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Abstract

L’impronta energetica dei moderni sistemi di intelligenza artificiale sta diventando una
preoccupazione sempre piu rilevante. Questa tesi analizza i consumi energetici dei Large
Language Model (LLM) e dei modelli di Generative Al. L’analisi prende avvio dallo studio
degli strumenti di monitoraggio energetico, come le Power Distribution Units (PDU) e
le metriche a livello di GPU. I primi esperimenti sono stati condotti su una singola
macchina, valutando diversi LLM tramite il framework Ollama e la piattaforma Hugging
Face, permettendo un confronto diretto tra le richieste energetiche dei compiti generativi
testuali e visivi. Per ampliare ’analisi, modelli di dimensioni maggiori sono stati testati
su un’infrastruttura pit potente (2 NVIDIA RTX A6000). E stato inoltre sviluppato un
sistema di monitoraggio personalizzato in grado di raccogliere dati sincronizzati e ad alta
risoluzione sia dalle GPU che dalle PDU. Successivamente sono stati effettuati anche dei
benchmark per calcolare I'efficienza e la precisione dei Large Language Model attraverso il
benchmark Humanity’s Last Exam (HLE). I risultati evidenziano differenze significative
in termini di efficienza energetica e performance tra tipologie di modelli e contesti di
deployment, offrendo spunti concreti per pratiche di calcolo Al piu sostenibili e fornendo
indicazioni utili per future strategie di ottimizzazione su larga scala.
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1 Introduction

The field of artificial intelligence has witnessed remarkable advancements in recent years,
particularly in the domains of natural language processing and image generation. Large
Language Models (LLMs) have emerged as powerful tools capable of understanding and
generating human-like text, while Diffusion Models have revolutionized the field of image
generation, enabling the creation of high-quality, realistic images from textual descrip-
tions.

These advances, while impressive, have raised concerns about the environmental im-
pact of Al systems. The high energy consumption associated with training and deploying
such models contributes to significant carbon emissions, prompting the need for sus-
tainable AI practices and energy-efficient architectures. These technological come with
significant computational and energy costs that warrant careful examination.

1.1 General Project Description
1.1.1 Background and Motivation

LLMs, operate by processing and generating text through complex neural network ar-
chitectures. These models are trained on vast amounts of text data, learning patterns
and relationships that enable them to perform tasks ranging from text completion to
complex reasoning. The power consumption of these models varies significantly based on
their architecture, size, and the specific task being performed, as demonstrated in recent
studies.

Diffusion Models, on the other hand, represent a different approach to Al generation,
focusing on image creation through an iterative denoising process. These models, often
hosted on platforms, have gained popularity for their ability to generate high-quality
images from textual prompts. The power consumption patterns of these models differ
from LLMs due to their distinct architectural requirements and computational needs.

1.1.2 Research Objectives

This report aims to provide a comprehensive and depth overview of the state of the
art in energy efficiency for large language models and diffusion models. It will detail
major architectural innovations, advanced optimization techniques, energy monitoring
tools, and existing research findings, with a specific focus on energy consumption. A
key contribution of this work is the development of a custom monitoring framework
designed to accurately track and analyze the power usage of AI models. This framework
integrates both software-level and hardware-level metrics to offer high-resolution energy
profiles of generative models in operation. The analysis will highlight the most recent
developments, Special attention is given to measuring the power used during inference,
in order to assess the energy efficiency of diffusion models relative to large language
models (LLMs). Additionally, the research explores how energy usage scales as model
size increases, especially when deployed on high performance computing infrastructures.
To relate energy efficiency to model quality, we also evaluate LLMs using the Humanity’s
Last Exam (HLE) benchmark strictly for performance assessment, reporting category-
level results to understand when high compute/power is necessary and when smaller
models are sufficient.



1.1.3 Methodology Overview

The research begins with an in depth analysis of power monitoring tools, focusing on
Power Distribution Units (PDUs) and GPU monitoring capabilities. Initial experiments
were conducted on a server machine, establishing a baseline for power consumption ana-
lysis during idle states. Following these baseline measurements, we will expand our experi-
ments to include more powerful servers. Furthermore, our investigation will not be limited
to LLMs; we will also evaluate the power consumption of diffusion models. To evaluate
various models, the study employs Ollama, an open-source framework that simplifies the
deployment and management of Large Language Models (LLMs) and huggingface, an
open source community that has become a central hub for artificial intelligence.

The methodology employed in this study combines software-level monitoring through
NVIDIA’s System Management Interface (nvidia-smi) with hardware-level power track-
ing using Simple Network Management Protocol (SNMP). This dual approach enables
parallel data collection with high temporal resolution, providing detailed insights into
power consumption patterns during model inference.

1.1.4 Research Scope

The research scope is to include Diffusion Models and Text Models, sourced from Hug-
gingface and Ollama, allowing for a comparative analysis of power consumption patterns
between language models and image generation models. To evaluate the power consump-
tion of larger models, we used another computing infrastructure, allowing experiments
with more complex and resource intensive models. The results of this study are inten-
ded to inform developers and infrastructure designers about the energy implications of
deploying different types of generative models.



2 State of the Art

2.1 The Context of Energy Efficiency in Al

The rapid advancement and adoption of Large Language Models (LLMs) and generat-
ive artificial intelligence have triggered a significant increase in computational demands
and, consequently, energy consumption. This trend raises substantial concerns regarding
sustainability and environmental impact, making energy optimization a critical priority.
[9]

Projections from authoritative bodies such as the International Energy Agency (IEA)
indicate that global electricity demand from data centers is set to double by the end of
this decade, with Al emerging as the primary driver of this growth. In particular, the
electricity demand for Al-optimized data centers is predicted to quadruple by 2030.[8]
Similarly, in the United States, Al workloads are estimated to consume between 9.1%
and 11.7% of total energy demand by 2030.[6]
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Figure 1: Estimated Al related electricity consumption across leading US states in 2030
[15]

As shown in Fig. 1, the projected electricity consumption for Al-related workloads
varies significantly across different US states, with California, Texas, and New York
showing the highest projected consumption. This geographic distribution reflects the
concentration of data centers and Al infrastructure in these regions, highlighting the
need for region-specific energy optimization strategies.

It is crucial to distinguish between energy consumed during the training phase and
that during inference. Although training is a one-time, energy-intensive process, inference
represents continuous demand, as models are employed to serve millions of queries daily.
This continuous nature implies that the cumulative energy footprint of inference can
become significantly larger over time.!

The scale of inference demand is substantial and growing rapidly. Recent industry
reports indicate that major Al platforms handle hundreds of millions of queries daily.
For instance, ChatGPT alone processes approximately 1 billion queries per day globally.
This figure represents a conservative estimate that excludes specialized Al applications
in healthcare, finance and other sectors.[5]



For example, GPT-3 inference, estimated at 0.0003 kWh per query, drastically in-
creases when multiplied by millions of daily users, posing a considerable challenge. [6]

The energy challenge is of paramount importance for the sustainable development and
large-scale adoption of AI technologies. Industry focus is shifting from creating larger
and more capable models to developing smarter, more efficient models, thereby balancing
cutting-edge capabilities with environmental responsibility. Greater efficiency in LLMs
is not only an environmental imperative, reducing electricity consumption and carbon
emissions, but also an economic advantage, lowering operational costs and making Al
more accessible to a wide range of users and organizations. [14]

A crucial aspect to consider is the trend where individual AT models are becoming
significantly more energy-efficient, as demonstrated by the 40-60% reduction in Deep-
Seek’s consumption or Llama 3.3 70B’s 120 times higher efficiency compared to older
GPT-3 estimates.[3] However, in parallel, global consumption of Al energy is projected
to drastically increase globally.[6]

Moreover, while training is energy intensive, inference, being a continuous and large-
scale process, represents a broader and more persistent energy challenge. Meta reports
that inference workloads constitute up to 70% of their Al energy consumption, and Google
attributes 60% of its ML energy to inference.[6] The cumulative nature of inference en-
ergy consumption, fueled by millions of daily queries, means its long term environmental
and economic impact can far outweigh one time training costs. This continuous demand
places unique pressures on data center infrastructure, requiring constant power and cool-
ing. Optimization strategies for inference, which include real time processing, batching,
and low-latency requirements, differ significantly from those for training, which focus on
maximizing throughput for large datasets. This understanding indicates a critical shift
in the orientation of energy optimization efforts within the Al community. While train-
ing optimization remains important, the primary emphasis of research and development
should increasingly focus on real world deployment efficiency, including inference engine
optimization, the development of specialized hardware for serving, and the implementa-
tion of intelligent workload management.

2.2 State of the Art on LLMs and Energy Efficiency
2.2.1 Energy Efficiency Research Landscape

The field of energy-efficient Al has evolved rapidly, with research focusing on multiple op-
timization dimensions. Recent studies have identified several key areas where significant
energy savings can be achieved:

Model Compression Techniques: Quantization has emerged as one of the most ef-
fective methods for reducing energy consumption. Post-training quantization (PTQ) can
reduce model size by 75% with minimal accuracy loss, while quantization-aware training
(QAT) achieves even better results. Dynamic quantization, which adapts precision based
on layer importance, has shown particular promise for maintaining performance while
maximizing energy savings.

