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Abstract

Il lavoro analizza, in un contesto didattico e con risorse limitate, il de-
ploy di un’infrastruttura di storage distribuito basata su Ceph. Sono stati
presi in esame tre approcci con livelli crescenti di automazione e astrazione:
un’installazione semi-manuale tramite gli strumenti nativi di Ceph (in par-
ticolare cephadm), utile per osservare in modo esplicito le fasi di bootstrap,
l’aggiunta degli OSD e il controllo dello stato del cluster; una soluzione semi-
automatica che combina Multipass, MicroCeph e un orchestratore sviluppato
ad hoc in Python, capace di creare in modo ripetibile più VM, inizializzarle
con cloud-init e ottenere un cluster Ceph funzionante e accessibile anche da
client esterni; un approccio container-native basato su Kubernetes e sull’o-
peratore Rook, analizzato soprattutto dal punto di vista architetturale, che
consente di esporre i servizi di storage Ceph come risorse dichiarative del
cluster. Il confronto, condotto rispetto a complessità di installazione, livello
di automazione, requisiti hardware, visibilità sui meccanismi interni di Ceph
e scalabilità, mostra che i tre approcci sono tra loro complementari: quello
manuale è il più formativo, quello automatizzato è quello che meglio si presta
a essere replicato in laboratorio, quello con Kubernetes/Rook è il più vicino
agli scenari cloud-native, ma anche il più esigente in termini di competenze
e risorse. Le prove sono state svolte su un unico host fisico e con stora-
ge in parte simulato, per cui i risultati vanno letti in chiave principalmente
didattica.





Introduzione

Negli ultimi anni l’evoluzione delle infrastrutture informatiche ha porta-
to a una crescente diffusione di sistemi di archiviazione distribuiti, capaci di
garantire elevata disponibilità, affidabilità e scalabilità. In tale contesto, il
progetto Ceph si è affermato come una delle soluzioni open source più comple-
te per la gestione di storage unificato a oggetti, blocchi e file system. La sua
architettura distribuita, basata su algoritmi di replica e auto-bilanciamento,
consente di ottenere resilienza e buone prestazioni utilizzando hardware di
tipo commodity, cioè economico e facilmente reperibile.

All’interno di un contesto didattico e sperimentale, riprodurre un cluster
Ceph rappresenta un’opportunità significativa per comprendere le dinamiche
dei sistemi distribuiti e dei meccanismi di orchestrazione. Tuttavia, la com-
plessità dell’installazione e della configurazione manuale di Ceph può costitui-
re un ostacolo per studenti e ricercatori che intendono esplorare la tecnologia
in modo pratico. Da questa considerazione nasce l’idea di confrontare di-
versi approcci alla realizzazione di un’infrastruttura Ceph, con l’obiettivo di
individuare un metodo efficace, ripetibile e adatto a scopi formativi.

In questo lavoro vengono quindi prese in esame tre strategie di implemen-
tazione di un cluster Ceph, ma con un diverso grado di verifica sperimenta-
le. La prima è un approccio semi-manuale basato su cephadm, che è stato
effettivamente realizzato e testato in ambiente di laboratorio, così da osser-
vare concretamente le fasi di bootstrap, l’aggiunta dei dispositivi e la verifica
dello stato del cluster. La seconda è un approccio semi-automatico basato
su MicroCeph, Multipass e un orchestratore sviluppato ad hoc, anch’esso
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ii INTRODUZIONE

effettivamente implementato e provato, con lo scopo di valutare quanto l’au-
tomazione e la virtualizzazione leggera possano facilitare la riproducibilità
del cluster. La terza è l’approccio containerizzato con Rook su Kubernetes,
che in questa tesi viene analizzato principalmente in termini teorici e archi-
tetturali, senza una realizzazione completa nel medesimo ambiente di test,
allo scopo di comprendere come uno storage Ceph possa essere integrato in
un cluster Kubernetes e reso disponibile tramite le primitive native della
piattaforma.

L’obiettivo principale del lavoro è quindi descrivere, confrontare e valuta-
re queste metodologie sia dal punto di vista tecnico, sia in termini di efficacia
didattica. L’analisi si concentra su aspetti quali la semplicità di deploy, la
riproducibilità dell’ambiente, la flessibilità nella configurazione e la compren-
sione dei meccanismi interni di Ceph, tenendo conto dei limiti sperimentali
derivanti dall’hardware disponibile e dalla natura teorica del terzo approccio.
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Capitolo 1

Obiettivi della tesi

1.1 Obiettivo generale

Il presente lavoro si propone l’obiettivo generale di analizzare tre diffe-
renti approcci per il deployment di un’infrastruttura di storage distribui-
to basata su Ceph, focalizzandosi in particolare su ambienti didattici e di
sperimentazione con risorse hardware limitate.

1.2 Obiettivi specifici

Per conseguire l’obiettivo generale, sono stati definiti i seguenti obiettivi
specifici:

• Analizzare le tecnologie e i concetti teorici alla base di Ceph, della
virtualizzazione e dell’orchestrazione containerizzata.

• Realizzare un approccio completamente manuale per l’installazione e la
configurazione di un cluster Ceph, al fine di acquisire una comprensione
dettagliata del funzionamento interno del sistema.

• Sviluppare un framework semi-automatico, basato su MicroCeph e Mul-
tipass, in grado di automatizzare la creazione e il deploy del cluster su
macchine virtuali leggere.

1



2 1. Obiettivi della tesi

• Analizzare l’integrazione dello storage distribuito nell’ecosistema Ku-
bernetes tramite l’operatore Rook, valutando la fattibilità teorica del
deploy container-native del cluster Ceph.

• Confrontare i tre approcci in termini di semplicità d’uso, ripetibilità,
scalabilità e risorse richieste, evidenziando vantaggi, svantaggi e casi
d’uso raccomandati.

1.3 Ambito e limiti

L’ambito della tesi è circoscritto a scenari di laboratorio e didattici, ese-
guiti su hardware non dedicato e con risorse limitate; non si affrontano de-
ployment in ambienti di produzione su larga scala. Le verifiche sono orientate
alla fattibilità, alla ripetibilità e alla comparazione tra diversi approcci di or-
chestrazione di Ceph, più che a test prestazionali o di resilienza. In tutti i
casi le prove sono state condotte su un singolo host fisico che ha ospitato le
componenti necessarie. I vincoli operativi e le conseguenze su scalabilità e
misurazioni sono dettagliati nella Sezione 6.4.



Capitolo 2

Fondamenti teorici e tecnologie
coinvolte

In questo capitolo vengono presentati i fondamenti teorici e le principa-
li tecnologie impiegate nel progetto. In particolare, verranno descritti gli
strumenti utilizzati per la realizzazione dell’infrastruttura distribuita, tra cui
Ceph e la sua versione leggera MicroCeph, il sistema di orchestrazione dei
container Kubernetes (e le sue varianti), l’interfaccia di integrazione Rook,
l’ambiente di virtualizzazione Multipass e vari strumenti di supporto.

2.1 Cos’è Ceph

Ceph è un sistema di storage definito via software (software-defined sto-
rage) open-source, progettato per offrire un’infrastruttura di archiviazione
distribuita, unificata e altamente scalabile. Lo scopo principale di Ceph è
mettere a disposizione servizi di storage a oggetti, a blocchi e a file all’in-
terno di un unico cluster composto da hardware commodity 1, eliminando i
punti singoli di guasto.

1Hardware commodity — Dispositivi e sistemi costruiti con componenti convenzio-
nali, prodotti in serie, e interoperabili con altri dell’identico tipo; usati per costruire
infrastrutture scalabili ed economiche.

3



4 2. Fondamenti teorici e tecnologie coinvolte

2.1.1 Caratteristiche fondamentali

Tra le caratteristiche distintive del sistema Ceph troviamo:

• Scalabilità orizzontale: l’architettura consente di espandere il clu-
ster semplicemente aggiungendo nuovi nodi, senza modifiche profonde
all’infrastruttura.

• Tolleranza ai guasti e auto-gestione: grazie alla distribuzione dei
dati e alla replica (o codifica a cancellazione) su più nodi, il sistema è
in grado di recuperare automaticamente da guasti di dispositivi o nodi.

• Unificazione dei modelli di storage: in uno stesso cluster possono
essere forniti servizi di storage ad oggetti, servizi di storage a bloc-
chi (volumi per macchine virtuali o container) e file system distribuiti
compatibili POSIX.

• Uso di hardware commodity: non è necessario hardware proprie-
tario o controller RAID particolari: il cluster può essere costruito su
server standard e dischi/dispositivi generici.

2.1.2 Architettura di base

Il livello fondamentale di Ceph è rappresentato da RADOS [2] (Reliable
Autonomic Distributed Object Store): in questo modello tutti i dati sono
trattati come oggetti e distribuiti tra i vari nodi del cluster in modo auto-
nomo e resiliente. La distribuzione degli oggetti è governata dall’algoritmo
CRUSH [3] (Controlled Replication Under Scalable Hashing), che determi-
na in modo deterministico su quale nodo o dispositivo un dato oggetto debba
essere memorizzato. Questo approccio evita l’utilizzo di tabelle centralizzate
di lookup e migliora la scalabilità e il bilanciamento del carico.

Al di sopra di RADOS si colloca librados, la libreria client che fornisce
le API per leggere e scrivere oggetti nello store distribuito. Tutti i servizi
di livello superiore di Ceph (come RBD per i volumi a blocchi, RADOS
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Gateway per l’object storage compatibile S3/Swift e CephFS per il filesystem
distribuito) non accedono direttamente ai singoli OSD, ma utilizzano librados
per interagire con RADOS in modo uniforme. In questo modo la logica di
replica, bilanciamento e recupero resta concentrata nello strato di storage,
mentre i servizi sopra possono offrire interfacce diverse (a blocchi, a oggetti,
a file) senza dover reimplementare i meccanismi di affidabilità.
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Figura 2.1: Architettura a livelli di Ceph: i client accedono ai servizi di alto
livello (RBD, RADOS Gateway, CephFS), che si appoggiano alla libreria
librados e allo store distribuito RADOS; alla base il cluster è costituito dai
demoni MON, OSD e, per CephFS, MDS.

Fonte: adattato da [13].

Il cluster Ceph si compone di diversi demoni principali. I Monitor (MON)
hanno il compito di mantenere la mappa dello stato del cluster, la configura-
zione e il consenso tra i nodi. Gli Object Storage Daemon (OSD) gestiscono
direttamente i dispositivi fisici di memorizzazione, memorizzano gli oggetti,
partecipano alla replica e al bilanciamento automatico; quando viene utiliz-
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zato il filesystem distribuito CephFS, interviene inoltre il Metadata Server
(MDS), che ha il compito di gestire i metadati di file e directory. A questi
si aggiungono altri demoni come il Manager (MGR) e il Gateway (RGW),
che estendono le funzionalità verso il monitoraggio, le interfacce a oggetti e
il supporto al file/block storage.

