
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Analisi e ottimizzazione delle prestazioni

di servizi di data management

per calcolo distribuito

Relatore:

Prof. Renzo Davoli

Correlatori:

Prof. Francesco Giacomini

Dott. Enrico Vianello

Presentata da:

Luca Bassi

II Sessione

Anno Accademico 2024/2025

If you spend your whole life waiting for the storm,

you’ll never enjoy the sunshine.

Morris West

https://creativecommons.org/licenses/by-sa/4.0/deed.it

Introduzione

Il Large Hadron Collider (LHC) del CERN è il più grande e potente acceleratore di

particelle al mondo. Per soddisfare le esigenze di salvataggio e analisi dei dati prodotti

dagli esperimenti di LHC è nata la Worldwide LHC Computing Grid (WLCG), una

collaborazione internazionale di circa 160 data center in più di 40 paesi. L’INFN-CNAF

ospita il centro di calcolo che costituisce il Tier 1 italiano di WLCG.

StoRM è lo storage resource manager utilizzato e sviluppato all’INFN-CNAF. In

preparazione dell’aumento dei dati raccolti dagli esperimenti del CERN previsto con il

Run 4 di LHC sono necessari sviluppi a StoRM per aumentarne l’efficienza.

Inoltre, visto i grandi trasferimenti di dati, il monitor di rete è una parte fondamenta-

le. L’iniziativa SciTags promuove l’identificazione dei domini scientifici e della tipologia

di attività a livello di rete. È quindi necessario aggiungere il supporto agli SciTags a

StoRM.

eBPF è una tecnologia che permette di eseguire programmi all’interno di un sandbox

del kernel Linux. È possibile collegare programmi eBPF a specifici hook di sistema come

l’invocazione e l’uscita da funzioni. Si può quindi sfruttare questa tecnologia per fare

tracing delle performance senza dover modificare il codice dei programmi.

Nel capitolo 1 viene presentato il contesto scientifico e tecnologico della fisica delle

alte energie. Nel capitolo 2 viene illustrato StoRM, con le sue caratteristiche, il tipo di

deployment e i risultati di alcuni test di carico effettuati nel 2024. Nel capitolo 3 vengono

mostrati gli sviluppi effettuati su StoRM per migliorarne le prestazioni. Nel capitolo 4

viene presentata l’iniziativa SciTags e come è stato aggiunto il supporto al flow marking

a StoRM WebDAV, uno dei componenti di StoRM. Nel capitolo 5 viene mostrato come

è possibile utilizzare eBPF per fare tracing delle performance dei programmi.

i

Indice

Introduzione i

1 Contesto 1

1.1 LHC e WLCG . 1

1.2 Il data center dell’INFN-CNAF . 2

1.3 La rete GARR . 2

1.4 Run 4 di LHC . 4

2 StoRM 7

2.1 StoRM: Storage Resource Manager . 7

2.2 Procollo WebDAV . 8

2.3 Third-Party Copy . 9

2.4 Deployment di StoRM . 10

2.5 Data Challenge 2024 . 11

3 Evoluzione di StoRM 13

3.1 Nuovo deployment di StoRM . 13

3.2 Sviluppi . 14

3.3 Continuous Integration . 18

3.4 Mini Data Challenge 2025 . 20

3.5 Virtual thread . 22

4 SciTags 23

4.1 Introduzione . 23

iii

iv INDICE

4.2 Integrazione in StoRM WebDAV . 24

5 Tracing utilizzando eBPF 31

5.1 eBPF . 31

5.2 BPF CO-RE e libbpf . 33

5.3 libbpf-rs . 35

5.4 blazesym . 38

5.5 Collegare i programmi eBPF a hook . 39

5.6 Serializzare i dati nel Trace Event Format 45

Conclusioni e sviluppi futuri 53

Bibliografia 55

Elenco delle figure

1.1 Mappa della rete GARR . 3

2.1 Deployment di StoRM al momento dell’introduzione dei componenti HTTP 11

3.1 Nuovo deployment di StoRM . 14

3.2 Esempio di una richiesta GET a StoRM WebDAV che utilizza NGINX . 16

3.3 Load average sui server di StoRM WebDAV prima e dopo l’aggiornamento

di uno dei server alla versione con delega delle GET a NGINX 17

3.4 Load average sui server di StoRM WebDAV dopo l’aggiornamento di uno

dei server alla versione con delega delle GET a NGINX 18

3.5 Grafico che illustra il netto calo di load average grazie all’aggiornamento

di tutti i server di StoRM WebDAV . 19

3.6 Grafico della distribuzione delle durate delle richieste GET 21

4.1 Esempio di una TPC in push mode . 26

5.1 Schema della compilazione e del caricamento di programmi eBPF 32

5.2 Visualizzazione di un flamegraph utilizzando Perfetto UI 52

v

Elenco dei codici sorgente

4.1 Classe TpcTlsSocketStrategy utilizzata per ottenere informazioni sui soc-

ket usati per le TPC . 27

5.1 Esempio di due programmi eBPF collegati all’invocazione e all’uscita di

una funzione . 35

5.2 Esempio di build script per generare lo skeleton 36

5.3 Esempio di programma Rust per aprire, caricare e collegare i programmi

eBPF . 36

5.4 Esempio di utilizzo della libreria blazesym per ottenere i simboli di fun-

zione di un eseguibile . 38

5.5 Esempio di due programmi eBPF collegabili all’entrata e all’uscita di

funzioni . 39

5.6 Esempio di collegamento di programmi eBPF a tutte le funzioni di un

eseguibile . 41

5.7 Programma che utilizza Serde JSON per serializzare i dati in Trace Event

Format . 46

vii

Capitolo 1

Contesto

In questo capitolo viene descritto il contesto scientifico e tecnologico della fisica delle

alte energie.

1.1 LHC e WLCG

Il Large Hadron Collider (LHC) [1] è il più grande e potente acceleratore di particelle

al mondo. È stato costruito al CERN dal 1998 al 2008 e le prime collisioni sono avvenute

nel 2010. Si tratta di un acceleratore circolare di circa 27 km di circonferenza che si trova

a circa 100 m di profondità, composto da magneti superconduttori e da una serie di

strutture acceleranti per aumentare l’energia delle particelle. I fasci di particelle, protoni

o ioni, vengono fatti collidere in corrispondenza di quattro rivelatori: ATLAS, CMS,

ALICE e LHCb.

LHC ha permesso di scoprire il bosone di Higgs, confermando il meccanismo di Brout-

Englert-Higgs sull’origine della massa. Inoltre permette di investigare la teoria della

supersimmetria, la materia oscura e l’energia oscura e perché nell’Universo è presente

molta più materia che antimateria.

La Worldwide LHC Computing Grid (WLCG) [2] è una collaborazione globale di

circa 160 data center in più di 40 nazioni. WLCG è nata per soddisfare le esigenze

di salvataggio e analisi dei circa 200 Petabyte di dati prodotti da LHC. È ispirata al

concetto di Grid Computing [3] introdotto da Ian Foster e Carl Kesselman nel 1998. Visto

1

2 1. Contesto

l’avvento di reti più veloci e l’aumento di richiesta di potenza computazionale, i ricercatori

del CERN hanno deciso di adottare questo modello computazionale per la condivisione

di risorse eterogenee [4] che, pur essendo amministrate in modo indipendente, espongono

un’interfaccia comune, con diverse implementazioni interoperabili.

1.2 Il data center dell’INFN-CNAF

Il CNAF è il centro nazionale dell’Istituto Nazionale di Fisica Nucleare (INFN) per la

ricerca e lo sviluppo nelle tecnologie informatiche e telematiche. È stato fondato nel 1962

a Bologna per analizzare le pellicole fotografiche delle camere a bolle; infatti l’acronimo

sta per Centro Nazionale Analisi Fotogrammi. Ospita dal 2003 un centro di calcolo

che costituisce il Tier 1 italiano di WLCG [5]. Dal 2024, il centro di calcolo è ospitato

all’interno del tecnopolo DAMA a Bologna [6].

Il CNAF offre servizi sia di calcolo che di archiviazione dati. I dati sono archiviati

sia su disco sia su nastro. In particolare a inizio ottobre 2025 sono archiviati 78.5 PB

di dati su disco con una capacità totale di 97.8 PB e 185 PB di dati su nastro con una

capacità totale di 293 PB. Vengono utilizzate le tape library sia per i costi più bassi

sia perché contrariamente agli hard disk incrementano la capacità più velocemente (del

30-40% ogni anno) [7].

Oltre a ospitare un centro di calcolo, l’INFN-CNAF si occupa anche della gestione e

dello sviluppo di prodotti middleware utilizzati in WLCG.

1.3 La rete GARR

Il Consortium GARR progetta e gestisce la rete nazionale dedicata alla comunità

dell’istruzione, della ricerca e della cultura. Nato come commissione ministeriale nel

1988, il Gruppo per l’Armonizzazione delle Reti della Ricerca (GARR) è stato fondato

da 6 enti: CNR, INFN, ENEA, CILEA, CINECA, Tecnopolis CSATA [8]. All’epoca il

protocollo TCP/IP non era diventato lo standard de facto; ogni istituto di ricerca usava

una rete differente e venivano usate molte soluzioni tecnologiche incompatibili tra loro,

provocando un grande dispendio di risorse economiche e di energie.

1. Contesto 3

Figura 1.1: Mappa della rete GARR aggiornata a luglio 2024 (Immagine di GARR

distribuita con licenza Creative Commons BY-NC-SA 4.0)

La rete è diventata operativa nel 1991 connettendo alla velocità di 2 Mbps (molto

alta per l’epoca) 7 nodi: Milano (CILEA), Bologna (CINECA e il polo ENEA e INFN-

CNAF), Pisa (CNR-CNUCE), Roma (INFN), Frascati (ENEA e INFN) e Bari (CSATA).

Nel 1994 è diventata attiva la rete GARR-2 che arriverà a toccare nel 1996 i 34 Mpbs.

Passando per GARR-B nel 1998 che raggiunge i 155 Mbps, si arriva nei primi anni del

2000 alla rete GARR-G con collegamenti fino a 10 Gbps. Nel 2011 è partita GARR-X

che porterà la velocità fino a 100 Gbps. La nuova evoluzione è la rete GARR-T [9]

https://www.garr.it/it/infrastrutture/rete-nazionale/infrastruttura-di-rete-nazionale
https://creativecommons.org/licenses/by-nc-sa/4.0/

4 1. Contesto

che ha portato alla realizzazione di 750 km di fibra ottica, 42 Point of Presence (PoP)

ottici distruiti su 6200 km di fibra e 9 nuovi PoP metropolitani. Inoltre ha migliorato

i collegamenti con la Sardegna, regione candidata a ospitare l’Einstein Telescope [10], e

fornirà una connettività fino a 400 Gbps. Una volta completata l’espansione della rete

GARR-T si saranno aggiunti 5000 km di fibra ottica e una capacità complessiva di circa

40 Tbps.

La rete GARR, mostrata in Fig. 1.1, è presente su tutto il territorio nazionale grazie

a oltre 24000 km in fibra ottica.

La rete GARR fa parte della rete della ricerca europea GÉANT [11]. GÉANT è

la dorsale europea ad altissima capacità che interconnette tutte le reti della ricerca e

dell’istruzione europee con collegamenti multipli fino a 100 Gbps e in grado di arrivare

fino a 8 Tbps.

1.4 Run 4 di LHC

Il progetto High Luminosity LHC (HL-LHC) aumenterà di un fattore 10 la lumino-

sità attuale di LHC. La luminosità è un importante indicatore delle prestazioni di un

acceleratore, proporzionale al numero di collisioni che si verificano in un dato intervallo

di tempo. Nel 2030 è prevista la quarta campagna di presa dati di LHC ed è previsto

un incremento del volume di dati di circa 9 volte rispetto al Run 3. In particolare per

HL-LHC la richiesta minima per il CNAF è di 690 Gbps, ma viste le esperienze passate

è necessaria una banda doppia, cioè di 1380 Gpbs, per evitare la saturazione della rete e

i problemi derivanti da ciò [12].

Nel 2023, la rete GARR e la rete europea GÉANT hanno collegato il CNAF e il centro

di calcolo del CERN con una capacità di 1,6 Tbps e una latenza di 9,5 ms grazie allo

spettro condiviso multidominio [13]. La Data Centre Interconnection (DCI) permetterà

al Tier 1 del CNAF di partecipare, oltre che all’elaborazione dei dati offline, anche alla

selezione degli eventi effettuata dalle trigger farm situate in prossimità degli esperimenti.

