ALMA MATER STUDIORUM -~ UNIVERSITA DI BOLOGNA

Corso di Laurea in Ingegneria e Scienze Informatiche

Sviluppo di un assistente Al prototipale
per Visual Studio Code

Tesi di laurea in:
PROGRAMMAZIONE AD OGGETTI

Relatore Candidato
Prof. Mirko Viroli Gioele Bucci
Correlatori

Dott. Gianluca Aguzzi
Dott. Nicolas Farabegoli

[1T Sessione di Laurea
Anno Accademico 2024-2025

Sommario

Gli assistenti alla programmazione basati sull’intelligenza artificiale sono ormai una
presenza comune negli ambienti di sviluppo moderni e la loro rapida evoluzione li
sta rendendo sempre piu capaci ed accessibili.

Data la crescente rilevanza di questi strumenti nell’ambito dello sviluppo software,
la presente tesi si propone di approfondirne la conoscenza attraverso un duplice
approccio, che combini ’analisi di una soluzione gia esistente e consolidata allo
sviluppo pratico di un assistente Al prototipale.

Per farlo si é partiti da un’analisi delle funzionalita principali di GitHub Copilot,
da cui sono stati ricavati i requisiti di un assistente Al generico, in grado di offrire
completamenti del codice inline, azioni di interazione contestuale per la modifica
del codice e una chat conversazionale. Successivamente, sulla base dei requisiti
emersi, & stato progettato e implementato un prototipo funzionante, integrandolo
all’interno dell’ambiente di sviluppo Visual Studio Code sotto forma di estensione.

Parole chiave: assistenti Al, intelligenza artificiale, GitHub Copilot, Visual Studio
Code.

1

A Nicolo.

11

Indice

Sommariol ii
UIntroduzionel vi
1 Background| 1
(1.1 Al-assisted programming e LLMs 1
(1.1.1 Knowledge cutoff e grounding| 2
(L.2_Funzionamento di un assistente AIl 3
(1.2.1 Funzionalita agentiche] 4

(1.3 Diffusione degli assistent1 AIl 4
[2__Analisi 8
[2.1 Feature principali di GitHub Copilot| 9
[2.1.1 Inline completion| 9

2.1.2 Interazione contestualel 9

I3 Chatl 10

[2.1.4 Istruziomi personalizzate 12

2.2 Requisiti funzionall|o 12
[2.3 Requisiti non funzionali{ L. 13
2.4 Analisidel dominiof oo 13

3 Design 15
[3.1 _Architettura service-oriented| 15
[3.2 Servizi principalill 18
[3.2.1 ConhigServicel 18

.22 AlServicel 19

3.2.3 ChatServicel oo 21

.3 Comandil. 23
(3.3.1 Comandi di interazione contestualel 24

iv INDICE

INDICE

[4 Implementazione| 26
4.1 Anatomia di un’estensione Vo Codel. 26
[4.2 Strumenti e risorse utilizzate nello sviluppo. 27
4.3 ServiceContainer: DI containerl 27

4.3.1 Garantire type safety nella risoluzione dei servizi. 29

[4.4 Confighervice: lettura della configurazione utente| 31
4.5 AlService: interazione conimodelll All 33
[4.5.1 Implementazione concreta di un provider| 34

4.6 Servizi secondaril 37
4.6.1 FKleServicel. 37
4.6.2 Ratelimitdervicelo oo 38
[4.6.3 LoggingService|o 40

4.7 Interazione contestualel o000 40
[4.7.1 Implementazione di BaseEditor'Iranstormer| 41
[4.7.2 Implementazione concreta di un comando di interazione con- |

[testualel 44
[4.7.3 Registrazione dei comandi| 46

[4.8 Inline completion| 47
4.8.1 Attivazione e parametri di configurazione| 47
[4.8.2 Meccanismo di richiesta dei completamenti 50
4.8.3 Generazione deil completamenty| 51

4.9 Chatdervice: Pannellodichatl 52
4.9.1 Inizializzazione del pannello di chat| 53
4.9.2 Contentuto HTMIL della Webviewl 56
4.9.3 Comunicazione bidirezionale frontend-backend 58
4.9.4 Persistenza dello stato della chatl 60

[b__Dimostrazione 63
6.1 Interazione contestualel 000 63
B2 Chatl o oo 64

[5.2.1 Mantenimento della cronologia di conversazione| 64

[5.2.2 Aggiunta di risorse al contestol 64

b.2.3 Grounding| 67

[5.3 Inline completion| oL 68
[>.4 Istruzioni personalizzate] 68
6 Conclusionil 70
Bibliog 72
INDICE v

Introduzione

Gli assistenti alla programmagzione basati sull’intelligenza artificiale stanno diven-
tando sempre piu capaci ed accessibili, acquisendo una crescente rilevanza nel
mondo dello sviluppo software. Questi strumenti, inizialmente limitati al suggeri-
mento o auto-completamento del codice, stanno attraversando una fase di rapida
evoluzione che continua ad ampliarne le capacita e sono ormai integrati nella mag-
gior parte degli ambienti di sviluppo moderni.

Le motivazioni dietro a questa evoluzione vanno ricondotte principalmente agli
enormi progressi recentemente compiuti nell’ambito dei Large Language Models,
sui quali gli assistenti Al si basano: poiché modelli migliori si traducono in assisten-
ti pitt capaci, questi sono diventati in grado di eseguire compiti di ben piu alto li-
vello, arrivando ad ottenere capacita “agentiche” che consentono loro di progettare,
sviluppare e testare software in maniera pressoché autonoma.

Di fronte ad un tale scenario risulta fondamentale comprendere i meccanismi alla
base del funzionamento degli assistenti Al, analizzando come le capacita generative
dei Large Language Models possano essere sfruttate per la loro implementazione
ed esplorando le metodologie che ne consentono l'integrazione all’interno di un
ambiente di sviluppo. Per soddisfare tali esigenze, la presente tesi si propone di
approfondire lo studio di questi strumenti mediante la realizzazione di un assistente
AT prototipale, prendendo come modello di riferimento una soluzione analoga gia
affermata.

In una prima fase di analisi verranno identificate le feature principali di GitHub Co-
pilot, individuato come caso di studio per via della sua ampia diffusione e capacita
avanzate, al fine di delineare i requisiti fondamentali di un generico assistente Al.
I requisiti emersi guideranno le successive fasi di progettazione e implementazione
del prototipo, che verra integrato all’interno di Visual Studio Code sotto forma di
estensione, adottando le soluzioni architetturali necessarie per far si che ’assistente
realizzato risulti performante, stabile e integrato nativamente all’interno dell’IDE.

Al termine del processo di sviluppo, 'assistente verra sottoposto ad un processo di
validazione basato su una serie di test applicativi mirati, volti a verificare il corretto

vi INTRODUZIONE

funzionamento delle sue funzionalita principali: un sistema di auto-completamento
del codice inline, un’interfaccia di chat conversazionale e delle azioni di interazione
contestuale per la modifica del codice.

Struttura della Tesi

La trattazione verra articolata come segue:

Capitolo 1: Background Breve introduzione sui fondamenti tecnologi-
ci alla base degli assistenti Al e analisi dei trend che ne hanno guidato
I’evoluzione.

Capitolo 2: Analisi Indagine su GitHub Copilot, identificandone le feature
principali necessarie a delineare i requisiti per 1’assistente da realizzare.

Capitolo 3: Design Progettazione dell’assistente sulla base dei requisiti
emersi e descrizione dell’architettura software adottata.

Capitolo 4: Implementazione Sviluppo dell’assistente come estensione
per Visual Studio Code, con I'obiettivo di ricreare le funzionalita emerse nella
fase di analisi nel rispetto dei vincoli e le best practice imposte dall'TDE.

Capitolo 5: Dimostrazione Dimostrazione delle capacita dell’assistente
realizzato.

Capitolo 6: Conclusioni Sintesi dei risultati ottenuti e prospettive future.

INTRODUZIONE vii

viii INTRODUZIONE

Capitolo 1

Background

1.1 Al-assisted programming e LLMs

Con l'espressione “Al-assisted programming” si intende 'utilizzo di tecnologie che
impiegano l'intelligenza artificiale per supportare il programmatore nel processo di
sviluppo. In questo ambito si collocano gli assistenti alla programmazione basati
sull’'intelligenza artificiale, anche conosciuti come A[l pair programmers, d’ora in
poi indicati piu brevemente come “assistenti AI”.

Questi rappresentano un’evoluzione significativa rispetto ad altri strumenti tradi-
zionalmente integrati all’interno degli ambienti di sviluppo, come linter o syntax
highlighter: infatti, a differenza di un supporto “sintattico”, gli assistenti Al offrono
funzionalita proattive ben pitl avanzate, che includono il suggerimento di correzio-
ni, la spiegazione di porzioni di codice e la generazione di interi file sorgente a

partire da descrizioni fornite dall’utente in linguaggio naturale.

Dietro al funzionamento di questi strumenti risiedono i Large Language Models
(LLMs): si tratta di reti neurali di grandi dimensioni, con un numero di parametri
che varia dai miliardi fino ai trilioni (10'?), specificamente progettate per eseguire
compiti di natural language processing] legati alla comprensione e generazione di
testo in linguaggio naturale.

Questi modelli vengono addestrati utilizzando enormi quantita di dati testuali

Yibm.com /think /topics /natural-language-processing

CAPITOLO 1. BACKGROUND 1

https://www.ibm.com/think/topics/natural-language-processing

1.1. AIFASSISTED PROGRAMMING E LLMS

eterogenei, come libri, documenti o contenuti web e sono basati su architetture di
tipo Tmnsformeﬂ che eccellono nel riconoscimento dei pattern presenti all’interno
dei dati, consentendo al modello di apprendere le varie relazioni presenti tra parole

e concettl.

Le capacita di comprensione e generazione del testo dei LLMs derivano dal processo
di addestramento primario al quale vengono sottoposti, detto pre-training, durante
il quale questi imparano a prevedere la parola successiva all'interno di una data
sequenza di testo, operando di fatto come enormi motori di predizione statistica.

Sebbene questi modelli nascano come strumenti per la predizione del testo, esistono
due tecniche principali (spesso complementari) che consentono di adattare un LLM

pre-addestrato ad un contesto piu specifico.

La tecnica piu strutturata é il fine-tuning, un processo di “specializzazione” che con-
siste nel ri-addestrare il modello su un dataset piti piccolo e mirato, con ’obiettivo
di adattarne i parametri per un particolare dominio applicativo, mantenendo al
contempo le capacita generali apprese durante la fase di pre-training.

Prendendo come dataset di riferimento svariati repository contenenti codice open-
source, questo approccio ha reso possibile la realizzazione di modelli in grado di
generare codice corretto e funzionante a partire da istruzioni in linguaggio natu-
rale, ponendo le basi per la nascita degli assistenti Al odierni.

Con 'aumentare delle capacita dei modelli, e in particolare grazie all’espansione
della loro context window (ovvero la quantita di testo ricevuto in input che un
modello puo “ricordare”), ¢ emersa una tecnica alternativa piu flessibile: il prompt
engineering. Questo approccio si basa sulla formulazione di istruzioni (prompt)
dettagliate e ricche di contesto, che consentono di guidare un modello generalista
nell’esecuzione di compiti specializzati in tempo reale, senza la necessita di doverlo

sottoporre ad un ulteriore processo di addestramento.

1.1.1 Knowledge cutoff e grounding

Un’importante limitazione dei LLMs deriva dal fatto che i dati utilizzati nel lo-

2L

ro addestramento, per quanto estesi, rappresentano comunque un’“istantanea’” del

2ibm.com/think/topics/transformer-model

2 CAPITOLO 1. BACKGROUND

https://www.ibm.com/think/topics/transformer-model

1.2. FUNZIONAMENTO DI UN ASSISTENTE AI

mondo in un determinato momento.

Cio significa che esiste una data, nota come knowledge cutoff, oltre la quale un mo-
dello non dispone piu di informazioni aggiornate, poiché queste non erano incluse
nei suoi dati di training: di conseguenza, se interrogato su eventi successivi a tale
data, un LLM fornira risposte obsolete o inaccurate.

Questo risulta particolarmente problematico per modelli addestrati a svolgere com-
piti di programmazione poiché, ad esempio, potrebbero non essere a conoscenza
di vulnerabilita recentemente scoperte o di aggiornamenti nelle librerie e nei fra-
mework pitt utilizzati, fornendo codice obsoleto, non funzionante o addirittura

vulnerabile.

Per superare questo limite, sono stati sviluppati dei meccanismi di grounding,
che consentono ad un modello, qualora questo lo ritenga necessario, di effettuare
ricerche sul web. Questa tecnica aiuta a mitigare fortemente le problematiche
legate al knowledge cutoff e consente al modello di fornire risposte aggiornate e

pertinenti anche su contenuti non presenti nei propri dati di addestramento.

1.2 Funzionamento di un assistente Al

Un assistente Al opera attraverso un costante scambio di informazioni effettuato
tra ambiente di sviluppo (IDE) nel quale é integrato, I'utente e il LLM.

Il suo funzionamento puo essere suddiviso in tre fasi principali:

1. Raccolta del contesto: In seguito ad una richiesta effettuata dall’utente,
I'IDE procede con la raccolta del contesto: con questo termine si intende 1’'in-
sieme di tutte le informazioni che verranno fornite al LLM per consentirgli
di comprendere la richiesta dell’'utente e generare una risposta pertinente.
Il contesto viene costruito automaticamente dall’IDE, combinando informa-
zioni come il contenuto del file corrente, la posizione del cursore ed even-
tuale codice selezionato, ma puo anche essere arricchito dall’utente tramite

I’aggiunta di ulteriori file reputati rilevanti per il compito da svolgere.

2. Elaborazione tramite LLM: Il contesto raccolto viene unito alla richie-

sta effettuata dall’'utente per formare un prompt, ovvero l'input testuale da

CAPITOLO 1. BACKGROUND 3

1.3. DIFFUSIONE DEGLI ASSISTENTT Al

fornire al LLM. Il modello analizza il prompt ricevuto e, in base al tipo di
interazione richiesta, genera un’opportuna risposta, come una porzione di

codice o una spiegazione.

3. Presentazione dei risultati: Al termine della generazione, I'output del
modello viene ricevuto dall'IDE e presentato all’'utente, che pud accettare,

rifiutare o reiterare sulla risposta, rincominciando il ciclo.

Dal punto di vista architetturale, la maggior parte degli assistenti Al disponibili sul
mercato adottano un approccio client-server, in cui 'IDE funge da client e invia le
varie richieste ad un server remoto che ospita il modello, ma esistono anche delle
alternative open-source che consentono di interfacciarsi con LLMs che eseguono
localmente, riducendo la latenza e preservando la privacy del codice, solitamente

a scapito di prestazioni inferiori.

1.2.1 Funzionalita agentiche

A partire dal 2025, assistenti di nuova generazione come Claude Codd’] e GitHub
Copilotf]] sono stati dotati di funzionalita “agentiche”, acquisendo la capacita di
agire autonomamente all’interno dell’'IDE, come mostrato in Figura 1.1}

Al fine di svolgere un compito assegnato dall’utente, questi assistenti possono
autonomamente decidere di eseguire comandi, modificare file, effettuare ricerche
nel progetto ed interagire con strumenti esterni, divenendo in grado di scrivere,

testare e debuggare interi applicativi in maniera quasi interamente autonoma.

1.3 Diffusione degli assistenti Al

Al fine di comprendere appieno la natura della trasformazione tecnologica inne-
scata dall’avvento degli assistenti Al, é necessario analizzare dati e trend partico-
larmente significativi che evidenziano la portata del fenomeno e i fattori che ne

stanno guidando la diffusione.

3anthropic.com /claude-code
4github.com /features/copilot

4 CAPITOLO 1. BACKGROUND

https://www.anthropic.com/claude-code
https://github.com/features/copilot

1.3. DIFFUSIONE DEGLI ASSISTENTT Al

) File Edit Selection View ** £ shinobi v BDE0 O’ A
@ EXPLORER A [E X v Bdnode +~ B @ -+ | [I X

 SHINOBI

I see there are Button and Avatar components already. Let me

v @ create a Card component, which would be a good addition to the
UI library. First, let me look at the Button component to
understand the pattern: I

> e Read(src\components\ui\Button\Button.tsx)
> . L Read 48 lines (ctrl+r to expand
v @ src
Now I'll create a Card component. Let me create the directory
> W app structure and component:
\ @ components
= ui Bash(mkdir "D:\tutorials\@sandbox\@claude\shinobi\src\componen
BlogSidebartsx . Pfs\gl\card)
unning.