2.1.3 Meccanismi chiave del sistema Ceph

Il corretto funzionamento di Ceph si basa su un insieme di meccanismi
distribuiti che assicurano disponibilità dei dati, resilienza ai guasti e bilan-
ciamento del carico. In particolare, tre elementi fondamentali ne caratteriz-
zano l’architettura: la replica dei dati, l’auto-guarigione (self-healing) e la
distribuzione controllata degli oggetti all’interno del cluster.

2.1.4 Replica dei dati

La replica rappresenta il meccanismo attraverso cui Ceph garantisce af-
fidabilità e tolleranza ai guasti all’interno del cluster. Ogni oggetto memo-
rizzato nel livello RADOS viene duplicato su più demoni OSD secondo una
policy di replica definita già in fase di progettazione del pool (tipicamente tre
copie). Il posizionamento e la gestione delle repliche non avviene attraver-
so un controllo centralizzato, bensì in modo distribuito grazie all’algoritmo
CRUSH, che calcola in modo deterministico la collocazione degli oggetti nel
cluster evitando colli di bottiglia e favorendo scalabilità e bilanciamento. Di
conseguenza, i dati risultano ridondanti e restano disponibili anche in pre-
senza di uno o più guasti su dischi o nodi; la dimensione della replica può
essere modificata in base alle esigenze di resilienza o alle risorse disponibili;
inoltre, è possibile ricorrere a tecniche avanzate come l’erasure coding che,
pur riducendo lo spazio occupato, mantiene un livello di protezione dai guasti
conforme alla configurazione del pool.
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2.1.5 Auto-guarigione

Una delle caratteristiche più innovative di Ceph è la capacità di recupe-
rare in modo autonomo la ridondanza e la coerenza dei dati al verificarsi di
un guasto (solitamente indicata in inglese come self-healing). Quando un
demone OSD diventa irraggiungibile o viene rimosso dal cluster, i monitor
aggiornano la mappa dello stato segnando quell’OSD come non disponibi-
le. Gli oggetti che risiedevano su quell’OSD vengono quindi rilevati come
sotto-replicati e il sistema avvia automaticamente la replica verso altri OSD
ancora attivi, ripristinando il livello di ridondanza previsto. Il processo avvie-
ne in modo trasparente per l’utente e senza intervento manuale, minimizzan-
do l’impatto sul servizio. Questo meccanismo è fondamentale per garantire
l’alta disponibilità in scenari di produzione.

2.1.6 Distribuzione dei dati

In Ceph, la distribuzione dei dati è governata dall’algoritmo CRUSH
(Controlled Replication Under Scalable Hashing) che calcola in modo deter-
ministico dove ogni oggetto debba essere memorizzato, tenendo conto dell’i-
dentificativo dell’oggetto, della topologia del cluster (nodi, rack, data-center)
e delle regole di posizionamento definite dall’amministratore. Questa archi-
tettura elimina la necessità di tabelle centralizzate di lookup, migliorando la
scalabilità e le prestazioni del sistema.

La distribuzione presenta le seguenti caratteristiche:

• Bilanciata: i dati vengono ripartiti in maniera omogenea tra gli OSD,
ottimizzando l’utilizzo delle risorse.

• Deterministica: qualsiasi client può calcolare autonomamente la po-
sizione di un oggetto, senza bisogno di interrogare un server centrale.

• Adattiva: in caso di aggiunta o rimozione di nodi, solo una minima
frazione dei dati viene ridistribuita, riducendo i tempi di ribilanciamen-
to.
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2.1.7 Pool e Placement Group (PG)

Per capire davvero come Ceph distribuisce e bilancia i dati nel cluster
è utile introdurre due concetti chiave: i pool e i placement group (PG).
Questi due livelli logici mediano tra gli oggetti che i client vogliono salvare e
i demoni OSD che li memorizzano fisicamente.

Pool

Un pool è un contenitore logico di dati all’interno del cluster Ceph. Ogni
oggetto scritto dal client viene sempre memorizzato dentro un pool, che rap-
presenta il livello in cui si definiscono le policy di storage. Tra i parametri
più importanti impostati a livello di pool troviamo:

• il tipo di protezione dei dati (replica tradizionale oppure erasure
coding);

• il fattore di replica (quante copie mantenere di ciascun oggetto);

• il tipo di applicazione (ad esempio un pool dedicato a CephFS, uno
per RBD, uno per RGW);

• eventuali regole CRUSH specifiche per quel pool.

Separare i dati in più pool permette di tenere isolati carichi di lavoro diversi,
applicare policy differenti (ad esempio maggiore ridondanza per i dati critici,
minore per i dati temporanei) e semplificare la gestione.

Placement Group (PG)

I placement group sono il livello intermedio tra il pool e gli OSD. Quando
un client salva un oggetto:

1. indica il pool di destinazione;

2. l’algoritmo CRUSH calcola a quale PG di quel pool deve appartenere
l’oggetto;
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3. lo stesso PG è mappato, sempre tramite CRUSH, a un insieme di OSD

(uno per la copia primaria e gli altri per le repliche).

In questo modo Ceph non deve gestire la posizione di ogni singolo oggetto,
ma solo quella dei PG: ogni PG è come un “secchiello” logico che contiene
un certo numero di oggetti e che viene assegnato a un gruppo di OSD. Se
cambia la composizione del cluster (aggiunta/rimozione di OSD), Ceph può
ridistribuire i PG in modo controllato, e con essi gli oggetti che contengono.

Scelta del numero di PG

Il numero di PG per ciascun pool è un parametro importante perché
influenza:

• il bilanciamento: più PG permettono di distribuire i dati in modo
più uniforme tra gli OSD;

• il carico di gestione: troppi PG aumentano l’overhead e il lavoro di
monitoraggio del cluster.

La documentazione di Ceph [1] propone una regola empirica per stimare il
numero totale di PG del cluster, ad esempio

PG_totali ≈ numero OSD × 100
fattore di replica

e poi suddividere questi PG tra i vari pool in base all’uso. Si tratta comunque
di una linea guida: in ambienti piccoli conviene restare su valori più contenuti,
mentre in cluster più grandi si può aumentare per migliorare la distribuzione.
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Figura 2.2: Esempio di distribuzione degli oggetti in Ceph: gli oggetti vengo-
no raggruppati in Placement Group (PG) e, sulla base della CRUSH map e
della relativa configurazione, ogni PG viene mappato in modo deterministico
sugli OSD del cluster.

Fonte: adattato da [14].

2.2 MicroCeph

MicroCeph è una soluzione leggera sviluppata da Canonical per sempli-
ficare il deployment e la gestione di un cluster Ceph. È distribuito come
pacchetto snap ed è progettato per ridurre la complessità tipica delle instal-
lazioni Ceph tradizionali, rendendo possibile l’avvio rapido di cluster anche
su hardware minimo o in ambienti sperimentali.

2.2.1 Caratteristiche principali

Tra le funzionalità più rilevanti di MicroCeph si segnalano:

• gestione semplificata dei dischi e del placement dei servizi: MicroCeph
automatizza operazioni come l’aggiunta degli OSD, la distribuzione dei
demoni MON/MGR/MDS/RGW e l’inizializzazione del cluster
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• compatibilità con tutti i protocolli Ceph (RBD, CephFS, RGW), non-
ché supporto per ambienti di test, home-lab o edge

• forte orientamento verso la riproducibilità: ideale per scenari didattici
o sperimentali in cui la rapidità di deploy e la semplicità di gestione
sono cruciali.

2.2.2 Sintesi

In sintesi, MicroCeph rappresenta una valida scelta per ambienti didat-
tici, laboratori di ricerca, prototipazione veloce e test di concetti di storage
distribuito [5] [6]. Permette di avviare un cluster Ceph in pochi minuti con
un overhead minimo, offrendo un buon compromesso tra funzionalità e sem-
plicità. Tuttavia, per scenari di produzione ad alta scala o con requisiti
complessi, può essere necessario adottare soluzioni Ceph più tradizionali e
personalizzate.

2.3 Kubernetes

Kubernetes (spesso abbreviato in K8s) è un sistema open-source origi-
nariamente sviluppato da Google e ora gestito dalla Cloud Native Compu-
ting Foundation (CNCF). La sua funzione principale è l’automazione del
deployment, dello scaling e della gestione delle applicazioni containeriz-
zate (tipicamente tramite Docker). Kubernetes agisce come un “sistema
operativo” per i cluster di macchine, astraendo l’infrastruttura sottostante e
facilitando l’esecuzione coerente dei container su larga scala [7].

Questo strumento è emerso come lo standard de facto nell’orchestra-
zione dei container per diversi motivi fondamentali. Tra i principali vi so-
no la scalabilità, che permette l’aumento o la diminuzione automatica del
numero di repliche di un’applicazione in base al carico (Horizontal Pod Au-
toscaler); la resilienza e auto-riparazione (self-healing) che rileva e
sostituisce automaticamente i container che falliscono; la portabilità, fun-
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zionando in ambienti on-premise, cloud pubblici (es. AWS, Azure, GCP)
o hybrid cloud senza modifiche significative; e la gestione dichiarativa,
dove l’utente descrive lo stato desiderato dell’applicazione e Kubernetes si
impegna a mantenerlo.

L’architettura di Kubernetes si basa sul modello Control Plane – Wor-
ker Node. Il Control Plane, noto anche come Piano di Controllo o Master,
funge da “cervello” del cluster, gestendo lo stato desiderato, pianificando i
carichi di lavoro e supervisionando l’intero sistema. Tra i suoi componenti
principali vi sono kube-apiserver, che funge da interfaccia di comunicazione
tra utenti, componenti e nodi, ed etcd, l’archivio distribuito che memorizza
lo stato del cluster.

I Worker Nodes, invece, sono le macchine su cui vengono eseguiti ef-
fettivamente i container. Su ciascun nodo operano componenti chiave come
kubelet, l’agente che applica le istruzioni del Control Plane, e kube-proxy, che
gestisce la comunicazione di rete tra i pod e i servizi, garantendo il corretto
instradamento del traffico all’interno del cluster.

2.3.1 Terminologia

Per facilitare la lettura e la comprensione del testo, di seguito vengono
riportate le definizioni dei principali termini tecnici che saranno utilizzati con
frequenza nel corso della tesi.

Orchestratore

Un orchestratore è uno strumento software che automatizza il deploy,
la gestione, il networking e la scalabilità di container o VM in un cluster.
Gestisce in modo centralizzato il ciclo di vita delle applicazioni distribuite,
assicurando che vengano rispettati lo stato desiderato, le dipendenze e le
politiche di bilanciamento del carico.
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Container

Un container è un’unità leggera e portabile di esecuzione che racchiude
un’applicazione insieme a tutte le dipendenze necessarie. A differenza delle
macchine virtuali, i container condividono il kernel del sistema operativo
host, consentendo avvii rapidi e un utilizzo più efficiente delle risorse.