In preparazione del Run 4 è stato deciso di fare una serie di Data Challenge per

verificare che l’infrastruttura di rete e i data center siano pronti al traffico generato dalla

campagna di presa dati [14]. Due Data Challenge sono già state svolte: una nel 2021

1. Contesto 5

con il 10% del traffico previsto e una nel 2024 con il 25%. Altre due Data Challenge

porteranno queste percentuali al 50% nel 2027 e infine al 100% nel 2029.

In aggiunta alle Data Challenge previste, i singoli Tier 1 e Tier 2 possono richiedere

delle Mini Data Challenge intermedie, mirate all’investigazione di problemi locali e alla

verifica della loro risoluzione.

Capitolo 2

StoRM

In questo capitolo viene presentato StoRM e il protocollo WebDAV e la sua estensione

Third-Party Copy. Viene inoltre illustrato il tipico deployment e i risultati di alcuni test

di carico effettuati nel 2024.

2.1 StoRM: Storage Resource Manager

StoRM (Storage Resource Manager) è un servizio software sviluppato per la gestione

di sistemi di archiviazione costituiti da file system POSIX, eventualmente associati a

un sistema di storage su nastro. Nei centri di calcolo, l’esigenza di gestire un sistema

distribuito di archiviazione dei dati porta all’impiego di file system distribuiti come IBM

GPFS o Lustre.

StoRM nasce storicamente come implementazione della specifica SRM [15], che de-

scrive uno standard middleware per la gestione di dati in sistemi di storage eterogenei.

Utilizzata in combinazione con un protocollo di trasporto come GridFTP [16], è stato

utilizzato a lungo per il trasferimento dei dati in WLCG. Nel tempo la suite di pro-

dotti StoRM si è evoluta e ampliata, in particolare per supportare una migrazione a

HTTP come protocollo di trasporto e usando il protocollo WebDAV [17], un’estensione

di HTTP, per il management dei dati. Per la gestione dei dati residenti su nastro, StoRM

ha contribuito alla definizione e all’implementazione della WLCG Tape REST API [18].

StoRM è una suite di componenti software; i principali componenti sono:

7

8 2. StoRM

• StoRM Frontend e StoRM Backend che implementano ed espongono un’inter-

faccia di tipo SRM a client e framework. Implementano i comandi SRM in modo

sincrono e asincrono utilizzando un database come mezzo di comunicazione.

• StoRM GridFTP plugin che, installato su un server GridFTP (un’estensione

del protocollo FTP), viene usato per accedere direttamente al file system dietro un

deployment di StoRM.

• StoRM WebDAV che fornisce le funzionalità di trasferimenti dati e gestione

utilizzando il protocollo WebDAV (un’estensione del protocollo HTTP).

• StoRM Tape implementa la WLCG Tape REST API che permette la recall di

file da nastro. Questo componente espone un endpoint interno usato dal sistema

di gestione del tape.

StoRM supporta diversi meccanismi di autenticazione e autorizzazione, dai certifica-

ti X.509, estesi con con un Attribute Certificate di tipo VOMS (Virtual Organization

Membership Service) [19], a OAuth JSON Web Token. Nativo è anche il supporto dei

token rilasciati da provider basati su INDIGO IAM [20], un altro software sviluppato

dall’INFN-CNAF che implementa un OIDC provider e scelto da WLCG per la migrazio-

ne della sua infrastruttura ai token. StoRM Tape gestisce l’autorizzazione delegandola

a Open Policy Agent (OPA).

StoRM supporta i sistemi tape grazie all’integrazione di GEMSS [21], un sistema di

Hierarchical Storage Management (HSM) che integra IBM GPFS, IBM Tivoli Storage

Manager (TSM) con StoRM Backend e StoRM Tape.

2.2 Procollo WebDAV

Il protocollo WebDAV è un’estensione del protocollo HTTP. Permette agli utenti di

creare, modificare e spostare documenti su un server. Oltre a definire i comportamenti

e i requisiti dei metodi HTTP GET, HEAD, PUT, DELETE per risorse e collezioni (che nel

caso di StoRM WebDAV corrispondono a file e cartelle), aggiunge dei metodi tra cui:

COPY per copiare una risorsa da un URI a un altro;

2. StoRM 9

MKCOL per creare collezioni;

MOVE per spostare risorse;

PROPFIND per ottenere le proprietà di una risorsa;

PROPPATCH per impostare o eliminare proprietà di una risorsa;

LOCK per bloccare una risorsa;

UNLOCK per sbloccare una risorsa.

2.3 Third-Party Copy

La HTTP Third-Party Copy (HTTP-TPC) [22] è un’estensione del metodo del pro-

tocollo WebDAV COPY che permette di spostare grandi quantità di dati direttamente tra

i data center WLCG, senza quindi passare per il client richiedente.

Gli esperimenti di LHC, infatti, hanno la necessità di trasferire grandi quantità di

dati per aumentare la replicazione degli stessi e per trasferirli ai data center in cui

verranno poi elaborati. Nel 2017 Globus ha annunciato che avrebbe deprecato il Globus

Toolkit [23] che forniva l’implementazione di riferimento del protocollo GridFTP. La

comunità WLCG ha quindi approfittato di questa deprecazione per passare a utilizzare

HTTP evitando cos̀ı di dipendere da protocolli specializzati quali SRM e GridFTP.

Per copiare i dati da un data center a un altro con una TPC, il client invia una

richiesta HTTP COPY all’endpoint attivo, inserendo l’URL del secondo server tra gli

header HTTP.

Esistono due modalità di trasferimento conseguenti alla richiesta COPY ricevuta dal-

l’endpoint attivo:

Pull mode la richiesta contiene l’header Source, l’endpoint attivo effettua una richiesta

GET verso l’endpoint passivo;

Push mode la richiesta contiene l’header Destination, l’endpoint attivo effettua una

richiesta PUT verso l’endpoint passivo.

10 2. StoRM

La modalità pull viene preferita poiché utilizza richieste GET che sono idempotenti e

l’endpoint può bilanciare molteplici richieste effettuate in pipeline dividendole in diversi

stream TCP paralleli in modo da aumentare il throughput.

Nella richiesta COPY possono essere inseriti ulteriori header con prefisso TransferHeader

che sono copiati nella richiesta GET o PUT senza prefisso [24].

Dopo che una TPC è stata accettata dall’endpoint attivo, questo deve inviare al

client dei performance marker (Perf Marker) che includono informazioni sul progresso

del trasferimento dati, in particolare il numero di byte trasferiti.

Prima degli sviluppi effettuati per questa tesi, StoRM WebDAV supporta le TPC,

ma non includeva nei Perf Marker le informazioni RemoteConnections e Connection.

RemoteConnections è un elenco delle connessioni remote attive per la TPC, nella

forma di lista separata da virgole di elementi nella forma <transport>:<ip>:<port>.

Connection è il nuovo header che sostituisce il precedente e che include anche le in-

formazioni sull’indirizzo IP locale della TPC. Questo dato è interessante per vedere

direttamente dai log quale server sta effettuando la TPC, in particolare nei casi in cui

più server stanno dietro lo stesso alias DNS.

Come richiesto dal WLCG Data Organization Management Access evolution project

(DOMA) sono stati aggiunti questi due dati ai Perf Marker inviati da StoRM WebDAV.

Questa integrazione è stata semplificata dal fatto che questi dati venivano già ottenuti

per essere inseriti nei pacchetti firefly degli SciTags (Sezione 4.2).

2.4 Deployment di StoRM

Nella Fig. 2.1 è illustrato il tipico deployment di StoRM con tutti i componenti. Gli

endpoint SRM e GridFTP supportano l’autenticazione soltanto tramite VOMS proxy,

mentre gli endpoint HTTP e WebDAV supportano anche gli access token OAuth.

I futuri deployment si stanno muovendo verso una configurazione senza i componenti

SRM e gsiFTP, che è deprecato.

2. StoRM 11

Figura 2.1: Il deployment di StoRM al momento dell’introduzione dei componenti HTTP.

Le frecce rosse rappresentano le operazioni di gestione dei dati, quelle blu i trasferimenti

dati e quelle nere le comunicazione interne tra i vari componenti.

2.5 Data Challenge 2024

Dal 12 al 23 febbraio 2024 si è svolta una Data Challenge che ha coinvolto tutti

i centri di calcolo WLCG. Al Tier 1 del CNAF gli esperimenti ATLAS, CMS, LHCb

e Belle II hanno utilizzato gli endpoint esposti dai componenti StoRM, in particolare

l’interfaccia WebDAV [25], con risultati altalenanti.

Nel caso di ATLAS non sono stati raggiunti i rate previsti nella seconda settimana,

ma è stato probabilmente dovuto a problemi riconducibili a FTS (File Transfer Service),

il servizio di alto livello responsabile per la distribuzione della maggior parte dei dati

nell’infrastruttura WLCG. In generale, i rate hanno superato i valori anticipati e sono

stati notati dei fallimenti e disparità tra il monitor interno e quello di FTS.

I trasferimenti di CMS, anche grazie ad aggiustamenti a parametri di FTS fatti

prima della Data Challenge, hanno funzionato durante la prima settimana. Gli endpoint

di StoRM WebDAV del CNAF invece si sono saturati durante la seconda settimana,

portando a molti fallimenti.

12 2. StoRM

LHCb ha avuto diversi fallimenti dovuti ai troppi trasferimenti contemporanei. Ri-

ducendo i trasferimenti da parte di FTS da 200 a 50, il rate di successo è aumentato

significativamente.

Il team di Storage riscontrava inoltre una saturazione dei thread di Jetty, il web server

utilizzato da StoRMWebDAV, in caso di carico elevato. Si ritiene che questo fosse dovuto

al fatto che Jetty crea almeno un thread per ogni richiesta e quando il numero di thread

diventava molto superiore al numero di core del processore, il load dovuto al context

switch fosse predominante, comportando il blocco completo di StoRM WebDAV. I riavvi

del servizio erano giornalieri, tanto che veniva utilizzato un remediator di Sensu, cioè un

handler per effettuare un’azione in automatico quando si verificano certe condizioni, per

effettuare il restart del servizio in caso di problemi.

Capitolo 3

Evoluzione di StoRM

In questo capitolo vengono descritti i lavori di sviluppo svolti nel contesto di questa

tesi per il miglioramento sia della codebase di StoRM WebDAV, sia del deployment

sull’infrastruttura del Tier 1.

3.1 Nuovo deployment di StoRM

Nella Fig. 3.1 è mostrato il nuovo deployment di StoRM. Gli endpoint SRM e Gri-

dFTP sono stati rimossi poiché StoRM WebDAV e StoRM Tape permettono di eseguire

tutte le operazioni di trasferimento dati e di management necessarie su sistemi di storage

comprensivi di una tape library.

Per effettuare un completo passaggio dal deployment con i componenti SRM a quello

basato solo su componenti HTTP, è necessario aggiungere al nuovo scenario il supporto

allo Storage Resource Reporting (SSR) [26], nonché esporre le informazioni di reporting

previste dal servizio BDII [27]. Tutte queste funzioni sono in capo al componente StoRM

Info Provider che recupera queste informazioni da StoRM Backend. Nel futuro scenario

basato solo su componenti HTTP, il componente StoRM Info Provider dovrà essere

rivisto e disaccoppiato dal Backend SRM.

13

14 3. Evoluzione di StoRM

Figura 3.1: Il nuovo deployment di StoRM, soltanto con StoRMWebDAV e StoRM Tape.

Per esporre le informazioni necessarie allo Storage Resource Reporting verrà creato un

nuovo componente.

3.2 Sviluppi

StoRM WebDAV è un’applicazione sviluppata in Java e che si basa sul framework

Spring Boot [28]. All’inizio degli sviluppi per questa tesi, l’applicazione utilizzava Spring

Boot 2.7.18, non più supportato ufficialmente poiché giunto a fine ciclo di vita (End-of-

Life) già nel giugno 2023 [29]. Per garantire la sicurezza e la manutenibilità del software,

è stato quindi pianificato e realizzato l’aggiornamento a Spring Boot 3. StoRM WebDAV

utilizza Jetty [30] come web server e Milton [31] come framework per l’implementazione

del protocollo WebDAV.

Durante questa migrazione, si è deciso di fare un primo passaggio intermedio con l’ag-

giornamento di Spring Security alla versione 5.8, requisito propedeutico alla successiva

3. Evoluzione di StoRM 15

adozione della versione 6, versione utilizzata da Spring Boot 3.

Il passaggio a Spring Boot 3 ha permesso anche l’aggiornamento di Jetty dalla versio-

ne 9 alla più recente versione 12. Questo permette di beneficiare delle nuove funzionalità

disponibili e di migliorare le prestazioni complessive del web server integrato.

