
Alma Mater Studiorum · University of Bologna

Department of Physics and Astronomy ”Augusto Righi”

Bachelor Degree in Physics

A new algorithm for the online pixel vertex
reconstruction at the CMS Experiment

Supervisor:

Prof. Francesco Giacomini

Co-Supervisors:

Dr. Felice Pantaleo, CERN
Dr. Simone Balducci, CERN

Submitted by:

Jonayed Ahmed

Academic Year 2024/2025

Abstract

Negli esperimenti di fisica delle alte energie al Large Hadron Collider al CERN, la
ricostruzione delle traiettorie delle particelle cariche e la loro successiva associazione,
vertexing, tramite le loro posizioni di massimo avvicinamento al fascio, sono fondamen-
tali per la corretta interpretazione del processo fisico che ha avuto luogo nella collisione
protone-protone. Il vertexing permette di discriminare i segnali provenienti dal vertice
primario che potrebbero contenere della eccitante nuova fisica, dalle meno interessanti
collisioni sovrapposte (pile-up).
Questa tesi presenta un nuovo algoritmo di vertexing per la ricostruzione online dell’esperi-
mento CMS al CERN. L’algoritmo utilizza CLUEstering, una libreria di clustering pesato
e density-based ad alte performance per clusterizzare le traiettorie di particelle cariche
nel detector a Pixel e ricostruire cos̀ı i pixel-vertex. CLUEstering è sviluppato utiliz-
zando alpaka, una libreria che permette di scrivere codice in maniera portabile, i.e.
eseguibile su una vasta gamma di processori, mantenendo prestazioni ottimali. Il nuovo
algoritmo è stato completamente integrato nel software di simulazione e ricostruzione di
CMS (CMSSW) ed è stato confrontato con l’algoritmo attualmente utilizzato in CMS
su un dataset di simulazione di eventi contenenti coppie di quarks tt̄ con 200 collisioni
protone-protone sovrapposte.

In high energy physics experiments at the Large Hadron Collider at CERN, track re-
construction of charged particles and their subsequent association, known as vertexing,
through their points of closest approach to the beam, is fundamental for the correct inter-
pretation of the physical process that occurred in the proton-proton collision. Vertexing
allows one to distinguish signals coming from the primary vertex, which may contain
exciting new physics, from the less interesting overlapping collisions (pile-up).
This thesis presents a new vertexing algorithm for the online reconstruction in the CMS
experiment at CERN. The algorithm uses CLUEstering, a high-performance, weighted,
density-based clustering library, to cluster charged particle trajectories in the Pixel de-
tector, thereby reconstructing pixel vertices. CLUEstering is developed using alpaka, a
library that allows writing portable code, i.e. executable on a wide range of processors,
while maintaining optimal performance. The new algorithm has been fully integrated
into the CMS simulation and reconstruction software (CMSSW) and has been compared
with the algorithm currently used in CMS on a simulated dataset of events containing
quark pairs tt̄ with 200 overlapping proton-proton collisions.

2

Contents

1 LHC and CMS 6
1.1 The CMS Experiment . 7
1.2 Luminosity and Pileup . 9

2 Vertexing in High Energy Physics 12
2.1 Introduction to Vertex Reconstruction 12
2.2 Pixel Detector and Track Reconstruction 12

2.2.1 Creation of n-tuplets . 14
2.3 Divisive Cluterizer (Existing Algorithm) 14

2.3.1 Track Clustering Along the z-axis 15

3 Overview of clustering techniques 18
3.1 Heterogeneous Computing . 18

3.1.1 CPU vs GPU Architectures . 18
3.1.2 How CPUs and GPUs work together 19

3.2 The alpaka Library . 19
3.2.1 Integration within CMSSW . 21

4 Pixel-vertexing in CMSSW with CLUEstering 22
4.1 Vertexing Performance: Definitions . 22
4.2 CLUstering of Energy . 23

4.2.1 Spatial Indexing . 23
4.2.2 Clustering . 24
4.2.3 Parallelization . 25
4.2.4 The CLUEstering library . 26

4.3 Pixel-Vertexing in CMSSW . 27
4.3.1 Structure of Array (SoA) Generation 27
4.3.2 Implementation . 28

4.4 Results . 29

4

1 LHC and CMS

The LHC (Large Hadron Collider) is the largest and most powerful particle acceler-
ator [1]. It accelerates two counter-rotating beams of protons, or heavy ions, which
collide at four interaction points: CMS (Compact Muon Solenoid), ALICE [3] (A Large
Ion Collider Experiment), ATLAS [2] (A Toroidal LHC Apparatus) and LHCb [4] (LHC
beauty), as shown in Figure 1. When two beams collide, about 40 million times per
second, they produce a spray of secondary particles that travel in many different direc-
tions. Most of these are well-known, relatively low-energy particles, but the collisions
can also create much heavier and potentially new particles. These heavy states cannot
be observed directly because they decay almost instantly into lighter particles, which
may then decay further. To study such events, the four main LHC detectors are placed
around the collision points. Their purpose is to detect, track, and measure the prop-
erties of all the outgoing particles so that the original event can be reconstructed and
understood.

Figure 1: Accelerator Complex in 2022 [5]

6

1.1 The CMS Experiment

The Compact Muon Solenoid (CMS) detector sits at one of the four collision points of
the LHC accelerator. It was designed to investigate the nature of the electroweak sym-
metry breaking, as well as studying the strong interaction, verifying the mathematical
consistency of the Standard Model, extending the study of QCD matter, and exploring
new symmetries, new forces, or constituents. It is made up of concentric detector layers
(Fig. 2), wrapping around the beam direction, and employs the most powerful supercon-
ducting solenoid magnet ever made, with a magnetic field of 3.8 T. CMS can recreate a
”picture” of the collisions by measuring the momenta and the energies of nearly all the
stable particles produced. This is done by:

• Bending Particles: a strong magnet bends the charged particles as they move out
from the collision point. This serves two purposes: identifying the charge of the
particle, since opposite charged particles bend in opposite directions; and measur-
ing the momentum, as high momentum particles bend less than low momentum
ones.