2.3.2 Varianti di Kubernetes

Oltre alla distribuzione Kubernetes classica (spesso definita anche K8s),
esistono diverse distribuzioni ottimizzate per specifici casi d’uso, come am-
bienti edge, IoT o sviluppo locale. Le più note sono:

k3s

k3s è una distribuzione altamente lightweight e certificata di Kuber-
netes, sviluppata da Rancher Labs. È progettata per ambienti con risorse
limitate o dove la stabilità e la ridotta superficie di attacco sono cruciali (es.
edge computing, IoT). k3s riduce drasticamente i requisiti di memoria e di-
pendenze eliminando i componenti non essenziali e rimpiazzando etcd con un
database SQL più leggero (di default SQLite).

k0s

k0s è un’altra distribuzione leggera di Kubernetes, che punta a un’instal-
lazione semplice e un’operatività minima senza dipendenze esterne. Include
sia il Control Plane che i nodi Worker in un unico pacchetto eseguibile, faci-
litando l’avvio di cluster temporanei o sperimentali con un overhead ridotto,
pur offrendo funzionalità compatibili con l’ecosistema Kubernetes.
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k3s k0s
Filosofia Leggero ma con pacchetto

completo
Minimalista, single binary

Installazione Richiede alcune dipenden-
ze minime

Nessuna dipendenza ester-
na obbligatoria

Architettura Componenti distribuiti ri-
dotti

Control Plane + Worker in
un unico binario

Uso tipico Edge, IoT, laboratori di-
dattici

Laboratori, cluster tempo-
ranei, sperimentazioni

Storage dei dati SQLite di default, etcd op-
zionale

Etcd opzionale, configura-
bile

Tabella 2.1: Confronto tra k3s e k0s

2.3.3 Rook

Rook è un operatore open-source progettato per portare i sistemi di sto-
rage distribuito, in particolare Ceph, all’interno di un cluster Kubernetes.
Attraverso l’uso di Custom Resource Definitions (CRD) e controller dedicati,
Rook automatizza la configurazione, il deploy, il dimensionamento, l’aggior-
namento e il monitoraggio del cluster Ceph, trasformandolo in un servizio
di storage “self-managing” e “self-healing” [8]. In pratica, Rook opera co-
me livello intermedio tra Kubernetes e Ceph: Kubernetes gestisce il ciclo
di vita dei container e delle risorse, mentre Rook si occupa di orchestrare
le componenti di Ceph (MON, OSD, MGR, MDS, pool, StorageClass) co-
me se fossero servizi nativi di Kubernetes. Grazie a questa integrazione,
un’applicazione containerizzata può richiedere volumi persistenti, file system
o storage a oggetti direttamente tramite risorse Kubernetes (ad esempio,
PersistentVolumeClaim), senza che l’utente debba intervenire manualmente
sul cluster Ceph sottostante. L’adozione di Rook risulta particolarmente uti-
le nei contesti in cui lo storage distribuito deve essere fortemente integrato
con ambienti containerizzati, offrendo un livello di automazione e scalabilità
superiore rispetto ai deployment tradizionali di Ceph.
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2.4 Multipass

Multipass è uno strumento sviluppato da Canonical che consente di creare
e gestire macchine virtuali leggere basate su Ubuntu in modo rapido e sem-
plificato [9]. Le VM vengono lanciate con un singolo comando, e l’ambiente
può essere configurato tramite cloud-init, replicando modalità di provisio-
ning 2 tipiche del cloud. Multipass supporta i sistemi host Linux, Windows
e macOS, utilizzando rispettivamente QEMU, Hyper-V o altri driver, con
l’obiettivo di offrire un’esperienza coerente su diverse piattaforme.

Queste caratteristiche rendono Multipass particolarmente adatto per uti-
lizzi sperimentali, laboratori o ambienti didattici in cui è necessario creare e
distruggere VM in modo rapido e controllato.

2.4.1 Precisazioni sull’installazione tramite Snap

Multipass viene distribuito principalmente come pacchetto Snap, un si-
stema di packaging e distribuzione sviluppato da Canonical che consente di
installare applicazioni in modo isolato dal sistema host, includendo tutte le
dipendenze necessarie. Questa modalità di distribuzione garantisce un’in-
stallazione semplificata, aggiornata automaticamente e uniforme su diverse
distribuzioni Linux, indipendentemente dal gestore di pacchetti nativo del
sistema.

Tale isolamento, però, ha anche alcune conseguenze. Poiché ogni snap

viene fornito con il proprio insieme di librerie e runtime, può accadere che
più applicazioni snap installino copie diverse delle stesse dipendenze, con un
conseguente aumento dello spazio occupato su disco. Questo fenomeno viene
spesso indicato come isolamento e duplicazione delle dipendenze: è utile per
garantire che ciascun pacchetto funzioni in modo riproducibile e non venga

2Nel contesto IT, “provisioning” indica il processo mediante il quale vengono predispo-
ste le risorse infrastrutturali (hardware, rete, storage, macchine virtuali o container) e rese
disponibili per l’uso da parte dei sistemi o degli utenti.
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rotto da aggiornamenti del sistema host, ma va considerato quando si lavora
su macchine con risorse limitate.

Strato di base e content interfaces

Per ridurre il problema della duplicazione, l’ecosistema Snap introduce
il concetto di strato di base (base snap), ovvero un’immagine comune (ad
esempio core o core22) che fornisce un ambiente runtime condivisibile tra
più snap. In questo modo le applicazioni possono appoggiarsi a un set di
librerie già presente nel sistema invece di includerle tutte al proprio interno.

In aggiunta, tramite le cosiddette content interfaces, uno snap può espor-
re contenuti riutilizzabili da altri snap, così da evitare di duplicare asset di
grandi dimensioni o dipendenze comuni. Nonostante questi meccanismi di
ottimizzazione, è comunque possibile che, rispetto a una installazione tradi-
zionale basata su pacchetti di sistema, l’uso di più snap porti a un overhead
complessivo maggiore in termini di spazio e di livelli di isolamento.

Confinamento e permessi dei pacchetti Snap

Uno degli aspetti centrali dell’ecosistema Snap è il modello di sicurezza
basato sul confinamento dell’applicazione. In pratica, ogni snap viene ese-
guito in un ambiente controllato, con accesso mediato alle risorse del sistema
(file, rete, dispositivi, servizi di sistema). Questo isolamento è implementato
tramite meccanismi del kernel come AppArmor3 e seccomp4 , che permettono
a snapd di applicare una policy di sicurezza specifica per ciascuna versione
del pacchetto. In questo modo si riduce la superficie d’attacco e si applica il
principio del minimo privilegio.

La piattaforma distingue principalmente tre livelli di confinamento:
3AppArmor: modulo di sicurezza per Linux che applica controlli d’accesso obbliga-

tori tramite profili associati ai singoli programmi, limitandone file, capacità e operazioni
consentite.

4seccomp: funzionalità del kernel Linux (secure computing mode) che permette di
filtrare o ridurre l’insieme di system call disponibili a un processo.
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• strict: è l’impostazione predefinita e più sicura; lo snap vede solo il suo
filesystem privato e può accedere ad altre risorse solo tramite interfacce
dichiarate;

• classic: lo snap gira con accesso molto più ampio al sistema host (si-
mile a un pacchetto tradizionale) ed è riservato a casi d’uso particolari;
richiede una revisione specifica nello Snap Store;

• devmode: usato in fase di sviluppo/debug, permette di rilassare i
controlli per facilitare i test.

Questi livelli sono importanti perché determinano quanto un’applicazione è
isolata dal resto del sistema.

Per poter accedere a risorse esterne all’ambiente confinato, gli snap di-
chiarano delle interfaces (ad esempio per l’accesso alla home dell’utente, al-
l’audio, alla grafica, a network, ecc.). Alcune interfacce vengono collegate
automaticamente perché considerate sicure o necessarie al funzionamento
dell’applicazione; altre richiedono l’approvazione dell’utente o dell’ammini-
stratore di sistema. Questo meccanismo di interfacce e permessi consente
di mantenere l’isolamento di base pur permettendo allo snap di svolgere i
propri compiti.

Il ruolo di snapd

Alla base del funzionamento di tutto il sistema c’è snapd, il demone che
gira in background e che coordina l’intero ecosistema degli snap. È snapd,
infatti, a occuparsi dell’installazione, dell’aggiornamento e dell’eventuale ri-
mozione dei pacchetti, applicando ogni volta le relative policy di sicurezza
associate a ciascuna applicazione. Sempre snapd gestisce le connessioni tra
le interfacce dichiarate dagli snap e le risorse reali del sistema, decidendo
quali permessi concedere e con quali modalità. Infine, è il componente che
mantiene il contatto con lo Snap Store per verificare la disponibilità di nuo-
ve versioni, di canali di rilascio diversi e per applicare gli aggiornamenti in
modo transazionale.
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2.4.2 Cos’è una macchina virtuale (VM)

Una Virtual Machine (VM) è un ambiente software che emula il compor-
tamento di un computer fisico, permettendo di eseguire un sistema operativo
e applicazioni in modo isolato dal sistema host. Ogni VM dispone di risorse
virtualizzate — come CPU, memoria, disco e interfacce di rete — fornite e
gestite da un hypervisor, ossia un livello di astrazione che coordina l’accesso
dell’hardware fisico tra più ambienti virtuali.

Questo approccio consente di eseguire più macchine indipendenti sullo
stesso hardware fisico, migliorando l’efficienza nell’utilizzo delle risorse e sem-
plificando la sperimentazione di sistemi complessi. Nel contesto di questo
lavoro, le VM sono utilizzate per simulare i nodi di un cluster Ceph in modo
controllato e riproducibile, senza la necessità di disporre di più server fisici
dedicati.

2.5 Strumenti di supporto

Oltre alle tecnologie principali impiegate per la virtualizzazione e l’or-
chestrazione, in questa tesi vengono utilizzati e citati alcuni strumenti com-
plementari che supportano e semplificano le operazioni di configurazione e
gestione dell’ambiente sperimentale.

2.5.1 cephadm

cephadm è uno strumento a riga di comando progettato per facilitare il
deployment, la gestione e l’aggiornamento di un cluster Ceph [4]. In par-
ticolare, cephadm permette di eseguire il bootstrap di un cluster partendo
da un singolo nodo, automatizzare la distribuzione dei demoni Ceph dentro
container, aggiungere nuovi nodi al cluster e gestire il ciclo di vita dell’intero
sistema.
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Il suo punto di forza principale è la riduzione della complessità del de-
ploy rispetto a un’installazione completamente manuale, grazie alla gestione
automatica dei container e della configurazione iniziale;

Nell’ambito della sperimentazione con questo studio, cephadm rappre-
senta l’elemento che consente di armonizzare un approccio “quasi-manuale”
con un livello di automazione sufficiente a rendere riproducibili i test, pur
mantenendo una buona visibilità sui processi di deploy e configurazione.