Per incrementare il throughput dei trasferimenti dati si è ritenuto interessante provare

a delegare alcune operazioni a NGINX [32]. NGINX è un web server tra i più diffusi e

offre moltissime opzioni di configurazione per adattarlo al tipo di traffico previsto. In

particolare è stato scelto per il supporto all’header X-Accel-Redirect che permette di

effettuare un redirect interno. Si è scelto di concentrarsi sulle richieste GET poiché sono

le richieste HTTP più pesanti dal punto di vista del traffico generato. Queste avvengono

infatti quando un server è parte passiva di una Third-Party Copy in pull mode, che è la

modalità di default quindi quella maggiormente usata. Non si è scelto di ottimizzare la

parte attiva delle Third-Party Copy poiché, essendo richieste utilizzate solo all’interno di

WLCG, non sono supportate da software di terze parti e richiedono un’implementazione

ad hoc.

Il web server NGINX viene usato come terminazione SSL/TLS; questo permette di

semplificare il codice di StoRM WebDAV ed evitare gli overhead dovuti all’implementa-

zione Java delle librerie di crittografia. È stato sviluppato inoltre il modulo per NGINX

ngx_http_voms_module [33] che si occupa dell’autenticazione tramite certificati proxy

X.509 estesi con gli attributi VOMS [34]. Le informazioni ottenute dal modulo vengo-

no inserite in alcuni header HTTP e la richiesta viene inoltrata a StoRM WebDAV. In

questo scenario di deployment con NGINX, StoRM WebDAV in pratica si occupa di

verificare l’autorizzazione della richiesta. È previsto che in futuro tale verifica venga

delegata, completamente o in parte, a un engine esterno basato su OPA, come avviene

già nel caso di StoRM Tape.

Nel caso di una richiesta GET che abbia superato i controlli di autorizzazione, StoRM

WebDAV invia una risposta a NGINX con l’header HTTP X-Accel-Redirect al fine di

redirigere la richiesta a una location interna di NGINX. Il valore dell’header permette

di identificare il percorso reale del file richiesto in modo da permettere a NGINX di

identificare il file da inviare al client. Per tutte le altre richieste diverse da GET, StoRM

WebDAV si occupa di gestire la richiesta.

16 3. Evoluzione di StoRM

Figura 3.2: Esempio di una richiesta GET a StoRM WebDAV che utilizza NGINX.

La Fig. 3.2 mostra un esempio di una richiesta GET a StoRM WebDAV che utilizza

NGINX:

1. il client richiede il file /sa/file.dat, NGINX è la terminazione TLS e il modulo

ngx_http_voms_module effettua il parsing e l’autenticazione del certificato VOMS;

2. la richiesta viene inoltrata a StoRM WebDAV che si occupa dell’autorizzazione;

3. se l’autorizzazione ha successo viene inviata a NGINX una risposta con l’header

X-Accel-Redirect contenente il percorso reale del file, in questo caso /internal/file.dat;

4. l’endpoint interno di NGINX recupera il file dal file system;

5. il file viene inviato al client.

A metà giugno 2025 il primo server StoRM WebDAV è stato aggiornato per utilizzare

come reverse proxy NGINX, delegando a quest’ultimo le richieste GET. Questo server

era uno di quelli presenti nel cluster di produzione dedicato all’esperimento ATLAS. È

emersa da subito una migliore efficienza della nuova versione rispetto alla precedente: è

3. Evoluzione di StoRM 17

Figura 3.3: Load average sui server di StoRM WebDAV di ATLAS prima e dopo l’ag-

giornamento di uno dei server alla versione con delega delle GET a NGINX (linea verde).

possibile vedere il load average sui server prima e dopo l’aggiornamento di uno dei nodi

nella Fig. 3.3.

Monitorando il load average per un paio di giorni è stato constatato un decremento

del carico di 6 volte, come mostrato in Fig. 3.4.

Visti gli ottimi risultati ottenuti da questo singolo singolo server di StoRM WebDAV,

rispetto agli altri nodi sottoposti allo stesso tipo di carico, in pochi giorni il nuovo

deployment con la delega delle richieste GET a NGINX è stato ufficialmente adottato su

tutto il cluster utilizzato dall’esperimento ATLAS. Tale aggiornamento di tutti i nodi ha

confermato una netta diminuzione del carico sulla CPU, come visibile nella Fig. 3.5.

In seguito agli sviluppi che hanno portato alla delega delle richieste GET, è stato rea-

lizzato un proof-of-concept della delega a NGINX anche per quanto riguarda le richieste

PUT. Il caso di una richiesta PUT è più complesso perché con la scrittura di un file deve

essere calcolato il suo checksum Adler-32 [35]. Per implementare questa funzionalità non

si è potuto utilizzare soltanto NGINX, ma è stato necessario utilizzare OpenResty [36],

18 3. Evoluzione di StoRM

Figura 3.4: Load average sui server di StoRM WebDAV di ATLAS dopo l’aggiornamento

di uno dei server alla versione con delega delle GET a NGINX (linea verde).

un fork di NGINX che permette di implementare in Lua [37] alcune funzionalità aggiun-

tive. Intercettando quindi con un piccolo script Lua il traffico di rete delle richieste PUT,

è stato possibile calcolare e salvare il checksum negli attributi estesi del file.

3.3 Continuous Integration

La Continuous Integration (CI) è una pratica software che richiede l’invio frequente

delle modifiche effettuate a una repository condivisa ed eseguire poi controlli continui e

automatici che il codice pubblicato sia funzionante. Il repository con il codice sorgente

di StoRM WebDAV si trova su GitHub e quindi è stato possibile definire dei workflow

di GitHub Actions, la piattaforma di Continuous Integration di GitHub. Tali workflow

sono stati definiti per eseguire una serie di controlli e azioni a seconda degli eventi che

ne hanno innescato l’esecuzione.

3. Evoluzione di StoRM 19

Figura 3.5: Grafico che illustra il netto calo di load average grazie all’aggiornamento di

tutti i server di StoRM WebDAV del cluster dedicato ad ATLAS.

È stato definito, per esempio, un workflow che si occupa di verificare la corretta

compilazione del codice e la corretta esecuzione degli unit test.

Utilizzando questo meccanismo di workflow, a ogni commit viene anche eseguita una

suite di test creata utilizzando Robot Framework [38].

Un altro workflow esegue l’analisi statica del codice per ogni commit su un branch

per cui esiste una Pull Request, integrandosi con il servizio SonarQube Cloud [39] dove

è stato configurato un corrispondente progetto.

Per gestire i commenti sul copyright viene usato REUSE [40], come suggerito dal

CERN Open Source Program Office [41], e un workflow si occupa di controllare che il

progetto sia sempre conforme alle specifiche REUSE.

Per uniformare la formattazione del codice viene usato Spotless [42] e un workflow

controlla che tutti i commit siano formattati correttamente.

Per velocizzare il rilascio di nuove versioni di StoRM WebDAV è stato sviluppato

un nuovo workflow di GitHub Actions per creare gli RPM e automatizzare i rilasci. In

20 3. Evoluzione di StoRM

particolare:

• gli RPM vengono creati ogni volta che si fa un git push;

• ogni volta che si fa un merge sul branch principale, gli RPM vengono pubblicati

nella repository nightly: la versione viene calcolata a partire da git describe;

• quando si crea un tag riferito a un commit nella forma v<x>.<y>.<z>-<nome>, gli

RPM vengono pubblicati nella repository beta con la versione <x>.<y>.<z>~<nome>;

• quando si crea un tag riferito a un commit nella forma v<x>.<y>.<z>, gli RPM

vengono pubblicati nella repository stable con la versione <x>.<y>.<z>.

Durante lo sviluppo si è cercato di rendere questo workflow il meno dipendente pos-

sibile da GitHub, usando per esempio script Bash invece di action di GitHub. È stato

infatti possibile riutilizzare la maggior parte del codice per sviluppare la CI del modulo

NGINX, il cui sorgente si trova su un’istanza di GitLab gestita dall’INFN.

Quando viene creato un tag in occasione del rilascio di una versione stabile viene

creata una release su GitHub; inoltre viene caricata l’immagine Docker su Docker Hub

e sul GitHub Container Registry.

3.4 Mini Data Challenge 2025

Dal 1 al 3 luglio 2025 è stata effettuata una Mini Data Challenge con la collaborazione

dell’esperimento CMS. Per una adeguata comparazione dei risultati, l’esperimento ha

ripetuto i suoi test sia nella configurazione con NGINX come reverse proxy e sia senza.

In entrambi i casi, quindi anche senza ricorrere alla soluzione con reverse proxy, grazie

solamente agli sviluppi effettuati, StoRM WebDAV è riuscito a saturare le schede di rete

dei server. Ogni server è dotato, infatti, di due schede di rete da 25 Gbps in bonding

con load balancing XOR.

Dal punto di vista delle prestazioni dei trasferimenti invece, come auspicabile, l’uti-

lizzo di NGINX ha portato a una complessiva diminuzione dei tempi di completamento

delle richieste GET, come visibile nella Fig. 3.6.

3. Evoluzione di StoRM 21

Figura 3.6: Grafico della distribuzione delle durate dei trasferimenti dati delle richieste

GET.

Questa Mini Data Challenge ha permesso di confermare i miglioramenti dovuti agli

sviluppi effettuati e all’utilizzo di NGINX. Inoltre ha fatto emergere delle limitazioni do-

vute all’utilizzo del bonding delle schede di rete con load balancing XOR. In particolare,

queste limitazioni sembrerebbero essere dovute al bilanciamento non perfetto tra le due

schede di rete e all’overhead del protocollo TCP per inviare per esempio i pacchetti ACK.

I file sono infatti archiviati su vari nodi GPFS quindi, oltre al traffico di rete verso il

client che ha richiesto per esempio un file, c’è anche il traffico dovuto alla lettura del file

dai nodi GPFS. Quando una delle due schede di rete si satura, la connessione rallenta

per il meccanismo di congestion control di TCP. Per esempio, quando un client fa una

22 3. Evoluzione di StoRM

richiesta GET (traffico in uscita) viene generato anche traffico in ingresso per la lettura

dai nodi GPFS. Non essendo necessariamente queste due connessioni gestiste dalla stessa

scheda di rete, può capitare che una delle due si saturi non permettendo di sfruttare al

massimo il full-duplex.

3.5 Virtual thread

StoRM WebDAV utilizza un’architettura multithread dovuta a Jetty. Jetty utilizza

almeno un thread per ogni richiesta (in alcuni casi anche più di uno) [43]. Occupandosi

StoRM WebDAV di grandi trasferimenti di dati, la maggior parte delle richieste sono

molto lunghe e I/O-bound. Si è notato che quando il numero di richieste contemporanee

aumentava molto, il load average superava il numero di core del processore; di conseguen-

za i server diventavano molto meno responsivi. Il load average di Linux considera, oltre

al numero di processi in esecuzione e in attesa di essere eseguiti, anche quelli bloccati

per esempio per operazioni di I/O; quindi riflette in modo generico il carico di tutto il

sistema e non solo delle CPU [44]. In particolare la percentuale di idle era molto alta;

questo potrebbe essere dovuto a eccessivi context switch tra i vari thread utilizzati da

StoRM WebDAV.

Dalla versione 21, Java supporta i virtual thread [45]. Normalmente i thread di

Java utilizzano un thread del sistema operativo per tutto il tempo della loro esistenza.

I thread virtuali invece, pur essendo sempre istanze di java.lang.Thread, non sono

legati a thread di sistema. I virtual thread vengono eseguiti comunque su un thread di

sistema operativo, ma quando chiamano un’operazione I/O bloccante, la runtime Java ne

sospende l’esecuzione fino al completamento dell’operazione, liberando in questo modo

il thread di sistema, che può essere utilizzato per eseguire altri thread virtuali. I virtual

thread sono quindi pensati per task che passano molto tempo bloccati, per esempio per

operazioni di I/O. Non permettono al codice di essere eseguito più velocemente, quindi

la latenza non cambierà, ma permettono di scalare, aumentando il throughput.

Spring Boot supporta i virtual thread dalla versione 3.2. Visto che lo use case per

cui è stato sviluppato il supporto ai thread virtuali è proprio quello di software simili a

StoRM WebDAV, è stato aggiunto il supporto ai virtual thread anche a quest’ultimo.

Capitolo 4

SciTags

In questo capitolo viene presentata l’iniziativa SciTags e come è stato aggiunto il sup-

porto al flow marking a StoRM WebDAV considerando anche il deployment che utilizza

NGINX come reverse proxy.

