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Introduction

One of the most actively studied topics in many areas of applied mathe-

matics is the theory of interacting particle systems. These statistical models

are used to describe any collection of particles, from theoretical notions to

real-world applications: such systems might represent a group of molecules

in a gas, a flock of birds, a crowd of people.

In fact, the study of particle systems dates back more than a century in statis-

tical mechanics, when physicists like Boltzmann and Maxwell were studying

the behavior of particles in a gas, laying the foundations for the various

thermodynamic laws that we know today. Boltzmann realized that it was

impractical to describe the exact configuration of over trillions of molecules.

Moreover, the molecules constantly collide into each other, a phenomenon

known as dependence in probability and statistics, which makes predicting

particle movements even harder: in any instant, a small change of the state

of one molecule could result in a much bigger and non-negligible difference

in the macroscopic scale. This is commonly known as the butterfly effect in

chaos theory. Because of all this, a statistical description is preferred: math-

ematical tools like empirical measures and stochastic processes need to be

used in order to reduce computational complexity.

For a simpler analysis, these particle systems are always assumed to be sym-

metric, evolving in a Polish state space: many results about convergence of

measures may not apply otherwise. The main concept behind propagation

of chaos is that for a large number of particles they behave almost inde-

pendently from one another. This property carries on as time evolves, as

discussed by Mark Kac in the 1950s [3], who was the one who defined chaos

in a mathematical sense and came up with the expression propagation of

chaos ; Kac developed this idea during his studies about kinetic theory, but

his publications are still extended today, including machine learning, biology

and physics.
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ii INTRODUCTION

The goal of this thesis is to explore this asymptotic independence: for each

individual element in the system, we will use the empirical measure to define

an approximating distribution that approaches the true distribution in a rate

of O(1/N) for largeNs according to the total variation distance. This is a sig-

nificant quantitative bound, as the total variation distance is the strongest

and most intuitive amongst all metrics in the space of random measures.

Furthermore, this bound is uniform in time, that is, it holds at every time

instant.

Chapter 1 will introduce some key results about the total variation distance

and probability theory that will be used later. Chapter 2 describes the em-

pirical measures and their convergence: the aim is to show the differences

between the independent and identically distributed case and the opposite.

Finally, Chapter 3 will focus on propagation of chaos and the main setting

and achievements of this report; Section 3.1 is a brief review of infinite par-

ticle systems and remarkable contributions by de Finetti.
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Chapter 1

General results

1.1 Total variation distance

Definition 1.1 (Total variation distance). Let (E, dE) be a Polish space and

µ,ν two probability measures in P (E). The total variation distance between

µ and ν is defined by

∥µ− ν∥TV = 2 inf
X∼µ,Y∼ν

P (X ̸= Y ).

We say that µ converges to ν in total variation norm if

∥µ− ν∥TV

n→∞−→ 0.

This is the strongest norm amongst the different notions of distance in

the space of probability measures: intuitively, it shows the largest possible

difference between the probabilities assigned by two measures to the same

event.

Proposition 1.2. If µ and ν are two probability measures on a measurable

space (E,F), then it holds:

∥µ− ν∥TV = 2 sup
A∈F

|µ(A)− ν(A)|

Proof. Since the total variation distance is defined with a coefficient 2 in

front of the infimum, we will prove that

inf
X∼µ,Y∼ν

P (X ̸= Y ) = sup
A∈F

|µ(A)− ν(A)|.

1



2 1. General results

We adapt the proof found in Chapter 3 of [5]. Let X ∼ µ and Y ∼ ν. For

A ∈ F we have

|µ(A)− ν(A)| =
∣∣∣∣(P((X ∈ A) ∩ (X = Y )

)
+ P

(
(X ∈ A) ∩ (X ̸= Y )

))
−

−
(
P
(
(Y ∈ A) ∩ (X = Y )

)
+ P

(
(Y ∈ A) ∩ (X ̸= Y )

))∣∣∣∣ ≤
≤
∣∣∣P((X ∈ A) ∩ (X = Y )

)
− P

(
(Y ∈ A) ∩ (X = Y )

)∣∣∣+∣∣∣P((X ∈ A) ∩ (X ̸= Y )
)
− P

(
(Y ∈ A) ∩ (X ̸= Y )

)∣∣∣ =
=0 + P

((
(X ∈ A) \ (Y ∈ A)

)
∩ (X ̸= Y )

)
≤ P (X ̸= Y ),

using the measure properties of monotonicity and additivity. We take the

supremium over A ∈ F to obtain

sup
A∈F

|µ(A)− ν(A)| ≤ P (X ̸= Y ),

which is true for all X ∼ µ and Y ∼ ν, meaning

sup
A∈F

|µ(A)− ν(A)| ≤ inf
X∼µ,Y∼ν

P (X ̸= Y ).

