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Abstract
The polaron is a quasiparticle made of an electron and a cloud of phonons coupled to itthrough the electron-phonon interaction. This quasiparticle state is common at the bottom ofthe conduction band or at the top of the valence band (hole polaron) in ionic semiconductorsand insulators such as III-V compounds (GaAs, GaP, AlAs) and oxides (BaO, CaO). In this thesiswe will be focusing on the large polaron model, also known as the Froehlich polaron, whichassumes that the material can be modelled as a dielectric continuum. The main features ofthe Froehlich model will be discussed, including also a generalization for our more complexcase, and then the Many Body formalism will be explained together with the main aspects ofthe Monte Carlo method (introducing also Markov chains), in order to provide the theoreticalbasis for the Diagrammatic Monte Carlo method applied to the large polaron.The simulations performed using Diagrammatic Monte Carlo were used to compute the groundstate energy and polaron effective masses in the specific case of the conduction band of arange of cubic materials (AlAs, AlP, GaN, GaP, SiC, ZnSe) with parameters found using ab-initiomethods.The materials simulated had both isotropic and anisotropic conduction bands, a significant dif-ference with respect to previously performed Diagrammatic Monte Carlo simulations, whichwere all based on an isotropic model for the electron band.The results obtained are in agreement with previously computed values found in literatureusing different numerical methods and the obtained model can be used as a starting point formore complex simulations.
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Introduction
In Condensed Matter Physics, polarons are coherent states that are formed when an electron(or a hole) couples to a phonon bath in an ionic material (tipically the optical phonons): thisusually happens at the bottom of the conduction band for the electron polaron and at the topof the valence band for hole polarons and leads to a renormalization of the electron groundstate energy and effective mass.This coupling is not easily described using standard ab-initio methods such as DFT (DensityFunctional Theory), which decouples the ionic degrees of freedom from the electronic ones,and some approximations are necessary in order to provide a description of the polaron. Nev-ertheless, the formalism provided by Quantum Many Body theory is necessary in order toanalytically describe the physics of polarons.Two different models for the polaron exist: the Froehlich polaron [8], which assumes that thecharacteristic size d of the electron with its phonon cloud, which together form the polaron, ismuch greater than the lattice spacing a of the material, and the Holstein polaron [9][10] whichis suitable to describe polarons where the actual crystalline arrangement of the material can-not be neglected (and thus d is of the order of the lattice parameter).In this thesis we will be focusing on the first case, and we will provide a way to compute rele-vant quantities about Froehlich polarons in a range of real materials using the DiagrammaticMonte Carlo method. For this scope, a model which includes anisotropies in the electron bandand multiple phonon modes will be provided.Here the organization of the thesis is briefly explained:

• In Chapter 1 the standard Froehlich model is presented and it is explained how its Hamil-tonian is derived together with the main techniques to solve it. It is then explained howthis relatively simple model can be generalized to have multiple anisotropic electronicbands and multiple optical phonon modes without altering the basic features of themodel from which it was derived.
• In Chapter 2 the main Many-Body techniques employed to make the Froehlich modeltreatable using the Diagrammatic Monte Carlo method are explained: this includes us-ing Green’s functions as solutions for the Froehlich Hamiltonian together with the Mat-subara imaginary time formalism and Wick’s theorem to perturbatively expand the in-teracting Green’s function in an integral series of non-interacting terms. In this way itbecomes possible to use Feynman diagrams to solve the model, with the added bonusof obtaining a Green’s function that is real and non-negative (thanks to the imaginarytime formalism).
• In Chapter 3 the Monte Carlo method is explained, from Monte Carlo integration toMarkov chain Monte Carlo, a technique which can be used to obtain random sam-ples distributed as a target distribution, even if it unnormalized, using the Metropolis-
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Hastings algorithm. Markov chain Monte Carlo is at the basis of the DiagrammaticMonte Carlo method, which also needs to implement ways to add or remove internalvariables (since we are describing a system which can be described as an expansion ofterms each with a different weight).

• In Chapter 4 the implementation of the algorithm is discussed: the basic features ofthe DMC simulation, the way free electron propagators and free phonon propagatorswere modelled in the computer, the updates that were implemented in order to obtainan ergodic simulation, and the main estimators that were used in order to obtain theresults, among these the most important are the exact ground state energy estimatorand the exact effective mass estimator.
• In Chapter 5 the results obtained together with the input parameters employed arecompared to the same quantities computed with different methods (namely the pertur-bative method for the generalized cubic Froehlich model and the Feynman variationalapproach).
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1 Froehlich Polaron
1.1 Electrons in crystals
The study of electrons inside a solid crystal is an important field due to their role in the deter-mination of transport and optical properties of such materials [11].Multiple experiments involving X-ray or electron scattering from suitable solid samples havedemonstrated that a crystalline solid, whether a metal, an insulator or a semiconductor, isdescribed by a periodic arrangement of atoms consisting of a unit cell (usually the primitiveone, defined as the smallest unit cell possible in a determined material) with a suitable atomicbasis: some examples are Iron (Fe), described by a BCC (Body-Centered Cubic) unit cell witha single Fe atom basis, rock salt (NaCl), described by by a FCC (Face-Centered Cubic) unit cellwith a basis composed of one Na atom and one Cl atom, and crystalline silicon (Si), which ischaracterized by the diamond structure, an FCC structure with a basis composed of 2 siliconatoms (geometrically different from that seen in rock salt).Given the periodic nature of crystal structures, it is natural to consider the electrostatic poten-tial generated by the crystal to be periodic too. Such is the basic assumption which underliesthe treatment of electrons in crystals, which was first described by Felix Bloch in his famous1928 paper Uber die Quantenmechanik der Elektronen in Kristallgittern [12].The model proposed by Bloch assumed independent electrons (no electron-electron interac-tions terms): each electron behaves as if only an average contribution to the potential fromthe other electrons (with the same periodicity of the lattice) exists, thus retrieving an effective
one-electron potential.The resulting Hamiltonian for the single independent electron is:

Hψ(r) =

(
− ℏ2

2m
∇2 + U(r)

)
ψ(r) = Eψ(r), (1.1)

whereU(r) is a periodic potential with the lattice periodicity, given a lattice translation vector
T = n1a1 + n2a2 + n3a3, n1, n2, n3 integers, (1.2)

with a1, a2 and a3 primitive translation vectors. Therefore, we have
U(r+T) = U(r), (1.3)

this means that the potential can be expanded in Fourier series
U(K) =

∑
K

UKe
iK·r, (1.4)

and is consequently useful to expand the wavefunction in the same way. For this reason theBorn-von Karman boundary conditions are applied [13]
ψ(r+Niai) = ψ(r), i = 1, 2, 3. (1.5)
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whereNiai is a chosen vector such that U(r+Niai) = U(r) (it is a translation vector for thelattice). This is a normalizing condition for the wavefunction which corresponds to taking Niunit cells in each direction and periodically repeating them. In this way it is possible to writethe wavefunction in the following way:

ψ(r) =
∑
q

cqe
iq·r. (1.6)

Going back to the periodic potential U(r) we observe that the Fourier terms UK are relatedto U(r) by
UK =

1

V

∫
cell

dre−iK·rU(r) (1.7)
with V unit cell volume andK reciprocal lattice vector (vector in k-space such that eiK·ai = 1).If it is assumed that the potentialU(r) is real andU(−r) = U(r) (valid for every Bravais lattice)it follows that the coefficients UK are real.Substituting in 1.1 we obtain:

(H− E)ψ(r) =
∑
q

(
ℏ2

2m
q2 − E

)
cqe

iq·r +
∑
Kq′

UKcq′−Ke
iq′·r = 0, (1.8)

which yields the following result:(
ℏ2

2m
(k−K)2 − E

)
ck−K +

∑
K′

cK′−Kck−K′ = 0. (1.9)
From this equation it becomes clear that for a fixed k only the coefficients ck, ck−K, ... whosewavevector differs from k by a reciprocal lattice vector are coupled. In this way the originalproblem has been divided inN independent equations for each allowed value of k (in the firstBrillouin zone, the primitive unit cell in the reciprocal space).Going back to the expansion 1.6 the wavefunction now becomes:

ψk(r) =
∑
K

ck−Ke
i(k−K)·r, (1.10)

which can be recast as
ψk(r) = eik·r

∑
K

ck−Ke
−iK·R; (1.11)

in this form it is easy to recognize that
uk(r) =

∑
K

ck−Ke
−iK·R (1.12)
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has the periodicity of the (reciprocal) Bravais lattice.The shape of the Bloch wavefunction as stated in the Bloch theorem is thus retrieved

ψk(r) = eik·ruk(r) (1.13)
and its square modulus (from which important properties such as charge distribution follow)
|ψk(r)|2 has the periodicity of the lattice.The new Hamiltonian eigenvalues equation using Bloch wavefunction reads

Hkunk =

(
ℏ2

2m

(
1

i
∇+ k

)2

+ U(r)

)
unk(r) = Enkunk(r), (1.14)

which yields a different energy eigenvalue for each k in the first Brillouin zone. The index narises from the fact that for each k value infinite discrete solutions to the eigenvalue equationexist, in the same way as in the particle in a box problem. Going to the thermodynamic limit(Ni → ∞ for each component i) the entire first Brillouin zone is sampled and the typical bandstructure of the solids is recovered.All the methods employed in solid state calculations rely on this ”simple” equation to deter-mine band structures, granted an analytical form for the periodic potential U(r) can be re-trieved.The most used and effective computation method is Density Functional Theory [14] or DFTfor short, which does not directly compute the eigenvalue equation for each single k and nvalue, which would be impossible since the potentialU(r) is a many-body object that includeselectron-electon interactions, but rather computes all the physical quantities of interest start-ing from the ground state charge density ρ0(r). This is made possible by the two Hohenberg-Kohn theorems [15], which respectively state that the external potential (the periodic U(r)from the electron point of view) is uniquely determined up to a constant by the ground statecharge density ρ0(r) and that this density can be computed variationally by minimizing a suit-able functional F [ρ].Nevertheless, the functional F [ρ] exact form is unknown: for this reason the Kohn-Sham
scheme [16] is used. The idea at the basis of this practical setup is to substitute the real inter-acting system (many-body) with an auxiliary non-interacting one (single particle) which has thesame ground state as the original. In this system the total potential U(r) = Uion(r) + Uee(r)is replaced with an effective potential Ueff (r) defined as

Ueff (r) = Uion(r) + UH(r) + Uxc(r), (1.15)
where Uion is the ionic potential, often modelled using pseudopotentials [17], UH(r) is theHartree term, the electrostatic potential due to the mean field distribution of all the otherelectrons, andUxc(r) the exchange-correlation term, an approximate potential which includesPauli exclusion principle (exchange), higher order electron-electron interactions (correlation)and many body corrections to kinetic energy. The exchange-correlation term is usually com-puted using LDA (Local Density Approximation) orGGA (Generalized Gradient Approximation),
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both based on the the Uniform Electron Gas (UEG) [18]. Despite the inevitable approximations,DFT calculations are able to provide extremely accurate band structure calculations with fewdrawbacks, such as inaccurate gap estimations in insulators and semiconductors.

Figure 1.1: DFT calculated low-temperature GaAs Wurtzite structure with relative DOS [1].
As it can be seen in Figure 1.1 for GaAs, at the band extrema (at the edge between the allowedband states and the forbidden gap) the bands have a quadratic dispersion akin to that of afree electron: an electron in these regions feels only a very weak external potential U(r) andcan be considered free provided that the free electron massm is substituted with an effectivemass m∗ which takes into account the potential acting on it.In a general case the effective mass is a tensorial quantity (bands are anisotropic in generalwith respect to the wavevector) and their value can be computed with

m∗−1
ij =

1

ℏ2
∂2E

∂ki∂kj
, (1.16)

provided that the quadratic approximation is valid. This approximation is really useful whencalculating quantities near band extrema, providing an effective description of an otherwisecomplex interaction.
1.2 The polaron problem: the Froehlich model
The treatment described up until now for electrons in solids relies on a basic assumption:electron dynamics is much faster than ion dynamics. This is the so-called Born-Oppenheimer
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approximation, which assumes that the motion of the much heavier ions is slow compared tothe fast dynamics of the electrons (the characteristic time are of the order of ps for ions and
fs for electrons). As a result, electrons are considered to respond instantaneously to changesin the positions of the ions, allowing the separation of electronic and ionic degrees of freedomin the analysis. GivenM ions and n electrons the wavefunction Ψ(R1, ...,RM , r1, ..., rn) with
Rα ionic positions and ri electron positions can be decomposed in the following way:

Ψ(R1, ...,RM , r1, ..., rn) = χ(R1, ...,RM)ψ(r1, ..., rn), (1.17)
and only the electronic wavefunctionψ(r1, ..., rn) is taken into consideration, decoupling ionicdegrees of freedom and treating ionic potential as a constant energy surface Uion(r).This approximation, although extremely effective in computing electronic bands, fails by de-sign to describe systems where there is a strong coupling between electrons and ions (forexample electron-phonon interaction).Such is the case of charge doped polar crystals: in these materials single electrons at the bot-tom of the conduction band (or holes at the top of the valence band) couple to the stronglypolarized ions and distort the unit cell: an electron-phonon interaction is thus present in thelattice and the electron properties (such as energy and effective mass) are renormalized dueto this coupling [8].The basic assumption of the Froehlich model is that the polaron is ”large”, namely the charac-teristic size of the polaron (electron together with its phonon cloud) is much larger than thelattice constant a. In this way it is possible to ignore the atomic details of the actual materialand treat it as a uniform dielectric medium.It is assumed that the electron which takes part in the formation of the polaron lies at thebottom of the valence band, in this way it is expected to have a quadratic energy dispersioncharacterized (as already seen in 1.16) by an effective mass

ϵ(k) =
ℏ2k2

2m∗ , (1.18)
where the effective mass m∗ encapsulates all the interactions due to crystal structure (for ahole polaron the dispersion is similar considering a negative effective mass).Given the fact that we are dealing with the large polaron model, it is possible to treat the ma-terial as an homogeneous continuum which is polarized by the excess charge (the conductionelectron). We also assume that the material is isotropic. Let P(r) be the electric polarizationat the point r, the total electric field is then:

D(r) = E(r) + 4πP(r),

D(r) = ϵ0E(r),
(1.19)

considering the electric permittivity in vacuum equal to 1.The only free charge present in the material is the conduction electron in excess, this means
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that D(r) is completely determined by it:

D(r, rel) = −∇ e

|r− rel|
,

∇ ·D(r, rel) = 4πδ(r− rel),
(1.20)

with rel the coordinate of the conduction electron. Developing the equations the followingrelation is obtained:
4πP(r) =

(
1− 1

ϵ0

)
D(r). (1.21)

P(r) is the total polarization, which has contributions both from electrons and ionic displace-ments, since only the second contribution is relevant in our treatment, a method to tell apartthis two contributions is needed.To obtain this we imagine a system where a field is slowly applied and then rapidly switchedoff [19]: only electrons are able to keep up with the variation of the field. A formula con-necting polarization and D (dropping the r dependence for simplicity since an isotropic andhomogeneous medium is assumed) is then retrieved as
4πδP = −

(
1− 1

ϵ∞

)
D, (1.22)

it is then obtained the lattice contribution to the polarization:
4πPlat = 4π(P− δP) =

(
1

ϵ∞
− 1

ϵ0

)
D. (1.23)

We now consider a model for the polar crystal lattice: we assume it to be constituted of individ-ual oscillating discrete dipoles located at fixed sites of the crystal with characteristic frequency
ω. The energy of each one of these oscillators is

M

2
(q̇2 + ω2q2). (1.24)

The next step is to move from a discrete set of fixed oscillators to a continuum of dipoles: itis assumed that the dipoles are not coupled. Defining the effective charge as e∗, the followingsubstitution is made:
e∗qn → Plat(r), (1.25)

which relates the dipole moment to the polarization field. We also write the following relation:
M

e∗2
= γd3r, (1.26)

where M = nd3r is the mass density of the medium.It is now possible to define the kinetic and potential energy of the freely oscillating polarization
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field:

T =

∫
γ

2
Ṗ2

lat(r)d
3r,

V =

∫
γω2

2
P2

lat(r)d
3r.