4.1 Introduzione

SciTags (scientific network tags) [46] è un’iniziativa che promuove l’identificazione

dei domini scientifici e della tipologia di attività a livello di rete. Nel caso di WLCG si

tratta di identificare l’esperimento (ad esempio ATLAS o CMS) e l’attività ad alto livello

(produzione, analisi, data challenge, etc.) in modo che i provider delle reti della ricerca

e dell’educazione, come il GARR, possano collezionare queste informazioni e correlarle

ad altri dati che hanno a disposizione.

Il traffico può essere marcato in due modi:

• inviando dei pacchetti UDP, chiamati firefly, oppure

• usando il campo flow label dell’header IPv6 dei pacchetti di rete.

Nel primo caso viene inviato un pacchetto UDP, contenente le informazioni sull’espe-

rimento e l’attività che hanno generato il traffico, all’inizio e alla fine di ogni trasferimento

alla porta 10514 dell’host remoto.

23

24 4. SciTags

Nel secondo caso viene invece sfruttato il campo flow label dell’header IPv6 per ag-

giungere informazioni riguardo l’esperimento e l’attività che stanno generando il traffico.

In particolare, l’identificatore dell’attività viene messo nei bit 24-29 e quello dell’esperi-

mento nei bit 14-22 in ordine inverso per permettere futuri aggiustamenti del limite dei

bit. I rimanenti 5 bit (12-13, 23, 30-31) sono usati per entropia: vengono impostati a

valori casuali per ogni flusso dati.

Ogni flusso è identificato da un identificatore obbligatorio per l’esperimento, detto an-

che virtual organization, e un identificatore facoltativo per l’attività. Questi identificatori

sono mappati staticamente in un flow registry [47].

Quando con una richiesta HTTP si inizia un trasferimento dati, i due identificatori

sono inseriti nell’header HTTP SciTag:

<experimentId> << 6 | <activityId>

dove << è l’operatore di bit shift a sinistra e | è l’OR bit-a-bit.

Il valore risultante è un intero positivo a 16 bit compreso tra 64 e 65536 (limiti esclusi

perché non esistono attività con ID 0).

Per esempio, per un’attività di consolidamento dati (ID: 4) dell’esperimento ATLAS

(ID: 2), l’header sarà SciTag: 132.

4.2 Integrazione in StoRM WebDAV

StoRM WebDAV ha aggiunto il supporto all’header SciTag nella versione 1.5.0 [48]

sfruttando il daemon flowd [49].

Quest’ultimo offre una serie di plugin per ottenere le informazioni sugli identificatori

dei flussi dati e un insieme di backend per marcare il traffico. In particolare, StoRM

WebDAV utilizza il plugin np_api che permette a flowd di utilizzare una named pipe per

ricevere i dati. Il backend udp-firefly di flowd viene poi usato per inviare i pacchetti

UDP firefly.

StoRM WebDAV supporta quattro tipi di richieste per i trasferimenti dati, che so-

no interessanti ai fini del tracciamento: GET, PUT, TPC in push mode e TPC in pull

mode. Nel caso delle TPC in pull mode, il client invia a StoRM WebDAV l’header

4. SciTags 25

TransferHeaderSciTag; l’endpoint attivo in questo modo non marca il traffico, ma ef-

fettua una richiesta GET con il valore dell’header SciTag uguale a quello dell’header

TransferHeaderSciTag ricevuto nella richiesta COPY. Negli altri casi, invece, StoRM

WebDAV legge il valore dell’header SciTag per estrarre gli ID dell’esperimento e dell’at-

tività e scrivere nella named pipe di flowd (/var/run/flowd) una linea strutturata in

questo modo:

state protocol source_ip source_port dest_ip dest_port exp act

dove:

• state è start;

• protocol è tcp;

• source_ip e source_port sono l’indirizzo IP e la porta della sorgente del trasfe-

rimento dati;

• dest_ip e dest_port sono l’indirizzo IP e la porta della destinazione del trasferi-

mento dati;

• exp e act sono gli ID dell’esperimento e dell’attività estratti dall’header SciTag.

In tutti i casi l’header TransferHeaderSciTag viene ignorato se è presente l’header

SciTag.

Un esempio di una TPC in push mode tra i server A e B è mostrato nella Fig. 4.1:

1. il client invia una richiesta COPY al server A specificando il server B come Destination

e con un header SciTag;

2. StoRMWebDAV sul server A estrae gli ID dell’esperimento dell’attività dall’header

SciTag, scrive le informazioni necessarie nella pipe di flowd con lo stato start e

inizia il trasferimento dati verso il server B. Nello stesso momento, flowd invia il

pacchetto UDP firefly al server B;

3. i dati vengono trasferiti tra i server A e B;

26 4. SciTags

4. una volta che il trasferimento è stato completato, StoRM WebDAV scrive le in-

formazioni sulla pipe di flowd con lo stato end e flowd invia il corrispondente

pacchetto UDP firefly al server B.

Client1)

Server A

StoRM WebDAV

flowd

Server B

HTTP COPY

Destination: B

SciTag: 65

Client2)

Server A

StoRM WebDAV

flowd

Server B

start
actID

expID UDP firefly

HTTP PUT

Client3)

Server A

StoRM WebDAV

flowd

Server B
HTTP PUT

Client4)

Server A

StoRM WebDAV

flowd

Server B

end
actID

expID UDP firefly

Figura 4.1: Esempio di una TPC in push mode.

L’attivazione di questa feature è facoltativa perché richiede l’installazione di flowd.

Per semplificare l’adozione, il modulo Puppet di StoRM [50] permette con una singola

flag di attivare il supporto a SciTags oltre che installare e configurare flowd.

Nel caso venga usato NGINX come reverse proxy è necessario inviare le informazioni

riguardanti il client (indirizzo IP e porta sorgente e destinazione) a StoRM WebDAV

in modo che possa comunicare queste informazioni a flowd, che le inserirà nel pacchetto

UDP firefly. Queste informazioni vengono inserite da NGINX nell’header Forwarded [51].

http {

map $remote_addr $forwarded_for {

~^[0-9.]+$ "for=\"$remote_addr:$remote_port\"";

4. SciTags 27

~^[0-9A-Fa-f:.]+$ "for=\"[$remote_addr]:$remote_port\"";

default "for=unknown";

}

map $server_addr $forwarded_by {

~^[0-9.]+$ "by=\"$server_addr:$server_port\"";

~^[0-9A-Fa-f:.]+$ "by=\"[$server_addr]:$server_port\"";

default "host=unknown";

}

}

server {

location / {

proxy_pass http://storm-webdav;

proxy_pass_header Server;

proxy_http_version 1.1;

proxy_set_header Connection "";

proxy_set_header Forwarded "$forwarded_by;$forwarded_for;host=$http_host";

}

}

Questo header viene poi gestito dal ForwardedHeaderFilter di Spring Boot che fa

l’override dei metodi getRemoteHost() e getRemoteAddr(). Poiché al momento questo

filtro ignora il parametro by è stato sviluppato un ulteriore filtro in modo da fare l’override

anche dei metodi getLocalAddr() e getLocalPort().

Per fare le richieste HTTP verso i server passivi delle TPC viene usata la libreria

Apache HttpClient 5, che, se da una parte rende molto semplice effettuare richieste

HTTP, dall’altra complica molto l’ottenimento delle informazioni sul socket usato per il

trasferimento che contiene informazioni che è necessario inserire nei pacchetti UDP firefly.

Per ovviare a questo problema è stata estesa la classe DefaultClientTlsStrategy che

definisce come passare da una connessione non criptata a una TLS.

Codice sorgente 4.1: Classe TpcTlsSocketStrategy utilizzata per ottenere informazioni

sui socket usati per le TPC

1 public class TpcTlsSocketStrategy extends DefaultClientTlsStrategy {

28 4. SciTags

2

3 public TpcTlsSocketStrategy(SSLContext sslContext) {

4 super(sslContext);

5 }

6

7 @Override

8 public SSLSocket upgrade(

9 Socket socket ,

10 String target ,

11 int port ,

12 Object attachment ,

13 HttpContext context)

14 throws IOException {

15 SSLSocket s = super.upgrade(socket , target , port , attachment , context);

16 SciTag scitag = (SciTag) context.getAttribute(SciTag.SCITAG_ATTRIBUTE);

17 if (scitag != null) {

18 SciTagTransfer scitagTransfer =

19 new SciTagTransfer(

20 scitag ,

21 s.getLocalAddress (). getHostAddress (),

22 s.getLocalPort (),

23 s.getInetAddress (). getHostAddress (),

24 s.getPort ());

25 scitagTransfer.writeStart ();

26 context.setAttribute(

27 SciTagTransfer.SCITAG_TRANSFER_ATTRIBUTE ,

28 scitagTransfer);

29 }

30 return s;

31 }

Nel caso si deleghi il trasferimento dati a NGINX, StoRM WebDAV non può sapere

quando si conclude e di conseguenza non può inviare il firefly con state end. Per ovviare

a questo problema, si è sfruttata la capacità di logging di NGINX per scrivere la riga

necessaria nella pipe di flowd.

server {

location /.storm-webdav/internal/get {

4. SciTags 29

internal;

alias /;

sendfile on;

tcp_nopush on;

keepalive_timeout 65;

tcp_nodelay on;

if ($upstream_http_x_scitag_actid) {

access_log /var/run/flowd flowd;

}

add_header Server $upstream_http_server;

}

}

user storm;

http {

log_format flowd ’end tcp $server_addr $server_port ’

’$remote_addr $remote_port ’

’$upstream_http_x_scitag_actid $upstream_http_x_scitag_expid’;

}

Capitolo 5

Tracing utilizzando eBPF

In questo capitolo viene presentata la tecnologia eBPF e come è possibile, utilizzando

la libreria libbpf e in particolare il wrapper per Rust, fare tracing delle performance dei

programmi. Per tracing si intende il catturare informazioni sull’esecuzione dei program-

mi, in particolare in tempo di esecuzione delle funzioni. L’utilizzo di questa tecnologia

non richiede modifiche al codice dei programmi di cui si vogliono misurare le prestazioni.

Inoltre, a volte può capitare che alcuni colli di bottiglia siano difficilmente replicabili

in ambiente di test e il poter generare dei flamegraph [52] direttamente sui server di

produzione senza interruzioni del servizio può essere molto utile.

5.1 eBPF

eBPF è una tecnologia del kernel Linux che permette di estenderne le funzionalità [53].

In particolare è possibile scrivere dei programmi eBPF e collegarli a specifici hook del

kernel. Il modello di esecuzione dei programmi eBPF è event-driven, cioè vengono eseguiti

quando il kernel o un’applicazione passa determinati punti di hook.

Nella mia tesi triennale [54] ho illustrato come poter utilizzare il framework eXpress

Data Path (XDP) per collegare programmi eBPF alla ricezione di pacchetti di rete. XDP

può essere utilizzato per implementare load balancer, firewall o monitorare il traffico di

rete.

31

32 5. Tracing utilizzando eBPF

eBPF può essere anche utilizzato per fare tracing delle performance di programmi.

È infatti possibile collegare programmi eBPF all’entrata e all’uscita di funzioni.

La Fig. 5.1 mostra il processo di compilazione e caricamento di programmi eBPF.

Figura 5.1: Schema della compilazione e del caricamento di programmi eBPF (Immagine

di eBPF.io distribuita con licenza Creative Commons BY 4.0)

Il kernel Linux richiede che i programmi eBPF siano caricati come bytecode. Clang

permette di compilare i programmi eBPF scritti in C in bytecode. Il bytecode può essere

poi caricato nel kernel Linux, che si occupa dei due passi successivi.

Per prima cosa avviene una verifica per controllare che il programma soddisfi alcune

condizioni, per esempio che non contenga loop infiniti, non acceda ad aree di memoria

non inizializzate, non legga aree di memoria arbitraria o, nel caso di programmi che

interagiscono con pacchetti di reti, non acceda fuori dai limiti del pacchetto.

Successivamente il kernel compila Just-in-Time il bytecode nel codice macchina del-

l’architettura su cui viene eseguito, permettendo ai programmi eBPF di essere efficienti

quanto il codice compilato nativamente.

https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://creativecommons.org/licenses/by/4.0/

5. Tracing utilizzando eBPF 33

Le mappe permettono ai programmi eBPF di comunicare tra loro e con lo user space.

Esistono diversi tipi di mappe: hash table, array, ring buffer, stack trace, etc.

5.2 BPF CO-RE e libbpf

Una delle limitazioni che in passato era presente nei programmi eBPF era la loro

dipendenza da versioni specifiche del kernel. Una prima soluzione a questo problema è

stata quella di compilare il programma eBPF direttamente sulla macchina in cui si voleva

eseguire questi programmi. Per fare ciò sono state sviluppate librerie che semplificano

questa operazione come per esempio BPF Compiler Collection (BCC) [55]. Lo svantaggio

di questo approccio è che il programma finale deve includere, per compilare il programma

eBPF, LLVM e Clang, che sono dipendenze abbastanza pesanti. Inoltre ogni volta che si

vuole avviare un programma eBPF avviene la compilazione, operazione che può risultare

pesante.