2.5.2 cloud-init

cloud-init è lo strumento standard per l’inizializzazione automatica
delle istanze cloud o virtuali al primo avvio [10]. Sviluppato per ambienti
cloud-native, è supportato nativamente da Ubuntu e da molte altre distribu-
zioni Linux. In particolare, cloud-init consente non solo di configurare host-
name, utenti e chiavi SSH, ma anche di installare automaticamente pacchetti
di base e di eseguire comandi personalizzati al primo avvio della macchina. In
questo modo si garantisce che ogni VM parta da una configurazione identica
e predefinita, favorendo la riproducibilità dell’ambiente sperimentale.

2.5.3 Netplan

Netplan è l’utilità introdotta da Ubuntu (a partire dalla versione 17.10)
per la configurazione dichiarativa della rete tramite file YAML. La sua funzio-
ne principale è astrarre la configurazione delle interfacce di rete, delegando
a sottosistemi come systemd-networkd l’applicazione concreta. Nel con-
testo della sperimentazione con MicroCeph, Netplan è stato utilizzato per
configurare in modo statico gli indirizzi IP di tutti i nodi del cluster.

2.5.4 Samba

Samba è un insieme di strumenti open-source che implementano il pro-
tocollo SMB/CIFS, consentendo l’interoperabilità tra sistemi Linux/Unix e
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Windows. Nel nostro ambiente di prova il servizio Samba non è stato collo-
cato su una macchina dedicata, ma direttamente sulla prima VM del cluster
Ceph, che funge quindi sia da nodo del cluster sia da punto di accesso per i
client Windows.

La sequenza è la seguente:

• le VM del cluster costituiscono l’infrastruttura Ceph (con i servizi MON,
MDS, OSD, . . . ) e mettono a disposizione il filesystem distribuito CephFS;

• sulla prima VM del cluster viene montato CephFS in spazio utente
tramite ceph-fuse (ad esempio in /mnt/cephfs);

• sulla stessa VM viene configurato Samba per esportare in rete una o più
sottodirectory di CephFS (ad esempio /mnt/cephfs/progetto);

• i client Windows, che sono macchine esterne al cluster, accedono a queste
directory tramite il protocollo SMB come a normali condivisioni di rete
(ad esempio \\ceph-vm1\cephshare).

In questo modo i client Windows non interagiscono direttamente con
CephFS né devono conoscere la sua configurazione interna: vedono soltan-
to una share Samba esposta dalla prima VM del cluster, che svolge il ruolo
di “traduttore” tra il filesystem distribuito e il protocollo SMB.

Nota per ambienti di produzione. Nel setup descritto, Samba è sta-
to eseguito direttamente sulla prima VM del cluster Ceph per semplificare
l’ambiente sperimentale. Tuttavia, in un contesto di produzione è gene-
ralmente consigliabile separare i ruoli: i nodi del cluster dovrebbero essere
dedicati ai servizi Ceph, mentre i servizi di esposizione verso i client (Samba,
NFS-Ganesha, ecc.) dovrebbero risiedere su macchine/front-end distinti che
montano CephFS e lo riesportano. Questa separazione riduce la contesa delle
risorse, migliora la sicurezza e permette di effettuare manutenzione sui servizi
di condivisione senza impattare direttamente sul cluster di storage.





Capitolo 3

Installazione semi-manuale

In questo primo approccio il cluster Ceph viene realizzato mediante l’u-
tilizzo dell’utilità cephadm, che gestisce il lifecycle del cluster (bootstrap,
deploy dei demoni, aggiunta di nodi), anziché la tradizionale configurazione
totalmente manuale dei singoli componenti Ceph. Si parte con il comando di
bootstrap offerto da cephadm su un nodo iniziale, si prosegue con l’aggiunta
manuale degli altri host e dispositivi, la creazione dei pool, la gestione di
OSD, MON e altri servizi, e l’esecuzione dei test di funzionamento. Que-
sto metodo consente comunque un controllo granulare di molti aspetti del
deployment, pur richiedendo un significativo lavoro manuale e la conoscen-
za approfondita dell’architettura Ceph. La scelta di questo approccio nel
contesto della tesi è motivata dal desiderio di comprendere in profondità il
funzionamento di Ceph con un minimo livello di automazione — ossia capire
come cephadm gestisce molti aspetti, ma lascia comunque all’amministratore
gran parte delle decisioni e della configurazione.

3.1 Procedura e implementazione

L’ambiente sperimentale è stato configurato all’interno di WSL (Windows

Subsystem for Linux), che consente di eseguire un ambiente Linux nativo
su sistema operativo Windows senza ricorrere a una virtualizzazione com-
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pleta. Questa scelta ha permesso di ridurre i tempi di configurazione e di
eseguire i test direttamente su una macchina host Windows, mantenendo
al contempo la compatibilità con gli strumenti Linux necessari al deploy di
Ceph.

Il sistema operativo utilizzato all’interno di WSL è Ubuntu 24.04.1 LTS.
Dopo aver predisposto l’ambiente di test su WSL, si è proceduto con

l’installazione di cephadm, prelevato direttamente dai repository ufficiali di
Ubuntu tramite il gestore di pacchetti APT.

3.2 Bootstrap del nodo

Completata l’installazione, si è proceduto con la fase di bootstrap, che
inizializza il primo nodo del cluster, installa i servizi fondamentali (MON, MGR

e OSD) e configura automaticamente il sistema di rete e autenticazione. Il
comando utilizzato è stato:

sudo cephadm bootstrap --mon-ip <indirizzo_IP_locale>

Durante questa fase, cephadm:

• crea un demone MON (Monitor) e un demone MGR (Manager) per il nuovo
cluster sul nodo locale;

• crea e distribuisce automaticamente le chiavi SSH e amministrative ne-
cessarie, genera un file minimo di configurazione del cluster e colloca
tali elementi nella directory di configurazione (/etc/ceph/), garanten-
do che il nodo bootstrap sia pronto per operare come punto iniziale del
cluster.

• aggiunge l’etichetta _admin all’host bootstrap: per default, qualsiasi
host con tale etichetta riceverà anche una copia di /etc/ceph/ceph.conf

e /etc/ceph/ceph.client.admin.keyring.

Una volta terminato il bootstrap, l’installazione Ceph a nodo singolo
risulta operativa.
Il corretto avvio dei servizi è verificabile tramite il comando:
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sudo ceph -s

che restituisce un riepilogo dello stato del cluster e dei demoni attivi.

3.3 Aggiunta di dischi

Una volta completato il bootstrap, la fase successiva ha riguardato l’in-
tegrazione dello storage. In questo contesto, “aggiunta di dischi” indica la
preparazione e il riconoscimento dei dispositivi che ospiteranno le unità di
memorizzazione (OSD, Object Storage Daemon).

In particolare, è stato necessario verificare che il dispositivo o il file-
loop scelto fosse libero da filesystem, partizioni o configurazioni precedenti,
poiché cephadm controlla che il disco soddisfi determinati criteri prima di
trasformarlo in OSD. Successivamente, il comando

ceph orch apply osd --all-available-devices

ha consentito di aggiungere automaticamente tutti i dispositivi idonei al clu-
ster, semplificando l’espansione dello storage. Nel mio caso, trattandosi di
un ambiente sperimentale su macchina singola, si è fatto ricorso a file-loop
simulati come dispositivi OSD.

3.4 Verifica dello stato

Una volta completato il deploy mediante cephadm e con il nodo iniziale
in funzione, è stata effettuata una verifica dello stato del cluster per accertare
il corretto avvio dei demoni e la disponibilità dello storage.
L’esecuzione del comando

sudo ceph -s

ha permesso di ottenere un sommario dello stato operativo del cluster: lo
stato del quorum dei monitor, il numero di OSD attivi e in stato “up & in”,
e la presenza di eventuali errori o warning. Se non vengono rilevati problemi
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nel cluster, la voce health restituita dal comando risulta “HEALTH_OK”,
ad indicare che tutti i demoni sono attivi, in quorum e senza avvisi critici.

Cephadm include un’interfaccia grafica di amministrazione, accessibile via
browser web e ospitata dal demone ceph-mgr. Questo strumento consente la
visualizzazione dello stato generale del cluster, delle prestazioni, delle risorse
e dei log, offrendo anche funzionalità di gestione come definizione di utenti,
ruoli, esportazione di metriche e monitoraggio in tempo reale.

Di seguito è riportato uno schema riassuntivo della struttura ottenuta,
utile a visualizzare i servizi effettivamente attivi al termine del deploy:

Nodo Ceph

MON

MGR

OSD

WSL (host Windows)

Figura 3.1: Struttura del cluster Ceph a nodo singolo eseguito in WSL, con
il nodo di bootstrap che ospita i demoni principali (MON, MGR e OSD).

3.5 Eventuale aggiunta di nodi

In questo progetto non è stata effettuata l’estensione reale del cluster a più
host, perché la sperimentazione è stata poi svolta direttamente con Multipass.
In uno scenario ideale, l’espansione di un cluster gestito con cephadm prevede
l’aggiunta di nuovi host che si uniscono al nodo di bootstrap iniziale: ogni
nuovo nodo deve essere preparato con le chiavi SSH del cluster, etichettato
correttamente e registrato tramite il comando

ceph orch host add <nome_host> <indirizzo_IP>
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Il comando ceph-orch consente di gestire i nodi e i demoni del cluster,
ad esempio per aggiungere nuovi host, applicare servizi o verificare lo stato
dell’orchestratore.

3.6 Difficoltà incontrate

• Complessità intrinseca del sistema: sebbene cephadm semplifichi
notevolmente il deploy, Ceph rimane una piattaforma distribuita arti-
colata con numerosi servizi (come MON, MGR, OSD, MDS e RGW) che devono
operare in modo coordinato. Questo livello di complessità può rappre-
sentare un ostacolo significativo soprattutto per chi si avvicina per la
prima volta al sistema.

• Necessità di competenze sistemistiche Linux: Cephadm è pro-
gettato per ambienti Linux; è quindi necessario avere familiarità con
l’amministrazione di sistemi Linux, la gestione dei pacchetti, la confi-
gurazione di rete, i permessi e la sicurezza del sistema.

3.7 Risultati e osservazioni

L’adozione di cephadm ha permesso di ridurre drasticamente i tempi di
deploy rispetto a un’installazione completamente manuale del cluster Ceph.
Su un singolo host, è stato possibile avviare il bootstrap e ottenere un nodo
operativo in pochi minuti, evidenziando la rapidità dell’approccio.

