
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea in Ingegneria e Scienze Informatiche

Sviluppo di un assistente AI prototipale
per Visual Studio Code

Tesi di laurea in:
Programmazione ad Oggetti

Relatore
Prof. Mirko Viroli

Correlatori
Dott. Gianluca Aguzzi
Dott. Nicolas Farabegoli

Candidato
Gioele Bucci

III Sessione di Laurea
Anno Accademico 2024-2025

Sommario

Gli assistenti alla programmazione basati sull’intelligenza artificiale sono ormai una
presenza comune negli ambienti di sviluppo moderni e la loro rapida evoluzione li
sta rendendo sempre più capaci ed accessibili.
Data la crescente rilevanza di questi strumenti nell’ambito dello sviluppo software,
la presente tesi si propone di approfondirne la conoscenza attraverso un duplice
approccio, che combini l’analisi di una soluzione già esistente e consolidata allo
sviluppo pratico di un assistente AI prototipale.

Per farlo si è partiti da un’analisi delle funzionalità principali di GitHub Copilot,
da cui sono stati ricavati i requisiti di un assistente AI generico, in grado di offrire
completamenti del codice inline, azioni di interazione contestuale per la modifica
del codice e una chat conversazionale. Successivamente, sulla base dei requisiti
emersi, è stato progettato e implementato un prototipo funzionante, integrandolo
all’interno dell’ambiente di sviluppo Visual Studio Code sotto forma di estensione.

Parole chiave: assistenti AI, intelligenza artificiale, GitHub Copilot, Visual Studio
Code.

ii

A Nicolò.

iii

Indice

Sommario ii

Introduzione vi

1 Background 1
1.1 AI-assisted programming e LLMs 1

1.1.1 Knowledge cutoff e grounding 2
1.2 Funzionamento di un assistente AI 3

1.2.1 Funzionalità agentiche . 4
1.3 Diffusione degli assistenti AI . 4

2 Analisi 8
2.1 Feature principali di GitHub Copilot 9

2.1.1 Inline completion . 9
2.1.2 Interazione contestuale . 9
2.1.3 Chat . 10
2.1.4 Istruzioni personalizzate . 12

2.2 Requisiti funzionali . 12
2.3 Requisiti non funzionali . 13
2.4 Analisi del dominio . 13

3 Design 15
3.1 Architettura service-oriented . 15
3.2 Servizi principali . 18

3.2.1 ConfigService . 18
3.2.2 AIService . 19
3.2.3 ChatService . 21

3.3 Comandi . 23
3.3.1 Comandi di interazione contestuale 24

iv INDICE

INDICE

4 Implementazione 26
4.1 Anatomia di un’estensione VS Code 26
4.2 Strumenti e risorse utilizzate nello sviluppo 27
4.3 ServiceContainer: DI container . 27

4.3.1 Garantire type safety nella risoluzione dei servizi 29
4.4 ConfigService: lettura della configurazione utente 31
4.5 AIService: interazione con i modelli AI 33

4.5.1 Implementazione concreta di un provider 34
4.6 Servizi secondari . 37

4.6.1 FileService . 37
4.6.2 RateLimitService . 38
4.6.3 LoggingService . 40

4.7 Interazione contestuale . 40
4.7.1 Implementazione di BaseEditorTransformer 41
4.7.2 Implementazione concreta di un comando di interazione con-

testuale . 44
4.7.3 Registrazione dei comandi 46

4.8 Inline completion . 47
4.8.1 Attivazione e parametri di configurazione 47
4.8.2 Meccanismo di richiesta dei completamenti 50
4.8.3 Generazione dei completamenti 51

4.9 ChatService: Pannello di chat . 52
4.9.1 Inizializzazione del pannello di chat 53
4.9.2 Contentuto HTML della Webview 56
4.9.3 Comunicazione bidirezionale frontend-backend 58
4.9.4 Persistenza dello stato della chat 60

5 Dimostrazione 63
5.1 Interazione contestuale . 63
5.2 Chat . 64

5.2.1 Mantenimento della cronologia di conversazione 64
5.2.2 Aggiunta di risorse al contesto 64
5.2.3 Grounding . 67

5.3 Inline completion . 68
5.4 Istruzioni personalizzate . 68

6 Conclusioni 70

Bibliografia 72

INDICE v

Introduzione

Gli assistenti alla programmazione basati sull’intelligenza artificiale stanno diven-
tando sempre più capaci ed accessibili, acquisendo una crescente rilevanza nel
mondo dello sviluppo software. Questi strumenti, inizialmente limitati al suggeri-
mento o auto-completamento del codice, stanno attraversando una fase di rapida
evoluzione che continua ad ampliarne le capacità e sono ormai integrati nella mag-
gior parte degli ambienti di sviluppo moderni.
Le motivazioni dietro a questa evoluzione vanno ricondotte principalmente agli
enormi progressi recentemente compiuti nell’ambito dei Large Language Models,
sui quali gli assistenti AI si basano: poiché modelli migliori si traducono in assisten-
ti più capaci, questi sono diventati in grado di eseguire compiti di ben più alto li-
vello, arrivando ad ottenere capacità “agentiche” che consentono loro di progettare,
sviluppare e testare software in maniera pressoché autonoma.

Di fronte ad un tale scenario risulta fondamentale comprendere i meccanismi alla
base del funzionamento degli assistenti AI, analizzando come le capacità generative
dei Large Language Models possano essere sfruttate per la loro implementazione
ed esplorando le metodologie che ne consentono l’integrazione all’interno di un
ambiente di sviluppo. Per soddisfare tali esigenze, la presente tesi si propone di
approfondire lo studio di questi strumenti mediante la realizzazione di un assistente
AI prototipale, prendendo come modello di riferimento una soluzione analoga già
affermata.

In una prima fase di analisi verranno identificate le feature principali di GitHub Co-
pilot, individuato come caso di studio per via della sua ampia diffusione e capacità
avanzate, al fine di delineare i requisiti fondamentali di un generico assistente AI.
I requisiti emersi guideranno le successive fasi di progettazione e implementazione
del prototipo, che verrà integrato all’interno di Visual Studio Code sotto forma di
estensione, adottando le soluzioni architetturali necessarie per far sì che l’assistente
realizzato risulti performante, stabile e integrato nativamente all’interno dell’IDE.

Al termine del processo di sviluppo, l’assistente verrà sottoposto ad un processo di
validazione basato su una serie di test applicativi mirati, volti a verificare il corretto

vi INTRODUZIONE

funzionamento delle sue funzionalità principali: un sistema di auto-completamento
del codice inline, un’interfaccia di chat conversazionale e delle azioni di interazione
contestuale per la modifica del codice.

Struttura della Tesi
La trattazione verrà articolata come segue:

• Capitolo 1: Background Breve introduzione sui fondamenti tecnologi-
ci alla base degli assistenti AI e analisi dei trend che ne hanno guidato
l’evoluzione.

• Capitolo 2: Analisi Indagine su GitHub Copilot, identificandone le feature
principali necessarie a delineare i requisiti per l’assistente da realizzare.

• Capitolo 3: Design Progettazione dell’assistente sulla base dei requisiti
emersi e descrizione dell’architettura software adottata.

• Capitolo 4: Implementazione Sviluppo dell’assistente come estensione
per Visual Studio Code, con l’obiettivo di ricreare le funzionalità emerse nella
fase di analisi nel rispetto dei vincoli e le best practice imposte dall’IDE.

• Capitolo 5: Dimostrazione Dimostrazione delle capacità dell’assistente
realizzato.

• Capitolo 6: Conclusioni Sintesi dei risultati ottenuti e prospettive future.

INTRODUZIONE vii

viii INTRODUZIONE

Capitolo 1

Background

1.1 AI-assisted programming e LLMs

Con l’espressione “AI-assisted programming” si intende l’utilizzo di tecnologie che
impiegano l’intelligenza artificiale per supportare il programmatore nel processo di
sviluppo. In questo ambito si collocano gli assistenti alla programmazione basati
sull’intelligenza artificiale, anche conosciuti come AI pair programmers, d’ora in
poi indicati più brevemente come “assistenti AI”.
Questi rappresentano un’evoluzione significativa rispetto ad altri strumenti tradi-
zionalmente integrati all’interno degli ambienti di sviluppo, come linter o syntax
highlighter: infatti, a differenza di un supporto “sintattico”, gli assistenti AI offrono
funzionalità proattive ben più avanzate, che includono il suggerimento di correzio-
ni, la spiegazione di porzioni di codice e la generazione di interi file sorgente a
partire da descrizioni fornite dall’utente in linguaggio naturale.

Dietro al funzionamento di questi strumenti risiedono i Large Language Models
(LLMs): si tratta di reti neurali di grandi dimensioni, con un numero di parametri
che varia dai miliardi fino ai trilioni (1012), specificamente progettate per eseguire
compiti di natural language processing1 legati alla comprensione e generazione di
testo in linguaggio naturale.
Questi modelli vengono addestrati utilizzando enormi quantità di dati testuali

1ibm.com/think/topics/natural-language-processing

CAPITOLO 1. BACKGROUND 1

https://www.ibm.com/think/topics/natural-language-processing

1.1. AI-ASSISTED PROGRAMMING E LLMS

eterogenei, come libri, documenti o contenuti web e sono basati su architetture di
tipo Transformer 2 che eccellono nel riconoscimento dei pattern presenti all’interno
dei dati, consentendo al modello di apprendere le varie relazioni presenti tra parole
e concetti.

Le capacità di comprensione e generazione del testo dei LLMs derivano dal processo
di addestramento primario al quale vengono sottoposti, detto pre-training, durante
il quale questi imparano a prevedere la parola successiva all’interno di una data
sequenza di testo, operando di fatto come enormi motori di predizione statistica.
Sebbene questi modelli nascano come strumenti per la predizione del testo, esistono
due tecniche principali (spesso complementari) che consentono di adattare un LLM
pre-addestrato ad un contesto più specifico.

La tecnica più strutturata è il fine-tuning, un processo di “specializzazione” che con-
siste nel ri-addestrare il modello su un dataset più piccolo e mirato, con l’obiettivo
di adattarne i parametri per un particolare dominio applicativo, mantenendo al
contempo le capacità generali apprese durante la fase di pre-training.
Prendendo come dataset di riferimento svariati repository contenenti codice open-
source, questo approccio ha reso possibile la realizzazione di modelli in grado di
generare codice corretto e funzionante a partire da istruzioni in linguaggio natu-
rale, ponendo le basi per la nascita degli assistenti AI odierni.
Con l’aumentare delle capacità dei modelli, e in particolare grazie all’espansione
della loro context window (ovvero la quantità di testo ricevuto in input che un
modello può “ricordare”), è emersa una tecnica alternativa più flessibile: il prompt
engineering. Questo approccio si basa sulla formulazione di istruzioni (prompt)
dettagliate e ricche di contesto, che consentono di guidare un modello generalista
nell’esecuzione di compiti specializzati in tempo reale, senza la necessità di doverlo
sottoporre ad un ulteriore processo di addestramento.

1.1.1 Knowledge cutoff e grounding

Un’importante limitazione dei LLMs deriva dal fatto che i dati utilizzati nel lo-
ro addestramento, per quanto estesi, rappresentano comunque un’“istantanea” del

2ibm.com/think/topics/transformer-model

2 CAPITOLO 1. BACKGROUND

https://www.ibm.com/think/topics/transformer-model

1.2. FUNZIONAMENTO DI UN ASSISTENTE AI

mondo in un determinato momento.
Ciò significa che esiste una data, nota come knowledge cutoff, oltre la quale un mo-
dello non dispone più di informazioni aggiornate, poiché queste non erano incluse
nei suoi dati di training: di conseguenza, se interrogato su eventi successivi a tale
data, un LLM fornirà risposte obsolete o inaccurate.
Questo risulta particolarmente problematico per modelli addestrati a svolgere com-
piti di programmazione poiché, ad esempio, potrebbero non essere a conoscenza
di vulnerabilità recentemente scoperte o di aggiornamenti nelle librerie e nei fra-
mework più utilizzati, fornendo codice obsoleto, non funzionante o addirittura
vulnerabile.

Per superare questo limite, sono stati sviluppati dei meccanismi di grounding,
che consentono ad un modello, qualora questo lo ritenga necessario, di effettuare
ricerche sul web. Questa tecnica aiuta a mitigare fortemente le problematiche
legate al knowledge cutoff e consente al modello di fornire risposte aggiornate e
pertinenti anche su contenuti non presenti nei propri dati di addestramento.

1.2 Funzionamento di un assistente AI

Un assistente AI opera attraverso un costante scambio di informazioni effettuato
tra l’ambiente di sviluppo (IDE) nel quale è integrato, l’utente e il LLM.
Il suo funzionamento può essere suddiviso in tre fasi principali:

1. Raccolta del contesto: In seguito ad una richiesta effettuata dall’utente,
l’IDE procede con la raccolta del contesto: con questo termine si intende l’in-
sieme di tutte le informazioni che verranno fornite al LLM per consentirgli
di comprendere la richiesta dell’utente e generare una risposta pertinente.
Il contesto viene costruito automaticamente dall’IDE, combinando informa-
zioni come il contenuto del file corrente, la posizione del cursore ed even-
tuale codice selezionato, ma può anche essere arricchito dall’utente tramite
l’aggiunta di ulteriori file reputati rilevanti per il compito da svolgere.

2. Elaborazione tramite LLM: Il contesto raccolto viene unito alla richie-
sta effettuata dall’utente per formare un prompt, ovvero l’input testuale da

CAPITOLO 1. BACKGROUND 3

1.3. DIFFUSIONE DEGLI ASSISTENTI AI

fornire al LLM. Il modello analizza il prompt ricevuto e, in base al tipo di
interazione richiesta, genera un’opportuna risposta, come una porzione di
codice o una spiegazione.

3. Presentazione dei risultati: Al termine della generazione, l’output del
modello viene ricevuto dall’IDE e presentato all’utente, che può accettare,
rifiutare o reiterare sulla risposta, rincominciando il ciclo.

Dal punto di vista architetturale, la maggior parte degli assistenti AI disponibili sul
mercato adottano un approccio client-server, in cui l’IDE funge da client e invia le
varie richieste ad un server remoto che ospita il modello, ma esistono anche delle
alternative open-source che consentono di interfacciarsi con LLMs che eseguono
localmente, riducendo la latenza e preservando la privacy del codice, solitamente
a scapito di prestazioni inferiori.

1.2.1 Funzionalità agentiche

A partire dal 2025, assistenti di nuova generazione come Claude Code3 e GitHub
Copilot4 sono stati dotati di funzionalità “agentiche”, acquisendo la capacità di
agire autonomamente all’interno dell’IDE, come mostrato in Figura 1.1.
Al fine di svolgere un compito assegnato dall’utente, questi assistenti possono
autonomamente decidere di eseguire comandi, modificare file, effettuare ricerche
nel progetto ed interagire con strumenti esterni, divenendo in grado di scrivere,
testare e debuggare interi applicativi in maniera quasi interamente autonoma.