DarkModeToggle.tsx
shift + P
> M hooks

> W lib Bash command

> By test

¥
[

gitignore
#+ CLAUDE.md
Do you want to proceed?
> Yes
@ nextconfig.ts - Yes, and don't ask again for mkdir commands in
(9 package-lockjson D:\tutorials\@sandbox\@claude\shinobi

No, and tell Claude what to do differently ()
> OUTLINE
> TIMELINE o

X I claude-edits ® ®0A0 & B8 @cGolive Q

Figura 1.1: Esempio di utilizzo delle funzionalita agentiche di Claude Code: in se-
guito ad una richiesta di alto livello da parte dell’'utente (implementare un nuovo
componente grafico all’interno di una pagina web), 1’assistente procede autonoma-
mente ad analizzare la codebase ed eseguire i comandi per la creazione dei file e le
directory necessarie.

Una delle fonti pit autorevoli per misurare le tendenze nell’ambito dello sviluppo
software é I’annuale “Stack Overflow Developer Survey”, i cui dati del 2024 offrono
un’immagine concreta dell’impatto che hanno avuto gli assistenti Al nel settore.
Dei pin di 60.000 sviluppatori che hanno preso parte al sondaggio, il 76% dichia-
rava di utilizzare (o voler iniziare ad utilizzare) tali strumenti, percentuale che &
salita ad 84% nell'indagine del 20257

Inoltre, sebbene gli sviluppatori avessero pareri discordanti riguardo ’accuratezza
degli output generati e la capacita degli assistenti Al nell’eseguire compiti com-
plessi, la maggioranza (81%) ha riconosciuto un aumento della produttivita come
il principale beneficio derivante dall’utilizzo di tali strumenti.

Questa percezione é stata confermata anche da varie evidenze empiriche, come uno
studio del 2024 che ha coinvolto circa 5000 sviluppatori di aziende come Microsoft

e Accenture, i cui risultati mostrano come 'accesso ad un Al assistant fosse in

Ssurvey.stackoverflow.co/2024/ail e survey.stackoverflow.co/2025 /ai

CAPITOLO 1. BACKGROUND 5

https://survey.stackoverflow.co/2024/ai
https://survey.stackoverflow.co/2025/ai

1.3. DIFFUSIONE DEGLI ASSISTENTT Al

grado di aumentare il numero di task completati del 26,08%, con benefici maggiori

registrati tra gli sviluppatori meno esperti [CDJ™24].

Uno dei fattori chiave dietro all’adozione degli assistenti Al su larga scala va ricon-
dotto ai progressi compiuti nel campo dei Large Language Models, ed ¢ la drastica
riduzione dei costi di inferenza dei modelli, ovvero i costi associati all’utilizzo di
un LLM pre-addestrato. Per illustrare la portata del fenomeno, si consideri che il
costo per raggiungere performance paragonabili a quelle di GPT-3.5 (prendendo
come riferimento il benchmark MMLU in Figura é sceso da 20 dollari per
milione di token a novembre 2022 a soli 0,07 dollari ad ottobre 2024, una riduzione

nei costi di inferenza di oltre 280 volte in meno di due anni [MEFP725, p. 64].

Inference price across select benchmarks, 2022-24
Source: Epoch Al, 2025; Artificial Analysis, 2025 | Chart: 2025 Al Index report

® GPT-3.5 level+ in multitask language understanding (MMLU) GPT-40 level+ in PhD-level science questions (GPQA Diamond)
® GPT-4 level+ in code generation (HumanEval) GPT-40 level+ in LMSYS Chatbot Arena Elo
& GPT-4-0314

@ GPT-3.5

@ GPT-40-2024-05

Claude-3.5-Sonnet-2024-06 A\

DeepSeek-V3

Phi4 &
Gemini-1.5-Flash-88 &

Inference price (in USD per million tokens - log scale)

0X) Llama-3.1-Instruct-8B

2022-Sep 2023-Jan 2023-May 2023-Sep 2024-Jan 2024-May 2024-Sep 2025-Jan

Publication date

Figura 1.2: Riduzione del costo di inferenza a parita di performance su vari ben-
chmark.

Un tale abbattimento dei costi d’utilizzo, in combinazione al costante aumento
delle performance dei modelli, che in molti ambiti superano gia le capacita uma-
ne [MFP™25 p. 64], ha consentito agli assistenti Al di diventare in breve tempo

degli strumenti economicamente sostenibili, favorendone la diffusione.

Un ulteriore fattore da considerare ¢ la progressiva riduzione del divario prestazio-

nale tra i LLM proprietari (closed-weight) e quelli open-weight.

6 CAPITOLO 1. BACKGROUND

1.3. DIFFUSIONE DEGLI ASSISTENTT Al

La distinzione fondamentale tra le due tipologie risiede nell’accessibilita ai “pesi”
del modello, ovvero ai suoi parametri interni. I modelli closed-weight (come la serie
GPT di OpenAl) sono accessibili unicamente tramite API e mantengono privati i
loro pesi e la loro architettura. D’altro canto, i modelli open-weight (come Llama
3.1 0 DeepSeek V3) rendono i propri pesi pubblicamente disponibili, permettendo
a chiunque di ispezionarli ed adattarli a scopi specifici.

Come si puo osservare in Figura[[.3] le capacita dei principali modelli open-weight
si stanno rapidamente avvicinando a quelle delle controparti closed-weight, giu-
stificandone la crescente adozione come modelli alla base di svariati assistenti Al
non-proprietari [MEPT25, pp. 95-96].

Mathematical reasoning: MATH Coding: HumanEval
100% 100% ///
80% / 80%
60% = 60%
3 3
L 40% S 40%
20% 20%
0% 0%
2022 2023 2024 2022 2023 2024

Figura 1.3: Confronto tra le performance dei migliori modelli closed-weight (in
blu) e open-weight (in rosa) tra il 2022 e il 2024 su benchmark di ragionamento
matematico (MATH) e di programmazione (HumanEval).

CAPITOLO 1. BACKGROUND 7

Capitolo 2
Analisi

L’obiettivo della presente tesi ¢ quello di realizzare un assistente Al prototipale in
grado di supportare il programmatore durante il processo di sviluppo software.

Tale assistente dovra essere integrato all’interno di un IDE e presentare funziona-
lita analoghe a quelle degli assistenti alla programmazione moderni, come l’auto-
completamento del codice e la possibilita di eseguire modifiche sui file sorgente in

base alle istruzioni fornite dall’'utente in linguaggio naturale.

Per poter delineare gli esatti requisiti dell’assistente da realizzare risulta utile ana-
lizzare le funzionalita offerte da un simile prodotto gia esistente: la scelta é ricaduta
su GitHub Copilot, un assistente sviluppato da GitHub in collaborazione con Mi-
crosoft e OpenAl, preso come caso di studio per via della sua vasta adozione e

funzionalita avanzate.

Sebbene Copilot sia disponibile per diversi IDE, ’analisi che segue si concentrera
in modo specifico sulla sua implementazione per Visual Studio Code (d’ora in poi
indicato come VS Code).

Tale decisione ¢ motivata sia dalla popolarita dell'IDE, che negli ultimi anni si
¢ affermato come il pin utilizzato dagli sviluppatoriE], sia per la sua natura mo-
dulare basata su estensioni, rendendolo la piattaforma ideale per lo sviluppo e

I'integrazione del prototipo oggetto di questa tesi.

Lsurvey.stackoverflow.co/2025 /technology

8 CAPITOLO 2. ANALISI

https://survey.stackoverflow.co/2025/technology#most-popular-technologies-dev-envs

2.1. FEATURE PRINCIPALI DI GITHUB COPILOT

2.1 Feature principali di GitHub Copilot

2.1.1 Inline completion

Una delle feature principali di GitHub Copilot & I’inline completion (anche nota
come inline suggestion), che fornisce suggerimenti di completamento del codice
che appaiono direttamente all’interno dell’editor, come mostrato in Figura [2.1

Analizzando il contenuto del file corrente (includendo il codice gia scritto ed even-
tuali commenti), Iassistente ¢ in grado di suggerire in tempo reale righe o interi
blocchi di codice pertinenti: questa capacita va ben oltre il semplice autocom-
pletamento sintattico presente in molti IDE (funzionalita che su VS Code prende
il nome di Intellz’sense@, fornendo suggerimenti che spesso consistono in interi

blocchi di codice coerenti con l'intento del programmatore.

Fibonacci |{
int fibonacci(n) {

n<=0){
K

(n==1) {

4;

fibonacci(n - 1) + fibonacci(n - 2);

Figura 2.1: Esempio di code completion. Dopo aver iniziato la scrittura della
definizione del metodo fibonacci, Copilot ne suggerisce 'intera implementazione
(il suggerimento é il codice in trasparenza).

2.1.2 Interazione contestuale

Oltre al completamento del codice “passivo” fornito dalle inline completions, Co-
pilot offre anche vari strumenti di interazione diretta che consentono all’utente di
interagire con l'assistente formulando le proprie richieste in linguaggio naturale.

Tra queste vi sono le azioni di interazione contestuale, che consentono all’'utente

2code.visualstudio.com/docs/editing /intellisense

CAPITOLO 2. ANALISI 9

https://code.visualstudio.com/docs/editing/intellisense

2.1. FEATURE PRINCIPALI DI GITHUB COPILOT

di modificare il contenuto del file corrente o la sola porzione di codice selezionata,

come mostrato in Figura 2.2

optimize this method by applying memoization

Claude Sonnet 4

Map<Integer, Integer> memo = new HashMap<>();

int fibonacci(int n) {
if (n <=0
return 0;
f(n==1
turn 1;

f (memo.containsKey(n)
return memo.get(n)

int result = fibonacci(n - 1) + fibonacci(n - 2);
memo.put(n, result);
return result;

Figura 2.2: Esempio di utilizzo dell’interazione contestuale per effettuare una mo-
difica al metodo fibonacci mostrato in Figura[2.1] in seguito ad una richiesta di
ottimizzazione da parte dell’utente.

2.1.3 Chat

Oltre agli strumenti integrati direttamente nell’editor, Copilot mette a disposizione
anche un pannello di chat che permette di dialogare liberamente con I’assistente.
Questa modalita d’uso offre un ambiente separato che 'utente puo utilizzare per
vari scopi, come ottenere spiegazioni dettagliate, suggerimenti architetturali o sup-
porto nella risoluzione di errori (come mostrato in Figura .

La chat mantiene ovviamente 'intero contesto della conversazione, per garantire
che le risposte generate siano sempre pertinenti. Inoltre, tale contesto puo esse-
re ulteriormente arricchito dall’utente, che puo aggiungervi ulteriori file presenti
nell'IDE, permettendo all’assistente di leggerne il contenuto e fornire cosi risposte

ancor piu mirate.

Funzionalita agentiche

E opportuno sottolineare che a partire dal 2025 le funzionalita del pannello di

chat sono state notevolmente ampliate con I'introduzione di una “modalita agen-

10 CAPITOLO 2. ANALISI

2.1. FEATURE PRINCIPALI DI GITHUB COPILOT

te” (agent mode) che permette a Copilot di svolgere compiti di pin alto livello.

Grazie a questa feature 'utente puo assegnare un certo obiettivo all’assistente, la-
sciando che questo lo svolga in autonomia, individuando i file da modificare e uti-
lizzando eventuali comandi o strumenti reputati necessari (ad esempio installando
dipendenze tramite terminale), procedendo iterativamente fino al completamento

del compito.

Queste funzionalita agentiche, oltre ad essere feature sperimentali soggette a con-
tinui cambiamenti, trasformano 'assistente da elemento di supporto al program-
matore ad esecutore autonomo e una tale transizione ne giustifica ’esclusione da
questo studio. L’obiettivo della presente tesi rimane infatti la progettazione e
I'implementazione di un assistente nel senso pitl stretto del termine e per tale ra-
gione le funzionalita agentiche non verranno ulteriormente analizzate, né verranno

implementate nel prototipo.

+ 9 {g} Fibonaccijava X

Fibonac

what further optimizations could be made to the fibonacci a.util.;

2
method? Fibonacci {

Fibonacci java .
Map<Integer, Integer> memo = new HashMap<>();

Used 1 reference F int fibonacci(int n) {

Looking at your memoized Fibonacci implementation, here are
several optimizations you could consider:

1. Bottom-up Dynamic Programming (Iterative)
Replace recursion with iteration to eliminate call stack overhead: R
if (memo.containsKey(n)
return memo.get(n);
int fibonacci(int n) {
if (n <= 0) return 0;
if (n == 1) return 1; int result = fibonacci(n - 1) + fibonacci(n - 2);
memo.put(n, result);
int prev2 = 0, prevl = 1; TR s
for (int i = 2; i <= n; i++) {
int current = prevl + prev2;
prev2 = prevl;

O Add Context... Fibonaccijava X
Add context (#) 1sions (@), commands (/)

Ask v Claude Sonnet 4

Figura 2.3: Conversazione tra utente e assistente riguardo ulteriori ottimizzazioni
al metodo fibonacci in cui assistente suggerisce un approccio implementativo
alternativo, motivandone i vantaggi rispetto alla soluzione corrente.

CAPITOLO 2. ANALISI 11

2.2. REQUISITI FUNZIONALI

2.1.4 Istruzioni personalizzate

Al fine di allineare gli output generati dall’assistente alle specificita di un determi-
nato progetto, Copilot mette a disposizione un meccanismo di personalizzazione
noto come custom instructions (“istruzioni personalizzate”).

Modificando un apposito file (.github/copilot-instructions.md), 'utente puo
definire un insieme di direttive in linguaggio naturale al fine di modificare il
comportamento dell’assistente. Tali linee guida influenzano sia il codice gene-
rato dall’assistente che le risposte fornite in chat, permettendo di rendere gli
output generati conformi ad eventuali standard, pratiche di sviluppo o requisiti

architetturali.

Coding Guidelines for TypeScript Projects

When writing TypeScript code, adhere to the following guidelines:

- Use descriptive names for methods and keep them short and single-purpose.
- Add JSDoc comments to public methods only.

- Make sure to sanitize any user input.

- Never hardcode secrets (i.e. API keys, credentials...)

- Use “try/catch” for operations that can fail.

Listato 2.1: Esempio di file di istruzioni personalizzate nel quale vengono for-
nite istruzioni aggiuntive all’assistente da utilizzare per la scrittura di codice
TypeScript.

2.2 Requisiti funzionali

RF1 L’assistente dovra esporre delle azioni di interazione contestuale, che consen-

tano di modificare il contenuto del file corrente.

RF2 Tutte le funzionalitd di interazione contestuale dovranno consentire di li-
mitare l'intervento dell’assistente sulla sola porzione di codice selezionata
dall’'utente.

RF3 L’assistente dovra poter supportare un dialogo conversazionale con 'utente,

esponendo tale funzionalita attraverso un apposito pannello di chat.

12 CAPITOLO 2. ANALISI

2.3. REQUISITI NON FUNZIONALI

RF4 L’utente dovra poter includere file e risorse aggiuntive nel contesto della chat.

RF5 L’utente dovra poter modificare i diversi aspetti operativi dell’assistente,
come il provider Al, il modello utilizzato e i parametri di configurazione ad

€sso associati.

RF6 L’assistente deve consentire all'utente di poter abilitare o disabilitare 1'uti-

lizzo del grounding, qualora il provider scelto supporti tale funzionalita.

RF7 L’assistente dovra fornire automaticamente suggerimenti inline in tempo

reale, pertinenti al contenuto del file corrente.

RF8 Il comportamento dell’assistente dovra adattarsi ad eventuali direttive ag-

giuntive definite dall’'utente all’interno di un apposito file di configurazione.

2.3 Requisiti non funzionali

RNF1 L’architettura del sistema dovra essere modulare per garantire la separazione

delle responsabilita e la futura estendibilita.

RNF2 L’architettura del sistema dovra ottimizzare 1'utilizzo delle risorse per far si

che l'integrazione dell’assistente nell'IDE risulti performante e stabile.