• Identifying Tracks: in order to precisely identify the paths taken by the particles, a
silicon tracker made of individual sensors arranged in concentric layers is employed.
Charged particles interact electromagnetically with these sensors, producing hits,
that are then joined together to reconstruct the track.

• Measuring Energy: understanding what happens at the collision point requires
detailed information about the energies of the particles produced in each event. In
the CMS detector, this energy data is gathered using two types of calorimeters.
The Electromagnetic Calorimeter (ECAL), the inner layer, measures the energy of
electrons and photons by fully absorbing them. Hadrons—particles composed of
quarks and gluons—pass through the ECAL and are stopped by the outer layer,
known as the Hadron Calorimeter (HCAL).

• Detecting Muons: the last type of particle that CMS can directly detect is the
muon. Muons are part of the same particle family as electrons but are about 200
times more massive. Because they can pass through the calorimeters without being
stopped, dedicated sub-detectors are required to track them as they travel through
the CMS detector. These muon detectors are embedded within the return yoke
of the solenoid. Thanks to CMS’s powerful magnet, a muon’s momentum can be
measured both inside the superconducting coil using tracking systems and outside
of it using the muon chambers.

7

Figure 2: Diagram of the CMS detector

In Figure 3, the coordinate system used in CMS is shown. It is a right-handed system
whose origin is set at the nominal interaction point. The x -axis points toward the
center of the LHC ring, the y-axis points upwards, and the z -axis follows the anticlockwise
beam direction.

The azimuthal angle ϕ is measured anticlockwise from the positive x-axis and
ranges from −π to +π. The polar angle θ is defined with respect to the positive z-axis.

Because the rest frame of the collision is not known, it is essential to define quantities
that are invariant under boosts along the beam axis. For a particle with momentum p⃗,
the measurable component in the transverse plane is the transverse momentum, p⃗T .

Another important coordinate is the pseudorapidity, defined as

η = − ln tan
θ

2
. (1)

This variable ranges from −∞ along the negative z-axis to +∞ along the positive
z-axis. It takes the value η = 0 at θ = 90◦, η = 0.88 at θ = 45◦, and η = 2 at θ = 15◦,
illustrating its strong dependence on the polar angle.

8

Figure 3: The CMS coordinate system is right-handed, with its origin located at
the nominal interaction point. The x -axis points toward the center of the LHC ring,
the y-axis points upwards, and the z -axis follows the anticlockwise beam direction. The
azimuthal angle ϕ is measured anticlockwise from the positive x-axis, within the range
[−π, π], while the polar angle θ is measured from the positive z-axis. The pseudora-
pidity η extends from −∞ along the negative z-axis to +∞ along the positive z-axis.

1.2 Luminosity and Pileup

Luminosity is a central concept in collider physics, as it characterizes the performance of
a particle accelerator in terms of its ability to produce collisions. It is formally defined
as the proportionality factor between the number of collisions occurring per unit time
dN/dt and the interaction cross section σ for a given process [6]:

dN

dt
= L · σ (2)

and its unit of measure is thus cm−2s−1. Another important operational parameter
at the LHC is the so-called pileup (PU). Pileup refers to the number of simultaneous
proton–proton interactions that take place in a single bunch crossing. Since the LHC
operates with multiple proton bunches circulating at high frequency, each bunch crossing
can give rise not to a single collision but to several, which are recorded on top of each
other in the detector. The average number of such overlapping interactions is given by:

⟨PU⟩ = Lσ
Nbf

(3)

where Nb is the number of bunches, and f is the revolution frequency.
It is clear that these parameters quantify the number of events occurring every second,

9

and consequently the amount of data to analyze. The LHC entered Run-3 in July 2022,
operating at its maximum collision energy of 13.6 TeV. During this period, the average
pileup is 64 and the peak luminosity reaches approximately 2×1034cm−2s−1 [7]. However,
with the High Luminosity (HL) upgrade, it will reach 7× 1034cm−2s−1 with an average
PU of 200 proton-proton collisions. To make the most of the higher luminosity, the CMS
experiment will have to increase the readout rate from 100 kHz to 750 kHz, requiring
larger processing power [8].

10

2 Vertexing in High Energy Physics

2.1 Introduction to Vertex Reconstruction

In high-energy physics experiments, a fundamental goal is to precisely determine the
locations of particle collisions, and the decay points of unstable particles. Accurate ver-
tex reconstruction is essential for several reasons. First, it allows for the identification
and separation of multiple simultaneous proton-proton collisions which occur within the
same bunch crossing. Second, the reconstructed vertex positions are critical inputs for
tracking algorithms, enabling the association of particle trajectories with their corre-
sponding interaction points. Third, vertex information is necessary for many physics
analyses, such as the reconstruction of heavy-flavor hadrons, the measurement of life-
times of short-lived particles, and the identification of jets originating from b-quarks (b-
tagging). The challenge in vertex reconstruction arises from the large number of charged
particle tracks produced in each collision, each measured with finite spatial resolution.
Tracks originating from the same vertex are spatially correlated along the beam axis, but
the presence of detector measurement uncertainties and overlapping events complicates
the clustering process. Consequently, sophisticated algorithms are required to identify
track groupings that correspond to real physical vertices while minimizing the inclusion
of spurious combinations. In the context of the CMS Phase-1 pixel detector, which pro-
vides high-precision measurements of charged particle hits in three-dimensional space,
vertex reconstruction typically begins with one-dimensional clustering along the beam
axis (z-axis). The high granularity and near-hermetic coverage of the pixel detector allow
for precise estimation of the z-coordinate of each track at the point of closest approach to
the beam line. By grouping tracks based on their longitudinal proximity and iteratively
refining these groups, vertexing algorithms can reconstruct both primary and secondary
vertices with sub-millimeter resolution. The following sections describe the practical im-
plementation of such an algorithm, focusing on the clustering of tracks along the z-axis
and the handling of outliers to produce stable and accurate vertex candidates.

