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Abstract

This thesis investigates the native perceptual capabilities of OpenAI’s CLIP model in the do-
main of fine art, where its alignment with human interpretation is poorly understood. By
treating CLIP as a fixed, pre-trained system without fine-tuning, this work isolates its intrinsic
representational biases. The central objective is to assess how CLIP’s representations encode
artistic style and synthetic artifacts beyond semantic content. Using datasets of both human-
made and Al-generated art, experiments evaluate image-text alignment, style recognition, and

the model’s correlation with human judgments.

The findings reveal that CLIP’s perceptual framework is overwhelmingly dominated by se-
mantic content. While robust in coarse semantic matching, the model struggles with fine-
grained stylistic classification and exhibits poor generalization. Crucially, a significant "per-
ceptual gap" is identified between CLIP’s assessments and human evaluations of Al-generated
art, stemming from the model’s insensitivity to visual artifacts and compositional errors. These
results underscore the limitations of using semantic similarity as a proxy for artistic fidelity
and highlight the need for models that are more perceptually and culturally aligned for appli-

cation in subjective domains.
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Chapter 1
Introduction

Recent advances in artificial intelligence, and in particular the development of models that
jointly integrate visual perception with linguistic understanding, have led to the emergence of
Vision-Language Models (VLMs) [2,3]]. Among these, OpenAI’s Contrastive Language-Image
Pre-training (CLIP) represents a foundational contribution, having introduced a paradigm in
which natural language descriptions serve as supervision for visual representation learning
[1]. Through its training objective, CLIP acquires transferable visual concepts by embedding
images and texts into a shared feature space, where corresponding pairs are brought closer
together and unrelated ones are separated [1,4]. This contrastive mechanism [5]] endows the
model with the ability to generalize across tasks, enabling zero-shot transfer [6] without the
need for domain-specific fine-tuning. The effectiveness of this approach has been repeatedly
demonstrated, with CLIP achieving high performance in zero-shot image classification [7-9],

retrieval, re-identification, and semantic search.

Beyond discriminative applications, CLIP has become integral to state-of-the-art generative
pipelines. Its capacity to align textual and visual modalities allows it to act as a guidance
mechanism [10,11]] in models such as GLIDE [12], DALL-E [13]], and Stable Diffusion [14, 15[,
thereby shaping the production of synthetic imagery from textual prompts. This functionality
has also enabled novel creative uses, including visual storytelling, interactive applications, and

style transfer.

Despite this wide adoption, the perceptual alignment established by CLIP is not fully under-
stood. While the model’s ability to capture semantic content is well documented, its sensitivity
to stylistic detail, historical context, and aesthetic coherence remains uncertain. The domain of
art analysis is particularly well suited to reveal these limitations. Unlike everyday photographs

or benchmark datasets, works of art embody a high degree of subjectivity, interpretative rich-



ness, and cultural specificity [16,|17]. Paintings, in particular, are not merely depictions of
objects or scenes, but artifacts in which composition, medium, and style are as essential as
content. For this reason, understanding art requires more than semantic labeling: it demands

an appreciation of form, abstraction, symbolism, and historical situatedness.

CLIP, however, exhibits systematic difficulties in addressing these aspects. Models guided
by CLIP in generative contexts often produce images with hyperrealistic surface details but
anachronistic or stylistically inconsistent features [18]. These errors highlight a broader chal-
lenge: CLIP tends to prioritize large, easily recognizable objects in images and early tokens
in text descriptions [8]], thus favoring semantic cues over subtler visual patterns [2,|19]. As a
consequence, brushwork, texture, and other fine-grained stylistic characteristics—which play

a central role in art historical interpretation—are often neglected.

This thesis takes these challenges as its point of departure. Its central objective is to investi-
gate the perceptual capabilities of CLIP in the artistic domain, with particular emphasis on
whether the model encodes and differentiates not only semantic content but also stylistic
traits, historical cues, and synthetic artifacts. To this end, CLIP’s vision encoder is treated
as a fixed perceptual system: no fine-tuning, prompt engineering, or adapters are employed.
This methodological choice allows for an analysis of the inductive biases and representational

priors intrinsic to the pretrained model, thereby isolating its “native” perceptual competence.

The evaluation is carried out across two complementary datasets: a collection of human-made
artworks from the National Gallery of Art [20], and a set of Al-generated pastiches [18]]. The
dual perspective enables a systematic comparison between CLIP’s representations of authentic
artistic production and synthetic imagery, focusing on whether the model can detect stylistic
irregularities, temporal inconsistencies, or characteristic artifacts introduced by generative
processes. By examining interpretive dimensions such as semantic category, artistic style,
historical period, and visual distortion, the thesis probes the extent to which CLIP’s perceptual

space aligns with human interpretations of art.

Ultimately, this inquiry aims to address a broader research question: can large-scale multi-
modal models like CLIP develop something akin to an “aesthetic sense”? If so, is this grounded
in abstract perceptual structures, statistical regularities learned from training data, or biases
arising from their design? By combining conceptual reflection with empirical evaluation, this
thesis seeks to highlight both the potential and the limitations of CLIP in the context of art,
while pointing to the need for models that are not only semantically accurate but also percep-

tually and culturally aligned.

TODO: Aggiungere scaletta tesi



Chapter 2

Foundations of Multimodal Learning

and Visual Representation

2.1 The Multimodal Nature of Perception and Artificial

Intelligence

Our experience of the world is inherently multimodal, involving the simultaneous perception
of objects through sight, sound, texture, smell, and taste [21]. Consequently, a research prob-
lem or dataset is characterized as multimodal when it incorporates multiple such channels of
information, referred to as modalities [21,22]. A modality generally refers to the specific way
in which something happens or is experienced [21]]. For Artificial Intelligence to progress to-
ward a comprehensive understanding of the surrounding world, it must be able to interpret

and reason about these complex, multifaceted signals collectively [21].

Multimodal Machine Learning (MML) is the specialized and multidisciplinary field dedicated
to building computational models capable of processing and relating information derived from
disparate modalities. While the term modality often evokes sensory channels such as vision
and touch, MML typically focuses on three primary channels in computational research: natu-
ral language (which can be written or spoken), visual signals (represented by images or videos),

and vocal signals (encoding sounds and paralinguistic features) [21]].

The central importance of MML stems from the recognition that multimodal data offers a
richer, more comprehensive perspective on an entity or phenomenon than any single data
source alone. Since multimodal data depict an object from different viewpoints, they often con-
tain information that is complementary or supplementary in content [22]. For example, early

investigations into speech recognition demonstrated that incorporating visual information,



such as lip motion and mouth articulation, significantly enhanced overall performance [23], a
concept motivated by observations like the McGurk effect in human speech perception [24].
By leveraging these combined informational sources, MML systems enable a wide range of
applications, including audio visual speech recognition [23]], image captioning [25-27]], cross
modal retrieval [28|29]], visual question answering [30], and generative tasks like text to image
synthesis [31}/32]. In specialized domains, MML is vital for healthcare diagnostics, integrating

complex data streams like medical imaging and genomic profiles [33-35].

A foundational challenge in MML is the heterogeneity gap [21,22]. Since modalities exist in
unequal subspaces and feature vectors associated with similar semantics can be completely
different across modalities, direct comparison or utilization by subsequent machine learning
modules is hindered [[2233]]. For instance, language is often represented symbolically, whereas
visual and audio modalities are represented as signals [21]]. The primary goal of multimodal
representation learning is therefore to bridge this gap by learning how to represent diverse

input signals in a unified, shared semantic subspace [22]].

2.2 Core Technical Challenges in MML

The field of MML faces unique challenges due to the heterogeneity of the data [21]. Mov-
ing beyond traditional categorization methods like early and late fusion, research identifies
five core technical challenges central to the field’s advancement: representation, translation,

alignment, fusion, and co-learning [21,22,36]).

2.2.1 Representation

The challenge of representation concerns learning how to effectively summarize multimodal
data in a way that exploits both the complementarity and the redundancy of the multiple
modalities. A representation is commonly understood as a vector or tensor representation of
an entity, such as an image, audio sample, or sentence. A multimodal representation combines
information from multiple such entities. The difficulty lies in combining data from heteroge-

neous sources, managing varying levels of noise, and handling missing data [21]].
MML models typically adopt one of two major strategies for representation [21,22]:

1. Joint Representations: This approach projects unimodal representations simultaneously
into a single, common, shared semantic subspace. Joint representations are optimal
when all modalities are consistently present during both training and inference, and
they are frequently employed in tasks such as audio visual speech recognition and af-

fective computing. The simplest instance of a joint representation is the concatenation



of individual modality features, often referred to as early fusion [21}[22].

2. Coordinated Representations: This approach maps each modality into a separate yet
coordinated space. While the projection is independent for each modality, the result-
ing spaces are constrained to be coordinated, perhaps by minimizing cosine distance,
maximizing correlation, or enforcing a partial order between them. This structure is
advantageous for applications such as multimodal retrieval, translation, and zero shot

learning, particularly where only one modality may be present during test time [21,22]].

2.2.2 Translation

Translation addresses the necessity of mapping or converting data from one modality to an-
other. The objective is to generate the equivalent entity in a target modality given an input
entity from a source modality. Examples include generating a descriptive sentence given an
image (image captioning) or generating an image based on a textual description (text to image
generation). This is challenging because the relationship between modalities is often ambigu-
ous or subjective; for instance, many correct sentences can describe a single image, meaning

a singular perfect translation may not exist [21].

Translation approaches are broadly categorized as example based (using a dictionary for trans-
lation) or generative (constructing a model that produces the translation). Generative ap-
proaches, particularly those built on end to end trained neural networks utilizing an encoder
decoder architecture, are highly popular for multimodal translation. These models first encode
the source modality into a vector representation and then use a decoder module to generate

the target modality sequence or signal [21]].

2.2.3 Alignment

The challenge of alignment focuses on identifying direct relationships and correspondences
between the subcomponents of instances from two or more distinct modalities. For example,
in visual language tasks, alignment involves matching specific words or phrases in a caption
to corresponding regions within an image. Correct alignment is crucial for tasks like multi-
media retrieval, allowing for complex searches such as finding video content based on textual
descriptions. Alignment approaches must be robust enough to handle possible long range

dependencies and ambiguities between the constituent elements [21].

Alignment can be categorized as explicit (seeking annotated correspondences, such as aligning
steps in a recipe to a video showing the process [37]) or implicit (serving as an intermediate or

latent step for another task, such as refining cross modal retrieval by aligning image regions



and words [38]). Attention models are a major technique for implicit alignment, allowing
models to align words in a question with subcomponents of an image or text source, which

enhances accuracy and interpretability [21].

2.2.4 Fusion

Fusion is the process of integrating information from multiple modalities with the explicit goal
of predicting an outcome measure, such as a classification label or a continuous value. MML

systems pursue fusion for several key reasons [[21]]:

1. Robustness: Access to multiple modalities observing the same phenomenon yields more

reliable predictions, particularly beneficial in areas like audio visual speech recognition.

2. Complementarity: Fusion can capture information that is not present in individual modal

ities alone.

3. Graceful Degradation: A multimodal system can continue to function even if data from
one of the modalities is unavailable (e.g., recognizing emotion from visual signals when

audio is missing).

Fusion often occurs late in the processing pipeline, interacting with the final prediction stages.
The line between multimodal representation learning and fusion can become blurred when
using deep neural networks, where representation learning and classification objectives are
learned simultaneously. Fusion methods include model agnostic techniques (e.g., early, late,
or hybrid combination strategies) and model based approaches like kernel methods, graphical

models, and neural networks [21]).

2.2.5 Co-learning

Co-learning is defined as aiding the modeling of a resource poor modality by leveraging knowl-
edge acquired from a resource rich or cleaner modality. This challenge involves transferring
knowledge among modalities, their representations, or their predictive models. Co-learning is

particularly salient when one modality suffers from limited annotated data or noisy input [21].

This paradigm is exemplified by algorithms such as co-training, conceptual grounding, and
zero shot learning (ZSL). Conceptual grounding, for example, involves learning semantic mean-
ings based not only on language but also on sensorimotor experience and perceptual inputs
like vision or sound [39,40]. Crucially, Co-learning explores how knowledge learned from
one modality can improve a computational model trained on a different modality [21]. This
concept of knowledge transfer is central to the development of highly generalizable models,

as will be discussed in the context of large scale pretraining.



2.3 Perceiving and Representing Visual Information

Before discussing the Contrastive Language Image Pretraining (CLIP) architecture, it is neces-
sary to establish the modern computational mechanisms through which vision models inter-
pret raw visual data. Visual data, such as images, are fundamentally structured as grid graphs
in pixel space [36]]. Historically, attempts to bridge the semantic gap—the gulf between sim-
ple visual features and rich user semantics—required explicit domain knowledge and detailed
feature engineering. Early content based image retrieval relied on image processing methods

to extract low level visual cues such as color, local geometry, and texture [41]].

The paradigm shift brought about by deep learning revolutionized this process.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) emerged as the dominant architecture for processing
visual data, demonstrating powerful representation ability. CNNs, typified by models like
ResNet [42], use successive layers of local convolutions and non linear activation functions to

generate increasingly abstract representations of the input data [21]].

A defining characteristic of CNNs is the inherent reliance on image specific inductive biases.
Locality, two dimensional neighborhood structure, and translation equivariance are explicitly
"baked into" every layer of the network [43,[44]. While these biases significantly aid efficiency
and performance on traditional image classification tasks like ImageNet [45], they restrict the
architecture’s generality. If the input modality changes (e.g., moving from a fixed resolution 2D
image to a point cloud or audio spectrogram), the CNN architecture often requires re-design,

as the spatial structure is fundamentally different [44].

2.3.2 Vision Transformers and Attention Mechanisms

More recently, the Transformer architecture [46], originally developed for sequence modeling
in natural language processing (NLP), has been adapted for vision tasks. The key idea in the
Vision Transformer (ViT) framework is to treat an image as a sequence of input elements, or

"patches", analogous to tokens or words in a text sentence [43].

Transformers utilize self attention, a mechanism that allows the network to weigh the impor-
tance of different parts of the input relative to other parts, thereby enabling the capture of
global relationships (non local patterns) [43,46]. Mathematically, the Transformer’s self atten-
tion mechanism can be conceptualized from a geometrically topological perspective, modeling
the input sequence as a fully connected graph. Each token embedding, regardless of modality,

is treated as a node in this graph [36].



Unlike CNNss, the ViT architecture employs far fewer image specific inductive biases. The two
dimensional neighborhood structure is utilized only minimally, primarily during the initial
tokenization (cutting the image into patches) and when adjusting positional embeddings. Be-
yond this, the ViT must learn all spatial relationships among the patches from scratch. This
makes the Transformer a modality agnostic pipeline [43]. The capacity of Transformers to
handle diverse inputs flexibly, from pixels to audio waveforms or text sequences, without ma-

jor architectural overhaul, is one of its notable advantages for MML [36].

The success of the Vision Transformer demonstrates that visual perception can be effectively
achieved by models with minimal explicit visual domain knowledge, provided they are scaled
appropriately [44]. This design philosophy paved the way for models that jointly leverage vast
amounts of language and visual data, such as CLIP, whose visual encoder is often a Trans-

former variant [33]].

2.4 Multimodal Representation Learning Frameworks

Multimodal representation learning structures how heterogeneous inputs are processed to
achieve a unified understanding, serving as the essential backbone of any multimodal model
[21]. The fundamental goal remains reducing the heterogeneity gap while preserving the

modality specific semantics [22]].

2.4.1 Joint Representation and Fusion

Joint representation models project unimodal inputs into a common space for subsequent fu-
sion [22]. Neural networks are a highly popular method for constructing such joint represen-
tations. In a joint neural network model, each modality initially passes through several indi-
vidual neural layers, followed by a hidden layer that projects the modalities into the shared
joint space. The resultant joint multimodal representation can then be used directly for predic-
tion. These models can be trained end to end, simultaneously learning both the representation
of the data and the ability to perform a particular task, leading to a close relationship between

representation learning and multimodal fusion [21]].

Deep Graphical Models, such as multimodal Deep Boltzmann Machines (DBMs), also fall under
the joint representation category, modeling the joint distribution over inputs (e.g., image and

text) by fusing modalities in a unified latent space [22,47].