Durante l’esperimento, il comando ceph -s ha restituito lo stato
“HEALTH_OK”, confermando che tutti i demoni essenziali (MON, MGR,
OSD) risultavano attivi e in quorum. In aggiunta, la dashboard grafica
integrata (accessibile via browser) ha fornito una panoramica immediata
delle risorse e delle operazioni del cluster, semplificando la verifica visiva
dell’infrastruttura.

Tuttavia, l’esperienza ha anche confermato che, nonostante la semplifica-
zione offerta da cephadm, persiste un significativo impatto iniziale in termini
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di curva di apprendimento. Per un utente privo di esperienza con Ceph, con-
cetti quali quorum, placement group e bilanciamento automatico richiedono
comunque tempo per essere compresi e valutati correttamente.

Un’ulteriore osservazione riguarda l’ambiente di test utilizzato: operan-
do su un singolo host con risorse limitate, è emerso che la fase di provi-
sioning e configurazione delle macchine virtuali rappresenta ancora un col-
lo di bottiglia nelle iterazioni di test. Sebbene cephadm consenta velocità
elevate, la disponibilità di risorse hardware rimane un fattore critico nella
sperimentazione.



Capitolo 4

Installazione automatizzata con
Multipass e MicroCeph

Il secondo approccio analizzato in questa tesi prevede l’utilizzo di Mi-
croCeph, una versione semplificata e containerizzata di Ceph sviluppata da
Canonical, combinata con l’uso di Multipass per la creazione di macchi-
ne virtuali leggere e un orchestratore creato appositamente per questi due
strumenti. L’obiettivo di questo approccio è ridurre la complessità legata
all’installazione manuale del cluster e rendere più semplice la gestione e la
sperimentazione in ambienti virtualizzati.

4.1 L’orchestratore sviluppato

Nel contesto della sperimentazione, si è ritenuto opportuno sviluppare
un proprio strumento di automazione per la creazione e gestione del cluster
Ceph, al fine di ridurre la complessità delle operazioni manuali e migliorare
la ripetibilità degli esperimenti.
È stato realizzato quindi microceph-cluster-orchestrator, un progetto
software in linguaggio Python e pubblicato su GitHub1. Il programma rap-
presenta un prototipo funzionale con finalità sperimentali e didattiche, volto

1https://github.com/GiacomoBiagioni/microceph-cluster-orchestrator
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a verificare la possibilità di automatizzare la creazione di cluster Ceph in
ambienti virtualizzati.

L’orchestratore si occupa di automatizzare l’intero processo di deploy di
un cluster basato su MicroCeph, sfruttando Multipass come piattaforma di
virtualizzazione leggera. Attraverso una serie di comandi e script, il pro-
gramma crea in modo dinamico le macchine virtuali necessarie, assegna con-
figurazioni di rete statiche, installa e inizializza MicroCeph, e unisce i nodi
in un cluster funzionante con minima interazione manuale.

4.1.1 Struttura

L’orchestratore è organizzato secondo un’architettura modulare, basata
su componenti denominati manager. Ogni modulo ha la responsabilità di ge-
stire una specifica parte del processo di deploy e di configurazione del cluster,
favorendo la separazione delle funzionalità e una maggiore manutenibilità del
codice.

In particolare, il modulo fs_manager.py si occupa della configurazione
del filesystem all’interno delle macchine virtuali, garantendo che ciascun nodo
sia predisposto in modo coerente per ospitare i dati di Ceph. Un secondo
componente è dedicato all’interazione con Multipass, e gestisce la creazione,
la rimozione e l’inizializzazione delle VM attraverso comandi eseguiti in modo
programmato. Infine, un cluster_manager coordina l’insieme dei nodi del
cluster, eseguendo operazioni di unione, inizializzazione e controllo dello stato
dei servizi Ceph distribuiti.

Questa struttura modulare consente di mantenere il codice facilmente
estendibile: ogni manager può essere aggiornato o sostituito senza influire
sugli altri componenti, rendendo l’orchestratore adattabile a futuri sviluppi
o a configurazioni di cluster differenti.
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4.2 Architettura del sistema

L’architettura del sistema sviluppato si basa su una stretta integrazione
tra i tre componenti principali.

L’orchestratore rappresenta il livello di controllo e coordinamento dell’in-
tero sistema e attraverso una serie di script, interagisce con l’interfaccia a riga
di comando di Multipass per creare, configurare e distruggere le macchine
virtuali che costituiranno i nodi del cluster. In seguito alla fase di inizializ-
zazione, vengono assegnati indirizzi IP statici, definite le interfacce di rete
interne ed esterne e predisposti i file di configurazione necessari per l’avvio
del cluster.

Una volta creati i nodi virtuali, l’orchestratore procede all’installazione
e alla configurazione dei pacchetti necessari per il corretto funzionamento di
MicroCeph.

Le relazioni tra i componenti sono di tipo gerarchico e questa suddivisio-
ne a livelli consente una chiara separazione delle responsabilità: Multipass

gestisce le risorse virtuali, MicroCeph configura i servizi di storage distri-
buito, mentre l’orchestratore coordina e automatizza l’intero processo di
provisioning.

4.3 Flusso di deploy

L’orchestratore si esegue con questo comando:

python main.py deploy --default

Il comando deploy crea le VM con i parametri predefiniti, esegue il boo-
tstrap di MicroCeph sul primo nodo, fa entrare gli altri nodi nel cluster e
prepara Samba.

Per personalizzare il deploy si possono usare i parametri mostrati in Ta-
bella 4.1.
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Parametro Descrizione
--nodes <N> Numero di nodi del cluster MicroCeph da creare

con Multipass (default: 2).
--base-name <nome> Prefisso usato per nominare le VM generate (de-

fault: ceph-node).
--cpus <n> Numero di vCPU assegnate a ciascuna VM (de-

fault: 2).
--ram <dimensione> Quantità di RAM per VM, es. 2G, 4G (default:

2G).
--disk <dimensione> Dimensione del disco della VM (default: 10G).
--os <release> Immagine Ubuntu usata da Multipass (default:

22.04).
--with-client Crea anche la VM Linux esterna ceph-client

per i test di montaggio (default: disabilitato).
--debug Abilita l’output esteso per il troubleshooting (de-

fault: disabilitato).

Tabella 4.1: Parametri principali per l’esecuzione dell’orchestratore.

Esempi d’uso:

• python main.py deploy --default --with-client per avere cluster
+ VM client;

• python main.py deploy --nodes 5 --ram 4G --cpus 4 --disk 20G

per un ambiente più grande.

In caso di errori durante una delle fasi il programma interrompe l’esecu-
zione per evitare di lasciare l’ambiente in uno stato incoerente. Un’eventuale
riesecuzione del comando di deploy effettua alcuni controlli di base per ca-
pire se una parte del setup è già stata completata (ad esempio se le VM
esistono già o se il nodo di bootstrap è stato creato), ma al momento non è
ancora presente una gestione avanzata degli errori e dei ripristini.
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Al termine dell’esecuzione del comando di deploy si ottiene quindi un
cluster MicroCeph funzionante a N nodi; se è stata abilitata l’opzione per il
client, sarà inoltre presente una VM Linux esterna già collegata alla stessa
rete e pronta per i test di accesso al filesystem.

4.4 Flusso operativo dell’orchestratore

In questa sperimentazione è stato realizzato un ambiente composto da:

• 3 VM create con Multipass che costituiscono il cluster MicroCeph

(node-1, node-2, node-3);

• 1 VM Linux aggiuntiva (non parte del cluster) usata come client
per verificare l’accesso a CephFS da un sistema Linux;

• 1 macchina Windows (il PC dell’operatore) usata per verificare
l’accesso tramite Samba, esposto dalla prima VM del cluster.

L’orchestratore esegue una serie di passaggi ben definiti, che vengono
riportati nello schema seguente e descritti nelle sezioni successive.

Verifica dell’ambiente

Creazione delle VM

Config. iniziale
(cloud-init e netplan)

Token e join dei nodi

Aggiunta dischi / OSD

Verifica dello stato

configurazione
nodi aggiuntivi

configurazione
nodo bootstrap

configurazione
VM client

Figura 4.1: Sequenza delle operazioni eseguite dallo script di orchestrazione per la crea-
zione del cluster MicroCeph.
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4.4.1 Verifica dell’ambiente

La prima fase controlla che l’host che esegue lo script disponga di un hy-
pervisor funzionante e compatibile con Multipass. Il modulo hypervisor_check.py

esegue quindi una validazione preliminare (presenza di multipass, stato del
servizio, capacità di avviare istanze). Se questo controllo non va a buon fine,
il deploy viene interrotto, perché le VM successive dipendono da Multipass.

4.4.2 Creazione delle VM con Multipass

Il modulo multipass_manager.py crea, in maniera ripetibile, le 4 VM
necessarie:

Nome VM Ruolo / Descrizione
ceph-node-1 Nodo primario del cluster MicroCeph.
ceph-node-2 Nodo del cluster MicroCeph.
ceph-node-3 Nodo del cluster MicroCeph.
ceph-client VM Linux esterna al cluster, usata per i test di accesso al

filesystem CephFS.

Tabella 4.2: VM create dallo script di orchestrazione e funzioni svolte nel-
l’ambiente di sperimentazione. (Per nodo primario si intende nodo su cui
viene eseguito il comando di bootstrap)

Per ciascuna istanza vengono passati i parametri di default pre-configurati
nel programma (numero di vCPU, RAM, disco) e soprattutto, viene associato
un file cloud-init che si occuperà delle configurazioni iniziali.

Contestualmente viene configurata anche la rete interna: tramite la modi-
fica del file netplan all’interno delle VM, lo script assegna indirizzi IP statici
alle tre VM del cluster, in modo che i nodi si possano raggiungere sempre
con lo stesso indirizzo anche dopo un riavvio.
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4.4.3 Configurazione iniziale tramite cloud-init

Al primo avvio di ciascuna VM, gli script cloud-init installano i pacchet-
ti di base e predispongono il sistema per l’installazione di MicroCeph. Questa
fase serve a portare tutte le VM a uno stato omogeneo così che lo script di
orchestrazione possa collegarsi in SSH e lanciare i comandi successivi.

Nel caso della prima VM del cluster, cloud-init esegue inoltre i comandi
di inizializzazione di MicroCeph, in particolare il bootstrap del cluster, così
da creare il cluster di partenza direttamente al primo avvio.

Da questo momento esiste un cluster MicroCeph funzionante, ma compo-
sto da un solo nodo.

Differenziazione dei file cloud-init

Nel progetto sono previsti tre file cloud-init distinti, ciascuno pensato
per un ruolo preciso all’interno dell’infrastruttura. Tutti eseguono una serie
di operazioni comuni (aggiornamento dei pacchetti, installazione dei prere-
quisiti di base, configurazione dell’utente e dell’accesso SSH) per portare le
VM in uno stato noto e raggiungibile dallo script di orchestrazione.