Per ovviare a queste limitazioni è stato sviluppato BPF CO-RE (Compile Once -

Run Everywhere) [56]. In particolare sono state introdotte le BTF type information,

che includono tutte le informazioni necessarie per la portabilità. La libreria libbpf [57]

utilizza queste informazioni per adattare il programma eBPF alla versione del kernel a

cui deve essere connesso.

Per utilizzare questa funzionalità per prima cosa è necessario estrarre le informazioni

dal kernel su cui si sta sviluppando il progetto. È possibile fare ciò con il seguente

comando:

bpftool btf dump file /sys/kernel/btf/vmlinux format c > vmlinux.h

Clang è stato migliorato per aggiungere al file oggetto dei programmi eBPF alcune

informazioni aggiuntive. Per esempio aggiunge le rilocazioni BTF che catturano descri-

zioni ad alto livello delle informazioni a cui il programma vuole accedere. Per esempio,

se un programma eBPF accede al campo task_struct->pid, Clang registrerà il fatto

che si sta provando ad accedere al campo di nome pid di tipo pid_t all’interno di uno

struct task_struct. In questo modo, se il campo viene spostato a un offset differente

o dentro struct o enum anonimi nella versione kernel in cui si sta provando a usare il

programma eBPF, è possibile fare la cosiddetta field offset relocation.

34 5. Tracing utilizzando eBPF

La libreria libbpf utilizza queste informazioni al momento del caricamento di un

programma eBPF: prende il file oggetto del programma eBPF, lo processa per effettuare

le rilocazioni necessarie a seconda del kernel su cui si sta eseguendo e avvia il collegamento

e la verifica del programma eBPF. Questa libreria è parte del codice del kernel Linux e

sono disponibili anche dei wrapper in Rust [58] e in Go [59], di cui è disponibile anche

una versione scritta in Go puro [60] senza l’utilizzo di CGo.

Un’applicazione eBPF è composta da uno o più programmi eBPF, mappe e variabili

globali (condivise tra tutti i programmi eBPF). libbpf metta a disposizione delle API

che i programmi userspace possono usare per manipolare i programmi eBPF e gestire le

varie fasi di un programma eBPF. Un’applicazione eBPF ha le seguenti fasi:

Fase di apertura libbpf apre il file oggetto eBPF in modo da sapere quali programmi

eBPF, mappe e variabili globali contiene. In questa fase è possibile impostare le

variabili globali.

Fase di caricamento libbpf crea le mappe, risolve le varie rilocazioni, verifica e carica

i programmi eBPF. In questa fase è possibile impostare le mappe senza incorrere

in race condition poiché i programmi non sono ancora stati eseguiti.

Fase di collegamento libbpf collega i programmi eBPF ai vari hook di sistema (entrata

e uscita di funzione, arrivo di pacchetti di rete, etc.). I programmi vengono quindi

eseguiti in modo event-driven e possono comunicare con lo userspace utilizzando le

mappe e le variabili globali.

Fase di distruzione libbpf scollega i programmi eBPF e libera le risorse.

Gli skeleton eBPF sono un’interfaccia alternativa per interagire con gli oggetti eBPF

che astraggono le API messe a disposizione da libbpf. Sono dei file che, oltre a contenere

il bytecode eBPF, in modo da non avere altri file da distribuire oltre all’applicazione

userspace, mettono a disposizioni funzioni per le varie fasi del programma eBPF e per

interagire con le mappe e le variabili globali. Poiché questi skeleton vengono generati a

partire dall’oggetto eBPF, contengono strutture dati che elencano tutti programmi eBPF,

le mappe e le variabili globali; in questo modo si può evitare di doverli cercare per nome,

5. Tracing utilizzando eBPF 35

evitando cos̀ı errori nel caso venissero rinominate nel codice sorgente dell’applicazione

eBPF.

5.3 libbpf-rs

Nei seguenti esempi verrà utilizzato Rust e la libreria libbpf-rs. Per creare un nuovo

progetto basta eseguire:

cargo init

cargo add libbpf-rs

cargo add --build libbpf-cargo

Il seguente codice contiene due programmi eBPF di tipo uprobe e uretprobe; questi

tipi di programmi vengono eseguiti rispettivamente quando si invoca una funzione e

quando si fa il return.

Codice sorgente 5.1: Esempio di due programmi eBPF collegati all’invocazione e

all’uscita di una funzione

1 #include "vmlinux.h"

2 #include <bpf/bpf_tracing.h>

3

4 SEC(" uprobe //bin/bash:readline ")

5 int BPF_UPROBE(readline_enter) {

6 bpf_printk ("Bash readline called ");

7 return 0;

8 };

9

10 SEC(" uretprobe //bin/bash:readline ")

11 int BPF_URETPROBE(readline_exit) {

12 bpf_printk ("Bash readline returned ");

13 return 0;

14 };

15

16 char LICENSE [] SEC(" license ") = "GPL";

36 5. Tracing utilizzando eBPF

In particolare, sono state usate le macro BPF_UPROBE e BPF_URETPROBE per defi-

nire i due programmi eBPF: il primo collegato all’invocazione alla funzione readline

dell’eseguibile /bin/bash e il secondo all’uscita della stessa.

La libreria libbpf-cargo permette di integrare la creazione degli skeleton eBPF con lo

strumento Cargo di Rust. Per fare ciò è necessario creare un build script che utilizza lo

SkeletonBuilder messo a disposizione da questa libreria.

Codice sorgente 5.2: Esempio di build script per generare lo skeleton

1 use std::env;

2 use std::path:: PathBuf;

3

4 use libbpf_cargo :: SkeletonBuilder;

5

6 const SRC: &str = "src/bpf/trace.bpf.c";

7

8 fn main() {

9 let out = PathBuf ::from(

10 env:: var_os (" CARGO_MANIFEST_DIR ")

11 .expect (" CARGO_MANIFEST_DIR must be set in build script"),

12)

13 .join("src")

14 .join("bpf")

15 .join(" trace.skel.rs");

16

17 SkeletonBuilder ::new()

18 .source(SRC)

19 .build_and_generate (&out)

20 .unwrap ();

21 println !(" cargo:rerun -if -changed ={SRC }");

22 }

Il build script genererà automaticamente al momento della build un file skeleton

example.skel.rs che semplifica l’interazione con questi programmi da Rust.

Codice sorgente 5.3: Esempio di programma Rust per aprire, caricare e collegare i

programmi eBPF

1 use crate:: example :: ExampleSkelBuilder;

5. Tracing utilizzando eBPF 37

2 use libbpf_rs ::skel ::{ OpenSkel , Skel , SkelBuilder };

3 use std::mem:: MaybeUninit;

4

5 mod example {

6 include !(concat !(

7 env!(" CARGO_MANIFEST_DIR "),

8 "/src/bpf/example.skel.rs"

9));

10 }

11

12 fn main() {

13 let example_builder = ExampleSkelBuilder :: default ();

14 let mut open_object = MaybeUninit :: uninit ();

15 let open_skel = example_builder.open(&mut open_object). unwrap ();

16 let mut skel = open_skel.load (). unwrap ();

17 skel.attach (). unwrap ();

18 loop {}

19 }

Si può notare come gli skeleton semplifichino molto l’apertura, il caricamento e il

collegamento di programmi eBPF. In particolare, ExampleSkelBuilder è uno struct

che implementa il trait SkelBuilder che ci permette di aprire il file oggetto eBPF. È

possibile poi usare lo skeleton aperto per caricare i programmi eBPF. Infine il metodo

attach permette di collegare in automatico tutti i programmi eBPF.

È possibile compilare ed eseguire il programma con i seguenti comandi:

cargo build

sudo ./target/debug/ebpf-test

L’output di bpf_printk viene scritto nel trace log del kernel, quindi per visualizzarlo

è necessario usare:

sudo cat /sys/kernel/debug/tracing/trace_pipe

Interagendo con un altro terminale è possibile notare che viene scritto Bash readline

called ogni volta che viene presentato un prompt, mentre quando si fa Invio viene scritto

Bash readline returned.

38 5. Tracing utilizzando eBPF

bash-42 [014] ...11 685.400167: bpf_trace_printk: Bash readline called

bash-42 [014] ...11 692.091196: bpf_trace_printk: Bash readline returned

5.4 blazesym

Per fare tracing delle performance è necessario per prima cosa ottenere l’elenco delle

funzioni. Per ottenerlo è possibile utilizzare la libreria blazesym [61].

È possibile aggiunge questa libreria usando:

cargo add blazesym

Il seguente programma utilizza la libreria blazesym per aprire un file ELF preso come

argomento. Tutti i simboli vengono aggiunti in un vettore e per ogni simbolo viene scritto

il tipo (funzione o variabile), il nome e l’indirizzo.

Codice sorgente 5.4: Esempio di utilizzo della libreria blazesym per ottenere i simboli di

funzione di un eseguibile

1 use std ::{env , ops:: ControlFlow };

2

3 use blazesym :: inspect ::{

4 Inspector ,

5 source ::{Elf , Source},

6 };

7

8 fn main() {

9 let args: Vec <String > = env::args (). collect ();

10 let file_path = &args [1];

11 let src = Source ::Elf(Elf::new(file_path));

12 let inspector = Inspector ::new();

13 let mut sym_infos = Vec::new();

14 inspector

15 .for_each (&src , |sym| {

16 sym_infos.push(sym.to_owned ());

17 ControlFlow :: Continue (())

18 })

19 .unwrap ();

5. Tracing utilizzando eBPF 39

20 for sym in sym_infos {

21 println !("[{:?}] {} ({:#X})", sym.sym_type , sym.name , sym.addr);

22 }

23 }

È possibile eseguire questo programma usando:

$ cargo run -- ./example_debug

[Function] main (0x40047A)

[Function] add (0x400466)

5.5 Collegare i programmi eBPF a hook

Per fare tracing delle performance di un programma è necessario collegare un pro-

gramma eBPF all’entrata e all’uscita delle funzioni di interesse.

Per fare ciò non è possibile utilizzare il metodo attach, usato nel Codice sorgente 5.3,

che prova a collegare in automatico tutti i programmi eBPF, perché non è pensabile

inserire i nomi delle funzioni di cui fare tracing in modo hardcoded.

libbpf-rs permette di collegare in modo manuale vari programmi eBPF a specifici

hook.

Per prima cosa è necessario creare due mappe, la prima sarà di tipo stack trace

(BPF_MAP_TYPE_STACK_TRACE) e servirà a salvare gli stack delle chiamate di funzione;

l’altra sarà di tipo ring buffer (BPF_MAP_TYPE_RINGBUF) e verrà utilizzata per inviare le

informazioni sulle chiamate di funzione dai programmi eBPF allo userspace.

Due programmi eBPF vengono usati per ottenere le informazioni sullo stack (utiliz-

zando la funzione helper bpf_get_stackid), il tempo (bpf_ktime_get_ns), il PID e il

TID (bpf_get_current_pid_tgid) e se è una chiamata o un’uscita di funzione.

I singoli eventi vengono inviati tramite il ring buffer in modo da poter essere elaborati

dal programma in userspace.