(1.27)

We identify ω with the optical phonon frequency ωLO, but the constant γ has not yet beengiven a physical definition. For this reason we consider the interaction between electrons anddipole moment, given by
e

r− r′

|r− r′|3Plat, (1.28)
which, using a continuous charge distribution and the polarization field, becomes

ρ(r)d3r
r− r′

|r− r′|3Plat(r
′)d3r′. (1.29)

The interaction energy EI is thus
EI =

∫∫
ρ(r)

r− r′

|r− r′|3Plat(r
′)d3rd3r′. (1.30)

The Lagrangian is then built as follows:
L = T − U − EI (1.31)

and the equation of motion are found solving the Lagrange equations
d

dt

δL

δṖlati

− δL

δPlati

= 0 (1.32)
for i = 1, 2, 3. The explicit formula of the equation of motion is:

γ(P̈lat(r
′) + ω2Plat(r

′)) = −
∫

r− r′

|r− r′|3ρ(r)d
3r (1.33)

keeping fixed ρ(r). The term on the right side is simply the dielectric displacement D(r′) and,in the static limit, the equation simplifies to
γω2Plat(r

′) = D(r′). (1.34)
Comparing this equation with 1.23, the value of γ is obtained:

γ =
4π

ω2

(
1

ϵ∞
− 1

ϵ0

)−1

. (1.35)
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It is now time to define the complete polaron Hamiltonian. We start by defining the freeelectron term (the interaction lies inside the effective massm∗), considering that the electroncharge density operator is defined as:

ρ(r) = −eψ†(r)ψ(r) (1.36)
using the second quantization formalism with field operators, then the electron kinetic termis

Hel =

∫
ψ†(r)

(
− ℏ2

2m∗∇
2

)
ψ(r)d3r. (1.37)

If we use a suitable basis for the field operator
ψ(r) =

1√
V

∑
k

cke
ik·r (1.38)

with V (unit cell) volume, then 1.37 becomes
Hel =

∑
k

k2

2m∗ c
†
kck, (1.39)

with c†k and ck creation and annihilation operators for the free electron.We now turn our attention to the polarization field, taking into account that it can be modelledas a harmonic oscillator with a form similar to 1.37 can be recovered (Plat is substituted by Pin the following equations):
Hph =

∫ (
1

2γ
Π2(r) +

γ

2
ω2P2(r)

)
d3r, (1.40)

where Π(r) is the conjugate momentum to P(r).Using the canonical substitution for the operator P(r)

P(r) =
1√
V

∑
q

√
ℏ

2γω

q

q
eiq·r(aq − a†−q) (1.41)

and the corresponding one for Π(r) we obtain the equation for a quantum harmonic oscilla-tor:
Hph = ℏω

∑
q

a†qaq, (1.42)
with a†q and aq bosonic phononic creation and annihilation operators.With the same formalism, the interaction term is instead written in the following way:

HEPC =

∫∫
ψ†(r)ψ(r)

e

|r− r′|(−∇r′ ·P)(r′)d3rd3r′, (1.43)
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using the same substitution in 1.41 for P(r) the following form is obtained:

HEPC =

∫
ψ†(r)ψ(r)

[
4πi

(
e2ℏ

2γωV

)1/2∑
q

1

q
(a†qe

−iq·r − aqe
iq·r)d3r

]
. (1.44)

The term is simplified even more if we substitute the electron field operator using 1.41, thenthe final form of the coupling term is reached
HEPC =

∑
k,q

(Vqc
†
k+qckaq + V ∗

q c
†
k−qcka

†
−q), (1.45)

where the coupling parameter is given as
Vq = 4πi

(
e2

2ℏγωV

)1/2
1

q
. (1.46)

It is possible to rewrite the coupling parameter in terms of the dimensionless coupling strength
α:

α =
2πe2

ℏγω

√
2m∗ω

ℏ
=

1

2

(
1

ϵ∞
− 1

ϵ0

)
e2

ℏω

√
2m∗ω

ℏ
, (1.47)

with ϵ0 static dielectric constant and ϵ∞ the optical dielectric one. The coupling parameter (orinteraction strength) is found as
Vq = i

(
2
√
2πα

V

)1/2
1

q
. (1.48)

If we now identifyωwithωLO angular frequency of the longitudinal optical phonon modes (themodes that effectively couple with the electron), we obtain the final form of the Froehlich Hamiltonian:
HFr =

∑
k

k2

2m∗ c
†
kck + ℏωLO

∑
q

a†qaq +
∑
k,q

(Vqc
†
k+qckaq + V ∗

q ck−qcka
†
−q) (1.49)

where we have dropped the coupling parameter dependence on q direction since it only de-pends on its modulus.The main assumptions of this model are:
• Free electron with quadratic dispersion (up to a scalar effective mass m∗).
• Dispersionless optical mode with frequency ωLO.
• ”Large” polaron, with characteristic dimension dmuch greater than lattice parameter a(continuum approximation).
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In this form the model correctly describes only a handful of real materials and it mainly servesas a toy model (we will breafly mention how it can be solved at weak coupling with perturba-tion theory and at strong coupling variationally), however we will focus on the Diagrammatic
Monte CarloMethod, a computational method that is capable of solving the polaron problemusing some tricks. We will also see how some of the main limitations of the model (namelythe scalar effective massm∗ and the single phonon modeωLO) can be lifted without losing themain assumption (the large polaron approximation). It will be illustrated in particular the caseof an anisotropic band with effective mass m∗(k̂) and multiple dispersionless optical modes
ωLOj

, already capable of modelling conduction band minima in a wide range of materials.
1.3 Weak coupling limit: perturbation theory
In the weak coupling regime it is possible to apply perturbation theory to the Froehlich Hamil-tonian, for this treatment a slightly modified Hamiltonian with respect to the one seen in 1.49will be used [20]:

HFr = − ∇2

2m∗ + ωLO

∑
q

(a†qaq) +
∑
q

(Vqaqe
iq·r + V ∗

q a
†
qe

−iq·r). (1.50)
We will respectively define the non-interacting HamiltonianHFr

0 and the interaction termHFr
Ias

HFr
0 = − ∇2

2m∗ + ωLO

∑
q

(a†qaq),

HFr
I =

∑
q

(Vqaqe
iq·r + V ∗

q a
†
qe

−iq·r).
(1.51)

The quantum state of the non-interacting electron is described by |k⟩ = 1√
V
eik·r, while for the

non interacting phonons it is possible to define the average number of excitations ⟨a†qaq⟩ =
⟨nq⟩, which is equal to 0 at the ground state.The total wavefunction of the non-interacting system then becomes:

|k, 0⟩ = eik·r|0⟩. (1.52)
The first excited state to which the ground non-interacting state can jump to is the one withelectron wavevector k− q and one phonon nq = 1, total energy is:

(k+ q)2

2m∗ + ωLO =
k2

2m∗ , (1.53)
while the corresponding wavefunction is

|k− q, 1⟩ = ei(k−q)·r|1⟩. (1.54)
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At first order perturbation theory there is no correction to the energy, we then need to go tosecond order. We consider the matrix element

⟨k− q, 1|HFr
I |k, 0⟩ = V ∗

q , (1.55)
at second order perturbation theory energy then becomes:

EkP =
k2

2m∗ −
∑
q

|Vq|2
(k− q)2/2m∗ + ωLO − k2/2m∗ , (1.56)

evaluating the sum over the q wavevectors we arrive at
EkP =

k2

2m∗ − αωLO

√
2m∗ωLO

k
arcsin

k√
2m∗ωLO

, (1.57)
with α adimensional parameter defined as (using atomic units) [21]

α =

(
1

ϵ∞
− 1

ϵ0

)(
m∗

2ωLO

)1/2 (1.58)
where ϵ∞ is the optical dielectric constant (purely electronic) and ϵ0 the static dielectric con-stant (independent from ω and q).1.57 for k ≪ √

2m∗ωLO yields
EkP =

k2

2m∗ − αωLO. (1.59)
The polaron effective mass m∗

P is instead given by:
m∗

P =
m∗(

1− α
6

) . (1.60)
From the equation it clearly results that the polaron effective mass diverges for α → 6− andis negative for α > 6. This signals that perturbation theory does not correctly describe thephysical system at strong couplings.
1.4 Strong coupling limit: variational treatment
For the strong coupling case a different approach is taken: the main assumption of this modelis a localized polaron wavefunction with a gaussian form [22], the Froehlich Hamiltonian isrecast in order to write the phonon operators as displacement and conjugate momentumoperators:

Qq =
1√
2

(
aq + a†−q

)
, Pq = − i√

2

(
aq − a†−q

)
, (1.61)
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so that the Hamiltonian in 1.50 can be rewritten as

HFr =
p2

2m∗ +
ωLO

2

∑
q

(
P 2
q +Q2

q

)
+
∑
q

VqQqe
iq·r. (1.62)

A wavefunction with dependence both on the electron position r and the lattice displacement
Qq is needed, for this reason the following gaussian ansatz is used:

Φ(r, Qq) = ϕ(r)Ψn(Qq + δQq),

ϕ(r) =

(
β√
π

)3/2

e−
β2

2
r2 ,

(1.63)

with β variational parameter, Ψn the harmonic oscillator wavefunction and δQq displacementto be calculated.We now need to take the expectation value of the Hamiltonian operator:
H(Qq) = ⟨ϕ(r)|H|ϕ∗(r)⟩ =

∫
ϕ(r)Hϕ(r)d3r, (1.64)

the terms with r dependence are respectively evaluated as:∫
ϕ∗(r)

p2

2m∗ϕ(r)d
3r =

3β2

4m∗ ,∫
ϕ∗(r)eiq·rϕ(r)d3r = e−q2/4β2

.

(1.65)

The following result is thus obtained:
H(Qq) =

3β2

4m∗ +
ωLO

2

∑
q

(P 2
q +Q2

q) +
∑
q

LqQq, Lq = Vqe
−q2/4β2

. (1.66)
To cancel out the linear term inQq it is important to choose the right equilibrium displacement
δQq as

δQq =
Lq

ωLO

, (1.67)
which yields the Hamiltonian

H(Qq) =
ωLO

2

∑
q

[
P 2
q + (Qq + δQq)

2
]
+

3β

4m∗ − 1

2ωLO

∑
q

L2
q

=
ωLO

2

∑
q

[
P 2
q + (Qq + δQq)

2]+ E(β).
(1.68)

The three different terms have precise physical meanings: the first term describes the har-monic oscillation of phonons around their new equilibrium position (Qq + δQq), the second
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term represents the kinetic energy of the electron in the gaussian formalism, the third onethe interaction energy between the electron and the phonons. To variationally retrieve thelowest energy the β parameter is minimized, we have:

1

2ωLO

∑
q

L2
q = α

(
β2ωLO

m∗π

)1/2

,

E(β) =
3β2

4m∗ − α

(
β2ωLO

m∗π

)1/2

.

(1.69)

If we calculate the derivative with respect to β and we minimize it the following result is ob-tained:
dE

dβ
=

3β

2m∗ − α
(ωLO

m∗π

)1/2
= 0, (1.70)

which yields a value for β0:
β0 =

α

3
2m∗

(ωLO

m∗π

)1/2
. (1.71)

Using this result the minimum energy E(β0) is:
E(β0) = −α

2ωLO

3π
= −0.106α2ωLO, (1.72)

with a quadratic dependence on the coupling strength α different from the one found usingperturbation theory (linear).A more refined treatment of the strong coupling limit [23] yields the following result:
lim
a→∞

E0(α) = −ωLO

[
−0.1085α2 + 2.836 +O(1/α2)

]
, (1.73)

not so different from our obtained result.

Figure 1.2: Computed polaron energy using perturbation theory, strong coupling theory andall coupling Feynman technique [2].
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1.5 Froehlich Hamiltonian: degenerate bands and multiple phonon modes
The Hamiltonian in 1.49 only describes an extremely limited number of real cases, namely anon-degenerate isotropic electron band with effective massm∗ coupled to a single LO phononmode. Although this relatively simple model is already quite challenging, some of its assump-tions can be relaxed to obtain a more general framework.Here we will be describing the generalized Froehlich cubic model: while mantaining somecore simplification already seen in the original Froehlich model such as an isotropic dielec-tric tensor ϵ0 and ϵ∞ together with a phonon dispersion ωjLO which does not depend on thewavevector direction (an even more general model not restrained to the cubic case is de-scribed in [7]) k̂, it is still a quite relevant and useful model since it can be used to describemultiple materials such as various oxides (BaO, CaO, MgO), II-VI compounds (CdS, CdSe, ZnS,ZnTe) and III-V compounds (AlAs, GaAs, GaN, GaP) [4].

Figure 1.3: GaAs crystal structure, the cubic structure of the zincblende unit cell is here clearlydisplayed.
We start by defining the new electron term:

HcFr
el

∑
kn

σk2

2m∗
n(k̂)

c†knckn, (1.74)
where the sum has been extended to n bands degenerate at the extremum, σ = ±1 depend-ing on the fact that an electron or a hole polaron is taken into consideration. m∗

n(k̂) is the neweffective mass depending on band index n and wavevector direction k̂ (a tensorial quantity in
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general).We also want to extend our Hamiltonian to tackle the case of multiple LO phonon modespresent in the material, to this aim we define the following phonon term:

HcFr
ph =

∑
qj

ℏωjLOa
†
qjaqj, (1.75)

where the index j represents the different LO modes.The electron-phonon coupling term gets redefined as:
HcFr

EPC =
∑

knn′,qj

c†k+qn′ckn

[
V cFr(knn′,qj)aqj + V ∗cFr(knn′,qj)a†−qj

]
. (1.76)

It should be noted that the new electron-phonon coupling term includes interband transitions(from n to n′). The new coupling strength V cFr(knn′,qj) is found to be [4]
V cFr(knn′,qj) =

i

q

4π

Ω0

(
1

2ωjLOVBvK

)1/2
pjLO
ϵ∞

×
∑
m

sn′m(k̂
′)s∗nm(k̂), (1.77)

with Ω0 volume of the primitive unit cell, VBvK volume of the Born-von Karman unit cell, pjLOphonon mode polarities, linked to Born effective charges and static dielectric tensor ϵ0 [24],computed as pjLO(q̂) = ∑
ν Z

∗
νeν(q̂) isotropic in cubic system, and the s tensors, symmetrydependent unitary matrices which represent specific bands (and have the same symmetrygroup).

Figure 1.4: DFT calculated AlAs band structure [3], the conduction band minimum is on thehigh symmetry line ∆ between Γ and X .
In our case of interest we restrict to just one anisotropic non-degenerate electron band, whichis an accurate model for the conduction band minimum of the materials cited before (usually
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located somewhere between Γ and X along the ∆ line), in this case the interaction strengthsimplifies to:

V cFr(qj) =
i

q

4π

Ω0

(
1

2ωjLOVBvK

)1/2
pjLO
ϵ∞

, (1.78)
and the full Hamiltonian reads:
HcFr =

∑
k

σk2

2m∗(k̂)
c†kck +

∑
qj

ℏωjLOa
†
qjaqj +

∑
k,qj

c†k+qck

[
V cFr(qj)aq + V ∗cFr(qj)a†−q

]
.