• Cloud-init per il nodo di bootstrap: è il file usato dalla prima
VM del cluster, quella che deve inizializzare MicroCeph. Oltre alle
operazioni comuni, questo script esegue anche il bootstrap del cluster
MicroCeph, creando cioè il primo cluster funzionante già al primo avvio
della macchina. È quindi l’unico dei tre che contiene i comandi di
inizializzazione del cluster.

• Cloud-init per i nodi aggiuntivi del cluster: questo file prepara
la VM a essere aggiunta a un cluster MicroCeph già esistente, senza
eseguire il bootstrap. Queste VM vengono soltanto portate in uno
stato pronto per essere unite al nodo principale: sarà lo script di or-
chestrazione a collegarsi in SSH e ad eseguire i comandi di microceph

cluster add o equivalenti.
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• Cloud-init per la VM client: il terzo file è pensato per una macchina
che non fa parte del cluster ma che deve poterlo utilizzare (ad esempio
per montare CephFS o per testare l’accesso ai servizi esposti). Si limita
quindi a installare gli strumenti necessari lato client e a configurare
l’accesso verso il cluster, senza installare o inizializzare MicroCeph sulla
VM stessa.

Preparazione del servizio Samba

Nella stessa fase di configurazione iniziale lo script predispone anche il ser-
vizio Samba sulla prima VM, cioè quella su cui è stato eseguito il bootstrap

del cluster. Dopo aver installato i pacchetti necessari, lo script crea un utente
dedicato all’accesso SMB e aggiorna il file /etc/samba/smb.conf in modo
che la macchina sia in grado di accettare connessioni in ingresso e di associa-
re in seguito una condivisione alla directory di CephFS montata. Al termine
viene riavviato (o abilitato) il servizio smbd, così che la VM sia già pronta a
ricevere connessioni senza ulteriori configurazioni manuali.

4.4.4 Generazione dei token e join degli altri nodi

Sempre su ceph-node-1, lo script genera i token per permettere agli altri
due nodi di entrare nel cluster:

sudo microceph cluster add node-2

sudo microceph cluster add node-3

I token restituiti da questi comandi vengono poi usati, via SSH, su ceph-node-2

e ceph-node-3:

sudo microceph cluster join <token-per-node-2>

sudo microceph cluster join <token-per-node-3>

Al termine di questa fase il cluster è effettivamente a 3 nodi e ogni macchina
risulta registrata con il proprio indirizzo IP statico.
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4.4.5 Aggiunta dei dischi/OSD

Per rendere il cluster utilizzabile viene aggiunto lo storage su ciascun
nodo. Lo script esegue, su tutte e tre le VM del cluster:

sudo microceph disk add loop,4G,1

Questo comando fa sì che MicroCeph crei automaticamente un dispositivo di
loop da 4 GB sul nodo corrente e lo utilizzi come disco per un nuovo OSD.
L’allocazione del disco virtuale e la relativa registrazione nel cluster avven-
gono quindi in modo completamente automatico, senza dover predisporre a
mano un secondo disco nella VM.

4.4.6 Verifica dello stato

Una volta che i tre nodi si sono uniti e che i dischi sono stati aggiunti, lo
script richiama:

sudo microceph status

e/o

sudo ceph status

per verificare che tutti i demoni (mon, mgr, mds, osd) siano attivi su ciascuno
dei tre nodi e che lo stato del cluster sia riportato come “HEALTH_OK”.
Questo conferma che il flusso di deploy ha portato a un cluster a 3 nodi
funzionante.

4.4.7 VM Linux client e accesso da Windows

La quarta VM (ceph-client) non entra nel cluster: viene usata per testa-
re l’accesso al filesystem dal punto di vista di un host Linux esterno. Su que-
sta macchina è stato effettuato l’accesso al filesystem tramite il mount cifs2,

2Il mount CIFS utilizza il client SMB/CIFS del kernel Linux per accedere a una
condivisione esportata via Samba.



38 4. Installazione automatizzata con Multipass e MicroCeph

verificando che il cluster fosse raggiungibile e che la condivisione risultasse
montabile.

Per la verifica da Windows, invece, è stato usato il PC dell’operatore. Su
ceph-node-1 (la prima VM del cluster) è stato installato e configurato Samba

per riesportare una directory di CephFS, in modo che la macchina Windows
possa accedere ai dati tramite il protocollo SMB come a una normale condi-
visione di rete. In questo modo si dimostra che i dati scritti nel filesystem
distribuito sono accessibili anche da sistemi eterogenei.

ceph-node-1ceph-node-2 ceph-node-3

Cluster MicroCeph

Condivisione di CephFS
via Samba

VM Linux PC Windows

Accesso tramite
protocollo SMB

Accesso tramite
protocollo SMB

Figura 4.2: Accesso eterogeneo a CephFS tramite condivisione Samba pub-
blicata dal nodo ceph-node-1.

4.5 Difficoltà incontrate

Durante la fase di sviluppo e sperimentazione, sono emerse diverse diffi-
coltà, riconducibili sia ad aspetti software che alle limitazioni dell’ambiente
di test. Le problematiche principali possono essere riassunte come segue:

• Gestione dell’output di Multipass: poiché l’interazione con l’hy-
pervisor avviene tramite comandi eseguiti da Python, i messaggi non
standard o di errore prodotti da Multipass possono generare incoeren-
ze nell’elaborazione dell’output e interrompere il flusso di esecuzione.

• Gestione degli errori runtime: in alcuni casi, errori durante la
fase di deploy richiedevano il reset della macchina virtuale coinvolta
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e il riavvio della procedura di test, rallentando il ciclo di sviluppo e
verifica.

• Limitazioni hardware: le risorse disponibili sulla macchina host non
consentivano di gestire cluster di grandi dimensioni, limitando il numero
di nodi virtualizzabili e influenzando la scalabilità degli esperimenti.

• Tempi di provisioning: la creazione e l’inizializzazione delle VM
richiedevano tempi non trascurabili, specialmente in fase di testing
iterativo, rallentando la sperimentazione e la raccolta dei risultati.

4.6 Vantaggi e svantaggi

Questo approccio ha mostrato diversi punti di forza, specialmente in un
contesto di sperimentazione e apprendimento. La possibilità di automatiz-
zare gran parte del processo di deploy riduce sensibilmente la complessità
operativa rispetto all’installazione manuale, rendendo l’esperienza più acces-
sibile anche a chi si avvicina per la prima volta alla gestione di un cluster
Ceph. La natura portabile di Multipass, compatibile con i principali siste-
mi operativi, consente inoltre di riprodurre gli esperimenti su piattaforme
diverse mantenendo un comportamento coerente, mentre l’integrazione con
MicroCeph semplifica ulteriormente la configurazione dei nodi e la gestione
dei demoni del cluster.

D’altro canto, l’approccio presenta anche alcune limitazioni strutturali.
L’utilizzo di macchine virtuali locali, seppur leggere, impone un consumo di
risorse che cresce rapidamente con l’aumentare del numero di nodi, limitan-
do così la possibilità di testare configurazioni su larga scala. Le prestazioni
risultano inevitabilmente inferiori rispetto a un’installazione su hardware de-
dicato, e il livello di astrazione introdotto da MicroCeph riduce la possibilità
di intervenire su parametri avanzati o scenari non previsti. L’orchestratore
stesso, essendo un prototipo sperimentale, non dispone ancora di meccanismi



40 4. Installazione automatizzata con Multipass e MicroCeph

di controllo degli errori e di gestione automatica dei fallimenti comparabili a
quelli di strumenti di produzione.

4.7 Risultati e osservazioni

L’esecuzione del processo di deploy ha confermato l’efficacia dell’orche-
stratore nel creare automaticamente un cluster MicroCeph completamente
operativo nell’ambiente di prova. Al termine della procedura, il sistema ri-
sultava funzionante e accessibile sia da una VM Linux esterna sia da una
macchina Windows, a dimostrazione della corretta configurazione dei servizi
di rete e del filesystem distribuito. D’altra parte, essendo ancora una solu-
zione realizzata ad hoc e in una fase iniziale di sviluppo, il codice era più
esposto a rischi legati a errori non gestiti, piccole incongruenze tra le fasi
del deploy e bug introdotti dalla novità dell’implementazione, non fornendo
quindi un approccio immediatamente pronto per la produzione.

Dal lato Linux, l’accesso al filesystem è stato effettuato dalla VM ceph-client,
cioè la macchina virtuale esterna al cluster, montando la condivisione SMB
esposta da ceph-node-1 tramite il client cifs. In questo modo la VM Linux
ha potuto raggiungere i dati che risiedono in CephFS pur non facendo parte
del cluster e senza dover montare direttamente CephFS.

Dal lato Windows, l’accesso è avvenuto dal PC dell’operatore verso la
stessa condivisione Samba configurata sulla prima VM del cluster (quella
su cui è stato eseguito il bootstrap), rendendo disponibile il contenuto di
CephFS anche ai client eterogenei tramite protocollo SMB.

Questi risultati evidenziano la stabilità complessiva del sistema e la coe-
renza delle configurazioni generate automaticamente. Pur trattandosi di un
ambiente prototipale, il cluster ha dimostrato di poter riprodurre in modo
affidabile il comportamento di un’infrastruttura Ceph reale, confermando la
validità dell’approccio e l’efficacia delle soluzioni adottate per l’automazione
del deploy.
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Installazione automatizzata
tramite Kubernetes e Rook

Il terzo approccio prevede l’analisi di un cluster Kubernetes assistito da
Rook, utilizzato come operatore per orchestrare un cluster Ceph. Rook con-
sente di definire, distribuire e gestire risorse di storage distribuito diretta-
mente all’interno dell’ecosistema Kubernetes, trasformando i demoni Ceph
in oggetti containerizzati e gestiti dal control-plane1. In questa modalità, le
applicazioni containerizzate possono utilizzare storage persistente (a bloc-
chi, a file o a oggetti) gestito da Ceph tramite risorse Kubernetes come
StorageClass e PersistentVolumeClaim, senza la necessità di interveni-
re manualmente sulla configurazione del cluster. L’interesse verso questo
approccio nasce dalla crescente diffusione delle architetture basate su contai-
ner e dalla volontà di valutare la possibilità di integrare lo storage distribuito
in modo nativo con i sistemi di orchestrazione applicativa.

1Il control-plane di Kubernetes è l’insieme dei componenti che gestiscono lo stato globale
del cluster, tra cui l’API Server, lo Scheduler, il Controller Manager e etcd.
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5.1 Architettura del sistema

L’architettura del metodo basato su Kubernetes e Rook si articola in tre
livelli principali: il cluster Kubernetes, l’operatore Rook e il cluster Ceph
containerizzato.

