ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Analisi e ottimizzazione delle prestazioni
di servizi di data management
per calcolo distribuito

Relatore: Presentata da:
Prof. Renzo Davoli Luca Bassi
Correlatori:

Prof. Francesco Giacomini
Dott. Enrico Vianello

II Sessione
Anno Accademico 2024/2025

If you spend your whole life waiting for the storm,
you’ll never enjoy the sunshine.

MORRIS WEST

©Nole

https://creativecommons.org/licenses/by-sa/4.0/deed.it

Introduzione

I1 Large Hadron Collider (LHC) del CERN ¢ il piu grande e potente acceleratore di
particelle al mondo. Per soddisfare le esigenze di salvataggio e analisi dei dati prodotti
dagli esperimenti di LHC & nata la Worldwide LHC Computing Grid (WLCG), una
collaborazione internazionale di circa 160 data center in piu di 40 paesi. L'INFN-CNAF
ospita il centro di calcolo che costituisce il Tier 1 italiano di WLCG.

StoRM & lo storage resource manager utilizzato e sviluppato allINFN-CNAF. In
preparazione dell’aumento dei dati raccolti dagli esperimenti del CERN previsto con il
Run 4 di LHC sono necessari sviluppi a StoRM per aumentarne 1’efficienza.

Inoltre, visto i grandi trasferimenti di dati, il monitor di rete ¢ una parte fondamenta-
le. L’iniziativa SciTags promuove l'identificazione dei domini scientifici e della tipologia
di attivitd a livello di rete. E quindi necessario aggiungere il supporto agli SciTags a
StoRM.

eBPF e una tecnologia che permette di eseguire programmi all’interno di un sandbox
del kernel Linux. E possibile collegare programmi eBPF a specifici hook di sistema come
I'invocazione e 'uscita da funzioni. Si puo quindi sfruttare questa tecnologia per fare
tracing delle performance senza dover modificare il codice dei programmi.

Nel capitolo 1 viene presentato il contesto scientifico e tecnologico della fisica delle
alte energie. Nel capitolo 2 viene illustrato StoRM, con le sue caratteristiche, il tipo di
deployment e i risultati di alcuni test di carico effettuati nel 2024. Nel capitolo 3 vengono
mostrati gli sviluppi effettuati su StoRM per migliorarne le prestazioni. Nel capitolo 4
viene presentata l'iniziativa SciTags e come e stato aggiunto il supporto al low marking
a StoRM WebDAV, uno dei componenti di StoRM. Nel capitolo 5 viene mostrato come

¢ possibile utilizzare eBPF per fare tracing delle performance dei programmi.

Indice

Introduzione

1 Contesto

1.1
1.2
1.3
1.4

LHC e WLCG
Il data center del'INFN-CNAF . .
La rete GARR
Run 4 di LHC

2 StoRM

2.1
2.2
2.3
2.4
2.5

StoRM: Storage Resource Manager
Procollo WebDAV
Third-Party Copy
Deployment di StoRM
Data Challenge 2024

3 Evoluzione di StoRM

3.1
3.2
3.3
3.4
3.5

Nuovo deployment di StoRM
Sviluppi
Continuous Integration
Mini Data Challenge 2025

Virtual thread

4 SciTags

4.1

Introduzione

il

N N

© oo I

10
11

13
13
14
18
20
22

23

iv

INDICE

4.2 Integrazione in StoRM WebDAV

5 Tracing utilizzando eBPF

51 eBPF o
52 BPF CO-REelbbpf
53 libbpf-rso
54 blazesymo
5.5 Collegare i programmi eBPF a hook

5.6 Serializzare 1 dati nel Trace Event Format
Conclusioni e sviluppi futuri

Bibliografia

Elenco delle figure

1.1

2.1

3.1
3.2
3.3

3.4

3.5

3.6

4.1

0.1
5.2

Mappa della rete GARR L 3
Deployment di StoRM al momento dell’introduzione dei componenti HT'TP 11

Nuovo deployment di StoRM 14
Esempio di una richiesta GET a StoRM WebDAV che utilizza NGINX . 16
Load average sui server di StoRM WebDAV prima e dopo I'aggiornamento

di uno dei server alla versione con delega delle GET a NGINX 17
Load average sui server di StoRM WebDAV dopo I'aggiornamento di uno

dei server alla versione con delega delle GET a NGINX 18
Grafico che illustra il netto calo di load average grazie all’aggiornamento

di tutti i server di StoRM WebDAV 19
Grafico della distribuzione delle durate delle richieste GET 21
Esempio di una TPC in pushmode 26
Schema della compilazione e del caricamento di programmi eBPF 32
Visualizzazione di un flamegraph utilizzando Perfetto UT 52

Elenco dei codici sorgente

4.1

5.1

5.2
5.3

5.4

5.5

5.6

5.7

Classe TpcTlsSocketStrategy utilizzata per ottenere informazioni sui soc-
ket usati per le TPC
Esempio di due programmi eBPF collegati all’invocazione e all’uscita di
una funzione
Esempio di build script per generare lo skeleton

Esempio di programma Rust per aprire, caricare e collegare i programmi

Esempio di utilizzo della libreria blazesym per ottenere i simboli di fun-
zione di un eseguibileo
Esempio di due programmi eBPF collegabili all’entrata e all’uscita di
funzioni L
Esempio di collegamento di programmi eBPF a tutte le funzioni di un
eseguibileo
Programma che utilizza Serde JSON per serializzare i dati in Trace Event

Format,

vil

Capitolo 1
Contesto

In questo capitolo viene descritto il contesto scientifico e tecnologico della fisica delle

alte energie.

1.1 LHC e WLCG

Il Large Hadron Collider (LHC) [1] ¢ il pit grande e potente acceleratore di particelle
al mondo. E stato costruito al CERN dal 1998 al 2008 e le prime collisioni sono avvenute
nel 2010. Si tratta di un acceleratore circolare di circa 27 km di circonferenza che si trova
a circa 100 m di profondita, composto da magneti superconduttori e da una serie di
strutture acceleranti per aumentare ’energia delle particelle. I fasci di particelle, protoni
o ioni, vengono fatti collidere in corrispondenza di quattro rivelatori: ATLAS, CMS,
ALICE e LHCb.

LHC ha permesso di scoprire il bosone di Higgs, confermando il meccanismo di Brout-
Englert-Higgs sull’origine della massa. Inoltre permette di investigare la teoria della
supersimmetria, la materia oscura e ’energia oscura e perché nell’Universo e presente
molta pilt materia che antimateria.

La Worldwide LHC Computing Grid (WLCG) [2] & una collaborazione globale di
circa 160 data center in piu di 40 nazioni. WLCG & nata per soddisfare le esigenze
di salvataggio e analisi dei circa 200 Petabyte di dati prodotti da LHC. E ispirata al
concetto di Grid Computing [3] introdotto da Ian Foster e Carl Kesselman nel 1998. Visto

1

1. Contesto

I’avvento di reti pitt veloci e 'aumento di richiesta di potenza computazionale, i ricercatori
del CERN hanno deciso di adottare questo modello computazionale per la condivisione
di risorse eterogenee [4] che, pur essendo amministrate in modo indipendente, espongono

un’interfaccia comune, con diverse implementazioni interoperabili.

1.2 Il data center del’ INFN-CNAF

Il CNAF ¢ il centro nazionale dell'Istituto Nazionale di Fisica Nucleare (INFN) per la
ricerca e lo sviluppo nelle tecnologie informatiche e telematiche. E stato fondato nel 1962
a Bologna per analizzare le pellicole fotografiche delle camere a bolle; infatti ’acronimo
sta per Centro Nazionale Analisi Fotogrammi. Ospita dal 2003 un centro di calcolo
che costituisce il Tier 1 italiano di WLCG [5]. Dal 2024, il centro di calcolo & ospitato
all'interno del tecnopolo DAMA a Bologna [6].

Il CNAF offre servizi sia di calcolo che di archiviazione dati. I dati sono archiviati
sia su disco sia su nastro. In particolare a inizio ottobre 2025 sono archiviati 78.5 PB
di dati su disco con una capacita totale di 97.8 PB e 185 PB di dati su nastro con una
capacita totale di 293 PB. Vengono utilizzate le tape library sia per i costi piu bassi
sia perché contrariamente agli hard disk incrementano la capacita piu velocemente (del
30-40% ogni anno) [7].

Oltre a ospitare un centro di calcolo, 'INFN-CNAF si occupa anche della gestione e

dello sviluppo di prodotti middleware utilizzati in WLCG.

1.3 La rete GARR

Il Consortium GARR progetta e gestisce la rete nazionale dedicata alla comunita
dell’istruzione, della ricerca e della cultura. Nato come commissione ministeriale nel
1988, il Gruppo per I’Armonizzazione delle Reti della Ricerca (GARR) ¢é stato fondato
da 6 enti: CNR, INFN, ENEA, CILEA, CINECA, Tecnopolis CSATA [8]. All’epoca il
protocollo TCP /TP non era diventato lo standard de facto; ogni istituto di ricerca usava
una rete differente e venivano usate molte soluzioni tecnologiche incompatibili tra loro,

provocando un grande dispendio di risorse economiche e di energie.

1. Contesto

T

céant '\ GEANT AUSTRIA

SWITZERLAND
Arelion

Trento ¥

MIX

CUEBANCE SLOVENIA

e Optical fibre
. RETE S==
\ operational GARR =

TeRABIT ¢y terabit

N\ ICSC

planned

ALBANIA

ari #* GREECE
Golfo Aranci Namex

O O 505 enattos

Nuoro

Figura 1.1: Mappa della rete GARR aggiornata a luglio 2024 (Immagine di GARR
distribuita con licenza Creative Commons BY-NC-SA 4.0)

La rete ¢ diventata operativa nel 1991 connettendo alla velocita di 2 Mbps (molto
alta per I’epoca) 7 nodi: Milano (CILEA), Bologna (CINECA e il polo ENEA e INFN-
CNAF), Pisa (CNR-CNUCE), Roma (INFN), Frascati (ENEA e INFN) e Bari (CSATA).
Nel 1994 ¢ diventata attiva la rete GARR-2 che arrivera a toccare nel 1996 i 34 Mpbs.
Passando per GARR-B nel 1998 che raggiunge i 155 Mbps, si arriva nei primi anni del
2000 alla rete GARR-G con collegamenti fino a 10 Gbps. Nel 2011 ¢ partita GARR-X
che portera la velocita fino a 100 Gbps. La nuova evoluzione ¢ la rete GARR-T [9]

https://www.garr.it/it/infrastrutture/rete-nazionale/infrastruttura-di-rete-nazionale
https://creativecommons.org/licenses/by-nc-sa/4.0/

1. Contesto

che ha portato alla realizzazione di 750 km di fibra ottica, 42 Point of Presence (PoP)
ottici distruiti su 6200 km di fibra e 9 nuovi PoP metropolitani. Inoltre ha migliorato
i collegamenti con la Sardegna, regione candidata a ospitare I’Einstein Telescope [10], e
fornira una connettivita fino a 400 Gbps. Una volta completata 1’espansione della rete
GARR-T si saranno aggiunti 5000 km di fibra ottica e una capacita complessiva di circa
40 Thps.

La rete GARR, mostrata in Fig. 1.1, e presente su tutto il territorio nazionale grazie
a oltre 24000 km in fibra ottica.

La rete GARR fa parte della rete della ricerca europea GEANT [11]. GEANT &
la dorsale europea ad altissima capacita che interconnette tutte le reti della ricerca e
dell’istruzione europee con collegamenti multipli fino a 100 Gbps e in grado di arrivare
fino a 8 Thps.

1.4 Run 4 di LHC

Il progetto High Luminosity LHC (HL-LHC) aumentera di un fattore 10 la lumino-
sita attuale di LHC. La luminosita ¢ un importante indicatore delle prestazioni di un
acceleratore, proporzionale al numero di collisioni che si verificano in un dato intervallo
di tempo. Nel 2030 e prevista la quarta campagna di presa dati di LHC ed e previsto
un incremento del volume di dati di circa 9 volte rispetto al Run 3. In particolare per
HL-LHC la richiesta minima per il CNAF e di 690 Gbps, ma viste le esperienze passate
¢ necessaria una banda doppia, cioe di 1380 Gpbs, per evitare la saturazione della rete e
i problemi derivanti da cio [12].

Nel 2023, la rete GARR e la rete europea GEANT hanno collegato il CNAF e il centro
di calcolo del CERN con una capacita di 1,6 Tbps e una latenza di 9,5 ms grazie allo
spettro condiviso multidominio [13]. La Data Centre Interconnection (DCI) permettera
al Tier 1 del CNAF di partecipare, oltre che all’elaborazione dei dati offline, anche alla
selezione degli eventi effettuata dalle trigger farm situate in prossimita degli esperimenti.

In preparazione del Run 4 e stato deciso di fare una serie di Data Challenge per
verificare che l'infrastruttura di rete e i data center siano pronti al traffico generato dalla

campagna di presa dati [14]. Due Data Challenge sono gia state svolte: una nel 2021

1. Contesto

con il 10% del traffico previsto e una nel 2024 con il 25%. Altre due Data Challenge
porteranno queste percentuali al 50% nel 2027 e infine al 100% nel 2029.