Codice sorgente 5.5: Esempio di due programmi eBPF collegabili all’entrata e all’uscita

di funzioni

1 #include "vmlinux.h"

2 #include <bpf/bpf_tracing.h>

40 5. Tracing utilizzando eBPF

3 #define PERF_MAX_STACK_DEPTH 127

4

5 struct trace_info {

6 u32 stackid;

7 u8 event_type;

8 u64 time;

9 u32 pid;

10 u32 tid;

11 };

12

13 struct trace_info _trace_info = {0};

14

15 struct {

16 __uint(type , BPF_MAP_TYPE_STACK_TRACE);

17 __type(key , u32);

18 __uint(value_size , PERF_MAX_STACK_DEPTH * sizeof(u64));

19 __uint(max_entries , 10000);

20 } stack_traces SEC(". maps ");

21

22 struct {

23 __uint(type , BPF_MAP_TYPE_RINGBUF);

24 __uint(max_entries , 10000);

25 } events SEC(". maps ");

26

27 SEC(" uprobe ")

28 int BPF_UPROBE(start) {

29 struct trace_info info = {};

30 info.stackid = bpf_get_stackid(ctx , &stack_traces , 0 | BPF_F_USER_STACK);

31 info.event_type = 0;

32 info.time = bpf_ktime_get_ns ();

33 u64 pid_tgid = bpf_get_current_pid_tgid ();

34 info.pid = pid_tgid >> 32;

35 info.tid = pid_tgid & 0xFFFFFFFF;

36 if (info.stackid > 0) {

37 bpf_ringbuf_output (&events , &info , sizeof(info), 0);

38 }

39 return 0;

40 }

5. Tracing utilizzando eBPF 41

41

42 SEC(" uretprobe ")

43 int BPF_URETPROBE(end) {

44 struct trace_info info = {};

45 info.stackid = bpf_get_stackid(ctx , &stack_traces , 0 | BPF_F_USER_STACK);

46 info.event_type = 1;

47 info.time = bpf_ktime_get_ns ();

48 u64 pid_tgid = bpf_get_current_pid_tgid ();

49 info.pid = pid_tgid >> 32;

50 info.tid = pid_tgid & 0xFFFFFFFF;

51 bpf_ringbuf_output (&events , &info , sizeof(info), 0);

52 return 0;

53 }

54

55 char LICENSE [] SEC(" license ") = "GPL";

Il programma in userspace salva tutti i simboli di tipo funzione trovati utilizzando

la libreria blazesym in un vettore. Utilizza poi lo SkelBuilder per aprire il file oggetto

eBPF e collega, per ogni simbolo di funzione del programma di cui si vuole fare tra-

cing, i due programmi eBPF precedenti, usando il metodo attach_uprobe_with_opts.

Successivamente fa polling degli eventi inviati al ring buffer. Ogni volta che un evento

viene ricevuto, si accede alla mappa degli stack trace e per ogni simbolo viene usato il

Symbolizer di blazesym per ottenere i nomi delle funzioni dello stack.

Per interpretare i byte che arrivano dal ring buffer come lo struct trace_info

generato nello skeleton verrà usata la libreria plain che è possibile aggiungere usando:

cargo add plain

Codice sorgente 5.6: Esempio di collegamento di programmi eBPF a tutte le funzioni di

un eseguibile

1 use std ::{

2 env , mem:: MaybeUninit , num:: NonZeroU32 , ops:: ControlFlow ,

3 time::Duration ,

4 };

5

6 use blazesym ::{

42 5. Tracing utilizzando eBPF

7 Pid , SymType ,

8 inspect ::{

9 Inspector ,

10 source ::{Elf , Source},

11 },

12 symbolize ::{Input , Sym , Symbolized , Symbolizer , source :: Process},

13 };

14 use libbpf_rs ::{

15 Link , MapCore , MapFlags , RingBufferBuilder , UprobeOpts ,

16 skel ::{ OpenSkel , Skel , SkelBuilder},

17 };

18 use plain:: Plain;

19 mod trace {

20 include !(concat !(

21 env!(" CARGO_MANIFEST_DIR "),

22 "/src/bpf/trace.skel.rs"

23));

24 }

25 #[allow(clippy :: wildcard_imports)]

26 use trace ::*;

27

28 unsafe impl Plain for trace:: types:: trace_info {}

29

30 fn main() {

31 let args: Vec <String > = env::args (). collect ();

32 let file_path = &args [1];

33 let src = Source ::Elf(Elf::new(file_path));

34 let inspector = Inspector ::new();

35 let mut sym_infos = Vec::new();

36 inspector

37 .for_each (&src , |sym| {

38 if sym.sym_type == SymType :: Function {

39 sym_infos.push(sym.to_owned ());

40 }

41 ControlFlow :: Continue (())

42 })

43 .unwrap ();

44 let example_builder = TraceSkelBuilder :: default ();

5. Tracing utilizzando eBPF 43

45 let mut open_object = MaybeUninit :: uninit ();

46 let open_skel = example_builder.open(&mut open_object). unwrap ();

47 let skel = open_skel.load (). unwrap ();

48 let object = skel.object ();

49 let mut links: Vec <Link > = vec ![];

50 for sym in sym_infos {

51 for prog in object.progs_mut () {

52 let opts = UprobeOpts {

53 retprobe: prog.name (). to_str (). unwrap () == "end",

54 .. Default :: default ()

55 };

56 let link = prog

57 .attach_uprobe_with_opts(

58 -1,

59 src.path (). unwrap(),

60 sym.file_offset.unwrap (). try_into (). unwrap(),

61 opts ,

62)

63 .expect (" Failed to attach eBPF program ");

64 links.push(link);

65 }

66 }

67 let symbolizer = Symbolizer ::new();

68 let handle_events = |data: &[u8]| {

69 let mut trace_info = trace:: types:: trace_info :: default ();

70 plain :: copy_from_bytes (&mut trace_info , data). expect ("Wrong size ");

71 let stacks = &skel.maps.stack_traces;

72 match stacks

73 .lookup (& trace_info.stackid.to_ne_bytes (), MapFlags ::empty ())

74 {

75 Ok(Some(stack)) => {

76 let valid_addrs = stack

77 .chunks_exact (8)

78 .map(|chunk| {

79 u64:: from_ne_bytes(chunk.try_into (). unwrap ())

80 })

81 .filter (|& addr| addr != 0)

82 .collect::<Vec <_>>();

44 5. Tracing utilizzando eBPF

83 let src = blazesym :: symbolize :: source :: Source :: Process(

84 Process ::new(Pid::Pid(

85 NonZeroU32 ::new(trace_info.pid)

86 .expect (" Negative PID"),

87)),

88);

89 match symbolizer

90 .symbolize (&src , Input :: AbsAddr (& valid_addrs))

91 {

92 Ok(syms) => {

93 for sym in syms {

94 match sym {

95 Symbolized ::Sym(Sym { name , .. }) => {

96 println !("{ name }");

97 }

98 Symbolized :: Unknown(reason) => {

99 println !("<no -symbol > ({ reason })")

100 }

101 }

102 }

103 }

104 Err(e) => {

105 eprintln !(" Failed to symbolize addresses: {e}");

106 }

107 }

108 }

109 Ok(None) => {

110 eprintln !(" Stack id {} not found!", trace_info.stackid);

111 }

112 Err(e) => {

113 eprintln !(

114 "Failed to lookup stack id {}: {e}",

115 trace_info.stackid

116);

117 }

118 }

119 println !("-----");

120 0

5. Tracing utilizzando eBPF 45

121 };

122 let mut builder = RingBufferBuilder ::new();

123 builder

124 .add(&skel.maps.events , handle_events)

125 .expect (" Failed to add RingBuffer ");

126 let ringbuf = builder.build (). unwrap ();

127 loop {

128 ringbuf

129 .poll(Duration :: from_millis (100))

130 .expect ("Error polling ")

131 }

132 }

5.6 Serializzare i dati nel Trace Event Format

Il Trace Event Format [62] è un formato JSON per rappresentare i dati di tracing.

Nello specifico, è composto da un oggetto JSON con la proprietà obbligatoria traceEvents

che è un array di eventi. Ogni evento è un oggetto JSON con le seguenti proprietà:

name è il nome dell’evento;

cat è la lista separata da virgole delle categorie degli eventi;

ph è il tipo dell’evento, rappresentato da una singola lettera (per esempio B per l’inizio

di un evento e E per la fine);

ts è il timestamp dell’evento;

tts è il timestamp del thread (opzionale);

pid è il process id;

tid è il thread id;

args sono gli argomenti aggiuntivi per l’evento.

Nel caso di eventi di tipo E solo i campi pid, tid, ph e ts sono obbligatori.

Per serializzare i dati in JSON verrà usata la libreria Serde JSON [63].

46 5. Tracing utilizzando eBPF

cargo add serde -F derive

cargo add serde_json

Viene utilizzata la struct TraceEvent che deriva il trait Serialize di Serde per

salvare i singoli eventi. Viene usato un vettore di questi struct per salvare la lista degli

eventi avvenuti. Ogni volta che viene ricevuto un evento dal ring buffer:

• se il vettore è vuoto, tutte le funzioni sullo stack vengono aggiunte come eventi di

inizio; questo viene fatto perché il tracing potrebbe iniziare quando il programma

che si vuole tracciare è già stato avviato;

• se è un evento di uscita da una funzione, viene aggiunto un evento di fine al vettore;

• se è un evento dovuto all’invocazione di una funzione, viene aggiunto un evento

di inizio con le informazioni della funzione appena invocata che è quindi la prima

dello stack.

Quando viene interrotta l’esecuzione del programma di tracing usando Ctrl+C, la

libreria Serde si occupa di serializzare il vettore in JSON.

Codice sorgente 5.7: Programma che utilizza Serde JSON per serializzare i dati in Trace

Event Format

1 use std ::{

2 env ,

3 mem:: MaybeUninit ,

4 num:: NonZeroU32 ,

5 ops:: ControlFlow ,

6 sync ::{

7 Arc ,

8 atomic ::{ AtomicBool , Ordering},

9 },

10 time::Duration ,

11 };

12

13 use blazesym ::{

14 Pid , SymType ,

15 inspect ::{

5. Tracing utilizzando eBPF 47

16 Inspector ,

17 source ::{Elf , Source},

18 },

19 symbolize ::{Input , Sym , Symbolized , Symbolizer , source :: Process},

20 };

21 use libbpf_rs ::{

22 Link , MapCore , MapFlags , RingBufferBuilder , UprobeOpts ,

23 skel ::{ OpenSkel , Skel , SkelBuilder},

24 };

25 use plain:: Plain;

26 use serde:: Serialize;

27 mod trace {

28 include !(concat !(

29 env!(" CARGO_MANIFEST_DIR "),

30 "/src/bpf/trace.skel.rs"

31));

32 }

33 #[allow(clippy :: wildcard_imports)]

34 use trace ::*;

35

36 unsafe impl Plain for trace:: types:: trace_info {}

37

38 #[derive(Serialize)]

39 struct TraceEvent {

40 #[serde(skip_serializing_if = "Option :: is_none ")]

41 name: Option <String >,

42 cat: String ,

43 ph: char ,

44 ts: u64 ,

45 #[serde(skip_serializing_if = "Option :: is_none ")]

46 tts: Option <u64 >,

47 pid: u32 ,

48 tid: u32 ,

49 }

50

51 fn main() {

52 let args: Vec <String > = env::args (). collect ();

53 let file_path = &args [1];

48 5. Tracing utilizzando eBPF

54 let src = Source ::Elf(Elf::new(file_path));

55 let inspector = Inspector ::new();

56 let mut sym_infos = Vec::new();

57 inspector

58 .for_each (&src , |sym| {

59 if sym.sym_type == SymType :: Function {

60 sym_infos.push(sym.to_owned ());

61 }

62 ControlFlow :: Continue (())

63 })

64 .unwrap ();

65 let example_builder = TraceSkelBuilder :: default ();

66 let mut open_object = MaybeUninit :: uninit ();

67 let open_skel = example_builder.open(&mut open_object). unwrap ();

68 let skel = open_skel.load (). unwrap ();

69 let object = skel.object ();

70 let mut links: Vec <Link > = vec ![];

71 for sym in sym_infos {

72 for prog in object.progs_mut () {

73 let opts = UprobeOpts {

74 retprobe: prog.name (). to_str (). unwrap () == "end",

75 .. Default :: default ()

76 };

77 let link = prog

78 .attach_uprobe_with_opts(

79 -1,

80 src.path (). unwrap(),

81 sym.file_offset.unwrap (). try_into (). unwrap(),

82 opts ,

83)

84 .expect (" Failed to attach eBPF program ");

85 links.push(link);

86 }

87 }

88 let mut events = vec ![];

89 let symbolizer = Symbolizer ::new();

90 {

91 let handle_events = |data: &[u8]| {

5. Tracing utilizzando eBPF 49

92 let mut trace_info = trace:: types:: trace_info :: default ();

93 plain :: copy_from_bytes (&mut trace_info , data)

94 .expect ("Wrong size ");

95 if trace_info.event_type == 1 {

96 if !events.is_empty () {

97 events.push(TraceEvent {

98 name: None ,

99 cat: String ::from (""),

100 ph: ’E’,

101 ts: trace_info.time ,

102 tts: None ,

103 pid: trace_info.pid ,

104 tid: trace_info.tid ,

105 });

106 }

107 return 0;

108 }

109 let stacks = &skel.maps.stack_traces;

110 match stacks.lookup(

111 &trace_info.stackid.to_ne_bytes (),

112 MapFlags ::empty(),

113) {

114 Ok(Some(stack)) => {

115 let valid_addrs = stack

116 .chunks_exact (8)

117 .map(| chunk| {

118 u64:: from_ne_bytes(chunk.try_into (). unwrap ())

119 })

120 .filter (|& addr| addr != 0)

121 .collect::<Vec <_>>();

122 let src = blazesym :: symbolize :: source :: Source :: Process(

123 Process ::new(Pid::Pid(

124 NonZeroU32 ::new(trace_info.pid)

125 .expect (" Negative PID"),

126)),

127);

128 match symbolizer

129 .symbolize (&src , Input :: AbsAddr (& valid_addrs))

50 5. Tracing utilizzando eBPF

130 {

131 Ok(syms) => {

132 if !events.is_empty () {

133 if let Some(Symbolized ::Sym(Sym {

134 name ,

135 ..