2.2 Pixel Detector and Track Reconstruction

The current CMS Phase-1 pixel detector consists of 1,856 silicon sensors, each com-
prising 66,560 individual pixels, which together correspond to a total active area of
approximately 1.9 m2. These sensors are arranged in a geometry designed to provide
precise spatial resolution and tracking coverage: four concentric barrel layers (L1–L4
in Fig. 4) surround the beam line in the central region, while three disks (D1–D3 in
Fig. 4) are placed on each end of the detector. The overlap between neighboring sensors
in the azimuthal direction ensures nearly continuous coverage, often referred to as her-
meticity, which is essential for reconstructing particle trajectories with high efficiency.
Nevertheless, despite this careful design, there remain regions of incomplete coverage.

12

Specifically, small gaps appear along the beam direction, in the radial direction within
the endcap regions, and in the transition zones between the barrel layers and the disks.
These geometric limitations, while minimized as much as possible, can influence track-
ing performance and must be taken into account in both detector simulation and data
analysis.

Figure 4: Layout of the CMS Phase-1 pixel detector compared to the original detector
layout, in longitudinal view [11]

The reconstruction of tracks begins with a local reconstruction of the electrical signals
generated as charged particles traverse the pixel detector. These raw signals are then
interpreted and digitized into so-called digis. Each digi corresponds to a single pixel and
contains essential information such as the measured charge and the position coordinates
of the hit. To handle the large number of pixels efficiently, this process is highly paral-
lelized: each detector module is assigned to an independent block of threads, and within
each block, every digi is given a unique index. This index ensures that each digi can be
processed by a separate thread without conflict, thereby exploiting the computational
power of parallel architectures.
Once the digis have been generated, the clusterization step begins. At this stage, the
digis are arranged on a two-dimensional grid that reflects the geometry of the pixel ma-
trix. Whenever digis are found to be adjacent to one another, they are grouped together
in order to represent the charge deposited by a single particle. The digi with the smallest
index in a connected group is designated as the seed, serving as the representative for the
cluster. Subsequently, a dedicated thread is assigned to each seed, which facilitates the
organization of the clustering process across multiple computing threads. To ensure that
each cluster receives a distinct identifier, a global atomic counter is incremented by all
active threads. As a result, every seed acquires a unique index that can be consistently

13

tracked throughout the subsequent stages of the reconstruction chain.

2.2.1 Creation of n-tuplets

The next stage in the track reconstruction workflow is the formation of n-tuplets of
clusters, which serve as the building blocks for the later fitting procedure used to extract
the final track parameters. This process begins with the identification of doublets, defined
as pairs of clusters whose hits originate from adjacent detector layers. In order for two
clusters to be linked into a doublet, they must satisfy specific geometrical and physical
constraints. For instance, the relative positions of the hits must be consistent with
the expected trajectories of charged particles propagating outward from the interaction
point, and the cluster sizes must fall within a range compatible with the passage of
a single particle. Once a sufficient number of valid doublets have been constructed,
the algorithm proceeds to the creation of triplets. This is accomplished by testing, in
parallel, all doublets that share a common hit and attempting to extend them with an
additional cluster from the next detector layer. A critical compatibility check at this
stage involves ensuring that the three hits align within the R–Z plane (the plane defined
by the radial distance from the beam axis and the longitudinal coordinate along the
beam line). However, this is not enough, since multiple n-tuplets could correspond to
the same particle. To resolve the ambiguity, among all the aligned doublets that share
the outermost hit, only the shortest one is kept and among all the tracks that share a
hit-doublet, only the ones with the largest number of hits are kept. The fits are then
performed in parallel using one thread per n-tuplet. The fitting procedure accounts
for realistic effects such as energy losses and includes the Broken Line Fit [12], which
accounts for multiple scattering due to the interaction of the particles with the detector.
Finally, the fitted tracks are used to make pixel vertices.

2.3 Divisive Cluterizer (Existing Algorithm)

Divisive Clusterizer is a 1-dimensional clustering algorithm used in vertex finding —
specifically to identify primary vertices along the beam (z) axis from a set of tracks. It
groups tracks based on their z positions (typically the track’s distance along the beamline
at the point of closest approach). The goal is to find clusters of tracks that come from the
same collision vertex. The “divisive” part refers to the algorithm’s strategy: it recursively
divides clusters of tracks until each cluster corresponds to a well-defined vertex. The core
idea is the following:

1. Tracks are sorted by z coordinate

2. Adjacent tracks that are close enough (within a zSep threshold) are grouped

3. Each group is tested to see if it contains enough tracks (nTkMin)

14

4. Within each group: outlier tracks far from the cluster’s center (more than zOffset)
are iteratively cleaned out. Cleaned clusters are merged to form stable vertex
candidates. Tracks discarded from one cluster are examined to see if they can form
a new one.

5. This continues until all tracks are assigned to clusters or discarded

2.3.1 Track Clustering Along the z-axis

After the tracks are sorted according to their z-coordinate, the algorithm proceeds by
evaluating the longitudinal distance between consecutive tracks. Specifically, for each
track i, the distance

∆zi = zi − zi−1 (4)

to the previous track is computed. As long as this distance remains below a predefined
threshold, zSep, the track is added to a temporary collection intended for clustering.
This step effectively groups together tracks that are close in the longitudinal dimension,
providing an initial approximation of potential vertex candidates.