Now we need to construct a couple (X, Y ) of random variables for which the

equality is true. We define p := 1− supA∈F |µ(A)− ν(A)| ∈ [0, 1] and study

each of the following cases:

1. If p = 0, then supA∈F |µ(A)− ν(A)| = 1 and the supports of µ and

ν are disjoints. This gives
∑

x∈E µ(x)ν(x) = 0. We can then choose

X ∼ µ and Y ∼ ν such that X and Y are two independent random

variables. Therefore

P (X = Y ) =
∑
x∈E

µ(x)ν(x) = 0

2. If p = 1, then supA∈F |µ(A)− ν(A)| = 0 and µ = ν. We take X ∼ µ

and Y = X.

3. If 0 < p < 1, then we define the following measure: µ(x) ∧ ν(x) :=

min(µ(x), ν(x)). Let U ∼ 1
p
(µ ∧ ν), V ∼ 1

1−p
(µ − (µ ∧ ν)) and W ∼

1
1−p

(ν − (µ ∧ ν)). We notice that p =
∑

x∈E (µ(x) ∧ ν(x)), because∑
x∈E

(µ(x) ∧ ν(x)) =
1

2

∑
x∈E

(µ(x) + ν(x)− |µ(x)− ν(x)|) =
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= 1− sup
A∈F

|µ(A)− ν(A)| = p.

Now let B be a Bernoulli random variable independent of U,V,W, with

P (B = 1) := p. We can finally define:

(X, Y ) =

{
(U,U) if B = 1

(V,W ) if B = 0

This way we have X ∼ µ and Y ∼ ν, and P(V=W)=0 due to the

definition of the laws of V and W, thus

P (X = Y ) = P (U = U)P (B = 1) + P (V = W )P (B = 0) = p

Remark 1.3. This characterization makes it easier to prove that the total

variation distance satisfies the properties of a distance: indeed, we have

∥µ− ν∥TV ≥ 0 and

∥µ− ν∥TV = 0 ⇔ sup
A∈F

|µ(A)− ν(A)| = 0 ⇔

⇔ µ(A)− ν(A) = 0 ∀A ∈ F ⇔ µ = ν.

Moreover, using the triangle inequality, it holds that ∥µ− ν∥TV ≤ ∥µ− τ∥TV

+ ∥τ − ν∥TV , because

∥µ− ν∥TV = sup
A∈F

|µ(A)− ν(A)| = sup
A∈F

|µ(A)− τ(A) + τ(A)− ν(A)| ≤

≤ sup
A∈F

|µ(A)− τ(A)|+ sup
A∈F

|τ(A)− ν(A)| = ∥µ− τ∥TV + ∥τ − ν∥TV

Proposition 1.4. The total variation distance satisfies:

∥µ− ν∥TV = sup
∥φ∥∞≤1

∣∣∣∣∫
E

φ(x)µ(dx)−
∫
E

φ(x)ν(dx)

∣∣∣∣
This is a dual representation of the total variation distance, often used in

analysis: we take the supremum of the expectation of a measurable bounded

function φ with respect to the measure µ− ν over all test functions φ.



4 1. General results

Proof. Let τ := µ − ν (see [7]). Using the Hahn-Jordan decomposition, we

define two sets E+,E− ∈ F such that E+ ∩ E− = ∅ and E+ ∪ E− = E. We

also define

τ+(A) := τ(A ∩ E+) and τ−(A) := τ(A ∩ E−)

which are two non-negative measures that satisfy τ = τ+ + τ−.