RNF3 Le operazioni a lunga esecuzione, come le interazioni con i LLMs, dovran-
no essere gestite in modo asincrono per non compromettere la reattivita

dell'IDE.

2.4 Analisi del dominio

L’assistente Al dovra gestire il flusso di informazioni e le interazioni tra tre entita
principali: 'utente, I'IDE e il LLM.

Come mostrato nel diagramma di flusso riportato in Figura [2.4] tali interazioni
formano un ciclo operativo che si attivera in seguito ad una richiesta dell’utente,
che potra essere esplicita, come una domanda posta nella chat, o implicita, come

un autocompletamento innescato durante la digitazione del codice.

CAPITOLO 2. ANALISI 13

2.4. ANALISI DEL DOMINIO

In seguito I'assistente dovra interagire con I'IDE per raccogliere il contesto ne-
cessario, unendolo alla richiesta dell’'utente ed eventuali istruzioni aggiuntive per
formare un prompt, che verra elaborato da un LLM esterno.

Ricevuta la risposta del modello 'assistente si dovra occupare di processarla e
presentarla all’'utente, concludendo il ciclo e rimanendo in attesa di una nuova

interazione.

IDE LLM

User
Sends a request

Collects context

-

Combines context with request and
any additional instructions in a prompt

-

Sends prompt

>
>

Generates answer

Sends answer

<
<

Processes answer

Presents result

A

IDE LLM

User

Figura 2.4: Flusso operativo dell’assistente AI, che mostra la principale sequenza
di interazioni tra utente, IDE e LLM.

14 CAPITOLO 2. ANALISI

Capitolo 3

Design

Nel presente capitolo verra definito il modello architetturale dell’assistente Al da
realizzare, sulla base dai requisiti emersi nella precedente fase di analisi. Cio verra
fatto attraverso la definizione dei componenti logici fondamentali di un generico
Al-assisted IDE, astraendo dai vincoli che verrebbero inevitabilmente imposti dalla

scelta di una piattaforma specifica.

I dettagli implementativi verranno rimandati al prossimo capitolo, nel quale ver-
ra descritto il processo di mappatura dell’architettura logica emersa nel contesto
di VS Code, mantenendo in considerazione i vincoli e le best practice imposti

dell’ambiente.

3.1 Architettura service-oriented

Problema Come stabilito dal RNFT] ¢ necessario definire un’architettura mo-
dulare facilmente estendibile, che separi chiaramente le responsabilitd dei vari
componenti del sistema e al contempo ottimizzi I'utilizzo delle risorse (RNEF2)).

Soluzione E stata adottata un’architettura service-oriented, mostrata in Fi-
gura che utilizza il pattern Factory Method per consentire l'inizializzazione

“on-demand” dei vari servizi a runtime (lazy instantiation).

CAPITOLO 3. DESIGN 15

3.1. ARCHITETTURA SERVICE-ORIENTED

«Interface»
ServiceContainer

+register<T>(key: string, provider: Func<ServiceContainer, T>)
+resolve<T>(key: string) : T

0..N

ServiceDescriptor<T extends Service>

+ServiceDescriptor(container: ServiceContainer, provider: Func<ServiceContainer, T>)
+getInstance() : T

references

\

«Interface»
Service

Figura 3.1: Architettura service-oriented per la modularizzazione del sistema e la
gestione ottimizzata delle risorse tramite lazy loading.

Di seguito viene data una descrizione piu dettagliata dei componenti dell’architet-

tura presentata:

e ServiceContainer: un DI container (Dependency Injection container) pro-

gettato ad-hoc per la registrazione, creazione e risoluzione dei vari servizi.
Espone un metodo register che consente di registrare un servizio senza
pero instanziarlo immediatamente (associandone il factory method ad una
certa chiave) andando a crearne istanza solamente quando tale servizio vie-
ne richiesto per la prima volta tramite il metodo resolve. In seguito alla
creazione di un servizio, la relativa istanza viene conservata e riutilizzata per

tutte le richieste successive, comportandosi di fatto come un singleton.

ServiceDescriptor: un semplice proxy che incapsula il factory method di
un dato servizio (identificato da un’interfaccia tag) e ne gestisce l'istanza
singleton. Poiché il factory method riceve il ServiceContainer come para-
metro, ciascun servizio ¢ in grado di risolvere eventuali dipendenze interne

al momento della creazione, realizzando il pattern di Dependency Injection.

16

CAPITOLO 3. DESIGN

3.1. ARCHITETTURA SERVICE-ORIENTED

Problema Occorre evitare errori a runtime causati, ad esempio, dalla richiesta
di un servizio non esistente o una chiave digitata in modo errato. Per farlo é
necessario garantire la coerenza dei tipi tra la chiave utilizzata per la registrazione

di un servizio nel DI container e I'oggetto restituito dalla sua risoluzione.

«Interface»
Service

each mapping references

ServiceRegistry

+ConfigService: ConfigService
+AlIService: AlService
+ChatService: ChatService

defines a mapping between each

A . constrains T
key (string) and service type)

references

«Interface»
ServiceContainer

+register<T>(key: string, provider: Func<ServiceContainer, T>)
+resolve<T>(key: string) : T

uses ServiceRegistry to validate keys and to infer

references (DI pattern)) . ;
: the right service, ensuring type safety

ServiceDescriptor<T extends Service>

-instance?: T
-provider: Func<ServiceContainer, T>
-container: ServiceContainer

+ServiceDescriptor(container: ServiceContainer, provider: Func<ServiceContainer, T>)
+getInstance() : T

H I
-- \ 0.

ServiceContainerImpl

-services: Map<string, ServiceDescriptor>

+register<T>(key: string, provider: Func<ServiceContainer, T>)
+resolve<T>(key: string) : T

Figura 3.2: Architettura service-oriented completa e dettagliata. L’aggiunta di Se
rviceRegistry garantisce type-safety nella registrazione e risoluzione dei servizi.

CAPITOLO 3. DESIGN 17

3.2. SERVIZI PRINCIPALI

Soluzione Come mostrato in Figura [3.2] I’architettura service-oriented prece-
dentemente presentata e stata estesa introducendo ServiceRegistry, che stabili-
sce una relazione tra la stringa letterale (la chiave) di un certo servizio e il relativo

tipo dell’istanza ad esso associata.

3.2 Servizi principali

Definita I’architettura service-oriented su cui si basera il progetto, si pud procedere

con la definizione dei componenti logici fondamentali di un generico assistente Al.

3.2.1 ConfigService

Indipendentemente dall’'IDE in cui viene integrato, I’assistente Al esiste come un’e-
stensione dell’ambiente, che 'utente puo attivare o disattivare a seconda delle ne-
cessita. In fase di design questo ciclo di vita verra modellato dal componente gene-
rico ExtensionManager, che espone dei rispettivi metodi activate e deactivate

(la cui implementazione effettiva dipendera ovviamente dall'IDE specifico).

Problema Come stabilito dal [RFD] 'utente deve poter modificare il comporta-
mento dell’assistente configurandone diversi parametri, inclusi alcuni la cui defini-
zione deve essere resa obbligatoria (come la chiave API e il provider Al da utilizza-
re). B percio necessario un componente in grado di leggere e validare tali configu-
razioni all’avvio dell’assistente, mettendole a disposizione in maniera strutturata

al resto del sistema.

Soluzione E stato creato un servizio dedicato ConfigService, riportato in

Figura [3.3] che espone due metodi:

e isConfigValid, che valida la configurazione utente e verifica la presenza dei
parametri obbligatori. Questo metodo verra chiamato da ExtensionManag
er all’avvio dell’assistente, per assicurarsi che ’ambiente sia correttamente

configurato prima di procedere con l'inizializzazione degli altri componenti.

18 CAPITOLO 3. DESIGN

3.2. SERVIZI PRINCIPALI

ExtensionManager

+activate()
+deactivate()

1-on activation calls reads and validates user config.

configService.isConfigVvalid() If invalid, the assistant activation fails

ConfigService

isConfigvalid() : boolean
getConfig() : ExtensionConfiguration

uses

V.

v

«Record»
ExtensionConfiguration

apiKey : string
model : string

Figura 3.3: Architettura di ConfigService, responsabile del controllo della con-
figurazione utente all’avvio dell’assistente.

e getConfig, che restituisce la configurazione utente in maniera strutturata

come un oggetto di tipo ExtensionConfiguration.

3.2.2 AlService

Un elemento fondamentale di qualunque Al-assisted IDE ¢ il componente respon-
sabile della comunicazione con i LLMs esterni. Questo si occupa di raccogliere
ogni richiesta del sistema verso i modelli Al, gestendo internamente aspetti come
I’assemblaggio del prompt da fornire al modello e 'effettiva interazione con 1’API

remota dello specifico provider.

Problema Creare un punto di accesso centralizzato che consenta la comunica-
zione trasparente tra i vari componenti del sistema e i modelli Al esterni, indi-
pendentemente dalle specifiche modalita di interazione effettivamente richieste dal

provider sottostante.

CAPITOLO 3. DESIGN 19

3.2. SERVIZI PRINCIPALI

«Interface»
AlIService

+createAgent(config: AgentConfig) : AIAgent

+generateContent(agent: AIAgent, content: string, history?: List<ConversationElement>) : Promise<string>
+toggleSearchGrounding(agent: AIAgent) : boolean

+isSearchGroundingEnabled(agent: AIAgent) : boolean

«Abstract»
AbstractAIProvider<T extends AIAgent>

+AbstractAIProvider(apiKey: string)
+createAgent(config: AgentConfig) : T
+generateContent(agent: T, content: string, history?: List<ConversationElement>) : Promise<string>

ConfigService
uses creates
«Record» «Interface»
ConversationElement AIAgent

+role: Role
+content: string

«Enum>»
Role

USER
ASSISTANT
SYSTEM

Figura 3.4: Applicazione del pattern Strategy per la gestione dei provider Al

Soluzione E stato creato un servizio dedicato AIService, riportato in Figu-
ra [3.3] applicando il pattern Strategy per garantire che l'interazione con i vari
modelli sia agnostica rispetto all’effettivo provider Al scelto dall’'utente (come ad
esempio OpenAl o Google).

L’architettura adottata supporta provider diversi, permettendo di poterne facil-

mente aggiungere di nuovi in futuro, ed é composta da tre elementi principali:

e AlService: servizio principale che delega I’esecuzione delle operazioni a pro-

20 CAPITOLO 3. DESIGN

3.2. SERVIZI PRINCIPALI

vider intercambiabili in base alla configurazione scelta dall’utente (ottenuta
tramite ConfigService), rispettando il principio di sostituzione di Liskov.

Il metodo che consente l'interazione con i LLMs ¢ generateContent, che
accetta come parametro opzionale una lista di ConversationElement, uti-
lizzata per modellare I’eventuale cronologia dei messaggi, associando il con-
tenuto testuale di ciascun messaggio (content) al ruolo (role) di chi lo ha

inviato (utente, assistente o sistema).

e AbstractAlIProvider: classe astratta che funge da base comune per I'im-
plementazione di provider specifici: implementa una relativa interfaccia AT
Provider, omessa dallo schema UML per brevita, e presenta un costruttore
il cui unico argomento € 1“api key”, cioé una stringa che varia in base al pro-
vider scelto e che funge da identificatore univoco necessario ad autorizzare

I’assistente ad effettuare richieste verso la sua API.

e ATAgent: interfaccia tag che rappresenta un’istanza pre-configurata di un
modello Al. La possibilita di creare pitl agenti ¢ necessaria poiché le varie
funzionalita dell’assistente potrebbero necessitare di agenti con istruzioni e
potenzialmente anche configurazioni differenti.

Ad esempio, un agente responsabile della funzionalita di modifica del codice
dovra essere istruito tramite system prompt a restituire esclusivamente co-
dice sorgente, omettendo qualsiasi spiegazione in linguaggio naturale che ne

impedirebbe 'applicazione diretta nell’editor.

3.2.3 ChatService

Problema Come richiesto dal occorre un pannello di chat in grado di
gestire conversazioni “multi-turno” tra utente e assistente che mantenga un proprio

stato interno, composto dalla cronologia dei messaggi e da eventuali file aggiunti

al contesto da parte dell’'utente (REF4]).

Soluzione E stata adottata l'architettura riportata in Figura [3.5] basata sullo

scambio di informazioni tra il pannello di chat e il resto del sistema, mediata dal

CAPITOLO 3. DESIGN 21

3.2. SERVIZI PRINCIPALI

«Record»
ChatState

®

chatHistory: List<ConversationElement>
files: List<File>

ChatPanel

5N «Interface»
ChatService AlIService

sendMessage(chatSrv: ChatService) ‘¥
Cour, o e Uses >

sends Al response +sendMessage(panel: ChatPanel)
+clearChat()

Figura 3.5: Architettura logica della funzionalita di chat.

servizio ChatService. Di seguito viene data una descrizione piu dettagliata dei

componenti dell’architettura presentata:

e ChatPanel: componente di presentazione della chat, sotto forma di un
pannello dedicato all interno dell'IDE. E responsabile della visualizzazione
dello stato della conversazione e della cattura degli input dell’'utente, come
I'invio di un messaggio nella chat, che vengono inviati a ChatService per

essere elaborati.

e ChatService: agisce da mediatore tra il pannello di chat e il resto del
sistema, gestendo i messaggi ricevuti da ChatPanel. Delega la generazione
delle risposte dell’assistente ad AIService e si integra con I’API dell'IDE per
fornire il contenuto dei file aggiunti al contesto. Al termine dell’elaborazione
di un messaggio invia la risposta a ChatPanel, che si occupera di presentarla

all’'utente aggiornando la propria interfaccia.

e ChatState: mantiene lo stato della chat, composto dalla cronologia dei
messaggi scambiati tra utente e assistente, e da eventuali file ulteriori aggiunti

al contesto.

E importante sottolineare che quella presentata in Figura ¢ un’architettura
puramente logica, che si limita a definire le responsabilita e le interazioni fonda-
mentali tra i componenti. Poiché la creazione di un pannello “custom” come quello

richiesto dalla funzionalitd di chat all’interno di un IDE richiede una forte inte-

22 CAPITOLO 3. DESIGN

3.3. COMANDI

grazione con I’API specifica dell’ambiente scelto, in fase di implementazione sara
inevitabile riadattare questa architettura per sottostare ai vincoli e le modalita di

integrazione imposte dall’IDE nel quale I'assistente verra integrato.

3.3 Comandi

Problema E necessario un meccanismo centralizzato per la gestione delle azioni
invocabili dall’'utente, in grado di verificare a priori la presenza dei prerequisiti

richiesti per la loro esecuzione.

«Interface»
Command

+cankExecute() : boolean
+execute() : Promise<void>

..

registers

«Abstract»

ExtensionManager BaseCommand

+BaseCommand(protected container: ServiceContainer)

Figura 3.6: Architettura basata sul pattern Command adottata per le azioni invo-
cabili dall’'utente. La classe astratta BaseCommand si occupa di acquisire il service
container per la risoluzione di eventuali dipendenze a runtime.

Soluzione Come mostrato in Figura [3.6] é stato applicato il pattern Command
per incapsulare ogni azione in un comando specifico.

L’architettura adottata, sebbene utilizzata primariamente per le funzionalita di
interazione contestuale, é sufficientemente generica da poter essere impiegata per

qualsiasi tipo di comando aggiunto in futuro.

L’interfaccia Command espone due metodi principali:

CAPITOLO 3. DESIGN 23

3.3. COMANDI

e canExecute, che verifica se il comando ¢ eseguibile nel contesto corren-
te dell'IDE. Ad esempio, un comando di refactoring del codice é eseguibile

solamente se 'utente ha il focus su un editor di testo attivo.

e execute, che espone la logica operativa del comando. La restituzione di una
Promise deriva dal ed ¢ fondamentale per garantire che un’operazione
computazionalmente bloccante, come la comunicazione con un modello Al,

sia gestita in modo asincrono, preservando la reattivita dell'IDE.

3.3.1 Comandi di interazione contestuale

Per implementare le funzionalita di interazione contestuale richieste dal e
necessario definire una serie di comandi in grado di modificare il contenuto del file
corrente. Alcuni di questi necessitano di un input da parte dell’'utente, come un
comando di modifica generica (in cui I'utente fornisce le istruzioni per la modifica
in linguaggio naturale), mentre altri operano in maniera autonoma, come un co-
mando di refactoring che ristruttura automaticamente il codice senza bisogno di

indicazioni.