2.4.2 Coordinated Representation

Coordinated representations are designed for scenarios where the modality representations
remain separate but are structured to interact or coordinate knowledge [22]. This enables
applications where certain modalities might be absent during inference [21]. The coordination
typically involves forcing a relationship between the respective projection functions for each

modality such that their outputs align in a shared, comparable space [21,22].

Cross modal similarity methods learn coordinated representations by constraining similarity
measurements. The learning objective is to ensure that the cross modal similarity distance
for pairs describing the same semantics or object is minimized, while dissimilar pairs are
maximized [22]]. A representative application is the Deep Visual Semantic Embedding model
(DeViSE), which coordinates visual features from a CNN with textual features from a word
embedding model (like word2vec) [48]. The aim here is to transfer knowledge, allowing the
model to improve visual representations by enforcing similarity between modalities during

training, thereby capturing shared semantics [22]].

2.4.3 Encoder Decoder Models and Translation

Encoder decoder models are fundamental to multimodal translation tasks, especially genera-
tion [[49]]. The process requires two main steps: an encoder converts the source modality into

a latent vector, and a decoder uses this vector to construct the target modality [21,49].

For visual language translation, such as image captioning, the image is encoded using net-
works like CNNs [50] or Vision Transformers [33]], and the text is typically generated using
sequence models like Recurrent Neural Networks (RNNs) [27,/51] or Transformer based de-
coders. The ability of this framework to generate novel samples of the target modality condi-
tioned on the source modality is its significant advantage [22]]. This framework also allows for
explicit modeling of semantic consistency between modalities; for example, maximizing the
likelihood of generating a correct sentence while minimizing the representation difference in

a common subspace [52]].

A particularly advanced application of this framework involves attention mechanisms. At-
tention allows the decoder to selectively and dynamically concentrate on salient parts of the
source input during the prediction process. This ability to select prominent features enhances
system performance and noise tolerance, leading to improved outcomes in tasks like image

captioning [22].



2.5 Multimodal Scaling and The Path to CLIP

The increasing scale and complexity of MML models, particularly those leveraging Trans-
former architectures, have opened new frontiers in generalization and task transfer, forming

the methodological context for foundational models like CLIP [1]].

The emergence of Large Multimodal Models (LMMs), such as LLaVA and GPT-4o, since 2023
demonstrates the trend toward developing versatile systems capable of processing and gener-
ating diverse inputs and outputs like text, audio, and images. These systems often integrate a
visual encoder with a powerful Large Language Model (LLM), connected via learned projection

layers [3,6].

This trend toward large scale models emphasizes the importance of transferability and zero
shot capabilities [1]]. This research investigating CLIP, which treats the model’s vision encoder
as a fixed perceptual system for artistic analysis, is situated precisely within this context of

generalized, pretrained representation learning,.

The key breakthrough exemplified by CLIP is the scalable pretraining task that uses natural
language supervision for visual representation learning. Instead of being trained to predict a
fixed, predetermined set of visual categories (as in older supervised computer vision systems),
CLIP addresses the potentially easier proxy task of predicting which caption correctly pairs
with which image [1].

This objective is achieved through a contrastive learning mechanism [5]. During pretraining
on massive web scale datasets of image text pairs, CLIP jointly trains separate image and text
encoders to maximize the cosine similarity of the embeddings belonging to the N real pairs
in a batch, while simultaneously minimizing the similarity for the N> — N incorrect pairings.
The result is a shared multimodal embedding space where corresponding visual and linguistic

concepts are brought closer together [1].

This contrastive mechanism endows CLIP with the power of zero shot transfer [6]. Because
the visual concepts are learned and referenced through natural language, the model can clas-
sify or retrieve unseen visual concepts by generating a classifier directly from text prompts,
eliminating the need for further domain specific training examples. This contrasts sharply
with traditional supervised methods, which must infer concepts indirectly from labeled ex-

amples [1]].

Understanding the foundational principles of multimodal learning and the functioning of vi-
sion models is essential for interpreting the results of this inquiry in Chapter 3, which will

detail the CLIP architecture and its latent space.
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Chapter 3

The CLIP Model

3.1 Introduction and Contextualization

The emergence of the CLIP model represents a fundamental methodological divergence from
historical computer vision paradigms, establishing a new foundation for visual representation
learning rooted in natural language supervision [[1]]. This section contextualizes CLIP’s design
rationale by first detailing the intrinsic limitations of conventional fixed-category classification
systems, followed by an explanation of the pivotal shift toward leveraging web-scale linguistic

data, which ultimately culminates in the introduction of the model’s core contrastive objective.

3.1.1 Limitations of Fixed-Category Supervision

Historically, the dominant paradigm for developing state-of-the-art computer vision systems
centered on training models to predict a predetermined, fixed set of discrete object categories
[42,143]. This approach typically involves matching image features, generated by a vision
model (such as a ResNet or ViT) [42}|43], with a fixed set of randomly initialized weight vec-
tors. These weight vectors are subsequently learned to represent visual concepts by minimiz-
ing the distance between the vector and images containing the corresponding category [53].
Prominent examples of this methodology include systems trained on large, manually curated

datasets like ImageNet [50].

However, this conventional form of supervision presents inherent conceptual limitations, pri-
marily restricting model generality and transferability [1]. Since classification labels are dis-
cretized, often converting rich textual descriptions into a simplistic scalar format, the rich
semantics encapsulated within the original text are largely left unexploited [7,/54]. This con-

straint dictates that the visual recognition system operates solely on closed-set visual concepts,
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confining the model to a pre-defined taxonomy of categories [7].

Consequently, the utility and generalization capacity of these systems are severely limited:
specifying any new visual concept beyond the initial closed set necessitates the acquisition and
incorporation of additional labeled data [[1]. The process of collecting and annotating large-
scale, high-quality datasets for every specialized visual task is inherently resource-intensive,
financially prohibitive, and often impracticable to scale across numerous distinct domains [9].
Training on such fixed sets leads to models focused on specific tasks, weakening the capacity
to attain general visual representations and harming their transferability to novel, open-set
applications [55]. The necessity of overcoming this dependence on labor-intensive annotation
and predefined classification schemes motivated a fundamental shift in the training paradigm

toward leveraging broader, more abstract sources of supervision [1].

3.1.2 The Shift to Natural Language as Supervision

The adoption of natural language as a scalable source of supervision has been primarily driven
by the fundamental advances achieved in the field of Natural Language Processing (NLP) [11].
Over preceding years, pre-training methods designed to learn directly from raw text—pio-
neered by systems such as BERT [56], T5 [57], and the GPT series [58]], demonstrated re-
markable success in revolutionizing NLP. These advancements established "text-to-text" as a
standardized input-output interface, facilitating the creation of powerful, task-agnostic ar-
chitectures capable of performing zero-shot transfer across diverse downstream linguistic
tasks. Highly capable systems like GPT-3, for instance, became competitive with bespoke,
task-specific models while requiring negligible amounts of training data specific to the target

dataset [|1f].

Drawing analogous inspiration, researchers recognized that shifting visual learning toward
natural language provided an opportunity to exploit a vastly broader and deeper source of
supervision compared to constrained, manually curated datasets. The supervision available
in web-scale text enables the exploration of open-set visual concepts, thereby leveraging the
sheer accessibility of massive image-text pairs available across the internet, which fundamen-
tally enhances the model’s generalization power. CLIP, for example, utilized approximately

400 million (image, text) pairs collected from the web during its pre-training phase [1].

The core objective of this new paradigm is the learning of transferable visual representations
by establishing a joint, conceptual understanding between raw text and images. CLIP achieves
this by jointly training an image encoder and a text encoder to maximize the similarity between
corresponding visual and textual representations within a shared feature space. This process

enables images to be correctly classified by matching image features against a classifier syn-
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thesized directly from text, such as a textual description of the category. The foundational
pre-training task is simplified to predicting which caption correctly pairs with which image
in a batch [1]. This approach moves beyond optimization for a singular benchmark, allowing

the learned representations to transfer effectively to a multitude of tasks [59].

3.1.3 Precursors to Contrastive Learning

The aspiration to computationally link the vision and language modalities precedes CLIP, with
various prior works attempting to establish connections between visual concepts and their
linguistic descriptions. Early investigative studies explored enhancing content-based image
retrieval by training models to predict nouns and adjectives contained within accompany-
ing image text [60]. Other methods demonstrated that mapping classifiers trained to predict
words in captions to a weight space manifold could yield more data-efficient image repre-
sentations [61]. A notable precursor, Visual N-Grams [62], was among the first studies to
successfully apply zero-shot transfer methods to conventional image classification datasets
using a pre-trained, task-agnostic model. Furthermore, methods like VirTex (2020) empirically
demonstrated that image caption annotations provided sufficient supervision for representa-
tion learning, yielding feature quality comparable to or surpassing that of models trained on

ImageNet, but utilizing significantly less data [63].

CLIP’s innovation relative to this preceding work lies in its highly efficient and scalable ap-
proach, fundamentally altering the objective and the scale at which this learning occurs. Pre-
vious attempts often focused on detailed prediction tasks, such as predicting the exact words
(as in image captioning) or relying on a bag-of-words (BoW) encoding. CLIP introduced the
arguably simpler, yet highly effective, proxy task of merely predicting if a text as a whole

correctly pairs with an image, rather than predicting the individual words within that text [1]].

By keeping the dual-encoder architecture and swapping the predictive learning objective for
a contrastive objective in the vein of the multi-class N-pair loss, CLIP achieved a measured 4x
efficiency improvement in the rate of zero-shot transfer to ImageNet compared to the BoW
baseline. The core of the method involves optimizing a symmetric cross-entropy loss that
maximizes the cosine similarity between the /N authentic (image, text) pairs in a batch while
minimizing the cosine similarity for the remaining N2 — N incorrect pairings. This scalable
methodology, referred to as Contrastive Language-Image Pre-training (CLIP), was success-
fully implemented from scratch at a massive scale of 400 million image-text pairs, marking its

conceptual breakthrough and setting new standards for transferable visual models [1]].
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3.2 Data Scale and the WebIlmageText (WIT) Dataset

The remarkable performance of CLIP is inseparable from the WeblmageText (WIT) dataset,
a large-scale collection of 400 million image—text pairs specifically designed to overcome the
shortcomings of earlier resources. Prior datasets such as MS-COCO and Visual Genome con-
tained only around 100,000 photos, making them inadequate for web-scale learning. Even
larger alternatives like YFCC100M or Conceptual Captions suffered from sparse metadata, low
semantic richness, or overly simplistic captions, resulting in insufficient coverage and detail.
These limitations highlighted the need for a dataset that could combine both massive scale

and meaningful natural language supervision [1].

WIT addressed this by adopting an active collection strategy. Instead of passively scraping the
web, its creators built a query-driven process starting from 500,000 Wikipedia-derived queries,
later expanded with bi-grams. To avoid overrepresentation of specific concepts, they capped
the number of samples per query at 20,000. This approach ensured not only enormous scale
but also broader and more balanced coverage of visual concepts, providing the foundation

required for CLIP’s contrastive pre-training paradigm [1].

Nevertheless, the reliance on open-web data introduced unavoidable challenges. As with other
large-scale datasets like LAION, WIT inevitably incorporates biases and problematic material,
including explicit content, stereotypes, and demographic imbalances [1]. Analyses of CLIP
and similar models show that these biases can shape embeddings in concerning ways—for
example, NSFW associations with certain names or harmful misclassifications of people [64].
This tension highlights the core trade-off in constructing datasets like WIT: while their scale
enables powerful generalization and robustness to distribution shifts, it comes at the cost of

ethical control and heightened exposure to the biases present in internet-scale data [64].

3.3 The CLIP Architecture: Components and Design

The performance and remarkable transferability of the CLIP model are intrinsically linked
to its modular, dual-encoder architecture. This design consists of two independently oper-
ating, modality-specific encoder networks—one for visual inputs and one for linguistic in-
puts—which are trained jointly to project their respective features into a common, shared

vector space via a contrastive learning objective.
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3.3.1 The Image Encoder Variants and Selection

For the image encoder, the CLIP framework explored two distinct families of highly perfor-
mant deep learning architectures: the established ResNet (Deep residual learning for image

recognition) family and the contemporary Vision Transformer (ViT) family [1].

The architectures studied within the ResNet family included the ResNet50 and the ResNet101
variants. These were often adapted using the EfficientNet-style model scaling approach, result-
ing in increasingly complex models denoted as RN50x4, RN50x16, and RN50x64, which utilized
approximately 4x, 16x, and 64x the computational capacity of the base ResNet50 model, re-
spectively. The ResNet models employed by CLIP incorporated several modifications from the
original architecture, including the ResNetD improvements and antialiased rect-2 blur pool-
ing. Crucially, the standard global average pooling layer in the conventional ResNet structure
was replaced with an attention pooling mechanism. This attention pooling is implemented
as a single layer of "transformer-style" multi-head QKV attention, where the query vector is

conditioned on the global average-pooled representation of the input image [1].

For the second architectural family, CLIP leveraged the Vision Transformer (ViT). The ViT
models explored included ViT-B/32, ViT-B/16, and the larger ViT-L/14 variants. These im-
plementations closely followed the original ViT design. In Transformer-based architectures,
feature extraction is typically performed using the learnable [CLS] token (class token), which
is concatenated to the sequence of image patch embeddings. In the context of the ViT ar-
chitecture utilized in CLIP, this approach is the mechanism by which the patch-based image
representation yields the final class representation. Some configurations, such as ViT-B/16,

consist of 12 transformer layers with a hidden size of 768 dimensions [1]).

In terms of scaling, while prior computer vision research often scaled models by solely increas-
ing width or depth, the ResNet image encoders in CLIP adapted a uniform scaling approach
across width, depth, and resolution. In contrast, research found that Vision Transformers are
about 3x more compute efficient than the CLIP ResNets when trained on sufficiently large
datasets. The final choice for the best-performing CLIP model configuration was the ViT-L/14
pre-trained at a higher 336 x 336 pixel resolution, denoted as ViT-L/14@336px. This selection
was made because this specific model achieved the best overall performance and was deemed

the most compute-efficient variant among those studied [1].

3.3.2 The Text Encoder

The text encoder employed in the CLIP architecture is a Transformer-based model. Its base size

is structured as a 12-layer, 512-wide model with 8 attention heads. The architecture utilizes
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modifications detailed in earlier generative pre-training literature [1].

The input text processing involves converting raw text into a format suitable for the Trans-
former. Textual inputs are tokenized using a lower-cased byte pair encoding (BPE) represen-
tation, which has a vocabulary size of 49,152. The text sequence is bracketed by the special
[SOS] (Start-of-Sequence) and [EOS] (End-of-Sequence) tokens. To ensure efficient batch pro-
cessing and parallel computation, the text sequence is capped at a fixed maximum sequence

length of 77 tokens [1].

The embeddings of the tokens are then passed through the Transformer layers. To derive the
final sequence-level representation, the activations of the highest layer of the Transformer at
the [EOS] token position are used. This resulting feature is subsequently layer normalized
before being mapped to the final embedding space. Although masked self-attention was used
in the text encoder, preserving the ability to potentially add language modeling as an auxiliary

objective, this auxiliary function was reserved for future work [1]].

3.3.3 Dimensionality and Latent Space Design

CLIP is fundamentally designed to align features from the image and text modalities within
a shared multimodal embedding space. This alignment is critical because it allows visual and

linguistic information to be compared using a similarity function, typically cosine distance [|1]].

The output feature representations produced by the image encoder (e.g., from the attention
pooling layer of ResNet or the [CLS] token equivalent of ViT) and the text encoder (from the
[EOS] token activation) are processed by a learned linear projection layer. The purpose of this
linear layer is to map the encoder-specific feature representations into the joint multimodal
space. CLIP simplifies this design compared to some preceding contrastive learning methods
by removing the non-linear projection between the internal encoder representation and the

contrastive embedding space, relying solely on a linear projection [1].