1.3 Diffusione degli assistenti AI

Al fine di comprendere appieno la natura della trasformazione tecnologica inne-
scata dall’avvento degli assistenti AI, è necessario analizzare dati e trend partico-
larmente significativi che evidenziano la portata del fenomeno e i fattori che ne
stanno guidando la diffusione.

3anthropic.com/claude-code
4github.com/features/copilot

4 CAPITOLO 1. BACKGROUND

https://www.anthropic.com/claude-code
https://github.com/features/copilot

1.3. DIFFUSIONE DEGLI ASSISTENTI AI

Figura 1.1: Esempio di utilizzo delle funzionalità agentiche di Claude Code: in se-
guito ad una richiesta di alto livello da parte dell’utente (implementare un nuovo
componente grafico all’interno di una pagina web), l’assistente procede autonoma-
mente ad analizzare la codebase ed eseguire i comandi per la creazione dei file e le
directory necessarie.

Una delle fonti più autorevoli per misurare le tendenze nell’ambito dello sviluppo
software è l’annuale “Stack Overflow Developer Survey”, i cui dati del 2024 offrono
un’immagine concreta dell’impatto che hanno avuto gli assistenti AI nel settore.
Dei più di 60.000 sviluppatori che hanno preso parte al sondaggio, il 76% dichia-
rava di utilizzare (o voler iniziare ad utilizzare) tali strumenti, percentuale che è
salita ad 84% nell’indagine del 20255.
Inoltre, sebbene gli sviluppatori avessero pareri discordanti riguardo l’accuratezza
degli output generati e la capacità degli assistenti AI nell’eseguire compiti com-
plessi, la maggioranza (81%) ha riconosciuto un aumento della produttività come
il principale beneficio derivante dall’utilizzo di tali strumenti.
Questa percezione è stata confermata anche da varie evidenze empiriche, come uno
studio del 2024 che ha coinvolto circa 5000 sviluppatori di aziende come Microsoft
e Accenture, i cui risultati mostrano come l’accesso ad un AI assistant fosse in

5survey.stackoverflow.co/2024/ai e survey.stackoverflow.co/2025/ai

CAPITOLO 1. BACKGROUND 5

https://survey.stackoverflow.co/2024/ai
https://survey.stackoverflow.co/2025/ai

1.3. DIFFUSIONE DEGLI ASSISTENTI AI

grado di aumentare il numero di task completati del 26,08%, con benefici maggiori
registrati tra gli sviluppatori meno esperti [CDJ+24].

Uno dei fattori chiave dietro all’adozione degli assistenti AI su larga scala va ricon-
dotto ai progressi compiuti nel campo dei Large Language Models, ed è la drastica
riduzione dei costi di inferenza dei modelli, ovvero i costi associati all’utilizzo di
un LLM pre-addestrato. Per illustrare la portata del fenomeno, si consideri che il
costo per raggiungere performance paragonabili a quelle di GPT-3.5 (prendendo
come riferimento il benchmark MMLU in Figura 1.2) è sceso da 20 dollari per
milione di token a novembre 2022 a soli 0,07 dollari ad ottobre 2024, una riduzione
nei costi di inferenza di oltre 280 volte in meno di due anni [MFP+25, p. 64].

GPT-3.5

Llama-3.1-Instruct-8B Gemini-1.5-Flash-8B

GPT-4o-2024-05

P

Claude-3.5-Sonnet-2024-06

hi 4

GPT-4-0314

DeepSeek-V3

2022-Sep 2023-Jan 2023-May 2023-Sep 2024-Jan 2024-May 2024-Sep 2025-Jan

0.1

1

10

GPT-3.5 level+ in multitask language understanding (MMLU) GPT-4o level+ in PhD-level science questions (GPQA Diamond)

GPT-4 level+ in code generation (HumanEval) GPT-4o level+ in LMSYS Chatbot Arena Elo

Publication date

In
fe

re
nc

e
pr

ic
e

(in
 U

SD
 p

er
 m

ill
io

n
to

ke
ns

 -
 lo

g
sc

al
e)

Inference price across select benchmarks, 2022–24
Source: Epoch AI, 2025; Arti�cial Analysis, 2025 | Chart: 2025 AI Index report

Figura 1.2: Riduzione del costo di inferenza a parità di performance su vari ben-
chmark.

Un tale abbattimento dei costi d’utilizzo, in combinazione al costante aumento
delle performance dei modelli, che in molti ambiti superano già le capacità uma-
ne [MFP+25, p. 64], ha consentito agli assistenti AI di diventare in breve tempo
degli strumenti economicamente sostenibili, favorendone la diffusione.

Un ulteriore fattore da considerare è la progressiva riduzione del divario prestazio-
nale tra i LLM proprietari (closed-weight) e quelli open-weight.

6 CAPITOLO 1. BACKGROUND

1.3. DIFFUSIONE DEGLI ASSISTENTI AI

La distinzione fondamentale tra le due tipologie risiede nell’accessibilità ai “pesi”
del modello, ovvero ai suoi parametri interni. I modelli closed-weight (come la serie
GPT di OpenAI) sono accessibili unicamente tramite API e mantengono privati i
loro pesi e la loro architettura. D’altro canto, i modelli open-weight (come Llama
3.1 o DeepSeek V3) rendono i propri pesi pubblicamente disponibili, permettendo
a chiunque di ispezionarli ed adattarli a scopi specifici.
Come si può osservare in Figura 1.3, le capacità dei principali modelli open-weight
si stanno rapidamente avvicinando a quelle delle controparti closed-weight, giu-
stificandone la crescente adozione come modelli alla base di svariati assistenti AI
non-proprietari [MFP+25, pp. 95–96].

Figura 1.3: Confronto tra le performance dei migliori modelli closed-weight (in
blu) e open-weight (in rosa) tra il 2022 e il 2024 su benchmark di ragionamento
matematico (MATH) e di programmazione (HumanEval).

CAPITOLO 1. BACKGROUND 7

Capitolo 2

Analisi

L’obiettivo della presente tesi è quello di realizzare un assistente AI prototipale in
grado di supportare il programmatore durante il processo di sviluppo software.
Tale assistente dovrà essere integrato all’interno di un IDE e presentare funziona-
lità analoghe a quelle degli assistenti alla programmazione moderni, come l’auto-
completamento del codice e la possibilità di eseguire modifiche sui file sorgente in
base alle istruzioni fornite dall’utente in linguaggio naturale.

Per poter delineare gli esatti requisiti dell’assistente da realizzare risulta utile ana-
lizzare le funzionalità offerte da un simile prodotto già esistente: la scelta è ricaduta
su GitHub Copilot, un assistente sviluppato da GitHub in collaborazione con Mi-
crosoft e OpenAI, preso come caso di studio per via della sua vasta adozione e
funzionalità avanzate.

Sebbene Copilot sia disponibile per diversi IDE, l’analisi che segue si concentrerà
in modo specifico sulla sua implementazione per Visual Studio Code (d’ora in poi
indicato come VS Code).
Tale decisione è motivata sia dalla popolarità dell’IDE, che negli ultimi anni si
è affermato come il più utilizzato dagli sviluppatori1, sia per la sua natura mo-
dulare basata su estensioni, rendendolo la piattaforma ideale per lo sviluppo e
l’integrazione del prototipo oggetto di questa tesi.

1survey.stackoverflow.co/2025/technology

8 CAPITOLO 2. ANALISI

https://survey.stackoverflow.co/2025/technology#most-popular-technologies-dev-envs

2.1. FEATURE PRINCIPALI DI GITHUB COPILOT

2.1 Feature principali di GitHub Copilot

2.1.1 Inline completion

Una delle feature principali di GitHub Copilot è l’inline completion (anche nota
come inline suggestion), che fornisce suggerimenti di completamento del codice
che appaiono direttamente all’interno dell’editor, come mostrato in Figura 2.1.
Analizzando il contenuto del file corrente (includendo il codice già scritto ed even-
tuali commenti), l’assistente è in grado di suggerire in tempo reale righe o interi
blocchi di codice pertinenti: questa capacità va ben oltre il semplice autocom-
pletamento sintattico presente in molti IDE (funzionalità che su VS Code prende
il nome di Intellisense2), fornendo suggerimenti che spesso consistono in interi
blocchi di codice coerenti con l’intento del programmatore.

Figura 2.1: Esempio di code completion. Dopo aver iniziato la scrittura della
definizione del metodo fibonacci, Copilot ne suggerisce l’intera implementazione
(il suggerimento è il codice in trasparenza).

2.1.2 Interazione contestuale

Oltre al completamento del codice “passivo” fornito dalle inline completions, Co-
pilot offre anche vari strumenti di interazione diretta che consentono all’utente di
interagire con l’assistente formulando le proprie richieste in linguaggio naturale.
Tra queste vi sono le azioni di interazione contestuale, che consentono all’utente

2code.visualstudio.com/docs/editing/intellisense

CAPITOLO 2. ANALISI 9

https://code.visualstudio.com/docs/editing/intellisense

2.1. FEATURE PRINCIPALI DI GITHUB COPILOT

di modificare il contenuto del file corrente o la sola porzione di codice selezionata,
come mostrato in Figura 2.2.

Figura 2.2: Esempio di utilizzo dell’interazione contestuale per effettuare una mo-
difica al metodo fibonacci mostrato in Figura 2.1, in seguito ad una richiesta di
ottimizzazione da parte dell’utente.

2.1.3 Chat

Oltre agli strumenti integrati direttamente nell’editor, Copilot mette a disposizione
anche un pannello di chat che permette di dialogare liberamente con l’assistente.
Questa modalità d’uso offre un ambiente separato che l’utente può utilizzare per
vari scopi, come ottenere spiegazioni dettagliate, suggerimenti architetturali o sup-
porto nella risoluzione di errori (come mostrato in Figura 2.3).
La chat mantiene ovviamente l’intero contesto della conversazione, per garantire
che le risposte generate siano sempre pertinenti. Inoltre, tale contesto può esse-
re ulteriormente arricchito dall’utente, che può aggiungervi ulteriori file presenti
nell’IDE, permettendo all’assistente di leggerne il contenuto e fornire così risposte
ancor più mirate.

Funzionalità agentiche

È opportuno sottolineare che a partire dal 2025 le funzionalità del pannello di
chat sono state notevolmente ampliate con l’introduzione di una “modalità agen-

10 CAPITOLO 2. ANALISI

2.1. FEATURE PRINCIPALI DI GITHUB COPILOT

te” (agent mode) che permette a Copilot di svolgere compiti di più alto livello.
Grazie a questa feature l’utente può assegnare un certo obiettivo all’assistente, la-
sciando che questo lo svolga in autonomia, individuando i file da modificare e uti-
lizzando eventuali comandi o strumenti reputati necessari (ad esempio installando
dipendenze tramite terminale), procedendo iterativamente fino al completamento
del compito.

Queste funzionalità agentiche, oltre ad essere feature sperimentali soggette a con-
tinui cambiamenti, trasformano l’assistente da elemento di supporto al program-
matore ad esecutore autonomo e una tale transizione ne giustifica l’esclusione da
questo studio. L’obiettivo della presente tesi rimane infatti la progettazione e
l’implementazione di un assistente nel senso più stretto del termine e per tale ra-
gione le funzionalità agentiche non verranno ulteriormente analizzate, né verranno
implementate nel prototipo.

Figura 2.3: Conversazione tra utente e assistente riguardo ulteriori ottimizzazioni
al metodo fibonacci in cui l’assistente suggerisce un approccio implementativo
alternativo, motivandone i vantaggi rispetto alla soluzione corrente.

CAPITOLO 2. ANALISI 11

2.2. REQUISITI FUNZIONALI

2.1.4 Istruzioni personalizzate

Al fine di allineare gli output generati dall’assistente alle specificità di un determi-
nato progetto, Copilot mette a disposizione un meccanismo di personalizzazione
noto come custom instructions (“istruzioni personalizzate”).
Modificando un apposito file (.github/copilot-instructions.md), l’utente può
definire un insieme di direttive in linguaggio naturale al fine di modificare il
comportamento dell’assistente. Tali linee guida influenzano sia il codice gene-
rato dall’assistente che le risposte fornite in chat, permettendo di rendere gli
output generati conformi ad eventuali standard, pratiche di sviluppo o requisiti
architetturali.

1 # Coding Guidelines for TypeScript Projects

2

3 When writing TypeScript code, adhere to the following guidelines:

4

5 - Use descriptive names for methods and keep them short and single-purpose.

6 - Add JSDoc comments to public methods only.

7 - Make sure to sanitize any user input.

8 - Never hardcode secrets (i.e. API keys, credentials...)

9 - Use `try/catch` for operations that can fail.

Listato 2.1: Esempio di file di istruzioni personalizzate nel quale vengono for-
nite istruzioni aggiuntive all’assistente da utilizzare per la scrittura di codice
TypeScript.

2.2 Requisiti funzionali

RF1 L’assistente dovrà esporre delle azioni di interazione contestuale, che consen-
tano di modificare il contenuto del file corrente.

RF2 Tutte le funzionalità di interazione contestuale dovranno consentire di li-
mitare l’intervento dell’assistente sulla sola porzione di codice selezionata
dall’utente.

RF3 L’assistente dovrà poter supportare un dialogo conversazionale con l’utente,
esponendo tale funzionalità attraverso un apposito pannello di chat.

12 CAPITOLO 2. ANALISI

2.3. REQUISITI NON FUNZIONALI

RF4 L’utente dovrà poter includere file e risorse aggiuntive nel contesto della chat.

RF5 L’utente dovrà poter modificare i diversi aspetti operativi dell’assistente,
come il provider AI, il modello utilizzato e i parametri di configurazione ad
esso associati.

RF6 L’assistente deve consentire all’utente di poter abilitare o disabilitare l’uti-
lizzo del grounding, qualora il provider scelto supporti tale funzionalità.

RF7 L’assistente dovrà fornire automaticamente suggerimenti inline in tempo
reale, pertinenti al contenuto del file corrente.

RF8 Il comportamento dell’assistente dovrà adattarsi ad eventuali direttive ag-
giuntive definite dall’utente all’interno di un apposito file di configurazione.

2.3 Requisiti non funzionali

RNF1 L’architettura del sistema dovrà essere modulare per garantire la separazione
delle responsabilità e la futura estendibilità.

RNF2 L’architettura del sistema dovrà ottimizzare l’utilizzo delle risorse per far sì
che l’integrazione dell’assistente nell’IDE risulti performante e stabile.

RNF3 Le operazioni a lunga esecuzione, come le interazioni con i LLMs, dovran-
no essere gestite in modo asincrono per non compromettere la reattività
dell’IDE.