136 })) = syms.first()

137 {

138 events.push(TraceEvent {

139 name: Some(name.to_string ()),

140 cat: String ::from (""),

141 ph: ’B’,

142 ts: trace_info.time ,

143 tts: None ,

144 pid: trace_info.pid ,

145 tid: trace_info.tid ,

146 });

147 }

148 } else {

149 for sym in syms.iter ().rev() {

150 if let Symbolized ::Sym(Sym {

151 name ,

152 ..

153 }) = sym

154 {

155 events.push(TraceEvent {

156 name: Some(name.to_string ()),

157 cat: String ::from (""),

158 ph: ’B’,

159 ts: trace_info.time ,

160 tts: None ,

161 pid: trace_info.pid ,

162 tid: trace_info.tid ,

163 });

164 }

165 }

166 }

167 }

5. Tracing utilizzando eBPF 51

168 Err(e) => {

169 eprintln !(

170 "Failed to symbolize addresses: {e}"

171);

172 }

173 }

174 }

175 Ok(None) => {

176 eprintln !(

177 "Stack id {} not found!",

178 trace_info.stackid

179);

180 }

181 Err(e) => {

182 eprintln !(

183 "Failed to lookup stack id {}: {e}",

184 trace_info.stackid

185);

186 }

187 }

188 0

189 };

190 let mut builder = RingBufferBuilder ::new();

191 builder

192 .add(&skel.maps.events , handle_events)

193 .expect (" Failed to add RingBuffer ");

194 let ringbuf = builder.build (). unwrap ();

195 let running = Arc::new(AtomicBool ::new(true));

196 let r = running.clone ();

197 ctrlc :: set_handler(move || {

198 r.store(false , Ordering :: SeqCst);

199 })

200 .expect ("Error setting Ctrl -C handler ");

201 while running.load(Ordering :: SeqCst) {

202 ringbuf.poll_raw(Duration :: from_millis (100));

203 }

204 }

205 println !(

52 5. Tracing utilizzando eBPF

206 "{{\" traceEvents \": {}}}" ,

207 serde_json :: to_string (&* events). unwrap ()

208);

209 }

È possibile quindi fare tracing di un programma usando:

sudo ./target/debug/ebpf-tracing-rs ./fib_debug > trace.json

Si può utilizzare per esempio Perfetto UI [64] per visualizzare sotto forma di flame-

graph i dati raccolti. Nella Fig. 5.2 viene mostrato il risultato nel caso di un programma

che calcola un numero della successione di Fibonacci in modo ricorsivo.

Figura 5.2: Visualizzazione di un flamegraph utilizzando Perfetto UI.

Conclusioni e sviluppi futuri

In questa tesi è stata presentata la suite di software StoRM e gli sviluppi effettuati per

preparare StoRM WebDAV al Run 4 di LHC. Sono state aggiornate le versioni di Spring

Boot e Jetty. Inoltre è stato aggiunto il supporto al deployment usando come reverse

proxy NGINX, delegando le richieste GET a quest’ultimo. Grazie a questi sviluppi sono

state risolte delle criticità riscontrate durante la Data Challenge del 2024 e ridotto il load

average dei server di 6 volte. La stabilità è aumentata drasticamente e non avvengono più

riavvii dovuti a problemi di StoRM WebDAV che prima erano invece giornalieri. Questi

risultati positivi sono stati verificati grazie anche a una Mini Data Challenge svoltasi

all’inizio di luglio. L’utilizzo della Continuous Integration ha velocizzato lo sviluppo

e il rilascio di nuove versioni. Infine l’utilizzo dei virtual thread sembra promettente.

L’ultimo sviluppo necessario per passare a un deployment senza i componenti SRM

è l’aggiornamento di StoRM Info Provider che dovrà essere disaccoppiato da StoRM

Backend.

Inoltre è stata presentata l’iniziativa SciTags e come è stato aggiunto il supporto al

flow marking a StoRM WebDAV.

Nell’ultimo capitolo è stato illustrato come è possibile utilizzare eBPF per fare tracing

delle performance di un programma senza che sia necessario modificarne il codice. È

stato inoltre utilizzato Rust e le librerie libbpf-rs e blazesym per mostrare come si può

effettuare tracing con eBPF e mostrare i dati sotto forma di flamegraph. Questo potrà

per esempio essere utilizzato per trovare colli di bottiglia in StoRM.

53

Bibliografia

[1] O. Brüning, H. Burkhardt, and S. Myers, “The large hadron collider,” Progress in

Particle and Nuclear Physics, vol. 67, no. 3, pp. 705–734, 2012. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0146641012000695

[2] CERN, “Worldwide LHC Computing Grid,” accessed: 1 September 2025. [Online].

Available: https://wlcg-public.web.cern.ch/

[3] I. Foster and C. Kesselman, Eds., The grid: blueprint for a new computing

infrastructure. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[4] F. Ian and K. Carl, The History of the Grid. IOS Press, 2011. [Online]. Available:

https://doi.org/10.3233/978-1-60750-803-8-3

[5] L. dell’Agnello, T. Boccali, D. Cesini, L. Chiarelli, A. Chierici, S. Dal Pra,

D. De Girolamo, A. Falabella, E. Fattibene, G. Maron, D. Michelotto,

L. Morganti, A. Prosperini, V. Sapunenko, and S. Zani, “INFN Tier–1: a

distributed site,” EPJ Web Conf., vol. 214, p. 08002, 2019. [Online]. Available:

https://doi.org/10.1051/epjconf/201921408002

[6] A. Chierici, D. Michelotto, G. Sergi, A. Pascolini, and D. Lattanzio, “Moving a

data center keeping availability at the top,” EPJ Web Conf., vol. 337, p. 01277,

2025. [Online]. Available: https://doi.org/10.1051/epjconf/202533701277

[7] A. Sciabà, “Hardware technology trends in HEP computing,” EPJ Web Conf.,

vol. 337, p. 01325, 2025. [Online]. Available: https://doi.org/10.1051/epjconf/

202533701325

55

https://www.sciencedirect.com/science/article/pii/S0146641012000695
https://wlcg-public.web.cern.ch/
https://doi.org/10.3233/978-1-60750-803-8-3
https://doi.org/10.1051/epjconf/201921408002
https://doi.org/10.1051/epjconf/202533701277
https://doi.org/10.1051/epjconf/202533701325
https://doi.org/10.1051/epjconf/202533701325

56 BIBLIOGRAFIA

[8] Consortium GARR, “Storia della rete GARR,” accessed: 1 September

2025. [Online]. Available: https://www.garr.it/it/infrastrutture/rete-nazionale/

storia-della-rete-garr

[9] ——, “La rete GARR-T,” accessed: 1 September 2025. [Online]. Available:

https://www.garr.it/it/infrastrutture/rete-nazionale/rete-garr-t

[10] “Einstein Telescope Italia,” accessed: 1 September 2025. [Online]. Available:

https://www.einstein-telescope.it/

[11] Consortium GARR, “Rete internazionale,” accessed: 1 September 2025. [Online].

Available: https://www.garr.it/it/infrastrutture/rete-internazionale

[12] S. Campana, WLCG data challenges for HL-LHC - 2021 planning, Sep. 2021.

[Online]. Available: https://doi.org/10.5281/zenodo.5532452

[13] Consortium GARR, “Data Centre Interconnection: 1,6 Tbps tra

CERN e Bologna grazie allo spectrum sharing,” accessed: 1 Sep-

tember 2025. [Online]. Available: https://www.garr.it/it/news-e-eventi/

2213-data-centre-interconnection-1-6-tbps-tra-cern-e-bologna-grazie-allo-spectrum-sharing

[14] K. V. Ellis, “The WLCG Data Challenge,” EPJ Web Conf., vol. 337, p. 01327,

2025. [Online]. Available: https://doi.org/10.1051/epjconf/202533701327

[15] F. Donno, L. Abadie, P. Badino, J.-P. Baud, E. Corso, S. D. Witt, P. Fuhrmann,

J. Gu, B. Koblitz, S. Lemaitre, M. Litmaath, D. Litvintsev, G. L. Presti,

L. Magnoni, G. McCance, T. Mkrtchan, R. Mollon, V. Natarajan, T. Perelmutov,

D. Petravick, A. Shoshani, A. Sim, D. Smith, P. Tedesco, and R. Zappi, “Storage

resource manager version 2.2: design, implementation, and testing experience,”

Journal of Physics: Conference Series, vol. 119, no. 6, p. 062028, jul 2008. [Online].

Available: https://doi.org/10.1088/1742-6596/119/6/062028

[16] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, “The Globus Striped Gri-

dFTP Framework and Server,” in SC ’05: Proceedings of the 2005 ACM/IEEE

Conference on Supercomputing, 2005, pp. 54–54.

https://www.garr.it/it/infrastrutture/rete-nazionale/storia-della-rete-garr
https://www.garr.it/it/infrastrutture/rete-nazionale/storia-della-rete-garr
https://www.garr.it/it/infrastrutture/rete-nazionale/rete-garr-t
https://www.einstein-telescope.it/
https://www.garr.it/it/infrastrutture/rete-internazionale
https://doi.org/10.5281/zenodo.5532452
https://www.garr.it/it/news-e-eventi/2213-data-centre-interconnection-1-6-tbps-tra-cern-e-bologna-grazie-allo-spectrum-sharing
https://www.garr.it/it/news-e-eventi/2213-data-centre-interconnection-1-6-tbps-tra-cern-e-bologna-grazie-allo-spectrum-sharing
https://doi.org/10.1051/epjconf/202533701327
https://doi.org/10.1088/1742-6596/119/6/062028

BIBLIOGRAFIA 57

[17] L. M. Dusseault, “HTTP Extensions for Web Distributed Authoring and

Versioning (WebDAV),” RFC 4918, Jun. 2007. [Online]. Available: https:

//www.rfc-editor.org/info/rfc4918

[18] CERN TWiki, “TapeRestAPI,” accessed: 1 September 2025. [Online]. Available:

https://twiki.cern.ch/twiki/bin/view/LCG/TapeRestAPI

[19] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, K. Lőrentey,

and F. Spataro, “From gridmap-file to VOMS: managing authorization in a Grid

environment,” Future Generation Computer Systems, vol. 21, no. 4, pp. 549–558,

2005, high-Speed Networks and Services for Data-Intensive Grids: the DataTAG

Project. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0167739X04001682

[20] A. Ceccanti, M. Hardt, B. Wegh, A. Millar, M. Caberletti, E. Vianello,

and S. Licehammer, “The INDIGO-Datacloud Authentication and Authorization

Infrastructure,” Journal of Physics: Conference Series, vol. 898, no. 10, p. 102016,

oct 2017. [Online]. Available: https://doi.org/10.1088/1742-6596/898/10/102016

[21] P. P. Ricci, D. Bonacorsi, A. Cavalli, L. Dell’Agnello, D. Gregori, A. Prosperini,

L. Rinaldi, V. Sapunenko, and V. Vagnoni, “The Grid Enabled Mass Storage

System (GEMSS): the Storage and Data management system used at the INFN

Tier1 at CNAF.” Journal of Physics: Conference Series, vol. 396, no. 4, p. 042051,

dec 2012. [Online]. Available: https://doi.org/10.1088/1742-6596/396/4/042051

[22] B. Bockelman, A. Ceccanti, F. Furano, P. Millar, D. Litvintsev, and A. Forti,

“Third-party transfers in WLCG using HTTP,” EPJ Web Conf., vol. 245, p.