Given a test function φ such that ∥φ∥∞ ≤ 1,∫
E

φ dµ−
∫
E

φ dν =

∫
E

φ dτ =

∫
E+

φ dτ+ −
∫
E−

φ dτ− ≤

≤
∫
E+

1 dτ+ −
∫
E−

(−1) dτ− = τ+(E) + τ−(E) = 2τ+(E)

where the latter equality holds because 0 = µ(E)− ν(E) = τ(E) = τ+(E)−
τ−(E). Likewise,

∫
E
φ dν−

∫
E
φ dµ ≤ 2τ+(E). Moreover, we have an equality

if φ = 1E+ − 1E− , thus

sup
∥φ∥∞≤1

∣∣∣∣∫
E

φ dµ−
∫
E

φ dν

∣∣∣∣ = 2τ+(E).

Furthermore, for any A ∈ F we have

µ(A)− ν(A) = τ(A) = τ+(A)− τ−(A) ≤ τ+(A) ≤ τ+(E) and similarly,

ν(A)− µ(A) = −τ(A) = τ−(A)− τ+(A) ≤ τ−(A) ≤ τ−(E) = τ+(E).

This way |µ(A)− ν(A)| ≤ τ+(E), and we can achieve the equality if A = E+,

hence

sup
A∈F

|µ(A)− ν(A)| = τ+(E) =
1

2
sup

∥φ∥∞≤1

∣∣∣∣∫
E

φ dµ−
∫
E

φ dν

∣∣∣∣

1.2 Convergence of probability measures

Understanding the different types of convergence of probability measures

is a fundamental concept in probability theory and statistics [4]: a central

notion when studying sequences of measures is to determine how they behave

as they approach the limit measure. These tools will be necessary when

working with probability measures in the following sections.
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Remark 1.5. Throughout this review, the expression ⟨µ, φ⟩ will be used as

an alternative notation for the integral of a test function φ over a measure

µ.

Definition 1.6 (Weak convergence). A sequence of probability measures

(µN)N converges weakly (or in distribution) towards µ when

∀φ ∈ Cb(E), ⟨µN , φ⟩
N→∞−→ ⟨µ, φ⟩ .

Since (µN)N , µ ∈ P (E), the weak convergence in P (E) is defined as the

related weak-⋆ convergence in Cb(E)⋆, given that P (E) is a subset of Cb(E)⋆.

Remark 1.7. In probability theory, this means that

lim
N→∞

E[φ(µN)] = E[φ(µ)]

for all φ ∈ Cb(E)

We also recall other types of convergence for a more complete picture of

the topic.

Definition 1.8. We consider a sequence (Xn)n∈N of random variables defined

on a probability space (Ω,F , P )

1. We say Xn converges in probability towards X if

lim
n→∞

P (|Xn −X| ≥ ϵ) = 0 ∀ϵ > 0.

2. We say Xn converges in Lp towards X for p ≥ 1 if

lim
n→∞

E [|Xn −X|p] = 0.

3. We say Xn converges almost surely towards X if

lim
n→∞

Xn(ω) = X(ω)

for almost every ω ∈ Ω.

Among all types of convergence, almost sure convergence is the strongest

: it requires that Xn(ω) converges to a limit for almost every outcome ω. The

following result is an important milestone in probability theory and statistics

that we will use in the following sections.
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Theorem 1.9 (Strong Law of Large Numbers). Let (Xn)n∈N be a sequence

of independent and identically distributed random variables. We consider

Mn :=
1

n

n∑
i=1

Xi,

which is the sample mean of the first n random variables of the sequence.

Then it holds:

Mn
n→∞→ E[X1] almost surely.



Chapter 2

Empirical measures

This section will introduce a fundamental object in probability and statis-

tics. The empirical measure addresses the problem of approximating an un-

known probability measure through empirical samples. Empirical measures

is greatly used in many fields such as econometrics and finance. The approx-

imation improves as the sample size increases, which motivates the need of a

mathematical analysis in order to understand the different properties of the

true measure.

The ideal case occurs when the samples are independent and identically dis-

tributed, which allows us to apply some relevant results in Section 2.1. How-

ever, in many real-world situations, this assumption does not apply, since

there are often some dependencies, like in the study of finite particle sys-

tems; Section 2.2 is dedicated to a non-i.i.d setting as we try to preserve

some of the theoretical results using the concept of exchangeability.

2.1 I.i.d. setting

Definition 2.1 (Empirical measure). Let (X1, X2, . . . , Xn) be a collection of

independent and identically distributed random variables with values in the

state space E. The empirical measure associated to this sequence is defined

as:

µn :=
1

n

n∑
i=1

δXi

For all n ∈ N the empirical measure is a discrete probability measure

which puts 1
n
mass on each sample. If µ is the true probability measure, Port-

7



8 2. Empirical measures

manteau’s theorem grants weak convergence of (µn)n∈N towards µ, meaning∫
f dµn →

∫
f dµ for all bounded continuous functions f (see Appendix A).