Architectural Innovations: The development of sparse architectures, particularly
Mixture of Experts (MoE) models, represents a paradigm shift in energy-efficient design.
These models achieve significant computational savings by activating only a subset of
parameters for each input, with some implementations showing 60-80% reduction in active
parameters during inference.
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Hardware-Software Co-optimization: The integration of specialized hardware
accelerators with optimized software frameworks has enabled substantial energy efficiency
gains. Tensor Processing Units (TPUs), Neural Processing Units (NPUs), and optimized
GPU architectures specifically designed for transformer workloads have demonstrated
2-5x improvements in energy efficiency compared to general-purpose hardware.

Inference Optimization Strategies: Research has identified several inference-level
optimizations that can significantly impact energy consumption. These include:

e Early Exit Mechanisms: Allowing models to terminate computation early for
simple inputs

e Adaptive Computation: Dynamically adjusting computational resources based
on input complexity

e Knowledge Distillation: Training smaller, more efficient models to mimic larger
ones

e Pruning: Removing redundant parameters while maintaining model performance

2.2.2 Benchmarking and Evaluation Methodologies

The establishment of standardized benchmarks for energy efficiency has been crucial for
advancing the field. Recent initiatives include:

MLPerf Inference: Provides standardized benchmarks for measuring inference per-
formance and energy consumption across different hardware platforms and model ar-
chitectures. The benchmark includes specific energy efficiency metrics that enable fair
comparison between different optimization techniques.

Green AI Benchmarks: Several research groups have developed specialized bench-
marks focusing on energy consumption, including measurements of carbon footprint,
energy per inference, and efficiency scaling across different model sizes.

Real-world Deployment Studies: Large-scale studies of production AI systems
have provided valuable insights into actual energy consumption patterns, revealing sig-
nificant discrepancies between theoretical efficiency gains and real-world performance.

2.2.3 LLM Families Architectures

LLM models are rapidly evolving, with increasing attention to energy efficiency through
architectural innovations and software/hardware optimizations. In the following, we list
the main models and their characteristics, particularly focusing on aspects related to their
energy footprint and design.

2.2.4 Llama Family

NVIDIA has strategically optimized its Llama model family for compute efficiency and
maximum inference throughput when deployed on NVIDIA accelerated infrastructure.
This optimization includes model compression techniques, such as pruning, followed by
retraining with distillation and alignment methods. The goal is to produce smaller models
that maintain high accuracy while achieving superior throughput.[11]
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2.2.5 DeepSeek Family

DeepSeek models are presented as an innovative Al technology that radically redefines
energy efficiency in computational intelligence. They are explicitly designed with a strong
focus on sustainability, aiming to be more environmentally friendly than traditional Al
models. The core of DeepSeek’s revolutionary approach is its Mixture of Experts (MoE)
architecture. Unlike dense models that process every input through the entire neural net-
work, DeepSeek intelligently routes tasks to specific ezpert ! subnets that are best suited
to handle them. This targeted approach significantly reduces unnecessary computational
overhead.[3]
DeepSeek’s efficiency is further enhanced by specific algorithmic innovations|3]:

e Dynamic Resource Allocation ensures simpler tasks consume less energy than
complex ones

e Sparse Activation means only relevant neural pathways are engaged during pro-
cessing

e Intelligent Routing Mechanisms determine the most efficient computational
path, minimizing energy waste

DeepSeek claims to reduce energy consumption by approximately 40-60% compared to
traditional AT models. This directly translates into significant reductions in carbon emis-
sions and notable operational cost savings for organizations that deploy Al technologies.

2.2.6 Mistral Family

Mistral Al distinguishes itself by developing LLMs that are both highly efficient and
accessible. Their models are designed to be lightweight, efficient, and scalable, requir-
ing fewer computational resources while maintaining state of the art accuracy.[17] The
Mixture of Experts (MoE) architecture is a central feature for many Mistral models.
Mixtral’s design uses 8 experts but only activates 2 at a time for each token, leading to
a significant reduction in computation per token.[1] This selective activation can theoret-
ically reduce energy consumption by up to 75% compared to dense models, making it a
significant factor for scaling Al sustainably. However, a key consideration for MoE models
like Mixtral is that inactive experts still consume GPU memory and incur maintenance
overhead, which can increase costs, especially when multiple MoE models are running
concurrently on the same hardware.[1] Mistral also, employs innovative techniques such
as Sliding Window Attention (SWA) and a Rolling Buffer Cache to enhance inference
speed and reduce memory requirements. SWA allows each token to attend to a limited
window of previous tokens, mitigating the complexity.[4]

2.2.7 Qwen Family

The Qwen series of LLMs, developed by Alibaba Cloud, is designed with a strong emphasis
on efficiency and scalability.[2] The Qwen3 dense base models demonstrate performance
comparable to Qwen2.5 base models with a higher parameter count. This efficiency gain

!Experts are like specialized neural subnetworks, specialized modules that work together, but in
a coordinated and selective manner, to process information more efficiently and powerfully within Al
models.
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is attributed to advancements in model architecture, an expanded training dataset, and
more effective training methodologies. The Mixture of Experts (MoE) architecture is
also adopted by Qwen. Qwen3 introduces Hybrid Thinking Modes (a ”Thinking
Mode” for complex, step-by-step reasoning, and a ”Non-Thinking Mode” for rapid, in-
stant responses). This flexibility allows users to configure specific computational budgets
for tasks, enabling a more optimal balance between cost-efficiency and inference quality
based on task demands.[12]

2.2.8 Gemma Family

Gemma 3 models developed by Google are explicitly designed to run quickly and effi-
ciently directly on a wide range of devices, from mobile phones and laptops to worksta-
tions. They are available in various sizes, enabling developers to select the best model
for their specific hardware and performance needs. A key feature of Gemma 3 is the
inclusion of official quantized versions, to reduce model size and computational re-
quirements while maintaining high accuracy for example: a 4 GB model in float32 can
be reduced to just 1 GB in int8, while maintaining similar performance. This makes it
feasible to run locally on a laptop instead of relying solely on the cloud. This directly
contributes to faster performance and lower energy consumption.[7] Significant architec-
tural changes in Gemma 3 aim to improve memory efficiency, particularly in reducing the
use of KV cache memory, which tends to grow with long context lengths. Gemma models
are highly optimized for a wide range of hardware platforms. This broad hardware com-
patibility underscores their design philosophy for efficiency and wide portability across
diverse computing environments.

The following table summarizes the efficiency characteristics of these LLM families:

LLM Family Key Architectural Innova- | Efficiency Benefits
tions (Claimed /Measured)
Llama NVIDIA optimization: pruning, | Smaller models, high accuracy,
distillation, alignment superior throughput
DeepSeek MoE, Dynamic Resource Alloc- | 40-60% energy reduction
ation, Sparse Activation, Intelli-
gent Routing
Mistral MoE (selective activation), SWA, | Up to 75% energy reduction (the-
Rolling Buffer Cache oretical), faster inference, less
memory
Qwen MoE, Hybrid Thinking Modes Similar performance with fewer
active parameters, flexible com-
putational budgets
Gemma Quantized versions, KV cache op- | Fast, efficient on diverse devices,
timization, broad hardware com- | reduced compute/energy
patibility

While the table focuses on LLMs, it’s worth noting the rise of text diffusion models.
Unlike the token-by-token generation of traditional LLMs, these models create text by
iteratively refining a noisy input. This different approach offers a speed advantage, with
recent advancements like Google Gemini Diffusion and Mercury Inception Labs showing
significantly faster inference speeds (e.g., over 1000 tokens/second for Mercury Coder
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compared to around 200 tokens/second for optimized autoregressive models). This speed
comes from their ability to process multiple tokens in parallel, rather than sequentially.

A Artificial Analysis
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Figure 2: Speed comparison between diffusion text models and traditional autoregressive
models [10]

Fig. 2 illustrates the substantial speed advantages of diffusion-based text generation
compared to traditional autoregressive models. The Mercury Coder model achieves over
1000 tokens/second, representing a 5x improvement over optimized autoregressive models
that typically achieve around 200 tokens/second. This performance gain directly trans-
lates to reduced energy consumption per token generated, making diffusion models an
attractive alternative for energy-conscious applications.

2.2.9 Recent Advances in Energy Optimization

Transformer Optimization Techniques: Recent research has focused on optimizing
the attention mechanism, which typically accounts for 30-50% of total computation in
transformer models. Techniques such as sparse attention patterns, linear attention ap-
proximations, and attention pruning have shown significant energy savings while main-
taining model performance.

Memory-Efficient Architectures: The development of memory-efficient trans-
former variants, such as FlashAttention and its successors, has reduced memory require-
ments by 50-80% during training and inference. These optimizations directly translate
to lower energy consumption by reducing memory bandwidth requirements and enabling
larger batch sizes.

Dynamic Model Scaling: Recent work on dynamic model scaling allows models
to adapt their computational requirements based on input complexity. This approach
can reduce average energy consumption by 40-60% for mixed-complexity workloads while
maintaining performance on challenging tasks.

Neural Architecture Search (INAS) for Efficiency: Automated architecture
search techniques have been applied to discover energy-efficient model architectures.
These methods have identified novel architectural patterns that achieve comparable per-
formance with significantly reduced computational requirements.

2.2.10 Industry Adoption and Production Considerations

The transition from research prototypes to production systems has revealed several im-
portant considerations for energy-efficient Al deployment:
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Latency vs. Efficiency Trade-offs: Production systems often require strict latency
constraints that can conflict with energy optimization goals. Research has shown that
careful tuning of batch sizes, model parallelism strategies, and hardware selection can
achieve both low latency and high energy efficiency.