The final common dimensionality of the shared latent space (denoted d or D) varies depending
on the specific model size. For instance, the smaller ResNet-50 (RN-50) model has an embed-
ding space size of d = 1024, while the RN-50x4 model utilizes an embedding space size of
d = 640. For the ViT-B/16 model, the image feature vector dimension (768) is reduced to 512
by a linear layer to match the text encoder output. Similarly, the smaller ViT-B/32 CLIP model

fine-tuned for specialized tasks extracts image representations of 512-dimension []1f].

Finally, for the purposes of calculating cosine similarity and facilitating comparison within the
embedding space, the final embeddings produced by the encoders and projected into the shared

space undergo L2 normalization. This step projects the features onto a unit hypersphere. The

16



(1) Contrastive pre-training (2) Create dataset classifier from label text

P th
epper the Text ‘

aussie pup

Encoder l l l l
_— T, | T | T3 N,
I LTy [T, [T | . | LTy -
(8) Use for zero-shot prediction v v
L LT | LT | LTy . | LTy T Ts Ty

LTy | T3

Image I LTy | 4T, [T 13T
Encoder 3 3711 3712 313 37N Elma%e L) Il Il.Tl
ncoder
: bl il W
a .

Figure 3.1: CLIP contrastative pre-training and its use for zero-shot prediction [1].

importance of this projection and normalization is paramount: the core contrastive objective
relies on maximizing the cosine similarity (dot-product of L2-normalized features) between

the real pairs and minimizing the similarity for the unmatched pairs across the batch [1].

3.4 The Contrastive Pre-training Objective and Loss Func-
tion

The efficacy of the CLIP model hinges upon a meticulously formulated and highly scalable
training objective: the symmetric contrastive loss. This objective transcends the limitations
of traditional fixed-category supervision by directly optimizing the alignment of feature rep-

resentations across the visual and linguistic modalities in a shared embedding space.

3.4.1 The Batch Contrastive Learning Objective

The fundamental goal of CLIP’s pre-training is to solve a proxy task: given a set of training ex-
amples, the model must predict which text description correctly corresponds to which image.
This objective relies on batch contrastive learning, which operates on a batch of N randomly
sampled (image, text) pairs {/;, 7;}~ ,. The model is trained to maximize the similarity be-
tween the NV authentic or "real" pairs while simultaneously minimizing the similarity for the

remaining N2 — N incorrect pairings, referred to as in-batch negatives [1].

This process involves jointly training the image encoder (f;) and the text encoder (fr) to
project their respective inputs into a normalized, joint multi-modal embedding space. Within
this space, the affinity between any projected image feature v;, = f;(/;) and any projected text
feature vy, = fr(7}) is quantified using the cosine similarity metric. The cosine similarity,

mathematically equivalent to the normalized dot product of the L2-normalized feature vectors,
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is calculated for all possible combinations within the batch [1].

This computation yields an N x N similarity matrix, where the entry at position (i, j) rep-
resents the similarity score S;; = cos(vy,, vr;) between the i-th image and the j-th text de-
scription. The diagonal elements of this matrix, where ¢ = j, correspond precisely to the
similarities of the positive (matched) pairs {;, 7; } that occurred in the dataset. Conversely, all
off-diagonal elements represent the similarities between mismatched (negative) pairs, which
the learning objective endeavors to suppress. This core batch construction technique and

learning paradigm were originally introduced as the multi-class N-pair loss objective [1].

3.4.2 The Symmetric Cross-Entropy Loss (NT-Xent)

The optimization of the contrastive objective utilizes a form of normalized temperature-scaled
cross-entropy loss (NT-Xent). Specifically, CLIP employs a symmetric cross-entropy loss cal-
culated over the pairwise similarity scores produced by the encoders. The dual nature of the
loss ensures that the model learns alignment bi-directionally: predicting the correct text given

an image, and predicting the correct image given a text.

Formally, given a batch of NV image-text pairs, the total loss (L) is computed as the average of
two distinct cross-entropy losses: the image-to-text loss (Lt or Limage) and the text-to-image

loss (L1 Or Ltext)-

The overall loss is defined as:

1
L = i(LIZT + L)

The image-to-text loss (Ly,r) calculates the probability that image I; correctly matches its cor-
responding text 7; among all texts in the batch. This is achieved using the softmax function

over the normalized similarity scores, maximizing the logarithm of the probability of the true

Lyt = —— Z og < exp(cos(vy,, vr,)/T) >

J L exp(cos(vy,, vry)/T)

positive pair:

where vy, = fi(I;) and vy, = fr(T};) are the normalized feature vectors, and 7 is the temper-
ature parameter. The denominator represents the sum of exponentiated similarities between

the anchor image v, and all V text captions in the batch.

Symmetrically, the text-to-image loss (Lty) calculates the probability that text 7 correctly

matches its corresponding image /; among all images in the batch:

Ly = —— Z < exp(cos(vy,, vr,)/T) >

] leXp(COS(l/[,VT>/ )
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Here, the denominator sums the exponentiated similarities between the anchor text vy, and
all V images in the batch. By minimizing this symmetric objective, the model learns strong

alignments that generalize across both directions of retrieval.

A central feature of CLIP’s contrastive learning is the learnable temperature parameter (7),
which scales similarity scores in the softmax and adjusts how sharply the model distinguishes
between positive and negative pairs. Unlike earlier methods that fixed 7 as a manually tuned
hyperparameter, CLIP optimizes it during training, typically starting from 0.07, so the model
can dynamically adapt to diverse data scales and concepts. Training CLIP at web scale also
required massive computational effort: the model was trained on 400 million image-text pairs
using AdamW, a warmup—cosine learning rate schedule, and very large batch sizes, sometimes
exceeding 30,000 samples. Runs were conducted on clusters of high-end GPUs such as NVIDIA
A100s, with training costs on the order of 5 x 1022 FLOPs. To make this feasible, techniques like
mixed-precision training and gradient checkpointing were used to reduce memory demands

and speed up computation.

3.5 Zero-Shot Transfer, Emergent Capabilities, and Limi-

tations

The capacity of CLIP models to perform zero-shot transfer represents the defining method-
ological departure from conventional computer vision systems. This mechanism, which lever-
ages natural language to dynamically synthesize a classifier, provides CLIP with remarkable
flexibility and generalization abilities [65]. Nevertheless, this scale of pre-training also im-
poses distinct limitations, particularly concerning fine-grained perception and robustness in

highly specialized scenarios.

3.5.1 The Zero-Shot Classification Mechanism

The core functionality that enables CLIP to operate on unseen datasets without requiring any
task-specific fine-tuning is the zero-shot classification mechanism. This capability is a direct
consequence of the dual-encoder architecture and the contrastive training objective, which
learns a joint embedding space where corresponding visual and linguistic concepts are highly

aligned.

At the inference stage, the pre-trained CLIP model reuses its capability to predict the correct
pairing of an image and a text snippet. To apply CLIP to a downstream classification task,
such as identifying categories within ImageNet, the classification process is transformed into

an image-to-text matching problem.
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The technical explanation of classifier synthesis proceeds through the following steps:

1. Feature Extraction A query image [ is processed by the image encoder, yielding a

feature embedding v; € R%

. Classifier Synthesis via Prompt Engineering A classifier weight vector is dynami-
cally synthesized for each of the K categories {C', ..., Ck} present in the downstream
dataset. This involves prompt engineering, where each category name is inserted into
a pre-defined natural language template, resulting in a set of text strings 7;. A widely
adopted hard prompt template for generic classification datasets, such as ImageNet, is
simply "a photo of a {class}". For datasets requiring specialized context, task-relevant
context is added, such as specifying the domain keyword in the template for fine-grained
classification datasets (e.g., "a centered satellite photo of {class}" for EuroSAT). The use
of prompts, whether manually crafted or automatically generated, is critical because the

format of the prompts significantly affects the model’s accuracy.

. Embedding the Prompts Each category-specific text string 7; is fed into the text en-
coder, which generates a classification weight vector w; (or text embedding t; € RY).
The process of generating these text embeddings from the class name and prompt tem-

plate is denoted as classifier weight generation.

. Classification via Cosine Similarity The final prediction is achieved by measuring
the cosine similarity (or dot product of L2-normalized features) between the image em-
bedding v; and the synthesized text embeddings {w;}% . The model predicts the class
C; corresponding to the text prompt w; that exhibits the highest cosine similarity with
the image feature ;. The prediction probability for class 7 is formulated mathematically

as: exp(sim(z,t;)/7)

> 1 exp(sim(z, t;)/7)

where z is the image embedding, t; is the text embedding, sim(-, -) is the cosine similar-

ply =ilz) =

ity, and 7 is the learned temperature parameter of CLIP.

This approach allows the natural language text to directly communicate visual concepts, serv-

ing as a powerful alternative to inferring concepts indirectly from limited labeled examples.

3.5.2 Emergent Capabilities and Modality Alignment

A critical finding in the evaluation of CLIP is the emergence of powerful, transferable visual

representations derived from its large-scale natural language supervision. CLIP’s features

demonstrate notable robustness to distribution shift and are often competitive with, and in
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some cases surpass, fully supervised baselines. For instance, the best CLIP model improved
zero-shot accuracy on ImageNet from a proof-of-concept 11.5% to 76.2%, matching the perfor-
mance of the original ResNet50 without using any of the 1.28 million crowd-labeled training
examples. Across a 27-dataset evaluation suite, zero-shot CLIP either outperformed or was
competitive with a fully supervised linear classifier fitted on ResNet50 features on 16 datasets,

including ImageNet [1].

Superior Robustness and Generalization

CLIP models display superior robustness compared to equivalent-accuracy supervised Ima-
geNet models, substantially shrinking the "robustness gap" when confronted with natural dis-
tribution shifts across various image distributions. For instance, CLIP achieved 60.2% accuracy
on the ImageNet Sketch Dataset, whereas the fully supervised ImageNet ResNet101 model only
achieved 25.2% accuracy. This resilience stems from the exposure to a diverse array of signals

within the extensive web-scale training dataset.

Emergent Task Learning

The contrastive pre-training task forces CLIP to learn a wide variety of tasks during pretraining
simply to satisfy the objective of matching the correct image-text pairs. This task learning can
then be leveraged for zero-shot transfer to many existing datasets. These emergent capabilities

include generalizing across complex visual-linguistic tasks:

+ OCR (Text Recognition) CLIP learns the ability to perform Optical Character Recog-
nition (OCR). For example, CLIP’s image embeddings are utilized in Scene Text Image
Super-Resolution (STISR) systems to extract text features and guide the reconstruction
process, confirming its proficiency in understanding textual content even in low-quality

or noisy images [[1]].

+ Geo-localization The model exhibits proficiency in tasks related to geographical loca-

tion determination [[1]].

+ Action Recognition CLIP has shown the ability to perform action recognition in videos
[1].

The foundational alignment achieved by CLIP, which maps similar concepts expressed in im-
ages and text to similar feature representations (e.g., matching the image of a cat I, with the
text 7. "a photo of a cat") [59]], makes it well-suited for subsequent applications such as image
retrieval, composed image retrieval, image generation, and enhancing specialized systems like

Zero-Shot Anomaly Segmentation (ZSAS) [59}/66].
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Chapter 4

Related works

The emergence of Contrastive Language-Image Pre-training (CLIP) has fundamentally altered
the landscape of multimodal artificial intelligence, offering a robust foundation for transferring
knowledge across vision and language domains [2,/67]]. Trained on extensive web-scale collec-
tions of image-text pairs [64,(68]], CLIP learns to align features from separate visual and textual
encoders into a unified embedding space through a contrastive learning objective [53//59,69].
This mechanism enables impressive zero-shot generalization and has led to its integration as
a crucial component in contemporary generative models and vision-language pipelines [70].
However, CLIP’s broad applicability has simultaneously necessitated a rigorous and critical
evaluation of its intrinsic limits, leading to extensive research focusing on both model short-

comings and adaptation techniques.

4.1 CLIP: Limitations and Robustness

To understand the core capability of CLIP and, consequently, delineate the necessity of the
current research, it is essential to first review the known failure modes and inherent biases of

the pre-trained model when operating in its native, unmodified state [2]].

4.1.1 Semantic Gaps and Biases

A primary area of inquiry concerns the depth of CLIP’s semantic comprehension, specifically
questioning whether it genuinely understands textual meaning beyond mere surface-level co-
occurrence and statistical association [71]]. Studies investigating CLIP’s performance in com-

plex, multi-object scenarios have revealed significant architectural biases within the model [3]].

Notably, the image encoder exhibits a tendency to favor larger objects in a scene, while the text
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encoder prioritizes the first-mentioned objects within a prompt. These structural asymmetries
lead to model instability, resulting in substantial performance drops in image-text matching
tasks when captions are semantically equivalent but structurally varied—for instance, when
object size or token order is manipulated. This behavior highlights a critical gap in under-
standing CLIP’s inconsistency, which can manifest as systematic errors that betray inherent

biases rather than robust conceptual understanding [8].

Furthermore, analyses suggest that CLIP tends to prioritize the encoding of semantic content,
such as objects, scenes, and compositions, over more nuanced stylistic features, such as brush-
work, color palette, or compositional structure. This bias is consistent with the model’s large-
scale training objective, which aims for broad semantic alignment rather than fine-grained
aesthetic discernment. This limitation in capturing visual nuance becomes particularly acute

in complex, subjective domains like visual art [2].

4.1.2 Adversarial Vulnerability and Internal Analysis

Despite demonstrating commendable resilience to challenging natural distributional shifts
[64,72], CLIP-based detectors are not impervious to malicious manipulation. Research has
shown that these detectors are vulnerable to white-box adversarial attacks, a weakness they
share with traditional Convolutional Neural Networks (CNNs) [73]. Interestingly, adversar-
ial attacks do not easily transfer between CNN-based and CLIP-based methods, suggesting

divergent internal feature representations are exploited by these attacks [73].

In addition to evaluating external vulnerability, model inversion techniques have been em-
ployed to understand the internal representations and knowledge embedded within CLIP [64].
In [64], traditional gradient ascent techniques [74-76] are applied to reconstruct images from
CLIP embeddings. By generating images that best align with a given textual prompt (thus
effectively inverting the model) researchers can gain insights into what the model “perceives”.
This approach has confirmed CLIP’s capacity to seamlessly blend concepts (e.g., combining
"panda mad scientist" and "sparkling chemicals"). Critically, inversion studies have also un-
covered undesirable biases inherited from the web-scale training data, such as strong associ-
ations between certain celebrity names (particularly women) and sexually explicit content, a
finding with significant implications for the use of CLIP embeddings in downstream generative

models [64].
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4.2 CLIP: Adaptation and Fine-Tuning

In response to CLIP’s demonstrated limitations, a vast body of literature focuses on developing
mechanisms to enhance its performance, improve generalization, and mitigate the modality
gap—the persistent finding that image and text embeddings often occupy separated regions
within the shared feature space [4]]. These approaches primarily fall into three categories:
feature modification via lightweight modules (adapters/projection), optimization of text inputs

(prompt learning), and integration into larger multimodal systems (LMMs).

4.2.1 Adapters and Projection Methods

Standard fine-tuning of large models like CLIP is often slow and prone to overfitting, espe-
cially in few-shot scenarios. Adapters circumvent this by introducing minimal, lightweight
modules—often implemented as bottleneck layers—which are inserted into the network and
tuned, allowing the core pretrained weights to remain frozen [9]. Examples in this category

include:

+ CLIP-Adapter proposes an additional bottleneck layer to learn new features, utilizing a
residual-style feature blending with the original CLIP features. This approach revived
the "pretrain-finetuning" paradigm while requiring a small number of additional param-

eters [9].

« TIP-Adapter (Training-free CLIP-Adapter) aimed for higher efficiency by constructing
the adapter using a key-value cache model derived from the few-shot training set, re-
trieving knowledge instead of requiring gradient updates. Its further variant, TIP-Adapter-

F, achieves state-of-the-art results but reintroduces fine-tuning of the cache keys [77].

« Other adaptation methods, such as LIxP [65] and APE (Adaptive Prior rEfinement) [78]],
also focus on maximizing accuracy while minimizing computational overhead and the
number of learnable parameters by refining CLIP’s prior knowledge or selectively uti-

lizing significant feature channels.