However, convergence in total variation often fails as seen in the example

below.

Example 2.2. We choose X1, X2, . . . , Xn ∼ U [0, 1], independent random

variables with the uniform distribution on [0,1]. The empirical measure will

be

µn :=
1

n

n∑
i=1

δXi
.

We have µn
n→∞−→ µ weakly, where µ is the Lebesgue measure on [0,1]. Indeed,

using the Strong Law of Large Numbers, we get∫
fdµn =

1

n

n∑
i=1

f(Xi)
a.s.→ E[f(X1)] =

∫ 1

0

f(x)dx =

∫
fdµ

for all f ∈ Cb([0, 1]). Now we define An = {X1, X2, . . . , Xn} ⊆ [0, 1]: this is

a countable set for all n ∈ N, meaning µ(An) = 0, thus

∥µn − µ∥TV = sup
A⊆[0,1]

|µn(A)− µ(A)| ≥ |µn(An)− µ(An)| = |1− 0| = 1.

So taking the limit n → ∞, ∥µn − µ∥TV cannot converge to zero.

We recall that the cumulative distribution function (CDF) of a distribu-

tion µ is a real valued function defined as Fµ(x) = µ((−∞, x]); in our case,

the CDF of the empirical measure µn is

Fn(x) = µn((−∞, x]) =
1

n

n∑
i=1

1(−∞,x](Xi)

which is called the empirical cumulative distribution function (ECDF). As n

goes to infinity, Fn converges uniformly to Fµ almost surely: this is stated

by Glivenko-Cantelli’s theorem, the idea of the proof uses the strong law of

large numbers, as

1

n

n∑
i=1

1(−∞,x](Xi)
a.s.−→ E[1(X1≤x)] = P (X1 ≤ x) = Fµ
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2.2 Non i.i.d setting

Since we need to link empirical measures to propagation of chaos, we

also have to consider non independent frameworks: this is because in a finite

particle system all the elements collide into each other (the particles are said

to interact), meaning that the particle distributions depend on each other. As

a result, every property in the last section usually fail: the only assumption

we need to make is some type of symmetry.

Definition 2.3 (Exchangeability). A family of random variables (X i)i∈I is

exchangeable when the law of (X i)i∈I is invariant under every permutation

of a finite number of indexes i ∈ I.

This means that the joint distribution of the sequence (X1, X2, . . . , Xn)

equals the joint distribution of (Xσ(1), Xσ(2), . . . , Xσ(n)) for any n ∈ N and

any permutation σ ∈ Sn. With this hypothesis, the empirical measure does

converge weakly to a (random) non fixed measure, which can depend on

different factors.

Example 2.4 (Pólya urn). Suppose we have an urn with a black ball and

a white ball. At each iteration we draw a ball from the urn uniformly, we

reinsert it and add another ball of the same color. Let Xn = {b, w} indicate

the color drawn at the n-th iteration.

The variables X1, X2, . . . , Xn are not i.i.d because every draw depends on

the previous ones, however they are exchangeable because the probability of

extracting a certain color sequence does not depend on the order but only

on the number of balls in the urn. Let’s define the empirical measure:

µn =
1

n

n∑
i=1

δXi
.

It evaluates the frequency of both outcomes in the first n draws, so µn(b) =
Number of blacks drawn in n iterations

n
. As n goes to infinity, this ratio converges to a

fixed value α := limn→∞ µn(b), which is drawn uniformly from [0,1]: conse-

quently, we get

µn
n→∞−→ µα := αδb + (1− α)δw,

which is a Bernoulli random variable with a non fixed parameter α. Intu-

itively, if the first ball drawn is black, the second iteration will likely result

in a black draw, meaning α will likely be greater than 0.5.
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Example 2.5. Let Xn ∼ Bepn where pn = 1+sin(log(n))
2

; these are neither

identically distributed nor exchangeable. The empirical measure is charac-

terized by:

µn(1) =
1

n

n∑
i=1

Xi.

We want to prove that the empirical measure does not converge weakly.