2.4 Analisi del dominio

L’assistente AI dovrà gestire il flusso di informazioni e le interazioni tra tre entità
principali: l’utente, l’IDE e il LLM.

Come mostrato nel diagramma di flusso riportato in Figura 2.4, tali interazioni
formano un ciclo operativo che si attiverà in seguito ad una richiesta dell’utente,
che potrà essere esplicita, come una domanda posta nella chat, o implicita, come
un autocompletamento innescato durante la digitazione del codice.

CAPITOLO 2. ANALISI 13

2.4. ANALISI DEL DOMINIO

In seguito l’assistente dovrà interagire con l’IDE per raccogliere il contesto ne-
cessario, unendolo alla richiesta dell’utente ed eventuali istruzioni aggiuntive per
formare un prompt, che verrà elaborato da un LLM esterno.
Ricevuta la risposta del modello l’assistente si dovrà occupare di processarla e
presentarla all’utente, concludendo il ciclo e rimanendo in attesa di una nuova
interazione.

Figura 2.4: Flusso operativo dell’assistente AI, che mostra la principale sequenza
di interazioni tra utente, IDE e LLM.

14 CAPITOLO 2. ANALISI

Capitolo 3

Design

Nel presente capitolo verrà definito il modello architetturale dell’assistente AI da
realizzare, sulla base dai requisiti emersi nella precedente fase di analisi. Ciò verra
fatto attraverso la definizione dei componenti logici fondamentali di un generico
AI-assisted IDE, astraendo dai vincoli che verrebbero inevitabilmente imposti dalla
scelta di una piattaforma specifica.

I dettagli implementativi verranno rimandati al prossimo capitolo, nel quale ver-
rà descritto il processo di mappatura dell’architettura logica emersa nel contesto
di VS Code, mantenendo in considerazione i vincoli e le best practice imposti
dell’ambiente.

3.1 Architettura service-oriented

Problema Come stabilito dal RNF1, è necessario definire un’architettura mo-
dulare facilmente estendibile, che separi chiaramente le responsabilità dei vari
componenti del sistema e al contempo ottimizzi l’utilizzo delle risorse (RNF2).

Soluzione È stata adottata un’architettura service-oriented, mostrata in Fi-
gura 3.1, che utilizza il pattern Factory Method per consentire l’inizializzazione
“on-demand” dei vari servizi a runtime (lazy instantiation).

CAPITOLO 3. DESIGN 15

3.1. ARCHITETTURA SERVICE-ORIENTED

Figura 3.1: Architettura service-oriented per la modularizzazione del sistema e la
gestione ottimizzata delle risorse tramite lazy loading.

Di seguito viene data una descrizione più dettagliata dei componenti dell’architet-
tura presentata:

• ServiceContainer: un DI container (Dependency Injection container) pro-
gettato ad-hoc per la registrazione, creazione e risoluzione dei vari servizi.
Espone un metodo register che consente di registrare un servizio senza
però instanziarlo immediatamente (associandone il factory method ad una
certa chiave) andando a crearne l’istanza solamente quando tale servizio vie-
ne richiesto per la prima volta tramite il metodo resolve. In seguito alla
creazione di un servizio, la relativa istanza viene conservata e riutilizzata per
tutte le richieste successive, comportandosi di fatto come un singleton.

• ServiceDescriptor: un semplice proxy che incapsula il factory method di
un dato servizio (identificato da un’interfaccia tag) e ne gestisce l’istanza
singleton. Poiché il factory method riceve il ServiceContainer come para-
metro, ciascun servizio è in grado di risolvere eventuali dipendenze interne
al momento della creazione, realizzando il pattern di Dependency Injection.

16 CAPITOLO 3. DESIGN

3.1. ARCHITETTURA SERVICE-ORIENTED

Problema Occorre evitare errori a runtime causati, ad esempio, dalla richiesta
di un servizio non esistente o una chiave digitata in modo errato. Per farlo è
necessario garantire la coerenza dei tipi tra la chiave utilizzata per la registrazione
di un servizio nel DI container e l’oggetto restituito dalla sua risoluzione.

Figura 3.2: Architettura service-oriented completa e dettagliata. L’aggiunta di Se
rviceRegistry garantisce type-safety nella registrazione e risoluzione dei servizi.

CAPITOLO 3. DESIGN 17

3.2. SERVIZI PRINCIPALI

Soluzione Come mostrato in Figura 3.2, l’architettura service-oriented prece-
dentemente presentata è stata estesa introducendo ServiceRegistry, che stabili-
sce una relazione tra la stringa letterale (la chiave) di un certo servizio e il relativo
tipo dell’istanza ad esso associata.

3.2 Servizi principali

Definita l’architettura service-oriented su cui si baserà il progetto, si può procedere
con la definizione dei componenti logici fondamentali di un generico assistente AI.

3.2.1 ConfigService

Indipendentemente dall’IDE in cui viene integrato, l’assistente AI esiste come un’e-
stensione dell’ambiente, che l’utente può attivare o disattivare a seconda delle ne-
cessità. In fase di design questo ciclo di vita verrà modellato dal componente gene-
rico ExtensionManager, che espone dei rispettivi metodi activate e deactivate

(la cui implementazione effettiva dipenderà ovviamente dall’IDE specifico).

Problema Come stabilito dal RF5, l’utente deve poter modificare il comporta-
mento dell’assistente configurandone diversi parametri, inclusi alcuni la cui defini-
zione deve essere resa obbligatoria (come la chiave API e il provider AI da utilizza-
re). È perciò necessario un componente in grado di leggere e validare tali configu-
razioni all’avvio dell’assistente, mettendole a disposizione in maniera strutturata
al resto del sistema.

Soluzione È stato creato un servizio dedicato ConfigService, riportato in
Figura 3.3, che espone due metodi:

• isConfigValid, che valida la configurazione utente e verifica la presenza dei
parametri obbligatori. Questo metodo verrà chiamato da ExtensionManag

er all’avvio dell’assistente, per assicurarsi che l’ambiente sia correttamente
configurato prima di procedere con l’inizializzazione degli altri componenti.

18 CAPITOLO 3. DESIGN

3.2. SERVIZI PRINCIPALI

Figura 3.3: Architettura di ConfigService, responsabile del controllo della con-
figurazione utente all’avvio dell’assistente.

• getConfig, che restituisce la configurazione utente in maniera strutturata
come un oggetto di tipo ExtensionConfiguration.

3.2.2 AIService

Un elemento fondamentale di qualunque AI-assisted IDE è il componente respon-
sabile della comunicazione con i LLMs esterni. Questo si occupa di raccogliere
ogni richiesta del sistema verso i modelli AI, gestendo internamente aspetti come
l’assemblaggio del prompt da fornire al modello e l’effettiva interazione con l’API
remota dello specifico provider.

Problema Creare un punto di accesso centralizzato che consenta la comunica-
zione trasparente tra i vari componenti del sistema e i modelli AI esterni, indi-
pendentemente dalle specifiche modalità di interazione effettivamente richieste dal
provider sottostante.

CAPITOLO 3. DESIGN 19

3.2. SERVIZI PRINCIPALI

Figura 3.4: Applicazione del pattern Strategy per la gestione dei provider AI.

Soluzione È stato creato un servizio dedicato AIService, riportato in Figu-
ra 3.3, applicando il pattern Strategy per garantire che l’interazione con i vari
modelli sia agnostica rispetto all’effettivo provider AI scelto dall’utente (come ad
esempio OpenAI o Google).
L’architettura adottata supporta provider diversi, permettendo di poterne facil-
mente aggiungere di nuovi in futuro, ed è composta da tre elementi principali:

• AIService: servizio principale che delega l’esecuzione delle operazioni a pro-

20 CAPITOLO 3. DESIGN

3.2. SERVIZI PRINCIPALI

vider intercambiabili in base alla configurazione scelta dall’utente (ottenuta
tramite ConfigService), rispettando il principio di sostituzione di Liskov.
Il metodo che consente l’interazione con i LLMs è generateContent, che
accetta come parametro opzionale una lista di ConversationElement, uti-
lizzata per modellare l’eventuale cronologia dei messaggi, associando il con-
tenuto testuale di ciascun messaggio (content) al ruolo (role) di chi lo ha
inviato (utente, assistente o sistema).

• AbstractAIProvider: classe astratta che funge da base comune per l’im-
plementazione di provider specifici: implementa una relativa interfaccia AI

Provider, omessa dallo schema UML per brevità, e presenta un costruttore
il cui unico argomento è l’“api key”, cioè una stringa che varia in base al pro-
vider scelto e che funge da identificatore univoco necessario ad autorizzare
l’assistente ad effettuare richieste verso la sua API.

• AIAgent: interfaccia tag che rappresenta un’istanza pre-configurata di un
modello AI. La possibilità di creare più agenti è necessaria poiché le varie
funzionalità dell’assistente potrebbero necessitare di agenti con istruzioni e
potenzialmente anche configurazioni differenti.
Ad esempio, un agente responsabile della funzionalità di modifica del codice
dovrà essere istruito tramite system prompt a restituire esclusivamente co-
dice sorgente, omettendo qualsiasi spiegazione in linguaggio naturale che ne
impedirebbe l’applicazione diretta nell’editor.

3.2.3 ChatService

Problema Come richiesto dal RF3, occorre un pannello di chat in grado di
gestire conversazioni “multi-turno” tra utente e assistente che mantenga un proprio
stato interno, composto dalla cronologia dei messaggi e da eventuali file aggiunti
al contesto da parte dell’utente (RF4).

Soluzione È stata adottata l’architettura riportata in Figura 3.5, basata sullo
scambio di informazioni tra il pannello di chat e il resto del sistema, mediata dal

CAPITOLO 3. DESIGN 21

3.2. SERVIZI PRINCIPALI

Figura 3.5: Architettura logica della funzionalità di chat.

servizio ChatService. Di seguito viene data una descrizione più dettagliata dei
componenti dell’architettura presentata:

• ChatPanel: componente di presentazione della chat, sotto forma di un
pannello dedicato all interno dell’IDE. È responsabile della visualizzazione
dello stato della conversazione e della cattura degli input dell’utente, come
l’invio di un messaggio nella chat, che vengono inviati a ChatService per
essere elaborati.

• ChatService: agisce da mediatore tra il pannello di chat e il resto del
sistema, gestendo i messaggi ricevuti da ChatPanel. Delega la generazione
delle risposte dell’assistente ad AIService e si integra con l’API dell’IDE per
fornire il contenuto dei file aggiunti al contesto. Al termine dell’elaborazione
di un messaggio invia la risposta a ChatPanel, che si occuperà di presentarla
all’utente aggiornando la propria interfaccia.

• ChatState: mantiene lo stato della chat, composto dalla cronologia dei
messaggi scambiati tra utente e assistente, e da eventuali file ulteriori aggiunti
al contesto.

È importante sottolineare che quella presentata in Figura 3.5 è un’architettura
puramente logica, che si limita a definire le responsabilità e le interazioni fonda-
mentali tra i componenti. Poiché la creazione di un pannello “custom” come quello
richiesto dalla funzionalità di chat all’interno di un IDE richiede una forte inte-

22 CAPITOLO 3. DESIGN

3.3. COMANDI

grazione con l’API specifica dell’ambiente scelto, in fase di implementazione sarà
inevitabile riadattare questa architettura per sottostare ai vincoli e le modalità di
integrazione imposte dall’IDE nel quale l’assistente verrà integrato.

3.3 Comandi

Problema È necessario un meccanismo centralizzato per la gestione delle azioni
invocabili dall’utente, in grado di verificare a priori la presenza dei prerequisiti
richiesti per la loro esecuzione.

Figura 3.6: Architettura basata sul pattern Command adottata per le azioni invo-
cabili dall’utente. La classe astratta BaseCommand si occupa di acquisire il service
container per la risoluzione di eventuali dipendenze a runtime.

Soluzione Come mostrato in Figura 3.6, è stato applicato il pattern Command
per incapsulare ogni azione in un comando specifico.
L’architettura adottata, sebbene utilizzata primariamente per le funzionalità di
interazione contestuale, è sufficientemente generica da poter essere impiegata per
qualsiasi tipo di comando aggiunto in futuro.

L’interfaccia Command espone due metodi principali:

CAPITOLO 3. DESIGN 23

3.3. COMANDI

• canExecute, che verifica se il comando è eseguibile nel contesto corren-
te dell’IDE. Ad esempio, un comando di refactoring del codice è eseguibile
solamente se l’utente ha il focus su un editor di testo attivo.

• execute, che espone la logica operativa del comando. La restituzione di una
Promise deriva dal RNF3 ed è fondamentale per garantire che un’operazione
computazionalmente bloccante, come la comunicazione con un modello AI,
sia gestita in modo asincrono, preservando la reattività dell’IDE.

3.3.1 Comandi di interazione contestuale

Per implementare le funzionalità di interazione contestuale richieste dal RF1, è
necessario definire una serie di comandi in grado di modificare il contenuto del file
corrente. Alcuni di questi necessitano di un input da parte dell’utente, come un
comando di modifica generica (in cui l’utente fornisce le istruzioni per la modifica
in linguaggio naturale), mentre altri operano in maniera autonoma, come un co-
mando di refactoring che ristruttura automaticamente il codice senza bisogno di
indicazioni.

Indipendentemente dalla loro natura, tutti i comandi di interazione contestuale
dovranno essere in grado di operare sia sull’intero file corrente che, in alternativa,
sulla sola porzione di codice selezionata dall’utente, come stabilito dal RF2.
È chiaro che questi condivideranno una serie di caratteristiche strutturali e compor-
tamentali: infatti tutti richiedono un editor di testo attivo per poter essere eseguiti,
estraggono il codice su cui operare in maniera analoga, invocano AIService per
la generazione e infine sostituiscono il codice originale con il risultato generato.

Problema Fornire una base comune per l’implementazione dei comandi di in-
terazione contestuale, in modo da evitare duplicazioni di codice e consentire l’ag-
giunta di ulteriori comandi con il minimo sforzo.

Soluzione L’architettura precedentemente definita è stata estesa applicando pat-
tern Template Method. Come mostrato in Figura 3.7, il template method è applyT
ransformation e viene utilizzato dalla classe astratta BaseEditorTransformer,

24 CAPITOLO 3. DESIGN

3.3. COMANDI

Figura 3.7: Architettura dei comandi completa.

introdotta per fungere da superclasse ai vari comandi di interazione contestuale,
incapsulandone le funzionalità condivise nel rispetto del principio DRY.

La logica comune è contenuta all’interno del metodo protetto aiCodeProcess di
BaseEditorTransformer, che accetta come parametri le istruzioni per l’agente
(systemInstructions), le eventuali istruzioni fornite dall’utente (userPrompt),
e due stringhe per personalizzare il contenuto del messaggio mostrato durante
l’esecuzione del comando e quello mostrato al suo termine (progressText e succ

essMessage).