When a track is encountered for which ∆zi > zSep, the current collection is passed
to the method makeCluster1Ds. This method serves a dual purpose: it first identifies
and removes outliers, and then it refines the position of the resulting cluster. Outliers
are defined as tracks whose z-coordinate lies further from the weighted mean position of
the cluster than a configurable tolerance, theZOffset. The weighted mean z-position of
cluster k is calculated as:

z̄k =

∑
i∈Ik

zi
σ2
i∑

i∈Ik

1

σ2
i

(5)

where zi is the measured z-coordinate of track i, σi is the corresponding uncertainty,
and Ik denotes the set of tracks assigned to cluster k. The use of the inverse-variance
weighting ensures that tracks with smaller measurement uncertainties contribute more
strongly to the estimated cluster position, which improves the robustness of the vertex
reconstruction.

For each track in the cluster, the algorithm computes a normalized distance from the
cluster’s mean position:

di =


|zi − z̄k|

σi

, if useError = true

|zi − z̄k|, otherwise
(6)

15

Here, the choice of using the uncertainty σi allows the algorithm to account for the
differing precision of each track measurement. Tracks for which di > theZOffSet are
considered outliers and temporarily removed from the cluster. These outliers are not
discarded; instead, they are collected together and subsequently merged to form a new
cluster. This merging process ensures that tracks initially separated by large z-distances
are re-evaluated in the context of forming additional vertex candidates.

This iterative procedure continues until the number of tracks in the outlier collection
falls below a minimum threshold, nTkMin. By doing so, the algorithm guarantees that
only statistically significant clusters are kept, preventing spurious clusters formed by
isolated tracks. The result is a refined set of one-dimensional clusters, each representing
a localized grouping of tracks along the z-axis, which can then be further processed to
reconstruct primary and secondary vertices with improved accuracy.

16

3 Overview of clustering techniques

3.1 Heterogeneous Computing

Modern high-energy physics (HEP) experiments need huge amounts of computing power.
The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC)
measures proton–proton collisions at rates of up to 40 million per second. This produces
tens of petabytes of data every year [1]. The CMS Software (CMSSW) framework is
used to reconstruct, simulate, and analyze these events, and it must do so under tight
time and resource limits.

In the past, this work was done using only general-purpose Central Processing Units
(CPUs). But as the amount of data has grown, and reconstruction algorithms have
become more complex, CPUs alone are no longer enough. This has led to the use of
heterogeneous computing — systems that combine CPUs with special accelerators like
Graphics Processing Units (GPUs). In such systems, each processor type does the work
it is best at: CPUs handle complex, step-by-step tasks, while GPUs can process large
amounts of data in parallel.

In CMSSW, heterogeneous computing makes it possible to run heavy, parallel work-
loads — such as the clustering algorithm in this thesis — on the GPU, while the CPU
manages the workflow, input/output operations, and tasks that are not suitable for the
GPU. This chapter explains the differences between CPU and GPU architectures and
how these differences affect parallel computing in large scientific applications.

3.1.1 CPU vs GPU Architectures

A typical CPU is made up of several powerful cores, usually 4-64 in modern servers, each
containing an Arithmetic Logic Unit (ALU), a control unit, registers, and small but fast
memory units called caches, all connected to a larger dynamic random access memory
(DRAM). Caches are arranged in levels:

1. L1 cache: Very small (tens of KB) but extremely fast, located directly inside the
core.

2. L2 cache: Larger (hundreds of KB), a bit slower, often private to each core.

3. L3 cache: Shared between all cores, several MB in size, slower than L1/L2 but still
much faster than DRAM.

On the other hand, GPUs are throughput-optimized devices, designed to run tens of
thousands of lightweight threads in parallel. They sacrifice the complex control logic
of CPUs in favor of more arithmetic units, allowing huge numbers of operations to be
executed at once. The GPU is divided into several Streaming Multiprocessors (SMs),

18

each containing arithmetic units, as well as registers and a small shared memory area.
The SM schedules and executes groups of threads called warps, each executing the same
instruction at the same time (SIMT - Single Instruction, Multiple Threads). Each core
has an L1 cache, while all the SMs share an L2 cache. There is also an external DRAM
that stores global memory, and a small amount of shared memory that allows threads in
a block to communicate.

Figure 5: Architectures of a typical CPU and GPU

3.1.2 How CPUs and GPUs work together

It is clear now that CPUs and GPUs are designed for different purposes and can comple-
ment each other: while a CPU’s aim is to execute a set of instructions, called a thread,
as fast as possible, the GPU’s goal is executing thousands of them in parallel, making
up for the slower speed per thread. In CMSSW this balance is particularly useful: the
CPU is responsible for reading and preparing the event data, after which the GPU takes
over to perform the heavy, parallel tasks such as clustering or track fitting. Once the
GPU finishes, the CPU processes the results and continues with the next steps of the
reconstruction.

3.2 The alpaka Library

GPUs are now widely used in many fields of science and technology, including machine
learning, image and signal processing, computational chemistry, and high-energy physics.
In addition to GPUs, there are other types of accelerators such as FPGAs, TPUs, and
custom ASICs. Each of these devices often comes with its own programming model
and toolchain — for example, CUDA is specific to NVIDIA GPUs, while HIP/ROCm

19

is used for AMD devices. This variety creates a significant challenge: software written
for one platform cannot easily run on another without major changes. Adapting a
large codebase each time the hardware changes is time-consuming and error-prone. To
address this, developers need programming models that allow them to write algorithms
in a single, unified way, while still being able to run them efficiently on different kinds of
accelerators. This is the aim of alpaka [13], a header-only C++20 library that provides
performance portability across different back-ends using CUDA, HIP, SYCL, OpenMP
2.0+, std::thread, and also serial execution. The alpaka abstraction of parallelization is
a multidimensional grid of threads, made up of four main hierarchies called grid, block,
thread, element (Fig.6). The algorithms to be parallelized are called kernels. They
consist of a common set of instructions executed by all threads in a grid, and they are
defined as function objects with specific requirements, while the accelerator type and
work division handle the parallelization and the mapping of threads and blocks.