Let’s assume it does converge to a random measure µ: by choosing φ = id in

Remark 1.7 we would get E[µn(1)]
n→∞−→ E[µ(1)], but this cannot be verified

by any measure µ because

E[µn(1)] =
1

n

n∑
i=1

E[(Xi = 1)] =
1

n

n∑
i=1

pi =
n∑

i=1

1 + sin(log(i))

2n

is a real-valued sequence that does not converge as n → ∞ due to the

oscillations of the sine function.

These examples illustrate that exchangeability can still lead to weak con-

vergence of empirical measures, as opposed to Example 2.5.



Chapter 3

Propagation of chaos

So far we have illustrated the main tools about empirical measures and

their general properties. The final step of this thesis is to use these concepts

in order to establish the framework necessary for studying the propagation

of chaos.

Let us recall the setting and all the key assumptions:

� E is the state space, assumed to be Polish (i.e. separable and com-

pletely metrizable);

� We consider a system of N particles in E, described by:

XN
I ≡ (XN

t )t∈I ≡ (X1
t , · · · , XN

t )t∈I ;

� Each element X i
t is a stochastic process in the space E: it is a function

that keeps track of the position of the i-th particle at time t ∈ I ≡ [0, T ];

� We also assume that (X1
t , . . . , X

N
t ) are exchangeable; this means that at

any time t, X1
t , . . . , X

N
t are exchangeable according to Definition 2.3.

Since XN
I is a finite system, the N particles, as well as the related

stochastic processes, are not independent: the particles interact with

each other and their trajectory is affected by collisions. Because of

this, for a large number of particles, it becomes impractical to work

with a microscopic description, as we need to keep track of every single

position. Therefore, a statistical analysis is required so that we can ap-

proximate the particles behavior without storing too much information;

11



12 3. Propagation of chaos

� We define fN
t ∈ P (EN) as the true joint distribution of the N-particle

system: it simply indicates the configuration of the system at time t

all at once;

� For bigger values of N , it is best to use the empirical measure:

µXN
t
:=

1

N

N∑
i=1

δXi
t
∈ P (E).

This type of approach is commonly used in various optimization prob-

lems: we choose to study a one dimensional object, which belongs to

P (E), instead of fN
t ∈ P (EN).

While the theory of propagation of chaos involves analyzing how stochastic

processes behave over time, it is helpful to first consider a static framework,

as the dynamic theory heavily relies on static results; it also enables us

to establish important approximation results (like the one in Theorem 3.2)

without dealing with time complexity. For this reason, from now on we will

drop the t subscript and focus on the behavior of the particle system XN at

a fixed time in I.

If we consider the following bijective map

Φ : EN −→ P (E)

x̄N 7−→ µx̄N

we see that the law of the empirical measure is given by µXN ∼ fN ◦Φ−1 =:

FN . More precisely, there is a one-to-one mapping between the quotient

EN/Sn and P̂N(E), where P̂N(E) indicates the space of empirical measures

of size N on E.

Lemma 3.1. ∀φ ∈ Cb(E), it holds that:

E [⟨µXN , φ⟩] =
〈
f 1, φ

〉
Proof. By simply applying exchangeability and linearity of the expected

value, we get:

E [⟨µXN , φ⟩] = E

[∫
E

φ(x)dµXN (x)

]
= E

[
1

N

N∑
i=1

φ(X i)

]
=
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=
1

N

N∑
i=1

E
[
φ(X i)

]
=

1

N

N∑
i=1

∫
E

φ(x)df i(x) =
1

N
N

∫
E

φ(x)df 1(x) =
〈
f 1, φ

〉

This relation allows to derive the first marginal of fN from the expecta-

tion of the empirical measure; thanks to the exchangeability we can actually

reconstruct the law of every particle. The k-marginals also match the natural

definition of marginal from the joint distribution for each 1 ≤ k ≤ N :〈
fk, φk

〉
:=
〈
fN , φk ⊗ 1⊗(N−k)

〉
.

Theorem 3.2 (Approximation rate of marginals). For 1 ≤ k ≤ N , let the

moment measure F̃ k ∈ P (Ek) be defined by:〈
F̃ k, φk

〉
=

∫
P (E)

〈
ν⊗k, φk

〉
FN(dν), ∀φk ∈ Cb(E

k).