CAPITOLO 3. DESIGN 25

Capitolo 4

Implementazione

4.1 Anatomia di un’estensione VS Code

Ciascuna estensione per VS Code necessita di un file manifest (package.json),
che contiene metadati come il nome, la versione e soprattutto le modalità con cui
l’estensione si integra all’interno dell’IDE.

Tale integrazione avviene dichiarando dei Contribution Points1 (“punti di contri-
buzione”), ovvero una serie di dichiarazioni JSON inserite all’interno del manifest
tramite le quali un’estensione può estendere le funzionalità dell’IDE.
Nel contesto del progetto realizzato sono stati dichiarati contribution points per:

• Comandi aggiuntivi, al fine di implementare le funzionalità di interazione
contestuale, che l’utente può invocare tramite la palette dei comandi (de-
finendo anche relativi keybindings, per associare scorciatoie da tastiera ai
comandi implementati).

• Configurazioni, per consentire all’utente di modificare le proprietà del-
l’estensione tramite il file settings.json, permettendo di personalizzare
aspetti come il modello AI da utilizzare e i vari parametri dell’agente.

1code.visualstudio.com/api/references/contribution-points

26 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/references/contribution-points

4.2. STRUMENTI E RISORSE UTILIZZATE NELLO SVILUPPO

• Interfacce utente personalizzate per creare il pannello di chat all’interno
dell’IDE.

4.2 Strumenti e risorse utilizzate nello sviluppo

• Visual Studio Code come ambiente di sviluppo.

• TypeScript come linguaggio di programmazione per l’intera architettura
dell’estensione.

• JavaScript, HTML e CSS per l’implementazione dell’interfaccia utente
del pannello di chat tramite Webview API (si veda Sezione 4.9).

• Node.js come runtime environment per TypeScript e JavaScript.

• Git per il controllo versione.

Per la creazione della struttura iniziale del progetto è stato utilizzato lo scaffolding
tool Yeoman2, che consente di generare uno scheletro per un’estensione VS Code
già pre-configurata con TypeScript e i vari strumenti di build necessari.

Infine, oltre alla documentazione ufficiale fornita da VS Code, una risorsa fonda-
mentale impiegata per la comprensione di pattern e l’implementazione di soluzioni
comuni è stato il repository “vscode-extension-samples”3 messo a disposizione da
Microsoft su GitHub e contenente svariati esempi di codice.

4.3 ServiceContainer: DI container

Come si può vedere dal codice riportato nel Listato 4.1, ServiceContainerImpl
fornisce le implementazioni per i metodi register e resolve definiti dall’in-
terfaccia ServiceContainer, utilizzati rispettivamente per la registrazione e la
risoluzione di un determinato servizio.
Il metodo register associa l’identificatore univoco di un servizio al relativo fac-
tory method necessario per la sua creazione, salvando tale informazione all’in-

2yeoman.io
3github.com/microsoft/vscode-extension-samples

CAPITOLO 4. IMPLEMENTAZIONE 27

https://yeoman.io/
https://github.com/microsoft/vscode-extension-samples/

4.3. SERVICECONTAINER: DI CONTAINER

terno di una mappa interna (riga 2) e delegandone la gestione ad un’istanza di
ServiceDescriptor (riga 8).
Quando, in seguito alla registrazione di un servizio, viene chiamato il metodo
resolve, il container utilizza la key fornita per individuare il ServiceDescriptor
corrispondente (righe 14-16) e richiederne l’istanza tramite il metodo getInstance

(riga 21).

1 export class ServiceContainerImpl implements ServiceContainer {

2 private services = new Map<string, ServiceDescriptor>();

3

4 public register<K extends keyof ServiceRegistry>(

5 key: K,

6 provider: (container: ServiceContainer) => ServiceRegistry[K]

7): void {

8 this.services.set(key as string, new ServiceDescriptor(provider, this));

9 }

10

11 public resolve<K extends keyof ServiceRegistry>(

12 key: K

13): ServiceRegistry[K] {

14 const descriptor = this.services.get(

15 key as string

16) as ServiceDescriptor<ServiceRegistry[K]>;

17 if (!descriptor) {

18 throw new Error(`Service ${String(key)} not registered`);

19 }

20

21 return descriptor.getInstance();

22 }

23 }

Listato 4.1: Implementazione di ServiceContainer.

La classe ServiceDescriptor, riportata nel Listato 4.2, incapsula la logica di
creazione e la gestione dell’istanza di un singolo servizio.
In seguito alla registrazione di un servizio, ServiceDescriptor riceve tramite
costruttore il factory method ad esso associato e l’istanza del container stesso.
Quest’ultima è fondamentale per consentire la risoluzione di eventuali dipenden-
ze interne al momento dell’effettiva istanziazione del servizio, realizzando così il

28 CAPITOLO 4. IMPLEMENTAZIONE

4.3. SERVICECONTAINER: DI CONTAINER

pattern di Dependency Injection.

Il metodo pubblico getInstance applica il principio di lazy instantiation: nel
momento in cui il servizio viene richiesto da ServiceContainer per la prima vol-
ta, viene eseguito il factory method ad esso associato (riga 11), memorizzandone
l’output cosicché tutte le chiamate successive per il medesimo servizio restituisca-
no l’istanza precedentemente creata (riga 13), implementando di fatto il pattern
Singleton.

1 class ServiceDescriptor<T extends Service = Service> {

2 private instance?: T;

3

4 constructor(

5 private readonly provider: (container: ServiceContainer) => T,

6 private readonly container: ServiceContainer

7) {}

8

9 public getInstance(): T {

10 if (!this.instance) {

11 this.instance = this.provider(this.container);

12 }

13 return this.instance;

14 }

15 }

Listato 4.2: Implementazione di ServiceDescriptor.

4.3.1 Garantire type safety nella risoluzione dei servizi

Nell’implementazione del DI container è fondamentale garantire la coerenza dei
tipi tra la chiave utilizzata per la registrazione di un servizio e l’oggetto restituito
dalla sua risoluzione. Per farlo sono state utilizzate diverse funzionalità avanzate
di TypeScript che hanno permesso di ottenere una soluzione type-safe in grado di
individuare tali errori a compile-time.

Innanzitutto è stata creata una semplice interfaccia TypeScript ServiceRegistry
(Listato 4.3) che stabilisce una relazione tra la stringa letterale associata ad un
servizio, cioè la sua chiave (es. la stringa “AIService”), e il relativo tipo dell’istanza
ad esso associata (es. l’interfaccia AIService).

CAPITOLO 4. IMPLEMENTAZIONE 29

4.3. SERVICECONTAINER: DI CONTAINER

1 export type ServiceRegistry = {

2 "ConfigService": ConfigService;

3 "AIService": AIService;

4 // other services

5 }

Listato 4.3: ServiceRegistry.

Così facendo, il metodo register<K extends keyof ServiceRegistry> può es-
sere comodamente definito utilizzando l’operatore TypeScript keyof4, vincolando
K ad assumere il valore di una delle chiavi dichiarate in ServiceRegistry.
Come si può vedere nell’esempio riportato nel Listato 4.4, questo approccio im-
pedisce l’utilizzo di chiavi arbitrarie o errate, sollevando in tali casi un errore a
compile-time.

1 container.resolve("ConfigService"); // correct

2 container.resolve("somethingElse"); // compile error: Argument of type

'"somethingElse"' is not assignable to parameter of type 'keyof

ServiceRegistry'.ts(2345)

↪→

↪→

Listato 4.4: Cercare di registrare o risolvere un servizio tramite una chiave non
presente in ServiceDescriptor risulta in un errore a compile-time.

Anche nel caso del metodo resolve<K extends keyof ServiceRegistry> viene
applicato il medesimo principio. In aggiunta, poiché il tipo di ritorno del metodo
è ServiceRegistry[K], TypeScript collega dinamicamente la chiave K al relativo
tipo ad essa associato all’interno di ServiceRegistry.
Ciò significa che se, ad esempio, resolve riceve come parametro key la strin-
ga “ChatService”, allora ServiceRegistry[K] verrà automaticamente risolto ad
un’istanza di tipo ChatService.

Definita l’architettura generale è possibile procedere con l’analisi dei singoli servizi
che compongono l’estensione.
Ciascun servizio è stato pensato per svolgere un compito specifico e può comunicare

4typescriptlang.org/docs/handbook/2/keyof-types

30 CAPITOLO 4. IMPLEMENTAZIONE

https://www.typescriptlang.org/docs/handbook/2/keyof-types.html

4.4. CONFIGSERVICE: LETTURA DELLA CONFIGURAZIONE UTENTE

con altri servizi ricevendoli in maniera esplicita dal costruttore o, qualora ciò non
fosse possibile, risolvendoli tramite il ServiceContainer.

4.4 ConfigService: lettura della configurazione uten-

te

Tutti i parametri configurabili dell’assistente devono essere dichiarati all’interno
del file manifest dell’estensione. Alcuni di questi parametri (la cui assenza impe-
direbbe il funzionamento dell’estensione) sono obbligatori, come la chiave API e
il modello da utilizzare. Dopodiché ci sono una serie di parametri facoltativi che
consentono all’utente di modificare la configurazione del modello, cambiandone ad
esempio la temperatura o il numero massimo di output tokens (che influenzano
rispettivamente la “creatività” e la lunghezza delle risposte fornite dall’assistente)
o abilitare/disabilitare funzionalità specifiche, come l’inline completion.

Nel contesto dell’ecosistema VS Code, tali informazioni vengono memorizzate al-
l’interno di un file di configurazione specifico, settings.json5, al quale l’esten-
sione deve accedere al momento della propria attivazione. Per farlo l’API dell’IDE
mette a disposizione un apposito oggetto WorkspaceConfiguration6, che presenta
un metodo get per ottenere il valore associato ad uno specifico parametro.

Tale metodo si rivela però problematico per la gestione dei parametri opzionali
legati alla configurazione dei modelli AI: se un parametro non viene definito dal-
l’utente, get restituirà il valore di default del suo tipo di dato (ad esempio 0 per
un numero). Ciò chiaramente non è ideale, dato che in tali casi sarebbe preferibi-
le lasciare che il provider AI possa utilizzare il proprio valore di default per tale
parametro.

Per risolvere questa problematica è stato implementato un metodo privato getC

onfigValue che consente di ottenere il valore associato ad un dato parametro
solamente se questo è stato esplicitamente definito dall’utente.
Come mostrato nel Listato 4.5, dopo aver ottenuto l’oggetto di configurazione

5code.visualstudio.com/docs/configure/settings
6code.visualstudio.com/api/references/vscode-api#WorkspaceConfiguration

CAPITOLO 4. IMPLEMENTAZIONE 31

https://code.visualstudio.com/docs/configure/settings
https://code.visualstudio.com/api/references/vscode-api#WorkspaceConfiguration

4.4. CONFIGSERVICE: LETTURA DELLA CONFIGURAZIONE UTENTE

WorkspaceConfiguration (riga 4) viene chiamato il suo metodo inspect, che
consente di determinare se un dato parametro sia stato esplicitamente definito
dall’utente (righe 7-10): in caso affermativo viene chiamato il metodo get per
ottenerne il valore, altrimenti viene restituito undefined (riga 11).

1 export class ConfigServiceImpl implements ConfigService {

2 ...

3 private getConfigValue<T>(key: string): T | undefined {

4 const config = vscode.workspace.getConfiguration(Constants.EXTENSION_ID);

5 const inspection = config.inspect(key);

6

7 const isSet =

8 inspection?.globalValue !== undefined ||

9 inspection?.workspaceValue !== undefined ||

10 inspection?.workspaceFolderValue !== undefined;

11 return isSet ? config.get<T>(key) : undefined;

12 }

13 }

Listato 4.5: Implementazione del metodo privato getConfigValue, responsabile
dell’adeguata risoluzione dei parametri opzionali.

Il metodo isConfigValid, la cui implementazione è omessa per brevità, viene
chiamato da ExtensionManager all’avvio dell’estensione per controllare che l’u-
tente abbia definito tutti i parametri obbligatori, mostrando opportuni messaggi
di errore in caso contrario. Validata la configurazione viene chiamato getConfig

(riportato nel Listato 4.6), che restituisce l’intera configurazione utente in maniera
strutturata come un oggetto di tipo ExtensionConfiguration (righe 1-6).
Per i parametri obbligatori, la cui presenza è garantita in seguito alla validazione
iniziale, viene invocato direttamente il metodo WorkspaceConfiguration.get

(riga 17), utilizzando l’operatore di asserzione non-null (!) per indicare a Type-
Script che la presenza del valore associato a tali parametri è garantita.
Per i parametri opzionali viene invece utilizzato il metodo getConfigValue (riga
20), cosicché il provider AI possa utilizzare i propri valori di default per i parametri
non esplicitamente definiti dall’utente.

1 export type ExtensionConfiguration = {

2 apiKey: string; // mandatory parameters

32 CAPITOLO 4. IMPLEMENTAZIONE

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

3 ...

4 temperature?: number; // optional parameters

5 ...

6 }

7

8 export class ConfigServiceImpl implements ConfigService {

9

10 public isConfigValid(): boolean {...}

11

12 public getConfig(): ExtensionConfiguration {

13 const config = vscode.workspace.getConfiguration(EXTENSION_ID);

14

15 return {

16 // required settings: if isConfigValid() is true, these will always be

defined.↪→

17 apiKey: config.get<string>("apiKey")!,

18 ...

19 // optional settings, undefined if not explicitly set by user

20 temperature: this.getConfigValue<number>("temperature"),

21 ...

22 };

23 }

24 ...

25 }

Listato 4.6: Implementazione del metodo getConfig, che restituisce la
configurazione come un oggetto di tipo ExtensionConfiguration.

4.5 AIService: interazione con i modelli AI

In fase di implementazione è stato deciso di dare maggior flessibilità ai modelli
AI utilizzabili dall’assistente, permettendo alle diverse funzionalità di utilizzare
modelli differenti in base alle loro necessità. Ad esempio, mentre la funzionali-
tà di chat beneficerebbe maggiormente dall’utilizzo di un agente più performante
ma lento, per altre feature come l’inline completion, al fine di fornire i suggeri-
menti il più velocemente possibile, sarebbe preferibile utilizzare un agente meno
performante ma più rapido.

Per farlo è stata apportata una lieve modifica all’architettura presentata in Sezio-

CAPITOLO 4. IMPLEMENTAZIONE 33

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

ne 3.2.2, facendo in modo che il modello dell’agente non venga letto dalla confi-
gurazione globale tramite ConfigService, ma bensì passato come argomento al
metodo createAgent di AIService.

4.5.1 Implementazione concreta di un provider

Nonostante l’architettura sviluppata sia stata concepita per consentire l’integra-
zione di molteplici provider specifici, nel corso dello sviluppo ci si è limitati all’im-
plementazione e utilizzo di un solo provider per i modelli offerti da Google.