(1.79)The effective mass m∗(k̂) dependence on the wavevector q direction is expressed in the fol-lowing way:
1

m∗(k̂)
=

k̂2x
m∗

x

+
k̂2y
m∗

y

+
k̂2z
m∗

z

, (1.80)
with m∗

x, m∗
y and m∗

z effective mass values on the three cartesian axes.Alternatively, the following formula for the electron energy as a function of k can be employed:
ϵ(k) =

σ

2

(
k2x
m∗

x

+
k2y
m∗

y

+
k2z
m∗

z

)
. (1.81)

For the scope of this thesis, we will rearrange the coupling strength term in 1.78 in a way thatmakes it more similar to the coupling strength of the original Froehlich model.To this aim we introduce the adimensional coupling term α(q̂) as [21]
α(q̂) =

4π√
2Ω0

(
m∗(q̂)

ωjLO

)1/2(
pjLO
ϵ∞ωjLO

)2

, (1.82)
which can be rewritten in a similar form to 1.58:

α(q̂) =
1

ϵ∗j

(
m∗(q̂)

2ωjLO

)1/2 (1.83)
with ϵ∗j dielectric response of the phonon mode defined as

ϵ∗j =
4π

Ω0

(
pjLO

ϵ∞ωjLO

)2

. (1.84)
The following relation is also true [4]:

1

ϵ∞
=

1

ϵ0
+
∑
j

1

ϵ∗j
. (1.85)
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In this way the coupling strength term, similarly to 1.48, can be rewritten as

V cFr(qj) =
i

q

(
2
√
2π

Ω0VBvK

ω
3/2
jLO

m(q̂)1/2
α(q̂)

)1/2

, (1.86)
which is not dependent on the orientation of q since the q̂-dependent terms (the effectivemass) gets simplified.It is possible to use perturbation theory to compute the ground state energy of the polaronwith an anisotropic electron band and multiple phonon modes. In fact, at the lowest order ofperturbation theory we get [21]

EP (0) = −
∑
j

σ√
2Ω0

∫
4π

dq̂(m∗(q̂))1/2(ωjLO(q̂))
−3/2

(
pjLO
ϵ∞

)2

, (1.87)
which, using the expression for α(q̂) in 1.82, becomes

EP (0) = −σ
∑
j

⟨αj(q̂)⟩q̂ ωjLO. (1.88)
If we rewrite

αj = ⟨αj(q̂)⟩q̂ =
〈
(m∗(q̂))1/2

〉
q̂

1

ϵ∗j

1√
2ωjLO

(1.89)
we obtain the final formula for the polaron ground state energy (for a conduction band):

EP (0) = −
〈
(m∗(q̂))1/2

〉
q̂

(∑
j

√
ωjLO

ϵ∗j
√
2

)
. (1.90)

The effective mass of the polaron can also be retrieved in perturbation theory, we start byobserving that, up to the second order [4]
EP (k) = EP (0) +

σ

2

(
k2x
m∗

Px

+
k2y
m∗

Py

+
k2z
m∗

Pz

)
, (1.91)

from which it follows that
1

m∗
Pi

=
1

m∗
i

+ σ

(
d2Σ(k, ϵ(k))

dk2i

)
k=0

, (1.92)
with Σ(k, ϵ(k)) the energy variation exclusively due to electron-phonon coupling (the com-ponent due to the electron band is not included). We now define

IP (k, ωjLO,m
∗
i ) =

∫
d3q

4πq2
1

σ (ϵ(k)− ϵ(k− q)− ωjLO)
, (1.93)
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with ϵ(k) given as 1.81, we thus get

Σ(k, ϵ(k)) =
σ

π

∑
j

ωjLO

ϵ∗j
IP (k, ωjLO,m

∗
i ). (1.94)

For k = 0 we have [4]
IP (0, ωjLO,m

∗
i ) = (ωjLO)

−1/2IP (0, 1,m
∗
i ),(

∂2IP
∂k2i

)
k=0

= −2

(
∂2IP

∂ωjLO∂m∗
i

)
k=0,ω=1

∑
j

1

ϵ∗j

1√
2ωjLO

,
(1.95)

which, combined, give the result(
d2Σ(k, ϵ(k))

dk2i

)
k=0

=
σ

π

(
∂IP
∂m∗

i

)
k=0,ω=1

∑
j

1

ϵ∗j

1√
2ωjLO

. (1.96)
The obtained expression clearly shows the decomposition between the band dispersion (fromthe electronic band massesm∗

i ) and the phonon modes, in fact, for the electron polaron (con-duction band) we have:
IP (0, 1,m

∗
i ) =

∫
d3q

4πq2
1

1
2

(
q2x
2m∗

x
+

q2y
2m∗

y
+ q2z

2m∗
z

)
+ 1

, (1.97)

separating the qi components in their radial and angular parts following 1.81 we obtain:
IP (0, 1,m

∗
i ) =

π√
2
⟨m∗1/2⟩. (1.98)

We thus obtain the expression for the polaron effective mass
1

m∗
Pi

=
1

m∗
i

− ∂
〈
m∗1/2〉
∂m∗

i

∑
j

1

ϵ∗j

1√
2ωjLO

, (1.99)
which, for an isotropic effective band mass, reduces to the expression in 1.60.In the non-degenerate anisotropic uniaxial case, which describes cubic materials with conduc-tion band gaps in X or L, where we have m∗

x = m∗
y = m∗

⊥ and the ratio µ∗ defined as
µ∗ =

m∗
⊥

m∗
z

, (1.100)
the square root of the average electronic effective mass becomes〈

m∗1/2〉 = m∗
⊥S(µ

∗ − 1) (1.101)
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with S(x) defined as

S(x) =

{
arcsin (x1/2)

x1/2 , x > 0,
arcsin (−x)−1/2

(−x)1/2
, x < 0,

(1.102)
we obtain the following expression for the polaron effective mass: for m∗

P⊥ we have

m∗
P⊥ = m∗

⊥

(
1− 1

f⊥(µ∗)

∑
j

αj

)−1

,

f⊥(µ
∗) = 4(1− µ∗)

[
1− (µ∗)1/2

S(µ∗ − 1)

]−1

,

(1.103)

while for m∗
Pz we obtain

m∗
Pz = m∗

z

(
1− 1

fz(µ∗)

∑
j

αj

)−1

,

fz(µ
∗) = 2

1− µ∗

µ∗

[
(µ∗)−1/2

S(µ∗ − 1)
− 1

]−1

.

(1.104)

The limit for which the perturbation approach breaks down is different from the isotropic limitof α = 6 [4] and depends on the value for which f⊥(µ∗) and fz(µ∗) equal∑j αj .

Figure 1.5: Polaron effective mass breakdown limit in the uniaxial case [4].
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1.6 Feynman variational method
The Feynman variational approach [25] uses a different method to solve the Froehlich Hamil-tonian: it starts by rewriting the Hamiltonian into a Lagrangian by replacing the electron andphonon operators with the corresponding position and conjugate momentum and then usinga Legendre tranformation. After having integrated over the momenta, only a path integralover the configuration space remains, which is Gaussian in the phonon coordinates and thuscan be evaluated.We then obtain as a result an effective action of an electron coupled to a fictitious particlewith a non-Coulomb potential [4]:

Z = Tr[e−βHFr

] ≈
∫
r(0)=r′(β)

Dr(τ)e−S[r(τ)], (1.105)
where τ is the imaginary time (discussed in detail in Chapter 2 and akin to an inverse tem-perature), β = kBT , Z is the partition function for the electron (which starts at τ = 0 andfinishes in the same position at τ = β). S (the model action) is defined as:

S[r(τ)] =
m∗

2

∫ β

0

dτ

(
dr(τ)

dτ

)2

+

− ω
3/2
LOα

(8m∗)1/2

∫ β

0

dτ

∫ β

0

dτ ′|r(τ)− r(τ ′)|−1e−ωLO|τ−τ ′|,

(1.106)

where it is assumed that β is large with respect to ωLO.Since the formula for S is difficult to evaluate, we employ Jensen’s inequality
⟨exp (f)⟩ ≥ exp ⟨f⟩ (1.107)

to approximate the action S into S0:
S0[r(τ)] =

m∗

2

∫ β

0

dτ

(
dr(τ)

dτ

)2

+
C

2

∫ β

0

dτ

∫ β

0

dτ ′ (r(τ)− r(τ ′))
2
e−w|τ−τ ′|. (1.108)

In this way an upper bound for the free energy F can be calculated:
F ≤ FS0 +

1

β
⟨S − S0⟩S0

, (1.109)
with FS0 free energy of the approximate system and ⟨S − S0⟩S0 expectation value of thedifference between the two actions taken with respect to S0.The ground state energy EP is found for T → 0 (β → +∞):

Tr
[
e−βH

]
≈ e−βEP , (1.110)
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and we find

EP ≤ 3ωLO

4v
(v − w)2 − αωLO√

π

v

w

∫ +∞

0

dτ
e−τ√
τD(τ)

,

D(τ) = 1 +
v(1− w2/v2)(1− e−vτ )

τw2
, v2 = w2 +

4C

w
.

(1.111)

This is a variational approach in terms of v (the frequency of the harmonic oscillator madeof the electron and the fictitious particle) and w (the exponential decay of the coupling inimaginary time).If we set v = (1 + ϵ)w with ϵ small (expression valid for the weak-coupling limit) and expandthe expression for the energy we find that the energy is minimized for:
EP

ωLO

≤ −α− 1.23
( α
10

)2
. (1.112)

In the strong-coupling limit we have instead w/v ≪ 1 and the energy is minimized for
EP

ωLO

≤ −α
2

2π
− 3

2
(2 log 2 + γ)− 3

4
+O(

1

α2
), (1.113)

with γ ≈ 0.5772 the Euler-Mascheroni constant.In this framework, the polaron effective mass m∗
P is retrieved by assuming that the electronhas a small velocity v and moves from 0 to r = vβ with β the imaginary time. Assuming thatthe energy dispersion is quadratic

EP (v) = EP (0) +
1

2
m∗

Pv
2, (1.114)

we retrieve the polaron effective mass as
m∗

P = m∗
[
1 +

α

3π

( v
w

)3 ∫ +∞

0

dτ
e−ττ 1/2

[D(τ)]3/2

]
. (1.115)

In the weak-coupling case we retrieve the expression:
m∗

P = m∗(1 +
α

6
+ 0.025α2 + ...), (1.116)

while in the strong-coupling we have
m∗

P = m∗160

81

(α
π

)4
. (1.117)
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2 Froehlich polaron: Feynman diagrams
In order to deeply understand a many-body system such as the Froehlich polaron it is neces-sary to use a more powerful formalism derived from quantum many body theory, we will firstbriefly introduce Green’s functions as an effective mean to describe meaningful quantities ofour system and we will then shift to the Matsubara imaginary time formalism, much moreuseful in the context of Diagrammatic Monte Carlo. At the end of this journey the connectionbetween the Froehlich polaron and Feynman diagrams will be explicated.
2.1 Green’s function formalism
Green functions are useful objects to perturbatively solve systems that are really hard to cor-rectly treat in any other way [26].If we take for example a time-dependent Schroedinger equation in the following way:

[i∂t −H0(r)− V (r)]ψ(r, t) = 0, (2.1)
with the non-interacting diagonizable termH0 and the perturbation V . It is possible to definethe corresponding Green’s functions as:

[i∂t −H0(r)]G0(r, r
′; t, t′) = δ(r− r′)δ(t− t′),

[i∂t −H0(r)− V (r)]G(r, r′; t, t′) = δ(r− r′)δ(t− t′).
(2.2)

We can define G−1
0 (r; t′) and G−1(r; t) as:

G−1
0 (r; t) = i∂t −H0(r),

G−1(r; t) = i∂t −H0(r)− V (r),
(2.3)

The Schroedinger equation can then be recast as[
G−1

0 (r, t)− V (r)
]
ψ(r, t) = 0 (2.4)

and it is possible to rewrite the system as an integral equation
ψ(r, t) = ψ0(r, t) +

∫
d3r′

∫
dt′G0(r, r

′; t, t′)V (r′)ψ(r′, t′) (2.5)
which can be solved iteratively. In fact:

ψ = ψ0 +G0V ψ
0 +G0V G0V ψ

0 +G0V G0V G0V ψ
0 + ...

= ψ0 + (G0 +G0V G0 +G0V G0V G0 + ...)V ψ0.
(2.6)
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Noting that 2.5 can be also written as:

ψ(r, t) = ψ0(r, t) +

∫
d3r′

∫
dt′G(r, r′; t, t′)V (r′)ψ0(r′, t′), (2.7)

it is possible to identify G with
G = G0 +G0V G0 +G0V G0V G0 + ...

= G0 +G0V (G0 +G0V G0 + ...),
(2.8)

and the well-known Dyson equation is retrieved:
G = G0 +G0V G. (2.9)

The one described above is the single particle Green’s function, also called propagator sinceit ”propagates” the wavefunction: in fact, if the wavefunction is known at time t′ the wave-function at a later time can be obtained in the following way:
ψ(r, t) =

∫
d3r′

∫
dt′G(rt, r′t′)ψ(r′t′), (2.10)

which is a solution to 2.3. The Green’s function can also be written as
G(rt, r′t′) = −θ(t− t′)⟨r|e−iH(t−t′)|r′⟩, (2.11)

and is more precisely known as the retarded Green’s function.Focusing now on a many-body system the Green’s function is defined as
GR(rσt, r′σ′t′) = −iθ(t− t′)⟨[ψσ(r, t), ψ

†
σ′(r

′, t′)]B,F ⟩, (2.12)
where [, ]B,F is the commutator [, ] for bosons and the anticommutator {, } for fermions.In the case of translation-invariant systems (such as lattices) Green’s functions can only dependon r− r′ and it is natural to adopt the usual k formalism:

GR(r− r′, σt, σ′t′) =
1

V

∑
k

eik·(r−r′)GR(k, σt, σ′t′),

GR(k, σt, σ′t′) = −iθ(t− t′)⟨[akσ, a†k′σ′ ]B,F ⟩.
(2.13)

The goal is now to find explicit expressions for the various Green’s function of relevance, inthe special case of a free electron the Hamiltonian assumes the simple form
H =

∑
kσ

ϵ(k)c†kσckσ, (2.14)
and the time dependence of the creation/annihilation operators is simply defined as

ckσ(t) = eiHtckσe
−iHt = ckσe

−iξkt. (2.15)
The retarded Green’s function then becomes:

GR(kσ, t− t′) = −iθ(t− t′)e−iξk(t−t′). (2.16)
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2.2 Perturbation theory for Green’s functions
Given an Hamiltonian which can be written as a sum of two terms

H = H0 + V, (2.17)
whereH0 is diagonizable and V is an interaction term which can be treated perturbatively, wewant to obtain a perturbative expansion of the Green’s function. The issue with this approachis that in the expression for a generic Green’s function it is require to take the expectationvalue over a ground state (⟨·⟩) which is not known, namely the ground state of the interactingsystem.It is thus important to link the ground state of the interacting system to the ground state ofthe non-interacting one, to this mean we introduce adiabatic switching on of the interaction[27].The core feature of this method is turning a time-independent problem into a time-dependentone by slowly switching on the perturbation, the Hamiltonian is transformed in the followingway:

Hα(t) = H0 + V e−α|t|, α > 0, (2.18)
such that the system is non-interacting for t→ ±∞ and goes back to 2.17 for t→ ∞,

lim
t→±∞

Hα(t) = H0, lim
t→0

Hα(t) = H. (2.19)
In this setup, it is natural to suppose that the ground state of the interacting system |Φ0⟩evolves continuously starting from the ground state of the non-interacting one |Ψ0⟩.We introduce the interaction representation for the operators, for the interaction term of theHamiltonian we have

VIe
−α|t| = eiH0tV e−iH0te−α|t|, (2.20)

the time-evolution operator in the interaction representation is written as
UIα(t, t0) =

∞∑
n0

1

n!
(−i)n

∫ t

t0

dt1 · · ·
∫ t

t0

dtne
−α(|t1|+...+|tn|)Tt [VI(t1) · · ·VI(tn)] , (2.21)

and defines the evolution of the system in the following way:
|ψIα(t)⟩ = UIα(t, t0)|ψIα(t0)⟩. (2.22)

