ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

Corso di Laurea in Informatica

Experiments on KVM-based system
call virtualization

Supervisor: Presented by:
Chiar.mo Prof. Fabio Murer
Renzo Davoli

II Sessione
Anno accademico 2024/2025

This work is licensed under a Creative Commons @ @ @

“Attribution-ShareAlike 4.0 International” license.

Sommario

Le tecnologie di virtualizzazione hanno trasformato il modo in cui i moderni
sistemi informatici vengono progettati, gestiti e messi in sicurezza. Tradizional-
mente, le macchine virtuali di sistema offrono un forte isolamento emulando
intere piattaforme hardware, ma cido comporta un notevole carico in termini di
prestazioni e risorse. Al contrario, le macchine virtuali di processo e le soluzioni
basate su container forniscono una virtualizzazione leggera e modulare, ma si
basano tipicamente su meccanismi software di intercettazione delle system call
che possono introdurre degradazioni di prestazione e meno garanzie di sicurezza.
Questa tesi presenta una nuova architettura che colma il divario tra questi due par-
adigmi applicando la virtualizzazione hardware alle macchine virtuali di processo.
Ispirandosi al modello VUOS, il sistema proposto esegue applicazioni Linux non
modificate all’interno di una macchina virtuale minimale basata su KVM, con un
hypervisor in spazio utente responsabile dell’intercettazione e della gestione delle
system call. Eliminando il bisogno di un kernel nel sistema ospite e sfruttando le
funzionalita di virtualizzazione hardware, questo approccio permette di ottenere
sandboxing efficiente e sicuro a livello di processo, consentendo inoltre la modifica

dinamica della visione di sistema dell’applicazione.

ii

Abstract

Virtualization technologies have transformed the way modern computing systems
are designed, managed, and secured. Traditionally, full system virtual machines
offer strong isolation by emulating entire hardware platforms, but this comes
with significant performance and resource overhead. In contrast, process-level
virtual machines and container-based approaches provide lightweight and mod-
ular virtualization, but typically rely on software-based system call interception
mechanisms that can introduce performance bottlenecks and weaker security
guarantees. This thesis presents a novel architecture that bridges the gap between
these two paradigms by applying hardware-assisted virtualization to process-
level virtual machines. Inspired by the VUOS model, the proposed system runs
unmodified Linux applications inside a minimal KVM-based virtual machine, with
a userspace hypervisor responsible for intercepting and managing system calls. By
omitting the guest operating system kernel and leveraging hardware virtualization
features, this approach enables efficient and secure process-level sandboxing while

allowing dynamic modification of the application’s system view.

Table of contents

SOMMATIO ..ot iii

ADSIIACE . ..o v

1. Introductionooiiiiii i 1

1.1. Virtualization ... 2

1.2. Virtual machines classificationoo i 3

1.2.1. Smith & Nair Taxonomyoovviiiiiiiiiiiiiiiennn. 3

1.2.2. Virtual Square TaXonomycc.uveiiiiiiiiiiiineiiinaennnnn. 4

1.3. State of the art ... i 5

1.3.1. Emulators/Heterogeneous virtual machines: QEMU 6

1.3.2. Homogeneous virtual machines: KVMo...o.... 7

1.3.3. Operating System level Virtualization 8

1.3.4. Process level virtual machines ..., 9

1.3.5. Process level partial virtualizationc...oooan 13

1.4, ODbJECIVE ..ottt 16

2. Implementationo 17

2.1. The KVM APL ... oo 17

2.1.1. The APIModelcoooiii e 18

2.1.2. Building a Minimal Virtual Machine 18

2.2. Recreating the Userspace Environmentccoooiiiii... 20

2.2.1. CPU Initialization ... 20

2.2.2. Program Loading ... 23

2.3. The Interception Mechanism: Handling Exceptions and System Calls . 25

2.3.1. Exceptions Interception ... 25

2.3.2. System Calls Interceptionooeeeiiiiiiiiinieiennnn.. 26

2.4. System Calls Executionot 28
2.4.1. Implementing Virtual Views Through System Call Modifica-

15 1) o 29

2.5. Guest Debugging via the GDB Remote Protocol 30

3. Performance Analysiscooouuuiiiiiiiiiiii 33

3.1. Testing Environment 34

3.1.1. Benchmark Programscoooiiiiiiiiiiiiiiiiiiiiiiiin... 34

3.2. Results and Analysisooiiiiiiiiiii i 35

3.2.1. System Call Overheadc.oooiiiiiiiiii i, 35

3.2.2. CPUPerformanceccooevuiiiiiiiiiiiiiiiiiiiininnnnnnnnn. 36

3.2.3. T/OPerformancecoouiiiiiiiiiiiiiiiiiiii e 37

4. Conclusions and Future Developmentsoooiiiiiiiiiiiinn.. 39

4.1. Achievements and ContributionsiiiiiL 39

4.2. Future Developmentsooviiiiiiiiiiiii i, 40

vi

4.3. Final Remarkso e 41

5. APPENAICES . ..ttt 43
5.1. Benchmarking Script 43
5.2, TeSt PrOGramISttt e 44

5.2.1. syscallh ... oo 44

5.2.2. test-syscall ... 44

5.2.3. TeSE-CPU ..o 45

5.2.4. teSt-10 .. oo 46

5.2.5. Ocilmage creationc.ooviiiiiiiiiiiiiiiiin i, 47

5.3. Testing Resultscoooiii 48
Bibliographyooooiii 49
Acknowledgements ...t 53

vii

Introduction

In modern computing, virtualization and containerization are key technologies
that have changed how software is developed, deployed, and managed. They
are used everywhere, from large cloud data centers to individual developer
workstations. Virtual machines and containers offer practical methods for
abstracting hardware resources, isolating system environments, and making soft-
ware portable. Specifically, they enable multiple operating systems to run on a
single physical machine, allow applications to be bundled with their dependencies

into portable units, and provide secure sandboxes for running untrusted code.

As technology needs have changed, the industry has developed more lightweight
and efficient forms of virtualization. Traditional full-system virtual machines
provide strong isolation by emulating entire hardware systems, but they also
bring significant performance overhead and require substantial resources. In re-
sponse, operating system-level virtualization; commonly called containerization,
has become popular. Containers, such as those managed by Docker and LXC, share
the host system’s kernel while isolating user-space environments. This approach
offers faster startup times and lower resource usage, meeting the demand for

powerful yet efficient virtualization solutions.

However, the current virtualization landscape presents a trade-off. On one side,
full system virtualization, powered by hardware-assisted technologies like KVM,
offers high security and performance by leveraging CPU features such as Intel
VT-x and AMD-V. However, this power is exclusively applied to emulating entire
machines, making it a heavy and monolithic solution. On the other side, process-
level virtualization offers a more granular and flexible approach. A leading
example is the VUOS model, which can alter a single process’s view of the system
by intercepting its system calls. While flexible, these systems typically rely on

software-based interception mechanisms, such as |ptrace() or seccomp-bpf/,
which can introduce performance bottlenecks and offer a weaker isolation bound-

ary compared to hardware-based methods.

This thesis introduces a new approach that aims to combine the strengths of both
paradigms. The main objective is to apply KVM’s hardware virtualization, tradi-
tionally used for full virtual machines to process-level and partial virtualization.
By doing so, it becomes possible to use the speed and security of hardware-based
interception together with the lightweight and modular properties of process-level
virtualization. The goal is to create efficient and secure virtualization environment
for individual processes, without the high overhead of running a complete guest
operating system.

This work explores the design and implementation of a new architecture that re-
purposes KVM to operate on single processes rather than entire systems. The
aim is to demonstrate that hardware virtualization is not tied to full system
virtualization but can be a powerful tool for process-level virtualization, unlocking
new possibilities for secure sandboxing, system call customization, and dynamic

process environment modification.

1.1. Virtualization

Abstraction is a core concept in computer science that helps manage system
complexity. By defining interfaces, abstraction hides low-level implementation
details and enables different hardware and software layers to work together. For
example, an operating system abstracts the complexity of hardware, exposing
a simple API that developers use to build applications without worrying about

memory management or device control.

However, abstraction has its limitations. Software and systems built on a specific
abstraction layer are often tightly related to the underlying hardware or operating
system. This can make it difficult to move software between different platforms
or architectures; for instance, programs compiled for x86-64 cannot run on ARM

machines due to differences in instruction sets and system interfaces.

Virtualization addresses these limitations by introducing an extra layer that sepa-
rates software from hardware. Through virtualization, physical resources such as

processors, memory, and devices are mapped into flexible, programmable virtual

resources. This allows one physical system to act as multiple independent virtual
systems, or makes virtual systems appear consistent across different hardware

platforms.

A classic example is disk virtualization, the operating system presents a filesystem
abstraction, allowing users to work with files instead of raw disk sectors. Virtu-
alization can build on this by creating multiple virtual disks, each appearing as
a separate physical disk, but actually implemented as files on the underlying
filesystem. Here, virtualization does not simply hide more details; it allows us to

overcome hardware and software limitations by providing new, flexible interfaces.

In computer science, “virtual” refers to something that does not physically exist
but appears real. A virtual machine is a software layer that creates a form of virtu-
alization, providing an environment capable of running other software. Virtual
machines are widely used in programming language runtimes (like the Java Virtual

Machine), web hosting, and multi-OS servers.

In summary, virtualization extends abstraction by enabling interoperability and
flexibility, overcoming the constraints imposed by hardware and software inter-
faces. It can add new layers or redefine existing ones, allowing for creating

solutions to complex system design problems.

1.2. Virtual machines classification

Nowadays, there are many different types of virtual machines to satisfy a
vast range of needs: programming languages (e.g., Java), multi-operating system

servers, and sandboxing.

To better understand the types of virtual machines, this section discusses two
virtual machine classification systems: one from Smith and Nair, focused on the
user point of view, and another from the Virtual Square project, which focuses on

technical features.
1.2.1. Smith & Nair Taxonomy

According to the Smith and Nair taxonomy [1], a machine can be understood in
two ways. From the process point of view, a machine refers to the logical memory
space, the set of CPU instructions and registers, and the interface between the

operating system and hardware known as the Application Binary Interface (ABI).