Then it holds that ∥∥∥fk − F̃ k
∥∥∥
TV

≤ 2k(k − 1)

N

Proof. Given that FN is the law of the random measure µXN we get
〈
F̃ k, φk

〉
=
〈
E
[
µ⊗k
XN

]
, φk

〉
for all φk ∈ Cb(E

k); so for any test function φk, we have:〈
F̃ k, φk

〉
=
〈
E
[
µ⊗k
XN

]
, φk

〉
=

=

∫
P (E)

〈
ν⊗k, φk

〉
fN(Φ−1(dν))

ν=Φ(x̄N )
=

∫
EN

〈
µ⊗k
x̄N , φk

〉
fN(dx̄N).

Using the symmetry of fk and the definition of marginal we also get:〈
fk, φk

〉
=

∫
EN

1

N !

∑
σ∈SN

φk(x
σ(1), . . . , xσ(k))fN(dx̄N)

and we combine the two:∣∣∣〈fk − F̃ k, φk

〉∣∣∣ = ∣∣∣〈fk, φk

〉
−
〈
F̃ k, φk

〉∣∣∣ =
=

∣∣∣∣∣
∫
EN

(
1

N !

∑
σ∈SN

φk(x
σ(1), . . . , xσ(k))−

〈
µ⊗k
x̄N , φk

〉)
fN(dx̄N)

∣∣∣∣∣ ≤
≤ sup

x̄N∈EN

∣∣∣∣∣ 1N !

∑
σ∈SN

φk(x
σ(1), . . . , xσ(k))−

〈
µ⊗k
x̄N , φk

〉∣∣∣∣∣.
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We rewrite the first part as

1

N !

∑
σ∈SN

φk(x
σ(1), . . . , xσ(k)) =

1

Ak,N

∑
i1,...,ik

pairwise distinct

φk(x
i1 , . . . , xik),

where Ak,N := N !/(N −k)! represents the number of pairwise distinct tuples

(i1, . . . , ik) of integers between 1 and N , whereas for the second part we have:〈
µ⊗k
x̄N , φk

〉
=

1

Nk

∑
i1,...,ik

φk(x
i1 , . . . , xik) =

=
1

Nk

∑
i1,...,ik

pairwise distinct

φk(x
i1 , . . . , xik) +Rk,N ,

where Rk,N keeps track of the non pairwise distinct tuples (i.e. there is at

least one repetition). If we go back to the expression inside the supremum

we get:∣∣∣∣∣ 1N !

∑
σ∈SN

φk(x
σ(1), . . . , xσ(k))−

〈
µ⊗k
x̄N , φk

〉∣∣∣∣∣ =
=

∣∣∣∣∣∣∣∣
Nk − Ak,N

Ak,NNk

∑
i1,...,ik

pairwise distinct

φk(x
i1 , . . . , xik)−Rk,N

∣∣∣∣∣∣∣∣ ≤
≤
∣∣∣∣Nk − Ak,N

Ak,NNk
∥φk∥∞ Ak,N + ∥φk∥∞

(
1− Ak,N

Nk

)∣∣∣∣ = 2 ∥φk∥∞
(
1− Ak,N

Nk

)
.

Lastly, we obtain that

1− Ak,N

Nk
= 1−

k−1∏
i=0

(
1− i

N

)
≤ 1−

(
1− k − 1

N

)k

;

using the formula (1− x)k ≥ 1− kx for |x| < 1 from the binomial series we

get

1−
(
1− k − 1

N

)k

≤ k(k − 1)

N

and we conclude by using Proposition 1.4.

This theorem is a major result in the theory of propagation of chaos: it

provides a quantitative bound on the total variation norm between the k-

marginal fk and the k-th moment measure F̃ k: their difference with respect
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to the strongest norm is controlled by a fixed constant which goes to zero as

N → ∞, meaning that as the number of particles increases the k-th moment

measure characterizes the marginal fk.

From the probabilistic point of view, we can interpret the moment F̃ k this

way: we sample a random measure ν with distribution FN (which again is

the law of the empirical measure µXN
t
), then we sample k independent values

from ν, thus forming the product measure ν⊗k, and we take the average of

ν⊗k integrating over FN .

We started our analysis with a system of interacting particles, however this

result shows that, as N increases, the laws of each particle (the k-marginals)

asymptotically become i.i.d: independent because of the definition of F̃ k and

identically distributed due to the convergence of the empirical measure to

a random measure (Section 2.2). Natural extensions of these ideas can be

found in [3] using the notion of chaoticity developed by Kac: specifically,

given f ∈ P (E), a sequence fN of symmetric probability measures on EN is

said to be f -chaotic when for any k ∈ N and any function φk ∈ Cb(E
N),

lim
N→∞

〈
fN , φk ⊗ 1

⊗(N−k)
〉
=
〈
f⊗k, φk

〉
.