In aggiunta alle Data Challenge previste, i singoli Tier 1 e Tier 2 possono richiedere
delle Mini Data Challenge intermedie, mirate all’investigazione di problemi locali e alla

verifica della loro risoluzione.

Capitolo 2

StoRM

In questo capitolo viene presentato StoRM e il protocollo WebDAV e la sua estensione
Third-Party Copy. Viene inoltre illustrato il tipico deployment e i risultati di alcuni test
di carico effettuati nel 2024.

2.1 StoRM: Storage Resource Manager

StoRM (Storage Resource Manager) & un servizio software sviluppato per la gestione
di sistemi di archiviazione costituiti da file system POSIX, eventualmente associati a
un sistema di storage su nastro. Nei centri di calcolo, 'esigenza di gestire un sistema
distribuito di archiviazione dei dati porta all’'impiego di file system distribuiti come IBM
GPFS o Lustre.

StoRM nasce storicamente come implementazione della specifica SRM [15], che de-
scrive uno standard middleware per la gestione di dati in sistemi di storage eterogenei.
Utilizzata in combinazione con un protocollo di trasporto come GridFTP [16], & stato
utilizzato a lungo per il trasferimento dei dati in WLCG. Nel tempo la suite di pro-
dotti StoRM si e evoluta e ampliata, in particolare per supportare una migrazione a
HTTP come protocollo di trasporto e usando il protocollo WebDAV [17], un’estensione
di HT'TP, per il management dei dati. Per la gestione dei dati residenti su nastro, StoRM
ha contribuito alla definizione e all'implementazione della WLCG Tape REST API [18].

StoRM ¢ una suite di componenti software; i principali componenti sono:

2. StoRM

e StoRM Frontend e StoRM Backend che implementano ed espongono un’inter-
faccia di tipo SRM a client e framework. Implementano i comandi SRM in modo

sincrono e asincrono utilizzando un database come mezzo di comunicazione.

e StoRM GridFTP plugin che, installato su un server GridETP (un’estensione
del protocollo FTP), viene usato per accedere direttamente al file system dietro un

deployment di StoRM.

e StoRM WebDAV che fornisce le funzionalita di trasferimenti dati e gestione
utilizzando il protocollo WebDAV (un’estensione del protocollo HTTP).

e StoRM Tape implementa la WLCG Tape REST API che permette la recall di
file da nastro. Questo componente espone un endpoint interno usato dal sistema

di gestione del tape.

StoRM supporta diversi meccanismi di autenticazione e autorizzazione, dai certifica-
ti X.509, estesi con con un Attribute Certificate di tipo VOMS (Virtual Organization
Membership Service) [19], a OAuth JSON Web Token. Nativo ¢ anche il supporto dei
token rilasciati da provider basati su INDIGO TAM [20], un altro software sviluppato
dall'INFN-CNAF che implementa un OIDC provider e scelto da WLCG per la migrazio-
ne della sua infrastruttura ai token. StoRM Tape gestisce I'autorizzazione delegandola
a Open Policy Agent (OPA).

StoRM supporta i sistemi tape grazie all'integrazione di GEMSS [21], un sistema di
Hierarchical Storage Management (HSM) che integra IBM GPFS, IBM Tivoli Storage
Manager (TSM) con StoRM Backend e StoRM Tape.

2.2 Procollo WebDAV

Il protocollo WebDAV & un’estensione del protocollo HTTP. Permette agli utenti di
creare, modificare e spostare documenti su un server. Oltre a definire i comportamenti
e i requisiti dei metodi HTTP GET, HEAD, PUT, DELETE per risorse e collezioni (che nel
caso di StoRM WebDAV corrispondono a file e cartelle), aggiunge dei metodi tra cui:

COPY per copiare una risorsa da un URI a un altro;

2. StoRM

MKCOL per creare collezioni;

MOVE per spostare risorse;

PROPFIND per ottenere le proprieta di una risorsa;
PROPPATCH per impostare o eliminare proprieta di una risorsa;
LOCK per bloccare una risorsa;

UNLOCK per sbloccare una risorsa.

2.3 Third-Party Copy

La HTTP Third-Party Copy (HTTP-TPC) [22] & un’estensione del metodo del pro-
tocollo WebDAV COPY che permette di spostare grandi quantita di dati direttamente tra
i data center WLCG, senza quindi passare per il client richiedente.

Gli esperimenti di LHC, infatti, hanno la necessita di trasferire grandi quantita di
dati per aumentare la replicazione degli stessi e per trasferirli ai data center in cui
verranno poi elaborati. Nel 2017 Globus ha annunciato che avrebbe deprecato il Globus
Toolkit [23] che forniva l'implementazione di riferimento del protocollo GridFTP. La
comunita WLCG ha quindi approfittato di questa deprecazione per passare a utilizzare
HTTP evitando cosi di dipendere da protocolli specializzati quali SRM e GridFTP.

Per copiare i dati da un data center a un altro con una TPC, il client invia una
richiesta HTTP COPY all’endpoint attivo, inserendo 'URL del secondo server tra gli
header HT'TP.

Esistono due modalita di trasferimento conseguenti alla richiesta COPY ricevuta dal-

I’endpoint attivo:

Pull mode la richiesta contiene I’header Source, ’endpoint attivo effettua una richiesta

GET verso ’endpoint passivo;

Push mode la richiesta contiene ’header Destination, ’endpoint attivo effettua una

richiesta PUT verso I’endpoint passivo.

10

2. StoRM

La modalita pull viene preferita poiché utilizza richieste GET che sono idempotenti e
I’endpoint puo bilanciare molteplici richieste effettuate in pipeline dividendole in diversi

stream TCP paralleli in modo da aumentare il throughput.

Nella richiesta COPY possono essere inseriti ulteriori header con prefisso TransferHeader

che sono copiati nella richiesta GET o PUT senza prefisso [24].

Dopo che una TPC & stata accettata dall’endpoint attivo, questo deve inviare al
client dei performance marker (Perf Marker) che includono informazioni sul progresso

del trasferimento dati, in particolare il numero di byte trasferiti.

Prima degli sviluppi effettuati per questa tesi, StoRM WebDAV supporta le TPC,

ma non includeva nei Perf Marker le informazioni RemoteConnections e Connection.

RemoteConnections ¢ un elenco delle connessioni remote attive per la TPC, nella
forma di lista separata da virgole di elementi nella forma <transport>:<ip>:<port>.
Connection ¢ il nuovo header che sostituisce il precedente e che include anche le in-
formazioni sull’indirizzo IP locale della TPC. Questo dato e interessante per vedere
direttamente dai log quale server sta effettuando la TPC, in particolare nei casi in cui

piu server stanno dietro lo stesso alias DNS.

Come richiesto dal WLCG Data Organization Management Access evolution project
(DOMA) sono stati aggiunti questi due dati ai Perf Marker inviati da StoRM WebDAV.
Questa integrazione e stata semplificata dal fatto che questi dati venivano gia ottenuti

per essere inseriti nei pacchetti firefly degli SciTags (Sezione 4.2).

2.4 Deployment di StoRM

Nella Fig. 2.1 ¢ illustrato il tipico deployment di StoRM con tutti i componenti. Gli
endpoint SRM e GridF'TP supportano l'autenticazione soltanto tramite VOMS proxy,
mentre gli endpoint HT'TP e WebDAV supportano anche gli access token OAuth.

I futuri deployment si stanno muovendo verso una configurazione senza i componenti
SRM e gsiFTP, che ¢ deprecato.

2. StoRM 11

HTTP HTTP client SRM gsiFTP

EI @ EI @ Loi?—l @ E_I VOMS proxy
,—‘ WebDAV HHTape REST API HH BDII H SRM FE m—‘ GridFTP m; ®0Authtoken
A

A > communication
INFO I

F
3
l t
HTTP — 9
GEMSS

—» Data Management
—» Data Transfer

D StoRM component
|:] External component

<— JAHTAX —>

StoRM BE

S oM
v i I 4 i

GPFS

Figura 2.1: Il deployment di StoRM al momento dell’introduzione dei componenti HT'TP.
Le frecce rosse rappresentano le operazioni di gestione dei dati, quelle blu i trasferimenti

dati e quelle nere le comunicazione interne tra i vari componenti.

2.5 Data Challenge 2024

Dal 12 al 23 febbraio 2024 si ¢ svolta una Data Challenge che ha coinvolto tutti
i centri di calcolo WLCG. Al Tier 1 del CNAF gli esperimenti ATLAS, CMS, LHCb
e Belle IT hanno utilizzato gli endpoint esposti dai componenti StoRM, in particolare
'interfaccia WebDAV [25], con risultati altalenanti.

Nel caso di ATLAS non sono stati raggiunti i rate previsti nella seconda settimana,
ma ¢ stato probabilmente dovuto a problemi riconducibili a FTS (File Transfer Service),
il servizio di alto livello responsabile per la distribuzione della maggior parte dei dati
nell’infrastruttura WLCG. In generale, i rate hanno superato i valori anticipati e sono
stati notati dei fallimenti e disparita tra il monitor interno e quello di F'TS.

I trasferimenti di CMS, anche grazie ad aggiustamenti a parametri di FTS fatti
prima della Data Challenge, hanno funzionato durante la prima settimana. Gli endpoint
di StoRM WebDAV del CNAF invece si sono saturati durante la seconda settimana,

portando a molti fallimenti.

12

2. StoRM

LHCb ha avuto diversi fallimenti dovuti ai troppi trasferimenti contemporanei. Ri-
ducendo i trasferimenti da parte di FTS da 200 a 50, il rate di successo ¢ aumentato
significativamente.

Il team di Storage riscontrava inoltre una saturazione dei thread di Jetty, il web server
utilizzato da StoRM WebDAV | in caso di carico elevato. Siritiene che questo fosse dovuto
al fatto che Jetty crea almeno un thread per ogni richiesta e quando il numero di thread
diventava molto superiore al numero di core del processore, il load dovuto al context
switch fosse predominante, comportando il blocco completo di StoRM WebDAV. I riavvi
del servizio erano giornalieri, tanto che veniva utilizzato un remediator di Sensu, cioe un
handler per effettuare un’azione in automatico quando si verificano certe condizioni, per

effettuare il restart del servizio in caso di problemi.

Capitolo 3

Evoluzione di StoRM

In questo capitolo vengono descritti i lavori di sviluppo svolti nel contesto di questa
tesi per il miglioramento sia della codebase di StoRM WebDAV, sia del deployment

sull’infrastruttura del Tier 1.

3.1 Nuovo deployment di StoRM

Nella Fig. 3.1 € mostrato il nuovo deployment di StoRM. Gli endpoint SRM e Gri-
dFTP sono stati rimossi poiché StoRM WebDAV e StoRM Tape permettono di eseguire
tutte le operazioni di trasferimento dati e di management necessarie su sistemi di storage

comprensivi di una tape library.

Per effettuare un completo passaggio dal deployment con i componenti SRM a quello
basato solo su componenti HTTP, ¢ necessario aggiungere al nuovo scenario il supporto
allo Storage Resource Reporting (SSR) [26], nonché esporre le informazioni di reporting
previste dal servizio BDII [27]. Tutte queste funzioni sono in capo al componente StoRM
Info Provider che recupera queste informazioni da StoRM Backend. Nel futuro scenario
basato solo su componenti HTTP, il componente StoRM Info Provider dovra essere

rivisto e disaccoppiato dal Backend SRM.

13

3. Evoluzione di StoRM

EI @ E—I @ 5 | voms proxy

~ WebDAV % Tape REST API BDII —— @ OAuth token

Internal
communication

—» Data Management

—

A

—» Data Transfer

—
-- m \:I Internal component
3

o D New component

I D External component

9 A new component built
| GEMSS ‘ | i | INFO from the ashes of StoRM
’\\ Backend + Info provider,
I I I "© used to collect storage area
v

info (used/free space, etc.)
and publish them on BDII

GPES service
N J

Figura 3.1: Il nuovo deployment di StoRM, soltanto con StoRM WebDAV e StoRM Tape.
Per esporre le informazioni necessarie allo Storage Resource Reporting verra creato un

nuovo componente.

3.2 Sviluppi

StoRM WebDAV e un’applicazione sviluppata in Java e che si basa sul framework
Spring Boot [28]. All'inizio degli sviluppi per questa tesi, I’applicazione utilizzava Spring
Boot 2.7.18, non piu supportato ufficialmente poiché giunto a fine ciclo di vita (End-of-
Life) gia nel giugno 2023 [29]. Per garantire la sicurezza e la manutenibilita del software,
e stato quindi pianificato e realizzato I’aggiornamento a Spring Boot 3. StoRM WebDAV
utilizza Jetty [30] come web server e Milton [31] come framework per I'implementazione
del protocollo WebDAV.

Durante questa migrazione, si e deciso di fare un primo passaggio intermedio con I'ag-

giornamento di Spring Security alla versione 5.8, requisito propedeutico alla successiva

3. Evoluzione di StoRM

15

adozione della versione 6, versione utilizzata da Spring Boot 3.

Il passaggio a Spring Boot 3 ha permesso anche I'aggiornamento di Jetty dalla versio-
ne 9 alla pit recente versione 12. Questo permette di beneficiare delle nuove funzionalita

disponibili e di migliorare le prestazioni complessive del web server integrato.