(\

guest application

\ & J
4 N\
guest - N
operating system guest application
| J \ J
N\ 4
virtualization virtualization
software software

host
operating

host
operating

L system) L system)
hardware hardware
System VM Process VM

Figure 1: System Virtual Machine vs. Process Virtual Machine

In contrast, the system perspective treats the hardware as the machine, interacting
through the Instruction Set Architecture (ISA). This distinction leads to two types
of virtual machines. The process virtual machine provides an environment for
running a single program, while the system virtual machine recreates the entire
environment needed for an operating system and all its applications. Furthermore,
Smith and Nair note that virtualization can either strictly imitate the real hardware
to offer features such as isolation and security, or it can allow applications written
for different architectures to run on the same hardware, improving compatibility
and portability.

1.2.2. Virtual Square Taxonomy

The Virtual Square projects [2] focus on developing and collecting virtualization
technologies for computer systems, operating systems, and networks; for this
reason, this taxonomy provides general categories that are not limited to virtual

machines.

1. Host System Intrusiveness. The VM can operate at different privilege levels on

the host system:
User-level access Virtualization runs as a regular user program, providing
strong isolation but limited operations and potential performance issues.

The reliability of the host is not compromised.

Superuser Access Requires superuser privileges, balancing intrusiveness and
performance. However, it introduces security risks if used by untrusted
users.

Kernel Patch or Module Involves modifying the operating system kernel,
significantly improving efficiency but increasing intrusiveness and secu-
rity risks. Administrative privileges are required.

Native Mode The monitor is integrated as the OS kernel or as a driver for the

virtualized component.

2. Consistency to the Lower Layer Interface. VM may provide either the same
interface as the underlying environment (Homogeneous Virtualization) or a
different one (Heterogeneous Virtualization):

Homogeneous Virtualization Offers the same environment interface, al-
lowing services like access control and multiple virtual instances. It can be
partial (affecting only some functions) and modular (combining different
virtualizations)

Heterogeneous Virtualization Provides an interface different from the un-

derlying environment

3. Paravirtualization. Paravirtualization is an interface optimization for virtualiza-
tion. Instead of full compatibility, it offers a similar but more efficient interface,
requiring custom client software. This approach eliminates unnecessary fea-
tures that are not relevant to the virtual environment, thereby improving

performance.

1.3. State of the art

There are many virtualization technologies available today, each with its own
unique characteristics and implementation details. This section focuses on the
most widely used open source solutions in each virtualization category, highlight-
ing how they differ in terms of architecture, functionality, and technical approach.
To organize this overview, the two above-mentioned classification methods are
used with the aim of not only classifying them according to their use cases but

also the virtualization technology they use and how they are implemented.

1.3.1. Emulators/Heterogeneous virtual machines: QEMU

QEMU (Quick Emulator) [3] is a widely used, open-source virtualization platform
that supports full system emulation. It is capable of emulating all major CPU
architectures, like 1386/x86-64, ARM, and RISC-V, which allows it to run various
operating systems and virtual environments on a single host machine. This flexi-
bility makes QEMU one of the most popular and adaptable virtualization solutions

available.

QEMU can operate in different modes:

1. User Mode emulation: Allows individual Linux applications compiled for a
different instruction set architecture (ISA) to run on the host system. This is
achieved by translating system calls and dynamically translating instructions
from the target architecture to the host architecture.

2. System Emulation (Figure 2): Emulates an entire computer system, including
the CPU and peripherals, allowing the execution of full operating systems for
different architectures on the same machine.

3. KVM mode: When used together with the Kernel-based Virtual Machine
(KVM) module for Linux, QEMU can leverage hardware virtualization features
of modern CPUs to run guest operating systems at near native speed, provided

that the guest and host architectures match.

QEMU uses dynamic binary translation to achieve efficient emulation. The first
time QEMU encounters an instruction from the guest, it translates it into the host’s
ISA and caches the result. Subsequent executions of the same instruction use the

cached translation, improving performance and reducing overhead.

Following the Virtual Square taxonomy, QEMU has the lowest level of intrusive-
ness and user-privileged execution possible, and provides heterogeneous virtual-

ization.

Following the Smith & Nair taxonomy, QEMU can be a process VM or a system VM
depending on what operating mode is used, and can make conversions between

different ISAs so that it can run code from other architectures.

Over the years, QEMU has become a crucial tool for system and kernel developers,
as it allows them to test code for different architectures or kernel versions without
needing to reboot or use multiple physical machines. QEMU can also be integrated
with debugging tools like GDB, enabling detailed observation and troubleshooting
of virtualized systems.

| user process | | user process | QEMU
| OS kernel |
| hardware | | user process |
user mode
kernel mode
| OS kernel |
| hardware |

Figure 2: QEMU system mode emulation architecture

In summary, QEMU’s ability to emulate diverse architectures, combined with its
support for hardware virtualization through KVM, makes it an essential compo-
nent for both developers and users who need to run multiple operating systems

or test software across different platforms.
1.3.2. Homogeneous virtual machines: KVM

Kernel-based Virtual Machine (KVM) [4] is a virtualization infrastructure for the
Linux kernel that leverages hardware-assisted virtualization features provided by
modern processors, such as Intel VT-x and AMD-V. Unlike traditional hypervisors,
which often require building significant portions of an operating system kernel
from scratch, KVM transforms the Linux kernel itself into a virtual machine

monitor.

KVM architecture relies on both kernel and userspace components. In the kernel,
the KVM module exposes its functionality through a character device, /dev/kvm .
User space programs, most notably QEMU, interact with this device to create and
manage virtual machines. While KVM provides the core virtualization capabilities,
QEMU is responsible for emulating hardware devices and managing VM I/O in
user space. This separation allows KVM to focus on efficient execution of guest
code, while QEMU handles device emulation.

Every KVM virtual machine is implemented as a standard Linux process, sched-
uled by the normal Linux scheduler. In addition to the traditional user and kernel
modes of execution, KVM introduces a “guest mode”. When a process is running
in guest mode, it executes code of the virtualized operating system, with its own
kernel and userspace. From the host system’s perspective, KVM virtual machines
appear as ordinary processes, and standard Linux tools (such as | ps| and (kill))

can be used to inspect or terminate them.

User mode (QEMU) Kernel mode (KVM) Guest mode

Issue Guest Enter VM Entry

Execution ioctl Guest Mode
A

.
VMExit | Execute natively

in Guest Mode

A

No ™ Handle Exit

Yes

Handle I/O

!

Yes

Figure 3: Guest Execution Loop

KVM’s execution model can be described as a nested loop (Figure 3):

1. Userspace Level: The user space component requests the kernel to run guest
code until an event (such as I/O or an external interrupt) requires intervention.

2. Kernel Level: The kernel uses the hardware virtualization features to enter
guest mode. When an exit occurs (for example, due to a privileged instruction
or hardware event), the kernel handles it or passes control back to user space.

3. Hardware Level: The CPU executes guest code directly and efficiently, trap-

ping only when assistance is needed.

This design allows KVM to provide high performance and strong isolation
between guests, making it a robust solution for server virtualization and cloud

computing environments.
1.3.3. Operating System level Virtualization

Operating System-Level Virtualization is a virtualization method where the kernel
of an operating system creates multiple isolated user space instances. Instead
of virtualizing hardware, the kernel provides an abstraction by partitioning its

resources into separate environments known as containers, zones, or partitions.

From a user’s perspective, each of these containers appears as an independent

computer, even though they all share the same underlying kernel.
1.3.3.1. LinuX Containers (LXC)

This technology leverages two key features of the Linux kernel: namespaces [5]
and control groups (cgroups) [6]. Linux namespaces are a fundamental feature
of the Linux kernel that isolates and virtualizes system resources. A namespace
wraps a global system resource in an abstraction layer, making it appear to the
processes within that namespace that they have their own dedicated instance
of that resource. Any modifications to the resource are contained within the
namespace, visible to other processes within the same namespace but completely

invisible to processes outside of it.

By using these namespaces, LXC can create environments that are almost entirely
isolated from one another, effectively creating a “sandbox” for processes. This
functionality is similar in concept to the chroot command, which limits a process’s
view of the filesystem to a specific directory subtree. However, namespaces
provide a much more comprehensive level of isolation that extends to PIDs,

networking, user IDs, and more.

While namespaces provide isolation, control groups (cgroups) are used for re-
source management. They allow for the limitation and monitoring of resources like

CPU time, system memory, and network bandwidth for a collection of processes.

By combining namespaces for isolation and cgroups for resource limiting, LXC
provides a lightweight framework for creating system containers that behave
much like full virtual machines but without the overhead of emulating hardware

and running a separate kernel.

The creation and management of namespaces and cgroups traditionally require
superuser privileges | CAP_SYS ADMIN ,, making LXC primarily a tool for system

administration.

1.3.4. Process level virtual machines

A process-level virtual machine is a form of virtualization where the virtual
machine monitor (VMM) directly interfaces with user processes. In this approach,
service requests from processes are managed by the monitor itself, which provides
a high-level interface for resource management. This is distinct from system-level
virtualization, where the VMM emulates hardware to support the execution of

complete operating systems.

1.3.4.1. User Mode Linux (UML)

User-Mode Linux [7] is a specially compiled Linux kernel designed to run as a

standard user space process on a host Linux system.

The core principle of UML is to enable the execution of a complete Linux kernel
environment within a user process. Consequently, every process running inside a
UML instance is also a process, or more precisely, a thread on the host machine.
This architecture is often utilized for kernel development and debugging, creating
isolated environments for testing potentially harmful software, and deploying
multiple distinct Linux environments on a single host without the overhead of full

hardware virtualization.

The mechanism for virtualizing the system is centered on system call interception.
A dedicated tracing thread within the UML monitor uses | ptrace() [8] to inter-
cept all system calls made by the processes running inside the virtual machine.
When a virtualized process issues a system call, the tracing thread intercepts it,
nullifies its effect on the host system, and redirects the process into the UML
kernel. Once inside the UML kernel, tracing is disabled, allowing the UML kernel
itself to make standard system calls to the host kernel. This effectively creates two
modes: a “user mode” where process calls are virtualized, and a “kernel mode”
where the UML kernel has privileged access to the host’s services, mirroring the

hardware-based privilege levels.

Beyond system call interception, User-Mode Linux (UML) virtualizes several other

critical system components by leveraging host operating system mechanisms:

Signals and Traps Managed using the same ptrace() interception mechanism
as system calls, allowing the UML kernel to handle them internally.