The equation of motion is obtained as
i
d

dt
|ψIα(t)⟩ = e−α|t|VI(t)|ψIα(t)⟩, (2.23)

from this it follows that
i
d

dt
|ψIα(t±∞)⟩ = 0, (2.24)
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which means that the state is time-independent. We can thus take the ground state of the non-interacting system as the ground state for the interacting one when t→ ±∞, the expressionat the two times can differ up to a phase factor:

|ψIα(t→ −∞)⟩ = |Ψ0⟩, |ψIα(t→ ∞)⟩ = eiϕ|Ψ0⟩. (2.25)
It is now possible to link the non-interacting ground state at t→ −∞ with the interacting oneat t using the time-evolution operator

|ψIα(t)⟩ = UI(t,−∞)|Ψ0⟩, (2.26)
at t = 0 the interaction is completely switched on. Moreover, if the switching on is performedreally slowly (adiabatically) it can be excluded that the wavefunction |ψIα(t)⟩ depends on theparameterα and the exact ground state should be computed starting from the non-interactingground state.However, since it is required that α > 0, there is no certainty that the limit

|Φ0⟩ = lim
α→0

|ψIα(0)⟩ (2.27)
exists, and in fact it does not exist.For this reason the Gell-Mann-Low theorem [28] is used, which is a theorem that fixes theeigenstate which evolves from the non-interacting ground state during the adiabatic switchingon of the interaction.The statement of the theorem is the following: given a state

lim
α→0

UIα(0,−∞)|Ψ0⟩
⟨Ψ0|UIα,−∞|Ψ0⟩

= lim
α→0

|ψIα(0)⟩
⟨Ψ0|ψIα(0)⟩

(2.28)
which exists for every order of the perturbation theory, then this state is an eigenstate |Φ0⟩of the full Hamiltonian H0.The importance of this theorem consists on the fact that it fixes the eigenstate during its evo-lution starting from the non-interacting ground state, a further important assumption is thusthe requirement that no crossings of the states occur during their evolution from the freestates. This is not a problem in our case since in the Froehlich Hamiltonian no transitions ofthis type occur, differently from what happens, for example, in superconductivity.Since Green’s functions are defined as expectation values of Heisenberg operators, these ex-pectation values should be evaluated over the ground state (at T = 0). Using Gell-Mann-Lowtheorem it was demonstrated that the ground state of the interacting system |Φ0⟩ can beretrieved from the non interacting one |Ψ0⟩, the normalized ground state is then

|Φ0⟩norm =
|Φ0⟩

(⟨Φ0|Φ0⟩)1/2
. (2.29)
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Given a generic Green’s function (in terms of the parameter α)

Gα(kt,k
′t′) = −i⟨Ttck(t)c†k′(t

′)⟩, (2.30)
the creation and annihilation operators in the Heisenberg representation can be cast in theinteraction one:

cαk(t) = UIα(0, t)cIαk(t)UIα(t, 0). (2.31)
The expectation value of the Heisenberg operator can now be computed:

norm⟨Ψ0|ck(t)c†k′(t
′)|Ψ0⟩norm =

⟨Ψ0|cα→0kc
†
α→0k′|Ψ0⟩

⟨Ψ0|Ψ0⟩

= lim
α→0

⟨Ψ0|UIα(+∞, t)cIk(t)UIα(t, t
′)c†Ik′(t′)UIα(t

′,−∞)|Ψ0⟩
⟨Ψ0|UIα(+∞,−∞)|Ψ0⟩

.

(2.32)

Using this formula it is possible to perturbatively treat any Green’s function by expanding it ina power series.Given a generic Heisenberg operator A(t) and the power expansion for the time-evolutionoperator in 2.21 we may write:
norm⟨Ψ0|A(t)|Ψ0⟩norm = lim

α→0

1

⟨Ψ0|UIα(+∞,−∞)|Ψ0⟩
+∞∑
n=0

1

n!
(−i)n ·∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtne

−α(|t1|+...+|tn|)⟨Ψ0|T (VI(t1) · · ·VI(tn)) |Ψ0⟩.
(2.33)

It is then possible to compare 2.33 with 2.21 to obtain the following identity:
+∞∑
n=0

1

n!
(−i)n

∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtne

−α(|t1|+...+|tn|)Tt (VI(t1) · · ·VI(tn)A(t)) =

=UIα(+∞, t)A(t)UIα(t,−∞).

(2.34)

The same argument can be made for a single particle Green’s function, obtaining a similarexpansion:
iG(k, t, t′) =

+∞∑
n=0

1

n!
(−i)n

∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtn·

e−α(|t1|+...+|tn|)⟨Ψ0|Tt
(
VI(t1) · · ·VI(tn)ck(t)c†k(t′)

)
|Ψ0⟩.

(2.35)

2.3 Matsubara formalism for imaginary time Green’s functions
The usual Green’s functions are complex-valued objects that are not fit to be used in the Di-agrammatic Monte Carlo method since they provide negative values that cannot be easily
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sampled from a distribution without losing precision.For this reason we now describe the imaginary time formalism for Green’s functions, which isalso useful to evaluate systems that are at non-zero temperature. The relevant substitution isthe following:

it→ τ, (2.36)
the retarded Green’s function previously defined in 2.13 thus becomes the following Matsub-ara Green’s function:

G(k, στ, σ′τ ′) = −θ(τ − τ ′)⟨[akσ, a†k′σ′ ]B,F ⟩, (2.37)
where the thermal average ⟨A(τ)B(τ ′)⟩ is defined as:

⟨Ψ0|A(τ)B(τ ′)|Ψ0⟩ T = 0,

1

Z
Tr
[
e−βHA(τ)B(τ ′)

]
T > 0.

(2.38)

where Ψ0 is the ground state and Z the partition function.Given a system with a Hamiltonian characterized by a diagonizable termH0 and a perturbation
V (τ), we can define the imaginary time Heisenberg picture for an operator A as

A(τ) = e−τHAeτH , (2.39)
and similarly the imaginary time interaction picture as

AI(τ) = eτH0Ae−τH0 . (2.40)
We can define the imaginary time-evolution operator in the interaction picture as

UI(τ, τ
′) = eτH0e−(τ−τ ′)He−τ ′H0 , (2.41)

an explicit expression for the interaction picture time-evolution operator in the imaginary timeformalism is found in analogy with the real time counterpart
∂

∂τ
UI(τ, τ

′) = eτH0(H0 −H)e−(τ−τ ′)He−τ ′H0 = −VI(τ)UI(τ, τ
′), (2.42)

which can be solved iteratively:
UI(τ, τ

′) =
∞∑
n=0

1

n!
(−1)n

∫ τ

τ ′
dτ1...

∫
τ ′

τ
dτnTτ [VI(τ1)...VI(τn)]

= Tτ exp

(
−
∫ τ

τ ′
dτ1VI(τ1)

)
,

(2.43)
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where Tτ is the τ ordering operator.It is also important to stress that the partition function Z is naturally treated in the imaginarytime formalism, in fact:

e−βH = e−βH0UI(β, 0) = e−βH0Tτexp

(
−
∫ β

0

dτ1VI(τ1)

)
, (2.44)

and we have
⟨TτA(τ)B(τ ′)⟩ = 1

Z
Tr
[
e−βHTτ (A(τ)B(τ ′))

]
=

1

Z
Tr
[
e−βH0UI(β, 0)Tτ (UI(0, τ)AI(τ)UI(τ, τ

′)BI(τ
′)UI(τ

′, 0))
]

=
1

Z
Tr
[
e−βH0Tτ (UI(β, 0)AI(τ)BI(τ

′))
]

=
⟨TτUI(β, 0)AI(τ)BI(τ

′)⟩0
⟨UI(β, 0)⟩0

,

(2.45)

where the expectation value is taken on the non-interacting system, in agreement with thepreviously found result for T = 0.We now go back to the definition of single particle Green’s functions in imaginary time for-malism, we can define them both in real space and in k space:
G(rt, r′t′) = −⟨Tτ

(
ψ(r, τ), ψ†(r′, τ ′)

)
⟩,

G(kτ,k′τ ′) = −⟨Tτ
(
ck(τ)c

†
k′(τ

′)
)
⟩,

(2.46)
neglecting the spin σ degree of freedom (not relevant for our treatment).In the non-interacting case the Matsubara single particle Green’s functions can be evaluatedin the same way as the retarded Green’s functions, in fact:

H0 =
∑
k

ξkc
†
kck, (2.47)

and the creation/annihilation operators in the Heisenberg picture read
ck(τ) = eτH0cke

−τH0 = cke
−ξkτ , c†k(τ) = eτH0c†ke

−τH0 = c†ke
ξkτ . (2.48)

The non-interacting Matsubara Green’s function is then defined as
G0(k, τ, τ

′) = −⟨Tτ
(
ck(τ)c

†
k(τ

′)
)
⟩

= −θ(τ − τ ′)⟨ck(τ)c†k(τ ′)⟩ − (±)B,F θ(τ
′ − τ)⟨c†k(τ ′)ck(τ)⟩

= −
[
θ(τ − τ ′)⟨ckc†k⟩ − (±)B,F θ(τ

′ − τ)⟨c†kck⟩
]
e−ξk(τ−τ ′).

(2.49)
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2.4 Equation of motion and Wick’s theorem
For a general Green’s function the process to find its expression goes through the equation ofmotion technique, for an operator in the imaginary time formalism the time derivative is

∂τA(τ) = ∂(τ)
(
eτHAe−τH

)
= eτH [H,A]e−τH = [H,A](τ), (2.50)

if we derive with respect to imaginary time a Matsubara Green’s function, the following resultis obtained:
− ∂

∂τ
(Tτ ⟨A(τ)B(τ ′)⟩) = δ(τ − τ ′)⟨(AB − (±)B,FBA⟩) + ⟨Tτ ([H,A](τ)B(τ ′))⟩, (2.51)

which for the single particle Green’s function in momentum space becomes
− ∂

∂τ
G(kτ,k′τ ′) = δ(τ − τ ′)δkk′ + ⟨Tτ

(
[H, ck](τ)c

†
k′(τ

′)
)
⟩. (2.52)

In the case of a Green’s function for a non-interacting system G0 with an Hamiltonian H0 =∑
kk′ tkk′c†kck′ this equation simplifies to

− ∂

∂τ
G0(kτ,k

′τ ′) = δ(τ − τ ′)δkk′ +
∑
k′′

tkk′′G0(k
′′τ,k′τ ′), (2.53)

and the solution is found as previously defined.We now introduceWick’s theorem, an important result which states that higher order (greaterthan 1) Green’s functions for non-interacting systems G(n)
0 can be factorized into products ofsingle particle Green’s functions G0.The n-particle Green’s function is defined as:

G
(n)
0 (ν1τ1, · · · , νnτn; ν ′1τ ′1, · · · ν ′nτ ′n) =
= (−1)n⟨Tτ

[
cIν1(τ1) · · · cIνn(τn)c†Iν′n(τ

′
n) · · · c†Iν′1(τ

′
1)
]
⟩.

(2.54)

This expression is quite complicated and difficult to handle, we first define an easier notationto handle all the operators:
lj(γj) =

{
cIνj(τj) ∈ [0, n],

c†Iν′2n+1−j
(τ ′2n+1−j) ∈ [n+ 1, 2n],

(2.55)
and we define the permutation of the 2n operators as:

P (l1(γ1) · · · l2n(γ2n)) = lP1(γP1) · · · lP2n(γP2n), (2.56)
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with Pj j-th variable in the permutation P .The correct order of permutation depends on the the time arguments ordering, for this reasonit is possible to rewrite 2.54 taking into account these considerations:

G
(n)
0 (j1 · · · j2n) = (−1)n

∑
P∈S2n

(±)PB,F θ(γP1 − γP2) · · · θ(γPn−1 − γPn)

× ⟨lP1(γP1) · · · lP2n(γP2n)⟩.
(2.57)

We can now take the derivative with respect to one of the time variables of G(n)
0 and use theequation of motion:[

− ∂

∂τ1
G(n)0

]
2nd−term =

= −(−1)n
〈
Tτ

[
H0, cIν1(τ1) · · · cIνn(τn)c†Iνn(τ ′n) · · · c

†
Iν1

(τ ′1)
]〉 (2.58)

We now focus on the case where τi is next to τ ′j , two terms like this are present in 2.57, onewhere τi < τ ′j and one where τi > τ ′j (the permutation order is obviously different).The Green’s function is written as
G

(n)
0 =

[
· · · θ(τi − τ ′j) · · ·

]
⟨· · · cIνi(τi)c†Iν′j(τ

′
j) · · · ⟩

(±)B,F [· · · θ(τ ′j − τi) · · · ]⟨· · · c†Iν′j(τ
′
j)cIνi(τi)⟩.

(2.59)

Differentiating these two terms with respect to τi gives two contributions from the heavysidefunction θ(·):
−
[

∂

∂τiG
(n)
0

]
1st−term

=
(
[· · · ]⟨· · · cIνi(τI)c†Iν′j(τ

′
j) · · · ⟩

(∓)B,F [· · · ]⟨· · · c†ν′j(τ
′
j)cνi(τi) · · · ⟩

)
δ(τi − τ ′j).

(2.60)

We now observe that [
cνi(τi), c

†
ν′j
(τi)
]
B,F

= δνi,ν′j , (2.61)
in the same way, for a couple of terms cνi(τi) and cνj(τi) we have:[

cνi(τi), cνj(τi)
]
B,F

= 0, (2.62)
and the same is true for two creation operators.In this way the number of creation and annihilation operators has been reduced by one eachand we have demonstrated that a n order Green’s function can written in terms of a n − 1
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order Green’s functions (which is a sum of different terms). For fermionic Green’s functions,the sign of Gn−1

0 depends on the specific τ ′j . Apart from that, the equation of motion is now:
G−1

0i G
(n)
0 =

n∑
j=1

δνi,ν′jδ(τi − τ ′j)(±1)xB,FG
(n−1)
0 (ν1τ1, · · · , νnτn

without i
; ν ′1τ

′
1, · · · , ν ′nτ ′n

without j
). (2.63)

The sign (−1)x for fermions is determined as (−1)n−i+n−j = (−1)−(i+j) = (−1)i+j due tothe fact that it is required that the annihilation operator cIνi(τi) is moved i positions to theright while the creation operator c†ν′j(τ ′j) is moved j positions to the left.
It is now possible to write the explicit decomposition of the n-order Green’s function into asum of n (n− 1)-order ones:

G
(n)
0 =

n∑
i=0

(±)i+j
B,FG0(ν1τ1, ν

′
jτ

′
j)G

(n−1)
0 (ν1τ1, · · · , νnτn

without i
; ν ′1τ

′
1, · · · , ν ′nτ ′n

without j
). (2.64)

It is clear from the obtained result that this method can be naturally generalized to iterativelyobtain any non-interacting n-order Green’s function as sum of terms only containing productsof single particle non-interacting Green’s functions. The final result of Wick’s theorem is thusobtained:

G
(n)
0 (1, · · · , n;n′, · · · , 1′) =

∣∣∣∣∣∣∣
G0(1, 1

′) · · · G0(1, n
′)... . . . ...

G0(n, 1
′) · · · G0(n, n

′)

∣∣∣∣∣∣∣
B,F

, i≡ (νi, τi) (2.65)

where the result is given as a determinant for fermions and as a permanent for bosons.
2.5 Green’s functions for the Froehlich Hamiltonian
We may now consider the Froehlich Hamiltonian previously defined in 1.79 using the newimaginary time formalism, defining the non-interacting Hamiltonian HcFr

0 as
HcFr

0 =
∑
k

σk2

2m(k̂)
c†kck +

∑
qj

ωLOa
†
qjaqj. (2.66)

Since our model consists of a single electron (hole) in the minimum (maximum) of the con-duction (valence) band interacting with a cloud of phonon, we may consider our system to beat zero temperature and the ground state wavefunction |Ψ0⟩ to be the vacuum:
|Ψ0⟩ = |0⟩, ⟨·⟩ = ⟨0| · |0⟩. (2.67)
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It is then possible to explicitely compute the electron free propagator using 2.49:

G0(k, τ, τ
′) = −

[
θ(τ − τ ′)⟨0|ckc†k|0⟩+ θ(τ ′ − τ)⟨0|c†kck|0⟩

]
ek

2/2m(k̂)(τ−τ ′)

= −θ(τ − τ ′)e(k
2/2m(k̂))(τ−τ ′),

(2.68)

which for τ ′ = 0 becomes
G0(k, τ) = −⟨0|ck(τ)c†k|0⟩ = −e−(k2/2m(k̂))τ , τ ≥ 0. (2.69)

The Matsubara Green’s function for a free electron propagator assumes the simple form of anexponential function, which can be easily sampled.

0 τ(ε(k), k)

−G0(k, τ) = e−(k2/2m(k̂))τ

Figure 2.1: Feynman diagram of the free electron propagator together with its Green’s func-tion.