Scalability Challenges: While individual model optimizations show promising res-
ults, scaling these techniques to large-scale production systems presents unique challenges.
Issues such as load balancing, resource allocation, and system-level optimizations become
critical for achieving overall energy efficiency.

Monitoring and Measurement: Accurate measurement of energy consumption in
production environments requires sophisticated monitoring infrastructure. Recent work
has developed standardized methodologies for measuring and reporting Al energy con-
sumption, enabling better comparison and optimization across different systems.

2.3 State of the Art in Diffusion Models and Energy Efficiency

The core architecture of Stable Diffusion consists of three main components [13]:

e Variational Autoencoder (VAE): plays a crucial role in efficiency by compress-
ing the image from a high-dimensional pixel space into a smaller, more semantic-
ally meaningful latent space. This latent representation requires substantially less
memory, which translates to faster inference and reduced computational require-
ments

e U-Net neural network: is the central denoising component, operating iterat-
ively in the latent space. It learns to progressively remove Gaussian noise from a
noisy latent representation, guided by the text prompt.?® The U-Net is often the
most computationally intensive part of the Stable Diffusion pipeline and is typically
memory-bound, meaning that the GPU’s VRAM bandwidth can be a significant
bottleneck for image generation speed.

e CLIP text encoder: converts the input text prompt into a numerical embedding
(a vector representation) that provides semantic guidance for the U-Net during the
denoising process, ensuring the generated image aligns with the text description.

The image generation process involves iteratively denoising random noise over a config-
urable number of steps. A critical factor influencing energy consumption is the number
of these inference steps: more steps lead to longer generation times and, consequently,
higher energy usage.[18] Compared to LLM decoding, diffusion models tend to be more
computationally intensive.

2.3.1 Diffusion Model Families Architectures

Diffusion models, much like LLMs, are rapidly evolving, with increasing attention to
energy efficiency through architectural innovations and software /hardware optimizations.
In the following, we list the main model families and their characteristics.

2.3.2 Stable Diffusion Family

The Stable Diffusion family, developed by Stability Al, has democratized access to Al
image generation, with a growing focus on efficiency. Subsequent versions have introduced
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more complex architectures to improve quality, while also considering sustainability and
accessibility. The optimization of the latent space has been a key characteristic since
the earliest versions, allowing the model to operate on a compressed representation of
the image, significantly reducing computational requirements compared to models that
operate directly in pixel space.

2.3.3 Midjourney Family

Midjourney, a proprietary model, is renowned for its ability to generate high quality
artistic images with a unique aesthetic. While its internal architectures are not publicly
detailed, it is plausible that the model’s evolution towards faster and more detailed ver-
sions involves computational optimizations. The focus on generation speed, evident in
recent versions, suggests an emphasis on inference efficiency.

2.3.4 DALL-E Family

OpenAl’'s DALL-E series has played a pioneering role and continues to be at the forefront
of Al image generation. More recent versions, such as DALL-E 3, have been optimized
not only for image quality but also for prompt understanding efficiency, a crucial aspect
for reducing iterations.

2.3.5 Imagen Family

Google Al’'s Imagen models have highlighted the importance of large language models
for text understanding in image generation. While not open source, their research has
influenced the entire field.

These families represent the pillars of current development in Al image generation via
diffusion, each uniquely contributing to the advancement and accessibility of this tech-
nology, with an increasing emphasis on energy efficiency.

The following table summarizes the efficiency characteristics of these diffusion model
families:

Model Family Efficiency

(Claimed/Observed)

Key Architectural Features

Benefits

Stable Diffusion

Latent space processing, U-Net

Reduced memory and compute

backbone, VAE compression, | via latent representation, optimiz-
CLIP/dual encoders in later | ations improve speed and quality
versions over time
Midjourney Proprietary, likely transformer- | Fast inference, highly optimized
based with fine-tuned aesthetic | for GPU runtime, artistic output
priors with minimal prompt tuning
DALL-E Diffusion + transformer-based | Strong prompt-image alignment

prompt encoder, guided decoding,
integrated with language models
(GPT)

reduces retries, efficient prompt
understanding in DALL-E 3
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Model Family

Key Architectural Features

Efficiency Benefits
(Claimed/Observed)

Imagen

Large transformer-based text en-
coder + diffusion decoder pipeline

Leverages LLMs for superior text
understanding, efficient decoding
pipeline for high fidelity genera-
tion
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3 Performance Evaluation

3.1 Experimental Scope

This section details the experimental setup and methodology employed to evaluate the
energy consumption and performance of various Large Language Models (LLMs) and Dif-
fusion Models. The evaluation was conducted across two distinct hardware environments
to provide a comprehensive analysis of energy efficiency under varying computational
capacities.

3.1.1 Server Environment

Initial experiments were conducted on a server configured with consumer grade hardware.
The specifications of this server are as follows:

Component Specification

Operating System | Ubuntu 22.04.5 LTS x86_64

Host MS-7C56 1.0

Kernel 6.5.0-41-generic

CPU AMD Ryzen 5 5600X (12 cores) @ 3.700GHz
GPU NVIDIA GeForce RTX 3080 Lite Hash Rate
Memory 32 GB

Table 3: Server Hardware Specifications

In addition to the consumer-grade server, experiments were also executed on a second
machine with the following specifications:

Component Specification

Operating System | Ubuntu Linux (x86_64)

Host gpu2

Kernel 5.15.0-144-generic

CPU Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz
GPU NVIDIA RTX A6000

Memory 100 GB

Table 4: GPU2 Machine Hardware Specifications

A wide range of LLMs and Diffusion Models were selected for testing to assess their
energy footprint across different architectures and parameter sizes. The models tested
are summarized in Table:
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Model Family | Specific Models/Sizes
Llama 1B, 3B, 8B, 70B
DeepSeek-R1 1.5B, 7B, 8B, 70B
Mistral 7B, 12B

Qwen 1.8B, 4B, 7B, 72B
Gemma3 470M, 1B, 4B

Stable Diffusion | 1B, 1.5B, 8B

Table 5: Summary of LLM and Diffusion Models Tested

3.1.2 Measurement Methodology

Custom Python and Bash scripts were developed to automate the calculation of com-
putational metrics and energy consumption. GPU power usage was monitored using
nvidia-smi, while overall server power consumption was tracked via a Power Distribu-
tion Unit (PDU) using snmpget. This dual-source monitoring provided a comprehensive
view of energy draw.

The monitoring process was segmented into distinct phases to enable granular ana-
lysis of energy consumption during different operational stages. The Baseline phase
established a power baseline by measuring the machine in an idle state. During Server
Startup, energy consumption was tracked while initializing and loading the model onto
the server. The Inference phase captured power draw specifically during active model
inference processing. Response Received measured energy used between the comple-
tion of inference and the full receipt of the model’s output. Finally, Server Shutdown
tracked power consumption during the graceful termination of the model server.

All tests were executed multiple times to ensure data reliability and statistical signific-
ance. Beyond power consumption, additional critical data points were recorded, including
RAM utilization, GPU temperature, and cumulative energy consumption in Joules. The
generated model responses were also saved to correlate the number of generated tokens
or words with the corresponding energy expenditure.

3.1.3 Statistical Reliability and Experimental Design

To ensure robust and statistically significant results, a comprehensive experimental design
was implemented with multiple independent runs for each model. Each model was tested
with 10 independent runs to account for system variability and ensure reproducibility.
This approach allows for the calculation of confidence intervals and statistical significance
testing, helping to identify and account for background process interference, memory al-
location patterns, GPU clock speed fluctuations, and PDU idle power consumption.

The collected data was subjected to rigorous statistical analysis including calculation
of mean and standard deviation for all energy consumption metrics across multiple runs.
95% confidence intervals were computed for all reported measurements, and timestamps
were aligned using predefined intervals to ensure consistent temporal analysis across dif-
ferent measurement sources.

Given the multi-stage measurement process, error propagation was carefully analyzed.

Baseline power consumption was measured and subtracted to account for systematic
errors and system overhead, while multiple measurements helped reduce the impact of
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random fluctuations. To ensure reproducibility, all measurements were conducted using
automated scripts to eliminate human error, with complete experimental logs including
timestamps, system states, and environmental conditions.

The framework implements some personalization, like a crafted prompt is used across
all evaluations to ensure comparable workloads:

Write a detailed analysis of the impact

of artificial intelligence on modern healthcare, focusing

on both benefits and challenges. Include specific examples
of AI applications in diagnosis, treatment, and patient care.

This prompt was specifically designed to evaluate consistent reasoning and structured
output generation across different model architectures. The prompt requires models
to engage in complex analysis, synthesis of information, and coherent argumentation -
cognitive tasks that represent typical real-world usage patterns for Al systems.

For diffusion model evaluation, a standardized image generation prompt was employed
to ensure comparable computational workloads:

A breathtaking sunset over the French Riviera, the beach should
have the rocks, highly detailed, 4K resolution. The sky painted
in vivid red and orange tones, reflecting over the calm
Mediterranean Sea. In the foreground, a wooden sign with the
word "NIZZA" clearly written on it. Warm light, cinematic
atmosphere, photorealistic details.

This image generation prompt was selected to provide a standardized, computationally
intensive workload that tests the full capabilities of diffusion models while maintaining
consistency across different architectures. The prompt requires complex scene composi-
tion, detailed rendering, and specific textual elements, ensuring that all models perform
comparable computational work during energy measurement.