Devices and Timers Implemented using host signals. Device I/O is handled via

SIGIO , which UML translates into a virtual IRQ, while clock interrupts are

simulated using | SIGALRM

Memory Faults The | SIGSEGV | signal is intercepted by UML, which then distin-
guishes between an actual illegal memory access, treated by forwarding the
signal, and a standard page fault, handled with its own routines

Virtual Memory Physical RAM is simulated by a large file on the host system.
UML’s memory manager maps the virtual pages of its processes into this file

Host Filesystem Access Provided through a virtual filesystem called ' hostfs |,
which translates file operations from within UML into system calls on the
host

10

UML

USEr process

USser process

user mode

kernel mode

Figure 4: UML architecture

According to the taxonomy proposed by Smith and Nair, UML is classified as a
process-level virtual machine with the same Instruction Set Architecture as the
host. This signifies that UML does not perform binary translation; instead, it
directly executes programs compiled for the host’s architecture.

Following the Virtual Square taxonomy, UML is defined as a user-level solution,
as it operates entirely as a standard process within the host operating system’s
user space. Because it exposes the same operating system interface as the host, it

is further classified as a case of homogeneous virtualization.
1.3.4.2. gVisor

gVisor [9] is a technology developed to provide strong isolation for containerized
applications by implementing a process-level virtual machine. It functions as
an application kernel, written in the memory-safe language Go, which runs in
userspace and provides a Linux-compatible interface to the sandboxed application.
This approach allows gVisor to create a robust security boundary between the
container and the host operating system, significantly reducing the attack surface
of the host kernel. For integration with existing container ecosystems, gVisor
includes an Open Container Initiative (OCI) [10] runtime named |runsc/, which
allows it to be used seamlessly with container orchestration tools like Docker and
Kubernetes.

GVisor achieves virtualization through a multiprocess architecture where each

sandbox environment is composed of several key components.

11

user process

system calls,

page faults
\ 4
Linux userspace ABI
IPC
gVisor sentry < > gofer
limited system calls limited system calls
Y V}
- user mode
------- Linux userspace ABI

kernel mode

Linux kernel

Figure 5: gVisor Systrap platform architecture

The Sentry This is the central component of gVisor, acting as the application
kernel for the sandboxed container. The Sentry is responsible for implement-
ing the Linux system call interface, managing memory, handling signals, and
managing the process and threading model. When an application inside the
sandbox makes a system call, the call is intercepted and handled entirely by
the Sentry. Crucially, the Sentry does not pass the application’s system calls
directly to the host kernel. Instead, it performs the necessary operations itself,
making its own limited set of system calls to the host only when essential,
for example, to manage memory or threads.

The Gofer To further enhance isolation, the Sentry operates in a highly restricted
environment with no direct access to the host’s filesystem. All filesystem
operations are delegated to a dedicated process called the Gofer. The Gofer is
a standard host process that communicates with the Sentry over a 9P protocol
channel [11]. It acts as a broker for filesystem access, mediating all requests
from the sandbox and enforcing an additional layer of security.

The Application is a standard Linux binary, packaged within an OCI runtime
bundle

12

gVisor employs different platforms to intercept system calls and page faults from

the sandboxed application. The two primary platforms are Systrap and KVM.

KVM Platform This new and experimental platform leverages the Linux KVM
subsystem. In this mode, the Sentry acts as both the guest operating system
and the Virtual Machine Monitor. While it does not virtualize a full hardware
set, it uses the virtualization extensions available in modern processors to
enforce address space isolation and handle page faults. This provides strong
security guarantees and performs best on bare-metal hosts where direct

access to virtualization hardware is available.

Systrap Platform This is the default platform. It is based on the | seccomp-bpf
feature of the Linux kernel [12]. The platform configures seccomp to trap
every system call made by the application. When a system call occurs, the
kernel sends a | SIGSYS signal to the process, which pauses its execution and
transfers control to the Sentry. The Sentry then inspects the trapped process’s
state, emulates the system call, and resumes the process. The Systrap platform
does not require hardware virtualization support, making it well-suited for
environments where KVM is unavailable or nested, such as in cloud-based

virtual machines.

gVisor provides enhanced security for containers by using a userspace application
kernel, which significantly reduces the host kernel’s attack surface. The main
disadvantages are the performance overhead from system call interception and
potential application incompatibilities due to an incomplete reimplementation of
the Linux APIL Therefore, gVisor is best suited for scenarios where security is a

priority, such as running untrusted code and serverless platforms.
1.3.5. Process level partial virtualization

In a traditional computer system, the concept of a global view is fundamental:
every process shares the same uniform vision of the system resources, including
the network, devices, and file system, where it is running. However, a specific
category of applications exists that alters this paradigm. While not strictly virtual
machines in the classic sense, these systems introduce a form of virtualization at

the process level.

1.3.5.1. Fakeroot

Fakeroot [13] and its successor, fakeroot-ng [14], are examples of process-level
virtualization focused on the file system. Fakeroot is an application that provides

a regular user with the perception of having administrative (root) privileges for

file operations. By using fakeroot, a user can create and manage files that appear

13

to be owned by the root user, with specific ownership and permission settings.
This functionality is achieved by intercepting file system related library calls, in
the Fakeroot case, or by intercepting system calls related to file metadata in the
new implementation, fakeroot-ng, to create a virtual, emulated view of ownership
rights and permissions. The underlying file system is not actually modified; in-
stead, the process running under fakeroot is presented with a modified perspective
of file metadata.

1.3.5.2. Virtual Distributed Ethernet (VDE)
Virtual Distributed Ethernet (VDE) [15] is a tool that creates and manages virtual

networks, allowing users to link computers across different locations on the
Internet, design arbitrary network topologies, and create virtual LANs to connect
them. VDE’s interface with the real network is realized through the TUN/TAP
virtual network drivers available in the Linux and macOS kernels. It is designed
to be compatible with a wide range of virtualization solutions, including QEMU,
KVM, User-Mode Linux (UML), VirtualBox, and Bochs.

The fundamental idea behind VDE is to allow users to build and manage complex
virtual network topologies, independent of the restrictions imposed by the phys-
ical network infrastructure. VDE can create virtual switches, hubs, cables that
behave much like a physical one and present an interface that is identical to a real
network interface, both to the host system and to the virtual machines connected
to it. The tunnel used to transport data-link-layer frames can rely on any streaming
protocol. For example, an SSH connection can be used as the transport layer,
effectively creating an encrypted Virtual Private Network (VPN) with VDE.

1.3.5.3. VUOS

A leading example of this approach is VUOS [16]. The core idea behind a VUOS is
to allow a user to change the point of view of their processes. This is achieved by
redirecting every system call to a hypervisor. The running process does not have
immediate access to the services provided by the kernel; instead, each system call
request is first intercepted and analyzed by the hypervisor. Based on the specific

system call and its parameters, the hypervisor decides how to proceed.

If the hypervisor determines that the system call refers to an unmodified part of the
process’s view, it simply forwards the request to the underlying level for execution.
This could mean passing the call to the real kernel or to a lower-level VUOS
instance, as the architecture naturally supports nesting. From the hypervisor’s

point of view, both cases are handled identically.

In the other case, the hypervisor can choose to take actions and implement a

change in the process’s view. This may involve executing an existing system call

14

USEr process

system calls l

system calls

Vuos modules

USEr Process

user mode

./ Y kernel mode

Linux kernel

Figure 6: VUOS architecture

with modified semantics or even implementing a new system call not supported
by the underlying kernel.

Umvu is the current VUOS hypervisor implementation developed as part of the
Virtual Square project [17]. It functions as a user-level hypervisor designed to
intercept system calls and modify their behavior according to the specific “view”
of the calling process. Implemented as a system call virtual machine, umvu can

dynamically load modules that alter the perspective of running processes.

A user-level implementation of the VUOS model, like umvu, is inherently slower
than a potential kernel-level counterpart. However, this approach offers several

significant advantages:

1. No Administrative Privileges: A user-level hypervisor does not require
administrative (root) permissions to operate.

2. Kernel Independence: It does not depend on any specific features or support
from the underlying Linux kernel.

3. Simplified Development and Debugging: Debugging a userspace applica-
tion is considerably simpler and safer than debugging a kernel module.

4. Kernel Integrity: The host system’s kernel code remains entirely unmodified,

enhancing system stability and security.

The modularity of umvu is central to its design. It relies on dynamically loaded
modules to redefine system call behavior, offering high flexibility. Developers can
implement anything from simple modules that create a new virtual file system
to complex modules that emulate a userspace kernel, making umvu a versatile

solution for a wide range of virtualization-related tasks.

15

For its core task of system call interception, umvu can utilize two methods:
the [ptrace() system call, like UML, or the new faster | seccomp-bpf method,
like gVisor. Those methods achieve interception without requiring custom kernel

features or loading a separate kernel module.

1.4. Objective

The objective of this thesis is to design and implement a prototype of a process-
level virtual machine that operates as a userspace application using hardware
virtualization through KVM. Unlike traditional KVM-based virtual machines,
which typically run a complete guest operating system and kernel, the proposed
prototype omits the guest kernel entirely; instead, it runs only the target applica-
tion within the virtual machine. The userspace hypervisor functions as a minimal
kernel, intercepting and managing system calls originating from the guest appli-
cation.

This architecture draws inspiration from the VUOS model, which redefines the
process’s system view by rerouting system calls through a hypervisor. In the
prototype, system call interception is achieved using hardware virtualization fea-
tures, enabling the userspace hypervisor to inspect, modify, and execute system
calls made by the guest application with the added benefits of hardware-assisted

isolation and performance.

The main goal is to demonstrate the feasibility of this approach by running
a subset of static and dynamic unmodified Linux ELF binaries inside the KVM
virtual machine. The prototype will showcase how hardware virtualization can
be adapted for process-level virtualization, enabling modification of the process’s
system view and providing secure sandboxing without the overhead of a full guest
operating system. Furthermore, the thesis aims to discuss potential applications of

this technology and to evaluate its performance compared to existing solutions.

16

Implementation

This chapter presents the design and implementation of syskvm (System Call
KVM Virtual Machine) [18], the proof-of-concept process virtual machine devel-
oped for this thesis. The chapter shows how the KVM API is used to build and
manage these minimal VMs, how it recreates a userspace execution environment
inside the virtual machine, and the mechanisms it uses to intercept and handle

system calls.