Figure 6: The alpaka parallelization hierarchy consists of a grid of blocks, and each block
consists of threads, that in turn process multiple elements. [13]

Each parallelization level corresponds to a specific memory level:

• Grid: Set of blocks with a large global memory, accessible by all threads in all
blocks. Grids are independent from one another, and can thus be executed sequen-
tially or in parallel.

• Block: Set of threads with small shared memory, accessible all threads in the same
block. Blocks on a grid are independent of each other and can thus be executed
sequentially or in parallel.

• Thread: Threads have access to their private registers, the shared memory of the
block and the global memory. Threads in a block are independent from each other
and can thus be executed sequentially or in parallel.

20

• Element: This level is necessary since the optimal workload on threads depends
on the backend. For example on CPUs, each thread often benefits from SIMD (Sin-
gle Instruction, Multiple Data) execution, while on GPUs it is more beneficial to
scale the number of threads employed instead. Furthermore, on some architectures
processing multiple elements per thread may improve caching.

3.2.1 Integration within CMSSW

The alpaka module integration in CMSSW is a separate layer on top of the core frame-
work, and certain modules get compiled once for each enabled alpaka backend.
In order to do that without having to reuse any code, they are defined in the namespace
ALPAKA ACCELERATOR NAMESPACE, a macro substituted with a concrete, backend-specific
namespace name to guarantee different symbol names for all backends, which can take
the following values:

• CPU serial: alpaka serial sync

• CUDA (NVIDIA): alpaka cuda async

• ROCm (AMD): alpaka rocm async

The namespace also defines several classes, to implement fully asynchronous produc-
ers (global::EDProducer<...>), to give access to host-side and device-side data prod-
ucts (device::Event, device::EventSetup), and to consume/produce device-side data
products (device::EDGetToken<T> / device::EDPutToken<T>).

21

4 Pixel-vertexing in CMSSW with CLUEstering

4.1 Vertexing Performance: Definitions

To assess the performance of a vertexing algorithm (validation), several quantitative
parameters are calculated. These parameters are used to compare the reconstructed ver-
tices produced by the algorithm with the corresponding simulated, or “true” vertices. By
performing this comparison, it becomes possible to evaluate the accuracy and efficiency
of the algorithm in identifying the correct number and position of vertices, as well as
its ability to distinguish closely spaced interaction points. This analysis provides a clear
measure of how well the implementation performs relative to the expected physical truth
and helps identify potential areas for optimization or improvement. New criteria have
been developed to achieve a more robust validation of pixel vertices. In the previous
validation approach, a reconstructed vertex was considered matched to a simulated one
if it satisfied the following conditions:

• |∆z| < 1 mm

• |∆z|/σz < 3

This validation is purely geometrical, which means that a reconstructed vertex could be
matched to a simulated vertex if they are close in z, but their content could still be very
different. In this case the association would match two very different vertices. For this
reason the validation has been improved to add additional criteria on the content of the
vertices. In particular, to have a match between a reco and a sim we can impose a cut
on one of the three following quantities:

• Plain fraction of shared tracks, between the simulated and reconstructed vertex

• Fraction of shared tracks weighted by their transverse momentum squared, p2T

• Fraction of shared tracks weighted by 1/σ2
z , i.e. the resolution of the z of each

track

Ideally each reconstructed vertex should be associated to one, and only one, simulated
vertex. In reality this is never the case, in particular wrongly associated vertices as:

• fake: a reconstructed vertices that isn’t associated to any simulated vertex

• merged, or multi-matched: a reconstructed vertex that is associated to more
than one simulated vertex

• duplicate: a reconstructed vertices that is associated to a simulated vertex, which
in turn is associated to more than one reconstructed vertex

22

With these definitions we can now define the metrics used to validate the quality of a
vertex reconstruction algorithm:

• Efficiency: Fraction of simulated vertices associated with at least one recon-
structed offline vertex.

• Fake rate: Fraction of reconstructed vertices that do not match to any simulated
vertex.

• Split rate: Fraction of reconstructed vertices identified as duplicates.

• Merge rate: Fraction of reconstructed vertices which are associated to more than
one simulated vertex, i.e. multi-matched.

4.2 CLUstering of Energy

CLUstering of Energy (CLUE) is a density-based clustering algorithm that offers easy
parallelization and linear scalability [14]. In CLUE, each sensor pixel is treated as a
two-dimensional point, weighted on its energy.

Like other density-based algorithms, CLUE constructs clusters by identifying the
regions of the data space where the density of points is higher. CLUE divides points into
three classes: seeds, which are the centers of the different clusters and this the points
around which the density is highest, followers, which are the points linked iteratively to
a seed and that make up the clusters and finally the outliers, which are the points that
are not linked to any cluster and are thus discarded as noise. The thing that separates
CLUE from other density-based algorithms is that it’s also weighted, meaning that to
each point can be associated a weight, and this weight gives a measure of the respective
importance of the points, information that is used when computing the local density of
the points.

4.2.1 Spatial Indexing

As shown in Fig. 7, data points can be accessed with high efficiency by partitioning the
space into fixed rectangular bins and employing a spatial index to query local neighbor-
hoods. This strategy avoids looping over the entire dataset for each point, which would
be very demanding computationally. For each layer of the detector, a fixed-grid index is
created by assigning the indexes of the two-dimensional points to the appropriate square
bins in the grid. Formally, for each point i, two sets are defined: Ωd(i) is the collection
of points that lie in the bins intersecting the square window [xi ± d, yi ± d]:

Ωd(i) = {j : j ∈ tiles touched by the square window [xi ± d, yi ± d]} (7)

23

while the d-neighborhood of i, Nd(i), is the set of points within a distance d from i:

Nd(i) = {j : dij < d, j ∈ Ωd(i)} (8)

where it’s clear that Nd(i) ⊆ Ωd(i). Thus, to query Nd(i), the algorithm only needs to
loop over the points in Ωd(i), and since that d is small, and the maximum granularity of
the points is constant, the complexity of this operation is O(1).