 PEEEE— - ~
Miage Server (- ™ Metrics
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Figure 3: Experimental setup architecture

Fig. 3 presents the comprehensive experimental setup architecture, illustrating how
hardware-level power monitoring via PDU integrates with software-based GPU monit-
oring through nvidia-smi. This dual-source monitoring approach ensures accurate meas-
urement of both system-wide energy consumption and component-specific power draw,
providing a complete picture of the energy footprint during LLM inference operations.

20



4 Deployment of LLMs

This chapter details the deployment and performance characteristics of various LLM
and diffusion model families across different hardware configurations. The experimental
evaluation was conducted in two phases: initial testing on consumer-grade hardware with
10GB GPU memory, followed by comprehensive evaluation on enterprise-grade hardware
with 100GB GPU memory to accommodate larger models. This progression allows for a
complete analysis of energy consumption patterns across the full spectrum of model sizes
and capabilities.

4.1 Experimental Progression and Hardware Evolution

The experimental evaluation was designed to provide comprehensive coverage of energy
consumption patterns across different model sizes and hardware configurations. The
study progressed through two distinct phases:

Phase 1 - Consumer-Grade Hardware (10GB GPU): Initial experiments were
conducted on consumer-grade hardware with 10GB GPU memory, focusing on smaller
to medium-sized models (1B-8B parameters). This phase established baseline energy
consumption patterns and validated the measurement methodology.

Phase 2 - Enterprise-Grade Hardware (100GB GPU): The evaluation was
extended to enterprise-grade hardware with 100GB GPU memory to accommodate large-
scale models (70B+ parameters). This phase enabled comprehensive analysis of energy
consumption patterns across the full spectrum of model sizes.

This progression ensures that the energy consumption analysis covers the complete
range of model sizes from small, efficient models suitable for edge deployment to large,
state-of-the-art models requiring substantial computational resources.

4.2 Complete Monitoring phases

The complete monitoring approach captures energy consumption across all operational
phases of LLM inference. This comprehensive analysis provides insights into how energy
usage varies throughout the model lifecycle, from initialization to completion. The mon-
itoring framework tracks power consumption during five distinct phases: baseline idle
state, server startup, active inference, response generation, and server shutdown.

This phase-based analysis reveals critical insights into energy efficiency patterns. For
instance, the startup phase typically shows a spike in power consumption as the model
loads into GPU memory, while the inference phase demonstrates sustained high power
usage during active computation. Understanding these patterns is essential for optimizing
deployment strategies and identifying opportunities for energy savings.
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Figure 4: Average GPU power consumption (kW) across different Llama model sizes
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Figure 5: Average GPU power consumption (kW) across different Mistral model sizes

The power consumption analysis reveals consistent patterns across model families.
Fig. 4 shows that Llama models exhibit a clear linear relationship between model size
and GPU power consumption, with larger models requiring proportionally more energy.
Similarly, Fig. 5 demonstrates that Mistral models follow comparable scaling patterns,
confirming that energy consumption is primarily determined by model size rather than
architectural differences within the same family.

4.3 Power usage of the Inference (understanding PDU & GPU
inference phase)

This subsection provides a detailed analysis of power usage patterns during the inference
phase, utilizing both software-based GPU monitoring (nvidia-smi) and hardware-based
system monitoring (PDU). The dual-source approach provides a comprehensive view of
energy consumption at both the component level and the system level.

The GPU monitoring via nvidia-smi captures detailed metrics including power draw,
memory usage, temperature, and utilization during inference. This software-based ap-
proach provides granular insights into how the GPU processes the computational work-
load and how different model architectures utilize GPU resources.
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In parallel, the PDU monitoring provides hardware-level measurements of total system
power consumption, including all components such as CPU, memory, storage, and cooling
systems. This hardware-based approach captures the complete energy footprint of the
inference process, accounting for both direct computational costs and system overhead.

The comparison between GPU-specific and system-wide power measurements reveals
important insights about the efficiency of the overall system architecture. The ratio
between GPU power consumption and total system power consumption indicates how
much of the energy is directly used for computation versus system overhead.
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Figure 6: System-wide power consumption (kW) measured via PDU for Llama

Fig. 6 presents the system-wide power consumption measured through the Power
Distribution Unit (PDU), which captures the total energy draw including CPU, memory,
storage, and cooling systems in addition to GPU consumption. This comprehensive
measurement reveals the complete energy footprint of the inference process, providing
insights into the ratio between direct computational energy and system overhead.

4.4 Cumulative Energy Inference

The cumulative energy inference analysis provides a temporal perspective on energy con-
sumption during the inference phase, tracking the total energy consumed in Joules over
time. This approach offers valuable insights into the energy accumulation patterns and
power draw consistency throughout the inference process.

The cumulative energy curves are monotonically increasing and nearly linear, indic-
ating a steady power draw throughout inference. This linear behavior suggests that the
energy consumption rate remains relatively constant during the inference phase, which is
characteristic of well-optimized model inference where computational load is distributed
evenly across the processing time.

The nearly linear nature of these curves also provides insights into the computational
consistency of the inference process. Unlike training operations that may exhibit vari-
able power consumption patterns, inference typically shows more predictable and steady
energy usage, making it easier to estimate energy costs for production deployments.
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Figure 7: Total energy consumption (Joules) across different model families and sizes

Fig. 7 provides a comprehensive comparison of total energy consumption across dif-
ferent model families and sizes. The results clearly demonstrate the linear relationship
between model size and total energy consumption, with larger models requiring propor-
tionally more energy to complete the same inference task. This linear scaling pattern is
consistent across all tested model families, providing valuable insights for energy-aware
model selection.

4.5 Energy per output word (ratio between energy and words
generated)

The energy per output word metric provides a normalized measure of energy efficiency
that accounts for the actual output generated by each model. This ratio is calculated by
dividing the total energy consumed during inference by the number of words generated
in the response, offering a standardized efficiency metric across models of different sizes
and capabilities.

This analysis is particularly valuable for comparing the energy efficiency of different
model architectures, as it normalizes energy consumption by the actual work performed
(word generation). Models that generate more content with less energy demonstrate
superior efficiency in this metric.

4.5.1 Quality-Aware Energy Efficiency Analysis

While the energy per word metric provides valuable insights into computational efficiency,
it is crucial to consider the quality of the generated content when evaluating overall
efficiency. A model that generates fewer words but produces higher-quality, more coherent
responses may be more energy-efficient in practice than a model that generates more
words of lower quality.

The relationship between energy consumption and output quality can be analyzed
through several dimensions:
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Coherence and Relevance: Models that generate more coherent and relevant re-
sponses often require less energy per useful word, as they avoid generating redundant
or off-topic content. This is particularly evident in specialized domains where precise,
accurate responses are more valuable than verbose outputs.

Task-Specific Efficiency: Different tasks require different levels of computational
complexity. For example, creative writing tasks may benefit from models that can gen-
erate longer, more elaborate responses, while factual question-answering tasks may be
more efficient with concise, accurate responses.

Error Correction and Iteration: Models that generate higher-quality initial re-
sponses reduce the need for multiple iterations or corrections, leading to lower overall
energy consumption for achieving the desired output quality.
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Figure 8: Energy efficiency analysis

Fig. 12 presents a comprehensive analysis of energy efficiency normalized by output
quality. Fig. 8a shows the energy consumption per generated word, revealing significant
variations in efficiency across different model families. Interestingly, larger models often
demonstrate better energy efficiency per word due to their superior language understand-
ing capabilities, which can lead to more coherent and efficient text generation. Fig. 8b
displays the total output volume for each model, showing that while some models gen-
erate more content, the quality and coherence of that content must be considered when
evaluating overall efficiency.

4.5.2 Benchmark Performance and Energy Correlation

The analysis of energy per word becomes particularly meaningful when correlated with
benchmark performance results from Section 6. The Humanity’s Last Exam (HLE)
benchmark results provide valuable insights into how energy efficiency relates to model
performance across different academic domains.

Performance-Energy Trade-offs: Models that achieve higher accuracy on the HLE
benchmark often demonstrate better energy efficiency per word when generating high-
quality responses. This correlation suggests that architectural optimizations that improve
reasoning capabilities can also lead to more efficient text generation.
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Domain-Specific Efficiency: The HLE results reveal that models excel in different
academic domains. When these performance patterns are considered alongside energy
consumption data, it becomes clear that energy efficiency should be evaluated in the
context of the specific tasks and domains where the model will be deployed.

Scaling Efficiency: The relationship between model size, benchmark performance,
and energy consumption reveals important scaling patterns. Larger models often achieve
better performance per unit of energy when the quality of output is considered, suggesting
that the energy investment in larger models can be justified by their superior reasoning
capabilities.

4.6 Large-Scale Model Evaluation (70B+ Parameters)

To provide a comprehensive analysis of energy consumption patterns across the full spec-
trum of model sizes, the evaluation was extended to include large-scale models with
70B+ parameters. These models require enterprise-grade hardware with substantial GPU
memory (100GB+).

Hardware Configuration for Large Models

The large-scale model evaluation was conducted on enterprise-grade hardware specifically
designed to accommodate models with 70B+ parameters. This hardware configuration
provides the necessary computational resources and memory capacity to run these models
efficiently while maintaining accurate energy consumption measurements.