This implementation specifically targets the x86-64 CPU architecture [19], which
was chosen due to its prevalence in modern computing environments. As a result,
certain aspects of the design are specific to x86-64. However, the core concepts
presented in this thesis are not limited to a single architecture. This approach could
be adapted to other architectures that provide similar virtualization extensions,

with the necessary modifications to the architecture-specific components.

2.1. The KVM API

This section provides an introduction to KVM programming. The design of
the KVM API is described, highlighting its hierarchical structure based on file
descriptorsand ioctl (Input/Output Control) system calls [20]. The chapter then
explains how this API is used in practice to create a basic virtual machine used by
syskvm, including the allocation of memory and the creation of a single virtual
CPU (vcpu).

17

2.1.1. The API Model

The KVM API [21] is exposed to user space through the special device file

/dev/kvm . Interaction with the KVM subsystem is performed by opening this
file and issuing a series of ioctl calls on the resulting file descriptor. The
API follows a hierarchical object model, where different file descriptors represent
distinct components of the virtualized environment.

System ioctls Issued on the file descriptor obtained from | /dev/kvm, these
operations are used to query and configure global KVM attributes and to
create new VMs via the [KVM_CREATE VM| ioctl.

VM ioctls Once a VM is created, it is represented by a dedicated file descriptor.
ioctl s sent to this VM fd manage the state of the entire virtual machine,
such as defining guest physical memory, creating vCPUs, and managing

virtual devices.

vepuioctls Each virtual CPU within a VM also has its own file descriptor, created
with the [KVM_CREATE VCPU ioctl on a VM fd. These operations control
the execution of a specific vCPU, including setting its registers, injecting
interrupts, and running guest code. The primary operation on a vCPU fd is

KVM_RUN |, which starts or resumes guest execution.

By default, the | /dev/kvm device on a Linux system is accessible only to the root
user, as it provides direct access to hardware virtualization features. However,
it is generally considered safe to grant access to this device to non-root users.
For example, in the Debian distribution, installing the gemu-system package
adjusts the permissions on |/dev/kvm| to allow broader user access, and some
distributions even enable user-level access by default. The appropriate permission
model is still a topic of discussion in the Linux community, but for this work,
it is assumed that allowing normal users to access | /dev/kvm is acceptable. This
makes the presented technology feasible as a user-level, rather than a privileged,

virtualization solution.
2.1.2. Building a Minimal Virtual Machine
The practical use of the KVM API is illustrated by showing the process of building

a minimal VM, focusing on the essential steps involved in guest execution and
handling VM exits.

1. Accessing the KVM Subsystem: The KVM device file is opened to obtain a
system file descriptor.

18

int kvm = open("/dev/kvm", O RDWR | O CLOEXEC);

2. Creating the Virtual Machine: With the system file descriptor, a VM can be
created using the |KVM_CREATE_VM | ioctl. This call returns a new file descriptor
that represents the VM instance.

int vmfd = ioctl(kvm, KVM CREATE VM, 0);

3. Allocating and Mapping Guest Memory: A VM requires memory to func-
tion. It is the responsibility of the VMM to allocate this memory in its own
address space and to instruct the kernel to map it into the guest’s physical
address space with the KVM SET USER MEMORY REGION | ioctl. For this example,

a page of memory is allocated.

void* mem = mmap(NULL, 0x1000, PROT READ | PROT WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);

struct kvm _userspace memory region region = {
.slot = 0,
.guest phys addr = 0x1000,
.memory size = 0x1000,
.userspace_addr = menm,
b
ret = ioctl(vmfd, KVM SET USER MEMORY REGION, ®ion);
4. Creating the Virtual CPU: The KVM CREATE_VCPU ioctl, invoked on the VM
file descriptor, creates a vCPU and returns its corresponding file descriptor.

int vcpufd = ioctl(vmfd, KVM CREATE VCPU, 0);

5. Running the Guest and Handling VM Exits The guest code is executed by
invoking the [KVM_RUN | ioctl on the vCPU file descriptor. This call is blocking;
it transfers control to the guest and returns only when a VM exit occurs.
Typically, the VMM enters a loop, repeatedly calling KVM RUN and handling
the exit reasons. Information about each exit is provided in a shared data
structure, |struct kvm run/, which must be mapped into the VMM’s address
space using ' mmap

// Map the kvm run structure
size t mmap size = ioctl(kvm, KVM GET VCPU MMAP SIZE, NULL);

struct kvm_run *run = mmap(NULL, mmap size, PROT_READ |
PROT WRITE, MAP SHARED, vcpufd, 0);

19

// Main execution loop
while (1) {
ret = ioctl(vcpufd, KVM RUN, NULL);

switch (run->exit reason) {

// Handle different exit reasons

2.2. Recreating the Userspace Environment

When a virtual machine is created using KVM, it initially mimics a physical
computer at the moment of power-on: it has uninitialized virtual hardware, no
loaded code, and no operating system or firmware present. On a typical physical
system, the boot process begins with firmware (BIOS or UEFI), which initializes
the hardware and loads a bootloader from disk. The bootloader then loads and
starts the operating system kernel, which in turn sets up the system environment
and finally launches user programs.

However, in the architecture proposed in this thesis, the goal is to run a userspace
application directly inside the VM, without a guest kernel, BIOS/UEFI, or boot-
loader. This means that all the work usually performed during the system boot
process, such as setting up CPU state, memory mappings, and loading program
code, must be handled explicitly by the VMM in user space, using KVM ioctls and
related mechanisms.

This subchapter introduces the techniques and considerations involved in recre-
ating the Linux userspace execution environment within such a minimal VM. It
discusses how the VMM does the work of the firmware, bootloader, and kernel
to prepare the virtual CPU and memory so that an unmodified Linux application
can be executed as if it were running in a fully initialized operating system

environment.

2.2.1. CPU Initialization

An important step of the VMM is to configure the virtual CPU to meet the
expectations of a modern 64-bit Linux application. The x86-64 architecture has
several operating modes [22, p. 63] (Figure 7), beginning in a 16-bit real mode for

backward compatibility with older software. To execute usperspace programs, the

20

Linear Address Space Linear Address

J—>I PML4 | Dir. Pointer | Directory | Table | Offset |
Linear Addr. . .
PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page
Physical
PML4. Pg. Dir. Page Thl Addr.
Entry Entry Entry
>
0 This page mapping example is for 4-KByte pages

and 4-level paging.

“Physical Address
Figure 7: x86-64 4-level paging

CPU must be transitioned into long mode, the native 64-bit operating mode. This
involves setting up memory management structures and enabling specific CPU
features. The VMM performs this entire setup from user space before any guest

code is executed.

Activating long mode requires the configuration of virtual memory, which is
managed through a hierarchical paging structure [22, p. 109]. In this project’s
implementation, a demand-paging [23] approach is used for memory manage-
ment. Rather than allocating the full page table hierarchy (PML4, PDPT, PD, PT) at
startup, the VMM initially allocates only a single page for the top-level page table,
the PML4. Alongside this, it sets up a Global Descriptor Table (GDT) to define the

necessary code and data segments for 64-bit operation.

With this structure in place, the VMM can program the vCPU’s control registers

to trigger the switch to long mode. The steps are:

1. Enable Physical Address Extension (PAE) by setting the | PAE | bit in the CR4
register.

2. Load the physical address of the top-level page table (PML4) into the CR3
register.

3. Enable long mode by setting the LME (Long Mode Enable) bit in the Extended
Feature Enable Register (| EFER).

4. Enable paging by setting the PG| and |PE (Protection Enable) bits in the | CRO

register.

Once these steps are completed, the CPU enters 64-bit long mode. The VMM also
initializes the segment registers ((CS|, (DS, [SS , etc.) to use the newly created
GDT entries.

Simply entering long mode is not sufficient for running many modern applications.

The C standard library (glibc) and many high-performance applications rely on

21

CPU features beyond the baseline x86-64 specification, particularly SIMD (Single
Instruction, Multiple Data) extensions for vectorized computation.

The x86-64 architecture defines a set of microarchitecture levels [24] (v1, v2, v3,

v4) that standardize these features:

x86-64-v1 The baseline, including SSE and SSE2.

x86-64-v2 Adds SSE3, SSSE3, SSE4.1, SSE4.2, and POPCNT, commonly required
by modern toolchains.

x86-64-v3 Adds AVX, AVX2, and other features for more advanced vector pro-
cessing.

x86-64-v4 Adds AVX-512 foundation instructions for high-performance comput-
ing.

The VMM must detect the capabilities of the host CPU and enable the corre-
sponding features for the vCPU. This is accomplished by querying the vCPU’s
supported features via [KVM_GET CPUID2| and then configuring the appropriate

control registers.

The VMM creates this entire initialization process using a sequence of KVM

ioctl calls. The general pattern is first to retrieve the vCPU’s current state,
modify it in userspace, and then write the updated state back to the vCPU. The
primary ioctl s used for this are:

« KVM GET SREGS2 / KVM_SET SREGS2: To read and write special registers,
including control registers (| CRO|, [CR3 |, CR4), segment registers, and tables
(\6DT/, [IDT)).

« KVM GET REGS| / KVM SET REGS : For general-purpose registers.

« KVM_GET FPU / [KVM_SET FPU : For the floating-point unit and SSE state.

« KVM_GET_XCRS| / [KVM_SET XCRS : For extended control registers, which are
essential for enabling features like AVX.

The overall process can be summarized by the following pseudo-code:

// 1. Get the current state of all relevant register sets
ioctl(vcpufd, KVM GET SREGS2, &sregs);

ioctl(vcpufd, KVM GET FPU, &fpu);

ioctl(vcpufd, KVM GET XCRS, &xcrs);

// 2. Modify the state in userspace to prepare for long mode
// - Set up GDT, IDT, and page tables
// - Configure CRO, CR3, CR4, and EFER

cpu init long(&sregs, vm->memory);

22

// 3. Enable CPU features based on microarchitecture level
// - Check CPUID results

// - Configure XCRO and other registers for SSE/AVX

cpu init vN(&sregs, &fpu, &xcrs);

// 4. Write the new, fully-initialized state back to the vCPU
ioctl(vcpufd, KVM SET SREGS2, &sregs);

ioctl(vcpufd, KVM SET FPU, &fpu);

ioctl(vcpufd, KVM SET XCRS, &xcrs);

This approach allows the VMM to construct a complete execution environment
for a 64-bit application without needing a guest kernel or firmware, using only the
controls provided by the KVM APL

2.2.2. Program Loading

Once the virtual CPU is initialized and the virtual machine environment is ready,
the next step is to load the user program that will run inside the VM. On Linux
systems, executable programs use the ELF (Executable and Linkable Format) file
format [25]. ELF binaries can be either statically linked, where all code and data are
included in a single file, or dynamically linked, relying on external shared libraries

with symbol resolution at runtime.