Projection-based methods specifically address the modality gap by projecting features into
different subspaces to achieve better alignment. For instance, Selective Vision-Language Sub-
space Projection (SSP) proposes a training-free approach that utilizes local image features
to construct unified visual and language subspaces, projecting the main features onto them
to reduce distribution differences [4]. Similarly, networks like SgVA-CLIP focus on learning

domain-specific visual features under the guidance of cross-modal knowledge [[19].
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4.2.2 Prompt Engineering and Tuning Methods

The success of CLIP relies heavily on the quality of its input prompts, making manual prompt
engineering a critical yet cumbersome task that requires domain expertise, as minor wording

changes can drastically impact performance [7,/9].

 Context Optimization (CoOp) proposed substituting cumbersome hard prompts with
learnable continuous soft prompts [7,9]. By tuning these prompt vectors using few-shot
data while keeping the main encoders fixed, CoOp significantly outperforms carefully
engineered manual prompts [7]. However, a major limitation identified in CoOp is its
tendency to overfit the base classes seen during training, resulting in poor generalization

to novel or unseen classes [53].

+ Conditional Context Optimization (CoCoOp) was introduced to overcome this general-
ization problem by extending CoOp to learn a lightweight meta-network that generates
an input-conditional prompt vector for each image, making the prompt dynamic rather

than static [53]].

« Further advancements leverage Large Language Models (LLMs) themselves to generate
more effective inputs. The Customized Prompts via Language models (CuPL) method
uses an LLM (like GPT-3) to generate arbitrary numbers of descriptive, customized
prompts (image-prompts) that contain discriminating visual details for fine-grained clas-
sification tasks. Using LLM-generated prompts improves zero-shot accuracy compared
to hand-written prompts by enabling the model to focus on semantically important im-

age regions [79].

4.2.3 Scaling to Large Multimodal Models (LMMs)

Modern research has scaled vision-language capabilities by integrating visual encoders, often
based on frozen CLIP architectures, with powerful Large Language Models (LLMs) through
learned projection layers (e.g., Q-Formers or linear projectors) [[6]. These resulting multimodal
LLMs (MLLMs) are designed for complex, conversational, and instruction-following tasks that

go beyond mere classification or retrieval [3].

Prominent examples of these architectures include BLIP-2 [80], which uses a Q-Former to
bridge the frozen image encoder and the LLM; InstructBLIP [81]], which performs systematic
vision-language instruction tuning; Qwen-VL [82]]; and ShareGPT4V [83], which improved
alignment using detailed, high-quality captions curated via GPT-4 Vision. These models rep-
resent the current frontier in multimodal reasoning, demonstrating advanced capabilities in

visual analysis and generation [16].
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4.3 Vision-Language Models in Art

The artistic domain presents a unique and demanding challenge for Al, requiring not only
object recognition but also high-level interpretation of style, composition, and cultural context
[16].

4.3.1 Datasets and Benchmarking Tasks

Early efforts applied computer vision techniques to art history tasks like style and author

identification [17,84]]. These efforts have since been augmented by multimodal models:

« SemArt is a foundational multi-modal dataset comprising fine-art painting images, at-
tributes, and artistic comments, designed for semantic art understanding and the Text2-

Art retrieval challenge [17].

+ CLIP-Art demonstrated an early adaptation of CLIP, fine-tuning the model using image-
text pairs from the SemArt dataset to achieve improved performance in fine-grained art

classification and retrieval tasks [85].

« AQUA (Art QUestion Answering) proposed a benchmark for answering visual and knowl-
edge-based questions about paintings, highlighting that answering such questions of-
ten requires external knowledge beyond visual content [84]. The subsequent ArtQuest
dataset was introduced to counter language biases that were found to be hidden in ex-
isting VQA datasets like AQUA [86].

« ArtBench provides a standardized and class-balanced dataset specifically for bench-
marking the style classification performance and visual quality of generative models

in reproducing artistic styles [87].

4.3.2 Advanced Art Analysis
More recent work leverages advanced LMMs for complex analysis tasks:

GalleryGPT addressed the need for deeper interpretation by introducing the task of generating
comprehensive formal analysis for paintings, explicitly focusing on visual characteristics like
color, composition, and light [[16]]. GalleryGPT employs a large dataset of paintings paired
with LLM-generated formal analyses and uses a fine-tuned version of ShareGPT4V to push
the model to perceive artistic skills rather than simply retrieving memorized knowledge (a
phenomenon called "LLM-biased visual hallucination"). The GalleryGPT framework notably
keeps the visual encoder frozen during the fine-tuning of the projection and LLM layers, an

alignment in methodological spirit with the present work [16]].
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4.3.3 Current Approach: Style and AI-Generated Art

While sharing goals with works like GalleryGPT in investigating art perception, the current
thesis presents a significant methodological distinction by incorporating the explicit compar-

ison of human-made versus Al-generated artworks.

The investigation utilizes datasets of classical human-made art alongside synthetic images
from collections like the Al-Pastiche dataset [18]. This critical duality allows the research to
probe a fundamental question: To what extent can CLIP, as an unmodified perceptual sys-
tem, recognize the subtle, systematic artifacts, inconsistencies, and aesthetic divergences in-

troduced by generative processes that mimic historical styles?.

The existing literature on CLIP adaptation primarily aims at enhancing performance through
the introduction of adapters such as CLIP-Adapter, TIP-Adapter, and APE, the development of
prompt optimization methods like CoOp and CoCoOp, or the integration of CLIP into large
multimodal models including BLIP-2, InstructBLIP, and ShareGPT4V. In contrast, the present
work adopts a different perspective. Rather than modifying or fine-tuning the model, this
thesis undertakes a fundamentally interpretative inquiry into CLIP’s native capabilities. The
vision encoder is treated as a fixed, pre-trained perceptual system, and the analysis seeks to
uncover the inductive biases and visual priors that emerge from contrastive pre-training alone.
This orientation is particularly important in the context of aesthetic evaluation, where the
objective is not to optimize downstream performance but to investigate the representational

limits of CLIP when confronted with nuanced artistic and stylistic judgments.

Existing studies indicate that while generative models can produce visually compelling out-
puts, they often fail to capture the deeper artistic principles, composition, and context of his-
torical styles, often defaulting to surface-level details and hyperrealism [18]. This research
focuses on detecting these critical shortcomings—such as failures in prompt adherence, com-
positional errors (e.g., missing figures), and stylistic artifacts, through the lens of CLIP’s raw
embeddings. Since prior analysis suggests that CLIP struggles with stylistic detail, period
attribution, and identifying visual defects in synthetic imagery, this work aims to provide a
structured critique of how CLIP’s latent space represents complex aesthetic attributes and dif-
ferentiates between authentic human creativity and statistical Al-driven imitation. By analyz-
ing the visual features of style and artifacts in Al-generated art, this thesis clarifies the distinct
space for research in critically evaluating the perceptual fidelity of foundational vision models
like CLIP.
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Chapter 5

Datasets and Experimental

Methodology

This chapter outlines the rigorous methodological framework used to empirically investigate
the perceptual capabilities and inherent biases of the CLIP model within the artistic domain.
It begins by detailing the primary data sources: the National Gallery of Art Dataset (NGAD),
which serves as a baseline of human-made art, and three collections of synthetic imagery: Al-
Pastiche, AI-ArtBench, and AI-WikiArt. This strategic combination of real and Al-generated
artworks facilitates a multifaceted assessment of CLIP’s performance. Subsequently, the chap-
ter describes the data preparation pipeline, including the generation of concise textual sum-
maries from artwork descriptions to meet CLIP’s input constraints. Finally, it details the ex-
perimental procedures for assessing image-text alignment, style recognition, and the model’s
ability to discern synthetic artifacts, thereby establishing the empirical foundation for the find-

ings presented in the subsequent chapter.

5.1 Dataset

To construct a comprehensive evaluation, this research utilizes four distinct datasets, each
selected to probe a specific aspect of CLIP’s analytical capabilities. The National Gallery of Art
Dataset (NGAD) provides a foundational corpus of authentic, human-created paintings. This
is complemented by three specialized Al-generated datasets: the Al-Pastiche dataset is used
for controlled evaluations of stylistic emulation and artifact detection; the AI-ArtBench dataset
offers a large-scale benchmark for both AI art detection and style classification; and the AI-
WikiArt dataset enables a robust, dual-domain assessment of artist attribution for real works

versus their Al-generated counterparts. Together, these datasets create a holistic environment
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for testing the core hypotheses of this thesis.

5.1.1 National Gallery of Art Dataset (NGAD)

The National Gallery of Art Dataset (NGAD), utilized in this research, is a subset derived from
the publicly available collection of over 130,000 pieces held by the National Gallery of Art
(NGA) in Washington. The creation of this dataset involved selecting 4,436 artworks, focusing
exclusively on paintings and drawings. Sculptures and modern artworks were deliberately

excluded, as these pieces might pose greater challenges for analysis by models such as CLIP.

The NGAD is richly annotated, with each record comprising 11 key attributes. These attributes

include:
+ "objectid": A unique identifier.
« "title": the title of the artwork.
« "period": the creation period.
« "artist": the artist or attribution.
« "link": a high-resolution image link provided via the IIIF protocol.

A defining feature of the dataset is the "description” attribute, which offers a detailed textual
representation of each artwork. These descriptions are structured to convey visual elements,

artistic techniques, and compositional aspects of the works.

The dataset covers a wide spectrum of historical periods and artistic styles, specifically re-
flecting a focus on European artistic traditions. The most heavily represented styles within
the collection include Impressionist (693 artworks), Baroque (677 artworks), Realist (584 art-

works) and Renaissance (535 artworks).

While core fields like "objectid", "title", "period", "artist", "link" and "style" are fully populated,
the dataset does contain some missing values for other fields, specifically: description (3180
instances missing), ‘technique’ (1708 instances missing), keyword® (906 instances missing),

"theme" (227 instances missing) and "school” (66 instances missing).

5.1.2 Al-Pastiche Dataset

The Al-Pastiche dataset is a curated collection of 953 Al-generated paintings specifically engi-
neered to mimic historical artistic styles. It originated from a larger research project dedicated
to providing a critical assessment of the capabilities and limitations of contemporary genera-

tive models in accurately replicating artistic styles of the past [[18].
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The creation of the Al-Pastiche dataset involved comparing twelve modern generative mod-
els, comprising DallE3, StableDiffusion1.5, StableDiffusion3.5large, Flux1.1Pro, Flux1Schnell,
Omnigen, Ideogram, Kolors1.5, FireflyImage3, LeonardoPheonix, MidjourneyVé6.1 and Auto-
Aestheticsvl. These models were evaluated using 73 meticulously crafted, uniform textual

prompts that span a broad range of painting styles across five centuries [18].
Key characteristics and content details include:

+ Scale and Curation: a total of over 20 images were generated per prompt across the
selected models, from which the highest-quality samples were manually selected to form

the final set of 953 images.

« Artistic Scope: The dataset covers a wide range of artistic periods, though a majority
of the paintings emulate styles from the XIX-th and XX-th centuries. The most heavily
represented artistic movements include Renaissance, Impressionism, Romanticism, and

Baroque.

+ Rich Annotation: The dataset is richly annotated with comprehensive metadata detailing
the generation process. This metadata includes the specific generative model used, the
full prompt text, the intended style and period, and a list of subject descriptors (e.g.,

"crowd", "landscape”, or "soft tones").

+ External Validation: The dataset creation included extensive user surveys designed to
collect feedback on the perceived "authenticity" and prompt adherence of the Al-generated

images.

The dataset is highly suitable for research into stylistic imitation, model benchmarking, user

perception studies, and applications like deepfake detection and digital forensics.

5.1.3 Al-Artbench

The Al-ArtBench dataset is a novel, extensive collection of artworks specifically introduced for
benchmarking artwork generation and evaluating models designed to detect and classify Al-
generated art and style. It originated from the efforts of researchers at Carnegie Mellon Univer-

sity and the University of California, Berkeley, within the context of the ArtBrain project [88].

The AI-ArtBench dataset comprises over 185,015 artistic images across 10 distinctive artistic
styles. A crucial characteristic of this dataset is its balance and comprehensiveness in repre-

senting both human and Al-generated content:

« Human-Created Art: It includes 60,000 human-drawn images, originally derived from

the ArtBench-10 dataset. This set provides 6,000 images for each of the 10 artistic styles.
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« Al-Generated Art: It contains 125,015 Al-generated paintings, which were synthesized
using two prominent diffusion-based models: Latent Diffusion and Stable Diffusion.
These models generated higher-quality images by conditioning the diffusion process

using textual embeddings.

« Artistic Styles: The dataset is annotated across 10 distinct styles, including major move-
ments like Baroque, Expressionism, Impressionism, Post-Impressionism, Realism, Re-

naissance, Romanticism, Surrealism, Art Nouveau, and Ukiyo-e.

+ Resolution and Format: The human-drawn images are provided at 256 x 256 resolution.

The synthetic images include versions in both 256 x 256 and higher 768 x 768 resolutions.

+ Quality and Annotation: ArtBench-10, the human-art subset, is notably characterized
as being class-balanced, high-quality, cleanly annotated, and standardized. This dataset

avoids the typical long-tail class distributions often seen in previous art datasets [88].

The dataset is highly class-balanced within its splits, ensuring an unbiased evaluation when

distinguishing between source models (Al vs. Human) and styles.

5.1.4 AI-WikiArt Dataset

The AI-WikiArt dataset, is a comprehensive collection originally compiled to facilitate the
systematic large-scale evaluation of Vision-Language Models (VLMs) in discerning artistic

authorship and identifying synthetically generated content [89].

The AI-WikiArt dataset is notable for its substantial scale and dual composition of authentic

and machine-generated art.

1. Real Paintings Subset: The dataset contains 39,530 real paintings. Only images that had
identifiable artists in the original metadata were retained, leading to the exclusion of
works labeled as "unknown". This curated set covers a wide diversity of art based on
annotations for 128 artists, spanning 10 genres, and representing 27 distinct styles. The

core metadata provided for each image includes the artist, genre, and style.

2. Al-Generated Counterparts: A defining characteristic is the creation of a matched set of
Al-generated counterparts designed to mimic the historical paintings. The process for

generating these images involved a two-step, automated pipeline:

« Caption Extraction: Descriptive captions for the original 39,530 real WikiArt im-

ages were extracted using the language model GPT4.1-mini.

+ Image Generation: These captions were subsequently used as textual prompts to
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generate imitation images using three powerful text-to-image models: Stable Dif-

fusion, Flux, and F-Lite.

The prompt used during generation was meticulously structured to request the AI models to
"Produce an image that closely resembles a painting by [correct painter], but is not an exact
copy of his works". This methodological choice ensured that the generated dataset remained
homogeneous with the real dataset in terms of image content and type, allowing for fair and

meaningful comparative experiments. Some examples of paintings in AI-WikiArt are in Figure

ID: 37472.jpg
Style: Impressionism — Artist: Childe Hassam

F-Lite

Generation prompt:
Produce an image that closely resembles a painting by Childe Hassam, but is hot an exact copy of his works: The image depicts a woman in a yellow
dress and hat holding a black umbrella on a rainy street, created using an impressionist painting technique with loose brushstrokes and vibrant colors.

ID: 26718.jpg
Style: Impressionism — Artist: Pierre Auguste Renoir

FLUX F-Lite Stable-Diffusion

Generation prompt:
Produce an image that closely resembles a painting by Pierre Auguste Renoir, but is not an exact copy of his works: The image depicts a softly rendered
portrait of a woman wearing a hat and a belted dress, created using a warm-toned pastel or chalk drawing technique.

ID: 18114.jpg
Style: Romanticism — Artist: Francisco Goya

Human FLUX F-Lite Stable-Diffusion

Generation prompt:
Produce an image that closely resembles a painting by Francisco Goya, but is not an exact copy of his works: The image depicts a person wearing a hat
playing a guitar, created using an etching technique with intricate cross-hatching for shading and texture.