Il cluster Kubernetes comprende nodi con ruoli distinti: il control-
plane, responsabile della gestione dello stato globale del cluster attraverso
componenti come l’API Server, lo Scheduler, il Controller Manager e etcd2,
e i nodi worker, che eseguono le applicazioni containerizzate e i demoni Ceph
orchestrati da Rook. Questa separazione permette di centralizzare la gestione
dello stato e di distribuire il carico computazionale e di storage sui nodi
worker.

Il Rook Operator funge da orchestratore per il cluster Ceph. Auto-
matizza il deploy, la configurazione e il monitoraggio dei demoni Ceph tra-
sformandoli in container gestiti dal control-plane di Kubernetes. In questo
modo, le risorse di storage distribuito diventano oggetti nativi di Kubernetes,
integrandosi perfettamente con le funzionalità del cluster.

Il cluster Ceph containerizzato fornisce storage distribuito accessibile
dalle applicazioni. I componenti principali includono: MON, OSD, MDS
e RGW: rispettivamente il monitor del cluster, i daemon di storage, il ser-
ver dei metadati per CephFS e il gateway per interfacce a oggetti come S3.
Questi elementi collaborano per garantire la resilienza, la scalabilità e l’alta
disponibilità dei dati. La containerizzazione dei demoni consente di sfrut-
tare la gestione nativa di Kubernetes, riducendo la complessità operativa e
semplificando l’integrazione con applicazioni cloud-native.

5.2 Integrazione storage-orchestrazione

L’integrazione tra Kubernetes e Ceph tramite Rook permette alle appli-
cazioni containerizzate di accedere a storage persistente senza la necessità di

2Il database chiave-valore distribuito che memorizza lo stato del cluster.
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configurazioni manuali sul cluster. Rook espone le risorse di Ceph attraver-
so oggetti nativi di Kubernetes, come StorageClass, PersistentVolume e
PersistentVolumeClaim, consentendo agli sviluppatori di richiedere spazio
di storage in maniera dichiarativa e automatica.

Le StorageClass definiscono le caratteristiche dello storage, come il ti-
po di dispositivo, la politica di replica e le funzionalità avanzate di Ce-
ph, mentre le PersistentVolume rappresentano le unità effettive di storage
disponibili nel cluster. Le applicazioni accedono a queste risorse tramite
PersistentVolumeClaim, richiedendo spazio persistente senza preoccuparsi
della sua allocazione fisica o della gestione dei demoni Ceph.

Questo modello consente di utilizzare diversi tipi di storage, come blocchi,
file e oggetti, direttamente all’interno del cluster Kubernetes. In particola-
re, Ceph RBD (RADOS Block Device) fornisce volumi a blocchi altamente
scalabili, CephFS offre filesystem distribuiti condivisi tra più pod, e RADOS
Gateway permette l’accesso a oggetti tramite protocolli compatibili con S3 o
Swift.

In questo modello la capacità del sistema di storage di esporre un’inter-
faccia compatibile sia con S3 sia con Swift è fortemente consigliata per due
motivi principali: da un lato favorisce l’interoperabilità applicativa, poiché
molte applicazioni cloud-native o sistemi legacy sono già sviluppati per inte-
ragire con S3 oppure Swift, e offrendo un’interfaccia compatibile lo storage
distribuito risulta “plug-and-play” con tali applicazioni senza dover riscrive-
re codice o cambiare driver; dall’altro migliora la flessibilità architetturale,
dal momento che la disponibilità di entrambi i protocolli consente di suppor-
tare scenari diversi — ad esempio applicazioni che richiedono l’ecosistema
AWS/S3 o ambienti open-source/privati che preferiscono Swift — rendendo
lo storage distribuito più versatile.
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Kubernetes ClusterPod App 1 Pod App 2

PersistentVolumeClaim (PVC) PersistentVolumeClaim (PVC)

StorageClass (Rook/Ceph)

PersistentVolume (PV) PersistentVolume (PV)

Ceph RBD
(Block Storage)

CephFS (File Storage) RADOS Gateway
(Object Storage, S3/Swift)

Sottosistema di storage Ceph (RBD / CephFS / RGW)

Figura 5.1: Schema dell’integrazione tra Kubernetes e Ceph tramite Rook. I pod delle
applicazioni richiedono spazio di storage tramite PersistentVolumeClaim (PVC), che viene
gestito automaticamente da Rook attraverso una StorageClass. La StorageClass definisce
le caratteristiche dello storage, mentre i PersistentVolume (PV) rappresentano l’allocazione
fisica dei dati. Rook traduce queste richieste in operazioni sul cluster Ceph, che può
fornire diversi tipi di storage: RBD per volumi a blocchi, CephFS per filesystem distribuiti
condivisi e RADOS Gateway per l’accesso a oggetti compatibili con S3 o Swift. Lo schema
evidenzia così il flusso dichiarativo dello storage, dalla richiesta dei pod fino ai backend
Ceph.

5.2.1 Amazon S3

Amazon Simple Storage Service (S3) è un servizio cloud di storage ad
oggetti gestito da Amazon Web Services (AWS) [11]. Esso consente di me-
morizzare e recuperare in qualsiasi momento quantità praticamente illimitate
di dati mediante una API REST basata su operazioni HTTP (GET, PUT,
DELETE). Nel modello, gli oggetti vengono organizzati in “bucket” e identi-
ficati da una chiave (key) univoca. S3 fornisce inoltre funzionalità avanzate
quali versioning, controllo degli accessi, replicazione geografica e classi di sto-
rage differenziate. Viene nominato perché molti sistemi di storage distribuito
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(come ad esempio Ceph tramite il suo gateway oggetti) offrono un’interfaccia
compatibile con S3, permettendo alle applicazioni che già lo utilizzano di
essere interoperabili senza modifiche significative.

5.2.2 OpenStack Swift

OpenStack Swift è un progetto open source di storage oggetti facente par-
te della piattaforma OpenStack. Swift è progettato per l’archiviazione distri-
buita di grandi quantità di dati non strutturati (“blob”/oggetti), con partico-
lare attenzione a scalabilità, disponibilità e resilienza [12]. La sua API REST
(Object Storage API) consente la gestione di account, contenitori (contai-
ners) e oggetti. Viene nominato perché, analogamente a S3, rappresenta un
altro standard per l’accesso a storage ad oggetti; quando il gateway oggetti
di Ceph (es. il demone RGW) espone un’interfaccia Swift-compatibile, le
applicazioni che già usano Swift possono interfacciarsi senza modifiche.

5.3 Considerazioni teoriche sull’implementa-
zione

5.3.1 Allineamento con cloud-native e DevOps

Questo approccio si inserisce pienamente nel paradigma del cloud-native e
DevOps3: la containerizzazione, la gestione dichiarativa delle risorse, l’orche-
strazione automatica e il provisioning dinamico dello storage ne sono espres-
sione diretta. In un contesto DevOps, l’operatore Rook funge da elemento
che integra la gestione dell’infrastruttura di storage nel ciclo di vita delle ap-
plicazioni, permettendo agli sviluppatori e agli operatori di trattare lo storage
come codice (Infrastructure as Code) e di includerlo nei processi di Conti-
nuous Delivery e Continuous Deployment. Il risultato è una maggiore agilità,

3DevOps è un insieme di pratiche, strumenti e una filosofia culturale che automatizza
e integra i processi tra team di sviluppo software (Dev) e team IT operativi (Ops).
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una migliore integrazione tra il livello applicativo e quello infrastrutturale, e
una riduzione della barriera tra sviluppo e operazioni.

5.3.2 Criticità operative e competenze richieste

L’adozione di questo modello comporta anche una serie di criticità e pun-
ti di attenzione che devono essere valutati attentamente. In primo luogo, il
modello introduce una maggiore complessità operativa: la coesistenza di un
cluster Ceph containerizzato all’interno di Kubernetes comporta che non sola-
mente le applicazioni, ma anche i demoni storage siano sottoposti a orchestra-
zione, aggiornamenti e monitoraggio. Questo significa che il team operativo
deve possedere competenze sia cloud-native sia di storage distribuito.

5.3.3 Prestazioni, rete e aggiornamenti

In secondo luogo, le prestazioni possono risultare inferiori rispetto a so-
luzioni di storage dedicate: come evidenziato, in ambienti a bassa latenza
o ad altissimo I/O, la sovrapposizione dell’infrastruttura containerizzata e
dell’orchestratore può introdurre overhead e ritardi. Ulteriori criticità in-
cludono la rete (il corretto funzionamento della comunicazione tra demoni
Ceph distribuiti è essenziale) e i rischi durante l’aggiornamento: l’upgrade
del cluster Ceph o del Rook operator richiede attenzione al quorum dei mo-
nitor, alla compatibilità delle versioni e alla conservazione dei dati durante
le transizioni.

5.3.4 Scalabilità e pianificazione delle risorse

Infine, va valutata la scalabilità e l’utilizzo efficiente delle risorse: i demoni
storage richiedono CPU, memoria e I/O adeguati, e la pianificazione errata
delle risorse può portare a degradazioni o blocchi del servizio.



Capitolo 6

Analisi comparativa e
Discussione

Di seguito vengono messi a confronto i tre approcci analizzati nei capitoli
precedenti. L’obiettivo è comprendere in che modo ciascuna di queste solu-
zioni risponda a esigenze differenti in termini di complessità, automazione,
scalabilità e facilità di gestione.

6.1 Criteri di confronto

Per rendere confrontabili i tre approcci descritti nei capitoli precedenti
sono stati individuati alcuni criteri comuni, applicabili a soluzioni con diverso
livello di automazione e astrazione. In particolare sono stati considerati:

• Semplicità d’installazione e configurazione: misura quanto è li-
neare il processo di predisposizione del cluster, quante operazioni ma-
nuali richiede e quanto sia esposto a errori di configurazione.

• Automazione e ripetibilità: indica in che misura la procedura può
essere rieseguita con gli stessi risultati e quanto del processo è delegato
a strumenti o script.
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• Efficienza nell’uso delle risorse: valuta l’overhead complessivo su
CPU, RAM e storage a parità di funzionalità.

• Visibilità interna: riguarda quanto la soluzione lascia “vedere” i com-
ponenti e i flussi del cluster (MON, MGR, OSD, rete), quindi il suo
valore didattico.

• Scalabilità: considera con quanta facilità l’ambiente può crescere (più
nodi, più dischi, più servizi) mantenendo stabilità e prestazioni ade-
guate.

6.2 Sintesi Comparativa

In questa sezione si riportano, per ciascun approccio, i principali punti
emersi dal confronto rispetto ai criteri definiti.

Semplicità

d’installazione
Automazione

Efficienza

nell’uso delle risorse

Visibilità interna
Scalabilità

0

bassa

media

alta

V
al

ut
az

io
ne

Semi-manuale Multipass/MicroCeph Kubernetes+Rook

Figura 6.1: I tre approcci sono confrontati sui cinque criteri considerati, usan-
do una scala qualitativa in cui valori più bassi indicano prestazioni migliori.
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6.2.1 Installazione semi-manuale con gli strumenti Ce-
ph

• Semplicità di installazione e configurazione: bassa; richiede in-
terventi manuali e una buona conoscenza degli strumenti messi a di-
sposizione da Ceph.