When a new process is started in Linux, the kernel takes responsibility for reading
the ELF binary and mapping its segments, such as code and data, into the process’s
address space at the correct virtual addresses. The kernel also prepares the
initial process stack, placing the program’s arguments, environment variables, and
an auxiliary vector (| auxv) containing system-specific information. Among the
regions, the kernel map is the VDSO (Virtual Dynamically-linked Shared Object)
[26]: a small shared object provided by the kernel that exposes certain system
calls and functions directly to userspace, allowing them to be executed without

the overhead of a kernel transition.

If the program is statically linked, the kernel can transfer control directly to its
entry point. However, most modern programs are dynamically linked, meaning
they depend on external shared libraries. In this case, the kernel loads the dynamic
linker (/1d-linux.so|) [27], which is itself an ELF binary, into the process
memory. On startup, the dynamic linker resolves the required symbols, loads any

necessary shared libraries, and only then jumps to the actual program entry point.

23

Implementing a complete Linux-compatible program loader and memory manager
for the VM is a complex and out-of-scope task. In particular, emulating the VDSO
and properly managing Linux virtual memory areas would require reimplement-

ing substantial parts of the Linux kernel.

To address this, the prototype developed in this thesis uses a technique that “bor-
rows” the memory layout built by the host Linux kernel when it loads a program.
Instead of writing a full ELF loader and dynamic linker in the VMM, the host kernel
is used to create a reference process that sets up the program’s memory exactly
as Linux would. To do this, the VMM creates a helper or “reference” process,
here called the mmlayout process, by forking and then executing the target
program under ptrace . This child process is stopped immediately after loading,
before any user code is executed. This guarantees that the process memory layout
(including ELF loading, all mappings, stack, and auxiliary vectors) is exactly as

Linux would provide, but no instructions of the target program have run.

By stopping the process at this stage, the VM Monitor can safely use it as a
blueprint for the guest’s memory. Memory for the guest is then populated on
demand: whenever the guest running inside the VM triggers a page fault (because
it tries to access an unmapped page), the VM Monitor simply copies the relevant

page from the reference process via the special | /proc/<pid>/mem/ file provided

memory

missing page
e

1. page fault

memory page

3.copy page into guest

memory
memory
A
page fault handler I
2. read missing page
syskvm mmlayout

kernel

Figure 8: Syskvm page faults resolutions

24

by Linux. This mechanism allows the VM to “steal” the work already performed
by the kernel and dynamic linker, such as mapping all ELF segments and shared

libraries, without having to reimplement any of the complex loading logic.

One compatibility issue occurs with the VDSO. Because the VDSO is a region
provided by the kernel and not present in the guest VM, any attempt to use it inside
the guest would fail. To avoid breaking compatibility with the glibc dynamic linker
and related code, the VM Monitor disables the VDSO mapping in the reference
process by marking the |AT_SYSINFO_EHDR | entry in the auxiliary vector as invalid.
This signals to glibc that it should not attempt to use the VDSO, falling back to
traditional system calls instead.

Overall, this technique allows syskvm to recreate the Linux userspace execution
environment for arbitrary programs, without the need for a full in-VM implemen-
tation of ELF loading and virtual memory management. The VM Monitor copies
memory pages on demand from the reference process, using the host kernel’s own

facilities to provide a compatible execution context for the guest application.

2.3. The Interception Mechanism: Handling
Exceptions and System Calls

Operating systems rely on exceptions [22, p. 199] to manage unexpected or special
conditions encountered during program execution. Exceptions include events such
as page faults, invalid instructions, and division errors. In this implementation,
exception handling is not only used for correct execution but is also the main

mechanism for intercepting system calls issued by the guest application.
2.3.1. Exceptions Interception

In x86-64 architecture, exceptions are delivered to the processor through the
Interrupt Descriptor Table (IDT) [22, p. 207]. Each entry in the IDT corresponds
to a specific exception or interrupt and defines how the CPU should handle it.

To intercept all exceptions made by the guest code, the Virtual Machine Monitor
initializes the guest’s IDT so that all 256 entries are configured as interrupt gates
with the Present (P) flag cleared (set to 0). This means that, from the guest’s
perspective, no exception handlers are implemented. When the guest triggers any
exception, the CPU attempts to deliver it but fails due to the absent handler,

25

causing a double fault. Since the double fault handler is also not present, a
triple fault occurs, which results in the virtual CPU exiting to userspace with the
KVM _EXIT SHUTDOWN | exit reason.

After such a VM exit, the VMM can inspect the exception.nr field in the
kvm_vcpu_events structure, retrievable with the |KVM GET VCPU EVENTS ioctl,
to determine which exception was originally raised. Despite the name, after a
KVM_EXIT_SHUTDOWN , the VM can resume execution normally by issuing another
KVM_RUN | ioctl. This method allows the VMM to trap and analyze all exception

events in the guest efficiently.

2.3.2. System Calls Interception

In x86-64 Linux, system calls [28] can be performed via two main mechanisms:
The legacy [int 0x80 software interrupt method works by executing a specific
software interrupt instruction ' int 0x80 , which causes the CPU to switch from
user mode to kernel mode using the interrupt descriptor table, and the modern

syscall instruction [29, p. 1428], introduced with the x86-64 architecture,
provides a much faster way to transition from user mode to kernel mode. When

syscall is executed, the CPU switches to a predefined kernel entry point, set by
special model-specific registers (MSR) such as ' IA32 LSTAR .

Most modern software uses the syscall instruction. In this thesis, only the
syscall method is supported for intercepting system calls from the guest appli-

cation.

System call interception 1is achieved by deliberately disabling the

syscall/sysret| instruction pair in the guest. This is done by clearing the SCE
(System Call Enable) bit (bit 0) in the IA32 EFER Model-Specific Register of
the virtual CPU. As a result, when the guest executes a | syscall] instruction, it

triggers an Invalid Opcode exception (#UD) because the instruction is not enabled.

This #UD exception is handled using the general exception interception mecha-
nism described above: the absence of a handler leads to a triple fault and a
KVM_EXIT SHUTDOWN VM exit. The VMM then determines whether the exception
was caused by a [syscall) instruction by inspecting the guest’s instruction
pointer (rip|) and verifying that the memory at that address contains the
syscall opcode (|OF 05)).

Ifa syscall is detected, the VMM reads the guest’s register state to identify the
system call number (stored in | rax) and its arguments (| rdi/, (rsi/, rdx/, etc.).
The system call is then handled and executed by the VMM as appropriate. After

the system call is processed, the VMM advances the instruction pointer by two

26

bytes, the length of the | syscall opcode, to ensure that guest execution resumes
at the instruction following the system call. This approach guarantees precise
interception of all guest system calls, enabling the VMM to inspect, modify, and
execute them as needed.

The overall logic for handling exits within the VMM’s main loop can be concep-
tualized with the following pseudo-code:

// Main VMM execution loop
while (running) {
ioctl(vcpufd, KVM RUN, NULL);

switch (run->exit reason) {

// ... other exit reasons

case KVM_EXIT SHUTDOWN:
struct kvm_regs regs = vm get regs(vm);
struct kvm_sregs sregs = vm get sregs(vm);
struct kvm _vcpu events events = vm get vcpu events(vm);

switch (events.exception.nr) {
case INVALID OPCODE EXCEPTION: // #UD
if (is syscall instruction(guest memory, regs.rip)) {
handle system call(®s);

// Skip the 2-byte syscall instruction
regs.rip += 2;
} else {

// Handle an actual invalid opcode

}

break;

case PAGE FAULT EXCEPTION: // #PF
// Handle demand-paging by copying from reference process
handle page fault(guest memory, sregs.cr2);
break;

// ... handle other exceptions

}

break;

27

2.4. System Calls Execution

Once a system call is intercepted from the guest application running inside the
KVM-based virtual machine, it must be executed. In conventional process-level
or partial virtual machines, such as those using seccomp-bpf or ptrace, for
example, VUOS and gVisor, the intercepted system call can normally be delegated
back to the host kernel. The hypervisor can inspect, modify, or filter the system
call, and then allow the host kernel to execute it on behalf of the virtualized
process. This works because the virtualized process remains within the control of

the host kernel’s resources with direct access to its execution state and memory.

However, in the architecture described in this thesis, this direct delegation is not
possible. The guest application runs inside a virtualized KVM VM; therefore, its
resources, such as memory and CPU state, are isolated from the host and are not
directly visible to the host kernel as a standard process. When the guest application
issues a system call, the hypervisor, running outside the VM, cannot directly ask

the host kernel to execute that system call as if it came from the guest.

As a result, the hypervisor (syskvm) must take an extra step: it must emulate the
system call from the outside. This is achieved by invoking the system call, or an
equivalent operation, in its own context, and then copying any changes back into
the guest’s execution state and memory. For system calls that involve pointers to
guest memory, for example, reading from or writing to a buffer, the host kernel
expects that pointer to be a valid address within the VMM’s own memory space,
not the guest’s, so syskvm first needs to copy the relevant data from the guest
memory into its own address space. After the system call is performed, any
modified data must be copied back into the guest. This ensures that the effects of
the system call are visible to the virtualized application as expected.

This approach introduces other problems, especially for system calls that have
close interactions with the hardware or the kernel’s internal state, like memory
mapping or setting CPU registers. In these cases, syskvm cannot simply forward
the request to the host kernel directly, because doing so would affect only the

hypervisor’s resources, not those of the guest. To execute them, the syskvm must

28

VM

vepu

system calls
resporlse
A 4 mmap, brk, ... mmlayout
system call handler —
syskvm A
execute modified
response execute mmap, brk, ...
system calls
Y
kernel

Figure 9: Syskvm System Calls Execution Mechanism

implement or emulate these operations itself. This often requires re-implementing
some functionality typically provided by the operating system, such as memory
management.