Per incrementare il throughput dei trasferimenti dati si e ritenuto interessante provare
a delegare alcune operazioni a NGINX [32]. NGINX ¢ un web server tra i piu diffusi e
offre moltissime opzioni di configurazione per adattarlo al tipo di traffico previsto. In
particolare e stato scelto per il supporto all’header X-Accel-Redirect che permette di
effettuare un redirect interno. Si e scelto di concentrarsi sulle richieste GET poiché sono
le richieste HTTP piu pesanti dal punto di vista del traffico generato. Queste avvengono
infatti quando un server e parte passiva di una Third-Party Copy in pull mode, che ¢ la
modalita di default quindi quella maggiormente usata. Non si e scelto di ottimizzare la
parte attiva delle Third-Party Copy poiché, essendo richieste utilizzate solo all’interno di

WLCG, non sono supportate da software di terze parti e richiedono un’implementazione

ad hoc.

I1 web server NGINX viene usato come terminazione SSL/TLS; questo permette di
semplificare il codice di StoRM WebDAV ed evitare gli overhead dovuti all’implementa-
zione Java delle librerie di crittografia. E stato sviluppato inoltre il modulo per NGINX
ngx_http_voms_module [33] che si occupa dell’autenticazione tramite certificati proxy
X.509 estesi con gli attributi VOMS [34]. Le informazioni ottenute dal modulo vengo-
no inserite in alcuni header HTTP e la richiesta viene inoltrata a StoRM WebDAV. In
questo scenario di deployment con NGINX, StoRM WebDAV in pratica si occupa di
verificare l'autorizzazione della richiesta. E previsto che in futuro tale verifica venga
delegata, completamente o in parte, a un engine esterno basato su OPA, come avviene

gia nel caso di StoRM Tape.

Nel caso di una richiesta GET che abbia superato i controlli di autorizzazione, StoRM
WebDAYV invia una risposta a NGINX con I’header HT'TP X-Accel-Redirect al fine di
redirigere la richiesta a una location interna di NGINX. Il valore dell’header permette
di identificare il percorso reale del file richiesto in modo da permettere a NGINX di
identificare il file da inviare al client. Per tutte le altre richieste diverse da GET, StoRM
WebDAV si occupa di gestire la richiesta.

16 3. Evoluzione di StoRM

ﬂ ﬁ (2) NGINX VOMS module parses
https http and validates the provided proxy
GET /sa/f-i le.dat and forward the request to StoRM
f — \ WebDAV service >
& J l @: SPz
[_ NGINX = Z
aa VOMS _ m | %
plugin (3) A response is sent to NGINX zZ T | mkcoL
(1) User submits a GET with the X-Accel HTTP response g g DELETE
request, which is VOMS/TLS header added b ?I E.ROPF'ND StoRM
terminated by NGINX X-Accel-Redirect: 0
/internal/file.dat gEl 6' WebI?AV
<:@: r? b service
n < (3])
J
NGINX @ /internal
(5) File is

(4) The internal endpoint of NGINX

=] vOMS prox returned to ! ” |
L‘i_—l proxy the user is configured to. retrieve the
resource from file-system

|::> request 4
<] response GPFS]

Figura 3.2: Esempio di una richiesta GET a StoRM WebDAV che utilizza NGINX.

La Fig. 3.2 mostra un esempio di una richiesta GET a StoRM WebDAV che utilizza
NGINX:

1. il client richiede il file /sa/file.dat, NGINX e la terminazione TLS e il modulo

ngx_http_voms_module effettua il parsing e I’autenticazione del certificato VOMS;
2. la richiesta viene inoltrata a StoRM WebDAV che si occupa dell’autorizzazione;

3. se l'autorizzazione ha successo viene inviata a NGINX una risposta con ’header

X-Accel-Redirect contenente il percorso reale del file, in questo caso /internal/file.dat;
4. I'endpoint interno di NGINX recupera il file dal file system:;

5. il file viene inviato al client.

A meta giugno 2025 il primo server StoRM WebDAV e stato aggiornato per utilizzare
come reverse proxy NGINX, delegando a quest’ultimo le richieste GET. Questo server
era uno di quelli presenti nel cluster di produzione dedicato all’esperimento ATLAS. E

emersa da subito una migliore efficienza della nuova versione rispetto alla precedente: e

3. Evoluzione di StoRM

15 [tierlinternal ~ Q Search or jump to. @ ctrisk o » @

= Home > Starred > Gateway servers > View panel ¢ @ 2025-06-14 12:00:00 to 2025-06-18 12:00:00 ~ > @ & ~ -~

@ Home o environment | InfluxDB-Storage-v2 v Retention | one_week v service | webdavv | VO | atlas v Hostname | All v ‘ = storage ‘ ‘ = Farming ‘
v ¥ Starred
Load average
GPFS servers
| Gateway servers
HSM

9
85
HTCondor Job Monitoring b.
8
NVMe storage pools [
75
> 88 Dashboards w 0
> & Alerting 7 ’
65
> @ Administration ‘ i H
6
|
\ ' l?I

|
‘ ‘} 1 I i :, i
,.‘*m." M 1\11,,\(*.';3}&'»# u)

LLLLL

Figura 3.3: Load average sui server di StoRM WebDAV di ATLAS prima e dopo 'ag-

giornamento di uno dei server alla versione con delega delle GET a NGINX (linea verde).

possibile vedere il load average sui server prima e dopo 'aggiornamento di uno dei nodi
nella Fig. 3.3.

Monitorando il load average per un paio di giorni ¢ stato constatato un decremento
del carico di 6 volte, come mostrato in Fig. 3.4.

Visti gli ottimi risultati ottenuti da questo singolo singolo server di StoRM WebDAV,
rispetto agli altri nodi sottoposti allo stesso tipo di carico, in pochi giorni il nuovo
deployment con la delega delle richieste GET a NGINX e stato ufficialmente adottato su
tutto il cluster utilizzato dall’esperimento ATLAS. Tale aggiornamento di tutti i nodi ha

confermato una netta diminuzione del carico sulla CPU, come visibile nella Fig. 3.5.

In seguito agli sviluppi che hanno portato alla delega delle richieste GET, ¢ stato rea-
lizzato un proof-of-concept della delega a NGINX anche per quanto riguarda le richieste
PUT. Il caso di una richiesta PUT & piu complesso perché con la scrittura di un file deve
essere calcolato il suo checksum Adler-32 [35]. Per implementare questa funzionalita non

si e potuto utilizzare soltanto NGINX, ma ¢ stato necessario utilizzare OpenResty [36],

18

3. Evoluzione di StoRM

15 [tierlinternal v

= Home > Starred > Gateway servers > View panel

@ Home
v Y Starred
GPFS servers
I Gateway servers
HSM
HTCondor Job Monitoring b.
NVMe storage pools
88 Dashboards
> & Alerting

> & Administration

o

Q Search or jump to. @ ctrisk o » @
EX8 | < © 2025-06-16 18:00:00 10 2025-06-18 12:00:00 + > @ & ~ ~
environment | InfluxDB-Storage-v2 v Retention | one_week v service | webdav v Vo | atlas v Hostname | All v = Storage | | = Farming
Load average
95
9
85
s
75
7
65
6
55
5
45
4 | [
35 d
: ‘ il)
25 H’ “L A i ! | \‘*
[P A ﬂ 1] il fi il n‘!‘ 1 H If
2l AL A Ay Lo w R ‘h\ | Mol i1
A i i NP *1 “H“\ vk LAY iy \) |
1] i Sl ERR i U ..*
: v
05 !F ‘
0
16/16 18:00 06/16 21:00 06/17 00:00 06/17 03:00 06/17 06:00 06/17 09:00 06/17 12:00 06/17 15:00 06/17 18:00 06/17 21:00 06/18 00:00 06/18 03:00 06/18 06:00 06/18 09:00 06/181
Name Mean Last® Max Min
= dm-12-14-05.crenatinfn.t 0396 0300 114 00800
am-12-14-07.cr.cnafnfnit 275 455 822 0940
— dm-12-14-09.crnatf infn.it 243 278 8se 0370
= dm-12-14-TLcrena infn.it 243 264 816 0900

= 0m-12-14-13.cr.enatinf.it 219 237 0.420

Figura 3.4: Load average sui server di StoRM WebDAV di ATLAS dopo 'aggiornamento

di uno dei server alla versione con delega delle GET a NGINX (linea verde).

un fork di NGINX che permette di implementare in Lua [37] alcune funzionalita aggiun-

tive. Intercettando quindi con un piccolo script Lua il traffico di rete delle richieste PUT,

¢ stato possibile calcolare e salvare il checksum negli attributi estesi del file.

3.3 Continuous Integration

La Continuous Integration (CI) ¢ una pratica software che richiede l'invio frequente

delle modifiche effettuate a una repository condivisa ed eseguire poi controlli continui e

automatici che il codice pubblicato sia funzionante. Il repository con il codice sorgente
di StoRM WebDAV si trova su GitHub e quindi e stato possibile definire dei workflow
di GitHub Actions, la piattaforma di Continuous Integration di GitHub. Tali workflow

sono stati definiti per eseguire una serie di controlli e azioni a seconda degli eventi che

ne hanno innescato ’esecuzione.

19

. .
3. Evoluzione di StoRM
15 R terlintemnal v Q Search or jump to. @ ctrisk o » @
= Home > Starred > Gateway servers > View panel % EXd | < © 2025-06-1819:00:00102025-06-1919:00:00 v > @ & v | A
@ Home DO cnvronment | InfluxDB-Storage-v2 ~ | Retention | one_week v | service | webdav v | Vo | atlas~ | Hostaame | All v = Storage | | = Farming
v Y Starred

Load average
GPFS servers

| Gateway servers
HSM
HTCondor Job Monitoring b.
NVMe storage pools
88 Dashboards
> & Alerting
> & Administration

0
1900 2000 2100 2200 2300 0000 OLO0 0200 0300 0400 0500 0600 0700 0800 0900 1000 10 1200 1300 1400 1500 1600 1700 1800 19:0
Name Mean Last* Max Min

= dm-12-14-05.crenatinfn.t 0360 0820 0890 00800

dm-12-14-07crcnatinfnit 230 0780 836 00700
= dm-12-14-09.crenatinin.ft 246 0730 724 0120
= dm-12-14-Tcrenatinfnit 276 0730 83 0210
= dm-12-14-T3.crenatinin.f 33 0500 854 0100

Figura 3.5: Grafico che illustra il netto calo di load average grazie all’aggiornamento di
tutti i server di StoRM WebDAV del cluster dedicato ad ATLAS.

E stato definito, per esempio, un workflow che si occupa di verificare la corretta
compilazione del codice e la corretta esecuzione degli unit test.

Utilizzando questo meccanismo di workflow, a ogni commit viene anche eseguita una
suite di test creata utilizzando Robot Framework [38].

Un altro workflow esegue I'analisi statica del codice per ogni commit su un branch
per cui esiste una Pull Request, integrandosi con il servizio SonarQube Cloud [39] dove
e stato configurato un corrispondente progetto.

Per gestire i commenti sul copyright viene usato REUSE [40], come suggerito dal
CERN Open Source Program Office [41], e un workflow si occupa di controllare che il
progetto sia sempre conforme alle specifiche REUSE.

Per uniformare la formattazione del codice viene usato Spotless [42] e un workflow
controlla che tutti i commit siano formattati correttamente.

Per velocizzare il rilascio di nuove versioni di StoRM WebDAV e stato sviluppato

un nuovo workflow di GitHub Actions per creare gli RPM e automatizzare i rilasci. In

3. Evoluzione di StoRM

particolare:

e gli RPM vengono creati ogni volta che si fa un git push;

e ogni volta che si fa un merge sul branch principale, gli RPM vengono pubblicati

nella repository nightly: la versione viene calcolata a partire da git describe;

e quando si crea un tag riferito a un commit nella forma v<x>.<y>.<z>-<nome>, gli

RPM vengono pubblicati nella repository beta con la versione <x>.<y>.<z>"<nome>;

e quando si crea un tag riferito a un commit nella forma v<x>.<y>.<z> gli RPM

vengono pubblicati nella repository stable con la versione <x>.<y>.<z>.

Durante lo sviluppo si e cercato di rendere questo workflow il meno dipendente pos-
sibile da GitHub, usando per esempio script Bash invece di action di GitHub. E stato
infatti possibile riutilizzare la maggior parte del codice per sviluppare la CI del modulo
NGINX; il cui sorgente si trova su un’istanza di GitLab gestita dall’'INFN.

Quando viene creato un tag in occasione del rilascio di una versione stabile viene
creata una release su GitHub; inoltre viene caricata I'immagine Docker su Docker Hub

e sul GitHub Container Registry.

3.4 Mini Data Challenge 2025

Dal 1 al 3 luglio 2025 e stata effettuata una Mini Data Challenge con la collaborazione
dell’esperimento CMS. Per una adeguata comparazione dei risultati, I’esperimento ha
ripetuto i suoi test sia nella configurazione con NGINX come reverse proxy e sia senza.

In entrambi i casi, quindi anche senza ricorrere alla soluzione con reverse proxy, grazie
solamente agli sviluppi effettuati, StoRM WebDAV e riuscito a saturare le schede di rete
dei server. Ogni server ¢ dotato, infatti, di due schede di rete da 25 Gbps in bonding
con load balancing XOR.