This means that the k-marginal satisfies fk → f⊗k weakly.

3.1 Infinite particle systems

As anticipated in the previous section we will look at the highly studied

framework involving the limit N → ∞. We will consider an infinite sequence

of exchangeable random variables X ≡ (X1, X2, . . .): like in the finite version

in Definition 2.3, the law of (X i)i∈I is invariant under every permutation of an

infinite number of indexes i ∈ I. Likewise, the set (X1, X2, . . .) is described

by the infinite dimensional symmetric measure f∞: for each k ∈ N we define

the k-marginal as the joint law of (X1, X2, . . . , Xk). Exchangeability is crucial

here so that the following compatibility relation is satisfied:

∀φj ∈ Cb(E
j),

〈
fk, φj ⊗ 1

⊗(k−j)
〉
=
〈
f j, φj

〉
for 1 ≤ j ≤ k, which basically says that the j-marginal of fk is f j.

We also consider the infinite sequence of empirical measures: for N ∈ N,

µXN =
N∑
i=1

δXi
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Definition 3.3 (Moment measure). For k ∈ N the k-moment measure of

π ∈ P (P (E)) is defined by:

πk :=

∫
P (E)

ν⊗kπ(dν) ∈ P (Ek).

Similar to Theorem 3.2 this is like saying
〈
πk, φk

〉
= Eν∼π

[〈
ν⊗k, φk

〉]
for φk ∈ Cb(E

k); in addition, the moments (πk)k satisfy the compatibility

property.

Definition 3.4 (Convergence determining subsets). A subset F ⊂ Cb(E)

is called convergence determining if, for any sequence (µN)N ∈ P (E) and

µ ∈ P (E), the condition

∀φ ∈ F , ⟨µN , φ⟩
N→∞−→ ⟨µ, φ⟩

implies that µN → µ weakly.

Basically, whenever the set of test functions Cb(E) is too large it is suffi-

cient to only check test functions in a convergence determining subset. We

use the moment measures to prove the following characterization.

Proposition 3.5. A sequence (πN)N ∈ P (P (E)) of random measures con-

verges weakly towards π ∈ P (P (E)) if and only if

πk
N

N→∞−→ πk

for all k ≥ 1.

Proof. The direct implication follows easily from the continuity of the maps

π → πk, as we obtain:〈
πk
N , φ

〉
=

∫
P (E)

〈
ν⊗k, φ

〉
πN(dν)

N→∞−→
∫
P (E)

〈
ν⊗k, φ

〉
π(dν) =

〈
πk, φ

〉
for φ ∈ Cb(E) and for any k ≥ 1.

Conversely, we consider the functions:

Rφ : P (E) −→ R

µ 7−→
〈
µ⊗k, φ

〉
which are called monomial functions. The weak convergence of (πN)N to-

wards π implies that ⟨πN , Rφ⟩ converges towards ⟨π,Rφ⟩ for all monomial

functions. The conclusion follows from [1], Lemma 3.9, by proving that the

subset generated by these functions is convergence determining.
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We now look at an important result due to de Finetti: the setting of the

classical de Finetti’s theorem is with Bernoulli random variables [2] but it

can be extended to generic E-valued random variables for some Polish space

E.

Theorem 3.6 (De Finetti). Let E be a locally compact Polish space. Con-

sider an infinite sequence (fN)N of symmetric probability measures on EN

which satisfy the usual compatibility relation. Then there exists a (unique)

measure π ∈ P (P (E)) such that:

fN = πN :=

∫
P (E)

ν⊗Nπ(dν)

The opposite of de Finetti’s theorem is presented in the following repre-

sentation theorem: we are able to link empirical measures to infinite particle

systems.

Theorem 3.7 (De Finetti representation theorem). Let π ∈ P (P (E)). Then

there exists an infinite sequence of E-valued exchangeable random variables

(Xi)i∈N such that, for any k ≥ 1, the joint law of (X1, . . . , Xk) is π
⊗k. More-

over, the limit

lim
k→∞

1

k

k∑
i=1

δXi
∈ P (E)

exists almost surely and it is π-distributed, or in other words the law of the

limit of the empirical measure is π.