• Automazione: bassa; la procedura è meno ripetibile e più soggetta a
errori umani.

• Efficienza nell’uso delle risorse: alta; sono richiesti solo i pacchet-
ti/strumenti Ceph necessari sull’host.

• Visibilità interna: alta; tutti i componenti (MON, MGR, OSD) e i
comandi sono esposti, quindi è adatto alla didattica.

• Scalabilità: media; il cluster può essere esteso, ma richiede ulteriori
interventi manuali.

6.2.2 Installazione automatizzata con Multipass e Mi-
croCeph

• Semplicità di installazione e configurazione: media; molte ope-
razioni sono automatizzate dallo
script/orchestratore sviluppato.

• Automazione: alta; il deploy può essere rilanciato con gli stessi para-
metri e risulta più ripetibile.

• Efficienza nell’uso delle risorse: media; l’uso di più VM sulla stessa
macchina fisica aumenta il consumo di risorse rispetto alla soluzione più
manuale.

• Visibilità interna: media; alcune scelte vengono nascoste dal livello
di automazione (ad es. MicroCeph).
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• Scalabilità: media; l’estensione è possibile finché l’host può sostenere
ulteriori VM.

6.2.3 Integrazione con Kubernetes e Rook

• Semplicità di installazione e configurazione: bassa; oltre alla
parte Ceph è necessario disporre di un cluster Kubernetes funzionante.

• Automazione: alta; una volta definiti i manifest, la creazione delle
risorse è dichiarativa.

• Efficienza nell’uso delle risorse: bassa; la presenza di Kubernetes
e Rook introduce un overhead non trascurabile.

• Visibilità interna: tendenzialmente più bassa; l’astrazione di Kuber-
netes nasconde alcune scelte, resta però possibile ispezionare i compo-
nenti tramite gli strumenti messi a disposizione dall’operatore.

• Scalabilità: alta dal punto di vista teorico; la soluzione è pensata per
crescere in ambienti clusterizzati.

6.3 Discussione e interpretazione

Dal punto di vista della complessità di installazione e configurazio-
ne e della visibilità sul funzionamento interno di Ceph, l’approccio
maggiormente “manuale”, basato sull’utilizzo diretto degli strumenti messi
a disposizione da Ceph (ad esempio cephadm), si è rivelato quello più vicino
al funzionamento reale del sistema. Esso rende esplicite le dipendenze tra i
demoni, le fasi di bootstrap e le condizioni del cluster, favorendo quindi la
comprensione dell’architettura interna. Il rovescio della medaglia, in termi-
ni di livello di automazione e ripetibilità, è una maggiore sensibilità a
errori di configurazione e, in generale, una richiesta più alta di competenze
sistemistiche, oltre a tempi di predisposizione meno prevedibili.
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L’approccio intermedio, che fa uso di un orchestratore sviluppato ad hoc
per automatizzare la creazione delle macchine virtuali (ad esempio tramite
Multipass) e l’installazione di una soluzione semplificata come MicroCeph,
introduce un livello di comfort significativamente maggiore proprio in termi-
ni di automazione e ripetibilità: la procedura di deploy diventa infatti
ripetibile e parametrizzabile, caratteristica utile in un contesto didattico o
di test in cui sia necessario ricreare spesso l’ambiente da zero o proporre lo
stesso laboratorio a più studenti. Questo vantaggio viene però pagato, ri-
spetto al criterio della visibilità sul funzionamento interno di Ceph,
con una minore osservabilità delle scelte interne del sistema di storage, poi-
ché alcune configurazioni vengono effettuate automaticamente dallo script di
orchestrazione. Inoltre, sotto il profilo dei requisiti e consumo di risorse,
la dipendenza dalle risorse dell’host fisico diventa più marcata: all’aumen-
tare del numero di VM le prestazioni complessive degradano e il margine di
sperimentazione si riduce.

L’ultimo approccio, che integra Ceph in un ambiente orchestrato (ad
esempio tramite Kubernetes e Rook), risulta particolarmente interessante
se valutato secondo i criteri di scalabilità e possibilità di estensione:
rappresenta infatti la soluzione più moderna e più vicina ai contesti cloud-
native, in cui lo storage distribuito diventa una risorsa del cluster e viene
richiesto tramite oggetti dichiarativi. Dal punto di vista concettuale è il me-
todo più elegante e scalabile, perché consente di uniformare il ciclo di vita
delle applicazioni e dello storage. Tuttavia, in relazione alla complessità di
installazione e configurazione e ai requisiti, richiede prerequisiti più ele-
vati (un cluster Kubernetes funzionante e la conoscenza dei relativi oggetti)
e introduce un overhead non trascurabile in ambienti con risorse limitate.

Nel complesso, i risultati suggeriscono che i tre approcci non sono da con-
siderarsi alternativi in senso assoluto, ma piuttosto complementari rispetto
all’obiettivo e ai criteri individuati:

• l’approccio manuale è più indicato quando la priorità è comprendere
l’architettura di Ceph, quindi quando pesano soprattutto i criteri di
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visibilità e di controllo sulla configurazione;

• l’approccio automatizzato è più indicato quando la priorità è disporre
rapidamente di un ambiente di prova riproducibile, quindi quando il
criterio principale è il livello di automazione e ripetibilità;

• l’approccio integrato in Kubernetes è più indicato quando la priori-
tà è vedere come uno storage distribuito si inserisce in una piattafor-
ma orchestrata, quindi quando si vogliono massimizzare scalabilità e
integrazione con ambienti reali.

6.3.1 Implicazioni per l’uso didattico

I risultati mostrano che gli approcci con maggior esposizione ai compo-
nenti di Ceph sono più efficaci nelle fasi iniziali di apprendimento, mentre
le soluzioni automatizzate permettono di ridurre i tempi di preparazione del
laboratorio e di replicare l’ambiente su più postazioni.

6.4 Limiti sperimentali

Come anticipato nella Sezione 1.3, le prove descritte sono state condotte
in un ambiente controllato e non di produzione, e questo impone alcune
cautele nell’interpretazione dei risultati.

In primo luogo, l’infrastruttura era basata su un unico host fisico che
ospitava sia le macchine virtuali sia gli strumenti di orchestrazione: ciò ha
limitato la scalabilità e non ha consentito di verificare configurazioni real-
mente distribuite su più server fisici, che rappresentano lo scenario tipico di
impiego di Ceph.

In secondo luogo, in alcune prove lo storage è stato simulato tramite file
di loopback o dischi non dedicati: scelta adeguata allo scopo dimostrativo,
ma non sufficiente per trarre conclusioni sulle prestazioni reali del sistema o
sul comportamento sotto carichi sostenuti.
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Un ulteriore limite riguarda l’assenza di una campagna sistematica di
benchmark: l’obiettivo principale era confrontare il livello di automazione e
la semplicità dei tre approcci, più che misurare throughput, latenza o tempi di
recovery. Per un’analisi prestazionale sarebbero necessari strumenti dedicati
(ad es. rados bench) e dischi dedicati.

Va inoltre segnalata una certa dipendenza dalla versione degli strumenti
utilizzati (Multipass, MicroCeph, componenti Kubernetes): alcune critici-
tà osservate potrebbero non presentarsi in versioni successive o, viceversa,
emergere in ambienti software differenti.

Infine, il terzo approccio, basato sull’integrazione con Kubernetes e Rook,
è stato considerato prevalentemente dal punto di vista architetturale e con-
cettuale, senza una realizzazione completa dell’ambiente in esecuzione. Le
valutazioni riportate per questa soluzione riguardano quindi soprattutto la
fattibilità, i prerequisiti e il grado di integrazione ottenibile.

6.4.1 Minacce alla validità dei risultati

I risultati possono essere influenzati da fattori esterni quali la versione
del software, la specifica configurazione hardware dell’host e l’assenza di un
carico applicativo reale. Queste minacce sono parzialmente mitigate dal fatto
che tutti gli approcci sono stati provati nello stesso ambiente.





Capitolo 7

Conclusioni

Il lavoro aveva l’obiettivo di individuare e confrontare modalità diverse
per rendere riproducibile, in un contesto didattico e con risorse limitate, il
deploy di un’infrastruttura di storage distribuito basata su Ceph. Sono stati
quindi analizzati e messi alla prova tre approcci caratterizzati da livelli cre-
scenti di automazione e astrazione: l’installazione semi-manuale tramite gli
strumenti nativi di Ceph (cephadm), la soluzione automatizzata su macchine
virtuali leggere con Multipass e MicroCeph supportata da un orchestrato-
re sviluppato ad hoc, e infine l’integrazione in un ambiente container-native
tramite Kubernetes e l’operatore Rook.

Dalle sperimentazioni svolte emerge che i tre approcci non vanno letti
come alternativi, ma come soluzioni complementari, ognuna più adatta a un
certo obiettivo. L’approccio più manuale espone meglio il funzionamento in-
terno di Ceph (demoni, bootstrap, health, aggiunta degli OSD) ed è quindi il
più utile quando lo scopo è comprendere il sistema, accettando però tempi di
preparazione maggiori e una curva di apprendimento più ripida. L’approccio
automatizzato con Multipass e MicroCeph, invece, dimostra che è possibile
ottenere rapidamente un cluster funzionante e replicabile su una sola mac-
china fisica, aspetto particolarmente interessante in ambito laboratoriale o
quando la stessa esercitazione deve essere proposta a più studenti. La solu-
zione basata su Kubernetes e Rook risulta infine la più allineata agli scenari
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cloud-native e la più promettente in termini di scalabilità e integrazione,
pur richiedendo prerequisiti più elevati ed essendo stata trattata nel lavoro
soprattutto dal punto di vista architetturale.

Un’ulteriore conclusione riguarda l’aspetto didattico: quando si vuole in-
segnare Ceph è utile partire da un livello in cui i componenti sono visibili
e configurati manualmente, e solo successivamente introdurre livelli di auto-
mazione che velocizzano il deploy ma nascondono alcune scelte interne. In
altri termini, esiste un trade-off piuttosto netto tra “quanto si vede di Ceph”
e “quanto è veloce e ripetibile il laboratorio”, e il confronto tra i tre approcci
lo rende esplicito.

I risultati vanno comunque letti alla luce dei limiti dichiarati: tutte le
prove sono state eseguite su un unico host fisico, con storage in parte simulato
e senza una campagna sistematica di benchmark. Questi vincoli riducono
la generalizzabilità dei dati, ma non invalidano il confronto tra i livelli di
automazione e di astrazione, che costituiva lo scopo principale del lavoro.
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