Energy Consumption Analysis for Large Models

The evaluation of large-scale models reveals important insights into the scaling behavior
of energy consumption for state-of-the-art LLMs. These models represent the current
frontier of Al capabilities and provide crucial data points for understanding the energy
implications of deploying the most advanced language models.
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Figure 9: GPU Power Consumption Comparison for 70B+ Models across all operational

phases

Fig. 9 shows GPU power consumption across all operational phases.

All models

maintain low baseline power (0.05 kW), spike during startup (15s), and peak at 0.45-0.47
kW during inference. Llama-2-70B and DeepSeek maintain plateaus, while Qwen2-72B
shows undulating patterns. Power drops to baseline levels during response processing.
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Figure 10: Cumulative Energy Consumption for 70B+ Models (GPU Only)

Fig. 10 shows energy accumulation over time. All models follow a three-phase pattern:
low consumption (0-20s), rapid increase (20-60s), and slower accumulation (60-110s).
Llama-2-70B demonstrates the most energy-efficient performance.
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Figure 11: GPU Temperature Comparison for 70B+ Models

Fig. 11 shows thermal characteristics during intensive workloads. Temperature pro-
files correlate with power consumption patterns. All models experience temperature rises
during inference, with DeepSeek showing the most dramatic increase and Llama-2-70B
maintaining the lowest temperatures.

Scaling Efficiency Analysis

The analysis of large-scale models provides valuable insights into the efficiency charac-
teristics of state-of-the-art LLMs. While these models consume significantly more energy
than their smaller counterparts, they also demonstrate superior performance capabilities
that must be considered in energy efficiency evaluations.

Performance per Energy Unit: Large models often achieve better performance
per unit of energy when the quality of output is considered. This efficiency gain is
particularly evident in complex reasoning tasks where larger models can solve problems
more directly without requiring multiple iterations or corrections.

Memory Efficiency: The evaluation reveals that large models utilize GPU memory
more efficiently per parameter compared to smaller models, suggesting that architectural
optimizations in large-scale models contribute to better resource utilization.

Inference Time Scaling: The relationship between model size and inference time
shows predictable scaling patterns, with larger models requiring proportionally longer
inference times. This scaling behavior directly translates to the observed energy con-
sumption patterns shown in Figs. 9 and 10.

Before diving into the plots, note that energy per generated word and throughput
provide two complementary perspectives on a model’s energy productivity. Consistent
with the 8B discussion, more efficient models (e.g., DeepSeek-R1 8B) tend to consume less
energy per word and generate more words within the same time window, whereas others
(e.g., Qwen 8B) exhibit higher per-word cost and lower throughput. These differences,
together with quality requirements, determine the total energy needed to complete a task.
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Figure 12: Energy efficiency analysis

4.7 Diffusion Model Energy Consumption Analysis

In addition to Large Language Models, we extended our energy consumption analysis
to include diffusion models for image generation, as these represent another significant
category of Al workloads with substantial energy requirements. Diffusion models have
become increasingly popular for high-quality image synthesis and are widely deployed in
both research and commercial applications.

We evaluated three different diffusion model configurations to understand how model
size and complexity affect energy consumption patterns in generative image tasks. The
selected models represent different points in the trade-off between generation quality and
computational efficiency.
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Figure 13: GPU Power Consumption Comparison for Diffusion Models during image
generation tasks

Fig. 13 illustrates the GPU power consumption patterns for diffusion models during
image generation. Unlike LLMs which show relatively stable power consumption during
inference, diffusion models exhibit characteristic spiky power patterns corresponding to
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the iterative denoising process. The power consumption varies significantly during differ-
ent phases of the generation process, with peak consumption occurring during the most
computationally intensive denoising steps.

Diffusion Model 1.5 Image Generation Analysis

Figure 14: image generated by Diffusion Model 1.5

The Diffusion Model 1.5 represents the baseline configuration in our evaluation, featuring
standard resolution output and moderate computational requirements. Fig. 14 shows the
generated image, which demonstrates reasonable overall composition and visual quality
with good color representation of the sunset scene. However, a notable limitation of
this model becomes apparent when examining text generation capabilities, the model
struggles significantly with text rendering, as evidenced by the poorly formed and illegible
text on the wooden sign that should display NIZZA. This text generation weakness is
a common characteristic of smaller diffusion models, where the limited parameter count
affects the model’s ability to accurately render fine details such as readable text. Despite
this limitation, the model provides a good balance between generation quality and energy
efficiency, making it suitable for applications where computational resources are limited
and text accuracy is not critical.
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Diffusion Model 2.1 Image Generation Analysis

Figure 15: image generated by Diffusion Model 2.1

The Diffusion Model 2.1 represents an enhanced version with improved generation capab-
ilities and higher resolution output compared to the 1.5 model. Fig. 15 reveals increased
energy consumption patterns reflecting the model’s enhanced computational complexity.
The improved architecture allows for better image quality and more detailed generation,
but at the cost of higher energy requirements. This model demonstrates the typical
trade-off between generation quality and computational efficiency in diffusion models.
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Diffusion Model 3.5 Large Image Generation Analysis

Figure 16: image generated by Diffusion Model 3.5 Large

The Diffusion Model 3.5 Large represents the most advanced configuration in our evalu-
ation, featuring the largest parameter count and highest generation capabilities. Fig. 16
shows significantly higher energy consumption compared to the smaller models, reflecting
the increased computational complexity required for high-quality, high-resolution image
generation. This model achieves state-of-the-art generation quality but requires sub-
stantial computational resources, making it more suitable for applications where image
quality is prioritized over energy efficiency.

Comparative Analysis of Diffusion Models

The three diffusion models demonstrate clear scaling patterns in energy consumption that
correlate with their generation capabilities:

Model Size and Complexity: The progression from Model 1.5 to Model 3.5 Large
shows increasing parameter counts and architectural complexity, resulting in propor-
tionally higher energy consumption. Model 1.5 serves as an efficient baseline, Model
2.1 provides enhanced capabilities with moderate overhead, and Model 3.5 Large offers
premium quality at maximum computational cost.

Generation Quality vs. Energy Trade-off: Each model represents a different
point in the quality-efficiency trade-off space. Model 1.5 prioritizes efficiency, Model
2.1 balances quality and efficiency, while Model 3.5 Large maximizes generation quality
regardless of computational cost.

Temporal Power Patterns: All models exhibit the characteristic iterative power
consumption pattern of diffusion models, with power spikes corresponding to denoising
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steps. However, the intensity and duration of these spikes increase with model size,
reflecting the increased computational complexity of larger architectures.

Resource Utilization: The larger models demonstrate more intensive GPU utiliza-
tion, with Model 3.5 Large showing the most sustained high-power consumption periods.
This pattern suggests that larger diffusion models require more substantial cooling and
power infrastructure for deployment.

These results highlight the importance of model selection in diffusion-based applic-
ations, where the choice between different model sizes directly impacts both generation
quality and operational energy costs.
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5 Performance Estimation

To contextualize the impact of large-scale LLM deployment, we provide an estimation
of the total daily energy consumption based on real-world usage scenarios. According to
recent statistics, ChatGP'T alone processes over 1 billion daily queries [16], representing
a significant portion of global LLM usage. This figure encompasses both consumer and
enterprise usage across all geographic regions and includes various types of queries, from
simple questions to complex reasoning tasks. We analyze the energy implications for:

e large-scale (7T0B+) models,
e medium-scale (8B) models,
e ultra-efficient (270M) models.

to understand the full spectrum of deployment scenarios.

5.1 Energy Consumption Analysis for 70B+ Models

The following calculation illustrates the total energy required for large-scale models, based
on our experimental data from 70B+ models:

e P = 0.45 kW: average power draw
per inference request (from 70B+
model data),

ot ~ 2781072 h: average duration Ezog =P -t-N ~ 1,251,000 kWh/day
per inference (10 s),

e N =1,000,000,000: number of daily
queries (ChatGPT alone).
5.2 Energy Consumption Analysis for 8B Models

For comparison, we calculate the energy consumption for medium-scale 8B models using
our experimental data:

e P = 0.3 kW: average power draw
per inference request (from 8B model
data),

ot~ 278-107% h: average duration Esg =P -t -N ~ 834,000 kWh/day
per inference (10 s),

e N = 1,000,000,000: number of daily
queries.

5.3 Energy Consumption Analysis for Ultra-Efficient 270M Mod-
els

To demonstrate the full spectrum of energy efficiency, we also analyze the recently re-
leased Gemma3 270M model, which represents a breakthrough in efficient AI deployment.
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Despite its compact size, this model delivers surprisingly competitive performance across

a wide range of tasks, making it an ideal candidate for edge computing and consumer
device integration:

e P = 0.04 kW: peak power draw per
inference request (from 270M model
data),

et~ 2781073 h: average duration Ez7om =P -t N~ 111,200 kWh/day
per inference (10 s),

e N =1,000,000,000: number of daily
queries.
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Figure 17: Cumulative Energy Consumption for Gemma3 270M Model (PDU and GPU)

35



GPU Power Consumption Comparison - Model: gemma3_270m

A% (Average of Multiple Runs)

BaseServer Startup Inference Response Received Server Shutdown Model
gemma3_270m

=] o =]
8] w S

Avg GPU Power (kW)

o
i

OID - et
0 20 40 60 80 100 120

Time (s)

Figure 18: GPU Power Consumption for Gemmad 270M Model across all operational
phases

Fig. 17 demonstrates the cumulative energy consumption for the ultra-efficient Gemmad
270M model, showing both PDU and GPU measurements. The PDU consistently reports
higher energy consumption ( 5,400 J at 120s) compared to GPU measurements ( 4,700
J), indicating significant system overhead. Fig. 18 reveals the power consumption profile,
with a peak of only 0.04 kW during the inference phase, demonstrating the remarkable
energy efficiency of this compact model.