Dal punto di vista delle prestazioni dei trasferimenti invece, come auspicabile, 1'uti-
lizzo di NGINX ha portato a una complessiva diminuzione dei tempi di completamento

delle richieste GET, come visibile nella Fig. 3.6.

3. Evoluzione di StoRM

21

Distribution of time (seconds) for GET

Nginx
1200 - Webdav

-
.]

Number of requests

1000 ~

800 ~

600

400 -

200 ~

0 100 200 300 400
Duration of the request (s)

Figura 3.6: Grafico della distribuzione delle durate dei trasferimenti dati delle richieste
GET.

Questa Mini Data Challenge ha permesso di confermare i miglioramenti dovuti agli
sviluppi effettuati e all’utilizzo di NGINX. Inoltre ha fatto emergere delle limitazioni do-
vute all’utilizzo del bonding delle schede di rete con load balancing XOR. In particolare,
queste limitazioni sembrerebbero essere dovute al bilanciamento non perfetto tra le due
schede di rete e all’overhead del protocollo TCP per inviare per esempio i pacchetti ACK.
I file sono infatti archiviati su vari nodi GPFS quindi, oltre al traffico di rete verso il
client che ha richiesto per esempio un file, ¢’e anche il traffico dovuto alla lettura del file
dai nodi GPFS. Quando una delle due schede di rete si satura, la connessione rallenta

per il meccanismo di congestion control di TCP. Per esempio, quando un client fa una

22

3. Evoluzione di StoRM

richiesta GET (traffico in uscita) viene generato anche traffico in ingresso per la lettura
dai nodi GPFS. Non essendo necessariamente queste due connessioni gestiste dalla stessa
scheda di rete, puo capitare che una delle due si saturi non permettendo di sfruttare al

massimo il full-duplex.

3.5 Virtual thread

StoRM WebDAV utilizza un’architettura multithread dovuta a Jetty. Jetty utilizza
almeno un thread per ogni richiesta (in alcuni casi anche pin di uno) [43]. Occupandosi
StoRM WebDAV di grandi trasferimenti di dati, la maggior parte delle richieste sono
molto lunghe e I/O-bound. Si & notato che quando il numero di richieste contemporanee
aumentava molto, il load average superava il numero di core del processore; di conseguen-
za i server diventavano molto meno responsivi. Il load average di Linux considera, oltre
al numero di processi in esecuzione e in attesa di essere eseguiti, anche quelli bloccati
per esempio per operazioni di 1/O; quindi riflette in modo generico il carico di tutto il
sistema e non solo delle CPU [44]. In particolare la percentuale di idle era molto alta;
questo potrebbe essere dovuto a eccessivi context switch tra i vari thread utilizzati da
StoRM WebDAV.

Dalla versione 21, Java supporta i virtual thread [45]. Normalmente i thread di
Java utilizzano un thread del sistema operativo per tutto il tempo della loro esistenza.
I thread virtuali invece, pur essendo sempre istanze di java.lang.Thread, non sono
legati a thread di sistema. I virtual thread vengono eseguiti comunque su un thread di
sistema operativo, ma quando chiamano un’operazione I1/O bloccante, la runtime Java ne
sospende ’esecuzione fino al completamento dell’operazione, liberando in questo modo
il thread di sistema, che puo essere utilizzato per eseguire altri thread virtuali. I virtual
thread sono quindi pensati per task che passano molto tempo bloccati, per esempio per
operazioni di I/O. Non permettono al codice di essere eseguito pitt velocemente, quindi
la latenza non cambiera, ma permettono di scalare, aumentando il throughput.

Spring Boot supporta i virtual thread dalla versione 3.2. Visto che lo use case per
cui e stato sviluppato il supporto ai thread virtuali & proprio quello di software simili a

StoRM WebDAV, e stato aggiunto il supporto ai virtual thread anche a quest’ultimo.

Capitolo 4
SciTags

In questo capitolo viene presentata l'iniziativa SciTags e come e stato aggiunto il sup-
porto al flow marking a StoRM WebDAV considerando anche il deployment che utilizza
NGINX come reverse proxy.

4.1 Introduzione

SciTags (scientific network tags) [46] & un’iniziativa che promuove l'identificazione
dei domini scientifici e della tipologia di attivita a livello di rete. Nel caso di WLCG si
tratta di identificare 'esperimento (ad esempio ATLAS o CMS) e I'attivita ad alto livello
(produzione, analisi, data challenge, etc.) in modo che i provider delle reti della ricerca
e dell’educazione, come il GARR, possano collezionare queste informazioni e correlarle
ad altri dati che hanno a disposizione.

Il traffico puo essere marcato in due modi:

e inviando dei pacchetti UDP, chiamati firefly, oppure

e usando il campo flow label dell’header IPv6 dei pacchetti di rete.

Nel primo caso viene inviato un pacchetto UDP, contenente le informazioni sull’espe-
rimento e l'attivita che hanno generato il traffico, all’inizio e alla fine di ogni trasferimento

alla porta 10514 dell’host remoto.

23

24

4. SciTags

Nel secondo caso viene invece sfruttato il campo flow label dell’header IPv6 per ag-
giungere informazioni riguardo I'esperimento e I'attivita che stanno generando il traffico.
In particolare, I'identificatore dell’attivita viene messo nei bit 24-29 e quello dell’esperi-
mento nei bit 14-22 in ordine inverso per permettere futuri aggiustamenti del limite dei
bit. I rimanenti 5 bit (12-13, 23, 30-31) sono usati per entropia: vengono impostati a
valori casuali per ogni flusso dati.

Ogni flusso e identificato da un identificatore obbligatorio per I’esperimento, detto an-
che virtual organization, e un identificatore facoltativo per I'attivita. Questi identificatori
sono mappati staticamente in un flow registry [47].

Quando con una richiesta HTTP si inizia un trasferimento dati, i due identificatori

sono inseriti nell’header HT'TP SciTag:
<experimentId> << 6 | <activityId>

dove << e l'operatore di bit shift a sinistra e | € 'OR bit-a-bit.

Il valore risultante € un intero positivo a 16 bit compreso tra 64 e 65536 (limiti esclusi
perché non esistono attivita con ID 0).

Per esempio, per un’attivita di consolidamento dati (ID: 4) dell’esperimento ATLAS
(ID: 2), 'header sara SciTag: 132.

4.2 Integrazione in StoRM WebDAV

StoRM WebDAV ha aggiunto il supporto all’header SciTag nella versione 1.5.0 [48]
sfruttando il daemon flowd [49].

Quest’ultimo offre una serie di plugin per ottenere le informazioni sugli identificatori
dei flussi dati e un insieme di backend per marcare il traffico. In particolare, StoRM
WebDAV utilizza il plugin np_api che permette a flowd di utilizzare una named pipe per
ricevere i dati. Il backend udp-firefly di flowd viene poi usato per inviare i pacchetti
UDP firefly.

StoRM WebDAV supporta quattro tipi di richieste per i trasferimenti dati, che so-
no interessanti ai fini del tracciamento: GET, PUT, TPC in push mode e TPC in pull
mode. Nel caso delle TPC in pull mode, il client invia a StoRM WebDAV I’header

4. SciTags 25

TransferHeaderSciTag; 'endpoint attivo in questo modo non marca il traffico, ma ef-
fettua una richiesta GET con il valore dell’header SciTag uguale a quello dell’header
TransferHeaderSciTag ricevuto nella richiesta COPY. Negli altri casi, invece, StoRM
WebDAV legge il valore dell’header SciTag per estrarre gli ID dell’esperimento e dell’at-
tivita e scrivere nella named pipe di flowd (/var/run/flowd) una linea strutturata in

questo modo:
state protocol source_ip source_port dest_ip dest_port exp act
dove:

e state ¢ start;
e protocol e tcp;

e source_ip e source_port sono l'indirizzo IP e la porta della sorgente del trasfe-

rimento dati;

e dest_ip e dest_port sono l'indirizzo IP e la porta della destinazione del trasferi-

mento dati;

e exp e act sono gli ID dell’esperimento e dell’attivita estratti dall’header SciTag.

In tutti i casi 'header TransferHeaderSciTag viene ignorato se ¢ presente 'header
SciTag.

Un esempio di una TPC in push mode tra i server A e B € mostrato nella Fig. 4.1:

1. il client invia una richiesta COPY al server A specificando il server B come Destination

e con un header SciTag;

2. StoRM WebDAV sul server A estrae gli ID dell’esperimento dell’attivita dall’header
SciTag, scrive le informazioni necessarie nella pipe di flowd con lo stato start e
inizia il trasferimento dati verso il server B. Nello stesso momento, flowd invia il

pacchetto UDP firefly al server B;

3. i dati vengono trasferiti tra i server A e B;

26

4. SciTags

4. una volta che il trasferimento e stato completato, StoRM WebDAV scrive le in-
formazioni sulla pipe di flowd con lo stato end e flowd invia il corrispondente

pacchetto UDP firefly al server B.

1) Client 2)

HTTP COPY
Destination: B
ySciTag: 65
Server A Server A
HTTP PUT
(StoRM WebDAV) (StoRM WebDAV
actID PEaad
start -
v eXQID _--I "UDP firefly
flowd flowd

y ()) (@)

Server A Server A
HTTP PUT
(StoRM WebDAV (StoRM WebDAV)
actID P
end -
v GXRID ---["UDP firefly
flowd flowd

Figura 4.1: Esempio di una TPC in push mode.

L’attivazione di questa feature e facoltativa perché richiede l'installazione di flowd.
Per semplificare ’adozione, il modulo Puppet di StoRM [50] permette con una singola
flag di attivare il supporto a SciTags oltre che installare e configurare flowd.

Nel caso venga usato NGINX come reverse proxy e necessario inviare le informazioni
riguardanti il client (indirizzo IP e porta sorgente e destinazione) a StoRM WebDAV
in modo che possa comunicare queste informazioni a flowd, che le inserira nel pacchetto

UDP firefly. Queste informazioni vengono inserite da NGINX nell’header Forwarded [51].

http {
map $remote_addr $forwarded_for {

“~[0-9.]+$ "for=\"$remote_addr:$remote_port\"";

4. SciTags 27

~~[0-9A-Fa-f:.]+$ "for=\"[$remote_addr]:$remote_port\"";

default "for=unknown";

}

map $server_addr $forwarded_by {
“~[0-9.]+$ "by=\"$server_addr:$server_port\"";
“~[0-9A-Fa-f:.]+$ "by=\"[$server_addr]:$server_port\"";
default "host=unknown";

}

}

server {

location / {
proxy_pass http://storm-webdav;
proxy_pass_header Server;
proxy_http_version 1.1;
proxy_set_header Connection "";

proxy_set_header Forwarded "$forwarded_by;$forwarded_for;host=$http_host";

Questo header viene poi gestito dal ForwardedHeaderFilter di Spring Boot che fa
I'override dei metodi getRemoteHost () e getRemoteAddr (). Poiché al momento questo
filtro ignora il parametro by ¢ stato sviluppato un ulteriore filtro in modo da fare ’override
anche dei metodi getLocalAddr() e getLocalPort().

Per fare le richieste HT'TP verso i server passivi delle TPC viene usata la libreria
Apache HttpClient 5, che, se da una parte rende molto semplice effettuare richieste
HTTP, dall’altra complica molto I'ottenimento delle informazioni sul socket usato per il
trasferimento che contiene informazioni che € necessario inserire nei pacchetti UDP firefly.
Per ovviare a questo problema e stata estesa la classe DefaultClientTlsStrategy che

definisce come passare da una connessione non criptata a una TLS.

Codice sorgente 4.1: Classe TpcTlsSocketStrategy utilizzata per ottenere informazioni
sui socket usati per le TPC

1 public class TpcTlsSocketStrategy extends DefaultClientTlsStrategy {

28 4. SciTags
2

3 public TpcTlsSocketStrategy (SSLContext sslContext) {
4 super (sslContext);

5 }

6

7 @0verride

8 public SSLSocket upgrade(

9 Socket socket,

10 String target,

11 int port,

12 Object attachment,

13 HttpContext context)

14 throws IOException {

15 SSLSocket s = super.upgrade (socket, target, port, attachment, context);
16 SciTag scitag = (SciTag) context.getAttribute (SciTag.SCITAG_ATTRIBUTE);
17 if (scitag != null) {

18 SciTagTransfer scitagTransfer =

19 new SciTagTransfer (

20 scitag,

21 s.getLocalAddress (). getHostAddress (),

22 s.getLocalPort (),

23 s.getInetAddress ().getHostAddress (),

24 s.getPort ());

25 scitagTransfer.writeStart ();

26 context.setAttribute (

27 SciTagTransfer .SCITAG_TRANSFER_ATTRIBUTE,

28 scitagTransfer);

29 }

30 return s;

31 }

Nel caso si deleghi il trasferimento dati a NGINX, StoRM WebDAV non puo sapere

quando si conclude e di conseguenza non puo inviare il firefly con state end. Per ovviare

a questo problema, si e sfruttata la capacita di logging di NGINX per scrivere la riga

necessaria nella pipe di flowd.

server {

location /.storm-webdav/internal/get {

4. SciTags

29

internal;

alias /;

sendfile on;

tcp_nopush on;

keepalive_timeout 65;

tcp_nodelay on;

if ($upstream_http_x_scitag_actid) {

access_log /var/run/flowd flowd;

b

add_header Server $upstream_http_server;
}
+

user storm;

http {
log_format flowd ’end tcp $server_addr $server_port ’
’$remote_addr $remote_port °’

>$upstream_http_x_scitag_actid $upstream_http_x_scitag_expid’

.