0 τ(ωjLO, q)

−D0(q, τ) = e−ωjLOτ

Figure 2.2: Feynman diagram of the free phonon propagator together with its Green’s func-tion.
In the same way, it is possible to find an explicit form for the phonon free propagator:

D0(qj, τ) = −⟨0|aq(τ)a†q|0⟩ = −e−ωjLOτ , τ ≥ 0, (2.70)
which is again a simple exponential function.We now take into consideration the interaction part of the Froehlich Hamiltonian:

V =
∑
k,qj

c†k+qck

[
V cFr(qj)aq + V ∗cFr(qj)a†−q

]
, (2.71)
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V cFr(qj)

(ε(k), k)

(ωjLO, q)

(ε(k + q), k + q)

V ∗cFr(qj)

(ε(k), k)

(ωjLO,−q)

(ε(k + q), k + q)

Figure 2.3: Feynman diagrams of the electron-phonon interaction.
the basic Feynman diagram that describes this interaction is an interaction between two freeelectron propagators (one with momentumk gets annihilated and one with momentumk+ qgets created) and a free phonon propagator which can be either annihilated (momentum q)or created (momentum −q), the strength of the interaction at the vertex is given by V cFr(qj)(2.3).We have now obtained the fundamental building blocks which can be used to obtain the totalGreen’s function for the Froehlich polaronG(k, τ), a generic one-electron Matsubara Green’sfunction for the polaron is written as [29]

G(k, τ − τ ′) = −⟨ck(τ)c†k(τ ′)⟩ = −⟨0|ck(τ)c†k(τ ′)|0⟩. (2.72)
The creation and annihilation operators here defined do not have the simple form describedabove for the free propagators, it is thus necessary to use the interaction picture and transformthe operators:

cIk(τ) = eτH
cFr
0 cke

−τHcFr
0 , c†Ik(τ) = eτH

cFr
0 c†ke

−τHcFr
0 . (2.73)

0 τ1 τ2 τ3 τ4 τ(ε(k), k) (ε(k − q1), k − q1) (ε(k − q1 − q2), k − q1 − q2) (ε(k − q2), k − q2) (ε(k), k)

(ωj1LO, q1) (ωj2LO, q2)

Figure 2.4: Order 4 diagram.
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0 τ1 τ2 τ

0 τ

(ε(k), k) (ε(k − q1), k − q1) (ε(k), k)

(ωj1LO, q1)

(ωj2LO, q2)

Figure 2.5: Disconnected order 4 diagram.
In the interaction picture the Green’s function for the Froehlich polaron assumes the form[30]:

G(k, τ) = −
〈
0

∣∣∣∣Tτ [cIk(τ)c†k exp(−∫ +∞

0

VI(τ
′)dτ ′

)]∣∣∣∣ 0〉conn
, (2.74)

where the expectation value is restricted to connected diagrams, which means that no inte-gral over the internal variables dτ ′i can be represented by an external factor (the differencebetween a connected and disconnected diagram is easily recognizable in 2.4 and 2.5).

0 τ1 τ2 τ(ε(k), k) (ε(k − q1), k − q1) (ε(k), k)

(ωj1LO, q1)

Figure 2.6: Order 2 diagram.

0 τ1 τ2 τ3 τ4 τ(ε(k), k) (ε(k − q1), k − q1) (ε(k), k) (ε(k − q2), k − q2) (ε(k), k)

(ωj1LO, q1) (ωj2LO, q2)

Figure 2.7: Order 4 diagram.
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0 τ1 τ2 τ3 τ4 τ(ε(k), k) (ε(k − q1), k − q1) (ε(k − q1 − q2), k − q1 − q2) (ε(k − q1), k − q1) (ε(k), k)

(ωj1LO, q1)

(ωj2LO, q2)

Figure 2.8: Order 4 diagram.
Using Wick’s theorem, the product of n chronologically ordered operators {τ1, τ2, ..., τn} canbe evaluated as the sum of products of pairs of operators, such that it is possible to expandthe Green’s function as an infinite series of terms of the following form:

G(k, τ) = −
+∞∑

n=0,2,4...

∑
ξn

∫
dτ1 · · ·

∫
dτnD

ξn
n (k, τ ; x1, ..., xn), (2.75)

where n indexes the rank of the term (only terms with an even number of internal variablesare allowed), ξn indexes the topology of the term (which depends on how the phonon linesare arranged, see the difference between 2.4, 2.7 and 2.8), xi are the internal variables whichindex the imaginary times at which a vertex V cFr(qj) is present (and a phonon is created orannihilated), the index j of the phonon mode which interacts with the electron propagatorsand the momentum q of the created/annihilated phonon line.As an example, the 0-order term is just the free electron propagator G0(k, τ) = −e−ϵ(k)τ ,the 2-order term (with internal variables (τ1, j1) and (τ2, j2)) represents a diagram with 3 freeelectron propagators, 1 free phonon propagator and 2 vertices.
D2(k, τ ; x1, x2, ) can thus be represented using Green’s function as

D2(k, τ ; x1, x2, ) =|V cFr(qj)|2D0(qj, τ2 − τ1)G0(k, τ − τ2)×
G0(k− q, τ2 − τ1)G0(k, τ1),

(2.76)
which translates to

D2(k, τ ; x1, x2, ) = |V cFr(qj)|2e−ωjLO(τ2−τ1)e−ϵ(k)(τ−τ2)e−ϵ(k−q)(τ2−τ1)e−ϵ(k)τ1 . (2.77)
It should be noted that in our computation instead of 2.75 the result without the minus signwill be taken: this is just a convention used in order to obtain a definite positive distributionfor the Monte Carlo sampling and it does not affect the physical significance of the calculatedGreen’s functions.Having seen the one-electron Green’s function we now introduce another related Green’sfunction: the one-electron N -phonons Green’s function GN(k,

∑N
j=1 q̃j, τ). Differently from
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the one-electron Green’s function, the one-electron N -phonons Green’s function is a morecomplex object consisting of N phonons and one electron, and better describes the polaronphysics, especially if the strength of the interaction is intense.Its expression, using Wick’s theorem, can be written as [31]:

GN(k,
N∑
j=1

q̃j, τ) =
〈
0|aq̃1(τ)...aq̃N

(τ)cp(τ)c
†
paq̃N

...aq̃1|0
〉
, (2.78)

where p = k−∑N
j=1 q̃j .

It is worth noting that GN(k,
∑N

j=1 q̃, τ) will only take into account connected one-electron
N -phonons Green’s functions since in the other cases the external phonons can just be ne-glected. The related expansion can be given as:

GN(k,
N∑
j=1

q̃j, τ) =
+∞∑

n=0,2,4...

∑
ξn

∫
dq̃1 · · ·

∫
dq̃N ·

·
∫
dτ1 · · ·

∫
dτnD

ξn
n (k,

∑
j

q̃j, τ ; x1, ..., xn),

(2.79)

where the minus sign has been dropped.

0 τ1 τ2 τ 0 τ

0 τ

(ε(k − q2), k − q2) (ε(k − q1 − q2), k − q1 − q2) (ε(k − q1), k − q1) (ε(k − q1 − q2), k − q1 − q2) (ε(k − q2), k − q2)

(ωj1LO, q1)
(ωj2LO, q2) (ωj2LO, q2)

Figure 2.9: Order 2 diagram with one external phonon.
It is thus useful to consider the full function P (k, τ) defined as follows:

P (k, τ) = G(k, τ) +
+∞∑
N=1

GN(k,
N∑
j=1

q̃j, τ), (2.80)
which more accurately describes our polaron model, including both the ”free” polaron and itsinteraction with the phonon cloud.
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2.6 Green’s function: retrieving physical quantities
From the treatment of the Green’s function performed up to now it is not immediately clearwhich physical information is stored inside the polaron’s Green’s function. We begin by re-minding what the 1-electron Green’s function is defined as

G(k) = ⟨0|ck(τ)c†k|0⟩, (2.81)
with ck(τ) = eHτcke

−Hτ , we can expand the Green’s function as [29]
G(k, τ) =

∑
ν

|⟨ν|c†k|0⟩|2e−(Eν(k)−E0)τ , (2.82)
with |ν⟩ a complete set of eigenstates of the Froehlich Hamiltonian for a given momentum ksuch that

H|ν(k)⟩ = Eν(k)|ν(k)⟩. (2.83)
Given that the ground state energy in our case E0 is exactly 0 (electron at the ground stateenergy and no phonon excitations for T = 0), we can neglect this term.We can then rewrite the Green’s function in terms of the spectral function gk(ω):

G(k, τ) =

∫ +∞

0

dωgk(ω)e
−ωτ ,

gk(ω) =
∑
ν

δ[ω − Eν(k)]|⟨ν|c†k|0⟩|2.
(2.84)

The spectral function gk(ω) is defined to have poles at frequencies for which a stable quasi-particle state exists. For this reason if a stable polaron exists for a given k we will have
gk(ω) = Zk

0 δ[ω − E(k)] + ... (2.85)
where Zk

0 is the overlap between the polaronic state and the free electron one:
Zk

0 = |⟨polaron (k)| free electron (k)⟩|2. (2.86)
It can also be demonstrated that, if the polaron is at the ground state, for large τ values the
Z factor and its energy can be retrieved:

G(k, τ ≫ ω−1) −→ Zk
0 e

−EP (k)τ . (2.87)
The same thing can be done withP (k, τ) sum of all the possible 1-electronN -phonons Green’sfunctions, we have Zk

N defined as:
Zk

N(q̃1, ..., q̃N) = |⟨polaron (k)| free electron (p) + free phonons (q̃1, ..., q̃N)⟩|2, (2.88)
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from which it follows that

GN(k, τ ≫ ω−1, q̃1, ..., q̃N) = Zk
Ne

−EP (k)τ . (2.89)
and the formula for P (k, τ) is retrieved:

P (k, τ) =
∑
N

Zk
Ne

−EP (k)τ . (2.90)
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3 The Diagrammatic Monte Carlo method
3.1 The Monte Carlo sampling method
The Monte Carlo method is not a specific technique, but rather a wide set of similar methodswhich employ probability to solve problems that are otherwise too complex for an analyticsolution and too resource demanding to solve with a numerical method.The basic idea behind Monte Carlo is to use a statistical approach in the resolution of difficultintegral and differential equations [32] by the means of a precisely defined set of rules and arandom number generator.This method is an iterative stochastic procedure, or in layman terms, a technique that is iter-ative: it needs to be applied many times in order to produce an extremely large number ofmeasurements from which it is possible to build an estimate for a determined quantity, usingthe central limit theorem and the law of large numbers, and stochastic: it uses random num-bers to obtain all sorts of distributions, usually through a precisely defined set of rules with a
Markov chain.It is in fact possible, using a Monte Carlo method, to estimate the ground state of the time-independent Schroedinger equation [5]

−∇2ψ(x, y, z) = [E − U(x, y, z)]ψ(x, y, z) (3.1)
using the following ansatz for the wavefunction:

u(x, y, z, τ) = ψ(x, y, z)e−Eτ , (3.2)
thus introducing a fictitious imaginary time-dependence. In this way u(x, y, z, t) follows thediffusion equation

∂u

∂τ
= ∇2u− Uu, (3.3)

which can be framed in a Monte Carlo representation as a set of weighted particles whichindependently perform a random walk with an exponential decay in imaginary time and arate governed by the energy eigenvalue E, together with a particle distribution which can beused to determine an estimate for the wavefunction ψ(x, y, z).Note that the transformation performed on the wavefunction (first done by Fermi) is exactlythe already seen transformation used for the Matsubara Green’s functions 2.36, which turnsthe standard time-dependent Schroedinger equation
i
∂ψ

∂t
= −∇2ψ + Uψ (3.4)

into
∂ψ

∂τ
= ∇2ψ − Uψ. (3.5)
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This observation already stresses the importance of imaginary time in our computation. Welist three main types of Monte Carlo simulations [14]:

• Direct Monte Carlo, where the generation of random numbers directly models a physi-cal system (usually with a random walk) without directly defining the complexities whichcharacterizes it. An example is the aforementioned model to solve the ground state ofthe Schroedinger equation.
• Monte Carlo integration, a method that is specifically used to compute hard integralswith random numbers.
• Markov chainMonte Carlo, which generates the distribution of a system using a Markovchain. This method is used to study the properties of classical and quantum systems.

3.2 Direct Monte Carlo
In direct Monte Carlo the expectation value ⟨I⟩of a variable is estimated, which means that wecompute its mean. In order to do so the deterministic problem must be recast in a probabilisticform. Since ⟨I⟩ is a number, it can be seen as the result of an integration.Given X a random variable defined on a set Ω, we can define ⟨I⟩ as the expectation value
E(X) of the random variable. In statistics, the expectation value E(X) and the variance
σ2(X) have the following definitions:

⟨I⟩ = E(X) =

∫
Ω

dpX, σ2
I = σ2(X) =

∫
Ω

dp(X − E(X))2, (3.6)
where p is the probability measure [33].An approximate estimate for the value I is obtained by producing an independent sequenceof random event ωi according to the probability law p with value

ĪN = E(XN) =
1

N

N∑
i=1

X(ωi), (3.7)
with ĪN the arithmetic mean of N random events.Given the fact that IN is just an estimate of the expectation value ⟨I⟩, it is important to alsoprovide an estimation of its deviation from the exact value, to this reason we introduce the
Chebyshev’s inequality [34], which states that no more than 1/k2 of the distribution valuescan be more than k standard deviations from the mean value:

P (|x− ⟨x⟩| > kσ) ≤ 1

k2
. (3.8)

Chebyshev’s inequality makes no assumptions on the distribution and is thus very general, yetit provides an upper bound for the probability to find random values far from the mean.
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In the case of N independent random variable for which

P (x1, x2, ..., xN) = P (x1)P (x2)...P (xN) (3.9)
holds true, it is possible to consider a new random variable zwhich is the sum of theN originalrandom variables. If the random variables Xi have generic distribution functions, then thedistribution function of the sum has a complicated form, the important consideration is that,under very broad assumptions, it is possible to obtain an asymptotically exact form for thedistribution function of z when the number N of independent variables becomes very large.Given

x̄N =
1

N

N∑
i=0

xi, (3.10)
both the expectation value and the variance of x̄N can be easily computed, since all the Nterms of the sum give an identical contribution equal to ⟨x⟩, resulting in

⟨x̄N⟩ = ⟨x⟩. (3.11)
This results holds also in the case where the N random variables xi are not independent.The variance of x̄N is easily obtained in the following way:

σ2
x̄N

= ⟨x̄2N⟩ − ⟨x̄N⟩2 =
σ2

N
. (3.12)

We thus have for N → ∞ the random variable x̄N which has a very narrow distribution cen-tered about the true expectation value of the random variableX (noting that σ2
x̄N

→ 0). Thisresult is called the weak law of large numbers.With the central limit theorem instead we obtain the asymptotic probability distribution ofthe sum z of a large number of random variables which are independent and equally dis-tributed.Let us define the random variable Y as
Y =

1√
N

N∑
i=1

yi =
√
N(x̄N − ⟨x⟩), (3.13)

which has the expectation value
⟨Y ⟩ = 0. (3.14)

The characteristic function of Y is given by
ϕY (t) =

[
ϕy

(
t√
N

)]N
, (3.15)
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assuming that all the yi are independent and identically distributed.Expanding the characteristic function up to second order and taking the limit for N → ∞ weget:

lim
N→∞

ϕY (t) = exp

(
−σ

2t

2

)
, (3.16)

which is the characteristic function of a gaussian random variable:
P (Y ) =

1√
2πσ2

exp

(
− Y 2

2σ2

)
, (3.17)

and we obtain for x̄N = ⟨x⟩ + Y/
√
N the same gaussian distribution with mean ⟨x⟩ andvariance σ2/N .Having now stated these necessary elements from probability and statistics it is easy to seehow a direct Monte Carlo method works: we directly employ random numbers to computequantities, exploiting the fact that givenN iterations andN → ∞, we will obtain a convergentsolution for the modelled problem. The big issue is, of course, representing the investigatedphenomenon in a way that makes it possible to use random numbers.