Figure 5.1: Example of images present in AI-WikiArt Dataset
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5.2 Experimental Methodology

This section details the experimental framework designed to empirically investigate CLIP’s
ability to extract high-level semantic and stylistic information from artworks. Our investiga-
tion is guided by a central principle: to assess the native perceptual abilities of the pre-trained
CLIP model, treating it as a fixed perceptual system analogous to the human sensory apparatus.
In contrast to the extensive body of research focused on enhancing performance through adap-
tation, our approach deliberately avoids any modification to the core model. Consequently,
no fine-tuning, adapters, or prompt optimization techniques were employed. This method-
ological choice allows for a direct analysis of the inductive biases and visual priors encoded
in CLIP’s pretrained form, isolating the representational structures learned from contrastive

pre-training alone.

To achieve this, we designed a series of experiments to evaluate CLIP across multiple interpre-
tive dimensions. These experiments assess its capacity for fundamental image-text alignment,
its more nuanced understanding of artistic style, and its sensitivity to the visual characteristics
of Al-generated art by comparing its judgments on prompt adherence and synthetic artifacts
against human evaluations. Collectively, this framework provides a structured critique of how
CLIP’s latent space represents complex aesthetic attributes and to what extent its computa-

tional perception aligns with human interpretation.

5.2.1 Experiment 1: Image-Text Alignment

The first experiment was designed to quantitatively assess CLIP’s core capability: its ability
to align visual representations of artworks with their corresponding linguistic descriptions.
This task serves as a baseline for evaluating the model’s cross-modal understanding in the
artistic domain, probing the extent to which the shared embedding space captures meaning-
ful semantic correspondences between images and text. The experiment was systematically
conducted across both human-made and Al-generated datasets to investigate the robustness

of this alignment.

The underlying methodology for this experiment hinges on leveraging CLIP’s dual-encoder
architecture to project images and texts into a common, high-dimensional feature space, where
their semantic similarity can be measured. Formally, given an image /; and a text snippet 73,
their respective embeddings, v; € R” and t; € R”, are generated by the image encoder f;

and the text encoder fr:

o= fiD) )

tj = fr(T;) (5.2)
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The degree of alignment between the image and the text is then quantified by the cosine sim-
ilarity between their L2-normalized embedding vectors. The similarity score .S; ; is computed

as:
(A tj

[[oil[ll2;
This score, which ranges from -1 to 1, provides a quantitative measure of the semantic prox-

Sij (5.3)

imity between the visual and textual content in CLIP’s latent space.

This general procedure was specifically adapted to the unique characteristics of each dataset

used in this thesis:

- National Gallery of Art Dataset (NGAD): The experiment was performed on a cu-
rated subset of 1,521 artworks for which detailed curatorial descriptions were available.
For each image in this subset, we computed its cosine similarity against the textual sum-
maries of all 1,521 descriptions. This setup framed the task as an information retrieval
problem. The performance was evaluated using the Recall@k metric, which measures
the percentage of images for which the correct corresponding summary is ranked within

the top k most similar texts.

« Al-Pastiche Dataset: The analysis was conducted by calculating the alignment be-
tween each generated image and the summary of the textual prompt used to create it.
Given the comparatively small and repetitive set of unique prompts (73 in total), this
task was treated as a multi-class classification problem. The primary evaluation metric
was accuracy, defined as the proportion of images for which the corresponding prompt

summary achieved the highest similarity score among all possible prompts.

« AI-WikiArt Dataset: For this dataset, the experiment was focused exclusively on the
subset of Al-generated images. The alignment was calculated between each synthetic
artwork and the caption that was used as its generative prompt. In this case, there
are 39,471 prompts, each of which is used to generate 3 images with the 3 different
generative models, for a total of 118,590 images so it was evaluated as an information

retrieval task using the Recall@k metric.

A key methodological challenge had to be addressed before the alignment could be computed.
The CLIP architecture imposes a strict constraint on its text encoder, which can only process
a maximum sequence length of 77 tokens. This limitation was frequently exceeded by the de-
tailed, lengthy curatorial descriptions found in the NGAD, as well as by the elaborate prompts
used to generate images in the Al-Pastiche and AI-WikiArt datasets. A naive truncation of
these texts was deemed unacceptable, as it would lead to an arbitrary loss of potentially cru-

cial semantic and stylistic information. To overcome this, we implemented a systematic pre-
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processing step. We generated concise summaries of each description or prompt using Chat-
GPT 40-mini, explicitly instructing the language model to preserve the core elements—such as
subject, style, and period—within the condensed text. This procedure ensured that the textual
inputs were not only compliant with the model’s technical constraints but also semantically
faithful to the original source. In Appendix and there is an example of a summary
of NGAD image description summary and a summary of an Al-Pastiche image generation

prompt

To ensure a comprehensive analysis, this entire experimental procedure was replicated across
multiple pre-trained CLIP model variants, encompassing both ResNet-based and Vision Transformer-
based architectures. This allowed for a comparative study of how model capacity, architectural
design, and input resolution affect image-text alignment performance within the specialized

domain of fine art.

5.2.2 Experiment 2: Artistic Style Recognition

Moving beyond the direct alignment of semantic content, the second experiment was designed
to probe a more abstract and challenging dimension of CLIP’s perceptual capabilities: its ability
to recognize and classify artistic styles. This task is significantly more complex than match-
ing an image to a descriptive summary, as it requires the model to identify subtle, distributed
visual features (such as brushwork, color palette, composition, and texture) and map them
to high-level, culturally-defined concepts. The primary objective was to quantify CLIP’s na-
tive performance on this task and to investigate whether a simple supervised mapping could
improve upon the baseline zero-shot approach by better aligning the visual and textual em-

bedding spaces.

The investigation began with a standard zero-shot classification setup. For each of the C
distinct artistic styles present in the datasets, a standardized textual prompt was constructed
following the template: "an artwork in [style] style". These prompts were then encoded us-
ing CLIP’s text encoder to produce a set of style-representative textual embeddings {t.}<_;.
Concurrently, all images in the test set were processed by the image encoder to obtain their
corresponding visual embeddings {v;}¥,. The classification of an image v; was determined

by finding the style prompt ¢. that yielded the highest cosine similarity:

. v; - tc
§; = arg max ——— (5.4)
‘ ee{1,,C} [[ug|[[2]

For the NGAD dataset, performance was primarily assessed using Accuracy, Precision, Recall,
F1 and Recall@k metrics. For the Al-Pastiche dataset, where the labels correspond to the
intended style, the same procedure was applied. For the AI-Wikiart and AI-ArtBench datasets,
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the experiment was first conducted on the entire datasets and then on their respective human
and Al parts to test how well CLIP can distinguish between styles in human and AI works.

The metrics used are the same as those for NGAD and Al-Pastiche.

However, as anticipated and confirmed by preliminary results, this direct zero-shot approach
yields modest performance. This aligns with a well-documented limitation of CLIP: the model
exhibits a persistent gap between its strong grasp of semantic content and its weaker sensitiv-
ity to visual nuance. Its pre-training objective prioritizes the association between objects and
their textual labels, often causing it to conflate artworks that share a similar subject matter
but differ stylistically. This semantic dominance necessitates more sophisticated methods to

explicitly guide the model’s focus toward stylistic features.

Context: Advanced Adaptation and Alignment Methods

The challenge of fine-grained classification in CLIP has motivated the development of numer-
ous adaptation techniques designed to enhance its performance. These methods serve as an

important theoretical context for our own approach.

One prominent example is Adaptive Prior rEfinement (APE) [78]], a method designed to im-
prove CLIP’s efficiency and accuracy in few-shot learning for downstream vision tasks. Its

key actions are:

+ Refinement of Prior Knowledge: APE refines CLIP’s pretrained knowledge by an-
alyzing its visual representations, starting from the observation that not all extracted
visual features are equally meaningful along the channel dimension for specific down-

stream tasks.

+ Prior Refinement Module: The core of the method is a module that adaptively selects

the most significant feature channels based on two main criteria:

— Inter-Class Similarity: The module seeks to minimize similarity between different

classes, thereby identifying the most discriminative channels for classification.

— Intra-Class Variance: It aims to eliminate feature channels that remain nearly con-
stant across various categories, as these provide little to no discriminative infor-

mation.

+ Efficiency Improvement: By maximizing inter-class disparity on the few-shot training
data, APE effectively discards redundant information. This not only improves accuracy
but also reduces the cache size required for inference, ensuring high computational ef-

ficiency.
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In its training-free variant, APE explores trilateral affinities among the test image, a cache
model, and textual representations for robust recognition. The trainable version (APE-T) in-

troduces a lightweight module of category residuals.

Another advanced approach, Selective Vision-Language Subspace Projection (SSP) [[4]], directly
addresses the feature alignment problem in CLIP. The SSP method focuses on reducing modal-
ity gaps, which occur when text and image features corresponding to the same concept lie far

apart in the unified feature space. The main characteristics of SSP are:

1. Subspace Projection: SSP is a training-free method that leverages local image features

as a bridge to improve the alignment between global text-image pairs.

2. Vision Projector: It uses local image feature regions that are most similar to the global
image features to construct a unified "vision subspace". The global image features are

then projected into this space for better alignment.

3. Language Projector: For each class, it uses local image features that exhibit high se-
mantic correlation with the corresponding text features to construct a class-specific "lin-
guistic subspace". The text features are then projected into their respective linguistic

subspaces.

4. Matrix-Based Computations: As a training-free method, SSP involves only matrix
computations, such as Singular Value Decomposition (SVD), and can be integrated into

existing frameworks like APE to further improve classification performance.

Proposed Method: Style Classification via Cross-Modal Alignment

While complex methods like SSP offer a sophisticated, training-free approach to the modality
gap, and techniques like APE focus on optimizing performance in few-shot scenarios, our re-
search takes a different methodological path. We adopt simpler, supervised methods (primarily
a direct Linear Probe and our proposed Cross-Modal Alignment) not with the primary goal of
outperforming these specialized techniques, but to use them as diagnostic tools. Our objective
is to investigate the fundamental structure of CLIP’s latent space and to determine to what
extent stylistic information is linearly separable and alignable. To contextualize our findings,
we did, however, benchmark our methods against APE to assess their performance relative to
a well-established adaptation technique. Our primary proposed method, Cross-Modal Align-

ment via logistic regression, is detailed below.

This experiment aims to evaluate CLIP’s capability to recognize and align artworks with their
corresponding artistic styles, leveraging both its image and text embedding spaces. Our ob-

jective is to examine whether the visual features extracted by CLIP can be effectively mapped
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into the semantic space induced by textual style descriptions, thereby enabling accurate cross-

modal retrieval and classification.

We consider a dataset D = {(z;,v;)},, where each image x; is annotated with a style label

yi € {1,...,C}. Two sets of embeddings are extracted:

. Visual embeddings v; € R”, obtained by encoding each image with CLIP’s image

encoder.

« Textual embeddings ¢, € R”, computed for each style ¢ by encoding the prompt "an
artwork in {style} style".

Our key finding was that classification performance improved substantially when using un-
normalized embeddings, suggesting that the magnitude of the feature vectors carries impor-
tant discriminative information for style, which is discarded during L2 normalization. Conse-

quently, all subsequent steps were performed on unnormalized embeddings.

To bridge the modality gap, we first characterized the structure of each space independently by
training separate multiclass logistic regression classifiers. A classifier was trained on the visual

RCXD

embeddings to learn a weight matrix Wi, € , where each row vector w™® corresponds

to the learned decision boundary for style c. An analogous classifier was trained on the textual

embeddings to yield a weight matrix Wi, € RE*P.

These learned weight matrices implicitly capture the modality-specific features most relevant
for style discrimination. We leveraged them to construct a linear transformation matrix 7' €

RP*D designed to project visual embeddings into the semantic space of the textual classifier:

T = Wy Wimg (5.5)

This transformation is derived by solving the ordinary least squares problem to find the opti-
mal mapping from the visual classifier’s weights to the textual classifier’s weights. The trans-
formed representation of a visual embedding v; is then given by v, = T'v;, which is intended

to be semantically aligned with its corresponding textual style embedding.

Finally, the similarity between a transformed visual embedding v, and a textual style embed-

ding t. is computed as their dot product:
Sei =t v, =t]Tv

This produces a similarity matrix S € R“*", Performance was assessed in both classification
and retrieval scenarios, using accuracy, precision, recall and macro-averaged F1-score for the

former, and Recall@k for the latter. This approach not only provides a robust measure of
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CLIP’s style recognition accuracy but also offers insights into the degree of linear separability
and semantic alignment between its visual and textual embedding spaces for the complex task

of style perception.

5.2.3 Experiment 3: Adherence Analysis (on AI-Pastiche)

While the previous experiments quantified CLIP’s ability to perform classification tasks on dis-
crete labels (retrieving a description or identifying a style), this third experiment delves into a
more nuanced and subjective problem: evaluating the model’s capacity to assess the quality of
alignment between a generative prompt and its resulting image. The primary objective is to
determine whether CLIP’s quantitative measure of similarity correlates with qualitative hu-
man judgments of prompt adherence. This is a critical test, as any discrepancy would highlight
a divergence between the model’s learned feature space and the perceptual cues that humans

deem important for semantic and stylistic consistency.

The experiment was conducted exclusively on the Al-Pastiche dataset, which is uniquely
suited for this analysis due to its associated human evaluation data. As detailed in [[18]], an
extensive adherence survey was conducted where human participants were shown a set of
images generated by different models from the same textual prompt. In a comparative setting,
they were asked to rate each image as "good", "neutral", or "bad" based on its perceived adher-
ence to the prompt. By averaging the responses from multiple participants, the authors of the
dataset derived a continuous adherence score for each image, which serves as a ground-truth

measure of perceived stylistic and semantic alignment.

To investigate whether CLIP captures similar perceptual cues, we designed a parallel analysis

using the model’s native similarity scores. The procedure was as follows:

1. For each of the unique textual prompts P; in the Al-Pastiche dataset, we first computed

its corresponding text embedding ¢; using CLIP’s text encoder.

2. For each image I; generated from prompt P;, we computed its image embedding v; using
CLIP’s image encoder.

’Ui-t i
ToulisT
its corresponding prompt embedding. This produced a raw "CLIP adherence score" for

3. The cosine similarity S;; = was calculated between the image embedding and

each image.

4. To enable a direct comparison with the human-derived scores, the vector of CLIP’s sim-

ilarity scores for a given prompt was normalized and scaled.

Finally, to quantify the degree of alignment between machine and human perception, we com-
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puted the cosine similarity between the vector of CLIP’s normalized similarity scores and the
vector of human adherence scores. This cosine similarity serves as a synthetic measure of how
well CLIP’s assessments align with human perception. A high positive cosine similarity would
suggest that the features CLIP deems important for similarity are congruent with those valued

by human observers, while a low cosine similarity would indicate a significant perceptual gap.

This entire procedure was systematically repeated across all available CLIP model variants to
assess whether architectural differences influence the model’s ability to emulate human-like

judgment of generative quality.

5.2.4 Experiment 4: Perception of Artifacts and Deformations (on AI-

Pastiche)

The final experiment addresses a critical aspect of evaluating Al-generated art: the presence of
visual artifacts. Human assessment of prompt adherence is not solely based on semantic and
stylistic correspondence; it is also heavily influenced by the overall technical quality of the
image, specifically the absence of the characteristic distortions, inconsistencies, and anatom-
ical errors common in generative models [18]. This experiment was designed to investigate
whether CLIP’s internal representations are sensitive to such structural flaws. The core hy-
pothesis is that CLIP, having been pre-trained to prioritize semantic content, may be largely
"blind" to low-level artifacts that do not significantly alter the high-level interpretation of a

scene.

This investigation leverages the human-annotated survey data from the Al-Pastiche dataset,
which specifically targeted the presence of visible artifacts. In the survey, defects were cate-

gorized as:
« Major: Clearly visible or frequent errors (e.g., severe anatomical mistakes).
« Minor: Less critical imperfections (e.g., extra fingers, small distortions).
« None: No apparent visual defects.

From these evaluations, each image in the dataset was assigned a continuous defect score,

providing a ground-truth measure of its perceived technical quality.

Our analysis proceeded in two stages. First, we conducted a direct test to determine if artifact-
related information could be linearly decoded from CLIP’s visual embeddings. We attempted
to predict the human-annotated defect score (d;) using the CLIP image embedding (v;) as in-
put to a linear regression model. This initial approach yielded a coefficient of determination

(R?) close to zero, providing strong evidence that CLIP’s global feature representations do not
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explicitly or linearly encode information about such visual flaws.