Capitolo 5

Tracing utilizzando eBPF

In questo capitolo viene presentata la tecnologia eBPF e come ¢ possibile, utilizzando
la libreria libbpf e in particolare il wrapper per Rust, fare tracing delle performance dei
programmi. Per tracing si intende il catturare informazioni sull’esecuzione dei program-
mi, in particolare in tempo di esecuzione delle funzioni. L’utilizzo di questa tecnologia
non richiede modifiche al codice dei programmi di cui si vogliono misurare le prestazioni.
Inoltre, a volte puo capitare che alcuni colli di bottiglia siano difficilmente replicabili
in ambiente di test e il poter generare dei flamegraph [52] direttamente sui server di

produzione senza interruzioni del servizio puo essere molto utile.

5.1 eBPF

eBPF ¢ una tecnologia del kernel Linux che permette di estenderne le funzionalita [53].
In particolare ¢ possibile scrivere dei programmi eBPF e collegarli a specifici hook del
kernel. Il modello di esecuzione dei programmi eBPF ¢ event-driven, cio¢ vengono eseguiti
quando il kernel o un’applicazione passa determinati punti di hook.

Nella mia tesi triennale [54] ho illustrato come poter utilizzare il framework eXpress
Data Path (XDP) per collegare programmi eBPF alla ricezione di pacchetti di rete. XDP
puo essere utilizzato per implementare load balancer, firewall o monitorare il traffico di

rete.

31

32 5. Tracing utilizzando eBPF

eBPF puo essere anche utilizzato per fare tracing delle performance di programmi.

E infatti possibile collegare programmi eBPF all’entrata e all’uscita di funzioni.

La Fig. 5.1 mostra il processo di compilazione e caricamento di programmi eBPF.

= =e
== Program == Program
P pro— g — 5
) Progam | Maps [process |
Development
[aeaPF C/C++ libbpf Library | sendmsg() | | recvmsg()
| Syscall Syscall
- WeBPF
— | v |
) eBPF
- [@'&’BPF Verifier] _,@'re,app Sockets
C - N
5)ﬂé [ﬁ’eBPF JIT Compiler | [TCP/IP]

Runtime

Figura 5.1: Schema della compilazione e del caricamento di programmi eBPF (Immagine

di eBPF.io distribuita con licenza Creative Commons BY 4.0)

Il kernel Linux richiede che i programmi eBPF siano caricati come bytecode. Clang
permette di compilare i programmi eBPF scritti in C in bytecode. Il bytecode puo essere

poi caricato nel kernel Linux, che si occupa dei due passi successivi.

Per prima cosa avviene una verifica per controllare che il programma soddisfi alcune
condizioni, per esempio che non contenga loop infiniti, non acceda ad aree di memoria
non inizializzate, non legga aree di memoria arbitraria o, nel caso di programmi che
interagiscono con pacchetti di reti, non acceda fuori dai limiti del pacchetto.

Successivamente il kernel compila Just-in-Time il bytecode nel codice macchina del-

I’architettura su cui viene eseguito, permettendo ai programmi eBPF di essere efficienti

quanto il codice compilato nativamente.

https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://creativecommons.org/licenses/by/4.0/

5. Tracing utilizzando eBPF

33

Le mappe permettono ai programmi eBPF di comunicare tra loro e con lo user space.

Esistono diversi tipi di mappe: hash table, array, ring buffer, stack trace, etc.

5.2 BPF CO-RE e libbpf

Una delle limitazioni che in passato era presente nei programmi eBPF era la loro
dipendenza da versioni specifiche del kernel. Una prima soluzione a questo problema e
stata quella di compilare il programma eBPF' direttamente sulla macchina in cui si voleva
eseguire questi programmi. Per fare cio sono state sviluppate librerie che semplificano
questa operazione come per esempio BPF Compiler Collection (BCC) [55]. Lo svantaggio
di questo approccio e che il programma finale deve includere, per compilare il programma,
eBPF, LLVM e Clang, che sono dipendenze abbastanza pesanti. Inoltre ogni volta che si
vuole avviare un programma eBPF avviene la compilazione, operazione che puo risultare
pesante.

Per ovviare a queste limitazioni ¢ stato sviluppato BPF CO-RE (Compile Once -
Run Everywhere) [56]. In particolare sono state introdotte le BTF type information,
che includono tutte le informazioni necessarie per la portabilita. La libreria libbpf [57]
utilizza queste informazioni per adattare il programma eBPF alla versione del kernel a
cui deve essere connesso.

Per utilizzare questa funzionalita per prima cosa e necessario estrarre le informazioni
dal kernel su cui si sta sviluppando il progetto. E possibile fare cio con il seguente

comando:
bpftool btf dump file /sys/kernel/btf/vmlinux format c¢ > vmlinux.h

Clang e stato migliorato per aggiungere al file oggetto dei programmi eBPF alcune
informazioni aggiuntive. Per esempio aggiunge le rilocazioni BTF che catturano descri-
zioni ad alto livello delle informazioni a cui il programma vuole accedere. Per esempio,
se un programma eBPF accede al campo task_struct->pid, Clang registrera il fatto
che si sta provando ad accedere al campo di nome pid di tipo pid_t all’interno di uno
struct task_struct. In questo modo, se il campo viene spostato a un offset differente
o dentro struct o enum anonimi nella versione kernel in cui si sta provando a usare il

programma eBPF| ¢ possibile fare la cosiddetta field offset relocation.

34

5. Tracing utilizzando eBPF

La libreria libbpf utilizza queste informazioni al momento del caricamento di un
programma eBPF': prende il file oggetto del programma eBPF, lo processa per effettuare
le rilocazioni necessarie a seconda del kernel su cui si sta eseguendo e avvia il collegamento
e la verifica del programma eBPF. Questa libreria e parte del codice del kernel Linux e
sono disponibili anche dei wrapper in Rust [58] e in Go [59], di cui & disponibile anche
una versione scritta in Go puro [60] senza l'utilizzo di CGo.

Un’applicazione eBPF ¢ composta da uno o piu programmi eBPF, mappe e variabili
globali (condivise tra tutti i programmi eBPF). libbpf metta a disposizione delle API
che 1 programmi userspace possono usare per manipolare i programmi eBPF e gestire le

varie fasi di un programma eBPF. Un’applicazione eBPF ha le seguenti fasi:

Fase di apertura libbpf apre il file oggetto eBPF in modo da sapere quali programmi
eBPF, mappe e variabili globali contiene. In questa fase ¢ possibile impostare le

variabili globali.

Fase di caricamento libbpf crea le mappe, risolve le varie rilocazioni, verifica e carica
i programmi eBPF. In questa fase & possibile impostare le mappe senza incorrere

in race condition poiché i programmi non sono ancora stati eseguiti.

Fase di collegamento libbpf collega i programmi eBPF ai vari hook di sistema (entrata
e uscita di funzione, arrivo di pacchetti di rete, etc.). I programmi vengono quindi
eseguiti in modo event-driven e possono comunicare con lo userspace utilizzando le

mappe e le variabili globali.

Fase di distruzione libbpf scollega i programmi eBPF e libera le risorse.

Gli skeleton eBPF sono un’interfaccia alternativa per interagire con gli oggetti eBPF
che astraggono le API messe a disposizione da libbpf. Sono dei file che, oltre a contenere
il bytecode eBPF, in modo da non avere altri file da distribuire oltre all’applicazione
userspace, mettono a disposizioni funzioni per le varie fasi del programma eBPF e per
interagire con le mappe e le variabili globali. Poiché questi skeleton vengono generati a
partire dall’oggetto eBPF, contengono strutture dati che elencano tutti programmi eBPF,

le mappe e le variabili globali; in questo modo si puo evitare di doverli cercare per nome,

© 00 = O Ut = W N =

e e e e
S U e W NN = O

5. Tracing utilizzando eBPF 35

evitando cosi errori nel caso venissero rinominate nel codice sorgente dell’applicazione
eBPF.

5.3 libbpf-rs

Nei seguenti esempi verra utilizzato Rust e la libreria libbpf-rs. Per creare un nuovo

progetto basta eseguire:

cargo init
cargo add libbpf-rs
cargo add --build libbpf-cargo

Il seguente codice contiene due programmi eBPF di tipo uprobe e uretprobe; questi
tipi di programmi vengono eseguiti rispettivamente quando si invoca una funzione e

quando si fa il return.

Codice sorgente 5.1: Esempio di due programmi eBPF collegati all’invocazione e
all’uscita di una funzione

#include "vmlinux.h"

#include <bpf/bpf_tracing.h>

SEC ("uprobe//bin/bash:readline")
int BPF_UPROBE(readline_enter) {
bpf_printk ("Bash readline called");

return O;

}s

SEC("uretprobe//bin/bash:readline")
int BPF_URETPROBE (readline_exit) {
bpf_printk ("Bash readline returned");

return O;

};

char LICENSE[] SEC("license") = "GPL";

36

5. Tracing utilizzando eBPF

© 00 = O Ut k= W N =

N N N = = = = e e e e e
N B O © 00 N O U kW N = O

1

In particolare, sono state usate le macro BPF_UPROBE e BPF_URETPROBE per defi-
nire i due programmi eBPF: il primo collegato all’invocazione alla funzione readline
dell’eseguibile /bin/bash e il secondo all’uscita della stessa.

La libreria libbpf-cargo permette di integrare la creazione degli skeleton eBPF con lo
strumento Cargo di Rust. Per fare cio e necessario creare un build script che utilizza lo

SkeletonBuilder messo a disposizione da questa libreria.

Codice sorgente 5.2: Esempio di build script per generare lo skeleton

use std::env;

use std::path::PathBuf;
use libbpf_cargo::SkeletonBuilder;
const SRC: &str = "src/bpf/trace.bpf.c";

fn main() {
let out = PathBuf::from(
env::var_os ("CARGO_MANIFEST_DIR")
.expect ("CARGO_MANIFEST_DIR must be set in build script"),
)
.join("src")
.join ("bpf")

.join("trace.skel.rs");

SkeletonBuilder: :new ()
.source (SRC)
.build_and_generate (&out)
.unwrap () ;

println! ("cargo:rerun-if-changed={SRC}");

Il build script generera automaticamente al momento della build un file skeleton

example.skel.rs che semplifica 'interazione con questi programmi da Rust.

Codice sorgente 5.3: Esempio di programma Rust per aprire, caricare e collegare i
programmi eBPF

use crate::example::ExampleSkelBuilder;

© 00 N O Ut kR W N

e e e T T e T e T o T =St
© 00 3 O U k= W NN = O

5. Tracing utilizzando eBPF 37

use libbpf_rs::skel::{OpenSkel, Skel, SkelBuilder};

use std::mem::MaybeUninit;

mod example {
include! (concat ! (
env! ("CARGO_MANIFEST_DIR"),
"/src/bpf/example.skel.rs"
)

fn main() {

let example_builder ExampleSkelBuilder::default ();

let mut open_object = MaybeUninit::uninit ();

let open_skel = example_builder.open(&mut open_object).unwrap();
let mut skel = open_skel.load().unwrap();
skel.attach () .unwrap();

loop {7}

Si puo notare come gli skeleton semplifichino molto 'apertura, il caricamento e il
collegamento di programmi eBPF. In particolare, ExampleSkelBuilder ¢ uno struct
che implementa il trait SkelBuilder che ci permette di aprire il file oggetto eBPF. E
possibile poi usare lo skeleton aperto per caricare i programmi eBPF. Infine il metodo
attach permette di collegare in automatico tutti i programmi eBPF.

E possibile compilare ed eseguire il programma con i seguenti comandi:

cargo build

sudo ./target/debug/ebpf-test

L’output di bpf_printk viene scritto nel trace log del kernel, quindi per visualizzarlo

€ necessario usare:
sudo cat /sys/kernel/debug/tracing/trace_pipe

Interagendo con un altro terminale ¢ possibile notare che viene scritto Bash readline
called ogni volta che viene presentato un prompt, mentre quando si fa Invio viene scritto

Bash readline returned.

38

5. Tracing utilizzando eBPF

© 00 J O U e W N =

e e e o T e e T e T o T =St
© 00 I O Ut k= W N = O

bash-42 [014] ...11 685.400167: bpf_trace_printk: Bash readline called
bash-42 [014] ...11 692.091196: bpf_trace_printk: Bash readline returned

5.4 blazesym

Per fare tracing delle performance ¢ necessario per prima cosa ottenere ’elenco delle
funzioni. Per ottenerlo ¢ possibile utilizzare la libreria blazesym [61].

E possibile aggiunge questa libreria usando:
cargo add blazesym

Il seguente programma utilizza la libreria blazesym per aprire un file ELF preso come
argomento. Tuttiisimboli vengono aggiunti in un vettore e per ogni simbolo viene scritto

il tipo (funzione o variabile), il nome e 'indirizzo.