To avoid duplicating large parts of the OS, this implementation reuses the
mmlayout method discussed above. For memory management system calls such
as mmap| and [brk/, syskvm executes the call within the mmlayout reference
process using | ptrace/, altering its memory layout. Thanks to the on-demand
page copying mechanism, these changes are automatically reflected in the guest’s
address space whenever the guest faults on a page. While this approach introduces
some performance overhead due to the additional ptrace/ calls, it significantly
simplifies the implementation and provides a straightforward solution that is
Linux-compatible.

2.4.1. Implementing Virtual Views Through System Call Modi-
fication

Process-level partial virtualization can be achieved through system call intercep-
tion, a technique that allows a hypervisor to control and modify the behavior of
system calls made by the application. This method is central to the design of umvu,
and is also adopted in this project.

29

To demonstrate this mechanism, syskvm implements a virtualized view of specific
system files: | /etc/passwd [30] and | /etc/shadow [31]. In the guest environ-
ment, these files present different contents and permissions than on the host
system. This is accomplished by intercepting the [open system call: when the
virtualized application attempts to open either of these files, the VMM does not
forward the request to the host kernel. Instead, it creates a new in-memory file
using the memfd create| system call, writes the desired virtual content to this
temporary file, and returns its file descriptor to the guest. All subsequent read
and write operations by the application are directed to this virtual file, giving the
illusion that it is interacting with the real system files, even if the actual host files

remain unchanged.

2.5. Guest Debugging via the GDB Remote
Protocol

During the development of this project, the ability to inspect the execution of the
virtualized guest program proved helpful in troubleshooting and analysis. Tradi-
tional debugging on Linux is accomplished using tools such as GDB [32], which
interact with running processes via the kernel’s ptrace interface. However, in
this architecture, the guest program runs inside a KVM-based virtual machine,

making it inaccessible to conventional debugging methods.

To provide users with a familiar and powerful debugging environment, the Virtual
Machine Monitor implements the GDB Remote Serial Protocol (RSP) [33]. This
allows standard GDB clients to connect to the VMM and debug the guest appli-

cation as if it were running natively.

The implementation uses mini-gdbstub [34], a lightweight library that handles
the GDB Remote Serial Protocol communication. Mini-gdbstub acts as the server
component, translating requests from the GDB client into calls to the VMM, which
in turn manipulates the state of the virtualized guest using the KVM APIL

The integration process involves implementing a set of callback functions required
by the mini-gdbstub library. These functions provide the necessary operations
on the guest’s state, including reading and writing memory, accessing registers,

managing breakpoints, and controlling the execution flow.

30

The implementation of debugging functionalities relies on the ability to manip-
ulate both the memory and register state of the virtualized guest program. This
provides the base for debugging features like memory inspection and register

modification.

Handling breakpoints, however, requires further steps. On x86-64 systems, break-
points can be implemented either as hardware breakpoints, which use the CPU’s
debug registers but are limited in number, or as software breakpoints. In this
project, software breakpoints are chosen because they do not impose practical
limits on the number of breakpoints that can be set. The mechanism involves
saving the original byte at the target program address and then overwriting it
with the special | 0xCC opcode (the | int3 instruction). When the guest program
reaches this address during execution, a debug exception is triggered, and the
virtual machine exits with the [KVM_EXIT DEBUG code. The VMM can then restore

the original instruction to remove the breakpoint and resume normal execution.

Single-stepping and breakpoint execution control are managed through the
KVM api. By using the KVM_SET GUEST DEBUG ioctl and configuring the
struct kvm guest debug structure with the appropriate flags, the VMM can
enable features such as software breakpoints and single-stepping. For example,
enabling KVM_GUESTDBG SINGLESTEP | allows the VMM to execute the guest
program one instruction at a time, while the KVM GUESTDBG USE SW BP| flag
activates software breakpoint handling. When any of these events are triggered,
KVM notifies the VMM by exiting the guest execution, enabling it to synchronize

with the debugger and respond to user commands from the GDB client.

From the user’s perspective, interacting with the system through GDB, these
mechanisms make debugging the virtualized program feel very similar to debug-
ging a native process. All basic GDB operations, including setting breakpoints,
stepping through code, examining memory, and modifying registers, are sup-
ported, providing a simple debugging experience for applications running inside

the virtual machine.

31

[mini—gdbstub (Server)} Virtualized Program

ESend "break" command (set bp at address X)

Read original byte at X, replace with 0xCC

»
»

Notify breakpoint set 3
it i

Send "continue" command

Resume execution

CPU reaches address X, executes 0xCC

Exits with KVM_EXIT_DEBUG

<
<

Notify breakpoint hit

Report breakpoint hit

<
<

\

GDB Client mini-gdbstub (Server)} Virtualized Program

Figure 10: Communication flow when a user sets a breakpoint via GDB

32

Performance
Analysis

This chapter presents a performance comparison of the syskvm prototype with
popular process-level virtualization methods (Table 1): QEMU user-mode emu-
lation (gemu-x86_64), VUOS (umvu in seccomp-bpf mode), and gVisor in
both 'seccomp-bpf and KVM| modes (| runsc). The objective is to evaluate the
improvements offered by syskvm’s new KVM-based system call interception

method over traditional approaches.

A direct comparison between these tools is inherently complex due to significant
differences in their architecture and scope. Therefore, for a more equitable compar-

ison, this analysis focuses only on the overhead introduced by each virtualization

technology.
Execution Mode | Virtualization Tecnology Startup Overhead
QEMU Passthrough Dynamic Low
(gemu-x86-64) Binary Translation
syskvm Partial KVM Medium
VUOS (umvu) Partial Seccomp-bpf Medium
gVisor Full Seccomp-bpf High
(runsc-systrap)
gVisor Full KVM High
(runsc-kvm)

Table 1: Comparison of tested virtualization technologies

33

3.1. Testing Environment

The tests were executed inside an LXC container running Debian 13, created using
Proxmox VE [35] version 8.3.5 (Linux kernel 6.8.12). The container was granted
direct access to the host’s | /dev/kvm| device to avoid hardware virtualization
overhead. The container was configured with 4 cores of an Intel Xeon Silver 4110
CPU at 2.10GHz and 4 GB of DDR4 RAM at 2666 MHz.

The versions of the benchmarked programs are as follows:
+ qemu-x86_64: version 10.0.2
« umvu: version 0.9.2

« runsc: version release-20250820.0

The hyperfine[36] command-line tool (version 1.19.0) was used to conduct the
benchmarks. Hyperfine provides statistically robust measurements by automating
the execution and timing process. Each benchmark was configured with 3 warm-

up runs, followed by a minimum of 10 measured execution runs (Chapter 5.1).
3.1.1. Benchmark Programs

Three distinct test programs were developed to test different aspects of process

execution:

1. System Call Throughput (| test-syscall Chapter 5.2.2): This program
executes the [getpid() system call 100.000 times in a loop. It is designed to
measure the overhead of system call interception and emulation, which is the
most critical performance metric for this thesis.

2. CPU-Bound Workload (| test-cpu Chapter 5.2.3): This program performs
a simple subtraction operation within a doubly nested loop, iterating 50.000
times in each loop. This test is designed to measure raw computational perfor-
mance.

3. I/0 Performance (| test-io Chapter 5.2.4): This program reads 8 KB chunks
from the | /dev/urandom character device and writes it to the | tmp/trash file
in a loop 10.000 times. It aims to measure the performance of I/O operations,
which typically involve system calls and data transfer between the guest and
host.

For gVisor, which operates on OCI containers, a minimal container image was
created to execute these test programs (Chapter 5.2.5).

34

3.2. Results and Analysis

This section presents the results obtained from the three benchmark programs.
The performance of each virtualization tool is compared against a “Native” base-
line, which represents the execution of the test program directly on the host system

without any virtualization layer.
3.2.1. System Call Overhead

The system call benchmark is the most revealing test for this study, as it directly

measures the efficiency of the core interception mechanism.

test-syscall Mean Execution Time

4.0 [1

3.5]

3.0 1]

2.5

Mean Time (s)
— O
o o

—=
o
T
1

Execution Mode
Figure 11: Benchmark results for the test-syscall program

System call interception is where most process-level virtualization approaches
introduce significant overhead. Seccomp-bpf, the method used by VUOS and
gVisor (systrap), is known for its high overhead in syscall-heavy workloads.
Syskvm, by leveraging KVM to trap system calls via hardware exceptions, runs
roughly 1.5 times faster than umvu and is significantly faster than both gVisor

35

modes (Table 2). While all virtualization methods introduce substantial overhead
compared to native execution, syskvm’s approach proves to be a more performant

alternative for this specific task.
3.2.2. CPU Performance
This test evaluates the impact of virtualization on pure computational workloads

that do not involve kernel interactions.

test-cpu Mean Execution Time

— = = =
S = N W
T
1

Mean Time (s)

O~ N W ke Ot O N o ©

Execution Mode
Figure 12: Benchmark results for the test-cpu program

Thanks to hardware virtualization, syskvm achieves near-native performance,
running only 1.01 times slower the baseline (Table 3). The small overhead is
primarily due to VM startup and a few VM exit events (e.g., page faults). Perfor-
mance is equivalent to VUOS (umvu), confirming that syskvm does not introduce
CPU bottlenecks compared to other partial virtualization methods. In contrast,
QEMU'’s dynamic binary translation imposes significant overhead, while gVisor’s

more complex architecture also results in a noticeable slowdown.

36

3.2.3. I/O Performance

This benchmark measures the efficiency of handling I/O operations, which involve
a combination of system calls and data transfers between the guest and host

address spaces.

test-io Mean Execution Time

9.0]

4.0 |]

3.5]

25 []

Mean Time (s)

1.5]

1.0 p]

Execution Mode

Figure 13: Benchmark results for the test-io program

Reading from a device is about 1.75 times slower in syskvm than native execu-
tion (Table 4). This slowdown is primarily due to the need to copy data between
guest and host memory, which is needed in this type of virtualization. syskvm’s
performance is nearly identical to VUOS, showing that the new method does not
worsen I/O throughput compared to previous solutions.

37

38

Conclusions and

Future Developments

This thesis introduced syskvm, a novel approach that brings hardware virtual-
ization techniques to process-level and partial virtualization. Syskvm fills a
previously unexplored space in the virtualization spectrum. As UML stands to
VUOS, then QEMU-KVM stands to syskvm; it represents the process-level analog
of hardware-accelerated system virtualization, providing new methods and oppor-

tunities for system call interception and application isolation.