Figure 7: Illustration of the fixed grid highlighting Nd and the search window [14]

4.2.2 Clustering

The clustering procedure, shown in Fig. 8, requires the following tunable parameters: dc,
the cut-off distance in the computation of the local density; ρc, the minimum density to
promote a point to a seed and the maximum density to demote a point to an outlier; and
lastly δc and δo are the minimum separation required for seeds and outliers. Firstly, ρ and
δ are calculated for each point, the ones with density ρ > ρc and separation δ > δc are
promoted as seeds. On the other hand, the ones with ρ < ρc and δ > δc are demoted as
outliers. The points that are neither seeds nor outliers are registered to the follower list
of their nearest-higher, and finally, cluster indexes are passed down from seeds through
their follower list.

24

Figure 8: Clustering procedure. (A)Local densities are computed and represented by the
color and size of each point. (B)Nearest-highers are computed, the arrows point from the
nearest-higher of a point, to the point itself. (C) Points are promoted as seeds or demoted as
outliers. (D)Cluster indexes are passed down from seeds to followers [14]

.

4.2.3 Parallelization

The parallelization of CLUE on GPU is achieved by assigning a thread to each point, in
order to construct spatial indexes, compute ρ and δ, promote points to seeds or demote
them to outliers, and register the rest to the lists of followers of their nearest-highers.
Block size for each kernel does not affect performance significantly [14], thus it is set
to 1024. Afterwards, a thread is assigned to each seed to pass down the cluster index.
Since the results of each step are required for the following, synchronization between
threads at the end of each step is necessary and is obtained by implementing each step
as a separate kernel. GPU memory access is optimized with coalescing, by storing all
the points in a single structure of array (SoA). Thread conflicts to access the same data
in the GPU global memory may occur in the following cases:

1. While building the fixed grid spatial index, when multiple points need to register
to the same bin

2. While promoting seeds, when multiple points need to register to the list of seeds

3. While expanding follower lists, when multiple points need to register as followers
of the same seed

Thus, atomic operations are needed in order to avoid these conflicts. This leads to some
microscopic serialization, since during atomic operations, a thread is given exclusive
access to read or write to memory. However, the serialization in cases (1) and (3) is
negligible, as the number of bins and followers of a point is small. On the other hand,
the serialization in case (2) can be costly, given that the number of seeds k is large.
Data transfer between the CPU (host) and the GPU (device) is both computationally
expensive and time-consuming. Therefore, minimizing these memory copy operations is

25

crucial for achieving optimal performance. The overall workflow of the CLUE algorithm
is illustrated in Fig. 9.

HOST DEVICE

mainRun FillTiles

CalculateLocalDensity

CalculateNearestHigher

FindClusters

AssignClustersmainRun

Figure 9: Illustration of the workflow of the CLUE algorithm. Notice how the entire
algorithm is executed on the device, so that the only memory copies with the host
are at the beginning and at the end of the execution, which results in much better
performance [16].

4.2.4 The CLUEstering library

The CLUEstering library [16][17] has been developed as a versatile and extensible soft-
ware package designed for use across a wide range of applications, both within and beyond
High Energy Physics. While it was initially conceived for vertex reconstruction and clus-
tering tasks in particle physics experiments, its generic design enables its application in
diverse domains — such as the identification of forested regions through tree clustering
in satellite imagery, the detection of stellar clusters in astronomical CCD images, and the
implementation of nearest-neighbor searches in latent spaces for machine learning mod-
els. The computational backend of the library is implemented in C++, a language well
known for its high execution speed and close-to-hardware control. This choice ensures
optimal performance and facilitates compatibility with emerging performance-portable
frameworks, many of which are themselves based on C++. However, limiting the library
to a C++ interface would considerably restrict its accessibility, as modern data analysis

26

and machine learning workflows are predominantly implemented in Python. Python has
become the de facto standard language in scientific computing due to its ease of use, ex-
tensive ecosystem, and integration with major frameworks such as PyTorch, Keras, and
Scikit-learn. To bridge this gap, a Python interface was developed for the CLUEstering
library. This interface provides users with a high-level, intuitive means of interacting with
the underlying C++ core, while preserving computational efficiency. It also simplifies
the installation process and broadens the potential user base, making the library more
appealing and accessible to researchers and practitioners across the scientific community.

4.3 Pixel-Vertexing in CMSSW

4.3.1 Structure of Array (SoA) Generation

The code written for this thesis makes extensive use of the SoA classes [15] mentioned
in section 2.1. These classes are generated by preprocessor macros, and in turn, they
generate multiple, aligned columns from a memory buffer, which is allocated separately
by the user and can be located in a space different from the local one. These are
the preferred structures to hold data on the GPU, since the contiguous storage allows
coalesced access on cache line aligned data, as shown in Fig. 10.

Figure 10: AoS and SoA access patterns [15]

A SoA supports three types of elements: numeric columns, targeted to store numeric
classes; scalars, which hold only a single element per SoA; and Eigen columns that
hold vectors and matrices.Layouts divide a memory buffer into columns whose size is
computed at runtime, whereas Views provide the interface to the data via a pointer for

27

each column, making them light structures that can easily be passed to kernels. The
View can be generated as constant or non-constant, with the same interface where scalar
elements are accessed with an operator(): soa.scalar() while columns and Eigens
are accessed via an array of structure (AoS)-like syntax: soa[index].x().