3.3 Monte Carlo integration
The Monte Carlo integration method is a technique specifically developed to compute inte-grals. Consider a generic integral of a smooth generic function f(x) of vector x and d compo-nents:

I =

∫
f(x)dx, (3.18)

in Monte Carlo integration we recast this integral in the following way using a probability dis-tribution p(x), (∫ p(x) = 1):〈
f(x)

p(x)

〉
=

∫
f(x)

p(x)
p(x)dx =

∫
f(x)dx. (3.19)

The integral recast in this form is the expectation value of the function f(x) divided by theprobability distribution p(x). The central limit theorem then implies that it is possible to esti-mate the integral I (deterministic) as the average value of f(x) over a large number of sam-pling of the random variable xi with distribution p(x):
I ≈ IN =

1

N

N∑
i=1

f(xi)

p(xi)
, (3.20)

where the random variables xi are sampled according to p(xi).For large N IN is normally distributed with mean equal to I and variance σ2/N computed as
σ2 =

〈(
f(x)

p(x)

)2
〉

−
〈
f(x)

p(x)

〉2

, (3.21)
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thus for N → +∞ IN tends to the deterministic value I .It is now relevant to address the main issue with this method: generating configurations xithat are distributed according to p(x) and then computing f(xi/p(xi)). When it is possibleto directly generate samples from p(x) we are employing direct MC sampling, this is possibleif we are using a uniform or exponential distribution (or other similar simple distributions).The samples generated with this method are independent, but we are limited in the type ofdistribution that can be used, which could make the convergence to the exact value extremelyslow.

Figure 3.1: Graphical representation of π estimation using the simple direct Monte Carlo inte-gration method.
The simplest way to show the direct sampling method for integrals is through the computationof π: suppose that we have a square of side 1 and, inside it, the quadrant of a circle (of radius1). It is known from high school geometry that:

π

4
=

1

4

π(1)2

(1)2
=

1

4

Aquadrant
Asquare , (3.22)

from which it follows that we can compute the value of π from the ratio between the twoareas. We now express the areas in terms of integrals
π

4
=

∫
circle dxdy∫

square dxdy
=

∫
square

f(x, y)p(x, y)dxdy, (3.23)
with

p(x, y) =
1∫

square dxdy
(3.24)
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and f(x, y) defined in the following way:

f(x, y) =

{
1, if√x2 + y2 < 1

0, otherwise. (3.25)
Since p(x, y) is non-negative and normalized, it can be treated as a probability distribution.We can thus say that

π

4
≈ 1

N

N∑
i=1

f(xi, yi), (3.26)
the obtained result can be interpreted visually considering that we are filling the total areaof the square with randomly distributed dots and counting how many of them end inside thecircle compared to the total.This simple method can be used (at least in theory) to compute every possible integral, nev-ertheless using a uniform distribution may result impractical when estimating functions thathave sharp peaks: in this case most of the guesses made end up ”outside” the region of inter-est and do not contribute to the estimation of the integral. Of course, this problem becomesmore and more relevant the more dimensions we have.In these cases, it is appropriate to use as a probability function that has a similar shape withrespect to the target function we want to integrate, consider the following one-dimensionalcase:

I =

∫ b

a

f(x)dx, (3.27)
where f(x) has a sharp peak in a limited interval between a and b and is close to 0 everywhereelse. Operating in the same way as before we obtain the following expression:

I =

∫ b

a

f(x)

p(x)
p(x)dx, (3.28)

and we can approximate the integral as
I ≈ IN =

1

N

N∑
i=1

f(xi)

p(xi)
, (3.29)

while the variance of our estimation is found as
s2 =

1

N

N∑
i=1

[
f(xi)

p(xi)

]2
−
[
1

N

N∑
i=1

f(xi)

p(xi)

]2
, (3.30)

analyzing the expression for the variance estimator it becomes clear that it is minimized if p(x)is chosen to be as close as possible to the target function f(x), with the best result s2 = 0 ob-tained for p(x) = cf(x) (which would mean that it is possible to analytically integrate f(x)).
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This means that with a careful choice of the probability distribution it is possible to minimizethe statistical fluctuations of our estimate and thus obtain the same accuracy with a smallernumber of samples N .Since multiple algorithms have been studied in order to build pseudonumber generators in theinterval (0, 1) that are efficient, provide long periods for sequences of values and have uni-form distribution in n-dimensional spaces (for example the Mersenne-Twister algorithm, usedin this thesis [35]), it is important to find ways to sample from other more complex (continu-ous) distributions p(x), the easiest way to do so is through CDF inversion (cumulative densityfunction inversion), which, as the name suggests, can be used when the analytical form of thecumulative distribution P (x) is known.Choosing for example the exponential distribution

exp (x;λ) = λe−λx for x > 0, (3.31)
for which we can obtain the expression for the cumulative density function easily:

P (x) =

∫ x

0

λe−λxdx = 1− e−λx. (3.32)
We now solve for x to obtain

x = −1

λ
log (1− P (x)). (3.33)

Since by definition the image of P (x) is [0, 1], we can substitute it in the equation with thestandard uniform random variable defined in [0, 1] r:
x = −1

λ
log (1− r), (3.34)

and we obtain a random variable x that follows the exponential distribution p(x;λ).
3.4 Markov Chain Monte Carlo
The procedure illustrated in the previous section only works when an analytical expressionfor the cumulative distribution exists, this is not true in general and a different method is thusneeded for a general distribution p(x). To this scope Markov chains are used.Let us define the random vector X as a sequence of n random samples that are drawn oneafter the other:

X = (X1, X2, ..., Xn) , (3.35)
we call this vector an uncorrelated chains if each one of the variables xi are independent andthus uncorrelated, the probability of obtaining the chain X is then given by the product of theindividual elements of the chain:

Pn(X) = P1(X1)P2(X2) · · ·Pn(Xn). (3.36)
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In a Markov chain this is not true and the random samples are correlated: a sequence ofsamples is said to be Markovian if the conditional probability of each sample of the sequencesatisfies

P (Xi|Xi−1...X1) = P (Xi|Xi−1). (3.37)
This means that the probability ofXi only depends on the previous elementXi−1 (and nothingelse), with the exception of the first element of the chain. From this it follows that the orderof the variables is important in the determination of the probability of the full random vector:

Pn(X1, X2, ..., Xn) = P1(X1)P (X2|X1) · · ·P (Xn|Xn−1) (3.38)
where P (Xi|Xi−1) is the transition probability from Xi−1 to Xi. We define p(1)i (∑i p

(1)
i = 1)the initial probability andP (Xi|Xj) = Pij the transition probability from j to i. The transitionprobabilities are normalized for each j such that ∑i Pij = 1, in this way for every k step∑

k p
(k)
i = 1 is obtained (note that, in continuous distribution, the sum is replaced by anintegral).Apart from the (obvious) normalization constraint, the single probabilities p(k)i at the step k

(which are steps in time) are in general different from the probabilities p(k−1)
i , the importantmathematical result that is obtained under very general assumptions is that, after a necessaryrelaxation time that is different from system to system, the distribution relaxes to a stationarystate pi which satisfies the relation

pi =
∑
j

Pijpj (3.39)
for every k step in the simulation.The conditions required for this to happen are:

• connectedness: every configuration of the distribution that we want to obtain must beaccessible from any other configuration of the system in a finite number of steps.
• no periodicity: which means that, after having visited a specific configuration, it mustbe false that the same configuration will be accessible again only after nk steps with npositive integer and k fixed.

A Markov chain that satisfies these two conditions is called ergodic [5].Since the objective is to obtain a target stationary distribution pi, we need a mean to do sostarting from a more generic distribution (such as the uniform distribution in [0, 1]), whichmeans that a specific expression for the transition probabilities Pij is needed. The solutionproposed by Metropolis [36] is to require the following relation for the transition probability
Pij to be true:

Pijpj = Pjipi, (3.40)
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which is the detailed balance condition. This means that the probability of transitioning from
j to i is the same as the probability of transitioning from i to j. This relation can be demon-strated using the Master equation:

p
(k)
i − p

(k−1)
i = −

∑
j

Pjip
(k−1)
i +

∑
j

Pijp
(k−1)
j , (3.41)

the stationary condition is obtained for
p
(k)
i = p

(k−1)
i = pi, (3.42)

From this it follows that ∑
j

Pjipi =
∑
j

Pijpj, (3.43)
for every i, j pair.An obvious solution to this equation is found if 3.40 holds.We now recast the transition probability matrix Pij in the form

Pij = TijAij, (3.44)
where Tij is the symmetric matrix (Tij = Tji) of the trial transition proposal probabilitieswith the additional properties 0 ≤ Tij ≤ 1 and ΣiTij = 1, while Aij are the elements of theacceptance matrix, whose form is

Aij = min

{
1,
pi
pj

}
i ̸= j. (3.45)

Using this configuration we can show that the condition of detailed balance is obeyed by as-suming pi < pj (we are not posing any constraint on the system by doing this since the choiceof the indices is arbitrary) and observing that
Pij = Tij

pi
pj

= Tji
pi
pj

= Tji · 1 ·
pi
pj

= Pji
pi
pj
, (3.46)

from which 3.40 follows.The complete algorithm, known as theMetropolis algorithm, proposes a new i state given thepresent j with trial transition probability Tij , then uses the Aij elements of the acceptancematrix to accept i or reject it (and thus keep j). Whether the new i state is accepted or rejecteddepends on the uniform random variable defined in [0, 1] r: if r < Aij i is accepted, otherwiseit is rejected.
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Figure 3.2: Schematic representation of the Metropolis algorithm procedure [5].
It is possible to generalize the algorithm to one that does not have a symmetric trial transitionprobability matrix Tij: given a generic acceptance ratio Rij such that Aij = min {1, Rij}defined as

Rij =
Sij

1 +
Tijpj
Tjipi

, (3.47)
with Sij non-negative symmetric matrix, if Sij is chosen to be:

Sij =

{
1 +

Tjipi
Tijpj

, Tijpj ≥ Tjipi,

1 +
Tijpj
Tjipi

, Tjip1 ≥ Tijpj,
(3.48)

the Metropolis-Hasting algorithm is obtained with acceptance ratio Rij:
Rij =

Tjipi
Tijpj

. (3.49)
In the special case where we want to obtain a random variable X distributed as a genericcontinuous function f(x) (not necessarily normalized) using as a prior distribution a knowndistribution h(x), we may identify the trial transition probability from a state x to a state x′with

Tx′x = π(x′)dx (3.50)
independent on the current state x, the acceptance ratio Rx′x then becomes

Rx′x =
Txx′px′

Tx′xpx
=
π(x)dxf(x′)dx

π(x′)dxf(x)dx
=
π(x)f(x′)

π(x′)f(x)
, (3.51)

with acceptance probability Ax′x:
Ax′x = min

{
1,
π(x)f(x′)

π(x′)f(x)

}
. (3.52)
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Using the above formulation (easily generalizable at least in theory to N dimensions) it ispossible to sample random variables from any generic continuous unnormalized function. Themain drawbacks of this method are the fact that a relaxation to the stationary distribution isnecessary (and the number of steps required is not known a priori) and that the obtainedsamples are correlated.
3.5 Diagrammatic QuantumMonte Carlo
In Chapter 2 we have seen that the polaron model can be solved by perturbatively expandingthe related Green’s function (which is a solution to the equation of motion of the system) inthe imaginary time formalism. Since the Green’s function in this formalism can be cast in aform that makes it real and non-negative, it can be sampled as if it were a distribution usingthe methods provided by Markov Chain Monte Carlo.To this objective, we need a method to ergodically represent all the possible configurations ofthe polaron system. This approach can be used in many different condensed matter physicssystems where a similar expansion is possible, provided that the weight of negative diagrams(which in our specific case do not appear, but are generally present in fermionic systems) doesnot hinder the accuracy of the estimated quantity [37].Given a function represented as 2.75 (without the minus sign) it is possible to sample it as adistribution Q({y}) which depends on a set of variable y:

Q({y}) =
+∞∑
n=0

∑
ξn

∫
dx1 · · ·

∫
dxnDn(ξn, y, x1, ..., xn), (3.53)

with {y} external variables and {xi} internal variables (to be integrated out).Using the Metropolis-Hastings algorithm it is possible to sample variables from this distribu-tion and in the limit of a large number of samples retrieve the full function up to a normaliza-tion constant C with no approximations:
Qi({y}) = C G(k, τ). (3.54)

The fundamental difference with respect to an usual Monte Carlo integration is the fact thatthe parameter space of internal variables varies between different iterations of the simula-tion: ways to model transitions between these different states together with the correct trialtransition probability are required.In order to do so, a number of elementary updates are defined such that there are at leastenough to satisfy the ergodicity requirement [5] for the Markov chain which relaxes to thetarget distribution (the system under study). The Metropolis-Hastings algorithm in DMC usesas acceptance probabilities for transitions between two different states characterized by thevariables i = {yi, ξi,xi} and i = {yj, ξj,xj} respectively the relative weight of the two dia-grams.
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In fact, given the two diagrams Dni

(i) and Dnj
(j) (which may be different in the value ofone or more variables, whether internal or external, and more importantly in the numberof internal variables if the rank of the two diagrams is different), the acceptance ratio Rij isproportional to:

Rij ∝
Dni

(i)

Dnj
(j)

=
C D∗

ni
(i)

C D∗
nj
(j)

=
D∗

ni
(i)

D∗
nj
(j)

, (3.55)
where theD∗

nk
(k) are the properly normalized weights, different from the weights of the gen-erated distribution up to a normalization constant [6].When negative-valued diagrams are present, the acceptance ratio is performed on the ab-solute values of the weights. Operating in this way, however, we expose ourselves to the

negative sign problem: when we want to compute an observable O from the Monte Carlosimulation, whether it be the (normalized) distribution or any other quantity of interest, wemust take into account the negative weights:
O = ON =

(
1

N

N∑
i=1

|Oi(D(i))|
)(

N+ −N−

N

)−1

=
1

N+ −N−

N∑
i=1

|Oi(D(i))|, (3.56)
and the variance of the Monte Carlo estimate diverges for N+ −N− ≈ 0.Two basic classes of elementary updates can be recognized [38][29]:

• class I updates: they change one or more variables (internal or external), the new vari-ables x are proposed using a suitable distribution π(x) (some distribution might bemore suited than others depending on the specific system), and the acceptance ratiois computed using the standard Metropolis-Hastings algorithm (3.49 and 3.51 depend-ing on the type of variable and prior distribution)
• class II updates: in this class of updates the order of the diagram is changed, and thusthe number of internal variables is increased or reduced. Considering an update wherethe order of the diagram is increased, the new m internal variables are sampled from adistribution ρ(x) and the acceptance ratio Rij is computed as follows:

Rij =
pA
pB

Dni=nj+m(i)

ρ(x1, ..., xn)Dnj
(j)

, (3.57)
where pA and pB are the so-called context factors that take into account the ways it ispossible to transition from state A to state B and thus depend on how the processesare organized (it does not usually reduce to the simple relation pA/pB = 1) [33]. Theopposite process which reduces the order of the diagram from n to n −m is found tobe

Rji =
1

Rij

, (3.58)
in agreement with the detailed balance requirement.
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Employing these rules and carefully crafting prior distributions and acceptance ratios, it ispossible to sample a distribution that is equal up to a normalization constant a Green’s functionin imaginary time formalism, provided that it can be expanded in a similar way to 2.74.

Figure 3.3: Diagrammatic Monte Carlo algorithm procedure [6].