Second, to further explore the impact of this perceptual "blindness", we designed an experiment
to test whether augmenting CLIP’s similarity score with external artifact information could
improve its alignment with overall human adherence judgments. We introduced a linear com-
bination model that integrates CLIP’s perceptual similarity score with the human-annotated
defect score. Given the normalized perceptual similarity $; for image ¢ (from Experiment 3)

and its defect score d;, we compute a new predicted adherence score ¥; as:
g1:a§2+bdz+c (5.6)

where a and b are learned coefficients representing the weights of CLIP’s similarity and the
defect information, respectively, and c is a bias term. The optimal coefficients are estimated by
minimizing the squared error between the model’s prediction g; and the true human-annotated

adherence score y;, using the ordinary least squares method:

n

mbin (yi — (a-3 +b-di +¢))’ (5.7)
“P=

Finally, the resulting amended score vector y is compared to the human adherence vector y by
computing their correlation. An increase in correlation compared to the results from Experi-
ment 3 would provide indirect but compelling evidence that CLIP’s evaluation of adherence is
missing a critical component, sensitivity to artifacts, that is central to human perception. This
outcome would underscore a fundamental limitation in using CLIP as a standalone evaluator

for the quality of generated art.
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Chapter 6
Experimental Results and Analysis

Following the methodological framework established in Chapter[5] this chapter presents and
critically analyzes the empirical results obtained from the series of experiments designed to
probe CLIP’s perceptual capabilities in the artistic domain. The objective is to translate the
experimental procedures into quantitative data and qualitative insights, thereby forming a
comprehensive assessment of the model’s strengths, weaknesses, and intrinsic biases when

confronted with human-made and Al-generated art.

The analysis is structured to mirror the sequence of the experiments, progressing from a foun-
dational assessment of cross-modal alignment to more nuanced evaluations of stylistic per-
ception and human-centric judgments. We begin by examining the results of the image-text
alignment task, which serves as a baseline for CLIP’s core semantic understanding. Subse-
quently, we delve into the more challenging task of artistic style recognition, comparing the
model’s performance across different datasets and evaluation strategies. The final sections
are dedicated to a direct comparison between CLIP’s computational assessments and human
perception, focusing on the subjective evaluation of prompt adherence and the model’s sensi-
tivity (or lack thereof) to synthetic artifacts in Al-generated images. Collectively, these results
provide a data-driven critique of how CLIP "sees" art, revealing the extent to which its com-

putational perception aligns with, and diverges from, human interpretation.

6.1 Image-Text Alignment Results (Experiment 1)

6.1.1 Quantitative Analysis on NGAD

The initial experiment provides a foundational assessment of CLIP’s core cross-modal align-

ment capability within the domain of human-created art. The results for the image-to-summary
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retrieval task on the NGAD are presented in Table This task was framed as an information
retrieval problem, where each of the 1,521 artworks was matched against the entire corpus of

1,521 textual summaries, with performance measured using the Recall@k metric.

Model recall@1 recall@5 recall@10
RN50 0.663 0.915 0.966
RN101 0.693 0.926 0.966
RN50x4 0.741 0.946 0.978
RN50x16 0.791 0.964 0.988
RN50x64 0.828 0.970 0.990
ViT-B/32 0.678 0.925 0.970
ViT-B/16 0.709 0.928 0.969
ViT-L/14 0.794 0.972 0.989
ViT-L/14@336px 0.814 0.974 0.991

Table 6.1: Summary-image alignment performance on the NGAD subset. The table shows Recall@k scores for
various CLIP model architectures, demonstrating the model’s ability to retrieve the correct textual summary for

a given artwork.

The results reveal a clear and consistent trend: performance in aligning images with their
textual descriptions improves directly with the scale and capacity of the CLIP models. This

holds true for both the ResNet and Vision Transformer (ViT) architectural families.

Within the ResNet-based models, there is a steady improvement in recall scores as the model
size increases. The baseline RN50 achieves a Recall@1 of 66.3%, which progressively climbs to
a robust 82.8% for the RN50x64 model, the top performer in this family. This indicates that the
increased computational capacity allows the model to capture more nuanced visual features
that are essential for distinguishing between artworks with potentially similar subjects or

compositions.

A similar pattern is observed for the ViT-based models. The larger architectures and, notably,
higher input resolutions, lead to superior alignment. The "ViT-L/14@336px" model, which
processes images at a higher resolution, achieves the best overall performance among the
transformer variants and is the top performer at higher recall thresholds, with a Recall@5 of
97.4% and a Recall@10 of 99.1%. This suggests that for fine-grained association tasks, such as
matching a detailed artwork to a concise summary, increased input resolution provides critical

visual information that enhances the model’s discriminative power.

Overall, the high recall scores across the board confirm that CLIP’s fundamental ability to map
visual and linguistic concepts to a shared semantic space is highly effective, even in the spe-
cialized and complex domain of fine art. The best models, "RN50x64" and "ViT-L/14@336px",
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demonstrate a remarkable capacity to correctly identify the specific textual description for an
artwork out of over 1,500 possibilities more than 80% of the time on the first attempt. This
strong baseline performance in capturing semantic content serves as a crucial point of com-
parison for the more abstract and challenging task of style recognition, which will be examined

in the following section.

6.1.2 Quantitative Analysis on Al-Pastiche and AI-WikiArt

To complement the analysis on human-created art, the image-text alignment experiment was
extended to two datasets composed of Al-generated images: Al-Pastiche and AI-WikiArt. This
phase of the investigation was designed to assess CLIP’s ability to form semantic correspon-
dences when dealing with synthetic visual data, providing insight into both the model’s ro-

bustness and the output quality of the generative systems themselves.

Performance on Al-Pastiche

The Al-Pastiche dataset, with its structure of multiple images generated from a limited set of
73 distinct prompts, framed the alignment task as a multi-class classification problem. The
results, presented in Table show a consistently high level of accuracy across all evaluated

CLIP model variants.

Model ‘ RN50 RN101 RN50x4 RN50x16 RN50x64 ViT-B/32 ViT-B/16 ViT-L/14 ViT-L/14@336px
Accuracy ‘ 0.866 0.887 0.891 0.893 0.896 0.881 0.880 0.896 0.896

Table 6.2: Accuracy of different CLIP models in matching generated images with their corresponding summa-

rized prompts in the Al-Pastiche dataset.

Performance is strong across the board, with every model exceeding 86% accuracy. The top-
performing models ("RN50x64", "ViT-L/14", and "ViT-L/14@336px"), all achieve an impressive
accuracy of 89.6%. This task is inherently simpler than the retrieval task on NGAD, as the
model only needs to distinguish between 73 relatively distinct semantic concepts. Neverthe-
less, these results confirm CLIP’s robust capability to capture visual-semantic correspondences

even in synthetically generated image-text pairs.

From a generative standpoint, the high accuracy scores indicate that the underlying image
generation models were largely successful in producing outputs that are semantically aligned
with the subject matter described in the prompts. The mean cosine similarity between each
generated image and its corresponding prompt summary is 0.278, with a standard deviation
of 0.344. However, this finding comes with a critical caveat: while cosine similarity proves ef-

fective for associating an image with its intended prompt, its reliability as a standalone metric
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for evaluating the overall quality of the generation is uncertain. A comprehensive assessment
of quality requires evaluating not only the semantic correspondence but also the stylistic fi-
delity and technical execution, including the absence of visual artifacts. This limitation will

be addressed in subsequent experiments.

Performance on AI-WikiArt

The AI-WikiArt dataset presented a different and more demanding challenge. The experi-
ment was focused exclusively on its large Al-generated subset, which contains 118,590 images
generated from 39,471 unique prompts, where each prompt was used to create three distinct
images via three different generative models. This structure framed the task as a large-scale
information retrieval problem, where for each image, the model had to retrieve the correct
generative prompt from the entire corpus of nearly 40,000 candidates. The results for this task

are presented in Table

| Accuracy Precision Recall F1 Recall@1 Recall@5 Recall@10
AI-WikiArt (AI) | 0.4258 0.4719 0.4262 0.4057 0.4258 0.6565 0.7416

Table 6.3: Prompt-image alignment performance for the Al-generated subset of the WikiArt dataset, measured
with the "ViT-L/14@336px" architecture.

The performance on the AI-WikiArt dataset is noticeably lower than that observed on NGAD,
with a Recall@1 of just 42.58%. This disparity is attributable to two main factors that sig-
nificantly increase the complexity of the task. First is the sheer scale of the retrieval space:
discriminating the correct prompt from a pool of nearly 40,000 candidates is substantially more
difficult than from the 1,521 candidates in the NGAD experiment. Second is the nature of the
textual data itself. The prompts in AI-WikiArt, having been generated by an LLM to be de-
scriptive, are far more varied, complex, and nuanced than the concise, structured summaries
used for the NGAD experiment. This creates a much denser and more semantically complex
space for retrieval, where subtle differences in phrasing can lead to lower similarity scores and
incorrect rankings. The results underscore how sensitive retrieval performance is to both the
scale and the nature of the text corpus, even when the underlying visual-semantic alignment

capability of the model remains constant.

6.1.3 Qualitative Error Analysis

While the quantitative results demonstrate a strong overall performance in matching images
to their correct textual descriptions, a qualitative analysis of the model’s failures is essential
for understanding the nature and limitations of its semantic understanding. These errors re-

veal that while CLIP successfully captures high-level thematic content, it often falters when

46



confronted with finer-grained semantic details, stylistic nuances, and specific contextual in-

formation.

A representative example of such a misclassification on the NGAD dataset, committed by
the "ViT-L/14@336px" model, is presented in Figure The model incorrectly associated a
Baroque painting by Canaletto with a summary describing a Rococo work by Jean-Honoré

Fragonard.

Figure 6.1: An example of a summary misclassification on the NGAD dataset. The model incorrectly associates

Canaletto’s Baroque landscape with the description of a Rococo scene by Fragonard.

Actual Artwork: A Baroque painting by Canaletto.

In this Baroque painting by Canaletto (1751-1775), sunlight illuminates a vibrant landscape
featuring an arched stone ruin, a bridge, and a river. Scattered figures in colorful attire engage
with nature, while buildings and churches rise on a distant hill. The scene is rich with detail,

showcasing Venetian life and architecture.
Incorrectly Predicted Summary:

In this Rococo painting by Jean Honoré Fragonard (1751-1775), a lively scene unfolds in a
lush park where light-skinned figures enjoy leisure by a river. A couple in elegant attire
sits nearby, while boys engage in playful horse-riding games. Tall trees frame the idyllic

landscape, enhancing the theme of amusement.

The incorrect predicted summary description corresponds to artwork in the Figure
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Figure 6.2: Actual artwork that corresponds to the Jean Honoré Fragonard artwork description

At a coarse semantic level, the confusion is understandable. Both the image and the predicted
summary describe an 18th-century European landscape painting featuring figures near water
and architectural or natural elements. CLIP correctly identifies the general scene composition.

However, a closer inspection reveals critical failures in comprehension:

+ Content Mismatch: The model overlooks the specific, defining objects in the painting.
The prominent architectural features—an arched stone ruin and a bridge—are central
to Canaletto’s work, but they are entirely absent from the predicted summary, which

instead describes a generic "lush park" and "tall trees".

« Stylistic and Contextual Mismatch: The model confuses two distinct artistic styles
and cultural contexts. It misattributes a Venetian veduta, characteristic of the Baroque
period’s detailed cityscapes, to a French Rococo féte galante, which typically depicts
idyllic and leisurely aristocratic scenes. This error foreshadows the difficulties in fine-

grained style recognition that will be explored in the next section.

« Atmospheric Mismatch: The actual summary correctly captures the scene’s focus on
"Venetian life and architecture”, while the predicted summary evokes a different mood

of "amusement" and "playful games", which is not the primary theme of the artwork.

This example is emblematic of a broader pattern in CLIP’s errors. It demonstrates that the
model’s alignment is predominantly driven by high-level object and scene recognition. While
it can successfully identify broad categories like "landscape with figures", it struggles to dif-
ferentiate based on the specific attributes of those objects, their artistic rendering, or their
historical and cultural significance. This highlights a fundamental gap between coarse seman-

tic matching and true, nuanced visual comprehension.
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6.2 Artistic Style Recognition Results

Having established CLIP’s robust performance in aligning images with their direct semantic
descriptions, this section transitions to a more abstract and challenging dimension of its per-
ceptual capabilities: the recognition of artistic style. This task moves beyond the identification
of objects and scenes, probing the model’s sensitivity to the subtle, distributed visual features
(such as brushwork, color palette, composition, and texture) that constitute an artistic style.
As foreshadowed by the qualitative errors in the previous section and consistent with the liter-
ature on CLIP’s semantic biases, this high-level classification is expected to be a significantly

more difficult task for a model pre-trained to prioritize content over form.

The primary objective of this section is to quantitatively evaluate CLIP’s native competence in
style recognition and to investigate the degree to which this information is encoded within its
visual feature space. To this end, we present a multi-faceted analysis. We begin by establishing
a baseline with the standard zero-shot classification approach. We then explore two supervised
methods, a linear probe and a cross-modal alignment, to determine whether stylistic informa-
tion is linearly separable and generalizable, a critical test of true stylistic understanding versus

dataset-specific pattern recognition.

6.2.1 Baseline Zero-Shot Performance

The baseline for assessing CLIP’s intrinsic capability for artistic style recognition was estab-
lished via the standard zero-shot classification paradigm. In this approach, image embeddings
are directly compared against text embeddings synthesized from prompts formatted as "an
artwork in [style] style". The results from this experiment, utilizing the "ViT-L/14@336px"
architecture across all evaluated datasets, are systematically presented in Table

Dataset Accuracy Precision Recall F1 Recall@1 Recall@3 Recall@5
NGAD 0.3006 0.3578 0.3173 0.2303 0.3006 0.6080 0.7189
Al-Pastiche 0.4974 0.4499 0.4454 0.3830 0.4974 0.7696 0.8429
AI-WikiArt (Human + Al) 0.3281 0.3478 0.4808 0.2894 0.3281 0.6189 0.7607
AI-WikiArt (Human) 0.3664 0.4059 0.4630 0.3210 0.3664 0.5850 0.7189
AI-WikiArt (AI) 0.1490 0.2622 0.3050 0.1806 0.1490 0.3822 0.5454
Al-ArtBench (Human + AI) 0.6378 0.7096 0.6380 0.6367 0.6378 0.8830 0.9554
Al-ArtBench (Human) 0.5516 0.5727 0.5516 0.5156 0.5516 0.8336 0.9370
Al-ArtBench (AI) 0.6754 0.7750 0.6764 0.6841 0.6754 0.9053 0.9657

Table 6.4: Results of Artistic Style Recognition with zero-shot approach with CLIP model using "ViT-
L/14@336px" architecture

The empirical data confirm that direct zero-shot style classification constitutes a formidable
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challenge for the CLIP model. On the NGAD, a corpus of human-created artworks, the model
achieves a modest top-1 accuracy of 30.06%. This figure highlights the model’s inherent dif-
ficulty in distinguishing between nuanced and often inter-related artistic styles based solely
on its pre-trained representational space. Nevertheless, the Recall@3 (60.80%) and Recall@5
(71.89%) metrics are informative, revealing that while the primary prediction is often inac-
curate, the correct stylistic category is frequently present within the top-k predictions. This
indicates that while the latent space encodes some measure of stylistic affinity, it lacks the

requisite discriminative granularity for precise classification.

6.2.2 Performance with Linear Probing

To further isolate and evaluate the richness of the visual feature space, a linear probing exper-
iment was conducted. This standard evaluation protocol involves training a linear classifier
(logistic regression) directly on the frozen visual embeddings, thereby measuring how linearly
separable the style classes are within the image modality alone, without reference to the text

encoder’s semantic space.

Intra-Dataset Performance

To establish a baseline for supervised performance, each dataset was individually split into an
80% training set and a 20% testing set. A linear probe (logistic regression) was then trained on

the embeddings of the training split and evaluated on the corresponding test split.