4.3.2 Implementation

This section describes how CLUEstering was integrated into the CMSSW workflow for
pixel vertex reconstruction. The process begins by retrieving tracks from the device::Event
by consuming a device::EDGetToken<T>, which provides access to Event data products
of type T. In this context, T refers to a SoA class that contains several columns, such
as the track χ2, the transverse momentum pt, and a scalar representing the number of
tracks (nTracks). The data is then loaded onto a WorkSpaceSoA in the device that serves
as an intermediate container to execute the CLUEstering algorithm with. This process
is easily parallelized since the SoA layouts are very similar and is thus executed with
a kernel that performs cuts by only choosing high-purity tracks, with a pt higher than
a configurable ptMin (1.0 GeV), and clamping the rest to a configurable ptMax (75.0
GeV). Next, CLUEstering is executed in one dimension where the z-coordinate of each
track is used as the clustering variable, the squared transverse momentum p2T serves as
the weight, and the parameters of the algorithm are set as follows: dc = dm = 0.04cm,
ρc = 0.01GeV . In the post-processing of the vertices we also required each vertex to
contain at least 2 tracks. The algorithm produces two output buffers: the first assigns
a cluster index to each track, effectively labeling which cluster it belongs to, while the
second provides a binary flag indicating whether a track is identified as a seed (1) or not
(0). Finally, the tracks are fitted to refine the position, weight, and χ2 of each vertex.
An iterative fitting and refinement procedure is applied in order to obtain precise vertex
positions and to improve the quality of the reconstruction. The procedure consists of
four successive steps, executed through dedicated GPU kernels:

1. Initial Vertex Fit: Each proto-vertex obtained from clustering is fitted using
a weighted approach. The position along the beam axis (z) is determined as the
weighted average of the associated track positions, with weights given by the inverse
of the track uncertainties. For every track, a χ2 contribution with respect to the
fitted vertex is evaluated. Tracks that exceed a configurable χ2 threshold are
removed as outliers, and the vertex weight is scaled according to the number of
retained tracks and the overall fit quality.

2. Vertex Splitting: Vertices exhibiting a poor fit quality are further analyzed. The
associated tracks are reclustered into two groups along the z coordinate through
an iterative, k-means–like algorithm. If the two groups are significantly separated
compared to their uncertainties, a new vertex is created and the corresponding

28

tracks are reassigned. This step is essential to disentangle cases where two nearby
interaction vertices were initially merged into a single cluster.

3. Refined Vertex Fit: After splitting, the fitting procedure is repeated on the
updated vertex collection. This ensures that the positions, uncertainties, and χ2

values are consistently recalculated with the new track-to-vertex assignments. Out-
lier rejection is re-applied, which further stabilizes the reconstruction.

4. Vertex Ordering: Finally, the vertices are ranked according to their physical
significance. For each vertex, the sum of squared transverse momenta (p2T) of its
tracks is computed. The vertices are then sorted by this quantity, which priori-
tizes the most energetic interactions and facilitates their selection in subsequent
analyses. The first vertex of the sorted list is taken to be the primary vertex,
which is used as an indicator of the performance of the algorithm. Comparing the
primary reconstructed vertex with the primary simulated one reveals whether the
algorithm merged distinct vertices, when the former has a significantly higher p2T ,
or conversely, split a single vertex.

4.4 Results

To evaluate the performance of the CLUEstering clustering algorithm relative to the
legacy vertexing method, a sample of 1000 simulated tt events with an average pileup
of 200 interactions was processed. The reconstructed vertices obtained from both algo-
rithms were then compared to the corresponding simulated vertices. An image of the
amount and location of the simulated vertices can be drawn from the plots in Fig. 11
and Fig. 12, respectively. As shown in Fig.13 and Fig. 14, CLUEstering demonstrates
a higher vertex efficiency, successfully matching a larger fraction of simulated vertices.
This improved efficiency is accompanied by a modest increase in the vertex fake rate (Fig.
16), indicating a higher number of reconstructed vertices not associated with any sim-
ulated counterpart. However, the number of vertices reconstructed with CLUE is lower
than the number of vertices reconstructed with the legacy algorithm, as shown in Fig.
17 and Fig. 18. Thus, the higher fake rate may partly result from a smaller denomina-
tor in the definition (Fake Rate = #Fakes/#All Reconstructed Vertices). Nevertheless,
CLUE exhibits reduced merge (Fig. 15), implying fewer instances of multiple simulated
vertices being reconstructed as one. The standard deviation in the z coordinate of the
two procedures is comparable, with the one associated with CLUE being slightly higher
(Fig. 21). Overall, these results indicate that CLUEstering provides a net improvement
over the legacy algorithm, offering enhanced reconstruction efficiency with better vertex
separation performance under high-pileup conditions.

29

Figure 11: Distribution of the number of simulated vertices per event.

Figure 12: Distribution of the position of simulated vertices per event (in cm).

30

Figure 13: Efficiency as a function of the z coordinate (in cm). The efficiencies of the two
procedures are comparable, but overall the vertices reconstructed with CLUE perform
better.

Figure 14: Efficiency as a function of the number of vertices. The efficiencies of the two
procedures are comparable, but overall the vertices reconstructed with CLUE perform
better.

31

Figure 15: Merge rate as a function of the z coordinate (in cm). CLUE exhibits reduced
merge, implying fewer instances of multiple simulated vertices being reconstructed as on

Figure 16: Fakerate as a function of the z coordinate (in cm). Reconstructed vertices
with CLUE exhibit a higher fake rate, possibly resulting from a smaller denominator in
the definition (Fake Rate = #Fakes/#All Reconstructed Vertices).

32

Figure 17: Number of matched vertices as a function of number of reconstructible simulated
ones, the number of matched vertices reconstructed with CLUE is lower than the number of
matched vertices reconstructed with the legacy algorithm

Figure 18: Number of vertices as a function of number of reconstructible simulated ones,
the number of vertices reconstructed with CLUE is lower than the number of vertices
reconstructed with the legacy algorithm

33

Figure 19: Number of matched primary vertices as a function of the resolution in the z
coordinate (in cm). The values between the two procedures are comparable, but CLUE
stands slightly lower.

Figure 20: Split Rate as a function of the z coordinate (in cm). The reconstruction with
CLUE exhibits a better performance by having a lower fraction of duplicates.