Codice sorgente 5.4: Esempio di utilizzo della libreria blazesym per ottenere i simboli di
funzione di un eseguibile

use std::{env, ops::ControlFlow};

use blazesym::inspect::{
Inspector,
source::{E1f, Source},

}s

fn main() {
let args: Vec<String> = env::args().collect();
let file_path = &args[1];
let src = Source::E1f(Elf::new(file_path));
let inspector = Inspector::new();
let mut sym_infos = Vec::new();
inspector
.for_each(&src, |sym| {
sym_infos.push(sym.to_owned ());
ControlFlow::Continue (())
i)

.unwrap () ;

20
21
22
23

1
2

5. Tracing utilizzando eBPF

for sym in sym_infos {

println! ("[{:?}] {} ({:#X})", sym.sym_type, sym.name, sym.addr);

}
}
E possibile eseguire questo programma usando:
$ cargo run -- ./example_debug

[Function] main (0x400474)
[Function] add (0x400466)

5.5 Collegare i programmi eBPF a hook

Per fare tracing delle performance di un programma e necessario collegare un pro-
gramma eBPF all’entrata e all’uscita delle funzioni di interesse.

Per fare cio non e possibile utilizzare il metodo attach, usato nel Codice sorgente 5.3,
che prova a collegare in automatico tutti i programmi eBPF, perché non e pensabile
inserire i nomi delle funzioni di cui fare tracing in modo hardcoded.

libbpf-rs permette di collegare in modo manuale vari programmi eBPF a specifici
hook.

Per prima cosa e necessario creare due mappe, la prima sara di tipo stack trace
(BPF_MAP_TYPE_STACK_TRACE) e servira a salvare gli stack delle chiamate di funzione;
'altra sara di tipo ring buffer (BPF_MAP_TYPE_RINGBUF) e verra utilizzata per inviare le
informazioni sulle chiamate di funzione dai programmi eBPF allo userspace.

Due programmi eBPF vengono usati per ottenere le informazioni sullo stack (utiliz-
zando la funzione helper bpf_get_stackid), il tempo (bpf_ktime_get_ns), il PID e il
TID (bpf_get_current_pid_tgid) e se & una chiamata o un’uscita di funzione.

I singoli eventi vengono inviati tramite il ring buffer in modo da poter essere elaborati

dal programma in userspace.

Codice sorgente 5.5: Esempio di due programmi eBPF collegabili all’entrata e all’uscita
di funzioni

#include "vmlinux.h"

#include <bpf/bpf_tracing.h>

40 5. Tracing utilizzando eBPF
3 #define PERF_MAX_STACK_DEPTH 127

4

5 struct trace_info {

6 u32 stackid;

7 u8 event_type;

8 u64 time;

9 u32 pid;

10 u32 tid;

11 3}

12

13 struct trace_info _trace_info = {0};

14

15 struct {

16 __uint (type, BPF_MAP_TYPE_STACK_TRACE);

17 __type (key, u32);

18 __uint(value_size, PERF_MAX_STACK_DEPTH * sizeof (u64));
19 __uint (max_entries, 10000);

20 } stack_traces SEC(".maps");

21

22 struct {

23 __uint (type, BPF_MAP_TYPE_RINGBUF);

24 __uint (max_entries, 10000);

25 } events SEC(".maps");

26

27 SEC("uprobe")

28 int BPF_UPROBE (start) {

29 struct trace_info info = {};

30 info.stackid = bpf_get_stackid(ctx, &stack_traces, O | BPF_F_USER_STACK);
31 info.event_type = 0;

32 info.time = bpf_ktime_get_ns ();

33 u64 pid_tgid = bpf_get_current_pid_tgid();

34 info.pid = pid_tgid >> 32;

35 info.tid = pid_tgid & OxFFFFFFFF;

36 if (info.stackid > 0) {

37 bpf_ringbuf_output (&events, &info, sizeof (info), 0);
38 }

39 return O;

40 }

41
42
43
44
45
46
47
48
49
50
51
52
53
54
95

S U s W N =

5. Tracing utilizzando eBPF

41

SEC("uretprobe")
int BPF_URETPROBE (end) {

struct trace_info info = {};

info.stackid = bpf_get_stackid(ctx, &stack_traces, O | BPF_F_USER_STACK);

info.event_type = 1;

info.time = bpf_ktime_get_ns ();

u64 pid_tgid = bpf_get_current_pid_tgid();

info.pid = pid_tgid >> 32;

info.tid = pid_tgid & OxFFFFFFFF;

bpf_ringbuf_output (&events, &info, sizeof (info), 0);

return O;

char LICENSE[] SEC("license") = "GPL";

Il programma in userspace salva tutti i simboli di tipo funzione trovati utilizzando
la libreria blazesym in un vettore. Utilizza poi lo SkelBuilder per aprire il file oggetto
eBPF e collega, per ogni simbolo di funzione del programma di cui si vuole fare tra-
cing, i due programmi eBPF precedenti, usando il metodo attach_uprobe_with_opts.
Successivamente fa polling degli eventi inviati al ring buffer. Ogni volta che un evento
viene ricevuto, si accede alla mappa degli stack trace e per ogni simbolo viene usato il
Symbolizer di blazesym per ottenere i nomi delle funzioni dello stack.

Per interpretare i byte che arrivano dal ring buffer come lo struct trace_info

generato nello skeleton verra usata la libreria plain che ¢ possibile aggiungere usando:

cargo add plain

Codice sorgente 5.6: Esempio di collegamento di programmi eBPF a tutte le funzioni di
un eseguibile

use std::{
env, mem::MaybeUninit, num::NonZeroU32, ops::ControlFlow,

time::Duration,

use blazesym::{

42 5. Tracing utilizzando eBPF
7 Pid, SymType,

inspect::{

Inspector,

10 source::{E1f, Sourcel},
11 },
12 symbolize::{Input, Sym, Symbolized, Symbolizer, source::Process},
13 3}
14 use 1libbpf_rs::{
15 Link, MapCore, MapFlags, RingBufferBuilder, UprobeOpts,
16 skel::{0OpenSkel, Skel, SkelBuilder},
17 ¥
18 use plain::Plain;
19 mod trace {
20 include! (concat! (
21 env! ("CARGO_MANIFEST_DIR"),
22 "/src/bpf/trace.skel.rs"
23)5
24 ¥
25 #[allow(clippy::wildcard_imports)]
26 use trace::*;
27
28 unsafe impl Plain for trace::types::trace_info {}
29
30 fn main() {
31 let args: Vec<String> = env::args().collect();
32 let file_path = &args[1];
33 let src = Source::E1f(Elf::new(file_path));
34 let inspector = Inspector::new();
35 let mut sym_infos = Vec::new();
36 inspector
37 .for_each(&src, |sym| {
38 if sym.sym_type == SymType::Function {
39 sym_infos.push(sym.to_owned ());
40 }
41 ControlFlow::Continue (())
42 B
43 .unwrap () ;
44 let example_builder = TraceSkelBuilder::default ();

45
46
47
48
49
50
o1
92
53
54
95
o6
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

5. Tracing utilizzando eBPF 43

let mut open_object = MaybeUninit::uninit ();
let open_skel = example_builder.open(&mut open_object).unwrap();
let skel = open_skel.load().unwrap();
let object = skel.object ();
let mut links: Vec<Link> = vec![];
for sym in sym_infos {
for prog in object.progs_mut () {
let opts = UprobeOpts {
retprobe: prog.name().to_str().unwrap() == "end",
..Default::default ()
s
let link = prog
.attach_uprobe_with_opts(
-1,
src.path () .unwrap (),
sym.file_offset.unwrap().try_into ().unwrap(),
opts,
)
.expect ("Failed to attach eBPF program");
links.push(link);

}

let symbolizer = Symbolizer::new();

let handle_events = |data: &[u8]| {
let mut trace_info = trace::types::trace_info::default();
plain::copy_from_bytes (&mut trace_info, data).expect("Wrong size");
let stacks = &skel.maps.stack_traces;
match stacks

.lookup(&trace_info.stackid.to_ne_bytes (), MapFlags::empty())

Ok (Some (stack)) => {
let valid_addrs = stack
.chunks_exact (8)
.map (| chunk| {
u64::from_ne_bytes (chunk.try_into ().unwrap ())
b
.filter (|&addr| addr !'= 0)
.collect::<Vec<_>>();

44 5. Tracing utilizzando eBPF

83 let src = blazesym::symbolize::source::Source::Process(
84 Process::new(Pid::Pid(

85 NonZeroU32::new(trace_info.pid)

86 .expect ("Negative PID"),

87),

88)

89 match symbolizer

90 .symbolize (&src, Input::AbsAddr(&valid_addrs))

91 {

92 Ok (syms) => {

93 for sym in syms {

94 match sym {

95 Symbolized::Sym(Sym { name, .. }) => {
96 println! ("{namel}");

97 }

98 Symbolized::Unknown(reason) => {

99 println! ("<no-symbol> ({reason})")
100 }

101 }

102 }

103 }

104 Err(e) => {

105 eprintln!("Failed to symbolize addresses: {el}");
106 }

107 }

108 }

109 Ok (None) => {

110 eprintln! ("Stack id {} not found!", trace_info.stackid);
111 }

112 Err(e) => {

113 eprintln!(

114 "Failed to lookup stack id {}: {el}",

115 trace_info.stackid

116);

117 }

118 }

119 println!("----- ")

120 0

121
122
123
124
125
126
127
128
129
130
131
132

5. Tracing utilizzando eBPF 45

+s
let mut builder = RingBufferBuilder::new();
builder
.add (&skel .maps.events, handle_events)
.expect ("Failed to add RingBuffer");
let ringbuf = builder.build().unwrap();
loop {
ringbuf
.poll(Duration::from_millis (100))
.expect ("Error polling")

}

5.6 Serializzare 1 dati nel Trace Event Format

Il Trace Event Format [62] & un formato JSON per rappresentare i dati di tracing.
Nello specifico, € composto da un oggetto JSON con la proprieta obbligatoria traceEvents

che & un array di eventi. Ogni evento e un oggetto JSON con le seguenti proprieta:
name e il nome dell’evento;
cat e la lista separata da virgole delle categorie degli eventi;

ph ¢ il tipo dell’evento, rappresentato da una singola lettera (per esempio B per I'inizio

di un evento e E per la fine);
ts e il timestamp dell’evento;
tts e il timestamp del thread (opzionale);
pid e il process id;
tid e il thread id;
args sono gli argomenti aggiuntivi per l’evento.

Nel caso di eventi di tipo E solo i campi pid, tid, ph e ts sono obbligatori.
Per serializzare i dati in JSON verra usata la libreria Serde JSON [63].

46

5. Tracing utilizzando eBPF

cargo add serde -F derive

cargo add serde_json

Viene utilizzata la struct TraceEvent che deriva il trait Serialize di Serde per
salvare i singoli eventi. Viene usato un vettore di questi struct per salvare la lista degli

eventi avvenuti. Ogni volta che viene ricevuto un evento dal ring buffer:

e se il vettore e vuoto, tutte le funzioni sullo stack vengono aggiunte come eventi di
inizio; questo viene fatto perché il tracing potrebbe iniziare quando il programma

che si vuole tracciare e gia stato avviato;
e se ¢ un evento di uscita da una funzione, viene aggiunto un evento di fine al vettore;

e se & un evento dovuto all’invocazione di una funzione, viene aggiunto un evento
di inizio con le informazioni della funzione appena invocata che e quindi la prima

dello stack.

Quando viene interrotta l’esecuzione del programma di tracing usando Ctrl+C, la

libreria Serde si occupa di serializzare il vettore in JSON.