Tale scelta è stata dettata da motivazioni prettamente pratiche: al momento dello
sviluppo dell’assistente oggetto della presente tesi, Google si è rivelato l’unico
provider a offrire un accesso gratuito alla propria API. Inoltre, sebbene tale accesso
presenti chiaramente delle limitazioni, queste si sono dimostrate sufficientemente
generose da non ostacolare il processo di sviluppo e testing.

Nel Listato 4.7 viene presentata l’implementazione di GoogleAIProvider, un
provider AI concreto che si occupa dell’interazione con la Gemini API di Google7.
Dal codice si può osservare che al momento della creazione di GoogleAIProvider
(che chiama il costruttore definito da AbstractAIProvider) viene istanziato
l’SDK di Google Generative AI (riga 6), necessario per l’interfacciamento diretto
con l’API specifica per i modelli di Google.

1 export class GoogleAIProvider extends AbstractAIProvider<GoogleAIAgent> {

2 private ai?: GoogleGenAI;

3

4 constructor(apiKey: string) {

5 super(apiKey);

6 this.ai = new GoogleGenAI({ apiKey: this.apiKey });

7 }

8

9 public async generateContent(

10 agent: GoogleAIAgent,

11 content: string,

12 history?: ConversationElement[],

13 instructions?: string

14): Promise<string> {

7ai.google.dev/gemini-api

34 CAPITOLO 4. IMPLEMENTAZIONE

https://ai.google.dev/gemini-api

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

15 if (!this.ai) {

16 throw new Error("Google AI provider not initialized");

17 }

18 // convert provider-agnostic history to Google's format

19 const contents: Content[] = this.convertHistory(history);

20 // add the current user message

21 contents.push({

22 role: "user",

23 parts: [{ text: content }],

24 });

25

26 const googleAgent = agent;

27 const response = await this.ai.models.generateContent({

28 model: agent.model,

29 contents: contents,

30 config: googleAgent.getConfigWithInstructions(instructions),

31 });

32

33 let responseText = response.text || "";

34 return this.isSearchGroundingEnabled(agent)

35 ? this.appendGroundingMetadata(responseText, response)

36 : responseText;

37 }

38 ...

Listato 4.7: Implementazione del provider AI di Google.

Conversione della cronologia di conversazione

Poiché AIService fornisce l’eventuale cronologia della conversazione (utilizzata
nella feature di chat) in un formato “agnostico” rispetto ai provider (si veda Se-
zione 3.2.2), è stato necessario effettuare una conversione interna nella specifica
struttura dati richiesta dall’API di Google, cioè Content[]8. Il metodo priva-
to responsabile di tale conversione è convertHistory, la cui implementazione è
riportata nel Listato 4.8.

1 private convertHistory(history?: ConversationElement[]): Content[] {

2 const contents: Content[] = [];

3

4 if (history && history.length > 0) {

8ai.google.dev/api/caching/#Content

CAPITOLO 4. IMPLEMENTAZIONE 35

https://ai.google.dev/api/caching?hl=en#Content

4.5. AISERVICE: INTERAZIONE CON I MODELLI AI

5 for (const msg of history) {

6 contents.push({

7 role: msg.role === "assistant" ? "model" : msg.role,

8 parts: [{ text: msg.content }],

9 });

10 }

11 }

12

13 return contents;

14 }

Listato 4.8: Conversione dal formato di cronologia messaggi generico Conversa
tionElement[], utilizzato da AIService, a Content[], utilizzato dalla Gemini
API.

Dopo la conversione dell’eventuale cronologia della conversazione vi viene aggiun-
to l’ultimo messaggio inviato dall’utente (che sarà l’unico messaggio presente in
caso la cronologia fosse vuota). Infine la risposta dell’assistente viene generata
effettuando una chiamata asincrona all’API di Google, utilizzando il modello e i
parametri specificati nella configurazione dell’agente.

Funzionalità di grounding

Poiché la Gemini API consente di utilizzare la funzionalità di grounding9, in Goog

leAIProvider sono state fornite le implementazioni per i metodi toggleSearch
Grounding e isSearchGroundingEnabled (che si limitano a modificare una flag
interna all’agente isGroundingEnabled) per fornire l’accesso a tale funzionalità.

Per mostrare le informazioni sulle fonti utilizzate qualora un agente con il groun-
ding attivo effettui una ricerca web, è stato creato un metodo privato
appendGroundingMetadata (la cui implementazione è riportata nel Listato 4.9).

1 private appendGroundingMetadata(

2 responseText: string,

3 response: GenerateContentResponse

4): string {

5 const groundingContent =

9ai.google.dev/gemini-api/docs/google-search

36 CAPITOLO 4. IMPLEMENTAZIONE

https://ai.google.dev/gemini-api/docs/google-search?hl=en

4.6. SERVIZI SECONDARI

6 response.candidates?.[0]?.groundingMetadata?.searchEntryPoint?.renderedConte ⌋
nt;↪→

7

8 if (!groundingContent) {

9 return responseText;

10 }

11

12 return `${responseText}\n\n---\n\n**Search Results

Used:**\n\n${groundingContent}`;↪→

13 }

Listato 4.9: Implementazione di appendGroundingMetadata. In seguito ad una
ricerca web da parte dell’agente la risposta include un campo groundingMetadata
contenente le query di ricerca utilizzate, che vengono appese alla risposta fornita.

4.6 Servizi secondari

Oltre ai servizi che gestiscono le funzionalità principali dell’estensione, ovvero Co

nfigService, AIService e ChatService (i cui dettagli verranno presentati in
Sezione 4.9), sono stati introdotti dei servizi che svolgono una funzione di supporto.
Questi servizi secondari offrono principalmente un punto di accesso centralizzato a
funzionalità comuni, semplificando la logica dei vari componenti che ne fanno uso
e favorendo la modularità dell’intera architettura.

4.6.1 FileService

Essendoci vari componenti dell’estensione che svolgono operazioni di lettura o scrit-
tura su file, è stato creato un servizio apposito FileService che consente agli
utilizzatori di effettuare tali operazioni senza doversi interfacciare con l’API di VS
Code e i relativi dettagli implementativi.

In particolare, FileService espone dei metodi per leggere e modificare l’intero
contenuto di un file (o solo il testo attualmente selezionato), funzionalità parti-
colarmente utilizzate dai comandi legati all’interazione contestuale (descritti in
Sezione 4.7). Presenta inoltre dei semplici metodi di utility per estrarre metadati
come il nome o l’estensione di un file a partire dal suo percorso (path).
Un’ultima funzionalità esposta dal servizio, tramite il metodo getUserDefined

CAPITOLO 4. IMPLEMENTAZIONE 37

4.6. SERVIZI SECONDARI

Instructions, è dedicata al recupero delle istruzioni personalizzate che l’utente
può opzionalmente definire all’interno del file .ai/agentInstructions.md per
modificare il comportamento dell’assistente.

4.6.2 RateLimitService

L’estensione, al fine di interagire con i modelli AI, utilizza le API fornite da provider
esterni, che possono essere soggette a costi e limiti di utilizzo. Per questo motivo
è desiderabile un meccanismo in grado di limitare la frequenza di esecuzione delle
feature che ne fanno uso (rate limiting).

A tale scopo è stato creato il servizio RateLimitService, che espone due metodi:

• configureRateLimit, che consente di registrare una feature (identificata
da una chiave univoca) e associarvi l’intervallo di attesa minimo che deve
trascorrere tra due invocazioni consecutive.

• isRequestAllowed, per verificare se una data feature possa o meno effettuare
una nuova richiesta.

Come si può vedere dal codice riportato nel Listato 4.10, l’implementazione del
servizio mantiene internamente una mappa (riga 7) che associa ciascuna feature
registrata ad un RateLimitEntry, contenente l’intervallo minimo di tempo tra
due richieste successive (timeoutMs) e il timestamp dell’ultima richiesta andata a
buon fine (lastRequestTime) (righe 1-4).
Chiaramente l’approccio adottato lascia al chiamante il compito di verificare se una
richiesta possa essere effettuata o meno prima di procedere, chiamando il metodo
isRequestAllowed.

1 type RateLimitEntry = {

2 timeoutMs: number;

3 lastRequestTime: number;

4 };

5

6 export class RateLimitServiceImpl implements RateLimitService {

7 private rateLimits = new Map<string, RateLimitEntry>();

8

9 public configureRateLimit(key: string, timeBetweenRequests: number): void {

38 CAPITOLO 4. IMPLEMENTAZIONE

4.6. SERVIZI SECONDARI

10 this.rateLimits.set(key, {

11 timeoutMs: timeBetweenRequests,

12 lastRequestTime: 0,

13 });

14 }

15

16 public isRequestAllowed(key: string): boolean {

17 const entry = this.getEntryOrThrow(key);

18 const now = Date.now();

19

20 // check if enough time has passed since the last request

21 const timeSinceLastRequest = now - entry.lastRequestTime;

22 if (timeSinceLastRequest < entry.timeoutMs) {

23 const waitTime = entry.timeoutMs - timeSinceLastRequest;

24 return false;

25 }

26

27 // allow request and update last request time

28 entry.lastRequestTime = now;

29 return true;

30 }

31

32 private getEntryOrThrow(key: string): RateLimitEntry {

33 const entry = this.rateLimits.get(key);

34 if (!entry) {

35 throw new Error(`No configuration found for '${key}'`);

36 }

37 return entry;

38 }

39 }

Listato 4.10: Implementazione di RateLimitService.

Nel contesto dell’estensione realizzata, RateLimitService è utilizzato solo dalla
feature di inline completion (approfondita in Sezione 4.8), essendo questa l’unica
in grado di effettuare delle chiamate al provider AI senza richieste esplicite da
parte dell’utente. Tuttavia, il servizio è stato volutamente progettato in maniera
scalabile, per poter estendere con facilità il meccanismo di rate limiting a qualsiasi
funzionalità futura che ne possa avere bisogno.

CAPITOLO 4. IMPLEMENTAZIONE 39

4.7. INTERAZIONE CONTESTUALE

4.6.3 LoggingService

Per supportare le attività di diagnostica e debugging è stato introdotto un semplice
servizio LoggingService che funge da wrapper attorno alle funzionalità di logging
fornite dall’API di VS Code, esponendo ai vari componenti dell’estensione i metodi
per i principali livelli di logging: debug, info, warn e error.

L’implementazione di LoggingService mantiene internamente un riferimento
all’oggetto LogOutputChannel10, sul quale indirizza tutti i messaggi ricevuti per
far sì che vengano mostrati su un apposito pannello di output all’interno dell’IDE.

4.7 Interazione contestuale

VS Code ha a disposizione svariati comandi “built-in” per interagire con l’editor,
eseguire azioni in background e gestire l’interfaccia utente.
Oltre a poter liberamente invocare ciascuno di questi comandi nativi, un’estensione
può anche definire e registrare dei comandi aggiuntivi, al fine di esporre le proprie
funzionalità agli utenti o implementare della logica interna11.

Sfruttando questo meccanismo di estendibilità è stato possibile registrare i comandi
di interazione contestuale, ovvero quelli che consentono di interagire con l’assistente
all’interno dell’editor. In seguito alla loro registrazione con l’API di VS Code,
trattata in Sezione 4.7.3, l’utente può invocarli come se fossero comandi nativi,
utilizzando l’apposita palette dei comandi (come mostrato in Figura 4.1) o tramite
scorciatoie da tastiera (keyboard shortcuts).

I comandi di interazione contestuale implementati sono:

1. EditCommand, che consente di modificare il file corrente sulla base delle
istruzioni fornite dall’utente in linguaggio naturale.

2. RefactorCommand, che esegue automaticamente il refactoring del codice,
senza che l’utente debba fornire alcuna indicazione.

3. DocsCommand, che genera automaticamente la documentazione per il codice.
10code.visualstudio.com/api/references/vscode-api#LogOutputChannel
11code.visualstudio.com/api/extension-guides/command

40 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/references/vscode-api#LogOutputChannel
https://code.visualstudio.com/api/extension-guides/command

4.7. INTERAZIONE CONTESTUALE

Figura 4.1: Palette dei comandi (command palette) di VS Code, dalla quale è
possibile accedere sia ai comandi nativi dell’IDE che a quelli registrati dalle varie
estensioni.

Occorre far presente che in fase di implementazione è stata effettuata una leggera
modifica all’architettura logica presentata in Sezione 3.3.1 durante la fase di design,
aggiungendo all’interfaccia Command un metodo getId necessario per l’effettiva
registrazione con l’API di VS Code.

4.7.1 Implementazione di BaseEditorTransformer

BaseEditorTransformer, riportato nel Listato 4.11, effettua l’override dei metodi
canExecute (che ritorna True solamente se l’utente ha un editor di testo attivo)
e execute, che contiene l’effettiva chiamata al template method applyTransform

ation (riga 15). Quest’ultimo metodo viene ereditato dall’interfaccia EditorTran

sformer e il compito di fornirne l’implementazione viene delegato alle sottoclassi.

1 export abstract class BaseEditorTransformer

2 extends BaseCommand

3 implements EditorTransformer

4 {

5 public canExecute(): boolean {

6 return this.serviceContainer

7 .resolve("FileService")

8 .hasActiveTextEditor();

9 }

10

11 public async execute(): Promise<void> {

12 if (!this.canExecute()) {

13 return;

14 }

15 await this.applyTransformation();

CAPITOLO 4. IMPLEMENTAZIONE 41

4.7. INTERAZIONE CONTESTUALE

16 }

17

18 ...

Listato 4.11: Implementazione dei metodi canExecute e execute di BaseEditor
Transformer.

La logica comune a tutte le sottoclassi è contenuta nel metodo protetto aiCode

Process. Il suo flusso di esecuzione, riportato nel Listato 4.12, è suddiviso come
segue:

1. Estrazione del codice: in seguito alla risoluzione delle dipendenze utiliz-
zando il service container ereditato da BaseCommand viene verificato tramite
il metodo getEditorSelection di FileService se l’utente abbia selezio-
nato o meno del codice (riga 8). In caso affermativo, il comando opererà
esclusivamente sulla selezione, altrimenti verrà processato l’intero contenuto
dell’editor.

2. Configurazione dell’agente: viene istanziato l’agente da utilizzare (righe
12-14) e assemblato il relativo prompt, unendo eventuali istruzioni dell’utente
con il codice da elaborare. Le istruzioni di sistema, ovvero quelle necessarie
a definire il comportamento dell’agente, vengono similmente arricchite con
le eventuali preferenze globali dell’utente, ottenute dal file di configurazione
.ai/agentInstructions.md tramite FileService (riga 21).