A critical preliminary finding was the significant impact of embedding normalization. The
contrastive pre-training objective of CLIP utilizes L2-normalized embeddings for its cosine
similarity calculations. However, our experiments revealed that the magnitude of the feature
vectors, which is discarded during normalization, contains substantial discriminative infor-
mation pertinent to artistic style. The results, presented in Tables (normalized) and

(unnormalized), demonstrate this effect.

Accuracy Precision Recall F1
NGAD 0.7074 0.7418 0.7074 0.7122
Al-Pastiche 0.8482 0.8709 0.8482 0.8433
AI-WikiArt (Human + Al) 0.5380 0.5917 0.5380 0.5522
AI-WikiArt (Human) 0.7239 0.7408 0.7239 0.7278
AI-WikiArt (AI) 0.4884 0.5521 0.4884 0.5052
AI-ArtBench (Human + AI) 0.8635 0.8630 0.8635 0.8631
Al-ArtBench (Human) 0.7523 0.7514 0.7523  0.7518
AI-ArtBench (AI) 0.9471 0.9472 0.9471 0.9471

Table 6.5: Results of Artistic Style Recognition with linear probe method using CLIP "ViT-L/14@336px" archi-

tecture with normalized embedding (trained and tested on 80/20 splits of the same dataset).

50



Accuracy Precision Recall F1
NGAD 0.7771 0.7825 0.7771 0.7775
Al-Pastiche 0.9581 0.9692 0.9581 0.9602
AI-WikiArt (Human + Al) 0.5509 0.5971 0.5509 0.5635
AI-WikiArt (Human) 0.7528 0.7593 0.7528 0.7543
AI-WikiArt (AI) 0.5056 0.5608 0.5056 0.5206
AI-ArtBench (Human + AI) 0.8718 0.8713 0.8718 0.8715
AlI-ArtBench (Human) 0.7495 0.7489 0.7495  0.7491
AI-ArtBench (AI) 0.9533 0.9534 0.9533 0.9533

Table 6.6: Results of Artistic Style Recognition with linear probe method using CLIP "ViT-L/14@336px" archi-

tecture with not normalized embedding (trained and tested on 80/20 splits of the same dataset).

The use of unnormalized embeddings proved critical. As shown by comparing the two tables,
forgoing normalization consistently and significantly improved classification accuracy. For
instance, on the NGAD, accuracy increased from 70.74% to 77.71%. This reinforces the conclu-
sion that vector magnitude in CLIP’s feature space is a key carrier of stylistic information. All
subsequent analysis is therefore based on the results from unnormalized embeddings in Table

6.6l

The high accuracy achieved with this method, especially the exceptional 95.81% on Al-Pastiche,
was initially promising. However, this particular result is misleading. Given the small size of
the Al-Pastiche dataset and the fact that many images were generated from identical prompts,
the random 80/20 split resulted in near-duplicate images appearing in both the training and
testing sets. This means the model likely learned to recognize superficial patterns specific to

those prompts rather than generalizable stylistic features.

Cross-Dataset Generalization Test

The high intra-dataset scores suggested potential overfitting. To test for true stylistic gener-
alization, we conducted a more rigorous cross-dataset evaluation. We trained a single logistic
regression classifier exclusively on the AI-WikiArt (Human) training data and tested its perfor-
mance on the entirety of the other datasets, mapping styles between them. The results, shown
in Table[6.7] confirm our hypothesis: performance declined significantly across all datasets, re-
vealing that the model had learned dataset-specific patterns rather than abstract, transferable

style concepts.
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Dataset Accuracy Precision Recall F1

AI-WikiArt (Human) (test split) 0.7654 0.7719 0.7654  0.7670
NGAD 0.4729 0.5784 0.4729 0.4831
Al-Pastiche 0.3452 0.6018 0.3452 0.3682
AlI-ArtBench (Human+AI) 0.5267 0.6410 0.5267  0.5498
Al-ArtBench (Human) 0.6024 0.6924 0.6024 0.6068
Al-ArtBench (AI) 0.4905 0.6032 0.4905 0.5093
AI-WikiArt (AI) 0.3088 0.4110 0.3088 0.3087

Table 6.7: Results of Artistic Style Recognition with linear probe method trained on AI-WikiArt (Human) and

tested on other datasets.

The accuracy on Al-Pastiche plummeted from 95.81% to 34.52%, reinforcing the conclusion
that the earlier result was due to pattern recognition of near-duplicates. The performance on
the AI-ArtBench (AI) subset is also revealing. While it dropped from 95.33% to 49.05%, this
score is still anomalously high. This is attributable to a "shared inductive bias": the genera-
tive models used for AI-ArtBench (Latent and Standard Diffusion) are themselves conditioned
on CLIP. They were prompted with simple text ("A painting in <art style> art style"), with
variation introduced only by changing the seed. This process creates outputs optimized for
CLIP’s perceptual space, where images of the same style are visually very similar and cluster
tightly together. As shown in Figure an image from this dataset and its nearest neigh-
bor in CLIP’s embedding space can be nearly identical. Consequently, the high accuracy on
AlI-ArtBench (Al) is considered negligible as it merely exposes CLIP’s bias rather than demon-

strating genuine style recognition.

6.2.3 Performance with Supervised Cross-Modal Alignment
Intra-Dataset Performance

Next, we investigated whether the modality gap for artistic style could be bridged by learning
an explicit mapping from the visual to the textual space. We employed a supervised cross-
modal alignment method (detailed in Chapter [5), which learns a linear transformation (T') to
project CLIP’s unnormalized visual embeddings into the semantic space of the textual style

descriptors. The model was trained and tested on an 80/20 split of each dataset.

The results, shown in Table initially suggested this was a highly effective approach, sub-
stantially improving performance over the zero-shot baseline. Accuracy on the NGAD dataset
surged to 74.29%, and the model achieved even higher scores on cleaner datasets, reaching
93.72% on Al-Pastiche and 92.18% on the Al-generated subset of Al-ArtBench. The success
of this method on intra-dataset splits indicates that the modality gap is not chaotic but struc-

turally coherent within a specific dataset. The fact that a linear transformation can bridge the
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Figure 6.3: Example of Al-ArtBench generated images and their nearest neighbor, demonstrating the visual

similarity that leads to inflated performance metrics.

spaces suggests that the geometric relationships between style concepts are analogous across
both modalities, just oriented differently. However, these high scores must be interpreted with
caution, as they likely reflect the same overfitting to dataset-specific patterns observed in the

linear probing experiment.

Dataset Accuracy Precision Recall F1 Recall@1 Recall@3 Recall@5
NGAD 0.7429 0.6517 0.6517 0.6304 0.7429 0.9554 0.9863
Al-Pastiche 0.9372 0.9372 0.9665 0.9450 0.9372 1.0000 1.0000
AI-WikiArt (Human + AI) 0.3116 0.4455 0.4838 0.3784 0.3116 0.5576 0.6939
AI-WikiArt (Human) 0.6505 0.6306 0.7164 0.6230 0.6505 0.9089 0.9652
AI-WikiArt (AI) 0.2961 0.4244 0.4556 0.3627 0.2961 0.5333 0.6762
Al-ArtBench (Human + Al) 0.8304 0.8516 0.8302 0.8331 0.8304 0.9691 0.9905
Al-ArtBench (Human) 0.6809 0.7362 0.6809 0.6763 0.6809 0.9170 0.9755
Al-ArtBench (AI) 0.9218 0.9348 0.9222 0.9208 0.9218 0.9966 0.9998

Table 6.8: Results of Artistic Style Recognition with cross-alignment method using CLIP "ViT-L/14@336px"

architecture with not normalized embedding

Cross-Dataset Generalization Test

To verify this suspicion, we conducted the same cross-dataset experiment with the cross-modal
alignment method. The alignment transformation was trained only on the AI-WikiArt (Hu-

man) dataset and then tested on all other datasets. The results are presented in Table
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Dataset Accuracy Precision Recall F1 Recall@1 Recall@3 Recall@5
AI-WikiArt (Human) 0.6486 0.6111 0.6915 0.5943 0.6486 0.9091 0.9694
NGAD 0.4499 0.2840 0.2291 0.2283 0.4499 0.7523 0.8678
Al-Pastiche 0.3998 0.2767 0.2049 0.2153 0.3998 0.7153 0.8683
Al-ArtBench (Human + AlI) 0.4625 0.2693 0.1980 0.2149 0.4625 0.8225 0.9327
Al-ArtBench (Human) 0.5202 0.2803 0.2229 0.2289 0.5202 0.8149 0.9111
AI-ArtBench (AI) 0.4350 0.2752 0.1865 0.2034 0.4350 0.8261 0.9431
AI-WikiArt (AI) 0.2779 0.2899 0.3325 0.2638 0.2779 0.5650 0.7142

Table 6.9: Cross-dataset results of the Supervised Cross-Modal Alignment method trained on AI-WikiArt (Hu-

man).

As with the linear probe, the cross-dataset performance dropped dramatically. The accuracy
on NGAD fell from 74.29% to 44.99%, and on Al-Pastiche from 93.72% to 39.98%. This confirms
that the supervised alignment, while powerful, also overfits to the source dataset’s specific
patterns and biases. It learns a mapping that is effective for a particular data distribution but
fails to capture the abstract essence of artistic style required for generalization. Therefore,
the high intra-dataset performance validates that stylistic information is robustly encoded,
but this information can only be "unlocked" in a way that is highly sensitive to the training

domain, failing to bridge the modality gap in a universally applicable manner.

6.2.4 Comparative Analysis: Human-Created vs. AI-Generated Art

The cross-dataset generalization results reveal a clear pattern: the linear probe trained on hu-
man art performs consistently better on other datasets of human art than on those containing
Al-generated images. For instance, the accuracy on Al-ArtBench (Human) is 60.24%, whereas
it drops to 49.05% on the corresponding Al-generated subset. This suggests that while the
model learns patterns from human art, these patterns are less applicable to synthetic images,

which may lack the coherent stylistic features of their human counterparts.

The particularly poor performance on AI-WikiArt (Al) (30.88%) and Al-Pastiche (34.52%) rein-
forces this. The generative processes used for these datasets seem to produce images that are
stylistically ambiguous, making them difficult to classify even for a model trained on a diverse
set of human art. Conversely, the relatively higher performance on Al-ArtBench (Al) suggests
a "shared inductive bias", where the generative process, which involves CLIP, creates images
that are easier for a CLIP-based classifier to understand, even if that understanding does not

generalize well.
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6.2.5 Benchmarking Against Few-Shot Adaptation (APE)

To provide a robust benchmark against the state-of-the-art in model adaptation, we evaluated
the Adaptive Prior Refinement (APE) method, a prominent technique for efficient few-shot
learning. This experiment serves a crucial contextualizing purpose: by comparing our simpler
supervised methods against a more complex, specialized adaptation technique, we can better
situate our findings within the broader literature and validate the effectiveness of our chosen
approach. The test was conducted on the NGAD dataset, simulating data-scarce scenarios by
randomly sampling a small number of training examples ("shots") per class. The results are
summarized in Table [6.10]

Shots | Accuracy Recall@1 Recall@2 Recall Recall@4 Recall@5
1 37.21 37.21 53.20 64.16 71.23 78.31
2 38.13 38.13 59.13 73.29 80.82 84.93
4 50.23 50.23 66.44 79.00 86.76 90.18
8 41.10 41.10 64.16 74.43 83.79 88.36
16 53.42 53.42 74.43 84.93 87.90 91.55

Table 6.10: APE model performance on the NGAD test dataset.

APE’s performance exhibits a clear dependency on the number of training shots, with accu-
racy improving from 37.21% in the 1-shot setting to a peak of 53.42% with 16 shots. However,
even in its optimal configuration, APE’s performance remains significantly below that of our
supervised methods trained on the full dataset. Both the cross-modal alignment (74.29% accu-
racy) and the linear probe (77.71% accuracy) on non-normalized embeddings are considerably

more effective.

This outcome is highly instructive. The sub-optimal performance of APE serves to strengthen
our central arguments. First, it demonstrates that for a fine-grained task like style recognition,
which exhibits high intra-class variance, a straightforward supervised classifier that leverages
the entire dataset is more powerful than a specialized few-shot method. Second, it suggests
that the stylistic information within CLIP’s embeddings is distributed across the entire feature
space rather than being concentrated in a few highly discriminative channels that APE is
designed to select. This reinforces the validity of our approach, which utilizes the full, un-
normalized embedding space, and confirms that in a context where sufficient data is available,

a simple linear model can outperform more complex adaptation techniques.
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6.2.6 Qualitative Analysis of Zero-Shot Errors

To better characterize the nature of model errors, Figure shows the normalized confu-
sion matrix for the best-performing model. While the recall scores might appear modest at
first glance, the matrix reveals a more nuanced picture: many errors occur between adjacent
or stylistically related categories. For example, Impressionism is often confused with Post-

Impressionism, Abstract Expressionism with Minimalism, and Baroque with Rococo.

Interestingly, the Academic style functions as a sort of fallback category, absorbing misclassi-
fications from Baroque, Neoclassicism, Romanticism, and Realism. This pattern suggests that
CLIP associates “academic” with a broad set of classical or representational visual features,

particularly when more specific stylistic cues are ambiguous or absent.
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Figure 6.4: Normalized confusion matrix of the best CLIP model (ViT-L/14@336px) on NGAD style classification.

The same phenomenon can be observed in Figure which compares the distributions of
true and predicted styles across the dataset. This analysis highlights both dataset imbalances

and the most frequent error patterns in model predictions.
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Distribution of Styles: ViT-L/14@336px
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Figure 6.5: Comparison between actual and predicted distribution of styles in NGAD.

These results indicate that while CLIP exhibits some sensitivity to artistic style, its internal
representations are not yet optimized for fine-grained distinctions requiring a nuanced under-
standing of artistic conventions or visual grammar. Further refinement, potentially through

domain-specific supervision, may be required for such objectives.

A qualitative inspection of misclassified examples further illustrates these limitations. Fig-
ure [6.6 presents three representative failure cases, each annotated with the ground-truth label

and the incorrect prediction from the best-performing model.

True: Impressionist True: Realist True: Orientalist

Pred: Renaissance Pred: Rococo Pred: Neoclassic

Figure 6.6: Examples of misclassifications in style recognition.

In many of these cases, the predicted style may still appear visually plausible, underscoring
the inherent subjectivity of the task and the challenge of disentangling stylistic cues from

overlapping visual features.
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When extending the analysis to Al-Pastiche, the evaluation compares the style predicted by
CLIP for generated artworks with the style specified in the generation prompt. Notably, the
classification accuracy achieved by CLIP in this context is comparable to that observed in
NGAD, despite the visual inspection suggesting that the generated images often fail to con-

vincingly reproduce historical styles.

This unexpectedly high agreement may be partly explained by a shared inductive bias: many
generative models use CLIP during training or inference—as a scoring function, conditioning
mechanism, or similarity guide—leading to predictions that align with the prompt without

necessarily reflecting genuine stylistic fidelity.

As in the NGAD analysis, a confusion matrix (Figure and style distribution comparison
(Figure were generated to further investigate model behavior on Al-Pastiche.
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Figure 6.7: Normalized confusion matrix for style prediction in Al-Pastiche (best CLIP model).
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Figure 6.8: Comparison between actual and predicted style distributions in Al-Pastiche.

The distribution analysis reveals that CLIP achieves relatively strong performance for fre-
quently prompted styles such as Renaissance, Impressionism, Surrealism, and Cubism, while

Romanticism, Dadaism, and Classicism are more prone to misclassification.

6.3 Correlation with Human Judgment: Adherence and

Artifacts

While the preceding experiments focused on CLIP’s ability to perform objective classifica-
tion and retrieval tasks, the following analyses shift to a more subjective and challenging
dimension: assessing the degree to which the model’s internal similarity metrics align with
qualitative human perception. By leveraging the human evaluation data from the AI-Pastiche
dataset, these final two experiments directly probe the "perceptual gap" between machine and
human judgment. The core objective is to determine whether the features CLIP deems salient
for evaluating prompt adherence and image quality are the same as those prioritized by human

observers.