Indipendentemente dalla loro natura, tutti i comandi di interazione contestuale
dovranno essere in grado di operare sia sull’intero file corrente che, in alternativa,
sulla sola porzione di codice selezionata dall’utente, come stabilito dal

E chiaro che questi condivideranno una serie di caratteristiche strutturali e compor-
tamentali: infatti tutti richiedono un editor di testo attivo per poter essere eseguiti,
estraggono il codice su cui operare in maniera analoga, invocano AIService per

la generazione e infine sostituiscono il codice originale con il risultato generato.

Problema Fornire una base comune per I'implementazione dei comandi di in-
terazione contestuale, in modo da evitare duplicazioni di codice e consentire 1’ag-

giunta di ulteriori comandi con il minimo sforzo.

Soluzione L’architettura precedentemente definita é stata estesa applicando pat-
tern Template Method. Come mostrato in Figura[3.7 il template method ¢ applyT

ransformation e viene utilizzato dalla classe astratta BaseEditorTransformer,

24 CAPITOLO 3. DESIGN

3.3. COMANDI

«Interface»
Command

+cankxecute() : boolean
+execute() : Promise<void>

registers
) «Abstract» «Interface»
ExtensionManager BaseCommand EditorTransformer
+BaseCommand (protected container: ServiceContainer) +applyTransformation() : Promise<void>
«Abstract»

BaseEditorTransformer

+cankxecute() : boolean
+execute() : Promise<void>
#aiCodeProcess(sysInstructions: string, userPrompt: string?, progressTxt: string, successMsg: string) : Promise<void>

al A

EditCommand RefactorCommand

+applyTransformation() : Promise<void> +applyTransformation() : Promise<void>

Figura 3.7: Architettura dei comandi completa.

introdotta per fungere da superclasse ai vari comandi di interazione contestuale,

incapsulandone le funzionalita condivise nel rispetto del principio DRY.

La logica comune ¢ contenuta all’interno del metodo protetto aiCodeProcess di
BaseEditorTransformer, che accetta come parametri le istruzioni per l'agente
(systemInstructions), le eventuali istruzioni fornite dall’utente (userPrompt),
e due stringhe per personalizzare il contenuto del messaggio mostrato durante
I'esecuzione del comando e quello mostrato al suo termine (progressText e succ

essMessage).

CAPITOLO 3. DESIGN 25

Capitolo 4

Implementazione

4.1 Anatomia di un’estensione VS Code

Ciascuna estensione per VS Code necessita di un file manifest (package.json),
che contiene metadati come il nome, la versione e soprattutto le modalita con cui

I’estensione si integra all’interno dell’IDE.

Tale integrazione avviene dichiarando dei Contribution PomtsEI (“punti di contri-
buzione”), ovvero una serie di dichiarazioni JSON inserite all'interno del manifest
tramite le quali un’estensione puo estendere le funzionalita dell’IDE.

Nel contesto del progetto realizzato sono stati dichiarati contribution points per:

e Comandi aggiuntivi, al fine di implementare le funzionalita di interazione
contestuale, che 'utente puo invocare tramite la palette dei comandi (de-
finendo anche relativi keybindings, per associare scorciatoie da tastiera ai

comandi implementati).

e Configurazioni, per consentire all'utente di modificare le proprieta del-
I’estensione tramite il file settings. json, permettendo di personalizzare

aspetti come il modello Al da utilizzare e i vari parametri dell’agente.

Lcode.visualstudio.com/api/references/contribution-points

26 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/references/contribution-points

4.2. STRUMENTTI E RISORSE UTILIZZATE NELLO SVILUPPO

e Interfacce utente personalizzate per creare il pannello di chat all’interno
dell’IDE.

4.2 Strumenti e risorse utilizzate nello sviluppo

e Visual Studio Code come ambiente di sviluppo.

TypeScript come linguaggio di programmagzione per l'intera architettura

dell’estensione.

e JavaScript, HTML e CSS per 'implementazione dell’interfaccia utente
del pannello di chat tramite Webview APT (si veda Sezione [4.9)).

e Node.js come runtime environment per TypeScript e JavaScript.
e Git per il controllo versione.

Per la creazione della struttura iniziale del progetto é stato utilizzato lo scaffolding
tool Yeoman?} che consente di generare uno scheletro per un’estensione VS Code

gia pre-configurata con TypeScript e i vari strumenti di build necessari.

Infine, oltre alla documentazione ufficiale fornita da VS Code, una risorsa fonda-
mentale impiegata per la comprensione di pattern e I'implementazione di soluzioni
comuni € stato il repository "Vscode—extension—samples’ﬁ messo a disposizione da

Microsoft su GitHub e contenente svariati esempi di codice.

4.3 ServiceContainer: DI container

Come si puo vedere dal codice riportato nel Listato [4.1 ServiceContainerImpl
fornisce le implementazioni per i metodi register e resolve definiti dall’in-
terfaccia ServiceContainer, utilizzati rispettivamente per la registrazione e la
risoluzione di un determinato servizio.

Il metodo register associa l'identificatore univoco di un servizio al relativo fac-

tory method necessario per la sua creazione, salvando tale informazione all’in-

Zyeoman.io
3github.com /microsoft /vscode-extension-samples

CAPITOLO 4. IMPLEMENTAZIONE 27

https://yeoman.io/
https://github.com/microsoft/vscode-extension-samples/

10

11

12

13

14

16

17

18

19

20

21

22

23

4.3. SERVICECONTAINER: DI CONTAINER

terno di una mappa interna (riga 2) e delegandone la gestione ad un’istanza di
ServiceDescriptor (riga 8).

Quando, in seguito alla registrazione di un servizio, viene chiamato il metodo
resolve, il container utilizza la key fornita per individuare il ServiceDescriptor
corrispondente (righe 14-16) e richiederne l'istanza tramite il metodo getInstance
(riga 21).

export class ServiceContainerImpl implements ServiceContainer {

private services = new Map<string, ServiceDescriptor>();

public register<K extends keyof ServiceRegistry>(

key: K,

provider: (container: ServiceContainer) => ServiceRegistry[K]
): void {

this.services.set(key as string, new ServiceDescriptor(provider, this));

public resolve<K extends keyof ServiceRegistry>(
key: K
): ServiceRegistry[K] {
const descriptor = this.services.get(
key as string
) as ServiceDescriptor<ServiceRegistry[K]>;
if (!descriptor) {

throw new Error("Service ${String(key)} not registered’);

return descriptor.getInstance();

Listato 4.1: Implementazione di ServiceContainer.

La classe ServiceDescriptor, riportata nel Listato [£.2] incapsula la logica di
creazione e la gestione dell’istanza di un singolo servizio.

In seguito alla registrazione di un servizio, ServiceDescriptor riceve tramite
costruttore il factory method ad esso associato e l'istanza del container stesso.
Quest’ultima é fondamentale per consentire la risoluzione di eventuali dipenden-

ze interne al momento dell’effettiva istanziazione del servizio, realizzando cosi il

28 CAPITOLO 4. IMPLEMENTAZIONE

10

11

12

13

14

15

4.3. SERVICECONTAINER: DI CONTAINER

pattern di Dependency Injection.

Il metodo pubblico getInstance applica il principio di lazy instantiation: nel
momento in cui il servizio viene richiesto da ServiceContainer per la prima vol-
ta, viene eseguito il factory method ad esso associato (riga 11), memorizzandone
I’output cosicché tutte le chiamate successive per il medesimo servizio restituisca-
no listanza precedentemente creata (riga 13), implementando di fatto il pattern

Singleton.

class ServiceDescriptor<T extends Service = Service> {

private instance?: T;

constructor (
private readonly provider: (container: ServiceContainer) => T,

private readonly container: ServiceContainer

) {3

public getInstance(): T {
if (!this.instance) {
this.instance = this.provider(this.container);
}

return this.instance;

Listato 4.2: Implementazione di ServiceDescriptor.

4.3.1 Garantire type safety nella risoluzione dei servizi

Nell’implementazione del DI container ¢ fondamentale garantire la coerenza dei
tipi tra la chiave utilizzata per la registrazione di un servizio e 'oggetto restituito
dalla sua risoluzione. Per farlo sono state utilizzate diverse funzionalita avanzate
di TypeScript che hanno permesso di ottenere una soluzione type-safe in grado di

individuare tali errori a compile-time.

Innanzitutto é stata creata una semplice interfaccia TypeScript ServiceRegistry
(Listato [4.3)) che stabilisce una relazione tra la stringa letterale associata ad un
servizio, cioé¢ la sua chiave (es. la stringa “AlService”), e il relativo tipo dell’istanza

ad esso associata (es. l'interfaccia AIService).

CAPITOLO 4. IMPLEMENTAZIONE 29

4.3. SERVICECONTAINER: DI CONTAINER

export type ServiceRegistry = {
"ConfigService": ConfigService;
"AIService": AlService;

// other services

Listato 4.3: ServiceRegistry.

Cosi facendo, il metodo register<K extends keyof ServiceRegistry> puo es-
sere comodamente definito utilizzando 'operatore TypeScript keyofﬂ vincolando
K ad assumere il valore di una delle chiavi dichiarate in ServiceRegistry.

Come si puo vedere nell’esempio riportato nel Listato [4.4] questo approccio im-
pedisce 1'utilizzo di chiavi arbitrarie o errate, sollevando in tali casi un errore a

compile-time.

container.resolve("ConfigService"); // correct

container.resolve("somethingElse"); // compile error: Argument of type

(K]

— somethingElse

is not assignable to parameter of type 'keyof

< ServiceRegistry'.ts(2345)

Listato 4.4: Cercare di registrare o risolvere un servizio tramite una chiave non
presente in ServiceDescriptor risulta in un errore a compile-time.

Anche nel caso del metodo resolve<K extends keyof ServiceRegistry> viene
applicato il medesimo principio. In aggiunta, poiché il tipo di ritorno del metodo
¢ ServiceRegistry[K], TypeScript collega dinamicamente la chiave K al relativo
tipo ad essa associato all’interno di ServiceRegistry.

Cio significa che se, ad esempio, resolve riceve come parametro key la strin-
ga “ChatService”, allora ServiceRegistry[K] verra automaticamente risolto ad

un’istanza di tipo ChatService.

Definita I’architettura generale € possibile procedere con I’analisi dei singoli servizi
che compongono I'estensione.

Ciascun servizio é stato pensato per svolgere un compito specifico e pud comunicare

4typescriptlang.org/docs/handbook /2 /keyof-types

30 CAPITOLO 4. IMPLEMENTAZIONE

https://www.typescriptlang.org/docs/handbook/2/keyof-types.html

4.4. CONFIGSERVICE: LETTURA DELLA CONFIGURAZIONE UTENTE

con altri servizi ricevendoli in maniera esplicita dal costruttore o, qualora cid non

fosse possibile, risolvendoli tramite il ServiceContainer.

4.4 ConfigService: lettura della configurazione uten-
te

Tutti i parametri configurabili dell’assistente devono essere dichiarati all’interno
del file manifest dell’estensione. Alcuni di questi parametri (la cui assenza impe-
direbbe il funzionamento dell’estensione) sono obbligatori, come la chiave API e
il modello da utilizzare. Dopodiché ci sono una serie di parametri facoltativi che
consentono all’utente di modificare la configurazione del modello, cambiandone ad
esempio la temperatura o il numero massimo di output tokens (che influenzano
rispettivamente la “creativita” e la lunghezza delle risposte fornite dall’assistente)

o abilitare/disabilitare funzionalita specifiche, come 'inline completion.

Nel contesto dell’ecosistema VS Code, tali informazioni vengono memorizzate al-
I'interno di un file di configurazione specifico, settings. jsonE], al quale l'esten-
sione deve accedere al momento della propria attivazione. Per farlo I’API dell'IDE
mette a disposizione un apposito oggetto WorkspaceConf igurationﬁ, che presenta

un metodo get per ottenere il valore associato ad uno specifico parametro.

Tale metodo si rivela perd problematico per la gestione dei parametri opzionali
legati alla configurazione dei modelli Al: se un parametro non viene definito dal-
I'utente, get restituira il valore di default del suo tipo di dato (ad esempio 0 per
un numero). Cio chiaramente non ¢ ideale, dato che in tali casi sarebbe preferibi-
le lasciare che il provider Al possa utilizzare il proprio valore di default per tale

parametro.

Per risolvere questa problematica ¢ stato implementato un metodo privato getC
onfigValue che consente di ottenere il valore associato ad un dato parametro
solamente se questo é stato esplicitamente definito dall’utente.

Come mostrato nel Listato 4.5 dopo aver ottenuto 'oggetto di configurazione

Scode.visualstudio.com /docs/configure /settings
bcode.visualstudio.com /api/references,/ vscode-api# WorkspaceConfiguration

CAPITOLO 4. IMPLEMENTAZIONE 31

https://code.visualstudio.com/docs/configure/settings
https://code.visualstudio.com/api/references/vscode-api#WorkspaceConfiguration

10

11

12

13

1

2

4.4. CONFIGSERVICE: LETTURA DELLA CONFIGURAZIONE UTENTE

WorkspaceConfiguration (riga 4) viene chiamato il suo metodo inspect, che
consente di determinare se un dato parametro sia stato esplicitamente definito
dall’utente (righe 7-10): in caso affermativo viene chiamato il metodo get per

ottenerne il valore, altrimenti viene restituito undefined (riga 11).

export class ConfigServiceImpl implements ConfigService {

private getConfigValue<T>(key: string): T | undefined {
const config = vscode.workspace.getConfiguration(Constants.EXTENSION_ID);

const inspection = config.inspect(key);

const isSet =
inspection?.globalValue !== undefined ||
inspection?.workspaceValue !== undefined ||
inspection?.workspaceFolderValue !== undefined;

return isSet 7 config.get<T>(key) : undefined;

Listato 4.5: Implementazione del metodo privato getConfigValue, responsabile
dell’adeguata risoluzione dei parametri opzionali.

Il metodo isConfigValid, la cui implementazione ¢ omessa per brevita, viene
chiamato da ExtensionManager all’avvio dell’estensione per controllare che 1'u-
tente abbia definito tutti i parametri obbligatori, mostrando opportuni messaggi
di errore in caso contrario. Validata la configurazione viene chiamato getConfig
(riportato nel Listato , che restituisce I'intera configurazione utente in maniera
strutturata come un oggetto di tipo ExtensionConfiguration (righe 1-6).

Per i parametri obbligatori, la cui presenza ¢ garantita in seguito alla validazione
iniziale, viene invocato direttamente il metodo WorkspaceConfiguration.get
(riga 17), utilizzando 'operatore di asserzione non-null (!) per indicare a Type-
Script che la presenza del valore associato a tali parametri é garantita.

Per i parametri opzionali viene invece utilizzato il metodo getConfigValue (riga
20), cosicché il provider Al possa utilizzare i propri valori di default per i parametri

non esplicitamente definiti dall’utente.

export type ExtensionConfiguration = {

apiKey: string; // mandatory parameters

32 CAPITOLO 4. IMPLEMENTAZIONE

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

temperature?: number; // optional parameters

export class ConfigServiceImpl implements ConfigService {

public isConfigValid(): boolean {...}

public getConfig(): ExtensionConfiguration {
const config = vscode.workspace.getConfiguration(EXTENSION_ID);

return {
// required settings: if isConfigValid() is true, these will always be
— defined.

apiKey: config.get<string>("apiKey")!,

// optional settings, undefined if not explicitly set by user

temperature: this.getConfigValue<number>("temperature"),

Listato 4.6: Implementazione del metodo getConfig, che restituisce la
configurazione come un oggetto di tipo ExtensionConfiguration.

4.5 AlService: interazione con i modelli Al

In fase di implementazione é stato deciso di dare maggior flessibilita ai modelli
AT utilizzabili dall’assistente, permettendo alle diverse funzionalita di utilizzare
modelli differenti in base alle loro necessita. Ad esempio, mentre la funzionali-
ta di chat beneficerebbe maggiormente dall’utilizzo di un agente pit performante
ma lento, per altre feature come l'inline completion, al fine di fornire i suggeri-
menti il pit velocemente possibile, sarebbe preferibile utilizzare un agente meno

performante ma pitt rapido.