3. Generazione del contenuto: mentre l’agente genera il contenuto viene
utilizzato il metodo vscode.window.withProgress per mostrare il messag-
gio di progresso progressText (righe 26-31). Al termine della generazione,
dato che gli agenti tendono ad utilizzare il formato Markdown nelle loro ri-
sposte, il risultato ottenuto viene ripulito da eventuali marcatori di blocco di
codice tramite un metodo di utility (riga 39), per far sì che il codice inserito
nell’editor sia “pulito”.

4. Sostituzione e Conferma: il codice originale viene sostituito con quello
generato, rispettando il contesto iniziale (selezione o intero editor). Infine
viene mostrato un messaggio di successo dove l’utente può scegliere se man-

42 CAPITOLO 4. IMPLEMENTAZIONE

4.7. INTERAZIONE CONTESTUALE

tenere le modifiche o annullarle, invocando il comando nativo di VS Code
undo (righe 50-57).

1 protected async aiCodeProcess(

2 systemInstructions: string,

3 userPrompt: string | undefined,

4 progressText: string,

5 successMessage: string

6): Promise<void> {

7 ... // services resolution via serviceContainer

8 const selectedCode = fileService.getEditorSelection();

9 const codeToTransform = selectedCode || fileService.getEditorContent()!;

10 const isFullFile = !selectedCode;

11

12 const agent = aiService.createAgent(

13 configService.getConfig().baseModel

14);

15 // build the prompt with optional user request and code

16 const prompt = userPrompt

17 ? `User request: ${userPrompt}\n\nCode:\n${codeToTransform}`

18 : codeToTransform;

19 // combine system instructions with user-defined instructions if available

20 const userInstructions =

21 fileService.getUserDefinedInstructions();

22 if (userInstructions) {

23 systemInstructions += `\n\nUser preferences:\n${userInstructions}`;

24 }

25

26 const processedCode = await vscode.window.withProgress(

27 {

28 location: vscode.ProgressLocation.Notification,

29 title: progressText,

30 cancellable: false,

31 },

32 async () => {

33 const transformedCode = await aiService.generateContent(

34 agent,

35 prompt,

36 undefined, // no conversation history

37 systemInstructions

38);

39 return Utils.removeCodeBlockMarkers(transformedCode);

40 }

CAPITOLO 4. IMPLEMENTAZIONE 43

4.7. INTERAZIONE CONTESTUALE

41);

42

43 if (isFullFile) {

44 await fileService.replaceFileContent(processedCode);

45 } else {

46 await fileService.replaceSelectedText(processedCode);

47 }

48

49 // ask user to keep or undo the changes

50 const result = await vscode.window.showInformationMessage(

51 successMessage,

52 "Keep Changes",

53 "Undo"

54);

55 if (result === "Undo") {

56 await vscode.commands.executeCommand("undo");

57 }

58 }

Listato 4.12: Implementazione del metodo aiCodeProcess all’interno di BaseEd
itorTransformer.

Nota: L’implementazione effettiva di aiCodeProcess presente nella codebase
delega le varie responsabilità appena descritte a metodi privati dedicati: il codice
sopra riportato è stato compattato per brevità espositiva.

4.7.2 Implementazione concreta di un comando di intera-

zione contestuale

Grazie all’architettura adottata, l’implementazione concreta dei comandi di intera-
zione contestuale diventa triviale, poiché è sufficiente fornire un’implementazione
al template method applyTransformation e richiamare al suo interno il metodo
protetto aiCodeProcess ereditato da BaseEditorTransformer.

Come mostrato nel Listato 4.13, all’interno di EditCommand l’implementazione del
template method si limita a richiedere all’utente le modifiche desiderate tramite
un input box (righe 10-14) e ad invocare aiCodeProcess con il prompt acquisito
e delle appropriate istruzioni di sistema (righe 19-24).

44 CAPITOLO 4. IMPLEMENTAZIONE

4.7. INTERAZIONE CONTESTUALE

1 export class EditCommand extends BaseEditorTransformer {

2 private readonly id = "edit";

3 private readonly userInstructions =

4 "Describe what edits you want to make. Select some text to edit a specific

section only, or leave unselected to edit the entire file.";↪→

5 private readonly systemInstructions =

6 "You are a code editing assistant. The user will provide code and a

description of the edits they want. Apply the requested edits to the

code. Return the edited code ONLY, without any additional explanations.";

↪→

↪→

7

8 public async applyTransformation(): Promise<void> {

9 // show input box to get user prompt

10 const userPrompt = await vscode.window.showInputBox({

11 placeHolder: "Enter your prompt...",

12 prompt: this.userInstructions,

13 ignoreFocusOut: true,

14 });

15 if (!userPrompt) {

16 return; // user cancelled

17 }

18

19 await this.aiCodeProcess(

20 this.systemInstructions,

21 userPrompt,

22 "Editing...",

23 "Code Edited!"

24);

25 }

26

27 public getId(): string {

28 return this.id;

29 }

30 }

Listato 4.13: Implementazione di EditCommand.

Le implementazioni di RefactorCommand e DocsCommand, omesse per brevità,
poiché non richiedono alcun input utente sono ancora più semplici e si limitano ad
invocare direttamente aiCodeProcess, fornendogli delle appropriate istruzioni di
sistema.

CAPITOLO 4. IMPLEMENTAZIONE 45

4.7. INTERAZIONE CONTESTUALE

4.7.3 Registrazione dei comandi

La registrazione dei comandi viene effettuata all’avvio dell’estensione dal metodo
privato registerCommands di ExtensionManagerImpl.
Come mostrato nell’implementazione riportata nel Listato 4.14, tale processo è
standardizzato per tutti i comandi e reso facilmente estendibile: innanzitutto viene
creato un array contenente i comandi da registrare (righe 2-7), fornendo a ciascuno
di essi il service container per la risoluzione delle dipendenze a runtime.

Per ogni comando da registrare viene poi invocato il metodo vscode.commands.

registerCommand12 dell’API di VS Code (riga 10), che prende come argomenti
l’identificatore univoco del comando (ottenuto tramite getId) e una funzione di
callback. Quest’ultima è stata definita in modo tale da consentire l’esecuzione di
ciascun comando solo dopo la verifica dei prerequisiti necessari tramite canExecute
(righe 12-16).

Infine l’oggetto Disposable13 restituito dalla registrazione viene aggiunto al con-
testo dell’estensione (riga 17): si tratta di una best practice dello sviluppo per
VS Code necessaria a garantire che i comandi vengano correttamente de-registrati
alla disattivazione dell’estensione, rilasciando eventuali risorse ancora in uso ed
evitando possibili memory leak.

1 private registerCommands(): void {

2 const commands = [

3 new RefactorCommand(this.serviceContainer),

4 new EditCommand(this.serviceContainer),

5 new DocsCommand(this.serviceContainer),

6 new NewChatCommand(this.serviceContainer),

7];

8

9 commands.forEach((command) => {

10 const disposable = vscode.commands.registerCommand(

11 `${Constants.EXTENSION_ID}.${command.getId()}`,

12 async () => {

13 if (command.canExecute()) {

14 await command.execute();

15 }

12code.visualstudio.com/api/extension-guides/command#registering-a-command
13code.visualstudio.com/api/references/vscode-api#disposables

46 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/extension-guides/command#registering-a-command
https://code.visualstudio.com/api/references/vscode-api#disposables

4.8. INLINE COMPLETION

16 }

17);

18 this.context.subscriptions.push(disposable);

19 });

20 }

Listato 4.14: Implementazione del metodo registerCommands all’interno di Exte
nsionManagerImpl. NewChatCommand, non trattato in dettaglio, è un semplice
comando che consente di creare una nuova chat.

4.8 Inline completion

L’implementazione della feature di inline completion, che consente all’utente di ri-
cevere completamenti di codice all’interno dell’editor, dipende totalmente dall’API
messa a disposizione dallo specifico IDE nel quale l’assistente AI viene integrato.

Nel contesto di VS Code è stata adottata l’architettura riportata in Figura 4.2,
che fa uso di un provider concreto InlineCompletionProvider che estende un’ap-
posita interfaccia InlineCompletionItemProvider14 fornita dall’API dell’IDE.
Quest’ultima definisce il metodo provideInlineCompletionItems, che viene uti-
lizzato dall’ambiente per richiedere i suggerimenti da fornire all’utente ogni volta
che interrompe la digitazione o richiede un completamento in maniera esplicita
tramite un apposito comando nativo.

4.8.1 Attivazione e parametri di configurazione

Essendo l’inline completion in grado di effettuare delle chiamate al provider AI
senza esplicita richiesta da parte dell’utente è stata data la possibilità di disattivare
la feature assegnando il valore false al parametro enableInlineCompletions,
contenuto nel file di configurazione .vscode/settings.json.
Inoltre, nel caso in cui la feature venisse mantenuta attiva, sono stati dichiarati
ulteriori parametri configurabili che consentono all’utente di limitare il numero di
chiamate effettuate verso il provider AI e ridurre i costi d’uso. Questi sono:

14code.visualstudio.com/api/references/vscode-api#InlineCompletionItemProvider

CAPITOLO 4. IMPLEMENTAZIONE 47

https://code.visualstudio.com/api/references/vscode-api#InlineCompletionItemProvider

4.8. INLINE COMPLETION

Figura 4.2: Architettura completa di InlineCompletionProvider.

• inlineCompletions.timeBetweenRequests, che definisce l’intervallo
minimo tra due richieste consecutive (utilizzato per il rate limiting).

• inlineCompletions.idleDelay, che specifica il tempo che deve trascor-
rere dal momento in cui l’utente interrompe la digitazione a quando viene
effettuata una richiesta di completamento.

• inlineCompletions.model, che definisce il modello AI da utilizzare per
le inline completions, consentendo all’utente di adottare un modello più
veloce ed economico rispetto a quello configurato per le altre funzionalità
dell’estensione.

Questi parametri vengono passati a InlineCompletionProvider tramite il co-
struttore e utilizzati all’interno del metodo register (riportato nel Listato 4.15),
che si occupa della configurazione del rate limiting mediante RateLimitService

(utilizzando il valore del parametro di configurazione timeBetweenRequests) e
dell’effettiva registrazione del provider con l’API di VS Code.
Quest’ultima viene effettuata tramite il metodo registerInlineCompletionIt

emProvider, a cui vengono passati come argomenti un selettore generico (per far

48 CAPITOLO 4. IMPLEMENTAZIONE

4.8. INLINE COMPLETION

sì che i suggerimenti siano forniti indipendentemente dal linguaggio di program-
mazione) e il provider stesso (righe 8-11).
Inoltre, analogamente a quanto visto nel caso della registrazione dei comandi per
l’interazione contestuale, anche register restituisce un Disposable (righe 13-15),
al fine di de-registrare il provider in seguito alla disattivazione dell’estensione.

1 public register(): vscode.Disposable {

2 this.rateLimitService.configureRateLimit(

3 SERVICE_KEY,

4 this.config.timeBetweenRequests

5);

6

7 const providerRegistration =

8 vscode.languages.registerInlineCompletionItemProvider(

9 { pattern: "**" },

10 this

11);

12

13 return new vscode.Disposable(() => {

14 providerRegistration.dispose();

15 });

16 }

Listato 4.15: Implementazione del metodo register di InlineCompletionProv
ider.

Come mostrato nel Listato 4.16, in seguito all’avvio dell’estensione l’attivazione
della feature di inline completion è a carico di ExtensionManagerImpl. Questo
controlla tramite ConfigService se la proprietà enableInlineCompletions sia
impostata a true, procedendo solo in tal caso all’inizializzazione e registrazione
del provider (righe 2-8).

1 if (config.enableInlineCompletions) {

2 this.inlineCompletionProvider = new InlineCompletionProvider(

3 this.serviceContainer,

4 config.inlineCompletions

5);

6 const inlineCompletionDisposable =

7 this.inlineCompletionProvider.register();

8 this.context.subscriptions.push(inlineCompletionDisposable);

9 } else {

CAPITOLO 4. IMPLEMENTAZIONE 49

4.8. INLINE COMPLETION

10 logger.info("Skipping inline completion provider activation");

11 }

Listato 4.16: Logica per l’attivazione delle inline completions in ExtensionManag
erImpl.

4.8.2 Meccanismo di richiesta dei completamenti

In seguito alla registrazione di InlineCompletionProvider, VS Code invoca il
suo metodo provideInlineCompletionItems ogni volta che vengono richiesti dei
completamenti.
Come mostrato nell’implementazione riportata nel Listato 4.17, il comportamen-
to di tale metodo varia a seconda del tipo di trigger (innesco) ricevuto: se il
suggerimento è stato richiesto esplicitamente dall’utente (riga 9) allora viene im-
mediatamente chiamato il metodo privato getCompletions, responsabile della
generazione del completamento.
Nel caso di un trigger automatico invece, prima di invocare getCompletions viene
atteso un tempo variabile dettato dal parametro di configurazione idleDelay: se
in tale lasso di tempo l’utente riprende a scrivere il valore di token.isCancella
tionRequested risulterà True e la richiesta non verrà effettuata (righe 20-23).

1 public provideInlineCompletionItems(

2 document: vscode.TextDocument,

3 position: vscode.Position,

4 context: vscode.InlineCompletionContext,

5 token: vscode.CancellationToken

6): vscode.ProviderResult<

7 vscode.InlineCompletionItem[] | vscode.InlineCompletionList

8 > {

9 // triggered explicitly by the user

10 if (context.triggerKind === vscode.InlineCompletionTriggerKind.Invoke) {

11 return this.getCompletions(document, position, token);

12 }

13 // triggered automatically

14 if (this.idleTimer) {

15 clearTimeout(this.idleTimer);

16 }

17 return new Promise((resolve) => {

18 this.idleTimer = setTimeout(async () => {

50 CAPITOLO 4. IMPLEMENTAZIONE

4.8. INLINE COMPLETION

19 if (token.isCancellationRequested) {

20 resolve([]);

21 return;

22 }

23

24 const result = await this.getCompletions(

25 document,

26 position,

27 token

28);

29 resolve(result);

30 }, this.config.idleDelay);

31 });

32 }

Listato 4.17: Implementazione del metodo provideInlineCompletionItems.

4.8.3 Generazione dei completamenti

Innanzitutto, per ogni chiamata ricevuta, getCompletions verifica tramite il
metodo isRequestAllowed di RateLimitService che sia trascorso un tempo suf-
ficiente dall’ultimo completamento fornito, indipendentemente dal tipo di trigger.
Se la richiesta è consentita, viene costruito il prompt da fornire all’agente responsa-
bile della generazione del completamento, che verrà effettuata tramite AIService.
La creazione di tale prompt è a carico del metodo privato createCompletionPr

ompt, riportato nel Listato 4.18, nel quale vengono specificate sia le istruzioni per
l’agente che il contesto per la generazione, fornendo il linguaggio del file e il testo
presente prima e dopo il cursore.