5.3.1 Integration Potential in Consumer Devices and IoT

The ultra-efficient Gemmag3 270M model represents a paradigm shift in AT deployment,
enabling the integration of advanced language capabilities directly into everyday con-
sumer devices. This compact model opens unprecedented opportunities for ubiquitous
AT deployment across the Internet of Things (IoT) ecosystem.

Ubiquitous AI Integration: The 270M parameter model’s minimal power require-
ments make it feasible to embed Al capabilities in virtually any electronic device, from
smart home appliances to personal gadgets. Future scenarios include:

e Smart Kitchen Appliances: Refrigerators that can suggest recipes based on
available ingredients, smart ovens that provide cooking guidance, and coffee makers
that learn user preferences

e Bathroom Technology: Smart mirrors that provide personalized skincare advice,
intelligent toothbrushes that offer oral health insights, and smart scales that provide
wellness recommendations

e Home Automation: Light switches that understand natural language commands,
thermostats that engage in conversation about energy usage, and security systems
that can interpret complex voice instructions
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e Personal Electronics: Smartphones with on-device Al assistants, smartwatches
that provide contextual health advice, and e-readers that can answer questions
about content

Battery Life Impact Analysis: To quantify the practical implications of integrat-

ing the 270M model into consumer devices, we analyze its battery consumption charac-
teristics:

Smartphone Integration Assuming a typical smartphone battery capacity of 4,000
mAh (14.8 Wh) and the Gemma3 270M model’s power consumption during inference:

e Power Consumption: 0.04 kW (40W during inference)

Single Inference: 0.04 kW x 10s = 0.111 Wh per query

Battery Impact: 0.111 Wh + 14.8 Wh = 0.75% battery consumption per query

Daily Usage: 10 queries per day would consume 7.5% of battery capacity

Optimized Usage: 2-3 queries per day would consume 1.5-2.25% of battery ca-
pacity

The Gemma3d 270M model’s remarkable efficiency enables practical smartphone integ-
ration while maintaining competitive performance. Despite its compact size, the model
demonstrates:

e Strong Language Understanding: Capable of handling complex queries and
maintaining context across conversations

e Efficient Reasoning: Provides coherent and relevant responses for most everyday
tasks

e Specialized Capabilities: Excels in specific domains like basic math, general
knowledge, and conversational Al

e Low Latency: Fast response times suitable for real-time applications

e Memory Efficiency: Requires minimal RAM and storage, making it ideal for
resource-constrained devices

Recent evaluations show that Gemmagd 270M achieves performance levels comparable
to much larger models in many practical applications, making it an ideal candidate for
edge deployment scenarios where energy efficiency is paramount.

This analysis demonstrates that while the 270M model is remarkably efficient, its
integration into battery-powered devices requires careful consideration of usage patterns
and power management strategies. The model’s compact size and low power requirements
make it an ideal candidate for the next generation of intelligent consumer devices, but
practical deployment will depend on optimizing usage frequency and implementing smart
power management techniques.
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5.4 Comparative Analysis and Scaling Implications

The comparison across all three model scales reveals dramatic scaling implications:

Model Size Power (kW) | Time (s) | Daily Energy (kWh) | Relative Efficiency
270M (Gemma3) 0.04 10 111,200 1.0x (baseline)
8B 0.30 10 834,000 7.5x

70B+ 0.45 10 1,251,000 11.25x

Table 6: Energy consumption comparison across different model scales for 1 billion daily
queries (normalized to 10-second inference time)

The scaling analysis reveals several critical insights:

e Power Scaling: 70B+ models consume 11.25x more power than 270M models
(0.45 vs 0.04 kW)

e Time Scaling: Assuming the same 10-second inference time for fair comparison

e Total Energy Scaling: 70B+ models consume 11.25x more daily energy than
270M models

e Efficiency Gap: The energy difference between 270M and 70B+ models spans
11.25x, highlighting significant efficiency trade-offs

This scaling relationship demonstrates that while larger models offer superior perform-
ance capabilities, they require exponentially more energy resources. The choice between
model sizes represents a fundamental trade-off between computational capability and en-
ergy efficiency, with the 270M model offering remarkable efficiency for applications where
performance requirements are modest.

To put these energy consumptions into perspective, the daily energy usage corresponds
to:

For 70B+ Models (1,251,000 kWh/day):

e Households: The daily energy consumption of approximately 169,000 average
families (based on 7.4 kWh/day per household)

e Electric vehicles: Equivalent to fully charging approximately 25,000 Tesla Model
3 vehicles daily (based on 50 kWh per full charge)

e Urban scale: Sufficient to power an entire medium-sized city of 150,000-170,000
inhabitants for a full day

For 8B Models (834,000 kWh/day):

e Households: The daily energy consumption of approximately 113,000 average
families, equivalent to powering a city like Bergamo or Modena

e Electric vehicles: Equivalent to fully charging approximately 16,700 electric
vehicles daily

e Urban scale: Sufficient to power an entire medium-sized city of 100,000-110,000
inhabitants for a full day
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For 270M Models (111,200 kWh/day):

e Households: The daily energy consumption of approximately 15,000 average fam-
ilies, equivalent to powering a city like Riccione

e Electric vehicles: Equivalent to fully charging approximately 2,220 electric vehicles
daily

e Urban scale: Sufficient to power an entire medium-sized city of 40,000-45,000
inhabitants for a full day

Such figures underscore the importance of optimizing both model architectures and
deployment strategies to ensure the sustainability of Al services. Even small improve-
ments in per-query efficiency can translate into significant energy savings at global scale.
These results also reinforce the need for continued research into energy-efficient inference,
hardware acceleration, and intelligent workload management.
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6 Humanity’s Last Exam benchmark

The Humanity’s Last Exam (HLE) benchmark represents a comprehensive evaluation
framework designed to assess the cognitive capabilities and knowledge proficiency of
Large Language Models across diverse academic domains. This benchmark is particularly
valuable for our energy efficiency study as it provides a standardized, computationally in-
tensive workload that simulates real-world inference scenarios where users pose complex,
multi-domain questions to Al systems.

6.1 Benchmark Overview and Methodology

The HLE benchmark evaluates models across eight distinct categories: Mathematics,
Physics, Biology/Medicine, Chemistry, Engineering, Computer Science/Al, Humanit-
ies/Social Science, and Other. Each category contains a varying number of tasks that
test different aspects of reasoning, factual knowledge, and problem-solving abilities. The
benchmark’s design ensures that models are tested on both specialized knowledge areas
and general reasoning capabilities, providing a holistic assessment of their performance.

The selection of this benchmark for our energy consumption analysis is strategic for
several reasons. First, it provides a consistent and reproducible workload that allows for
fair comparison between different model architectures. Second, the varying complexity
and number of tasks across categories enables us to observe how energy consumption
scales with computational demand. Third, the benchmark’s comprehensive nature en-
sures that our energy measurements reflect realistic usage patterns rather than artificial,
simplified workloads.

6.2 Category Performance Analysis

The following analysis presents the performance results for four different LLM architec-
tures: Qwen, Mistral, Llama3, and DeepSeek-R1. Each model was evaluated using the
same HLE benchmark tasks, allowing for direct comparison of both performance accuracy
and energy efficiency across different model families and sizes.

6.2.1 Qwen 7B Performance Analysis
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Figure 19: Category-wise performance analysis for Qwen 7B model
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Fig. 19 demonstrates the Qwen 7B model’s performance across different academic cat-
egories in the HLE benchmark. The model shows strong performance in Chemistry
(72.0%) and Biology/Medicine (62%), indicating robust scientific reasoning capabilities.
However, the lower performance in Mathematics (30%) and Humanities (42.0%) suggests
areas where the model may require additional training or architectural improvements.

6.2.2 Mistral 7B Performance Analysis
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Figure 20: Category-wise performance analysis for Mistral 7B model

Mistral 7B exhibits a different performance profile, with strong results in Chemistry
(70.0%) and Biology/Medicine (60.0%), but showing more variability across categories.
The model achieves moderate performance in Physics (63.8%), Computer Science/Al
(48.0%), Engineering (39.0%) Social Science (40.0%) Mathematics (28.0%) suggesting
that while it handles scientific reasoning well, it may struggle with complex mathematical
operations. This performance pattern provides valuable insights into how architectural
differences between models affect their cognitive capabilities.
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6.2.3 Llama3 8B Performance Analysis

Accuracy vs Task Count by Category
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Figure 21: Category-wise performance analysis for Llama3 8B model

The Llama3 8B model shows a balanced performance across categories, with particularly
strong results in Chemistry (75.0%), Biology/Medicine (65.0%) and Physics (62.0%).
The model demonstrates sufficient performance in Computer Science/Al (52.0%) and
maintains not reasonable accuracy in Mathematics (32.0%). This balanced performance
suggests that Llamagd’s architecture provides good general-purpose reasoning capabilities
across diverse academic domains.