Per farlo é stata apportata una lieve modifica all’architettura presentata in Sezio-

CAPITOLO 4. IMPLEMENTAZIONE 33

10

11

12

13

14

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

ne [3.2.2] facendo in modo che il modello dell’agente non venga letto dalla confi-
gurazione globale tramite ConfigService, ma bensi passato come argomento al

metodo createAgent di AIService.

4.5.1 Implementazione concreta di un provider

Nonostante 'architettura sviluppata sia stata concepita per consentire l'integra-
zione di molteplici provider specifici, nel corso dello sviluppo ci si ¢ limitati all’im-

plementazione e utilizzo di un solo provider per i modelli offerti da Google.

Tale scelta ¢ stata dettata da motivazioni prettamente pratiche: al momento dello
sviluppo dell’assistente oggetto della presente tesi, Google si ¢ rivelato 1'unico
provider a offrire un accesso gratuito alla propria API. Inoltre, sebbene tale accesso
presenti chiaramente delle limitazioni, queste si sono dimostrate sufficientemente

generose da non ostacolare il processo di sviluppo e testing.

Nel Listato [£.7] viene presentata l'implementazione di GoogleAIProvider, un
provider Al concreto che si occupa dell’interazione con la Gemini API di Googleﬂ
Dal codice si puo osservare che al momento della creazione di GoogleAIProvider
(che chiama il costruttore definito da AbstractAIProvider) viene istanziato
I'SDK di Google Generative Al (riga 6), necessario per l'interfacciamento diretto

con I’API specifica per i modelli di Google.

export class GoogleAIProvider extends AbstractAIProvider<GoogleAIAgent> {

private ai?: GoogleGenAI;

constructor (apiKey: string) {
super (apiKey) ;
this.ai = new GoogleGenAI({ apiKey: this.apiKey });

public async generateContent(
agent: GoogleATAgent,
content: string,
history?: ConversationElement[],
instructions?: string

): Promise<string> {

Tai.google.dev/gemini-api

34 CAPITOLO 4. IMPLEMENTAZIONE

https://ai.google.dev/gemini-api

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

if ('this.ai) {

throw new Error("Google AI provider not initialized");
}
// convert provider-agnostic history to Google's format
const contents: Content[] = this.convertHistory(history);
// add the current user message
contents.push({

role: "user",

parts: [{ text: content }],
b

const googleAgent = agent;
const response = await this.ai.models.generateContent ({
model: agent.model,
contents: contents,
config: googleAgent.getConfigWithInstructions (instructions),

B;

let responseText = response.text || "";
return this.isSearchGroundingEnabled(agent)
7 this.appendGroundingMetadata(responseText, response)

: responseText;

Listato 4.7: Implementazione del provider Al di Google.

Conversione della cronologia di conversazione

Poiché AIService fornisce 'eventuale cronologia della conversazione (utilizzata
nella feature di chat) in un formato “agnostico” rispetto ai provider (si veda Se-
zione , é stato necessario effettuare una conversione interna nella specifica
struttura dati richiesta dall’API di Google, cioé Content []ﬂ Il metodo priva-
to responsabile di tale conversione ¢ convertHistory, la cui implementazione ¢
riportata nel Listato

private convertHistory(history?: ConversationElement[]): Content[] {

const contents: Content[] = [];

if (history && history.length > 0) {

8ai.google.dev/api/caching/# Content

CAPITOLO 4. IMPLEMENTAZIONE 35

https://ai.google.dev/api/caching?hl=en#Content

10

11

12

13

14

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

for (const msg of history) {
contents.push({
role: msg.role === "assistant" 7 "model" : msg.role,
parts: [{ text: msg.content 1}],
b

return contents;

Listato 4.8: Conversione dal formato di cronologia messaggi generico Conversa
tionElement [], utilizzato da AIService, a Content[], utilizzato dalla Gemini

APL

Dopo la conversione dell’eventuale cronologia della conversazione vi viene aggiun-
to I'ultimo messaggio inviato dall’'utente (che sara I'unico messaggio presente in
caso la cronologia fosse vuota). Infine la risposta dell’assistente viene generata
effettuando una chiamata asincrona all’API di Google, utilizzando il modello e i

parametri specificati nella configurazione dell’agente.

Funzionalita di grounding

Poich¢ la Gemini API consente di utilizzare la funzionalita di grounding], in Goog
leAIProvider sono state fornite le implementazioni per i metodi toggleSearch
Grounding e isSearchGroundingEnabled (che si limitano a modificare una flag

interna all’agente isGroundingEnabled) per fornire I'accesso a tale funzionalita.

Per mostrare le informazioni sulle fonti utilizzate qualora un agente con il groun-
ding attivo effettui una ricerca web, é stato creato un metodo privato

appendGroundingMetadata (la cui implementazione é riportata nel Listato [4.9)).

private appendGroundingMetadata(
responseText: string,
response: GenerateContentResponse

): string {

const groundingContent =

Yai.google.dev /gemini-api/docs/google-search

36 CAPITOLO 4. IMPLEMENTAZIONE

https://ai.google.dev/gemini-api/docs/google-search?hl=en

10

11

12

13

4.6. SERVIZI SECONDARI

response.candidates?.[O]?.groundingMetadata?.searchEntryPoint?.renderedConteJ

— nt;
if (!groundingContent) {

return responseText;

return ~${responseText}\n\n---\n\n**Search Results

< Used:**\n\n${groundingContentl}";

Listato 4.9: Implementazione di appendGroundingMetadata. In seguito ad una
ricerca web da parte dell’agente la risposta include un campo groundingMetadata
contenente le query di ricerca utilizzate, che vengono appese alla risposta fornita.

4.6 Servizi secondari

Oltre ai servizi che gestiscono le funzionalita principali dell’estensione, ovvero Co
nfigService, AIService e ChatService (i cui dettagli verranno presentati in
Sezione , sono stati introdotti dei servizi che svolgono una funzione di supporto.
Questi servizi secondari offrono principalmente un punto di accesso centralizzato a
funzionalitd comuni, semplificando la logica dei vari componenti che ne fanno uso

e favorendo la modularita dell’intera architettura.

4.6.1 FileService

Essendoci vari componenti dell’estensione che svolgono operazioni di lettura o scrit-
tura su file, ¢ stato creato un servizio apposito FileService che consente agli
utilizzatori di effettuare tali operazioni senza doversi interfacciare con I’API di VS

Code e i relativi dettagli implementativi.

In particolare, FileService espone dei metodi per leggere e modificare I'intero
contenuto di un file (o solo il testo attualmente selezionato), funzionalita parti-
colarmente utilizzate dai comandi legati all'interazione contestuale (descritti in
Sezione . Presenta inoltre dei semplici metodi di utility per estrarre metadati
come il nome o 'estensione di un file a partire dal suo percorso (path).

Un’ultima funzionalita esposta dal servizio, tramite il metodo getUserDefined

CAPITOLO 4. IMPLEMENTAZIONE 37

4.6. SERVIZI SECONDARI

Instructions, é dedicata al recupero delle istruzioni personalizzate che 'utente
puo opzionalmente definire all’interno del file .ai/agentInstructions.md per

modificare il comportamento dell’assistente.

4.6.2 RateLimitService

L’estensione, al fine di interagire con i modelli AI, utilizza le API fornite da provider
esterni, che possono essere soggette a costi e limiti di utilizzo. Per questo motivo
¢ desiderabile un meccanismo in grado di limitare la frequenza di esecuzione delle

feature che ne fanno uso (rate limiting).
A tale scopo é stato creato il servizio RateLimitService, che espone due metodi:

e configureRatelLimit, che consente di registrare una feature (identificata
da una chiave univoca) e associarvi U'intervallo di attesa minimo che deve

trascorrere tra due invocazioni consecutive.

e isRequestAllowed, per verificare se una data feature possa o meno effettuare

una nuova richiesta.

Come si puo vedere dal codice riportato nel Listato [4.10] I'implementazione del
servizio mantiene internamente una mappa (riga 7) che associa ciascuna feature
registrata ad un RateLimitEntry, contenente l'intervallo minimo di tempo tra
due richieste successive (timeoutMs) e il timestamp dell’ultima richiesta andata a
buon fine (lastRequestTime) (righe 1-4).

Chiaramente ’approccio adottato lascia al chiamante il compito di verificare se una
richiesta possa essere effettuata o meno prima di procedere, chiamando il metodo

isRequestAllowed.

type RateLimitEntry = {
timeoutMs: number;
lastRequestTime: number;

};

export class RateLimitServiceImpl implements RateLimitService {

private ratelimits = new Map<string, RateLimitEntry>();

public configureRatelLimit(key: string, timeBetweenRequests: number): void {

38 CAPITOLO 4. IMPLEMENTAZIONE

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4.6. SERVIZI SECONDARI

this.ratelLimits.set(key, {
timeoutMs: timeBetweenRequests,
lastRequestTime: O,

b

public isRequestAllowed(key: string): boolean {
const entry = this.getEntryOrThrow(key) ;

const now = Date.now();

// check if enough time has passed since the last request
const timeSinceLastRequest = now - entry.lastRequestTime;
if (timeSincelastRequest < entry.timeoutMs) {

const waitTime = entry.timeoutMs - timeSincelLastRequest;

return false;

// allow request and update last request time
entry.lastRequestTime = now;

return true;

private getEntryOrThrow(key: string): RateLimitEntry {
const entry = this.ratelLimits.get(key);
if (lentry) {
throw new Error("No configuration found for '${key}'”);
}

return entry;

Listato 4.10: Implementazione di RateLimitService.

Nel contesto dell’estensione realizzata, RateLimitService é utilizzato solo dalla
feature di inline completion (approfondita in Sezione , essendo questa l'unica
in grado di effettuare delle chiamate al provider Al senza richieste esplicite da
parte dell’'utente. Tuttavia, il servizio ¢ stato volutamente progettato in maniera
scalabile, per poter estendere con facilita il meccanismo di rate limiting a qualsiasi

funzionalita futura che ne possa avere bisogno.

CAPITOLO 4. IMPLEMENTAZIONE 39

4.7. INTERAZIONE CONTESTUALE

4.6.3 LoggingService

Per supportare le attivita di diagnostica e debugging ¢ stato introdotto un semplice
servizio LoggingService che funge da wrapper attorno alle funzionalita di logging
fornite dall’API di VS Code, esponendo ai vari componenti dell’estensione i metodi

per i principali livelli di logging: debug, info, warn e error.

L’implementazione di LoggingService mantiene internamente un riferimento
all’oggetto LogOutputChannelET], sul quale indirizza tutti i messaggi ricevuti per

far si che vengano mostrati su un apposito pannello di output all’interno dell’'TDE.

4.7 Interazione contestuale

VS Code ha a disposizione svariati comandi “built-in” per interagire con ’editor,
eseguire azioni in background e gestire l'interfaccia utente.

Oltre a poter liberamente invocare ciascuno di questi comandi nativi, un’estensione
puo anche definire e registrare dei comandi aggiuntivi, al fine di esporre le proprie

funzionalita agli utenti o implementare della logica internaEr].

Sfruttando questo meccanismo di estendibilita é stato possibile registrare i comandi
di interazione contestuale, ovvero quelli che consentono di interagire con ’assistente
all'interno dell’editor. In seguito alla loro registrazione con ’API di VS Code,
trattata in Sezione [4.7.3] 1'utente puod invocarli come se fossero comandi nativi,
utilizzando 'apposita palette dei comandi (come mostrato in Figura o tramite

scorciatoie da tastiera (keyboard shortcuts).
I comandi di interazione contestuale implementati sono:

1. EditCommand, che consente di modificare il file corrente sulla base delle

istruzioni fornite dall’'utente in linguaggio naturale.

2. RefactorCommand, che esegue automaticamente il refactoring del codice,

senza che 'utente debba fornire alcuna indicazione.

3. DocsCommand, che genera automaticamente la documentazione per il codice.

0code.visualstudio.com /api/references /vscode-api#LogOutputChannel
Heode.visualstudio.com/api/extension-guides /command

40 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/references/vscode-api#LogOutputChannel
https://code.visualstudio.com/api/extension-guides/command

10

11

12

13

14

15

4.7. INTERAZIONE CONTESTUALE

>edit

Al Assistant: ctrl + Shift + E recently used £83

Developer: Clear Notebook or Type Cache
Clear or History

Debug: Breakpoint

Decrease or Font Size

Decrease or Height

Decrease or Width

Figura 4.1: Palette dei comandi (command palette) di VS Code, dalla quale &
possibile accedere sia ai comandi nativi dell'IDE che a quelli registrati dalle varie
estensioni.

Occorre far presente che in fase di implementazione ¢ stata effettuata una leggera
modifica all’architettura logica presentata in Sezione durante la fase di design,
aggiungendo all’interfaccia Command un metodo getId necessario per l'effettiva
registrazione con ’API di VS Code.

4.7.1 Implementazione di BaseEditorTransformer

BaseEditorTransformer, riportato nel Listato [4.11] effettua override dei metodi
canExecute (che ritorna True solamente se 1'utente ha un editor di testo attivo)
e execute, che contiene l'effettiva chiamata al template method applyTransform
ation (riga 15). Quest’ultimo metodo viene ereditato dall’interfaccia EditorTran

sformer e il compito di fornirne I'implementazione viene delegato alle sottoclassi.

export abstract class BaseEditorTransformer
extends BaseCommand

implements EditorTransformer

public canExecute(): boolean {
return this.serviceContainer
.resolve("FileService")

.hasActiveTextEditor();

public async execute(): Promise<void> {
if (!'this.canExecute()) {
return;

}

await this.applyTransformation();

CAPITOLO 4. IMPLEMENTAZIONE 41

16

17

18

4.7. INTERAZIONE CONTESTUALE

Listato 4.11: Implementazione dei metodi canExecute e execute di BaseEditor
Transformer.

La logica comune a tutte le sottoclassi ¢ contenuta nel metodo protetto aiCode

Process. Il suo flusso di esecuzione, riportato nel Listato [4.12] ¢ suddiviso come

segue:

1.

Estrazione del codice: in seguito alla risoluzione delle dipendenze utiliz-
zando il service container ereditato da BaseCommand viene verificato tramite
il metodo getEditorSelection di FileService se l'utente abbia selezio-
nato o meno del codice (riga 8). In caso affermativo, il comando operera

esclusivamente sulla selezione, altrimenti verra processato 'intero contenuto
dell’editor.

Configurazione dell’agente: viene istanziato 1'agente da utilizzare (righe
12-14) e assemblato il relativo prompt, unendo eventuali istruzioni dell’utente
con il codice da elaborare. Le istruzioni di sistema, ovvero quelle necessarie
a definire il comportamento dell’agente, vengono similmente arricchite con
le eventuali preferenze globali dell’utente, ottenute dal file di configurazione

.ai/agentInstructions.md tramite FileService (riga 21).

Generazione del contenuto: mentre ’agente genera il contenuto viene
utilizzato il metodo vscode.window.withProgress per mostrare il messag-
gio di progresso progressText (righe 26-31). Al termine della generazione,
dato che gli agenti tendono ad utilizzare il formato Markdown nelle loro ri-
sposte, il risultato ottenuto viene ripulito da eventuali marcatori di blocco di
codice tramite un metodo di utility (riga 39), per far si che il codice inserito

nell’editor sia “pulito”.

Sostituzione e Conferma: il codice originale viene sostituito con quello
generato, rispettando il contesto iniziale (selezione o intero editor). Infine

viene mostrato un messaggio di successo dove 'utente puo scegliere se man-

42

CAPITOLO 4. IMPLEMENTAZIONE

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4.7. INTERAZIONE CONTESTUALE

tenere le modifiche o annullarle, invocando il comando nativo di VS Code
undo (righe 50-57).

protected async aiCodeProcess(

systemInstructions: string,

userPrompt: string | undefined,

progressText: string,

successMessage: string

): Promise<void> {
// services resolution via serviceContainer
const selectedCode = fileService.getEditorSelection();
const codeToTransform = selectedCode || fileService.getEditorContent()!;

const isFullFile = !selectedCode;

const agent = aiService.createAgent(
configService.getConfig() .baseModel
)3
// build the prompt with optional user request and code
const prompt = userPrompt
? “User request: ${userPrompt}\n\nCode:\n${codeToTransform}"
codeToTransform;
// combine system instructions with user-defined instructions if available
const userInstructions =
fileService.getUserDefinedInstructions();
if (userInstructions) {

systemInstructions += ~\n\nUser preferences:\n${userInstructions};

const processedCode = await vscode.window.withProgress(
{
location: vscode.ProgressLocation.Notification,
title: progressText,
cancellable: false,
1,
async () => {
const transformedCode = await aiService.generateContent(
agent,
prompt,
undefined, // no conversation history
systemInstructions
)3

return Utils.removeCodeBlockMarkers (transformedCode) ;

CAPITOLO 4. IMPLEMENTAZIONE 43

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

4.7. INTERAZIONE CONTESTUALE

)

if (isFullFile) {
await fileService.replaceFileContent (processedCode) ;
} else {

await fileService.replaceSelectedText (processedCode) ;

// ask user to keep or undo the changes

const result = await vscode.window.showInformationMessage (
successMessage,
"Keep Changes",
"Undo"

)3

if (result === "Undo") {

await vscode.commands.executeCommand("undo");

Listato 4.12: Implementazione del metodo aiCodeProcess all'interno di BaseEd
itorTransformer.