The specific updates, however, greatly vary between different systems considering issues suchas ergodicity requirements, context factors and the sign problem.
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4 Diag MC for the Froehlich Polaron
In Chapter 2 we have seen that it is possible to perturbatively expand the Matsubara Green’sfunction for the Froehlich polaron in a series of integrals 2.5, while in chapter 3 we have shownthat series of this type can be computed using a special type of Markov chain Monte Carlocalled Diagrammatic Monte Carlo which is able to take into account all the possible perturba-tive expansions of the full function and sample from it.We now focus on the specific Diagrammatic Monte Carlo technique employed for the FroehlichPolaron case. Let us consider the Froehlich Hamiltonian HcFr in the specific case of a sin-gle anisotropic electron band and multiple phonon modes. We take into account the non-interacting term

HcFr
0 =

∑
k

(
k2

2m(k̂)
− µ

)
c†kck +

∑
qj

ωjLOa
†
qjaqj, (4.1)

where we consider only the electron polaron (the only difference in the hole polaron casewould be negative electron energy dispersion). The chemical potential µ is put inside the elec-tron term as a renormalization constant (fictitious potential renormalization [29][33]) whichcan be tuned in order to obtain a non-divergent distribution that decays as an exponential forlong τ in the stationary limit.The interaction term reads:
V cFR =

∑
k,qj

c†k+qck

(
V cFr
qj aq + V ∗cFr

qj a†−q

)
, (4.2)

where the interaction vertex V cFr has formula
V cFr(qj) =

i

q

(
2
√
2π

Ω0VBvK

ω
3/2
jLO

m(q̂)1/2
α(q̂)

)1/2

. (4.3)
We need a technique to translate the Green’s functions defined in chapter 2 to the formalismof Diagrammatic Monte Carlo. To this aim we identify the stationary distributionQ({y}) withthe two Green’s functions of interest: the one-electron Green’s function G(k, τ), where noexternal phonon lines are present:

G(k, τ) =
+∞∑

n=0,2,4,...

∑
ξn

∫
dτ1 · · ·

∫
dτn

∫
dq1

Vq1j1
(2π)3

· · ·
∫
dqn/2

Vqn/2jn/2

(2π)3

×Dξn
n (k, τ ; τ1, ..., τn,q1, ...,qn/2, j1, ..., jn/2),

(4.4)

and P (k, τ), a function that is the sum of the single electron Green’s function and all thepossible one-electron N -phonons Green’s function configurations (weighted accordingly):
P (k, τ) = G(k, τ) +

+∞∑
N=1

G(N)(kq̃1, ..., q̃N , j1, ..., jN , τ), (4.5)
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where G(N)(k, τ) is diagrammatically expanded in

G(N)(· · · ) =
∑
ξn

∫
dτ1 · · ·

∫
dτn

∫
dq1

Vq1j1
(2π)3

· · ·
∫
dqn/2

Vqn/2jn/2

(2π)3

×Dξn
n (k, q̃1, ..., q̃N , j̃1, ..., j̃N , τ ; τ1, ..., τn,q1, ...,qn/2, j1, ..., jn/2).

(4.6)

It is now important to distinguish between external variables y and the internal ones {x1, ..., xn}.We identify them as
{y} → {k, q̃1, j̃1, ..., q̃N , j̃N , τ},
n→ {0, 2, 4, ...},

{x1, ..., xn} → {τ1, ..., τn,q1, j1, ...,qn/2, jn/2}.
(4.7)

The algorithm that computes our simulation must satisfy the ergodicity requirement of Markovchain Monte Carlo: for this reason it is necessary to implement updates that change the ex-ternal variables {y}, the internal ones {xi}, and the order of the diagram n.We start by saying that no updates have been implemented in order to sample from the freeelectron momentum k, which will be fixed for each individual simulation: this was made inorder to have a more precise control about the region of k-space that we want to simulate,in particular the k = 0 point where the electron is at the bottom (top) of the conduction (va-lence) band.The chemical potential µ is also implemented in the simulations as a normalizing factor, in thisway a free electron propagator becomes:
G0(k, τ) → G0(k, µ, τ) = e−(ϵ(k)−µ)τ , (4.8)

the effect of which can be easily reversed by rescaling the result.Due to the finite memory of computers, it is then necessary to fix for each simulation a max-imum imaginary time value τmax, a maximum internal order nmax (the number of internalphonon propagators would be nmax/2) and a maximum number of external phonon propaga-tors Nmax.Having decided this, it is then necessary to state the electron effective mass on the three mainaxes m∗
x, m∗

y and m∗
z together with the number of phonon modes that couple to the electronband nph together with their energy ωjLO and their phonon mode polarities pj or anotherequivalent quantity from which their value can be recovered [21].Other quantities that needs to be specified are the size of the unit cell Ω0, the size of the Born-von Karman cell VBvK , the optical dielectric tensor (a scalar in the case of cubic materials) ϵ∞,the number of thermalization stepsNrelax set to achieve the stationary distribution conditionand the number of simulation steps Nsteps.It is now important to define how the diagram was effectively modelled in the computer: tothis aim three data structures were defined. The Vertex: this data structure encapsulates all
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the data which describes the vertices of the electron-phonon interaction (also the diagrambeginning and end) together with all the relevant information about the associated phononpropagator, its components are:

• τi, the imaginary time value of the vertex, 0 and τ for the extrema
• type, integer parameter which differentiates between extrema (0), internal phonon ver-tices (+1 for outgoing phonon propagators and -1 for incoming ones), external phononvertices (+2 for outgoing phonon propagators and -2 for incoming ones).
• linked, integer value which shows to which other vertex the current vertex is linked to,and thus the length of the phonon propagator (whether we have an internal or externalone).
• qi, the three momentum components of the free phonon propagator which is createdor annihilated at the vertex.
• index, the phonon mode which is involved in the electron-phonon interaction at thevertex.

The Propagator: this data structure represents the free electron propagators, it is defined bythe three electron momentum components ki.The Effective Mass: this data structure represents the effective mass m∗
i (k̂) of the electronfor each electron propagator ki, it is computed using the formula in 1.80.At the start of each simulation, an array of dimension nmax+2Nmax+2 of Vertex data type iscreated, while an array of dimension nmax + 2Nmax + 1 is created for the Propagator and Ef-fective Mass data type. At the beginning of the simulation all the single elements of the threedata types are initialized to default values with the exception of the first 2 Vertex elementsand the first Propagator and Effective Mass element: the latter two are initialized using the kvalue given as input and by computing the related effective mass (default to 1 in the case that

k = 0), while the τ values of the first two Vertex elements are initialized to 0 and τ respec-tively, where τ is retrieved using the Diagram Length update, which will be explained in detailin the following section.
4.1 Updates
Updates are necessary to obtain a Markov chain for the system which is ergodic, there is nosingle way to implement them in order to achieve this aim and different choices have beenproposed about the way new parameters are proposed and how updates are implemented[29][31], here it is thus shown just a proposal that is sufficient but is nevertheless not neces-sarily the best or fastest choice.The first update that is described is the Diagram Length update (class I), which updates thelength of the last electron propagator: it thus changes the value of the external variable τ .
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Since the last electron propagator is a free electron propagator, which decays exponentiallywith τ as

G0(k, q̃1, ..., q̃N , τ) = exp

{
−
(

p2

2m∗(p̂)
−
∑
j

ωjLOnjph − µ

)
(τ − τlast)

}
, (4.9)

with τlast time of last vertex before the diagram end, we have:
p = k−

N∑
i=0

q̃i,∑
j

njph = N,

(4.10)

with N total number of external phonons in the current diagram and j phonon mode index.The weight ratio between two diagrams with length τ and τ ′ thus becomes:
Dn(· · · , τ ′)
Dn(· · · , τ)

=
e−∆E(τ ′−τlast)

e−∆E(τ−τlast)
, (4.11)

where ∆E is the computed energy in 4.9.

τ2n−2 τ2n−1 τ2n τ(ε(k − q1), k − q1) (ε(k), k) (ε(k − q̃2), k − q̃2)

(ωj1LO, q1)
(ωj2LO, q̃2)

τ2n−2 τ2n−1 τ2n τ ′(ε(k − q1), k − q1) (ε(k), k) (ε(k − q̃2), k − q̃2)

(ωj1LO, q1) (ωj2LO, q̃2)

Figure 4.1: Diagram length update.
If we thus take an exponential distribution as the proposal distribution for new values of theimaginary time value τ ′ built as follows

τ ′ = τlast −
log (1− r)

∆E
, (4.12)
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with r uniform random variable in [0, 1] we obtain a new value that is always accepted apartfrom the case where τ ′ > τmax. In fact the acceptance ratio is

Rτ ′τ =
exp (τ ; τlast,∆E)e

−∆E(τ ′−τlast)

exp (τ ′; τlast,∆E)e−∆E(τ−τlast)
=

∆Ee−∆E(τ−τlast)e−∆E(τ ′−τlast)

∆Ee−∆E(τ ′−τlast)e−∆E(τ−τlast)
= 1, (4.13)

which is always accepted.The next update to be described is the add internal phonon, a class II update. The new (in-ternal) variables that have to be proposed are the time value of the outgoing vertex τ ′, thetime value of the incoming vertex τ ′′, the phonon mode index j and the phonon propagatormomentum q. If proposing the diagram means that n+2 > nmax maximum allowed internalorder is true, then the update is rejected.An electron propagator (from the first one to the last for a total of n + 1 possible choices) ischosen at random, then the value of τ ′ is generated using a uniform distribution between τleftand τright vertices of the chosen free electron propagator.The phonon mode j is then chosen at random between the ones given in input, and the valueof the second vertex of the phonon propagator τ ′′ is generated using the following exponentialdistribution
P (τ ′′|τ ′, j) = τ ′ − log(1− r)

ωjLO

, (4.14)
where τ ′′ is not restrained to any particular free electron propagator. The update is straight-uprejected if τ ′′ > τ length of the full diagram or if it is too close to another vertex (|τ ′′ − τi| <
10−9).The phonon momentum values q are then proposed using a probability P (q|τ ′, τ ′′, j) depen-dent on a gaussian distribution with mean 0 and variance (τ ′′ − τ ′)−1.The ratio of the two diagrams is

D(n+2)(k, τ, ..., τ
′, τ ′′,q, ...)

Dn(k, τ, ...)
=

= exp

{
−
(∑

i

ϵ(ki − q)− ϵ(ki)∆τi − ωLO(τ
′′ − τ ′)

)}
|Vqj|2dτ ′dτ ′′

Ω0

(2π)3
dq,

(4.15)

where the sum over i is extended over all the phonon propagators between the two phononvertices τ ′ and τ ′′, while ∆τi is computed as τi − τi−1 where the two extrema are τ ′ and τ ′′.The infinitesimals are required because they are not cancelled in the ratio since they are newproposed variables.The full distribution from which the new values are sampled is written as
P (τ ′, τ ′′,q, j) = P (τ ′)P (τ ′′|τ ′, j)P (q|τ ′, τ ′′, j) =

=
1

τright − τleft

P (τ ′)

ωjLOe
−ωjLO(τ ′′−τ ′)

P (τ ′′|τ ′,j)

(
τ ′′ − τ ′

2π

)3/2

e−
q2

2
(τ ′′−τ ′)

P (q|τ ′,τ ′′,j)

. (4.16)
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The acceptance ratio thus becomes:

Radd =
pA
pB

Dn+2(k, τ, ..., τ
′, τ ′′,q, ...)

Dn(k, τ, ...)P (τ ′, τ ′′,q, j)
, (4.17)

the context factors pA and pB take into account the number of free electron propagators fromwhich a vertex can be generated and the total number of internal phonon propagators whichcan be removed, their ratio is
pA
pB

=
p(rem int)

p(add int)

n+ 2N + 1

n/2 + 1
, (4.18)

for example at ordern = 2 and 1 external phonon we can choose from 2+2·1+1 = 5 electronpropagators, while to go back to order 2 from order n + 2 = 4 we can choose between
2/2 + 1 = 2 phonon propagators. The two variables p(rem int) and p(add int) measure theprobability of choosing the add internal and remove internal updates in the main Monte Carlosimulation.

τn−1 τn τn+1(ε(k − q1), k − q1) (ε(k), k)

(ωj1LO, q1)

τn−1 τ ′ τn τ ′′ τn+1(ε(k − q1), k − q1) (ε(k − q1 − q′), k − q1 − q′) (ε(k − q′), k − q′) (ε(k − q2 − q′), k − q2 − q′)

(ωj1LO, q1)
(ωj′LO, q′)

Figure 4.2: Diagram add/remove internal phonon update.
The remove internal phonon is also a class II update, no new parameters are proposed butinstead a random internal phonon propagator with vertices at τ ′ and τ ′′ and momentum q ischosen to be removed. The update is automatically rejected if it is true that the internal order
n = 0 and is accepted with acceptance ratio Rrem = 1/Radd calculated for the add internalphonon update.
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0 τ1 τ2 τ(ε(k),k) (ε(k1),k1) (ε(k),k)

(ωj1LO,q1)

0 τ ′ τ1 τ ′′ τ2 τ

τ0

(ε(k− q̃′),k− q̃′) (ε(k− q1 − q̃′),k− q1 − q̃′) (ε(k− q1),k− q1) (ε(k),k) (ε(k− q̃′),k− q̃′)

(ωj′LO, q̃
′)

(ωj′LO, q̃
′)

(ωj1LO,q1)

Figure 4.3: Diagram add/remove external phonon update.
Another necessary update to implement is the add external phonon update, a class II updatewhich adds an external phonon to the current diagram, if the number of external phononpropagators is already Nmax the update is automatically rejected.The new variables that need to be proposed are the time values of the vertices τ ′ and τ ′′,the phonon mode index j and the phonon momentum q̃. After having chosen the proposedphonon mode index j we want to write the full probability as:

P (τ ′, τ ′′, q̃, j) = P (τ ′|j)P (τ ′′|j)P (q̃|τ ′, τ ′′, j), (4.19)
in order to do so we choose the following proposal distribution for τ ′:

τ ′ = 0− log (1− r)

ωjLO

, (4.20)
where r is a uniform random variable in [0, 1], if a value of τ ′ > τ length of the current diagramis chosen the update is rejected. For τ ′′ the following similar exponential distribution is used

τ ′′ = τ +
log (1− r)

ωjLO

, (4.21)
if τ ′′ < 0 the update is directly rejected. The update is also rejected if any of the two values τ ′and τ ′′ lie too close to any other vertex |τ ′, τ ′′ − τi| < 10−9. New values for the momentum q̃are then proposed using the normal distribution with mean 0 and variance 1/(τ − τ ′′ + τ ′),
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which takes into account the imaginary time length of the external phonon propagator.The full probability thus becomes:

P (τ ′, τ ′′, q̃, j) = P (τ ′|j)P (τ ′′|j)P (q̃|τ ′, τ ′′, j) =

= ωjLOe
−ωjLOτ ′

P (τ ′|j)

ωjLOe
−ωjLOτ ′′

P (τ ′′|j)

(
τ − τ ′′ + τ ′

2π

)D/2

e−
q̃
2
(τ−τ ′′−τ ′)

P ( ˜q|τ ′,τ ′′,j)

. (4.22)

It is now important to evaluate the ratio of the two diagrams, two different cases are possible:
• τ ′ < τ ′′, in this case the internal part of the two diagrams is the same
• τ ′ > τ ′′, here the two diagrams are completely different, in particular the free electronpropagators all have different momenta.

Let us start with the first case, we have
Dn+2(k, τ, ..., τ

′, τ ′′, q̃, ...)

Dn(k, τ, ...)
=

= exp

{
−
(∑

i1

[ϵ(ki1 − q̃)− ϵ(ki1)]∆τi1 +
∑
i2

[ϵ(ki2 − q̃)− ϵ(ki2)]∆τi2

)}

· exp {(−ωjLO(τ − τ ′′ + τ ′))}|Vq̃j|2dτ ′dτ ′′
Ω0

(2π)3
dq̃,

(4.23)

where i1 indexes a sum over the propagators below τ ′, i2 one over the propagators above
τ ′′, and ∆τi1 , ∆τi2 are computed in the same way as performed for the add internal phononupdate (considering the boundaries for the two sums as τ ′ and τ ′′ respectively).In the second case, we instead have the expression

Dn+2(k, τ, ..., τ
′, τ ′′, q̃, ...)