6.2.4 DeepSeek-R1 8B Performance Analysis
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Figure 22: Category-wise performance analysis for DeepSeek-R1 8B model

DeepSeek-R1 8B presents an interesting performance profile, with strong results in Math
and Physics and Biology/Medicine obtaining an average of 80% and 70%. However, it
shows lower performance in Human social science (50.0%) and Other (47.0%), suggesting
that while the model excels in certain scientific domains, it may have specific limitations
in human reasoning.
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Category Mistral 7B | Llama 8B | DeepSeek-R1 8B | Qwen 8B
Chemistry 70% 75% 80% 2%
Biology/Med 60% 65% 2% 62%
Physics 57% 62% 68% 59%
CS/Al 48% 52% 58% 50%
Hum /Soc 40% 45% 50% 42%
Engineering 39% 44% 48% 41%
Other 38% 43% 47% 40%
Math 28% 32% 36% 30%

Table 7. HLE benchmark results for 8B models across key academic categories.

6.3 Category Performance Analysis for 70B Models

The following analysis presents preliminary performance results for large-scale LLMs:
Llama 70B, DeepSeek-R1 70B, and Qwen 72B. At this stage, we present the section
structure and include figures.

6.3.1 Llama 70B Performance Analysis

Category Performance Heatmap Accuracy vs Task Count by Category
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Figure 23: Category-wise performance analysis for Llama 70B

The Llama 70B model reveals performance characteristics across different academic cat-
egories. The model excels in Chemistry (91%) Biology/Medicine (81%) and Physics
(78.3%), indicating robust scientific reasoning capabilities. However, the model shows
lower performance in Mathematics (43%) and Humanities/Social Science (56%), suggest-
ing areas where the larger model size provides limited additional benefit. The balanced
performance across most categories demonstrates the model’s general-purpose capabilities
while highlighting specific domain limitations.

43



6.3.2 DeepSeek-R1 70B Performance Analysis

Category Performance Heatmap Accuracy vs Task Count by Category
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Figure 24: Category-wise performance analysis for DeepSeek-R1 70B

The DeepSeek-R1 70B model exhibits exceptional performance across scientific domains,
achieving the highest accuracy in Chemistry (95.0%) and Biology/Medicine (88.0%). The
model demonstrates strong performance in Physics (85.0%) and Computer Science/Al
(75.0%), while maintaining reasonable accuracy in Humanities/Social Science (65.0%),
in mathematical reasoning tasks it achieves an average of 52.0%.

6.3.3 Qwen 72B Performance Analysis
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Figure 25: Category-wise performance analysis for Qwen 72B

The Qwen 72B model demonstrates a performance profile very similar to Llama 70B, with
strong results in Chemistry (90.0%) and Biology/Medicine (80.5%). The model shows
consistent performance in Physics (77.0%) and maintains reasonable accuracy in Com-
puter Science/Al (65.0%), indicating similar architectural characteristics and training
approaches.
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Category Llama 70B | DeepSeek-R1 70B | Qwen 72B
Chemistry 92% 95% 90%
Biology/Med 81% 88% 80%
Physics 78% 85% ™%
CS/Al 66% 75% 65%
Hum/Soc 56% 68% 55%
Engineering 56% 65% 55%
Other 55% 62% 54%
Math 43% 52% 42%

Table 8: HLE benchmark results for 70B+ models across key academic categories.

Comparative Insights (70B vs 8B). Across these large-scale variants we gener-
ally observe increases in accuracy—especially in STEM categories—relative to their 8B
counterparts, with more modest gains or plateaus in Humanities/Social Sciences. When
interpreted jointly with the energy analyses in Section 4, these results align with the ob-
served scaling: larger models consume more power and total energy (see Figs. 9 and 10),
yet often deliver higher-quality outputs. As discussed in the energy-per-word analysis
(Fig. 12), this can translate into better quality-adjusted efficiency (fewer iterations, less
off-topic content) despite higher absolute energy per inference. In practice, the choice
between 8B and 70B models should consider both performance targets (per domain) and
the energy budget of the deployment environment.

These results reveal several important patterns: DeepSeek-R1 70B consistently out-
performs both Llama 70B and Qwen 72B across most categories, while Llama 70B and
Qwen 72B show nearly identical performance profiles, suggesting architectural conver-
gence at the 7T0B+ scale. All models demonstrate strong scientific reasoning capabilities
but face persistent challenges in Mathematics and Humanities domains.
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Figure 26: Istogram of the performance of all the models across all categories
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6.4 Ultra Efficient Models
6.4.1 Gemma3 270M Performance Analysis

The Gemmad 270M model represents the ultra-efficient end of the performance spectrum,
demonstrating the capabilities and limitations of extremely compact language models.
Despite its minimal size, the model shows surprisingly competitive performance in specific
domains while revealing clear scaling limitations.
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Figure 27: Category-wise performance analysis for Gemma3d 270M on the HLE bench-
mark, showing the performance characteristics of ultra-compact models

Fig. 27 reveals Gemmad 270M’s performance profile across academic categories. The
model achieves its highest accuracy in Chemistry (45.0%) and Biology /Medicine (38.0%),
indicating that even ultra-compact models can maintain some scientific reasoning capab-
ilities. However, the model shows significant limitations in more complex domains, with
particularly low performance in Mathematics (26.0%), Engineering (26.0%), and Hu-
manities/Social Science (28.0%). This performance pattern highlights the fundamental
trade-offs between model size and capability, while demonstrating that even 270M para-
meter models can’t provide useful functionality for specific applications.

6.5 Comprehensive Model Performance Comparison

The complete analysis across all model scales reveals fundamental patterns in the rela-
tionship between model size, performance, and energy consumption. Table 9 provides a
comprehensive overview of all evaluated models across key academic categories.
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Model Size | Math | Physics | Biology/Med | Chemistry | CS/AI | Hum/Soc
DeepSeek-R1 | 70B | 52.0% | 85.0% 88.0% 95.0% 75.0% 68.0%
Llama 70B | 43.0% | 78.0% 81.0% 92.0% 66.0% 56.0%
Qwen 2B | 42.0% | 77.0% 80.0% 90.0% 65.0% 55.0%
DeepSeek-R1 | 8B 36.0% | 68.0% 72.0% 80.0% 58.0% 50.0%
Llama 8B 32.0% | 62.0% 65.0% 75.0% 52.0% 45.0%
Qwen 8B 30.0% | 59.0% 62.0% 72.0% 50.0% 42.0%
Mistral B 28.0% | 57.0% 60.0% 70.0% 48.0% 40.0%
Gemma3 270M | 26.0% | 35.0% 38.0% 45.0% 32.0% 28.0%

Table 9: Comprehensive performance comparison across all model scales and families on
the HLE benchmark.

6.6 Performance Patterns and Energy Implications

The analysis reveals several important patterns that have direct implications for energy
efficiency considerations. Models with higher accuracy in specific categories often require
more computational resources, leading to increased energy consumption. However, the
relationship between accuracy and energy consumption is not always linear, as architec-
tural optimizations can significantly impact efficiency.

The varying task counts across categories provide insights into how workload com-
plexity affects energy consumption. Categories with higher task counts generally require
more sustained computational effort, potentially leading to different energy consumption
patterns that should be considered in deployment decisions.

6.7 Key Findings and Scaling Insights

The comprehensive evaluation across all model scales reveals several critical insights about
the relationship between model size, performance, and energy consumption:

Performance Scaling Patterns. The analysis demonstrates clear scaling patterns

across different model sizes:

Ultra-Compact Models (270M): Gemma3 270M shows the fundamental limita-
tions of extremely small models, with performance ranging from 26-45

Medium-Scale Models (7-8B): Models in this range show significant performance
improvements, with most achieving 60-80

Large-Scale Models (70B+): The 70B+ models show the highest absolute per-
formance, with DeepSeek-R1 70B achieving the best results across most categories. How-
ever, the performance gains are not uniform, with some domains showing diminishing
returns at larger scales.

Energy-Performance Trade-offs. The relationship between energy consumption and
performance reveals important deployment considerations:

Linear Energy Scaling: Energy consumption scales approximately linearly with
model size, with 70B+ models consuming 11.25x more energy than 270M models for the
same inference task.

Performance Efficiency: The 8B models often provide the best performance-per-
energy ratio, achieving 60-80
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Domain-Specific Efficiency: Different domains show varying efficiency patterns,
with scientific reasoning showing better scaling than mathematical or humanities do-
mains.

Architectural Convergence and Specialization. The results reveal important pat-
terns about model architecture and training:

Convergence at Scale: Llama3 70B and Qwen2.5 72B show nearly identical per-
formance profiles, suggesting architectural convergence at the 70B+ scale.

Specialized Advantages: DeepSeek-R1 consistently outperforms other models across
most categories, indicating that specialized training or architectural optimizations can
provide measurable advantages.

Mathematical Reasoning Challenge: All models, regardless of size, struggle with
mathematical reasoning, suggesting that current architectures may have fundamental
limitations in this domain.

Deployment Implications. The comprehensive analysis provides clear guidance for
model selection based on deployment requirements:

Edge Computing: Gemma3d 270M is ideal for resource-constrained environments
where basic language understanding is sufficient, offering minimal energy consumption
with acceptable performance for specific use cases.

Balanced Deployment: 8B models provide the optimal balance between perform-
ance and energy efficiency for most applications, offering substantial capabilities while
maintaining reasonable resource requirements.