The first theorem states that an infinite exchangeable particle system

is always associated to a unique element in P (P (E)), whereas the second

one says that a random measure can always be represented by an infinite

exchangeable particle system.

Example 3.8. Let E = {0, 1}, which means that P (E) contains all and only

probability measures of the form τp = pδ1+(1−p)δ0, hence P (E) ≡ [0, 1]. We

fix π = Uniform(0, 1): after sampling p from the uniform on [0, 1] we define

an infinite sequence of identically distributed random variables Xi ∼ Bep
which are conditionally independent, that is they are independent given the

value p sampled from π. The sequence (Xi)i∈N is exchangeable because it

is infinite and τp is discrete, hence we only consider the number of positive
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or negative outcomes and not their order. Furthermore we can compute the

joint law of (X1, . . . , Xk) as:

P (X1 = x1, . . . , Xk = xk) =

∫ 1

0

(
k∏

i=1

pxi(1− p)1−xi

)
π(dp) = π⊗k.

Lastly about the empirical measure,

µk =
1

k

k∑
i=1

δXi
;

as usual, this represents the number of successes in k trials. Taking the limit

as k tends to infinity, we see that

µk(1) =
1

k

k∑
i=1

Xi
i.i.d−→ p almost surely.

So the limit limk→∞ µk exist almost surely and is equal to τp; since p was

sampled form π, this limit is decided from the distribution π.



Appendix A

Portmanteau’s theorem

A good characterization of the weak convergence can be expressed in

Portmanteau’s theorem [6].

Theorem A.1. Let (Pn)n∈N, P be probability measures. The following con-

ditions are equivalent:

i) Pn converges weakly towards P ;

ii) lim supn→∞ Pn(F ) ≤ P (F ) for all closed set F;

iii) lim infn→∞ Pn(A) ≥ P (A) for all open set A;

iv) limn→∞ Pn(B) = P (B) for all P -continuity sets B, that is a set B

which satisfies P (∂B) = 0.

Proof. i) ⇒ ii). If d is the distance defined on the space E, we set d(x, F ) :=

minz∈F d(x, z). For ϵ > 0, let us define f(x) := (1 − d(x, F )/ϵ)+; this is a

bounded and (uniformly) continuous function on E because 0 ≤ f(x) ≤ 1

for all x ∈ E and |f(x)− f(y)| ≤ d(x, y)/ϵ. By definition, we have that

∀x ∈ F, f(x) = 1 and ∀x ∈ F ϵ, f(x) = 0, where F ϵ := {x ∈ E|d(x, F ) < ϵ}.
Therefore for all x ∈ E,

1F (x) ≤ f(x) ≤ 1F ϵ(x).

If we apply the expected value over Pn and P , we obtain

Pn(F ) ≤
∫

fdPn ≤ Pn(F
ϵ) and

P (F ) ≤
∫

fdP ≤ P (F ϵ).

19
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Using these inequalities, we get

lim sup
n→∞

Pn(F ) ≤ lim sup
n→∞

∫
fdPn =

∫
fdP ≤ P (F ϵ)

and we conclude letting ϵ → 0.

ii) ⇔ iii). Trivial by taking complements.

ii) & iii) ⇒ iv). For all sets B we have

P (B) ≥ lim sup
n→∞

Pn(B) ≥ lim sup
n→∞

Pn(B) ≥

≥ lim inf
n→∞

Pn(B) ≥ lim inf
n→∞

Pn(intB) ≥ P (intB).

If B is a P -continuity set then P (B) = P (B) = P (intB) and iv) follows.

iv) ⇒ i). Given a test function f ∈ Cb(E), we may assume without loss of

generality that 0 ≤ f ≤ 1 by linearity. Ut := {x ∈ E|f(x) > t} is an event,

so we can write ∫
fdPn =

∫ ∞

0

Pn(Ut)dt =

∫ 1

0

Pn(Ut)dt

and likewise for P . Since f is continuous, we have ∂Ut ⊆ {x ∈ E|f(x) = t}:
this means that Ut is a P -continuity set except for countably many t. We

conclude using iv) and the bounded convergence theorem:∫
fdPn =

∫ 1

0

Pn(Ut)dt
n→∞−→

∫ 1

0

P (Ut)dt =

∫
fdP .
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