4.1. Achievements and Contributions

The contributions of this thesis can be assessed from three perspectives: perfor-

mance, security, and expressiveness.

Performance The performance analysis in Chapter 3 confirmed that Syskvm
achieves its main goal of providing a more efficient mechanism for system
call interception compared to traditional software-based approaches like

seccomp-bpf| and | ptrace . Benchmarks show that syskvm outperforms
these methods in system call-intensive workloads, delivers near-native CPU
performance, and does not introduce additional I/O overhead compared to
similar tools. This demonstrates that hardware-assisted virtualization can
be successfully applied at the process level, reducing the overhead typically

associated with software-based isolation.

39

Security By relying on hardware virtualization features instead of kernel mech-
anisms like ptrace or seccomp-bpf|, syskvm reduces the host kernel’s
attack surface. The interface with KVM is minimal, and the isolation is
enforced by the CPU itself. This hardware-enforced boundary between the
guest process and the host is generally considered more secure than software-
based techniques, offering stronger guarantees against kernel exploits and
other vulnerabilities.

Expressiveness Syskvm unlocks new possibilities that are not available with
traditional process-level virtualization. Because the guest code runs inside
a KVM virtual machine, it can execute privileged instructions (i.e., code
intended for ring 0) without any risk to the host system. This capability is
similar to that provided by Dune[37], a system that uses virtualization hard-
ware to give user-level applications safe access to privileged CPU features.
However, unlike Dune, syskvm| does not require a custom kernel module,
making it more accessible. This feature can turn syskvm into a powerful
tool for education and experimentation, allowing developers and students to
explore the x86-64 architecture by writing simple ELF programs instead of

entire kernels.

4.2. Future Developments

While the syskvm prototype demonstrates the viability of this approach, it is far
from a complete and production-ready virtualization solution. The following areas

represent promising directions for future work.

Integration and System Development:

VUOS Integration The most natural next step is to integrate syskvm/’s inter-
ception mechanism as a new backend for the VUOS system. This would
allow VUOS to leverage hardware virtualization for creating partial virtual-
izations, offering better performance and a security alternative to its existing

seccomp-bpf method.

OCI Container Runtime The architecture could be extended to implement a
full container runtime, similar to gVisor, leveraging hardware virtualization

for isolation.

Technical Enhancements:

40

Memory Management The current memory mapping mechanism, which
clones the layout of a reference process, should be replaced with a more
robust and stable solution. Implementing a dedicated ELF loader and memory
manager within syskvm would be essential for production readiness.

Multithreading Support The current prototype is limited to single-threaded
applications. To support more software, a scheduling mechanism and support
for multiple vCPUs must be implemented. This would involve handling sys-
tem calls, such as ' clone |, and managing shared resources between threads.

System Call Completeness The current implementation supports a limited
subset of system calls. Future work must focus on expanding this support to
cover more complex functionalities, including signal handling and resource

sharing.

4.3. Final Remarks

In conclusion, this thesis has successfully introduced and tested a new method for
process-level virtualization that combines the modularity and lightweight nature
of process-based virtualization with the performance and security of hardware-
assisted virtualization. Syskvm has shown that this approach is not only feasible
but also offers some benefits, opening new virtualization possibilities.

41

42

Appendices

5.1. Benchmarking Script

A helper script that test a given program with hyperfine across all execution

modes.
#!/bin/bash

Check if a program path is provided
if [$# -eq 0]; then
echo "Usage: $0 <program path>"
exit 1
fi

Get the program path
PROGRAM PATH="$1"

Extract program name (last part of the path without any
directory)

PROGRAM NAME=$ (basename "$PROGRAM PATH")
COINTAINER NAME="${PROGRAM NAME#./}-oci"

Run the benchmark with hyperfine

echo "Running benchmark for $PROGRAM PATH"
echo "Results will be saved to /tmp/$PROGRAM NAME.json"

43

echo

hyperfine -w 3 --export-json "/tmp/$PROGRAM NAME.json" \
"$PROGRAM PATH" \
"gemu-x86 64 $PROGRAM PATH" \
"../../release/syskvm -- $PROGRAM PATH" \
"umvu $PROGRAM PATH" \
"sudo docker run --runtime=runsc-systrap $COINTAINER NAME" \
"sudo docker run --runtime=runsc-kvm $COINTAINER NAME"

5.2. Test programs

All programs are compiled with gcc version 14.2 and | -static -nostdlib | flags.

5.2.1. syscall.h

long syscall syscall(long syscall number, long argl, long arg2,
long arg3, long arg4, long arg5, long arg6) {

register
register
register
register
register
register
register

long
long
long
long
long
long
long

syscall
al asm
a2 asm
a3 asm
ad asm
a5 asm
a6 asm

~_asm__ ("syscall");

if (syscall no < 0) {

no asm_("rax") = syscall number;

-~ ("rdi")
- ("rsi")
- ("rdx")
- ("r10")
o ("rg"
o ("ro

)
)

return -syscall no;

return syscall no;

}

5.2.2. test-syscall

#include <asm/unistd 64.h>

44

= argl;
= arg2;
= arg3;
= arg4;
= arg5;

#include "syscall.h"

#define ITERATIONS 100000

void attribute ((noreturn)) attribute ((section(".start")))
_start(void) {

for (int 1 = 0; 1 < ITERATIONS; i++) {
syscall syscall(__NR getpid, 0, 0, 0, 0, 0, 0);

syscall syscall(_NR exit group, 0, 0, 0, 0, 0, 0); // exit

succes
for (535) {

__asm__ ("hlt");
}

}
5.2.3. test-cpu

#include "syscall.h"
#include <asm/unistd 64.h>

#define ITERATIONS 50000

void attribute ((noreturn)) attribute ((section(".start")))
~start(void) {

long x = 0;
for (long 1 = 0; 1 < ITERATIONS; i++) {
for (long j = 0; j < ITERATIONS; j++) {

x=1-7;

syscall syscall(__NR exit group, x, 0, 0, 0, 0, 0);
for (5;)4
__asm__("hlt");

45

5.2.4. test-io

#include <asm/unistd 64.h>
#include <fcntl.h>
#include "syscall.h"

#define ITERATIONS 10000

// File permissions (0644 = owner rw, group/others r)
#define FILE MODE 0644

// Buffer size (8KB)
#define BUFFER SIZE (8 * 1024)

void attribute ((noreturn)) attribute ((section(".start")))
_start(void) {

// Buffer to store data from urandom
char buffer[BUFFER SIZE];

// Open /dev/urandom

const char urandom_path[] = "/dev/urandom”;
long urandom_fd = syscall syscall(__NR open,
(Long)urandom_path, 0 RDONLY, O, 0, 0, 0);

// Check if open failed

if (urandom fd < 0) {
syscall syscall(_NR exit group, 1, 0, 0, 0, 0, 0); // Exit
with error

// Open /tmp/trash file for writing (create if doesn't exist,
truncate if it does)

const char trash path[] = "/tmp/trash";

long trash fd = syscall syscall(__NR open, (long)trash path,
0 WRONLY | O CREAT | O TRUNC, FILE MODE, 0, 0, 0);

// Check if open failed

if (trash _fd < 0) {
syscall syscall(_ NR exit group, 2, 0, 0, 0, 0, 0); // Exit
with error

46

// Read from urandom and write to /tmp/trash 1000 times
for (int i = 0; i < ITERATIONS; i++) {
// Read 8KB from urandom

long bytes read = syscall syscall(_NR read, urandom fd,
(long)buffer, BUFFER SIZE, 0, 0, 0);

// Write to /tmp/trash
long bytes written = syscall syscall(_NR write, trash fd,
(Llong)buffer, bytes read, 0, 0, 0);

// Check if write failed

if (bytes written != bytes read) {
syscall syscall(_NR exit group, 4, 0, 0, 0, 0, 0); //
Exit with error

// Close files
syscall syscall(__NR close, urandom fd, 0, 0, 0, 0, 0);
syscall syscall(__NR close, trash fd, 0, 0, 0, 0, 0);

// Exit successfully
syscall syscall(_NR exit group, 0, 0, 0, 0, 0, 0);

for (;;) {
~_asm__ ("hlt");

}

5.2.5. Oci Image creation

Images are created with Docker, A configuration file is provided, the others are

analogous.

FROM gcc as builder dockerfile

COPY test-syscall.c /test-syscall.c
COPY syscall.h /syscall.h
RUN gcc -static -nostdlib -o /test-syscall /test-syscall.c

FROM scratch

47

COPY --from=builder /test-syscall /test-syscall
ENTRYPOINT ["/test-syscall"]

5.3. Testing Results

Execution Mode | Mean (s) | Min (s) | Max (s) | Std Dev (s)

Native 0.09914 | 0.08885 | 0.11368 | 0.00624

QEMU (qemu-x86_64) | 0.12829 | 0.11534 | 0.14207 0.0074
syskvm 1.08555 | 1.05198 | 1.12528 [0.02144

VUOS (umvu) 1.62438 | 1.39918 | 1.74405 | 0.15057

gVisor (runsc-systrap) | 3.49845 |3.11699 | 4.1765 0.36938
gVisor (runsc-kvm) | 2.94526 | 2.63266 | 3.35682 | 0.23079

Table 2: test-syscall

Execution Mode | Mean (s)| Min (s) | Max (s) | Std Dev (s)

Native 4.77555 | 4.58267 | 4.94491 0.13336

QEMU (qemu-x86_64) | 13.3599 | 12.77341 | 13.88561 | 0.36898
syskvm 4.84193 | 4.57062 | 5.02616 0.16882

VUOS (umvu) 4.83511 | 4.57009 [4.96906 0.13923

gVisor (runsc-systrap) | 7.74564 | 7.35382 | 8.34634 0.32775

gVisor (runsc-kvm) 8.4908 [7.59433 | 9.08327 0.50444

Table 3: test-cpu

Execution Mode | Mean (s) | Min (s) | Max (s) | Std Dev (s)

Native 0.38946 | 0.37364 | 0.41689 | 0.01564
QEMU (qemu-x86_64) | 0.41381 | 0.4021 | 0.42559 | 0.00737
syskvm 0.68448 | 0.66106 | 0.71515| 0.01499

VUOS (umvu) 0.72188 | 0.66515 | 0.78333 0.0498

gVisor (runsc-systrap) | 4.99847 |4.71494 | 5.30736 | 0.18901
gVisor (runsc-kvm) 4.4258 |3.53995 | 5.15081 | 0.41105

Table 4: test-io

48

Bibliography

[10]

J. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol.
38, no. 5, pp. 32-38, 2005, doi: 10.1109/MC.2005.173.