Nota: L’implementazione effettiva di aiCodeProcess presente nella codebase
delega le varie responsabilita appena descritte a metodi privati dedicati: il codice

sopra riportato é stato compattato per brevita espositiva.

4.7.2 Implementazione concreta di un comando di intera-

zione contestuale

Grazie all’architettura adottata, I'implementazione concreta dei comandi di intera-
zione contestuale diventa triviale, poiché é sufficiente fornire un’implementazione
al template method applyTransformation e richiamare al suo interno il metodo

protetto aiCodeProcess ereditato da BaseEditorTransformer.

Come mostrato nel Listato all'interno di EditCommand l'implementazione del
template method si limita a richiedere all’'utente le modifiche desiderate tramite
un input box (righe 10-14) e ad invocare aiCodeProcess con il prompt acquisito

e delle appropriate istruzioni di sistema (righe 19-24).

44 CAPITOLO 4. IMPLEMENTAZIONE

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

4.7. INTERAZIONE CONTESTUALE

export class EditCommand extends BaseEditorTransformer {
private readonly id = "edit";
private readonly userInstructions =
"Describe what edits you want to make. Select some text to edit a specific
— section only, or leave unselected to edit the entire file.";
private readonly systemInstructions =
"You are a code editing assistant. The user will provide code and a

< description of the edits they want. Apply the requested edits to the

— code. Return the edited code ONLY, without any additional explanations.";

public async applyTransformation(): Promise<void> {

// show input box to get user prompt

const userPrompt = await vscode.window.showInputBox ({
placeHolder: "Enter your prompt...",
prompt: this.userInstructions,
ignoreFocusOut: true,

b

if (luserPrompt) {

return; // user cancelled

await this.aiCodeProcess(
this.systemInstructions,
userPrompt,
"Editing...",
"Code Edited!"

public getId(): string {

return this.id;

Listato 4.13: Implementazione di EditCommand.

Le implementazioni di RefactorCommand e DocsCommand, omesse per brevita,
poiché non richiedono alcun input utente sono ancora pit semplici e si limitano ad
invocare direttamente aiCodeProcess, fornendogli delle appropriate istruzioni di

sistema.

CAPITOLO 4. IMPLEMENTAZIONE 45

10

11

12

13

14

15

4.7. INTERAZIONE CONTESTUALE

4.7.3 Registrazione dei comandi

La registrazione dei comandi viene effettuata all’avvio dell’estensione dal metodo
privato registerCommands di ExtensionManagerImpl.

Come mostrato nell’implementazione riportata nel Listato [£.14] tale processo &
standardizzato per tutti i comandi e reso facilmente estendibile: innanzitutto viene
creato un array contenente i comandi da registrare (righe 2-7), fornendo a ciascuno

di essi il service container per la risoluzione delle dipendenze a runtime.

Per ogni comando da registrare viene poi invocato il metodo vscode.commands.
registerCommand™ dell’API di VS Code (riga 10), che prende come argomenti
I'identificatore univoco del comando (ottenuto tramite getId) e una funzione di
callback. Quest’ultima é stata definita in modo tale da consentire I’esecuzione di

ciascun comando solo dopo la verifica dei prerequisiti necessari tramite canExecute

(righe 12-16).

Infine 'oggetto Di sposable[T_:’r] restituito dalla registrazione viene aggiunto al con-
testo dell’estensione (riga 17): si tratta di una best practice dello sviluppo per
VS Code necessaria a garantire che i comandi vengano correttamente de-registrati
alla disattivazione dell’estensione, rilasciando eventuali risorse ancora in uso ed

evitando possibili memory leak.

private registerCommands(): void {
const commands = [
new RefactorCommand(this.serviceContainer),
new EditCommand(this.serviceContainer),
new DocsCommand(this.serviceContainer),
new NewChatCommand(this.serviceContainer),

1;

commands . forEach((command) => {
const disposable = vscode.commands.registerCommand (
“${Constants.EXTENSION_ID}.${command.getId(0}",
async () => {
if (command.canExecute()) {
await command.execute();

}

12code.visualstudio.com /api/extension-guides /command#registering-a-command
13code.visualstudio.com /api/references /vscode-api#disposables

46 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/extension-guides/command#registering-a-command
https://code.visualstudio.com/api/references/vscode-api#disposables

16

17

18

19

20

4.8. INLINE COMPLETION

)3
this.context.subscriptions.push(disposable);

B,

Listato 4.14: Implementazione del metodo registerCommands all’interno di Exte
nsionManagerImpl. NewChatCommand, non trattato in dettaglio, € un semplice
comando che consente di creare una nuova chat.

4.8 Inline completion

L’implementazione della feature di inline completion, che consente all'utente di ri-
cevere completamenti di codice all’interno dell’editor, dipende totalmente dall’API

messa a disposizione dallo specifico IDE nel quale I'assistente Al viene integrato.

Nel contesto di VS Code ¢ stata adottata I’architettura riportata in Figura [4.2]
che fa uso di un provider concreto InlineCompletionProvider che estende un’ap-
posita interfaccia InlineCompletionItemProviderflE] fornita dall’API dell'IDE.
Quest’ultima definisce il metodo provideInlineCompletionItems, che viene uti-
lizzato dall’ambiente per richiedere i suggerimenti da fornire all’'utente ogni volta
che interrompe la digitazione o richiede un completamento in maniera esplicita

tramite un apposito comando nativo.

4.8.1 Attivazione e parametri di configurazione

Essendo l'inline completion in grado di effettuare delle chiamate al provider Al
senza esplicita richiesta da parte dell’'utente é stata data la possibilita di disattivare
la feature assegnando il valore false al parametro enableInlineCompletions,
contenuto nel file di configurazione .vscode/settings. json.

Inoltre, nel caso in cui la feature venisse mantenuta attiva, sono stati dichiarati
ulteriori parametri configurabili che consentono all’'utente di limitare il numero di

chiamate effettuate verso il provider Al e ridurre i costi d’'uso. Questi sono:

HMcode.visualstudio.com /api/references /vscode-api#InlineCompletionltemProvider

CAPITOLO 4. IMPLEMENTAZIONE 47

https://code.visualstudio.com/api/references/vscode-api#InlineCompletionItemProvider

4.8. INLINE COMPLETION

«Interface»
vscode.InlineCompletionItemProvider AlService RateLimitService
+provideInlineCompletionItems(...) — N 7N

uses uses

N . InlineCompletionProvider
ConfigService

X . X +InlineCompletionProvider(container: ServiceContainer, config: ExtensionConfiguration.inlineCompletions)
isConfigvalid()

tConfig() +provideInlineCompletionItems(...) : vscode.InlineCompletionItem
etCon &
g 8 (+register() : vscode.Disposable
7~
. registers (only if
‘uses config.enableInlineCompletions

is set to true)

ExtensionManager

reads user config from .vscode/settings.json
activate()
deactivate()

Figura 4.2: Architettura completa di InlineCompletionProvider.

e inlineCompletions.timeBetweenRequests, che definisce l'intervallo

minimo tra due richieste consecutive (utilizzato per il rate limiting).

e inlineCompletions.idleDelay, che specifica il tempo che deve trascor-
rere dal momento in cui I'utente interrompe la digitazione a quando viene

effettuata una richiesta di completamento.

e inlineCompletions.model, che definisce il modello Al da utilizzare per
le inline completions, consentendo all’'utente di adottare un modello pitu
veloce ed economico rispetto a quello configurato per le altre funzionalita

dell’estensione.

Questi parametri vengono passati a InlineCompletionProvider tramite il co-
struttore e utilizzati all'interno del metodo register (riportato nel Listato [4.15]),
che si occupa della configurazione del rate limiting mediante RateLimitService
(utilizzando il valore del parametro di configurazione timeBetweenRequests) e
dell’effettiva registrazione del provider con I’API di VS Code.

Quest’ultima viene effettuata tramite il metodo registerInlineCompletionIt

emProvider, a cui vengono passati come argomenti un selettore generico (per far

48 CAPITOLO 4. IMPLEMENTAZIONE

9

10

11

12

13

14

15

16

4.8. INLINE COMPLETION

si che i suggerimenti siano forniti indipendentemente dal linguaggio di program-
mazione) e il provider stesso (righe 8-11).

Inoltre, analogamente a quanto visto nel caso della registrazione dei comandi per
'interazione contestuale, anche register restituisce un Disposable (righe 13-15),

al fine di de-registrare il provider in seguito alla disattivazione dell’estensione.

public register(): vscode.Disposable {
this.rateLimitService.configureRateLimit (
SERVICE_KEY,
this.config.timeBetweenRequests

);

const providerRegistration =
vscode.languages.registerInlineCompletionItemProvider(
{ pattern: "*x" },
this
);

return new vscode.Disposable(() => {
providerRegistration.dispose();

B

Listato 4.15: Implementazione del metodo register di InlineCompletionProv
ider.

Come mostrato nel Listato [£.16] in seguito all’avvio dell’estensione attivazione
della feature di inline completion € a carico di ExtensionManagerImpl. Questo
controlla tramite ConfigService se la proprieta enableInlineCompletions sia
impostata a true, procedendo solo in tal caso all’inizializzazione e registrazione
del provider (righe 2-8).

if (config.enableInlineCompletions) {
this.inlineCompletionProvider = new InlineCompletionProvider (
this.serviceContainer,
config.inlineCompletions
)3
const inlineCompletionDisposable =
this.inlineCompletionProvider.register();
this.context.subscriptions.push(inlineCompletionDisposable);
} else {

CAPITOLO 4. IMPLEMENTAZIONE 49

11

10

11

12

13

14

15

16

17

18

4.8. INLINE COMPLETION

logger.info("Skipping inline completion provider activation");

Listato 4.16: Logica per l'attivazione delle inline completions in ExtensionManag
erImpl.

4.8.2 Meccanismo di richiesta dei completamenti

In seguito alla registrazione di InlineCompletionProvider, VS Code invoca il
suo metodo provideInlineCompletionItems ogni volta che vengono richiesti dei
completamenti.

Come mostrato nell'implementazione riportata nel Listato il comportamen-
to di tale metodo varia a seconda del tipo di trigger (innesco) ricevuto: se il
suggerimento € stato richiesto esplicitamente dall’utente (riga 9) allora viene im-
mediatamente chiamato il metodo privato getCompletions, responsabile della
generazione del completamento.

Nel caso di un trigger automatico invece, prima di invocare getCompletions viene
atteso un tempo variabile dettato dal parametro di configurazione idleDelay: se
in tale lasso di tempo 'utente riprende a scrivere il valore di token.isCancella

tionRequested risultera True e la richiesta non verra effettuata (righe 20-23).

public provideInlineCompletionItems (
document: vscode.TextDocument,
position: vscode.Position,
context: vscode.InlineCompletionContext,
token: vscode.CancellationToken
): vscode.ProviderResult<
vscode.InlineCompletionItem[] | vscode.InlineCompletionList
> {
// triggered explicitly by the user
if (context.triggerKind === vscode.InlineCompletionTriggerKind.Invoke) {
return this.getCompletions(document, position, token);
}
// triggered automatically
if (this.idleTimer) {
clearTimeout (this.idleTimer);
}
return new Promise((resolve) => {

this.idleTimer = setTimeout(async () => {

20 CAPITOLO 4. IMPLEMENTAZIONE

19

20

21

22

23

24

25

26

27

28

29

30

31

32

4.8. INLINE COMPLETION

if (token.isCancellationRequested) {
resolve([1);

return;

const result = await this.getCompletions(
document,
position,
token

)3

resolve(result);

}, this.config.idleDelay) ;
B

Listato 4.17: Implementazione del metodo provideInlineCompletionItems.

4.8.3 Generazione dei completamenti

Innanzitutto, per ogni chiamata ricevuta, getCompletions verifica tramite il
metodo isRequestAllowed di RateLimitService che sia trascorso un tempo suf-
ficiente dall’'ultimo completamento fornito, indipendentemente dal tipo di trigger.
Se la richiesta é consentita, viene costruito il prompt da fornire all’agente responsa-
bile della generazione del completamento, che verra effettuata tramite AIService.
La creazione di tale prompt € a carico del metodo privato createCompletionPr
ompt, riportato nel Listato [4.18] nel quale vengono specificate sia le istruzioni per
I’agente che il contesto per la generazione, fornendo il linguaggio del file e il testo

presente prima e dopo il cursore.

private createCompletionPrompt (
fileLanguage: string,
prefix: string,
suffix: string
) A
return [
“You are given a ${fileLanguage} file, and your job is to suggest code
— completion to put exactly at the current cursor position.~,

“Return ONLY the code to insert at the cursor, without any additional text

— or Markdown formatting.~,

CAPITOLO 4. IMPLEMENTAZIONE o1

10

11

12

13

14

15

16

4.9. CHATSERVICE: PANNELLO DI CHAT

"If the code is already complete or there isn't enough context, return
< nothing.\n",
“The code before the cursor is:\n${prefix}”,
“${suffix.trim() .length === 0
? "There is no code after the cursor"
: “The code after the cursor is:\n${suffix}"
1,
1.join("\n");

Listato 4.18: Implementazione del metodo privato createCompletionPrompt di
InlineCompletionProvider, nel quale viene costruito il prompt che verra poi
utilizzato dall’agente responsabile della generazione del completamento.

4.9 ChatService: Pannello di chat

Definite le implementazioni per i servizi responsabili della lettura della configura-
zione utente, I'interazione con i modelli Al e la gestione delle operazioni su file, é
possibile procedere con 'implementazione della funzionalita di chat.

Per realizzare il pannello di chat ¢ stata utilizzata la Webview AP]E, una tecnolo-
gia necessaria per superare i limiti dei componenti nativi di VS Code che consente
di creare interfacce utente complesse tramite I'utilizzo di tecnologie web standard
come HTML, CSS e JavaScript.

Una conseguenza diretta dovuta all'implementazione del pannello di chat (a cui
d’ora in poi ci si riferira con il termine frontend) tramite Webview, é che questa
esiste come un elemento completamente separato rispetto al resto dell’architettura
dell’estensione (d’ora in poi indicata come backend).

Come indicato anche dalla documentazione ufficiale, 'unico modo per consentire
la comunicazione tra frontend e backend (e viceversa) ¢ tramite message passing,

cioé tramite lo scambio di messaggi.

Al fine di gestire questo scambio di informazioni in maniera centralizzata I'imple-
mentazione concreta di ChatService (che agisce da intermediario tra frontend e

backend) espone i seguenti metodi:

15code.visualstudio.com/api/extension-guides /webview

52 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/extension-guides/webview

4.9. CHATSERVICE: PANNELLO DI CHAT

e setWebview(webview), necessario per stabilire la connessione con il frontend
e instaurare la comunicazione bidirezionale necessaria per inviare e ricevere

messaggi (si faccia riferimento alla Sezione [4.9.1] per ulteriori dettagli).

e handleWebviewMessage(data), metodo verso il quale vengono indirizzati
i vari messaggi provenienti dal frontend, come la ricezione di un messag-
gio utente, 'aggiunta di un file al contesto o l'attivazione/disattivazione del
grounding. In base al tipo di messaggio ricevuto verra poi invocata la logica

appropriata.

e clearChat(), che consente di resettare la chat, cancellando la cronologia
della conversazione e rimuovendo eventuali file aggiunti al contesto da parte
dell’utente.