04031, 2020. [Online]. Available: https://doi.org/10.1051/epjconf/202024504031

[23] V. Vasiliadis, “Support for Open Source Globus Toolkit Ends January

2018,” 2017, accessed: 1 September 2025. [Online]. Available: https:

//www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018

https://www.rfc-editor.org/info/rfc4918
https://www.rfc-editor.org/info/rfc4918
https://twiki.cern.ch/twiki/bin/view/LCG/TapeRestAPI
https://www.sciencedirect.com/science/article/pii/S0167739X04001682
https://www.sciencedirect.com/science/article/pii/S0167739X04001682
https://doi.org/10.1088/1742-6596/898/10/102016
https://doi.org/10.1088/1742-6596/396/4/042051
https://doi.org/10.1051/epjconf/202024504031
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018

58 BIBLIOGRAFIA

[24] CERN TWiki, “HTTP / WebDAV Third-Party-Copy Technical Details,” accessed:

1 September 2025. [Online]. Available: https://twiki.cern.ch/twiki/bin/view/LCG/

HttpTpcTechnical

[25] M. Lassnig and C. Wissing, “WLCG/DOMA Data Challenge 2024: Final Report,”

Jun. 2024. [Online]. Available: https://doi.org/10.5281/zenodo.11444180

[26] CERN TWiki, “Storage Space Accounting introduction,” accessed: 1 Sep-

tember 2025. [Online]. Available: https://twiki.cern.ch/twiki/bin/view/LCG/

StorageSpaceAccounting

[27] L. Field and M. Schulz, “Grid Deployment Experiences,” 2005. [Online]. Available:

https://cds.cern.ch/record/865688

[28] Spring Website, “Spring Boot,” accessed: 1 September 2025. [Online]. Available:

https://spring.io/projects/spring-boot

[29] ——, “Spring Boot support,” accessed: 1 September 2025. [Online]. Available:

https://spring.io/projects/spring-boot#support

[30] “Jetty.” [Online]. Available: https://jetty.org/

[31] “Milton.” [Online]. Available: https://milton.io/

[32] F. Giacomini, F. Agostini, L. Bassi, J. Gasparetto, R. Miccoli, and E. Vianello,

“Enhancing StoRM WebDAV data transfer performance with a new deployment

architecture behind NGINX reverse proxy,” in Proceedings of International Sym-

posium on Grids & Clouds (ISGC) 2024 — PoS(ISGC2024), vol. 458, 2024, p.

030.

[33] INFN-CNAF, “ngx http voms module.” [Online]. Available: https://baltig.infn.it/

cnafsd/ngx http voms module

[34] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Gianoli, F. Spataro,

F. Bonnassieux, P. Broadfoot, G. Lowe, L. Cornwall, J. Jensen, D. Kelsey,

A. Frohner, D. L. Groep, W. S. de Cerff, M. Steenbakkers, G. Venekamp, D. Kouril,

https://twiki.cern.ch/twiki/bin/view/LCG/HttpTpcTechnical
https://twiki.cern.ch/twiki/bin/view/LCG/HttpTpcTechnical
https://doi.org/10.5281/zenodo.11444180
https://twiki.cern.ch/twiki/bin/view/LCG/StorageSpaceAccounting
https://twiki.cern.ch/twiki/bin/view/LCG/StorageSpaceAccounting
https://cds.cern.ch/record/865688
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot#support
https://jetty.org/
https://milton.io/
https://baltig.infn.it/cnafsd/ngx_http_voms_module
https://baltig.infn.it/cnafsd/ngx_http_voms_module

BIBLIOGRAFIA 59

A. McNab, O. Mulmo, M. Silander, J. Hahkala, and K. Lhorentey, “Managing

Dynamic User Communities in a Grid of Autonomous Resources,” 2003. [Online].

Available: https://arxiv.org/abs/cs/0306004

[35] L. P. Deutsch and J. loup Gailly, “ZLIB Compressed Data Format Specification

version 3.3,” RFC 1950, May 1996. [Online]. Available: https://www.rfc-editor.

org/info/rfc1950

[36] “OpenResty.” [Online]. Available: https://openresty.org/en/

[37] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “The evolution

of Lua,” in Proceedings of the Third ACM SIGPLAN Conference on

History of Programming Languages, ser. HOPL III. New York, NY, USA:

Association for Computing Machinery, 2007, p. 2–1–2–26. [Online]. Available:

https://doi.org/10.1145/1238844.1238846

[38] Robot Framework Foundation, “Robot Framework.” [Online]. Available: https:

//robotframework.org/

[39] SonarSource, “SonarQube Cloud.” [Online]. Available: https://www.sonarsource.

com/products/sonarcloud/

[40] Free Software Foundation Europe, “REUSE.” [Online]. Available: https:

//reuse.software/

[41] G. Tenaglia, “Open Source at CERN and WLCG,” accessed: 1 Sep-

tember 2025. [Online]. Available: https://indico.cern.ch/event/1506690/

contributions/6341673/attachments/3011594/5310068/Open%20Source%20at%

20CERN%20and%20WLCG%20-%20CodiMD.pdf

[42] DiffPlug, “Spotless.” [Online]. Available: https://github.com/diffplug/spotless

[43] Webtide, “Jetty Threading Architecture,” accessed: 1 September 2025.

[Online]. Available: https://jetty.org/docs/jetty/12.1/programming-guide/arch/

threads.html

https://arxiv.org/abs/cs/0306004
https://www.rfc-editor.org/info/rfc1950
https://www.rfc-editor.org/info/rfc1950
https://openresty.org/en/
https://doi.org/10.1145/1238844.1238846
https://robotframework.org/
https://robotframework.org/
https://www.sonarsource.com/products/sonarcloud/
https://www.sonarsource.com/products/sonarcloud/
https://reuse.software/
https://reuse.software/
https://indico.cern.ch/event/1506690/contributions/6341673/attachments/3011594/5310068/Open%20Source%20at%20CERN%20and%20WLCG%20-%20CodiMD.pdf
https://indico.cern.ch/event/1506690/contributions/6341673/attachments/3011594/5310068/Open%20Source%20at%20CERN%20and%20WLCG%20-%20CodiMD.pdf
https://indico.cern.ch/event/1506690/contributions/6341673/attachments/3011594/5310068/Open%20Source%20at%20CERN%20and%20WLCG%20-%20CodiMD.pdf
https://github.com/diffplug/spotless
https://jetty.org/docs/jetty/12.1/programming-guide/arch/threads.html
https://jetty.org/docs/jetty/12.1/programming-guide/arch/threads.html

60 BIBLIOGRAFIA

[44] B. Gregg, “Linux Load Averages: Solving the Mystery,” accessed: 1

September 2025. [Online]. Available: https://www.brendangregg.com/blog/

2017-08-08/linux-load-averages.html

[45] Oracle, “Virtual Threads,” accessed: 1 September 2025. [Online]. Available:

https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html

[46] G. Attebury, M. Babik, D. Carder, T. Chown, A. Hanushevsky, B. Hoeft, A. Lake,

M. Lambert, J. Letts, S. McKee, K. Newell, and T. Sullivan, “Identifying and

Understanding Scientific Network Flows,” EPJ Web of Conf., vol. 295, p. 01036,

2024. [Online]. Available: https://doi.org/10.1051/epjconf/202429501036

[47] “SciTags Flow Registry,” accessed: 1 September 2025. [Online]. Available:

https://scitags.org/api.json

[48] F. Agostini, L. Bassi, J. Gasparetto, F. Giacomini, R. Miccoli, and E. Vianello,

“Evolving StoRM WebDAV: Delegation of file transfers to NGINX and support

for SciTags,” EPJ Web Conf., vol. 337, p. 01182, 2025. [Online]. Available:

https://doi.org/10.1051/epjconf/202533701182

[49] M. Babik and T. Sullivan, “flowd.” [Online]. Available: https://github.com/

scitags/flowd

[50] INFN-CNAF, “StoRM Puppet module.” [Online]. Available: https://forge.puppet.

com/modules/cnafsd/storm/readme

[51] A. Petersson and M. Nilsson, “Forwarded HTTP Extension,” RFC 7239, Jun.

2014. [Online]. Available: https://www.rfc-editor.org/info/rfc7239

[52] B. Gregg, “The flame graph,” Commun. ACM, vol. 59, no. 6, p. 48–57, May 2016.

[Online]. Available: https://doi.org/10.1145/2909476

[53] eBPF.io authors, “eBPF Documentation,” accessed: 1 September 2025. [Online].

Available: https://ebpf.io/what-is-ebpf/

https://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
https://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html
https://doi.org/10.1051/epjconf/202429501036
https://scitags.org/api.json
https://doi.org/10.1051/epjconf/202533701182
https://github.com/scitags/flowd
https://github.com/scitags/flowd
https://forge.puppet.com/modules/cnafsd/storm/readme
https://forge.puppet.com/modules/cnafsd/storm/readme
https://www.rfc-editor.org/info/rfc7239
https://doi.org/10.1145/2909476
https://ebpf.io/what-is-ebpf/

BIBLIOGRAFIA 61

[54] L. Bassi, “Bilanciamento del carico per servizi di accesso ai dati a elevata efficienza

utilizzando eXpress Data Path,” Ph.D. dissertation, 2023. [Online]. Available:

https://amslaurea.unibo.it/id/eprint/29243/

[55] IO Visor Project, “BPF Compiler Collection (BCC),” accessed: 1 September 2025.

[Online]. Available: https://github.com/iovisor/bcc

[56] A. Nakryiko, “BPF CO-RE (Compile Once – Run Everywhere),” acces-

sed: 1 September 2025. [Online]. Available: https://nakryiko.com/posts/

bpf-portability-and-co-re/

[57] The kernel development community, “libbpf Overview,” accessed: 1 September

2025. [Online]. Available: https://docs.kernel.org/bpf/libbpf/libbpf overview.html

[58] “libbpf-rs.” [Online]. Available: https://github.com/libbpf/libbpf-rs

[59] Aqua Security, “libbpfgo.” [Online]. Available: https://github.com/aquasecurity/

libbpfgo

[60] Cilium, “ebpf-go.” [Online]. Available: https://ebpf-go.dev/

[61] D. Müller and Kui-Feng, “blazesym.” [Online]. Available: https://github.com/

libbpf/blazesym

[62] nduca and dsinclair, “Trace Event Format,” accessed: 1 Septem-

ber 2025. [Online]. Available: https://docs.google.com/document/d/

1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#

heading=h.yr4qxyxotyw

[63] E. Tryzelaar and D. Tolnay, “Serde JSON.” [Online]. Available: https:

//github.com/serde-rs/json

[64] Perfetto Team, “Perfetto UI.” [Online]. Available: https://ui.perfetto.dev/

https://amslaurea.unibo.it/id/eprint/29243/
https://github.com/iovisor/bcc
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://nakryiko.com/posts/bpf-portability-and-co-re/
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://github.com/libbpf/libbpf-rs
https://github.com/aquasecurity/libbpfgo
https://github.com/aquasecurity/libbpfgo
https://ebpf-go.dev/
https://github.com/libbpf/blazesym
https://github.com/libbpf/blazesym
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.yr4qxyxotyw
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.yr4qxyxotyw
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit?tab=t.0#heading=h.yr4qxyxotyw
https://github.com/serde-rs/json
https://github.com/serde-rs/json
https://ui.perfetto.dev/

Ringraziamenti

Un primo grandissimo ringraziamento va sicuramente al GARR che mi ha permesso,

grazie alla borsa studio “Orio Carlini”, di passare quasi 2 anni in un ambiente stimo-

lante come quello dell’INFN-CNAF. Sono stato molto fortunato a poter collaborare con

i tecnologi del reparto di sviluppo software del CNAF che sono stati gentilissimi ad ac-

cogliermi. Mi hanno anche permesso di presentare questi sviluppi ad alcune conferenze

che sono state delle esperienze incredibili.

Ringrazio i miei relatori Renzo Davoli, Francesco Giacomini ed Enrico Vianello che

mi hanno seguito durante la stesura di questa tesi.

Grazie ai miei genitori, mio fratello e i nonni per tutto l’affetto che mi fanno sentire

ogni giorno.

Durante questi anni bolognesi ho incontrato coinquilini, diventati poi amici, fantastici

che hanno reso questo periodo indimenticabile, in particolare: “mamma” Silvia, “queen”

Greta, Francesco, Chiara, Marco e Serena.

Non posso poi dimenticarmi dei miei amici nerd e della comitiva del “gruppo monta-

gna” (e non solo) con cui abbiamo passato troppe avventure insieme per essere elencate

qui.

	Introduzione
	Contesto
	LHC e WLCG
	Il data center dell'INFN-CNAF
	La rete GARR
	Run 4 di LHC

	StoRM
	StoRM: Storage Resource Manager
	Procollo WebDAV
	Third-Party Copy
	Deployment di StoRM
	Data Challenge 2024

	Evoluzione di StoRM
	Nuovo deployment di StoRM
	Sviluppi
	Continuous Integration
	Mini Data Challenge 2025
	Virtual thread

	SciTags
	Introduzione
	Integrazione in StoRM WebDAV

	Tracing utilizzando eBPF
	eBPF
	BPF CO-RE e libbpf
	libbpf-rs
	blazesym
	Collegare i programmi eBPF a hook
	Serializzare i dati nel Trace Event Format

	Conclusioni e sviluppi futuri
	Bibliografia