1 private createCompletionPrompt(

2 fileLanguage: string,

3 prefix: string,

4 suffix: string

5) {

6 return [

7 `You are given a ${fileLanguage} file, and your job is to suggest code

completion to put exactly at the current cursor position.`,↪→

8 `Return ONLY the code to insert at the cursor, without any additional text

or Markdown formatting.`,↪→

CAPITOLO 4. IMPLEMENTAZIONE 51

4.9. CHATSERVICE: PANNELLO DI CHAT

9 `If the code is already complete or there isn't enough context, return

nothing.\n`,↪→

10 `The code before the cursor is:\n${prefix}`,

11 `${suffix.trim().length === 0

12 ? "There is no code after the cursor"

13 : `The code after the cursor is:\n${suffix}`

14 }`,

15].join("\n");

16 }

Listato 4.18: Implementazione del metodo privato createCompletionPrompt di
InlineCompletionProvider, nel quale viene costruito il prompt che verrà poi
utilizzato dall’agente responsabile della generazione del completamento.

4.9 ChatService: Pannello di chat

Definite le implementazioni per i servizi responsabili della lettura della configura-
zione utente, l’interazione con i modelli AI e la gestione delle operazioni su file, è
possibile procedere con l’implementazione della funzionalità di chat.
Per realizzare il pannello di chat è stata utilizzata la Webview API15, una tecnolo-
gia necessaria per superare i limiti dei componenti nativi di VS Code che consente
di creare interfacce utente complesse tramite l’utilizzo di tecnologie web standard
come HTML, CSS e JavaScript.

Una conseguenza diretta dovuta all’implementazione del pannello di chat (a cui
d’ora in poi ci si riferirà con il termine frontend) tramite Webview, è che questa
esiste come un elemento completamente separato rispetto al resto dell’architettura
dell’estensione (d’ora in poi indicata come backend).
Come indicato anche dalla documentazione ufficiale, l’unico modo per consentire
la comunicazione tra frontend e backend (e viceversa) è tramite message passing,
cioè tramite lo scambio di messaggi.

Al fine di gestire questo scambio di informazioni in maniera centralizzata l’imple-
mentazione concreta di ChatService (che agisce da intermediario tra frontend e
backend) espone i seguenti metodi:

15code.visualstudio.com/api/extension-guides/webview

52 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/extension-guides/webview

4.9. CHATSERVICE: PANNELLO DI CHAT

• setWebview(webview), necessario per stabilire la connessione con il frontend
e instaurare la comunicazione bidirezionale necessaria per inviare e ricevere
messaggi (si faccia riferimento alla Sezione 4.9.1 per ulteriori dettagli).

• handleWebviewMessage(data), metodo verso il quale vengono indirizzati
i vari messaggi provenienti dal frontend, come la ricezione di un messag-
gio utente, l’aggiunta di un file al contesto o l’attivazione/disattivazione del
grounding. In base al tipo di messaggio ricevuto verrà poi invocata la logica
appropriata.

• clearChat(), che consente di resettare la chat, cancellando la cronologia
della conversazione e rimuovendo eventuali file aggiunti al contesto da parte
dell’utente.

4.9.1 Inizializzazione del pannello di chat

La creazione di una Webview è un processo a più step che va effettuato tramite l’A-
PI di VS Code e consiste principalmente nel registrare il provider responsabile della
creazione del relativo pannello (che verrà effettivamente istanziato e configurato
solamente quando l’utente decide di aprirlo).

Per fare in modo che ChatService si possa occupare della sola logica applicativa
è stata adottata un’architettura che consente di astrarre il processo di creazione e
registrazione di una Webview.
Tale architettura, riportata in Figura 4.3, si basa su due componenti principali:

• ChatWebviewManager, che si occupa della registrazione del pannello di
chat. Implementa l’interfaccia WebviewManager, che espone un singolo
metodo activate necessario per la creazione di una Webview generica (il
parametro ExtensionContext16 contiene le varie informazioni necessarie per
la registrazione).

• ChatViewProvider, che si occupa dell’istanziazione del pannello di chat.
Implementa l’interfaccia vscode.WebviewViewProvider, che espone an-

16code.visualstudio.com/api/references/vscode-api#ExtensionContext

CAPITOLO 4. IMPLEMENTAZIONE 53

https://code.visualstudio.com/api/references/vscode-api#ExtensionContext

4.9. CHATSERVICE: PANNELLO DI CHAT

ch’essa un singolo metodo resolveWebviewView, in cui andranno definite le
operazioni da svolgere quando l’utente apre il pannello di chat.

Figura 4.3: Architettura estesa adottata in fase di implementazione per creazione
e gestione del pannello di chat, con inizializzazione della comunicazione frontend-
backend.

Creazione della Webview

In seguito all’apertura da parte dell’utente del pannello di chat (cliccando sulla
relativa icona nella barra laterale dell’IDE), VS Code invoca il metodo resolveWeb

viewView di ChatViewProvider, che si occupa di creare e configurare la Webview
che verrà mostrata all’utente all’interno del pannello di chat (e che verrà utilizzata

54 CAPITOLO 4. IMPLEMENTAZIONE

4.9. CHATSERVICE: PANNELLO DI CHAT

da ChatService per la gestione dello scambio di messaggi tra frontend e backend).
Come si può osservare dal codice riportato nel Listato 4.19, quando l’utente apre
il pannello di chat, resolveWebviewView svolge tre operazioni fondamentali:

1. Configurazione della Webview: viene abilitata l’esecuzione di JavaScript
(necessaria per l’invio di messaggi al backend) e viene impostato il root path
della Webview a quello dell’estensione (riga 19), un accorgimento relativo
alla sicurezza che ne impedisce l’accesso ai file esterni.

2. Aggiunta del contenuto HTML: il contenuto HTML dell’intera inter-
faccia utente del pannello di chat (presentato in maggior dettaglio in Se-
zione 4.9.2) viene ottenuto tramite il metodo getHtmlContent della classe
ChatWebpageProvider e iniettato all’interno della Webview (riga 22).

3. Registrazione con ChatService: il metodo privato setupMessageHandli

ng registra un listener per l’evento Webview onDidReceiveMessage17 per far
sì che i messaggi provenienti dalla Webview vengano inoltrati al metodo hand

leWebviewMessage di ChatService. Il canale di comunicazione tra frontend
e backend viene infine completato passando la Webview come parametro al
metodo setWebview di ChatService (riga 9).

1 // called when chat panel is opened

2 public resolveWebviewView(

3 webviewView: vscode.WebviewView,

4 _context: vscode.WebviewViewResolveContext,

5 _token: vscode.CancellationToken

6): void {

7 this.view = webviewView;

8 this.setupWebview();

9 this.chatService.setWebview(webviewView);

10 }

11

12 private setupWebview(): void {

13 if (!this.view) {

14 return;

15 }

16 const webview = this.view.webview;

17 webview.options = {

17code.visualstudio.com/api/references/vscode-api#Webview

CAPITOLO 4. IMPLEMENTAZIONE 55

https://code.visualstudio.com/api/references/vscode-api#Webview

4.9. CHATSERVICE: PANNELLO DI CHAT

18 enableScripts: true, // enable JS

19 localResourceRoots: [this.extensionUri], // needed to load local resources

20 };

21

22 webview.html = this.getHtmlContent();

23 this.setupMessageHandling(webview);

24 }

25

26 private setupMessageHandling(webview: vscode.Webview) {

27 this.messageHandlerDisposable?.dispose(); // dispose previous listener if any

28 this.messageHandlerDisposable = webview.onDidReceiveMessage(

29 async (data) => {

30 await this.chatService.handleWebviewMessage(data);

31 }

32);

33 }

Listato 4.19: Implementazione del metodo resolveWebviewView di ChatViewPr
ovider.

4.9.2 Contentuto HTML della Webview

La classe ChatWebpageProvider (la cui implementazione completa è omessa per
brevità) ha come unico scopo di fornire, tramite il metodo getHtmlContent, il
codice HTML responsabile per la creazione dell’interfaccia associata al pannello di
chat.

Come si può vedere dalla Figura 4.4, tale interfaccia è divisa in tre aree principali:

• Un’area per la visualizzazione dei messaggi, la cui resa grafica è migliora-
ta utilizzando le librerie JavaScript marked.js e highlight.js, neces-
sarie rispettivamente a formattare il codice Markdown restituito dal mo-
dello e fornire la colorazione della sintassi per i blocchi di codice (syntax
highlighting).

• Un’area contenente il file attualmente aperto nell’editor, che può essere ag-
giunto o rimosso dal contesto cliccando su un’apposita icona, ed eventuali
altri file allegati dall’utente.

56 CAPITOLO 4. IMPLEMENTAZIONE

4.9. CHATSERVICE: PANNELLO DI CHAT

• Un’area di input che consente all’utente di scrivere i propri messaggi, con
dei pulsanti per allegare un file al contesto della conversazione, per attivare
o disattivare la funzionalità di grounding e per inviare il messaggio.

Figura 4.4: Interfaccia utente del pannello di chat.

Per quanto riguarda l’effettiva logica del frontend, questa è contenuta all’interno
di un file JavaScript main.js (che viene iniettato nell’HTML della Webview)
responsabile sia dell’aggiornamento dinamico dell’interfaccia che della cattura degli
eventi generati dalle azioni dell’utente (ad esempio l’attivazione del grounding),
inviando un apposito messaggio al backend che si occuperà della loro gestione.

Content Security Policy

Come per un sito web, anche la creazione di una Webview richiede di adottare
alcune importanti misure di sicurezza, necessarie a limitare il contenuto che può
essere caricato o eseguito al suo interno.
Questo perché, sebbene sia integrata nell’editor, una Webview è di fatto un browser
web e come tale è soggetta agli stessi rischi, in particolare a quelli legati al Cross-
Site Scripting (XSS), cioè l’iniezione di codice JavaScript potenzialmente malevolo.

CAPITOLO 4. IMPLEMENTAZIONE 57

4.9. CHATSERVICE: PANNELLO DI CHAT

Per mitigare tale minaccia, all’interno del tag <meta> del codice HTML è stata
introdotta una Content Security Policy18 (CSP), riportata nel Listato 4.20, che
adotta un approccio “deny-by-default” che consente di bloccare il caricamento di
qualsiasi risorsa non esplicitamente autorizzata.

1 <meta http-equiv="Content-Security-Policy" content="

2 default-src 'none';

3 script-src 'nonce-${nonce}';

4 style-src ${webview.cspSource};

5 img-src ${webview.cspSource};

6 font-src ${webview.cspSource};

7 ">

Listato 4.20: Content Security Policy adottata dalla Webview del pannello di chat.

L’elemento fondamentale per la prevenzione di attacchi XSS è l’utilizzo di un non-
ce (number used once), ossia un token che viene rigenerato casualmente da un
metodo getNonce ad ogni nuova istanziazione della Webview.
Questo token deve essere associato a tutti gli script tramite l’attributo nonce,
inclusi il file responsabile della logica del frontend e le librerie esterne per la mi-
glior resa grafica dei messaggi. Così facendo, l’esecuzione di qualunque script che
non presenti un nonce con l’esatto valore generato da getNonce verrà bloccata,
impedendo eventuali tentativi di iniezione di codice.
Infine, per quanto riguarda le altre tipologie di risorse (fogli di stile, immagi-
ni e font), la CSP ne limita il caricamento solo da fonti interne all’estensione
(webview.cspSource).

4.9.3 Comunicazione bidirezionale frontend-backend

Stabilito il canale di comunicazione bidirezionale tra il frontend e il backend si può
descrivere il meccanismo basato su scambio di messaggi e mediato da ChatService

che consente all’utente di interagire con la chat.
Ciascuno di questi messaggi è un oggetto con una proprietà type che ne definisce la
natura e un contenuto variabile contenente i dati necessari per la sua elaborazione.

18w3.org/TR/CSP3

58 CAPITOLO 4. IMPLEMENTAZIONE

https://www.w3.org/TR/CSP3/

4.9. CHATSERVICE: PANNELLO DI CHAT

Comunicazione frontend → backend

La logica frontend contenuta nel file main.js della Webview cattura le interazioni
dell’utente con l’interfaccia di chat (tramite dei listener che vengono aggiunti sui
componenti HTML d’interesse) e converte tali eventi in messaggi da inviare al
backend, utilizzando il metodo vscode.postMessage.

Poiché ci sono più azioni che l’utente può compiere interagendo con l’interfaccia
di chat, a ciascuna di esse è stato associato un certo tipo di messaggio, che verrà
poi elaborato lato backend. Questi sono:

• userMessage, inviato quando l’utente manda un messaggio all’assistente.

• requestFileSelection, inviato quando l’utente clicca sul pulsante per
aggiungere un file al contesto.

• toggleGrounding, inviato quando l’utente clicca sul pulsante per attivare o
disattivare la funzionalità di grounding.

Comunicazione backend → frontend

Come già visto nella Sezione 4.9.1, i messaggi ricevuti dal frontend passano tramite
il listener registrato in ChatViewProvider, che li inoltra al metodo handleWebv

iewMessage di ChatService. Tale metodo, in base al tipo di messaggio ricevuto,
si occupa poi di invocare la logica opportuna.
Ad esempio, in seguito alla ricezione di un messaggio utente (ovvero un messaggio
frontend di tipo userMessage), viene creato un prompt “arricchito” contenente sia
il testo inviato dall’utente che il contesto della chat (file e cronologia), invocando
AIService per generare la risposta dell’assistente.

Terminata l’elaborazione di un messaggio ricevuto, il backend invierà a sua volta
un messaggio al frontend (tramite il metodo webview.postMessage) per consentire
l’aggiornamento dell’interfaccia del pannello di chat.

CAPITOLO 4. IMPLEMENTAZIONE 59

4.9. CHATSERVICE: PANNELLO DI CHAT

4.9.4 Persistenza dello stato della chat

Poiché il contenuto di una Webview viene eliminato quando l’utente chiude il
pannello ad essa associato o l’IDE stesso, è necessario implementare un meccanismo
che consenta di ripristinare lo stato della chat, ovvero la cronologia dei messaggi e i
file aggiunti al contesto, in seguito alla riapertura del pannello da parte dell’utente.

Per farlo sono stati valutati due possibili approcci: mantenere lo stato della chat
lato backend oppure lato frontend. Dopo varie considerazioni si è scelto di adottare
quest’ultima soluzione, poiché la prima introduce il problema di dover sincronizzare
il frontend con lo stato presente lato backend ogni volta che la chat viene riaperta.
Tale approccio comporterebbe anche un maggior flusso di messaggi scambiati tra
i due lati, introducendo della complessità aggiuntiva, poiché il frontend dovrebbe
richiedere lo stato salvato lato backend ad ogni riapertura della chat, oltre che ad
inviargli vari messaggi di sincronizzazione in seguito alle azioni dell’utente che ne
modificano lo stato, come la rimozione di un file dal contesto.