Codice sorgente 5.7: Programma che utilizza Serde JSON per serializzare i dati in Trace
Event Format

use std::{

mem: : MaybeUninit,
num: : NonZeroU32,
ops::ControlFlow,
sync::{
Arc,
atomic::{AtomicBool, Ordering},
1,

time: :Duration,

use blazesym::{
Pid, SymType,

inspect::{

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
92
53

5. Tracing utilizzando eBPF

};

use

};
use
use

mod

}

Inspector,

source: :{E1f, Sourcel},

T,

symbolize::{Input, Sym, Symbolized, Symbolizer, source::Process},

libbpf_rs::{
Link, MapCore,

MapFlags, RingBufferBuilder , UprobeOpts,

skel::{0OpenSkel, Skel, SkelBuilder},

plain::Plain;

serde::Serialize;

trace {

include! (concat ! (
env! ("CARGO_MANIFEST_DIR"),
"/src/bpf/trace.skel.rs"

D)

#[allow(clippy::wildcard_imports)]

use

trace: :*;

unsafe impl Plain for trace::types::trace_info {}

#[derive(Serialize)]

struct TraceEvent {

#[serde(skip_serializing_if = "Option::is_none")]

name: Option<String>,

cat: String,

ph: char,
ts: ub4,
#[serde(skip_serializing_if = "Option::is_none")]

tts: Option<u64>,

pid: u32,
tid: u32,

fn main() {

let args: Vec<String> = env::args().collect();

let file_path

kargs [1];

48 5. Tracing utilizzando eBPF

54 let src = Source::E1f(Elf::new(file_path));

55 let inspector = Inspector::new();

56 let mut sym_infos = Vec::new();

o7 inspector

58 .for_each(&src, |sym| {

59 if sym.sym_type == SymType::Function {

60 sym_infos.push(sym.to_owned ());

61 }

62 ControlFlow::Continue (())

63 b

64 .unwrap () ;

65 let example_builder = TraceSkelBuilder::default ();

66 let mut open_object = MaybeUninit::uninit ();

67 let open_skel = example_builder.open(&mut open_object).unwrap();
68 let skel = open_skel.load().unwrap();

69 let object = skel.object();

70 let mut links: Vec<Link> = vec![];

71 for sym in sym_infos {

72 for prog in object.progs_mut () {

73 let opts = UprobeOpts {

74 retprobe: prog.name().to_str().unwrap() == "end",
75 ..Default::default ()

76 s

7 let link = prog

78 .attach_uprobe_with_opts(

79 -1,

80 src.path () .unwrap(),

81 sym.file_offset.unwrap().try_into ().unwrap(),
82 opts,

83)

84 .expect ("Failed to attach eBPF program");
85 links.push(link);

86 }

87 }

88 let mut events = vec![];

89 let symbolizer = Symbolizer::new();

90 {

91 let handle_events = |data: &[u8]| {

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

5. Tracing utilizzando eBPF 49

let mut trace_info = trace::types::trace_info::default();

plain::copy_from_bytes (&mut trace_info, data)

.expect ("Wrong size");

if trace_info.event_type == 1 {

if !events.is_empty () {

events.push(TraceEvent {
name: None,
cat: String::from(""),
ph: ’E’,
ts: trace_info.time,
tts: None,
pid: trace_info.pid,

tid: trace_info.tid,

1
}
return O;
}
let stacks = &skel.maps.stack_traces;

match stacks.lookup(

)

&trace_info.stackid.to_ne_bytes (),

MapFlags::empty (),

Ok (Some (stack)) => {
let valid_addrs = stack
.chunks_exact (8)
.map (| chunk| {
u64::from_ne_bytes (chunk.try_into ().unwrap ())
b
.filter (|&addr| addr != 0)
.collect::<Vec<_>>();
let src = blazesym::symbolize::source::Source::Process(
Process::new(Pid::Pid(
NonZeroU32::new(trace_info.pid)
.expect ("Negative PID"),
D),
);
match symbolizer
.symbolize (&src, Input::AbsAddr (&valid_addrs))

50 5. Tracing utilizzando eBPF

130 {

131 Ok (syms) => {

132 if levents.is_empty () {

133 if let Some(Symbolized::Sym(Sym {
134 name ,

135

136 })) = syms.first()

137 {

138 events.push(TraceEvent {

139 name: Some (name.to_string()),
140 cat: String::from(""),

141 ph: ’B’,

142 ts: trace_info.time,

143 tts: None,

144 pid: trace_info.pid,

145 tid: trace_info.tid,

146 3}

147 }

148 } else {

149 for sym in syms.iter().rev() {
150 if let Symbolized::Sym(Sym {
151 name,

152

153 }) = sym

154

155 events.push(TraceEvent {
156 name: Some(name.to_string()),
157 cat: String::from(""),
158 ph: ’B’,

159 ts: trace_info.time,
160 tts: None,

161 pid: trace_info.pid,
162 tid: trace_info.tid,
163 b

164 }

165 }

166 }

167 }

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

5. Tracing utilizzando eBPF

51

Err(e) => {

eprintln! (

"Failed to symbolize addresses:

)

}
Ok (None) => {
eprintln! (
"Stack id {} not found!'",
trace_info.stackid
)
}
Err(e) => {
eprintln! (
"Failed to lookup stack id {}: {el}",

trace_info.stackid

)3
X
s
let mut builder = RingBufferBuilder::new();
builder

.add (&skel .maps.events, handle_events)
.expect ("Failed to add RingBuffer");
let ringbuf = builder.build().unwrap();

let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler (move || {

r.store(false, Ordering::SeqCst);

B

.expect ("Error setting Ctrl-C handler");

while running.load(Ordering::SeqCst) {
ringbuf.poll_raw(Duration::from_millis (100));

}
println!(

{e}ll

52 5. Tracing utilizzando eBPF

206 "{{\"traceEvents\": {}}}",

207 serde_json::to_string (&*events).unwrap ()
208)

209 ¥

E possibile quindi fare tracing di un programma usando:
sudo ./target/debug/ebpf-tracing-rs ./fib_debug > trace.json

Si puo utilizzare per esempio Perfetto Ul [64] per visualizzare sotto forma di flame-

graph i dati raccolti. Nella Fig. 5.2 viene mostrato il risultato nel caso di un programma

che calcola un numero della successione di Fibonacei in modo ricorsivo.

Figura 5.2: Visualizzazione di un flamegraph utilizzando Perfetto UI.

Conclusioni e sviluppi futuri

In questa tesi e stata presentata la suite di software StoRM e gli sviluppi effettuati per
preparare StoRM WebDAV al Run 4 di LHC. Sono state aggiornate le versioni di Spring
Boot e Jetty. Inoltre e stato aggiunto il supporto al deployment usando come reverse
proxy NGINX, delegando le richieste GET a quest’ultimo. Grazie a questi sviluppi sono
state risolte delle criticita riscontrate durante la Data Challenge del 2024 e ridotto il load
average dei server di 6 volte. La stabilita ¢ aumentata drasticamente e non avvengono piu
riavvii dovuti a problemi di StoRM WebDAV che prima erano invece giornalieri. Questi
risultati positivi sono stati verificati grazie anche a una Mini Data Challenge svoltasi
all’inizio di luglio. L’utilizzo della Continuous Integration ha velocizzato lo sviluppo
e il rilascio di nuove versioni. Infine 'utilizzo dei virtual thread sembra promettente.
L’ultimo sviluppo necessario per passare a un deployment senza i componenti SRM
e 'aggiornamento di StoRM Info Provider che dovra essere disaccoppiato da StoRM
Backend.

Inoltre ¢ stata presentata l'iniziativa SciTags e come e stato aggiunto il supporto al
flow marking a StoRM WebDAV.

Nell’ultimo capitolo e stato illustrato come e possibile utilizzare eBPF per fare tracing
delle performance di un programma senza che sia necessario modificarne il codice. E
stato inoltre utilizzato Rust e le librerie libbpf-rs e blazesym per mostrare come si puo
effettuare tracing con eBPF e mostrare i dati sotto forma di flamegraph. Questo potra

per esempio essere utilizzato per trovare colli di bottiglia in StoRM.

53

Bibliografia

1]

O. Briining, H. Burkhardt, and S. Myers, “The large hadron collider,” Progress in
Particle and Nuclear Physics, vol. 67, no. 3, pp. 705-734, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0146641012000695

CERN, “Worldwide LHC Computing Grid,” accessed: 1 September 2025. [Online].
Available: https://wlcg-public.web.cern.ch/

I. Foster and C. Kesselman, Eds., The grid: blueprint for a new computing

infrastructure. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

F. TIan and K. Carl, The History of the Grid. 10S Press, 2011. [Online|. Available:
https://dot.org/10.3233/978-1-60750-803-8-3

L. dell’Agnello, T. Boccali, D. Cesini, L. Chiarelli, A. Chierici, S. Dal Pra,
D. De Girolamo, A. Falabella, E. Fattibene, G. Maron, D. Michelotto,
L. Morganti, A. Prosperini, V. Sapunenko, and S. Zani, “INFN Tier-1: a
distributed site,” EPJ Web Conf., vol. 214, p. 08002, 2019. [Online|. Available:
https://doi.org/10.1051 /epjconf/201921408002

A. Chierici, D. Michelotto, G. Sergi, A. Pascolini, and D. Lattanzio, “Moving a
data center keeping availability at the top,” EPJ Web Conf., vol. 337, p. 01277,
2025. [Online]. Available: https://doi.org/10.1051/epjconf/202533701277

A. Sciaba, “Hardware technology trends in HEP computing,” EPJ Web Conf.,
vol. 337, p. 01325, 2025. [Online]. Available: https://doi.org/10.1051/epjconf/
202533701325

95

https://www.sciencedirect.com/science/article/pii/S0146641012000695
https://wlcg-public.web.cern.ch/
https://doi.org/10.3233/978-1-60750-803-8-3
https://doi.org/10.1051/epjconf/201921408002
https://doi.org/10.1051/epjconf/202533701277
https://doi.org/10.1051/epjconf/202533701325
https://doi.org/10.1051/epjconf/202533701325

56

BIBLIOGRAFIA

8]

[9]

[10]

[12]

[13]

[14]

[15]

Consortium GARR, “Storia della rete GARR,” accessed: 1 September
2025. [Online]. Available: https://www.garr.it/it/infrastrutture/rete-nazionale/

storia-della-rete-garr

——, “La rete GARR-T,” accessed: 1 September 2025. [Online]. Available:

https://www.garr.it /it /infrastrutture/rete-nazionale /rete-garr-t

“Einstein Telescope Italia,” accessed: 1 September 2025. [Online]. Available:

https://www.einstein-telescope.it/

Consortium GARR, “Rete internazionale,” accessed: 1 September 2025. [Online].

Available: https://www.garr.it/it/infrastrutture/rete-internazionale

S. Campana, WLCG data challenges for HL-LHC - 2021 planning, Sep. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.5532452

Consortium GARR, “Data Centre Interconnection: 1,6 Thps tra
CERN e Bologna grazie allo spectrum sharing,” accessed: 1 Sep-
tember 2025. [Online]. Available: https://www.garr.it /it /news-e-eventi/

2213-data-centre-interconnection-1-6-tbps-tra-cern-e-bologna-grazie-allo-spectrum-sharing

K. V. Ellis, “The WLCG Data Challenge,” EPJ Web Conf., vol. 337, p. 01327,
2025. [Online]. Available: https://doi.org/10.1051 /epjconf/202533701327

F. Donno, L. Abadie, P. Badino, J.-P. Baud, E. Corso, S. D. Witt, P. Fuhrmann,
J. Gu, B. Koblitz, S. Lemaitre, M. Litmaath, D. Litvintsev, G. L. Presti,
L. Magnoni, G. McCance, T. Mkrtchan, R. Mollon, V. Natarajan, T. Perelmutov,
D. Petravick, A. Shoshani, A. Sim, D. Smith, P. Tedesco, and R. Zappi, “Storage
resource manager version 2.2: design, implementation, and testing experience,”
Journal of Physics: Conference Series, vol. 119, no. 6, p. 062028, jul 2008. [Online].
Available: https://doi.org/10.1088/1742-6596,/119/6,/062028

W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, “The Globus Striped Gri-
dFTP Framework and Server,” in SC ’05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, 2005, pp. 54-54.

https://www.garr.it/it/infrastrutture/rete-nazionale/storia-della-rete-garr
https://www.garr.it/it/infrastrutture/rete-nazionale/storia-della-rete-garr
https://www.garr.it/it/infrastrutture/rete-nazionale/rete-garr-t
https://www.einstein-telescope.it/
https://www.garr.it/it/infrastrutture/rete-internazionale
https://doi.org/10.5281/zenodo.5532452
https://www.garr.it/it/news-e-eventi/2213-data-centre-interconnection-1-6-tbps-tra-cern-e-bologna-grazie-allo-spectrum-sharing
https://www.garr.it/it/news-e-eventi/2213-data-centre-interconnection-1-6-tbps-tra-cern-e-bologna-grazie-allo-spectrum-sharing
https://doi.org/10.1051/epjconf/202533701327
https://doi.org/10.1088/1742-6596/119/6/062028

BIBLIOGRAFIA

[17) L. M. Dusseault, “HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV),” RFC 4918, Jun. 2007. [Online]. Available: https:
//www.rfc-editor.org/info/rfc4918

[18] CERN TWiki, “TapeRestAPI,” accessed: 1 September 2025. [Online]. Available:
https://twiki.cern.ch/twiki/bin/view /LCG/TapeRest API

[19] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, K. Lérentey,
and F. Spataro, “From gridmap-file to VOMS: managing authorization in a Grid
environment,” Future Generation Computer Systems, vol. 21, no. 4, pp. 549-558,
2005, high-Speed Networks and Services for Data-Intensive Grids: the DataTAG
Project. [Online|. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X04001682

[20] A. Ceccanti, M. Hardt, B. Wegh, A. Millar, M. Caberletti, E. Vianello,
and S. Licehammer, “The INDIGO-Datacloud Authentication and Authorization

Infrastructure,” Journal of Physics: Conference Series, vol. 898, no. 10, p. 102016,
oct 2017. [Online]. Available: https://doi.org/10.1088/1742-6596/898/10/102016

[21] P. P. Ricci, D. Bonacorsi, A. Cavalli, L. Dell’Agnello, D. Gregori, A. Prosperini,
L. Rinaldi, V. Sapunenko, and V. Vagnoni, “The Grid Enabled Mass Storage
System (GEMSS): the Storage and Data management system used at the INFN
Tierl at CNAF.” Journal of Physics: Conference Series, vol. 396, no. 4, p. 042051,
dec 2012. [Online|. Available: https://doi.org/10.1088/1742-6596,/396/4 /042051

[22] B. Bockelman, A. Ceccanti, F. Furano, P. Millar, D. Litvintsev, and A. Forti,
“Third-party transfers in WLCG using HTTP,” EPJ Web Conf., vol. 245, p.
04031, 2020. [Online]. Available: https://doi.org/10.1051/epjcont/202024504031