R. Davoli and M. Goldweber, “Virtual Square: Users, Programmers & Devel-
opers Guide,” Lulu Book, 2011.

“Documentation/Platforms - QEMU.” [Online]. Available: https://wiki.qemu.
org/Documentation/Platforms

A.Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux virtual
machine monitor,” in Proceedings of the Linux symposium, 2007, pp. 225-230.

E. W. Biederman and L. Networx, “Multiple instances of the global linux
namespaces, in Proceedings of the Linux Symposium, 2006, pp. 101-112.

“Control Groups; The Linux Kernel documentation” [Online].

Available: https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/

cgroups.html

J. Dike, “User-mode linux,” in 5th Annual Linux Showcase & Conference (ALS
01), 2001.

“ptrace(2) - Linux manual page ” [Online]. Available: https://www.man7.org/
linux/man-pages/man2/ptrace.2.html

“The Container Security Platform - gVisor” [Online]. Available: https://
gvisor.dev/

“Open Container Initiative” [Online]. Available: https://opencontainers.org/

49

https://doi.org/10.1109/MC.2005.173
https://wiki.qemu.org/Documentation/Platforms
https://wiki.qemu.org/Documentation/Platforms
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.man7.org/linux/man-pages/man2/ptrace.2.html
https://www.man7.org/linux/man-pages/man2/ptrace.2.html
https://gvisor.dev/
https://gvisor.dev/
https://opencontainers.org/

“Plan 9 Remote Resource Protocol” [Online]. Available: https://ericvh.github.
i0/9p-rfc/rfc9p2000.html

J. Jia et al, “Programmable system call security with ebpf,” arXiv preprint
arXiv:2302.10366, 2023.

“FakeRoot - Debian Wiki” [Online]. Available: https://wiki.debian.org/
FakeRoot

“Fakeroot NG” [Online]. Available: https://fakeroot-ng.lingnu.com/index.
php?title=Main_Page

R. Davoli, “VDE: virtual distributed Ethernet,” in First International Confer-
ence on Testbeds and Research Infrastructures for the DEvelopment of NeTworks
and COMmunities, 2005, pp. 213-220. doi: 10.1109/TRIDNT.2005.38.

L. Bassi, D. Berardi, and R. Davoli, “VUOS: A User-Space Hypervisor Based
on System Call Hijacking,” in Computer Safety, Reliability, and Security. SAFE-
COMP 2024 Workshops, A. Ceccarelli, M. Trapp, A. Bondavalli, E. Schoitsch,
B. Gallina, and F. Bitsch, Eds., Cham: Springer Nature Switzerland, 2024, pp.
296-307.

“VirtualSquare.” [Online]. Available: https://wiki.virtualsquare.org/

“Syskvm: System call KVM virtual machine Github repository.” [Online].
Available: https://github.com/fabiomurer/syskvm

Intel Corporation, “Intel® 64 and IA-32 Architectures Software Developer's
Manual Volume 1: Basic Architecture” [Online]. Available: https://cdrdv2.
intel.com/v1/dl/getContent/671436

“ioctl(2) - Linux manual page.” [Online]. Available: https://www.man7.org/
linux/man-pages/man2/ioctl.2.html

“The Definitive KVM (Kernel-based Virtual Machine) API Documentation -
The Linux Kernel documentation.” [Online]. Available: https://docs.kernel.
org/virt/kvm/api.html

Intel Corporation, “Intel® 64 and IA-32 Architectures Software Developer's
Manual Volume 3: System Programming Guide.” [Online]. Available: https://
cdrdv2.intel.com/v1/dl/getContent/671447

50

https://ericvh.github.io/9p-rfc/rfc9p2000.html
https://ericvh.github.io/9p-rfc/rfc9p2000.html
https://wiki.debian.org/FakeRoot
https://wiki.debian.org/FakeRoot
https://fakeroot-ng.lingnu.com/index.php?title=Main_Page
https://fakeroot-ng.lingnu.com/index.php?title=Main_Page
https://doi.org/10.1109/TRIDNT.2005.38
https://wiki.virtualsquare.org/
https://github.com/fabiomurer/syskvm
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://www.man7.org/linux/man-pages/man2/ioctl.2.html
https://www.man7.org/linux/man-pages/man2/ioctl.2.html
https://docs.kernel.org/virt/kvm/api.html
https://docs.kernel.org/virt/kvm/api.html
https://cdrdv2.intel.com/v1/dl/getContent/671447
https://cdrdv2.intel.com/v1/dl/getContent/671447

[23]

[25]

[26]

T. Kilburn, D. B. G. Edwards, M.]J. Lanigan, and F. H. Sumner, “One-Level
Storage System,” IRE Transactions on Electronic Computers, no. 2, pp. 223-235,
1962, doi: 10.1109/TEC.1962.5219356.

“x86-64 Microarchitecture Levels.” [Online]. Available: https://en.wikipedia.
org/wiki/X86-64#Microarchitecture_levels

T. I Standard, “Executable and linking format (ELF) specification version 1.2,
TIS Committee, pp. 1-106, 1995.

“vdso(7) - Linux manual page.” [Online]. Available: https://www.man7.org/
linux/man-pages/man7/vdso.7.html

“Id.so(8) - Linux manual page” [Online]. Available: https://www.man7.org/
linux/man-pages/man8/1d.so.8.html

“syscall(2) - Linux manual page.” [Online]. Available: https://linuxman7.com/
linux/man-pages/man2/syscall.2.html

Intel Corporation, “Intel® 64 and IA-32 Architectures Software Developer's
Manual Volume 2: Instruction Set Reference, A-Z” [Online]. Available:

https://cdrdv2.intel.com/v1/dl/getContent/671110

“passwd(5) - Linux manual page” [Online]. Available: https://man7.org/
linux/man-pages/man5/passwd.5.html

“shadow(5) - Linux manual page” [Online]. Available: https://man7.org/
linux/man-pages/man5/shadow.5.html

R. Stallman, R. Pesch, S. Shebs, and others, “Debugging with GDB,” Free
Software Foundation, vol. 675, 1988.

“Remote Protocol (Debugging with GDB)” [Online]. Available: https://
sourceware.org/gdb/current/onlinedocs/gdb.html/Remote-Protocol.html

“mini-gdbstub: An implementation of the GDB Remote Serial Protocol to
help you adding debug mode on emulator” [Online]. Available: https://
github.com/RinHizakura/mini-gdbstub

“Proxmox Virtual Environment.” [Online]. Available: https://www.proxmox.

com/en/products/proxmox-virtual-environment/overview

“Hyperfine: A command-line benchmarking tool” [Online]. Available:

https://github.com/sharkdp/hyperfine/tree/master

51

https://doi.org/10.1109/TEC.1962.5219356
https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
https://www.man7.org/linux/man-pages/man7/vdso.7.html
https://www.man7.org/linux/man-pages/man7/vdso.7.html
https://www.man7.org/linux/man-pages/man8/ld.so.8.html
https://www.man7.org/linux/man-pages/man8/ld.so.8.html
https://linuxman7.com/linux/man-pages/man2/syscall.2.html
https://linuxman7.com/linux/man-pages/man2/syscall.2.html
https://cdrdv2.intel.com/v1/dl/getContent/671110
https://man7.org/linux/man-pages/man5/passwd.5.html
https://man7.org/linux/man-pages/man5/passwd.5.html
https://man7.org/linux/man-pages/man5/shadow.5.html
https://man7.org/linux/man-pages/man5/shadow.5.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Remote-Protocol.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Remote-Protocol.html
https://github.com/RinHizakura/mini-gdbstub
https://github.com/RinHizakura/mini-gdbstub
https://www.proxmox.com/en/products/proxmox-virtual-environment/overview
https://www.proxmox.com/en/products/proxmox-virtual-environment/overview
https://github.com/sharkdp/hyperfine/tree/master

[37] A.Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazieres, and C. Kozyrakis,
“Dune: Safe user-level access to privileged {CPU} features”, in 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12), 2012,
pp. 335-348.

52

Acknowledgements

I want to thank my family and the Azienda Regionale per il Diritto agli Studi
Superiori dell’Emilia Romagna (ER.GO) for supporting me and allowing me to
complete my university studies. Without their support, this thesis would not even

exist.

I'm deeply grateful to my supervisor, Prof. Renzo Davoli, who, with his extraor-
dinary ability to share knowledge and his immense passion for teaching, guided
me through the creation of this thesis. Thank you also for the constant support of
the ADMstaff project, which made my university journey rich with opportunities

and wonderful friendships.

I thank my friends, the people from ADMstaff, and from Polisportiva G. Masi
Orienteering: their company and help made my years of study pleasant and serene.

Finally, my thanks go to all the developers of free and open-source software, who
make computer science a unique discipline in terms of sharing and collaboration.

Without your work, this thesis would not have been possible.

53

	Sommario
	Abstract
	Introduction
	Virtualization
	Virtual machines classification
	Smith & Nair Taxonomy
	Virtual Square Taxonomy

	State of the art
	Emulators/Heterogeneous virtual machines: QEMU
	Homogeneous virtual machines: KVM
	Operating System level Virtualization
	LinuX Containers (LXC)

	Process level virtual machines
	User Mode Linux (UML)
	gVisor

	Process level partial virtualization
	Fakeroot
	Virtual Distributed Ethernet (VDE)
	VUOS

	Objective

	Implementation
	The KVM API
	The API Model
	Building a Minimal Virtual Machine

	Recreating the Userspace Environment
	CPU Initialization
	Program Loading

	The Interception Mechanism: Handling Exceptions and System Calls
	Exceptions Interception
	System Calls Interception

	System Calls Execution
	Implementing Virtual Views Through System Call Modification

	Guest Debugging via the GDB Remote Protocol

	Performance Analysis
	Testing Environment
	Benchmark Programs

	Results and Analysis
	System Call Overhead
	CPU Performance
	I/O Performance

	Conclusions and Future Developments
	Achievements and Contributions
	Future Developments
	Final Remarks

	Appendices
	Benchmarking Script
	Test programs
	syscall.h
	test-syscall
	test-cpu
	test-io
	Oci Image creation

	Testing Results

	Bibliography
	Acknowledgements

