partecipa. Le ore del budget sono espresse in ore CPU effettive, e

non in tempo di orologio; di conseguenza, il consumo del budget da parte di

ogni job è calcolato in base al numero di risorse in esso allocate, secondo la

seguente formula:

BH = T ×N ×R× C (A.1)

dove:

T è il tempo di esecuzione in ore

N è il numero di nodi allocati

R è un fattore che determina la frazione di risorse allocate per ogni nodo

C è il numero di core allocati su ogni nodo

Il fattore R, in particolare, è calcolato considerando il massimo tasso di uti-

lizzo tra tutte le risorse a disposizione del nodo, tra cui numero di core, GPU,

memoria. Ad esempio, se un job alloca tutti i core di un nodo, allora il tasso

di utilizzo della CPU è pari ad 1, e quindi il nodo conta come completamente

occupato anche se le altre risorse (GPU, memoria) non sono utilizzate del

tutto.

La quantità di ore rimanenti nella quota mensile determina anche la prio-

rità associata ai job all’interno della coda. In particolare, la priorità dei job

A.5 Consumo delle risorse 69

decresce linearmente con la percentuale di ore rimanenti, ed è massima all’i-

nizio di ogni mese, quando si dispone dell’intera quota. Se la quota mensile

è esaurita, i job creati vengono comunque presi in considerazione, ma la loro

priorità è molto più bassa rispetto ai job degli utenti con quota rimanente.

Bibliografia

[1] W Baade F Zwicky. Cosmic Rays from Super-Novae. Proc Natl Acad Sci

U S A, 20(5):259–263, 1934.

[2] S. Borgani A. Kravtsov. Cosmological Simulations of Galaxy Clusters.

Advanced Science Letters, 4(2):204–227, February 2011.

[3] J.S. Chang G. Cooper. A practical difference scheme for fokker-planck

equations. Journal of Computational Physics, 6(1):1–16, 1970.

[4] HESS Collaboration, A. Abramowski, et al. Acceleration of petaelec-

tronvolt protons in the Galactic Centre. Nature, 531(7595):476–479, Mar

2016.

[5] Marzena Lapka. CMS Knowledge Transfer: Cosmic rays. CMS

Collection., 2017.

[6] S. Navas et al. Review of particle physics. Phys. Rev. D, 110:535–556,

Aug 2024.

[7] B. T. Park V. Petrosian. Fokker-Planck Equations of Stochastic Ac-

celeration: A Study of Numerical Methods. ApJS, 103:255, March

1996.

[8] L. H. Thomas. Elliptic problems in linear difference equations over a

network. Watson Sci. Comput. Lab. Rept., Columbia University, New

York, 1:71, 1949.

71

72 BIBLIOGRAFIA

[9] M. Turisini, M. Cestari, G. Amati. Leonardo: A pan-european pre-

exascale supercomputer for HPC and AI applications. JLSRF, 9(1):4–5,

2024.

Ringraziamenti

Voglio innanzitutto ringraziare il mio relatore, Moreno Marzolla e il mio

correlatore, Claudio Gheller, per avermi dato la possibilità di lavorare al

confine tra due ambiti scientifici che mi appassionano: l’High Performance

Computing e l’Astronomia, e per avermi dato l’occasione di utilizzare un

cluster ad altissime prestazioni come Leonardo.

Ringrazio i miei genitori e i miei nonni, per avermi sempre amato e non

avermi mai fatto mancare nulla. È grazie a voi se ora ho le conoscenze e

gli strumenti necessari per far bene nella vita. Non vi potrò ringraziare mai

abbastanza.

Grazie a Federico e Cristina, colleghi e ottimi amici, per aver reso questi

anni di Università indimenticabili e preziosi. Siete riusciti a trasformare le

lezioni da semplice apprendimento ad un momento di crescita, condivisione

e socialità. Un grazie anche a tutti gli altri colleghi che mi hanno accompa-

gnato in questo percorso.

Grazie a Tommaso e Nicola, grandi amici e “compagni” non solo di scuola,

per tutto il tempo passato in vostra compagnia. In questi anni di Università,

abbiamo condiviso viaggi, esperienze, sessioni di gaming, dimostrando che le

nostre strade, seppur diverse, sono sempre legate.

Grazie a Claudia, per tutto l’amore che mi hai dato in questo fantastico

anno insieme. Grazie per essermi stata sempre accanto, in tutti i bei mo-

menti che abbiamo condiviso e anche in quelli più difficili. Sei la persona che

riesce a darmi più calma e conforto, e te ne sono grato.