Al fine di gestire lo stato della chat lato frontend è stato utilizzato il meccanismo di
persistenza per le Webview fornito dall’API di VS Code19, che consente di salvare
e ripristinare lo stato tramite i metodi vscode.setState e vscode.getState.
Come si può vedere dal codice riportato nel Listato 4.21, in seguito all’apertura
del pannello di chat il frontend tenta di recuperare lo stato precedente tramite
getState, creandone uno vuoto in caso questo non esista. Ogni volta che lo stato
viene modificato (in seguito all’invio di un nuovo messaggio, l’aggiunta/rimozione
di un file dal contesto o il reset della chat), il nuovo stato aggiornato viene salvato
tramite setState.

1 (function () {

2 const vscode = acquireVsCodeApi();

3 const oldState = vscode.getState();

4

5 let messages = oldState.messages || [];

6 let activeFiles = oldState.activeFiles || [];

7 ...

8 // request current file state from backend

9 vscode.postMessage({

19code.visualstudio.com/api/extension-guides/webview#persistence

60 CAPITOLO 4. IMPLEMENTAZIONE

https://code.visualstudio.com/api/extension-guides/webview#persistence

4.9. CHATSERVICE: PANNELLO DI CHAT

10 type: "requestCurrentFile"

11 });

12 ...

13 // UI initialization

14 const messagesContainer = document.querySelector("#chat-messages");

15

16 if (messages.length > 0) {

17 showPreviousMessages();

18 }

19 updateActiveFilesUI();

20 messagesContainer.scrollTop = messagesContainer.scrollHeight;

Listato 4.21: Ripristino dello stato della chat lato frontend.

Aggiornamento del file corrente

Un ultimo elemento necessario al ripristino della chat è il file corrente, cioè quello
attualmente aperto nell’editor. Questo dato, essendo dinamico, non può essere
recuperato dallo stato in quanto potrebbe risultare non aggiornato.
Si supponga, ad esempio, che l’utente chiuda la chat con un determinato file aperto
per poi riaprirla solo dopo aver selezionato un altro file: se l’informazione relativa
al file corrente fosse stata memorizzata nello stato, alla seconda apertura della chat
verrebbe ripristinato il valore associato al vecchio file anziché quello attualmente
aperto.

Per ovviare al problema, come si può vedere dall’implementazione riportata nel
Listato 4.22, ogni volta che la chat viene riaperta il frontend invia un messag-
gio di tipo requestCurrentFile al backend. Tale messaggio viene inoltrato a
ChatService che, tramite la classe ChatContextManager, risponde con il file at-
tualmente aperto nell’editor inviando un messaggio di tipo updateCurrentFile.
Inoltre, per far sì che il file corrente mostrato nella chat rifletta sempre quello effet-
tivamente aperto nell’IDE, all’attivazione di ChatContextManager viene registrato
un listener per l’evento VS Code onDidChangeActiveTextEditor (invocato ogni
volta che l’utente cambia il file attivo), così da poter immediatamente aggiornare
il frontend.

1 /* Inside ChatServiceImpl */

2 public async handleWebviewMessage(data: any): Promise<void> {

CAPITOLO 4. IMPLEMENTAZIONE 61

4.9. CHATSERVICE: PANNELLO DI CHAT

3 switch (data.type) {

4 case "requestCurrentFile":

5 this.contextManager.sendCurrentFileToWebview();

6 break;

7 ...

8

9 /* Inside ChatContextManagerImpl */

10 // called by ChatService after the chat panel gets created

11 public setWebview(webview: vscode.WebviewView): void {

12 this.webview = webview;

13 this.editorChangeDisposable = vscode.window.onDidChangeActiveTextEditor(

14 this.updateCurrentFile,

15 this

16);

17 this.updateCurrentFile(vscode.window.activeTextEditor);

18 }

19 ...

20 private updateCurrentFile(editor?: vscode.TextEditor): void {

21 if (...) { // check if there's an open file

22 const filePath = editor.document.uri.fsPath;

23 if (this.webview) {

24 this.webview.webview.postMessage({

25 type: "updateCurrentFile",

26 filePath: filePath,

27 });

28 }

29 ...

30 }

31 }

Listato 4.22: Meccanismo di aggiornamento del file corrente mostrato nella chat.

62 CAPITOLO 4. IMPLEMENTAZIONE

Capitolo 5

Dimostrazione

In questo breve capitolo verranno illustrate le funzionalità dell’assistente AI rea-
lizzato, fornendo una serie di esempi concreti volti a dimostrare il rispetto dei vari
requisiti definiti in fase di analisi.

5.1 Interazione contestuale

Come richiesto dal RF1, l’assistente espone vari comandi di interazione conte-
stuale, implementati in modo tale che l’utente possa limitare la zona d’intervento
dell’assistente alla sola porzione di codice selezionata nell’editor (RF2).
In Figura 5.1 viene mostrato l’utilizzo del comando di “Edit”, che consente modif-
care il codice sulla base di istruzioni fornite in linguaggio naturale.

Figura 5.1: L’utente seleziona la funzione fibonacci, invoca il comando di “Edit”
e inserisce nell’apposita input box la richiesta di renderla più efficiente.

CAPITOLO 5. DIMOSTRAZIONE 63

5.2. CHAT

Al termine dell’elaborazione, a prescindere dal comando di interazione conte-
stuale invocato, l’assistente presenta all’utente le modifiche effettuate, offrendo
la possibilità di confermarle o annullarle, come mostrato in Figura 5.2.

Figura 5.2: In seguito alla richiesta di ottimizzazione dell’utente, l’assistente pro-
pone un’implementazione più efficiente del metodo fibonacci.

5.2 Chat

5.2.1 Mantenimento della cronologia di conversazione

In Figura 5.3 viene mostrato come l’assistente integri il contesto del file attivo con
la cronologia della conversazione per sostenere un dialogo coerente con l’utente, in
linea con il RF3.

5.2.2 Aggiunta di risorse al contesto

Come richiesto dal RF4, l’utente può arricchire il contesto della conversazione
allegando dei file all’interno della chat, in modo che l’assistente possa utilizzarne
il contenuto per fornire risposte pertinenti.

64 CAPITOLO 5. DIMOSTRAZIONE

5.2. CHAT

Figura 5.3: Dimostrazione del mantenimento della cronologia della chat. Innanzi-
tutto l’utente richiede all’assistente quale sia l’algoritmo presente nel file corren-
te sort.js, che viene correttamente identificato dall’assistente come merge sort.
Grazie al mantenimento della cronologia della conversazione, l’assistente compren-
de la domanda successiva (“how can you tell?”) come una richiesta di spiegazioni
sulla sua precedente affermazione, fornendo le relative motivazioni.

Per dimostrare questa capacità, è stato preparato uno scenario nel quale viene
richiesto all’assistente di generare un diagramma UML che rappresenti l’intera
architettura di una gerarchia di classi Java distribuita su file sorgente distinti.
Tale operazione richiede necessariamente che l’assistente acceda al contenuto di
tutti i file forniti, per poter mappare correttamente le relazioni di ereditarietà tra
le diverse classi.

In Figura 5.4 viene mostrata la richiesta dell’utente e in Figura 5.5 il diagramma
(corretto) prodotto dall’assistente.

1mermaid.js.org/

CAPITOLO 5. DIMOSTRAZIONE 65

https://mermaid.js.org/

5.2. CHAT

Figura 5.4: L’utente allega diversi file sorgente Java (visibili sotto l’area di input)
al contesto della conversazione e richiede all’assistente di generare un diagramma
UML in formato Mermaid1 della gerarchia delle classi.

Figura 5.5: Diagramma UML generato dall’assistente sulla base dei file Java ag-
giunti al contesto, che modella correttamente la gerarchia delle classi.

66 CAPITOLO 5. DIMOSTRAZIONE

5.2. CHAT

5.2.3 Grounding

Come richiesto dal RF6, l’assistente è dotato di una funzionalità di grounding che,
se attiva, gli consente di effettuare ricerche sul web qualora ritenuto necessario.
Per dimostrare tale capacità, l’assistente è stato interrogato su un’informazione
estremamente specifica (l’identità di un particolare utente GitHub).
Come mostrato in Figura 5.6, se il grounding è attivo l’assistente reperire le infor-
mazioni necessarie dal web, citando la query di ricerca utilizzata in fondo alla ri-
sposta fornita. Quando la stessa domanda viene posta con il grounding disattivato,
l’assistente non è più in grado di fornire una risposta.

Figura 5.6: Dimostrazione dell’utilizzo della funzionalità di grounding all’interno
della chat: a sinistra la funzionalità è attiva, mentre a destra è stata disattivata.

CAPITOLO 5. DIMOSTRAZIONE 67

5.3. INLINE COMPLETION

5.3 Inline completion

Come richiesto dal RF7, l’assistente è in grado di fornire suggerimenti di completa-
mento del codice in tempo reale, analizzando il contesto del file corrente (incluso il
codice già presente, i commenti e il linguaggio di programmazione) per anticipare
l’intento del programmatore e proporre frammenti di codice pertinenti.
In Figura 5.7 è riportato un esempio di tale funzionalità in azione.

Figura 5.7: Esempio di inline completion per un file Java.

5.4 Istruzioni personalizzate

Come richiesto dal RF8, l’utente ha la possibilità di fornire direttive aggiuntive
per personalizzare il comportamento dell’assistente, dichiarandole all’interno di un
apposito file di configurazione (.ai/agentInstructions.md).
Nell’esempio riportato in Figura 5.8 si può vedere come l’output del comando di
interazione contestuale “Docs” (che genera documentazione) sia stato modificato
sulla base delle indicazioni fornite dell’utente.

68 CAPITOLO 5. DIMOSTRAZIONE

5.4. ISTRUZIONI PERSONALIZZATE

Figura 5.8: Dimostrazione dell’effetto delle istruzioni personalizzate. In alto, il file
di configurazione agentInstructions.md dove l’utente ha richiesto che la scrit-
tura della documentazione sia fatta in italiano. In basso, il risultato: in seguito
all’esecuzione del comando “Docs”, l’output dell’assistente rispetta la regola sulla
lingua imposta dall’utente.

CAPITOLO 5. DIMOSTRAZIONE 69

Capitolo 6

Conclusioni

L’obiettivo principale della tesi era quello di approfondire la conoscenza degli as-
sistenti alla programmazione basati sull’intelligenza artificiale attraverso un ap-
proccio prevalentemente pratico. In seguito all’identificazione delle funzionalità
principali di un simile prodotto già diffuso sul mercato (GitHub Copilot), è stato
realizzato un prototipo ampiamente soddisfacente in grado di replicare con successo
le principali funzionalità che caratterizzano un AI-assisted IDE moderno.

L’effettiva integrazione dell’assistente all’interno di un IDE affermato e maturo
come Visual Studio Code si è rivelato uno dei compiti più onerosi, che ha richiesto
un’approfondita fase di studio preliminare necessaria a comprendere le modalità di
integrazione con l’ambiente. A questa sfida tecnica si è affiancata anche quella di
rimanere al passo con la rapida evoluzione del settore dell’intelligenza artificiale: le
API per l’interazione con i modelli sono soggette a continui cambiamenti e, anche
durante il periodo di realizzazione di questo progetto, sono emersi nuovi standard
e tecnologie volti a facilitare l’interazione tra strumenti AI-based e servizi esterni,
come il Model Context Protocol (MCP1).

L’affermazione di questi standard sta inevitabilmente plasmando la nuova gene-
razione di assistenti AI, nei quali le funzionalità agentiche stanno assumendo un
ruolo sempre più prominente e sofisticato. Alla luce di ciò, è ragionevole identifi-

1modelcontextprotocol.io/docs/getting-started/intro

70 CAPITOLO 6. CONCLUSIONI

https://modelcontextprotocol.io/docs/getting-started/intro

care come naturale evoluzione del progetto l’introduzione di tali capacità.
Un primo passo consisterà nel consentire all’assistente di interagire più liberamente
con l’ambiente di sviluppo locale, eseguendo comandi e manipolando file in manie-
ra autonoma per portare a termine compiti complessi. Successivamente, grazie alla
diffusione di standard emergenti come MCP, sarà possibile estendere ulteriormente
le capacità dell’assistente oltre i confini dell’IDE, abilitando l’integrazione con ser-
vizi esterni come sistemi di controllo di versione, piattaforme di documentazione
o strumenti di CI/CD.

CAPITOLO 6. CONCLUSIONI 71

Bibliografia

[CDJ+24] Zheyuan Cui, Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng, and
Tobias Salz. The effects of generative ai on high skilled work: Evidence
from three field experiments with software developers. SSRN, 2024.

[MFP+25] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil,
Vanessa Parli, Njenga Kariuki, Emily Capstick, Anka Reuel, Erik Bry-
njolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Ma-
nyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, Tobi Walsh,
Armin Hamrah, Lapo Santarlasci, Julia Betts Lotufo, Alexandra Ro-
me, Andrew Shi, and Sukrut Oak. Artificial Intelligence Index Report
2025. Technical report, AI Index Steering Committee, Institute for
Human-Centered AI, Stanford University, 2025.

72 BIBLIOGRAFIA

	Sommario
	Introduzione
	Background
	AI-assisted programming e LLMs
	Knowledge cutoff e grounding

	Funzionamento di un assistente AI
	Funzionalità agentiche

	Diffusione degli assistenti AI

	Analisi
	Feature principali di GitHub Copilot
	Inline completion
	Interazione contestuale
	Chat
	Istruzioni personalizzate

	Requisiti funzionali
	Requisiti non funzionali
	Analisi del dominio

	Design
	Architettura service-oriented
	Servizi principali
	ConfigService
	AIService
	ChatService

	Comandi
	Comandi di interazione contestuale

	Implementazione
	Anatomia di un'estensione VS Code
	Strumenti e risorse utilizzate nello sviluppo
	ServiceContainer: DI container
	Garantire type safety nella risoluzione dei servizi

	ConfigService: lettura della configurazione utente
	AIService: interazione con i modelli AI
	Implementazione concreta di un provider

	Servizi secondari
	FileService
	RateLimitService
	LoggingService

	Interazione contestuale
	Implementazione di BaseEditorTransformer
	Implementazione concreta di un comando di interazione contestuale
	Registrazione dei comandi

	Inline completion
	Attivazione e parametri di configurazione
	Meccanismo di richiesta dei completamenti
	Generazione dei completamenti

	ChatService: Pannello di chat
	Inizializzazione del pannello di chat
	Contentuto HTML della Webview
	Comunicazione bidirezionale frontend-backend
	Persistenza dello stato della chat

	Dimostrazione
	Interazione contestuale
	Chat
	Mantenimento della cronologia di conversazione
	Aggiunta di risorse al contesto
	Grounding

	Inline completion
	Istruzioni personalizzate

	Conclusioni
	Bibliografia