4.9.1 Inizializzazione del pannello di chat

La creazione di una Webview € un processo a piu step che va effettuato tramite 1I’A-
PIdi VS Code e consiste principalmente nel registrare il provider responsabile della
creazione del relativo pannello (che verra effettivamente istanziato e configurato

solamente quando I'utente decide di aprirlo).

Per fare in modo che ChatService si possa occupare della sola logica applicativa
¢ stata adottata un’architettura che consente di astrarre il processo di creazione e
registrazione di una Webview.

Tale architettura, riportata in Figura [4.3] si basa su due componenti principali:

e ChatWebviewManager, che si occupa della registrazione del pannello di
chat. Implementa l'interfaccia WebviewManager, che espone un singolo
metodo activate necessario per la creazione di una Webview generica (il
parametro ExtensionContext?| contiene le varie informazioni necessarie per

la registrazione).

e ChatViewProvider, che si occupa dell’istanziazione del pannello di chat.

Implementa l'interfaccia vscode.WebviewViewProvider, che espone an-

16code.visualstudio.com /api/references /vscode-api# ExtensionContext

CAPITOLO 4. IMPLEMENTAZIONE 53

https://code.visualstudio.com/api/references/vscode-api#ExtensionContext

4.9. CHATSERVICE: PANNELLO DI CHAT

ch’essa un singolo metodo resolveWebviewView, in cui andranno definite le

operazioni da svolgere quando 'utente apre il pannello di chat.

«Interface»
ChatService

ChatWehbpageProvider

setWebview(webview: vscode.WebviewView)
handleWebviewMessage(data: any) : Promise<void>

+getHtmlContent(webview: vscode.Webview) : string clearChat() : Promise<void>
" "

A A

«Interface» H
vscode.WehviewViewProvider registers itself via

fetches Webview HTML o
setWebview() and sets up

content - - .-
: bidirectional communication
+resoLveWebviewV1’7\w(...) :
ChatViewProvider
+ChatViewProvider(chatService: ChatService, extensionUri: vscode.Uri)
«Interface» the URI is used internally to load static resouces
WehviewManager

+ activate(context: vscode.ExtensionContext)

o ay

ChatWehviewManager

+ChatWebviewManager(container: ServiceContainer, extensionuri: vscode.Uri)

ExtensionManager

Figura 4.3: Architettura estesa adottata in fase di implementazione per creazione
e gestione del pannello di chat, con inizializzazione della comunicazione frontend-

backend.

Creazione della Webview

In seguito all’apertura da parte dell'utente del pannello di chat (cliccando sulla
relativa icona nella barra laterale dell’'IDE), VS Code invoca il metodo resolveWeb
viewView di ChatViewProvider, che si occupa di creare e configurare la Webview

che verra mostrata all’utente all’interno del pannello di chat (e che verra utilizzata

54 CAPITOLO 4. IMPLEMENTAZIONE

4.9. CHATSERVICE: PANNELLO DI CHAT

da ChatService per la gestione dello scambio di messaggi tra frontend e backend).
Come si puo osservare dal codice riportato nel Listato [4.19 quando 1'utente apre

il pannello di chat, resolveWebviewView svolge tre operazioni fondamentali:

1. Configurazione della Webview: viene abilitata 1’esecuzione di JavaScript

10

11

12

13

14

15

16

17

(necessaria per I'invio di messaggi al backend) e viene impostato il root path
della Webview a quello dell’estensione (riga 19), un accorgimento relativo

alla sicurezza che ne impedisce ’accesso ai file esterni.

. Aggiunta del contenuto HTML: il contenuto HTML dell'intera inter-

faccia utente del pannello di chat (presentato in maggior dettaglio in Se-
zione [4.9.2) viene ottenuto tramite il metodo getHtmlContent della classe
ChatWebpageProvider e iniettato all'interno della Webview (riga 22).

. Registrazione con ChatService: il metodo privato setupMessageHandli

ng registra un listener per I’evento Webview onDidReceiveMessageE per far
si che i messaggi provenienti dalla Webview vengano inoltrati al metodo hand
leWebviewMessage di ChatService. Il canale di comunicazione tra frontend
e backend viene infine completato passando la Webview come parametro al

metodo setWebview di ChatService (riga 9).

// called when chat panel is opened

public resolveWebviewView(

webviewView: vscode.WebviewView,
_context: vscode.WebviewViewResolveContext,

_token: vscode.CancellationToken

: void {

this.view = webviewView;
this.setupWebview();

this.chatService.setWebview(webviewView) ;

private setupWebview(): void {

if ('this.view) {
return;

const webview = this.view.webview;

webview.options = {

code.visualstudio.com /api/references /vscode-api# Webview

CAPITOLO 4. IMPLEMENTAZIONE 95

https://code.visualstudio.com/api/references/vscode-api#Webview

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

4.9. CHATSERVICE: PANNELLO DI CHAT

enableScripts: true, // enable JS
localResourceRoots: [this.extensionUri], // needed to load local resources

};

webview.html = this.getHtmlContent();

this.setupMessageHandling(webview) ;

private setupMessageHandling(webview: vscode.Webview) {
this.messageHandlerDisposable?.dispose(); // dispose previous listener if any
this.messageHandlerDisposable = webview.onDidReceiveMessage(
async (data) => {

await this.chatService.handleWebviewMessage(data);

Listato 4.19: Implementazione del metodo resolveWebviewView di ChatViewPr
ovider.

4.9.2 Contentuto HTML della Webview

La classe ChatWebpageProvider (la cui implementazione completa é omessa per
brevita) ha come unico scopo di fornire, tramite il metodo getHtmlContent, il
codice HTML responsabile per la creazione dell’interfaccia associata al pannello di
chat.

Come si puo vedere dalla Figura[£.4] tale interfaccia ¢ divisa in tre aree principali:

e Un’area per la visualizzazione dei messaggi, la cui resa grafica ¢ migliora-
ta utilizzando le librerie JavaScript marked.js e highlight. js, neces-
sarie rispettivamente a formattare il codice Markdown restituito dal mo-
dello e fornire la colorazione della sintassi per i blocchi di codice (syntax
highlighting).

e Un’area contenente il file attualmente aperto nell’editor, che puo essere ag-
giunto o rimosso dal contesto cliccando su un’apposita icona, ed eventuali

altri file allegati dall’utente.

o6 CAPITOLO 4. IMPLEMENTAZIONE

4.9. CHATSERVICE: PANNELLO DI CHAT

e Un’area di input che consente all’'utente di scrivere i propri messaggi, con
dei pulsanti per allegare un file al contesto della conversazione, per attivare

o disattivare la funzionalita di grounding e per inviare il messaggio.

File Edit Selection View Go - O [Extension Development Host] extensionTestEnv

Al ASSISTANT: CHAT F Pairjava X

5. hashCode() Method: context-exa e> Pair.j

IV util.Obje:

hashCode() {
urn Objects.hash(el, e2);

e @0verride : This annotation indicates that this method is
overriding a method from the superclass (Object).

e public int hashCode() : This method calculates a hash code for
the Pair object. The hash code is an integer value that is used to
efficiently store and retrieve objects in hash-based data structures
like HashMap and HashSet .

e return Objects.hash(el, e2); :This usesthe
Objects.hash() method to calculate the hash code based on the
values of el and e2.This is a convenient way to generate a hash
code that takes into account the values of both elements in the
pair.

CurrentFile: Pairjava ©

Main.java @ E2 get2() {
urn e2;

(Shift+Enter for new line)

Figura 4.4: Interfaccia utente del pannello di chat.

Per quanto riguarda l'effettiva logica del frontend, questa € contenuta all’interno
di un file JavaScript main. js (che viene iniettato nellHTML della Webview)
responsabile sia dell’aggiornamento dinamico dell’interfaccia che della cattura degli
eventi generati dalle azioni dell’utente (ad esempio attivazione del grounding),

inviando un apposito messaggio al backend che si occupera della loro gestione.

Content Security Policy

Come per un sito web, anche la creazione di una Webview richiede di adottare
alcune importanti misure di sicurezza, necessarie a limitare il contenuto che puo
essere caricato o eseguito al suo interno.

Questo perché, sebbene sia integrata nell’editor, una Webview é di fatto un browser
web e come tale € soggetta agli stessi rischi, in particolare a quelli legati al Cross-

Site Scripting (XSS), cioé I'iniezione di codice JavaScript potenzialmente malevolo.

CAPITOLO 4. IMPLEMENTAZIONE o7

4.9. CHATSERVICE: PANNELLO DI CHAT

Per mitigare tale minaccia, all’interno del tag <meta> del codice HTML ¢ stata
introdotta una Content Security Policy{] (CSP), riportata nel Listato che
adotta un approccio “deny-by-default” che consente di bloccare il caricamento di

qualsiasi risorsa non esplicitamente autorizzata.

<meta http-equiv="Content-Security-Policy" content="
default-src 'none';
script-src 'nonce-${nonce}';
style-src ${webview.cspSourcel};
img-src ${webview.cspSourcel};
font-src ${webview.cspSource};

"

Listato 4.20: Content Security Policy adottata dalla Webview del pannello di chat.

L’elemento fondamentale per la prevenzione di attacchi XSS é I'utilizzo di un non-
ce (number used once), ossia un token che viene rigenerato casualmente da un
metodo getNonce ad ogni nuova istanziazione della Webview.

Questo token deve essere associato a tutti gli script tramite 'attributo nonce,
inclusi il file responsabile della logica del frontend e le librerie esterne per la mi-
glior resa grafica dei messaggi. Cosi facendo, I'esecuzione di qualunque script che
non presenti un nonce con l’esatto valore generato da getNonce verra bloccata,
impedendo eventuali tentativi di iniezione di codice.

Infine, per quanto riguarda le altre tipologie di risorse (fogli di stile, immagi-
ni e font), la CSP ne limita il caricamento solo da fonti interne all’estensione

(webview.cspSource).

4.9.3 Comunicazione bidirezionale frontend-backend

Stabilito il canale di comunicazione bidirezionale tra il frontend e il backend si puo
descrivere il meccanismo basato su scambio di messaggi e mediato da ChatService
che consente all'utente di interagire con la chat.

Ciascuno di questi messaggi ¢ un oggetto con una proprieta type che ne definisce la

natura e un contenuto variabile contenente i dati necessari per la sua elaborazione.

18w3.org/ TR/CSP3

o8 CAPITOLO 4. IMPLEMENTAZIONE

https://www.w3.org/TR/CSP3/

4.9. CHATSERVICE: PANNELLO DI CHAT

Comunicazione frontend — backend

La logica frontend contenuta nel file main. js della Webview cattura le interazioni
dell'utente con l'interfaccia di chat (tramite dei listener che vengono aggiunti sui
componenti HTML d’interesse) e converte tali eventi in messaggi da inviare al

backend, utilizzando il metodo vscode.postMessage.

Poiché ci sono pitt azioni che 'utente pud compiere interagendo con l'interfaccia
di chat, a ciascuna di esse ¢ stato associato un certo tipo di messaggio, che verra

poi elaborato lato backend. Questi sono:
e userMessage, inviato quando 'utente manda un messaggio all’assistente.

e requestFileSelection, inviato quando l'utente clicca sul pulsante per

aggiungere un file al contesto.

e toggleGrounding, inviato quando l'utente clicca sul pulsante per attivare o

disattivare la funzionalita di grounding.

Comunicazione backend — frontend

Come gia visto nella Sezione [4.9.1] i messaggi ricevuti dal frontend passano tramite
il listener registrato in ChatViewProvider, che li inoltra al metodo handleWebv
iewMessage di ChatService. Tale metodo, in base al tipo di messaggio ricevuto,
si occupa poi di invocare la logica opportuna.

Ad esempio, in seguito alla ricezione di un messaggio utente (ovvero un messaggio
frontend di tipo userMessage), viene creato un prompt “arricchito” contenente sia
il testo inviato dall’utente che il contesto della chat (file e cronologia), invocando

ATService per generare la risposta dell’assistente.

Terminata 1’elaborazione di un messaggio ricevuto, il backend inviera a sua volta
un messaggio al frontend (tramite il metodo webview.postMessage) per consentire

I’aggiornamento dell’interfaccia del pannello di chat.

CAPITOLO 4. IMPLEMENTAZIONE 99

4.9. CHATSERVICE: PANNELLO DI CHAT

4.9.4 Persistenza dello stato della chat

Poiché il contenuto di una Webview viene eliminato quando 1'utente chiude il
pannello ad essa associato o I'IDE stesso, € necessario implementare un meccanismo
che consenta di ripristinare lo stato della chat, ovvero la cronologia dei messaggi e i

file aggiunti al contesto, in seguito alla riapertura del pannello da parte dell’utente.

Per farlo sono stati valutati due possibili approcci: mantenere lo stato della chat
lato backend oppure lato frontend. Dopo varie considerazioni si € scelto di adottare
quest’ultima soluzione, poiché la prima introduce il problema di dover sincronizzare
il frontend con lo stato presente lato backend ogni volta che la chat viene riaperta.
Tale approccio comporterebbe anche un maggior flusso di messaggi scambiati tra
i due lati, introducendo della complessita aggiuntiva, poiché il frontend dovrebbe
richiedere lo stato salvato lato backend ad ogni riapertura della chat, oltre che ad
inviargli vari messaggi di sincronizzazione in seguito alle azioni dell’'utente che ne

modificano lo stato, come la rimozione di un file dal contesto.

Al fine di gestire lo stato della chat lato frontend é stato utilizzato il meccanismo di
persistenza per le Webview fornito dall’API di VS Codd™] che consente di salvare
e ripristinare lo stato tramite i metodi vscode.setState e vscode.getState.

Come si puo vedere dal codice riportato nel Listato [£.21] in seguito all’apertura
del pannello di chat il frontend tenta di recuperare lo stato precedente tramite
getState, creandone uno vuoto in caso questo non esista. Ogni volta che lo stato
viene modificato (in seguito allinvio di un nuovo messaggio, I’aggiunta/rimozione
di un file dal contesto o il reset della chat), il nuovo stato aggiornato viene salvato

tramite setState.

(function () {
const vscode = acquireVsCodeApi();

const oldState = vscode.getState();

let messages = oldState.messages || [];

let activeFiles = oldState.activeFiles || [];

// request current file state from backend

vscode.postMessage ({

Ycode.visualstudio.com /api/extension-guides /webview# persistence

60 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/extension-guides/webview#persistence

10

11

12

13

14

15

16

17

18

19

20

1

2

4.9. CHATSERVICE: PANNELLO DI CHAT

type: "requestCurrentFile"

B

// UI initialization

const messagesContainer = document.querySelector("#chat-messages");

if (messages.length > 0) {
showPreviousMessages() ;

}

updateActiveFilesUI();

messagesContainer.scrollTop = messagesContainer.scrollHeight;

Listato 4.21: Ripristino dello stato della chat lato frontend.

Aggiornamento del file corrente

Un ultimo elemento necessario al ripristino della chat ¢ il file corrente, cioé quello
attualmente aperto nell’editor. Questo dato, essendo dinamico, non pud essere
recuperato dallo stato in quanto potrebbe risultare non aggiornato.

Si supponga, ad esempio, che I'utente chiuda la chat con un determinato file aperto
per poi riaprirla solo dopo aver selezionato un altro file: se I'informazione relativa
al file corrente fosse stata memorizzata nello stato, alla seconda apertura della chat
verrebbe ripristinato il valore associato al vecchio file anziché quello attualmente

aperto.

Per ovviare al problema, come si pud vedere dall’'implementazione riportata nel
Listato [4.22] ogni volta che la chat viene riaperta il frontend invia un messag-
gio di tipo requestCurrentFile al backend. Tale messaggio viene inoltrato a
ChatService che, tramite la classe ChatContextManager, risponde con il file at-
tualmente aperto nell’editor inviando un messaggio di tipo updateCurrentFile.

Inoltre, per far si che il file corrente mostrato nella chat rifletta sempre quello effet-
tivamente aperto nell'IDE; all’attivazione di ChatContextManager viene registrato
un listener per l'evento VS Code onDidChangeActiveTextEditor (invocato ogni
volta che 'utente cambia il file attivo), cosi da poter immediatamente aggiornare

il frontend.