High-Performance Applications: 70B+ models are necessary for applications re-
quiring maximum performance, despite their significantly higher energy consumption,
particularly in scientific and technical domains.

These findings provide a comprehensive framework for understanding the trade-offs
between model size, performance, and energy consumption, enabling informed decisions
about model selection and deployment strategies across different use cases and resource
constraints.
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7 Framework Design and Implementation

To address the challenges of measuring and comparing energy consumption across differ-
ent Large Language Models (LLMs), we developed a modular and extensible framework
that ensures reproducible and consistent measurements. The framework, implemented in
Python and Bash, provides a comprehensive solution for monitoring power consumption
during various operational phases of LLM inference.

7.1 Architecture

The framework adopts a layered architecture that separates concerns between monitoring,
execution, and analysis components. This modular design enables easy extension and
modification of individual components without affecting the overall system integrity. The
framework consists of several interconnected modules:

e Main Orchestrator (measure power_stages.sh): A Bash script that coordinates
the entire measurement process, managing the execution flow and ensuring proper
timing between different phases.

e Model Execution Module (run model.py): Handles the interaction with the
Ollama framework, managing model loading and inference execution.

e Benchmark Integration Module (benchmark.py): Manages the execution of
standardized benchmarks, including the Humanity’s Last Exam (HLE) benchmark,
ensuring consistent workload generation across different models and measurement
sessions.

e Monitoring Suite: Comprises three specialized monitoring components:

— monitor.py: The main monitoring coordinator
— monitor_gpu.py: GPU-specific metrics collection using nvidia-smi

— monitor_pdu.py: Hardware-level power measurement via SNMP protocol

e Analysis Module (plot_power _phases.py): Processes collected data and gener-
ates visualization plots for different operational phases.
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Figure 28: Modular architecture of the energy measurement framework

Fig. 28 illustrates the modular architecture of the developed energy measurement
framework. The design separates concerns between monitoring components (GPU and
PDU monitoring), execution modules (model loading and inference), and analysis tools
(data processing and visualization). This modular approach ensures reproducibility, ex-
tensibility, and maintainability while providing comprehensive energy consumption meas-
urements across different operational phases.

7.2 Implementation Details

The framework implements a phase-based measurement approach, dividing the LLM
operation into distinct stages to isolate energy consumption patterns:

1. Idle Phase: Establishes baseline power consumption with no active processes
2. Startup Phase: Captures the energy required to initialize the Ollama server
3. Inference Phase: Measures power consumption during prompt processing

4. Response Phase: Monitors energy usage during output generation

5. Shutdown Phase: Records power consumption during server termination

Each phase is allocated a configurable duration, with default values optimized through
empirical testing:
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Listing 1: Default phase durations

BASELINE_DURATION=10 # seconds
SERVER_SETUP_DURATION=10 # seconds
INFERENCE_DURATION=50 # seconds
SHUTDOWN_DURATION=10 # seconds

7.3 Data Collection Pipeline

The framework employs a dual-monitoring approach to ensure comprehensive power
measurement:

7.3.1 Software-based GPU Monitoring

The GPU monitoring component leverages the nvidia-smi utility to collect detailed
metrics at regular intervals:

Listing 2: GPU monitoring implementation

def collect_gpu_metrics():

metrics = {
’power_draw’: gpu.power_draw,
’temperature’: gpu.temperature,
’memory_used’: gpu.memory_used,
’memory_total’: gpu.memory_total,
’gpu_utilization’: gpu.utilization
}

return metrics

7.3.2 Hardware-based PDU Monitoring

For accurate total system power consumption, the framework interfaces with Power Dis-
tribution Units (PDUs) using the SNMP protocol:

Listing 3: PDU monitoring via SNMP

def read_pdu_power ():
oid = ’1.3.6.1.4.1.318.1.1.12.2.3.1.1.2.1"°
result = session.get(oid)
power_watts = float(result.value) / 10
return power_watts

7.4 Standardization and Reproducibility

To ensure consistent and comparable results across different models, the framework imple-
ments some standardization, like a carefully crafted prompt is used across all evaluations
to ensure comparable workloads:

Supports configurable multiple runs for each model to account for variability and
ensure statistical significance:

NUM_RUNS=1 # Configurable number of iterations
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Provides an intuitive command-line interface for ease of use:

./measure_power_stages.sh <modell> [model2] [model3]

The modular architecture facilitates several extension points:

e New Monitoring Sources: Additional monitoring modules can be integrated by
implementing the base monitoring interface

e Alternative LLM Frameworks: While currently supporting Ollama and hug-
ginface, the framework can be extended to support other inference frameworks like
Transformers

e Custom Analysis Modules: New analysis and visualization components can be
added to the pipeline

e Benchmark Integration: The framework can be extended to incorporate stand-
ard benchmarks for accuracy-efficiency trade-off analysis

The complete framework is available as open-source software at https://github.
com/kocierik/11lm-power-consumption, released under a permissive license to encour-
age community contributions and reproducible research. The repository includes com-
prehensive documentation, installation instructions, and example usage scenarios.
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8 Conclusions

This study has provided comprehensive insights into the energy consumption patterns of
Large Language Models (LLMs) through systematic experimental evaluation.

8.1 Key Findings on Energy Consumption Patterns

The experimental results reveal consistent and predictable energy consumption patterns
across different model families. A fundamental observation is that all models within the
same family follow a consistent pattern: larger models with higher parameter counts
invariably consume more energy during inference. This relationship between model size
and energy consumption is linear and predictable, providing valuable insights for model
selection based on energy constraints. In deployment scenarios, the overall energy foot-
print is dominated by inference rather than training; reiterating the point made in the
introduction, optimizing inference time and usage patterns yields the largest practical
savings.

The analysis demonstrates that energy consumption is primarily determined by infer-
ence time rather than model architecture alone. This finding has significant implications
for energy optimization strategies, as it suggests that reducing inference time through
architectural improvements, quantization, or hardware optimization can directly trans-
late to proportional energy savings. The correlation between inference duration and
energy consumption was consistent across all tested models, regardless of their specific
architectural characteristics.

8.1.1 Supporting Evidence for Key Findings

Table 6 reports the average power per size at equal 10s inference: 270M =~ 0.04 kW,
8B ~ 0.30 kW, 70B+ ~ 0.45 kW. This monotonic increase reflects a near-linear depend-
ence on parameter count under comparable decoding settings. Practically, moving from
8B to 70B+ adds ~50% power draw per inference; therefore, unless accuracy require-
ments mandate the larger model, the 8B class offers a markedly better energy profile at
deployment.

8.2 HLE Accuracy, Time-to-Completion, and Energy

At 70B+, models reach the highest accuracy; DeepSeek-R1 70B leads most categor-
ies, while Llama 70B and Qwen 72B are similar. Gains are largest in STEM (Physics,
Chemistry, Biology/Medicine), with smaller improvements in Mathematics and Human-
ities/Social Sciences. Importantly, comparing models only at equal wall-clock inference
time can be misleading: accuracy differences change the number of retries/edits needed
to reach an acceptable answer. A quality- and time-adjusted view—energy per successful
task—often favors models with higher accuracy or faster convergence, even when their
per-inference energy is higher. 8B models remain a strong performance-per-energy choice
when moderate accuracy is sufficient; for high-stakes STEM tasks, 70B+ can yield lower
total energy per correct solution due to fewer iterations.
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8.3 Framework and Reproducibility Enhancements

The framework was strengthened for research-grade reproducibility and reporting with:
synchronized GPU and system power monitoring; a clear, color-coded pipeline diagram
exported; and HLE tables aligned with evaluation reports for narrative/figure consistency.

8.4 Practical Recommendations

Under energy constraints, 8B models are a strong default for many scientific tasks. Where
maximum accuracy is essential and budgets allow, 70B+ (notably DeepSeek-R1 70B) is
preferable. Selection should weigh domain, target quality, and expected retries, not only
per-inference energy.

8.5 Limitations

Results reflect the evaluated prompts, hardware, and model variants. Category task
distributions (e.g., small counts for Chemistry/Engineering) can inflate variance. While
cross-hardware trends are consistent, absolute consumption depends on platform, drivers,
and thermal conditions. Future work should broaden datasets and incorporate multi-turn,
tool-augmented scenarios to stress real-world usage patterns.

8.6 Future Research

This study establishes a foundation for future research in several areas. The developed
framework can be extended to evaluate emerging model architectures and optimization
techniques. Future work could explore the energy efficiency of different quantization
strategies, the impact of various hardware configurations on energy consumption, and
the development of energy-aware model selection algorithms.
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9 Thanks

This work marks the conclusion of an intense journey filled with study, curiosity, and
personal growth. It is the result of many experiences, encounters, and challenges that
have helped me grow and persevere in achieving my goals.

I would like to express my sincere gratitude to my supervisor for the guidance, availab-
ility, and trust shown throughout every stage of this work. A special thanks to Professor
Sangiorgi for the experience in the French Riviera, which has been fundamental for my
personal and professional development.

I would like to thank my family for their constant support, patience, and strength.
Thanks to my friends and to all the people I met during my Erasmus experience, who
made this journey an unforgettable time of sharing, discovery, and inspiration into my life.
You made this journey far more than an academic chapter; you made it an unforgettable
adventure of learning, laughter, and growth.

With this thesis, an important chapter comes to an end, and a new one begins, abroad,
with great enthusiasm and a strong desire to grow and create. A new beginning, driven
by the same curiosity that has guided me so far.
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