34

Figure 21: Standard deviation of the error in the z position of the reconstructed primary
vertices as a function of the z coordinate (in cm). The standard deviation in the z
coordinate of the two procedures is comparable, with the one associated with CLUE
being slightly higher.

35

Conclusions and Future Work

This thesis presented the implementation and validation of a vertex reconstruction work-
flow using the CLUEstering library to cluster pixel-tracks into pixel-vertices for the
High-Level Trigger (HLT) in Phase 2 of CMS.

The reconstruction was validated on a sample of tt events with an average of 200
overlapping proton-proton collisions, so to test it against the realistic conditions for the
Phase 2 of the CMS experiment starting from 2030.

This new vertex reconstruction showed promising results with an efficiency compa-
rable to or higher than the legacy algorithm, as well as lower split and merge rates. The
higher fake-rate and inefficient primary vertex reconstruction will have to be investigated,
and indicate that a parameters tuning is needed to improve its physics performance.

Furthermore, since the CLUEstering library used in the workflow is implemented
using alpaka, the performance portability library already widely used in the CMS soft-
ware, the workflow is ready to be included in the alpaka reconstruction, which has the
advantage of being able to leverage both NVIDIA and AMD GPUs, which provide much
better scalability with the problem’s size. The legacy algorithm used currently in pro-
duction, on the other hand, is implemented to only run serially on CPUs, which will be
too inefficient as the amount of data produced in each event will increase. The increase
in performance provided by the heterogeneous reconstruction with alpaka is a necessity
for preparing the High-Level Trigger for HL-LHC.

36

References

[1] CMS Collaboration, The CMS Experiment at the CERN LHC, JINST 3 S08004,
2008

[2] Aad, G.; Anduaga, Xabier Sebastian; Antonelli, S.; Bendel, M.; Breiler, B.; et al.;
The ATLAS Experiment at the CERN Large Hadron Collider ; Journal of Instru-
mentation; 2008

[3] The ALICE Collaboration, The ALICE experiment at the CERN LHC, Journal of
Instrumentation, 2008

[4] The LHCb Collaboration, The LHCb Detector at the LHC, Journal of Instrumen-
tation, 2008

[5] E. Lopienska, The CERN accelerator complex, layout in 2022, 2022

[6] W. Herr, B. Muratori, Concept of luminosity, CERN Accelerator School: Interme-
diate Accelerator Physics, 2006

[7] Morovic, CMS detector: Run 3 status and plans for Phase-2,
arXiv:2309.02256 [hep-ex], 2023

[8] CMS Collaboration, The Phase-2 Upgrade of the CMS Level-1 Trigger, Tech. Rep.,
2020

[9] A. Bocci, M. Kortelainen, V. Innocente, F. Pantaleo, M. Rovere, Heterogeneous
reconstruction of tracks and primary vertices with the CMS pixel tracker, Frontiers
in Big Data, 2020

[10] C.D. Jones, M. Paterno, J. Kowalkowski, L. Sexton-Kennedy and W. Tanenbaum,
The new CMS event data model and framework, Proceedings of International Con-
ference on Computing in High Energy and Nuclear Physics (CHEP06), 2006

[11] The Tracker Group of the CMS Collaboration, The CMS Phase-1 Pixel Detector
Upgrade, arXiv:2012.14304 [physics.ins-det], 2020

[12] V. Blobel, A new fast track-fit algorithm based on broken lines, Nucl. Instrum. Meth.,
2006

[13] E. Zenker et al., alpaka - An Abstraction Library for Parallel Kernel Acceleration,
IEEE Computer Society, 2016

38

[14] Rovere M., Chen Z., Di Pilato A., Pantaleo F., Seez C., CLUE: A Fast Parallel
Clustering Algorithm for High Granularity Calorimeters in High-Energy Physics,
Frontiers in Big Data, 2020

[15] Cano E., Implementation of generic SoA data structure in the software, CMS-CR-
2023-040, 2023

[16] Balducci S., CLUEstering: a high-performance density-based clustering library for
scientific computing, https://amslaurea.unibo.it/id/eprint/32544/, 2024

[17] Balducci S., Pantaleo F., Perego A., Redjeb W., Rovere M., CLUE: A Scalable
Clustering Algorithm for the Data Challenges of Tomorrow, Newsletter of the EP
Department, 2025

39

https://amslaurea.unibo.it/id/eprint/32544/

Acknowledgements

I would like to thank Professor Giacomini for this opportunity, working on such a big
project has been a unique experience. I am also grateful to Simone and Felice, for guiding
me on this journey and being present every step of the way. They gave me the chance
to take a glimpse into what it’s like to work in a large research facility. I am thankful to
the Patatrack team at CERN, for helping out and being supportive through every minor
and major obstacle encountered along the way. Furthermore, none of this would have
been possible without the support and prayers of my Parents and my Brother, and their
unconditional love. This is just the first step in making them proud, and paying them
back for all the sacrifices they made. Finally, my thoughts go to all my friends, whether
new or old, whether close or far away, thank you for everything.

40

	LHC and CMS
	The CMS Experiment
	Luminosity and Pileup

	Vertexing in High Energy Physics
	Introduction to Vertex Reconstruction
	Pixel Detector and Track Reconstruction
	Creation of n-tuplets

	Divisive Cluterizer (Existing Algorithm)
	Track Clustering Along the z-axis

	Overview of clustering techniques
	Heterogeneous Computing
	CPU vs GPU Architectures
	How CPUs and GPUs work together

	The alpaka Library
	Integration within CMSSW

	Pixel-vertexing in CMSSW with CLUEstering
	Vertexing Performance: Definitions
	CLUstering of Energy
	Spatial Indexing
	Clustering
	Parallelization
	The CLUEstering library

	Pixel-Vertexing in CMSSW
	Structure of Array (SoA) Generation
	Implementation

	Results