/* Inside ChatServiceImpl */

public async handleWebviewMessage(data: any): Promise<void> {

CAPITOLO 4. IMPLEMENTAZIONE 61

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

4.9. CHATSERVICE: PANNELLO DI CHAT

switch (data.type) {
case "requestCurrentFile":
this.contextManager.sendCurrentFileToWebview() ;

break;

/* Inside ChatContextManagerImpl */
// called by ChatService after the chat panel gets created
public setWebview(webview: vscode.WebviewView): void {
this.webview = webview;
this.editorChangeDisposable = vscode.window.onDidChangeActiveTextEditor (
this.updateCurrentFile,
this
)3

this.updateCurrentFile(vscode.window.activeTextEditor) ;

private updateCurrentFile(editor?: vscode.TextEditor): void {
if (...) { // check if there's an open file
const filePath = editor.document.uri.fsPath;
if (this.webview) {
this.webview.webview.postMessage ({
type: "updateCurrentFile",
filePath: filePath,
b;

Listato 4.22: Meccanismo di aggiornamento del file corrente mostrato nella chat.

62 CAPITOLO 4. IMPLEMENTAZIONE

Capitolo 5

Dimostrazione

In questo breve capitolo verranno illustrate le funzionalita dell’assistente Al rea-

lizzato, fornendo una serie di esempi concreti volti a dimostrare il rispetto dei vari

requisiti definiti in fase di analisi.

5.1 Interazione contestuale

Come richiesto dal lassistente espone vari comandi di interazione conte-

stuale, implementati in modo tale che 'utente possa limitare la zona d’intervento
dell’assistente alla sola porzione di codice selezionata nell’editor (RF'2)).

In Figura [5.1| viene mostrato 1'utilizzo del comando di “Edit”, che consente modif-

care il codice sulla base di istruzioni fornite in linguaggio naturale.

Make the function more efficient

Describe what edits you want to make. Select some text to edit a specific section only, or leave
unselected to edit the entire file. (Press 'Enter' to confirm or 'Escape’ to cancel)

import sys
import time

if

__name__ == main

fibonacci(n):
if n {0, 1}:
return n
return fibonacci(n - 1) + fibonacci(n - 2)

start = time.time()

result = fibonacci(35)

end = time.time()

print(f"Result = {result}")

print(f"Execution time: {end - start } seconds")

Figura 5.1: L’utente seleziona la funzione fibonacci, invoca il comando di “Edit”
e inserisce nell’apposita input box la richiesta di renderla piu efficiente.

CAPITOLO 5. DIMOSTRAZIONE 63

5.2. CHAT

Al termine dell’elaborazione, a prescindere dal comando di interazione conte-
stuale invocato, l’assistente presenta all’'utente le modifiche effettuate, offrendo

la possibilita di confermarle o annullarle, come mostrato in Figura [5.2]

fibonacci.py
import sys
import time

fibonacci(n):

memo = {}
_fibonacci(n):
if n {0, 1}:
return n
if n memo :
return memo[n]

memo[n] = fibonacci(n - 1) + fibonacci(n - 2)
return memo[n]
return _fibonacci(n)

if name == " main
start = time.time()
result = fibonacci(35)
end = time.time() Code Edited! 8 X
print(f"Result = {result}")
print (f“Execution time: {end - source:AlAssistant Keep Changes = Undo

Figura 5.2: In seguito alla richiesta di ottimizzazione dell’utente, 1’assistente pro-
pone un’implementazione piu efficiente del metodo fibonacci.

5.2 Chat

5.2.1 Mantenimento della cronologia di conversazione

In Figura[5.3 viene mostrato come l'assistente integri il contesto del file attivo con

la cronologia della conversazione per sostenere un dialogo coerente con l'utente, in

linea con il [RF3l

5.2.2 Aggiunta di risorse al contesto

Come richiesto dal [RF4] 'utente puo arricchire il contesto della conversazione
allegando dei file all’interno della chat, in modo che 'assistente possa utilizzarne

il contenuto per fornire risposte pertinenti.

64 CAPITOLO 5. DIMOSTRAZIONE

5.2. CHAT

Al ASSISTANT: CHAT fibona y Js sort.js X {} settings.json

Js sort.js > @ merge
what sorting algorithm am |
looking at? sort(arr) {
if (arr.length <= 1) {
return arr;

You are looking at Merge Sort. }
middle = Math.floor(arr.length / 2);
left = arr.slice(0, middle);
right = arr.slice(middle);

return merge(sort(left), sort(right));

how can you tell?

I can tell it's Merge Sort because:

1. Divide and Conquer: The sort function merge(left, right) {

recursively splits the input array into resultArray = [], leftIndex = 0, rightIndex = 0;

two halves (left and right) until it

reaclhes:sTgLeetement(thebasecase while (leftIndex < left.length && rightIndex < right.length) {
THgihesi) if (left[leftIndex] < right[rightIndex]

2. :tse:L:(rls::)n: It c:(ll§ Ltts)e)lf on these halves resultArray.push(left[leftIndex]);
rt(left) , sort(right)). leftIndex++;

3. Merge Step: It then uses a separate
else

Current File: sortjs ® rgsultArray.push(right[rightIndex] M
rightIndex++;

1

¥

return resultArray
.concat(left.slice(leftIndex))

.concat(right.slice(rightIndex));

Figura 5.3: Dimostrazione del mantenimento della cronologia della chat. Innanzi-
tutto I'utente richiede all’assistente quale sia I'algoritmo presente nel file corren-
te sort.js, che viene correttamente identificato dall’assistente come merge sort.
Grazie al mantenimento della cronologia della conversazione, 1’assistente compren-
de la domanda successiva (“how can you tell?”) come una richiesta di spiegazioni
sulla sua precedente affermazione, fornendo le relative motivazioni.

Per dimostrare questa capacita, é stato preparato uno scenario nel quale viene
richiesto all’assistente di generare un diagramma UML che rappresenti l'intera
architettura di una gerarchia di classi Java distribuita su file sorgente distinti.
Tale operazione richiede necessariamente che ’assistente acceda al contenuto di
tutti i file forniti, per poter mappare correttamente le relazioni di ereditarieta tra

le diverse classi.

In Figura viene mostrata la richiesta dell’'utente e in Figura il diagramma,

(corretto) prodotto dall’assistente.

'mermaid.js.org/

CAPITOLO 5. DIMOSTRAZIONE 65

https://mermaid.js.org/

5.2. CHAT

Al ASSISTANT: CHAT

Can you provide a detailed Mermaid UML class diagram for
the given architecture?

MERMAID
classDiagram
class Animal {
<<interface>>
+eat() void

i

class Pet {
<<abstract>>
-String name
+Pet(String name)
+getName() String
+play()* void

+

class Wolf {

B /1

Wolfjava @ Dogjava @ Catjava @ Petjava @ Animaljava @

Figura 5.4: L’utente allega diversi file sorgente Java (visibili sotto 1’area di input)
al contesto della conversazione e richiede all’assistente di generare un diagramma
UML in formato Mermaidﬂ della gerarchia delle classi.

«interface»
Animal

+eat() : void

«abstract»
Pet

Wolf

-String name

+Pet(String name) +eat() : void
+getName() : String
+play() : void

[A

Dog cat
+Dog(String name) +Cat(String name)
+eat() : void +eat() : void
+play() : void +play() : void
+wagTail() : void +purr() : void

Figura 5.5: Diagramma UML generato dall’assistente sulla base dei file Java ag-
giunti al contesto, che modella correttamente la gerarchia delle classi.

66 CAPITOLO 5. DIMOSTRAZIONE

5.2. CHAT

5.2.3 Grounding

Come richiesto dal RF0] Iassistente ¢ dotato di una funzionalita di grounding che,
se attiva, gli consente di effettuare ricerche sul web qualora ritenuto necessario.
Per dimostrare tale capacita, 1’assistente € stato interrogato su un’informazione
estremamente specifica (Iidentita di un particolare utente GitHub).

Come mostrato in Figura [5.6] se il grounding & attivo 'assistente reperire le infor-
mazioni necessarie dal web, citando la query di ricerca utilizzata in fondo alla ri-
sposta fornita. Quando la stessa domanda viene posta con il grounding disattivato,

I’assistente non ¢ pit in grado di fornire una risposta.

Al ASSISTANT: CHAT Al ASSISTANT: CHAT +

Who is the GitHub user GioeleBucci? Who is the GitHub user GioeleBucci?

GioeleBucci is the GitHub username for Gioele As a LLM, | cannot provide information that would
Bucci, a Computer Science student from Italy. His require accessing online content or specific user
GitHub profile indicates that he is studying details from platforms like GitHub. Therefore, | can't
Computer Science and Engineering at the tell you who the GitHub user GioeleBucci is.
University of Bologna.

He uses his GitHub to showcase various software
development projects, including a "demake of the
Binding of Isaac" for an Object-Oriented
Programming course and a Revolut-like mobile
application for a Cross-platform Applications
Development course. Other projects include a Risk
game manager and an IKEA-like Furniture store
website developed for his university courses.

Search Results Used:

e Bucci

Figura 5.6: Dimostrazione dell’utilizzo della funzionalita di grounding all’interno
della chat: a sinistra la funzionalita é attiva, mentre a destra é stata disattivata.

CAPITOLO 5. DIMOSTRAZIONE 67

5.3. INLINE COMPLETION

5.3 Inline completion

Come richiesto dal [RE7], 'assistente ¢ in grado di fornire suggerimenti di completa-
mento del codice in tempo reale, analizzando il contesto del file corrente (incluso il
codice gia presente, i commenti e il linguaggio di programmazione) per anticipare
I'intento del programmatore e proporre frammenti di codice pertinenti.

In Figura[5.7] ¢ riportato un esempio di tale funzionalita in azione.

Demo.java
java.util.*;

Demo {

List<String> getPeopleWithAge(Map<String, Integer> people, Integer age) [{

people.entrySet().stream()
.filter(entry entry.getValue().equals(age))
.map(Map.Entry: :getKey)
.tolList()

void main(String args) {

Map<String, Integer> nameAgeMap = Map.of

“Alice", 30,

"Bob",

“Charlie", 35,

"Diana", 29,

"Eve", 25,

“Frank", 30
System.out.println(getPeopleWithAge(nameAgeMap, 25));

Figura 5.7: Esempio di inline completion per un file Java.

5.4 Istruzioni personalizzate

Come richiesto dal RF8]|, I'utente ha la possibilita di fornire direttive aggiuntive
per personalizzare il comportamento dell’assistente, dichiarandole all’interno di un
apposito file di configurazione (.ai/agentInstructions.md).

Nell’esempio riportato in Figura si puo vedere come 'output del comando di
interazione contestuale “Docs” (che genera documentazione) sia stato modificato

sulla base delle indicazioni fornite dell’utente.

68 CAPITOLO 5. DIMOSTRAZIONE

5.4. ISTRUZIONI PERSONALIZZATE

agentlnstructions.md
Scrivi sia commenti che documentazione in italiano, traducendo anche eventuali commenti in inglese

Demo.java @

Demo.java

java.util.*;

Demo {

List<String> getPeopleWithAge(Map<String, Integer> people, Integer age) {

return people.entrySet().stream
.filter(entry entry.getValue().equals(age)
.map(Map.Entry: :getKey
.toList

3 2 Documentation Generated!
void main(String args) {

Map<String, Integer> nameAgeMap = Map.of
'Alice", 30,

Source: Al Assistant Keep Changes

Figura 5.8: Dimostrazione dell’effetto delle istruzioni personalizzate. In alto, il file
di configurazione agentInstructions.md dove l'utente ha richiesto che la scrit-
tura della documentazione sia fatta in italiano. In basso, il risultato: in seguito
all’esecuzione del comando “Docs”, 'output dell’assistente rispetta la regola sulla
lingua imposta dall’utente.

CAPITOLO 5. DIMOSTRAZIONE 69

Capitolo 6
Conclusioni

L’obiettivo principale della tesi era quello di approfondire la conoscenza degli as-
sistenti alla programmazione basati sull’intelligenza artificiale attraverso un ap-
proccio prevalentemente pratico. In seguito all’identificazione delle funzionalita
principali di un simile prodotto gia diffuso sul mercato (GitHub Copilot), ¢ stato
realizzato un prototipo ampiamente soddisfacente in grado di replicare con successo

le principali funzionalita che caratterizzano un Al-assisted IDE moderno.

L’effettiva integrazione dell’assistente all’interno di un IDE affermato e maturo
come Visual Studio Code si € rivelato uno dei compiti piti onerosi, che ha richiesto
un’approfondita fase di studio preliminare necessaria a comprendere le modalita di
integrazione con 'ambiente. A questa sfida tecnica si & affiancata anche quella di
rimanere al passo con la rapida evoluzione del settore dell’intelligenza artificiale: le
API per l'interazione con i modelli sono soggette a continui cambiamenti e, anche
durante il periodo di realizzazione di questo progetto, sono emersi nuovi standard
e tecnologie volti a facilitare 'interazione tra strumenti Al-based e servizi esterni,
come il Model Context Protocol (MCPf).

L’affermazione di questi standard sta inevitabilmente plasmando la nuova gene-
razione di assistenti AI, nei quali le funzionalita agentiche stanno assumendo un

ruolo sempre piu prominente e sofisticato. Alla luce di cio, é ragionevole identifi-

'modelcontextprotocol.io/docs/getting-started /intro

70 CAPITOLO 6. CONCLUSIONI

https://modelcontextprotocol.io/docs/getting-started/intro

care come naturale evoluzione del progetto I'introduzione di tali capacita.

Un primo passo consistera nel consentire all’assistente di interagire piu liberamente
con ’ambiente di sviluppo locale, eseguendo comandi e manipolando file in manie-
ra autonoma per portare a termine compiti complessi. Successivamente, grazie alla
diffusione di standard emergenti come MCP, sara possibile estendere ulteriormente
le capacita dell’assistente oltre i confini dell’IDE, abilitando I'integrazione con ser-
vizi esterni come sistemi di controllo di versione, piattaforme di documentazione

o strumenti di CI/CD.

CAPITOLO 6. CONCLUSIONI 71

Bibliografia

[CDJ*24| Zheyuan Cui, Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng, and
Tobias Salz. The effects of generative ai on high skilled work: Evidence

from three field experiments with software developers. SSRN, 2024.

[MFP*25| Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil,
Vanessa Parli, Njenga Kariuki, Emily Capstick, Anka Reuel, Erik Bry-
njolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Ma-
nyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, Tobi Walsh,
Armin Hamrah, Lapo Santarlasci, Julia Betts Lotufo, Alexandra Ro-
me, Andrew Shi, and Sukrut Oak. Artificial Intelligence Index Report
2025. Technical report, Al Index Steering Committee, Institute for
Human-Centered Al, Stanford University, 2025.

72 BIBLIOGRAFIA

	Sommario
	Introduzione
	Background
	AI-assisted programming e LLMs
	Knowledge cutoff e grounding

	Funzionamento di un assistente AI
	Funzionalità agentiche

	Diffusione degli assistenti AI

	Analisi
	Feature principali di GitHub Copilot
	Inline completion
	Interazione contestuale
	Chat
	Istruzioni personalizzate

	Requisiti funzionali
	Requisiti non funzionali
	Analisi del dominio

	Design
	Architettura service-oriented
	Servizi principali
	ConfigService
	AIService
	ChatService

	Comandi
	Comandi di interazione contestuale

	Implementazione
	Anatomia di un'estensione VS Code
	Strumenti e risorse utilizzate nello sviluppo
	ServiceContainer: DI container
	Garantire type safety nella risoluzione dei servizi

	ConfigService: lettura della configurazione utente
	AIService: interazione con i modelli AI
	Implementazione concreta di un provider

	Servizi secondari
	FileService
	RateLimitService
	LoggingService

	Interazione contestuale
	Implementazione di BaseEditorTransformer
	Implementazione concreta di un comando di interazione contestuale
	Registrazione dei comandi

	Inline completion
	Attivazione e parametri di configurazione
	Meccanismo di richiesta dei completamenti
	Generazione dei completamenti

	ChatService: Pannello di chat
	Inizializzazione del pannello di chat
	Contentuto HTML della Webview
	Comunicazione bidirezionale frontend-backend
	Persistenza dello stato della chat

	Dimostrazione
	Interazione contestuale
	Chat
	Mantenimento della cronologia di conversazione
	Aggiunta di risorse al contesto
	Grounding

	Inline completion
	Istruzioni personalizzate

	Conclusioni
	Bibliografia