[23] V. Vasiliadis, “Support for Open Source Globus Toolkit FEnds January

2018,” 2017, accessed: 1 September 2025. [Online]. Available: https:
/ /www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018

https://www.rfc-editor.org/info/rfc4918
https://www.rfc-editor.org/info/rfc4918
https://twiki.cern.ch/twiki/bin/view/LCG/TapeRestAPI
https://www.sciencedirect.com/science/article/pii/S0167739X04001682
https://www.sciencedirect.com/science/article/pii/S0167739X04001682
https://doi.org/10.1088/1742-6596/898/10/102016
https://doi.org/10.1088/1742-6596/396/4/042051
https://doi.org/10.1051/epjconf/202024504031
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018

58

BIBLIOGRAFIA

[24]

[25]

[26]

[29]

[30]
[31]

[32]

CERN TWiki, “HTTP / WebDAV Third-Party-Copy Technical Details,” accessed:
1 September 2025. [Online]. Available: https://twiki.cern.ch/twiki/bin/view/LCG/
HttpTpcTechnical

M. Lassnig and C. Wissing, “WLCG/DOMA Data Challenge 2024: Final Report,”
Jun. 2024. [Online|. Available: https://doi.org/10.5281/zenodo.11444180

CERN TWiki, “Storage Space Accounting introduction,” accessed: 1 Sep-
tember 2025. [Online]. Available: https://twiki.cern.ch/twiki/bin/view/LCG/

StorageSpaceAccounting

L. Field and M. Schulz, “Grid Deployment Experiences,” 2005. [Online]. Available:
https://cds.cern.ch/record /865688

Spring Website, “Spring Boot,” accessed: 1 September 2025. [Online]. Available:
https://spring.io/projects/spring-boot

——, “Spring Boot support,” accessed: 1 September 2025. [Online]. Available:
https://spring.io/projects/spring-boot#support

“Jetty.” [Online]. Available: https://jetty.org/
“Milton.” [Online]. Available: https://milton.io/

F. Giacomini, F. Agostini, L. Bassi, J. Gasparetto, R. Miccoli, and E. Vianello,
“Enhancing StoRM WebDAV data transfer performance with a new deployment
architecture behind NGINX reverse proxy,” in Proceedings of International Sym-
posium on Grids & Clouds (ISGC) 2024 — PoS(ISGC2024), vol. 458, 2024, p.
030.

INFN-CNAF, “ngx_http_voms_module.” [Online]. Available: https://baltig.infn.it/

cnafsd /ngx_http_voms_module

R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Gianoli, F. Spataro,
F. Bonnassieux, P. Broadfoot, G. Lowe, L. Cornwall, J. Jensen, D. Kelsey,
A. Frohner, D. L. Groep, W. S. de Cerff, M. Steenbakkers, G. Venekamp, D. Kouril,

https://twiki.cern.ch/twiki/bin/view/LCG/HttpTpcTechnical
https://twiki.cern.ch/twiki/bin/view/LCG/HttpTpcTechnical
https://doi.org/10.5281/zenodo.11444180
https://twiki.cern.ch/twiki/bin/view/LCG/StorageSpaceAccounting
https://twiki.cern.ch/twiki/bin/view/LCG/StorageSpaceAccounting
https://cds.cern.ch/record/865688
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot#support
https://jetty.org/
https://milton.io/
https://baltig.infn.it/cnafsd/ngx_http_voms_module
https://baltig.infn.it/cnafsd/ngx_http_voms_module

BIBLIOGRAFIA

59

A. McNab, O. Mulmo, M. Silander, J. Hahkala, and K. Lhorentey, “Managing
Dynamic User Communities in a Grid of Autonomous Resources,” 2003. [Online].
Available: https://arxiv.org/abs/cs/0306004

[35] L. P. Deutsch and J. loup Gailly, “ZLIB Compressed Data Format Specification
version 3.3,” RFC 1950, May 1996. [Online]. Available: https://www.rfc-editor.
org/info/rfc1950

[36] “OpenResty.” [Online]. Available: https://openresty.org/en/

[37] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The evolution
of Lua,” in Proceedings of the Third ACM SIGPLAN Conference on
History of Programming Languages, ser. HOPL III. New York, NY, USA:
Association for Computing Machinery, 2007, p. 2-1-2-26. [Online|. Available:
https://doi.org/10.1145/1238844.1238846

[38] Robot Framework Foundation, “Robot Framework.” [Online]. Available: https:
//robotframework.org/

[39] SonarSource, “SonarQube Cloud.” [Online]. Available: https://www.sonarsource.

com/products/sonarcloud/

[40] Free Software Foundation Europe, “REUSE.” [Online]. Available: https:

/ /reuse.software/

[41] G. Tenaglia, “Open Source at CERN and WLCG,” accessed: 1 Sep-
tember 2025. [Online]. Available: https://indico.cern.ch/event /1506690 /
contributions/6341673/attachments/3011594 /5310068 /Open%20Source%20at%
20CERN%20and %20WLCG%20-%20CodiMD.pdf

[42] DiffPlug, “Spotless.” [Online]. Available: https://github.com/diffplug/spotless

[43] Webtide, “Jetty Threading Architecture,” accessed: 1 September 2025.
[Online]. Available: https://jetty.org/docs/jetty/12.1/programming-guide/arch/
threads.html

https://arxiv.org/abs/cs/0306004
https://www.rfc-editor.org/info/rfc1950
https://www.rfc-editor.org/info/rfc1950
https://openresty.org/en/
https://doi.org/10.1145/1238844.1238846
https://robotframework.org/
https://robotframework.org/
https://www.sonarsource.com/products/sonarcloud/
https://www.sonarsource.com/products/sonarcloud/
https://reuse.software/
https://reuse.software/
https://indico.cern.ch/event/1506690/contributions/6341673/attachments/3011594/5310068/Open%20Source%20at%20CERN%20and%20WLCG%20-%20CodiMD.pdf
https://indico.cern.ch/event/1506690/contributions/6341673/attachments/3011594/5310068/Open%20Source%20at%20CERN%20and%20WLCG%20-%20CodiMD.pdf
https://indico.cern.ch/event/1506690/contributions/6341673/attachments/3011594/5310068/Open%20Source%20at%20CERN%20and%20WLCG%20-%20CodiMD.pdf
https://github.com/diffplug/spotless
https://jetty.org/docs/jetty/12.1/programming-guide/arch/threads.html
https://jetty.org/docs/jetty/12.1/programming-guide/arch/threads.html

60

BIBLIOGRAFIA

[44]

[45]

[46]

[51]

[52]

[53]

B. Gregg, “Linux Load Averages: Solving the Mystery,” accessed: 1
September 2025. [Online]. Available: https://www.brendangregg.com/blog/
2017-08-08/linux-load-averages.html

Oracle, “Virtual Threads,” accessed: 1 September 2025. [Online|. Available:
https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html

G. Attebury, M. Babik, D. Carder, T. Chown, A. Hanushevsky, B. Hoeft, A. Lake,
M. Lambert, J. Letts, S. McKee, K. Newell, and T. Sullivan, “Identifying and
Understanding Scientific Network Flows,” EPJ Web of Conf., vol. 295, p. 01036,
2024. [Online]. Available: https://doi.org/10.1051/epjconf/202429501036

“SciTags Flow Registry,” accessed: 1 September 2025. [Online]. Available:
https://scitags.org/api.json

F. Agostini, L. Bassi, J. Gasparetto, F. Giacomini, R. Miccoli, and E. Vianello,
“Evolving StoRM WebDAV: Delegation of file transfers to NGINX and support
for SciTags,” EPJ Web Conf., vol. 337, p. 01182, 2025. [Online|. Available:
https://doi.org/10.1051 /epjconf/202533701182

M. Babik and T. Sullivan, “flowd.” [Online]. Available: https://github.com/
scitags/flowd

INFN-CNAF, “StoRM Puppet module.” [Online]. Available: https://forge.puppet.

com/modules/cnafsd /storm /readme

A. Petersson and M. Nilsson, “Forwarded HTTP Extension,” RFC 7239, Jun.
2014. [Online]. Available: https://www.rfc-editor.org/info/rfc7239

B. Gregg, “The flame graph,” Commun. ACM, vol. 59, no. 6, p. 48-57, May 2016.
[Online]. Available: https://doi.org/10.1145/2909476

eBPF.io authors, “eBPF Documentation,” accessed: 1 September 2025. [Online].
Available: https://ebpf.io/what-is-ebpf/

https://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
https://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html
https://doi.org/10.1051/epjconf/202429501036
https://scitags.org/api.json
https://doi.org/10.1051/epjconf/202533701182
https://github.com/scitags/flowd
https://github.com/scitags/flowd
https://forge.puppet.com/modules/cnafsd/storm/readme
https://forge.puppet.com/modules/cnafsd/storm/readme
https://www.rfc-editor.org/info/rfc7239
https://doi.org/10.1145/2909476
https://ebpf.io/what-is-ebpf/

BIBLIOGRAFIA

61

[54]

[55]

[56]

[63]

[64]

L. Bassi, “Bilanciamento del carico per servizi di accesso ai dati a elevata efficienza
utilizzando eXpress Data Path,” Ph.D. dissertation, 2023. [Online]. Available:
https://amslaurea.unibo.it/id /eprint /29243/

10 Visor Project, “BPF Compiler Collection (BCC),” accessed: 1 September 2025.
[Online]. Available: https://github.com/iovisor/bec

A. Nakryiko, “BPF CO-RE (Compile Once — Run Everywhere),” acces-
sed: 1 September 2025. [Online]. Available: https://nakryiko.com/posts/
bpf-portability-and-co-re/

The kernel development community, “libbpf Overview,” accessed: 1 September
2025. [Online]. Available: https://docs.kernel.org/bpf/libbpf/libbpf_overview.html

“libbpf-rs.” [Online]. Available: https://github.com/libbpf/libbpf-rs

Aqua Security, “libbpfgo.” [Online]. Available: https://github.com/aquasecurity/
libbpfgo

Cilium, “ebpf-go.” [Online]. Available: https://ebpf-go.dev/

D. Miiller and Kui-Feng, “blazesym.” [Online|. Available: https://github.com/
libbpf/blazesym

nduca and dsinclair, “Trace FEvent Format,” accessed: 1 Septem-
ber 2025. [Online]. Available: https://docs.google.com/document /d/

1CvACIvFfyASR-PhYUmn500QtYMH4h610nSsKchNAySU /edit?tab=t.04#
heading=h.yrdqxyxotyw

E. Tryzelaar and D. Tolnay, “Serde JSON.” [Online|. Available: https:
//github.com/serde-rs/json

Perfetto Team, “Perfetto UL” [Online]. Available: https://ui.perfetto.dev/

https://amslaurea.unibo.it/id/eprint/29243/
https://github.com/iovisor/bcc
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://github.com/libbpf/libbpf-rs
https://github.com/aquasecurity/libbpfgo
https://github.com/aquasecurity/libbpfgo
https://ebpf-go.dev/
https://github.com/libbpf/blazesym
https://github.com/libbpf/blazesym
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.yr4qxyxotyw
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.yr4qxyxotyw
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.yr4qxyxotyw
https://github.com/serde-rs/json
https://github.com/serde-rs/json
https://ui.perfetto.dev/

Ringraziamenti

Un primo grandissimo ringraziamento va sicuramente al GARR che mi ha permesso,
grazie alla borsa studio “Orio Carlini”, di passare quasi 2 anni in un ambiente stimo-
lante come quello del'INFN-CNAF. Sono stato molto fortunato a poter collaborare con
i tecnologi del reparto di sviluppo software del CNAF che sono stati gentilissimi ad ac-
cogliermi. Mi hanno anche permesso di presentare questi sviluppi ad alcune conferenze
che sono state delle esperienze incredibili.

Ringrazio i miei relatori Renzo Davoli, Francesco Giacomini ed Enrico Vianello che
mi hanno seguito durante la stesura di questa tesi.

Grazie ai miei genitori, mio fratello e i nonni per tutto 'affetto che mi fanno sentire
ogni giorno.

Durante questi anni bolognesi ho incontrato coinquilini, diventati poi amici, fantastici
che hanno reso questo periodo indimenticabile, in particolare: “mamma” Silvia, “queen”
Greta, Francesco, Chiara, Marco e Serena.

Non posso poi dimenticarmi dei miei amici nerd e della comitiva del “gruppo monta-
gna” (e non solo) con cui abbiamo passato troppe avventure insieme per essere elencate

qui.

	Introduzione
	Contesto
	LHC e WLCG
	Il data center dell'INFN-CNAF
	La rete GARR
	Run 4 di LHC

	StoRM
	StoRM: Storage Resource Manager
	Procollo WebDAV
	Third-Party Copy
	Deployment di StoRM
	Data Challenge 2024

	Evoluzione di StoRM
	Nuovo deployment di StoRM
	Sviluppi
	Continuous Integration
	Mini Data Challenge 2025
	Virtual thread

	SciTags
	Introduzione
	Integrazione in StoRM WebDAV

	Tracing utilizzando eBPF
	eBPF
	BPF CO-RE e libbpf
	libbpf-rs
	blazesym
	Collegare i programmi eBPF a hook
	Serializzare i dati nel Trace Event Format

	Conclusioni e sviluppi futuri
	Bibliografia