6.3.1 Adherence to Generative Prompts

This experiment sought to answer a fundamental question: does a higher similarity score from
CLIP correspond to a higher rating of prompt adherence from a human evaluator? To quantify
the alignment between machine and human perception, we computed the cosine similarity
between the vector of CLIP’s normalized similarity scores and the vector of human adherence
scores from the Al-Pastiche dataset. The results are presented in Table
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Model Alignment with Human Judgment | Alignment with Defect Integration
RN50 0.406 0.478
RN101 0.398 0.462
RN50x4 0.379 0.448
RN50x16 0.413 0.489
RN50x64 0.428 0.484
ViT-B/32 0.411 0.481
ViT-B/16 0.383 0.458
ViT-L/14 0.425 0.482
ViT-L/14@336px 0.437 0.497

Table 6.11: Cosine similarity between the vector of CLIP’s adherence scores and the vector of average human
judgments. The second column shows the improved alignment when human-annotated defect scores are inte-

grated into the model.

Across all models, the cosine similarity between the vector of CLIP scores and the vector of
human scores hovers around a moderate value of approximately 0.4, with the best-performing
model, "ViT-L/14@336px", reaching a similarity of 0.437. While this positive value indicates
some degree of alignment, it must be contextualized. As a benchmark, the average inter-
annotator correlation between different human evaluators on the same task is approximately
0.7. The substantial gap between CLIP’s alignment score and the high level of human con-
sensus provides quantitative evidence that the model’s criteria for judging adherence diverge

significantly from those of human observers.

A qualitative analysis of the discrepancies, illustrated in Figure reveals the nature of this
gap. CLIP’s evaluation is heavily biased towards semantic content, often overlooking compo-
sitional or stylistic errors that are immediately apparent to humans. For example, Figure[6.9(a)
was intended to represent a "fight between two knights on horseback", but was penalized by
human evaluators for showing only one knight. CLIP, however, assigned it a high similarity
score, as its feature space successfully identified the presence of "knight", "horse", and a "fight"
scene, but was insensitive to the compositional error of the missing subject. Similarly, Fig-
ure [6.9(b) was criticized by humans for its lack of adherence to the requested Impressionist
style, while Figure [6.9(c) was downgraded for missing one of the two figures described in the
prompt. These examples highlight a critical limitation: CLIP’s perception is atomistic, ver-
ifying the presence of semantic concepts without necessarily understanding their relational

structure or completeness as specified in the prompt.
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(a) Midjourney (b) Auto-Aesthetics (c) Omnigen

Figure 6.9: Examples of images in the Al-Pastiche dataset not aligning well with their prompts, for content or

style.

6.3.2 Perception of Artifacts and Deformations

The final experiment investigated CLIP’s sensitivity to a key factor in human aesthetic judg-
ment: the presence of visual artifacts and technical flaws. The analysis proceeded in two
stages. First, we attempted to directly predict the human-annotated defect scores using a
linear regression model trained on the frozen CLIP image embeddings. This attempt failed
conclusively, yielding a coefficient of determination (R?) close to zero. This result provides
strong evidence that information related to visual artifacts is not linearly encoded in CLIP’s

feature space; the model appears "blind" to these low-level structural flaws.

In the second stage, we tested the hypothesis that this "blindness" contributes to the perceptual
gap observed in the adherence task. We integrated the human-annotated defect scores into
a simple linear model alongside CLIP’s similarity score to predict the final human adherence
rating. The results, shown in the second column of Table demonstrate a consistent and
significant improvement in the cosine similarity for all models. For the best-performing model,
"ViT-L/14@336px", the alignment score increased from 0.437 to 0.497.

This improvement is highly significant. It demonstrates that a substantial portion of the vari-
ance in human judgment that CLIP fails to capture is attributable to the perception of technical
quality and artifacts. The fact that adding this external information brings the machine’s eval-
uation closer to the human baseline is indirect but compelling proof that CLIP’s assessment
of adherence is fundamentally incomplete. It confirms that human perception is a composite
judgment, weighing semantic content, stylistic consistency, and technical execution, whereas

CLIP’s perception is overwhelmingly dominated by the first of these alone.
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6.4 Discussion: Semantic Relationships in the Latent Space

To synthesize the preceding results and investigate the internal organization of the latent space
learned by CLIP, we employed the UMAP algorithm [90] to generate a three-dimensional pro-
jection of the high-dimensional embeddings. These embeddings included both image repre-
sentations and textual prompts describing artistic styles (e.g., "an artwork in [style] style"). The
resulting visualization (Figure reveals a clear separation between textual encodings (the
small cluster on the left) and image encodings (the large cluster on the right). For the images,
we also distinguish correctly classified samples, shown as green bullets, from misclassified

ones, shown as red crosses.

The substantial entanglement of the two image classes suggests a dominance of non-stylistic
features in the embeddings. However, the chaotic pattern could also be a consequence of the
aggressive dimensionality reduction and may not accurately reflect the semantic structure

present in the original high-dimensional space.

Figure 6.10: Three-dimensional projection of the textual embeddings of artistic styles and the visual embeddings

of correctly classified (green) and misclassified (red) images using UMAP.

To gain a deeper understanding of the structure of CLIP’s latent space, we conducted a detailed
analysis based on nearest neighbors. Specifically, we focused on image pairs in which one
image was correctly classified while the other was not. By identifying such pairs, we were able
to isolate semantically coherent examples where classification performance diverged. This
setup offered valuable insight into how subject matter similarity and stylistic cues interact
within CLIP’s representation space, and where the model may struggle to disentangle the

two.
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Representative examples are shown in Figure where the misclassified image is displayed
on the left, and its nearest correctly classified neighbor appears on the right. For each image,
we report the cosine similarity scores with respect to both the true and the predicted style
prompts, computed in both the original latent space and its lower-dimensional projection.
This comparison allows us to examine how proximity in the embedding space relates to clas-
sification outcomes and whether stylistic distinctions are preserved through dimensionality

reduction.

These findings underscore a key limitation of CLIP: it tends to encode and prioritize semantic
content (like objects, scenes, and compositions) over stylistic features such as brushwork, color
palette, or compositional structure. This leads to frequent misclassifications when artworks
differ in style but share similar subject matter. This bias is consistent with CLIP’s training ob-
jectives, which favor semantic alignment based on large-scale image-text data, where captions
often emphasize content over formal style. As a result, CLIP’s latent space tends to conflate
stylistically diverse images with similar semantics. While we explored projections to mitigate
this issue, the results were unsatisfactory. Techniques like light adapters could potentially fine-
tune CLIP’s vision encoder; such modifications fall outside the scope of our current research

aims.
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Actual style: Renaissance - Similarity: 0.203

. N Predicted style: Renaissance - Similarity: 0.203
Actual style: Gothic - Similarity: 0.151

Predicted style: Renaissance - Similarity: 0.196

Actual style: Post-Impressionist - Similarity: 0.182
Predicted style: Post-Impressionist - Similarity: 0.182
Actual style: Post-Impressionist - Similarity: 0.167
Predicted style: Academic - Similarity: 0.171

Actual style: Realist - Similarity: 0.173

Predicted style: Baroque - Similarity: 0.200 Actual style: Baroque - Similarity: 0.223

Predicted style: Baroque - Similarity: 0.223

Figure 6.11: Visual comparison between a misclassified image (left) and a correctly classified image (right). For
each artwork, the actual and predicted artistic styles are shown, along with their respective similarity scores to

the image in the latent CLIP space.
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Chapter 7
Conclusion

This thesis has conducted a multifaceted investigation into the perceptual capabilities of the
CLIP model, specifically examining its proficiency in the complex domain of fine art. By treat-
ing the model as a fixed, pre-trained perceptual system, this research has sought to uncover the
intrinsic biases and representational priorities that emerge from its contrastive learning objec-
tive. The central inquiry has revolved around a critical question: to what extent does CLIP’s
computational perception align with human interpretation, particularly concerning the nu-
anced dimensions of artistic style, semantic content, and the technical quality of Al-generated

imagery?

7.1 Summary of Core Findings

The empirical evidence presented in this thesis converges on a central conclusion: CLIP’s per-
ceptual framework is overwhelmingly dominated by semantic content, often at the expense of
stylistic nuance and technical fidelity. This core finding is substantiated by a series of struc-

tured experiments that collectively delineate the model’s strengths and limitations.

First, the research confirms that CLIP possesses a robust capability for high-level semantic
understanding. In the image-text alignment tasks, the model demonstrated a strong ability to
match artworks with their corresponding textual descriptions, underscoring the effectiveness
of its shared embedding space in capturing broad thematic and compositional elements. How-
ever, a qualitative analysis of its errors revealed a recurring pattern: the model’s success is
predicated on coarse object and scene recognition, while it frequently overlooks finer-grained

details, specific attributes, and the relational structure of elements within a composition.

Second, when confronted with the more abstract challenge of artistic style recognition, CLIP’s
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native zero-shot performance proved to be modest. While the model exhibits a rudimentary
sensitivity to stylistic affinity, often grouping related artistic movements, it lacks the discrim-
inative power for precise classification. The investigation into supervised methods, including
linear probing and cross-modal alignment, further illuminated this limitation. Although these
methods substantially improved intra-dataset performance, confirming that stylistic informa-
tion is linearly separable within the feature space, this success did not translate to robust
cross-dataset generalization. This critical failure indicates that the model learns to recognize
dataset-specific patterns and superficial visual cues rather than abstract, transferable concepts

of artistic style.

Third, and perhaps most significantly, the direct comparison with human judgments on Al-
generated art exposed a substantial perceptual gap. The moderate correlation between CLIP’s
similarity scores and human adherence ratings provides quantitative evidence that the model’s
criteria for evaluating prompt alignment diverge from human perception. This divergence is
largely attributable to CLIP’s insensitivity to visual artifacts and compositional errors—flaws
that are immediately salient to human observers but are not explicitly encoded in the model’s
feature space. The finding that integrating human-annotated defect scores significantly im-
proves the alignment with human judgment serves as compelling evidence that CLIP’s assess-
ment is fundamentally incomplete, prioritizing semantic correspondence while neglecting the

technical execution that is integral to human aesthetic evaluation.

7.2 Broader Implications and Contributions

The findings of this thesis carry several broader implications for the field of multimodal AI
and its application in culturally sensitive domains. The methodological decision to analyze
CLIP as an unmodified perceptual system offers a crucial counterpoint to the prevailing focus
on performance optimization through adaptation. By isolating the model’s native capabilities,
this research provides a clearer understanding of the foundational biases that may be inherited
by downstream applications, including the large multimodal models that build upon CLIP-like

encoders.

Furthermore, the explicit comparison between human-made and Al-generated art addresses
a timely and critical issue. As generative models become increasingly sophisticated, the need
for reliable evaluation metrics that align with human perception is paramount. This thesis
demonstrates that while CLIP can serve as a useful tool for assessing semantic consistency, its
limitations in perceiving stylistic integrity and technical quality make it an unreliable arbiter

of overall artistic fidelity.
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Ultimately, this work contributes to a growing body of critical inquiry into the nature of "un-
derstanding” in large-scale Al models. It highlights the distinction between statistical pattern
recognition and genuine, nuanced comprehension, suggesting that the path toward more cul-
turally and perceptually aligned Al will require not only greater scale but also more sophisti-

cated training objectives that move beyond simple semantic matching.

7.3 Future Research Directions

The insights and limitations identified in this thesis open several promising avenues for future
research. The following directions represent logical next steps to build upon the findings of

this work:

+ Detecting AI-Generated Art: One of the most direct and pressing future tasks is to
investigate whether CLIP’s feature space can be leveraged to explicitly distinguish be-
tween human-made and Al-generated artworks. While this thesis has shown that stylis-
tic and artifact-related information is not linearly separable in a straightforward man-
ner, it is possible that more complex, non-linear classifiers trained on CLIP’s embeddings
could learn to identify the subtle statistical "fingerprints" of synthetic media. Such an
investigation would have significant practical implications for digital forensics and con-

tent authenticity.

+ Extending to Other Multimodal Models: The focus of this thesis has been exclusively
on the CLIP architecture. A valuable extension would be to apply the same methodolog-
ical framework to other prominent Vision-Language Models, as well as to enhanced
versions of CLIP that can accommodate longer and more descriptive textual inputs (i.e.,
more than 77 tokens). A comparative analysis across different architectures could re-
veal whether the semantic bias observed in CLIP is a general characteristic of current
contrastive learning paradigms or a specific artifact of its design. This would provide a
more comprehensive overview of the state-of-the-art and could inform the development

of models with a more balanced perceptual understanding.

In conclusion, while CLIP represents a landmark achievement in multimodal learning, its ap-
plication to the nuanced and subjective world of art reveals the profound challenges that lie
ahead. The journey toward creating Al systems that can not only see but also perceive with
the depth and sensitivity of human vision is still in its early stages. It is hoped that the critical
analysis presented in this thesis will contribute to a deeper understanding of both the poten-
tial and the limitations of these powerful technologies, guiding future efforts to create models

that are not only more intelligent but also more culturally and aesthetically aware.
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Appendix A

A.1 Example of a summary of an artwork from the NGAD

To illustrate the methodology adopted in our study, we selected a painting from the National
Gallery of Art, Van Gogh’s self-portrait. Since zero-shot CLIP accepts textual descriptions of
no more than 77 tokens, we employed GPT-40 mini to generate a summary of the description
of the painting, restricted to a maximum of 300 characters. The summarization process aimed
to preserve essential information related to the subject and the stylistic characteristics of the

artwork. This is the actual prompt used to generate the summaries:

Listing A.1: Prompt used to generate summaries

Your goal is to summarize the following painting descriptions in 300 characters. You will be
provided the description of a painting, its subject, its style, and its period, and you will
output a JSON object containing the following information:
{
summary: string // at most 300 characters summary of the painting based on the painting
description.
}

The summary must retain information about the subject, style, and period.

In Figure [A.1Jwe present the painting, the official description provided by the National Gallery,

and the summarized version produced using GPT-40 mini.




Figure A.1: Example of an artwork from the National Gallery.

National Gallery Description:

Shown from the chest up, a man with short, orange hair and green-tinted, pale skin looks at us, wearing a vivid blue painter’s
smock in this vertical portrait painting. His smock and the background are painted with long, mostly parallel strokes of cobalt,
azure, and lapis blue. His shoulders are angled to our left, and he looks at us from the corners of his blue eyes. He has a long,
slightly bumped nose, and his lips are closed within a full, rust-orange beard. He holds a palette and paintbrushes in his left
hand, in the lower left corner of the canvas. The background is painted with long brushstrokes that follow the contours of his
head and torso to create an aura-like effect.

Summarized version of the description:

This Post-Impressionist portrait by Vincent van Gogh (1876-1900) depicts a man with orange hair and pale skin in a blue
painter’s smock. He gazes at the viewer with blue eyes, holding a palette and brushes. The background features long, parallel

strokes of blue, enhancing the aura around him.

A.2 Example of a summary of an Al-generated artwork

from the Al-Pastiche Dataset

As an example of the Al-Pastiche dataset, we chose an Impressionist painting generated by
generative models, depicting a bridge landscape. As observed in the artwork, the genera-
tive model adhered to the given prompt, producing an image strongly reminiscent of Monet’s
Japanese bridge. For the CLIP processing, the same procedure was applied to the description,

limiting it to 300 characters of text, as done for the National Gallery descriptions.

In Figure we present the generated painting, the prompt provided to the model, and the

corresponding summary.



Figure A.2: Example of an artwork from the Al-Pastiche.

Prompt for the generated image:

Create an Impressionist-style painting depicting a serene outdoor scene, such as a sunlit garden, a riverside, or a city park. The
image should focus on capturing the play of natural light and atmosphere, with soft, loose brushstrokes and a pastel-like color
palette of light blues, greens, pinks, and yellows. The figures and landscape should appear slightly blurred, as if seen from a
distance, giving a sense of movement and fleeting moments. Include reflections in water, dappled sunlight, and subtle shifts in

color to evoke a peaceful, idyllic mood, typical of Impressionist art.

Summarized version of the prompt:

This Impressionist painting from the XIX century features a serene landscape with soft tones, depicting a sunlit garden or
riverside. It captures natural light and atmosphere through loose brushstrokes and a pastel palette. Figures and scenery appear

slightly blurred, evoking movement and tranquility, with reflections in water.
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