Dn(k, τ, ...)
=

= exp

{
−
(∑

i1

[ϵ(ki1 − q̃)− ϵ(ki1)]∆τi1 +
∑
i2

[ϵ(ki2 − q)− ϵ(ki2)]∆τi2

)}

· exp
{
−
(∑

i3

[ϵ(ki3 − 2q̃)− ϵ(ki3)]− ωjLO(τ − τ ′′ + τ ′)

)}
|Vq̃j|2dτ ′dτ ′′

dq̃

(2π)3
,

(4.24)
where i1 and i2 run over the electron propagators below τ ′′ and over τ ′ respectively, with∆τikcomputed as before, while the sum over i3 runs over the propagators between τ ′′ and τ ′ with
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∆τi3 defined in the same way as in the add internal phonon update.In both cases, the full expression for the acceptance ratio thus becomes:

Radd =
pA
pB

D(n+2)(k, τ, ..., τ
′, τ ′′, q̃)

Dn(k, τ, ...)P (τ ′, τ ′′, q̃, j)
. (4.25)

In this case the context factors are defined as such: when adding a phonon propagator norestriction on the position is made, and thus pB = p(add ext) · 1, when removing it is possibleto choose between N external phonons (or better N + 1 considering that at the moment ofthe update the new one has not been accepted yet), and we have pA = p(rem ext)(N +1). Theacceptance ratio is then fully defined.The remove external phonon update (class II) chooses an external phonon propagator at ran-dom (if they are not already 0, then it is automatically rejected) and removes it from the totaldiagram with acceptance ratio Rrem = 1/Radd inverse of that of the add external phononupdate. Besides that, no new variables are proposed.The updates illustrated up to now are sufficient to obtain an ergodic simulation, neverthelessother 3 updates were implemented. The first one of these is the swap phonon update (classI): this update takes two adjacent internal phonon vertices and proposes to swap their phononpropagators, the update is automatically rejected if the two adjacent vertices belong to thesame internal phonon propagator or they do not belong to two internal phonon propagators(for example an external one).

τi τ1 τ2 τi+3(ε(k − q1), k − q1) (ε(k), k) (ε(k − q2), k − q2)

(ωj1LO, q1) (ωj2LO, q2)

τi τ1 τ2 τi+3(ε(k − q1), k − q1) (ε(k − q1 − q2), k − q1 − q2) (ε(k − q2), k − q2)

(ωj1LO, q1) (ωj2LO, q2)

Figure 4.4: Diagram swap update.
Let us call the two phonon propagator that we want to swap 1 and 2. We have that the twophonon propagators have momentum q1 and q2 with energy ωj1LO and ωj2LO and imaginary
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time τ1 and τ2, given that the electron propagator between the two vertices has momentum
kel we have that the acceptance ratio of the update is simply given by the ratio between the2 diagrams:

Rswap =
D

ξ′n
n (k, τ, ...)

Dξn
n (k, τ, ...)

=

= exp {− (ϵ(kel + c1q1 − c2q2)− ϵ(kel)− (c1ωj1LO − c2ωj2LO)) (τ2 − τ1)} ,
(4.26)

where c1 and c2 are integer variables that store the type of the vertex (ci = +1 for an outgoingvertex, linked to a vertex with time τ ′ > τi, −1 for an incoming one with τ ′ < τi).The next class I update is the shift phonon update: in this update a single phonon interactionvertex τi is shifted between the two adjacent phonon vertices τleft and τright. Given ki−1 and
ki the momenta of the two free electron propagators that are linked to the phonon vertex wehave that the new imaginary time value τ ′i is found as

τ ′i = τleft −
log (1− r(1− e−∆E(τright−τleft)))

∆E
, (4.27)

where the value of ∆E is retrieved with the following relation
∆E = ϵ(ki) + ϵ(ki−1)− ciωjiLO, (4.28)

where ci is the phonon vertex type (+1 for outgoing vertices, -1 for incoming ones). The updateis always accepted as long that the new proposed value is not too close to the two extrema(< 10−9).The last update that was implemented is the stretch diagram update (class I). In this updatethe whole diagram is stretched or compressed like a spring: each electron propagator, to-gether with the phonon propagators that are active at the two selected times τi and τi+1.The imaginary time value of each vertex is shifted (from the first vertex with time value τ1 tothe last τ2n+1 = τ length of the diagram, while the first vertex at 0 is of course fixed) usingthe following formula:
τ ′i = τ ′i−1 −

log (1− r)

ϵ(ki−1)− µ+
∑

j ωjLOnj

, (4.29)
where nj is the number of phonon propagator with mode j that are active at the index j (theywere created to the left of the i vertex and and annihilated to the right of it). The update isrejected only if each new proposed value τ ′i is too close to the previously proposed vertex τ ′i−1or if τ ′i ≥ τi+1 next vertex in the diagram.The full simulation decides which of the 8 updates to choose based on a uniform randomvariable r in [0, 1].
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4.2 Collected quantities and MC estimators
After having implemented the features of the Diagrammatic Monte Carlo simulation, methodsto collect results and analyze them are necessary. The simplest estimator that can be built isan histogrammethod to reconstruct the shape of the Green’s function that we are simulating:a fixed number of bins Nbins from 0 to τmax is set at the beginning of the simulation such asevery bin has width ∆τ = τmax/Nbins and is centered at the value τj = jτmax/Nbins +∆τ/2with j integer between 0 and Nbins − 1.After every iteration of the simulation, the diagram length τk is given as input to the histogram:if the value τk falls in the range (τj −∆τ/2, τj +∆τ/2) the number of counts nj is updatedby 1.At the end of the simulations we will have Nbins each with a different number of counts nj .The shape of the Green’s function can already be assessed in this form, but to obtain theright value at each bin a normalization factor is needed: the obvious normalization factor thatis needed is the bin width ∆τ , but is not enough to get the actual Green’s function. In fact,given that we have fixed a maximum imaginary time value τmax, the obtained Green’s functionis actually normalized over the (0, τmax) range: this is not how the Green’s function is defined,since its domain is (0,+∞). For this reason we exploit the properties of the 0-order diagrams
D0(k, τ), which we know to have the simple exponential form

D0(k, τ) = e−(ϵ(k)−µ)τ , (4.30)
since we know how to integrate this function we can use the integral value I0 of the zeroorder diagrams to reconstruct the correct normalization factor. The following integral value I0is then computed:

I0 =

∫ τmax

0

e−(ϵ(k)−µ)τdτ =
1− e−(ϵ(k)−µ)τmax

ϵ(k)− µ
, (4.31)

and the Green’s function has the value
P (k, τj) =

njI0
N0∆τ

, (4.32)
with N0 number of 0-order diagrams in the simulation.Although it is possible to estimate the ground state energyEP (0) of the polaron (also knownas the zero-point renormalization or ZPR), by fitting an exponential function to the Green’sfunction estimated as previously mentioned for large τ values [33], we can build an exactestimator that is able to compute a value for the ground state energy that has no discretizationerrors (due to the finite width of the bins in the histogram).The estimator follows from these considerations [29]: given a quantity A specified by thediagrammatic expansion

A =
∑
ν

DA(ν), (4.33)
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withDA(ν) diagrams for which the quantityA is computed, ν internal variables of the diagramwith summation over discrete variables and integration over continuous ones, and a quantity
B =

∑
ν DB(ν) defined similarly, it is possible to estimate the ratio of the two quantities as

B

A
=

(∑
MCA{ν}Qν

)
∑

MCA{ν} 1
= ⟨Qν⟩MC ,

Qν =
DB(ν)

DA(ν)
,

(4.34)

with MCA{ν} set of internal parameters generated during the Monte Carlo simulation.Given the definition, it might not be clear how this expression is useful in order to build anexact energy estimator. To start let us consider the fact that the two quantities A and B areusually the same Green’s function (same expansion of the internal variables) taken with somevariations in the external parameters. For the ground state energy this reduces to
Qν =

P (k, (1 + λ)τ)

P (k, τ)
→ exp (−λEP (k)τ) (4.35)

for large τ values and λ small parameter. If we approximate the exponential with a Taylorexpansion in λ we get
exp (−λEP (k)τ) = 1− λEP (k)τ +O(λ2). (4.36)

The quantity Qν can be diagrammatically expanded as
Qν =

DA(ν)

DB(ν)
=
D

ξnν
nν (k, (1 + λ)τ, ν)

D
ξnν
nν (k, τ, ν)

, (4.37)
where the ν are the (same) internal variables up to a λ scaling factor.Explicitly, we get the following ratio:

Qν = (1 + λ)n

{∏
l

exp (−ϵ(kl)∆τl)
∏
m

exp (−ωjLO∆τm)

}
, (4.38)

where the index l lists the free electron propagators while m the free phonon ones.If we now impose λ→ 0 we get
Qν −−→

λ→0
1 + λ

(
n−

∑
l

ϵ(kl)∆τl −
∑
m

ωjLO∆τm

)
+O(λ2), (4.39)

which, when compared with 4.36, gives the explicit expression for the energy estimator
EP (k) =

〈
1

τk

(∑
l

ϵ(kl)∆τl −
∑
m

ωjLO∆τm − nk

)〉
MC

. τk → +∞ (4.40)
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The ground state energy EP (0) is found for k = 0.The next estimator that is defined is for the effective massm∗

p(k) of the polaron, which is ingeneral anisotropic with respect to momentum (it has the same symmetry properties of theelectron effective mass from which it is derived), its theoretical definition is
1

m∗
P (k̂)

=

(
d2EP (k)

dk2

)
k=0

. (4.41)
While an effective mass exact estimator for the isotropic case has been derived [29], no at-tempts at defining it for the anisotropic case have been tried (at least to the current knowl-edge). For this reason the following estimator has been developed: it should not be inter-preted as a definitive result and a more accurate expression is for sure obtainable.We begin by noting that

Qν =
P (λê, τ)

P (0, τ)

τ→∞−−−→ exp {− (EP (λê)τ − EP (0)) τ} =

= exp

(
− λ2τ

2m∗
P (ê)

− EP (0)τ + EP (0)τ

)
= exp

(
− λ2τ

2m∗
P (ê)

)
,

(4.42)

which, for λ→ 0 becomes:
exp

(
λ2τ

2m∗
P (ê)

)
−−→
λ→0

1− λ2τ

2m∗
P (ê)

+O(λ4). (4.43)
The ratio can be explicited in a similar way as it was done in 4.38:

Qν =
∏
l

exp

−1

2

 (kl + λê)2

m∗
(

kl+λe√
k2l +λ2

) − k2l

m∗(k̂l)

∆τl

 . (4.44)

The first electronic effective mass in this expression is problematic: the fact that λ → 0 inthe limit does not help with the evaluation since the mass only depends on the orientationof the momentum, for k → 0 (which is quite common) the expression is not defined withoutdetermining a clear λ value. For this reason we employ the approximation
m∗

(
kl + λe√
k2l + λ2

)
≈ m(ê). (4.45)

Using this expression 4.44 becomes solvable at the price of losing accuracy. Given that con-duction band minima usually have a prolate effective mass (m∗
x = m∗

y = m∗
⊥ < m∗

z) thismeans that our estimation sets a lower bound for the computed m∗
z and an upper bound for
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m∗

⊥. In the case mx < my < mz the behaviour of my is not defined a priori.Given 4.45, 4.44 becomes:
Qν =

∏
l

exp

{
− 1

2m∗(ê)

[
k2
l + λ(kl · ê) + λ2 − k2l

]
∆τl

}
=

=
∏
l

exp

{
− 1

2m∗(ê)

[
λ(kl · ê) + λ2

]
∆τl

}
,

(4.46)

which for λ→ 0 becomes
Qν −−→

λ→0
1− λ

∑
l

(kl · ê)
m∗(ê)

∆τl − λ2
∑
l

∆τl
m∗(ê)

+
λ2

2

(∑
l

(kl · ê)
m∗(ê)

∆τl

)2

+O(λ3). (4.47)
Combining this equation with 4.43 and identifying the corresponding λ terms, we see that

1

m∗
P (ê)

=
1

m∗(ê)
− 1

m∗(ê)2

〈
1

τk

(∑
l

(kl · ê)∆τl
)2〉

MC

. (4.48)
The formula for m∗

Px, m∗
Py and m∗

Pz are retrieved for ê = x̂, ê = ŷ and ê = ẑ respectively.The last exact estimator which is shown is the Green’s function exact estimator, which removesthe discretization error in the Green’s function estimation that is present in the histogrammethod, which inevitably introduces systematic errors.We begin by observing that [29]
P (k, τj) =

∑
ν

D(k, τj, ν) =

∫
dτ
∑
ν

D(k, τ, ν)δ(τ − τ0), (4.49)
with P (τj) value of the Green’s function at τj .Given a width ∆τ fixed around the τj value (the procedure to define the τj values and thewidth ∆τ is the same as previously done for the histogram method), we can define a MonteCarlo estimator for P (τj) as:

P (k, τj) =

〈
1

∆τ

Dnk
(k, τk, ...)

Dnk
(k, τj, ...)

θ

(
|τk − τj| −

∆τ

2

)〉
MC

, (4.50)
where θ(· · · ) is the Heaviside step function, which takes into account only τk values that areinside the interval (τj − ∆τ

2
, τj +

∆τ
2
).In alternative, an estimator for G(N)(k, τj) which only takes into account diagrams with Nexternal phonons can be defined:

G(N)(k, τj) =

〈
1

∆τ

Dnk
(k, τk, ...)

Dnk
(k, τj, ...)

θ

(
|τk − τj| −

∆τ

2

)
δNk,N

〉
MC

, (4.51)
where the Kronecker delta δNk,N only takes into account diagrams with Nk = N number ofexternal phonon propagators.
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5 Methods and results
The program developed was used to simulate the electron polaron of a range of cubic mate-rials (zincblende structrure) both with isotropic (CBM at Γ) and anisotropic (CBM at X pointor along the X − Γ high symmetry line) electronic band structure. For each one of them onesingle phonon mode was considered since from the phonon band structure only one longitu-dinal optical mode is retrieved [4] (which means that the add internal/external update cannotchoose between different phonon energies and is restricted to one ωLO and j = 1).
5.1 Input data

Material a (bohr) edge m∗
⊥ m∗

z ωLO (meV) ϵ∞ ϵ0 ⟨α⟩
AlAs-zb 10.825 X 0.243 0.897 47.3 9.49 11.51 0.184AlP-zb 10.406 X 0.252 0.809 59.9 8.12 10.32 0.184GaN-zb 8.598 Γ 0.144 0.144 86.0 6.13 11.00 0.345GaP-zb 10.294 X∗ 0.230 1.062 48.6 10.50 12.53 0.152SiC-zb 8.227 X 0.228 0.677 117.0 6.97 10.30 0.280ZnSe-zb 10.833 Γ 0.089 0.089 29.3 7.35 10.73 0.276

Table 1: Input values used for the simulations from [7] and [4], the coupling strengths are givenas averages over the solid angle 4π.
The 6 simulated materials were AlAs, AlP, GaN, GaP, SiC and ZnSe: the values of their effec-tive masses, phonon energy, cell size, static dielectric tensor and optical dielectric tensor werecomputed with first-principle methods using GGA-PBE retrieved from [7] and [4] (Supplemen-tary data). Their values are visible in 1 together with the computed average coupling strengthas reference, which was found as

⟨α⟩ =
(

1

ϵ∞
− 1

ϵ0

)√⟨m∗(q̂)⟩
2ωLO

. (5.1)
All the simulated electron polarons originated from an electron band which was isotropic (in
Γ) or anisotropic uniaxial (inX or inX∗, which is a short-hand notation for the high symmetryline X − Γ) and the longitudinal optical phonon energies were between 30meV and 117meVcovering an order of magnitude.The lattice parameter (and thus the volume, computed as a3/4) is reported for completenesseven if it is by no means necessary in the simulation, in agreement with the large polaronapproximation proper of the used Froehlich model.
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The dielectric response ϵ∗, which in the case of a single optical phonon mode simply reducesto

1

ϵ∗
=

(
1

ϵ∞
− 1

ϵ0

)
, (5.2)

is independent of the nuclear masses since both ϵ∞ (purely electronic) and ϵ0 (static) are. Itmeasures the ionicity of the material and thus the strength of the electron-phonon coupling:for ϵ∗ → +∞ there is no coupling: this is the case for covalent materials such as diamond-Cand diamond-Si where no polarization is possible between the atoms in the basis and ϵ∞ = ϵ0.
5.2 Methods
For each one of the studied materials 20 independent simulations were performed in orderto get an estimation together with an error, the estimate was computed with a simple meanwhile the error with the formula for the sample variance:

x̄ =
1

20

∑
i

xi, ∆x =

√∑
i (xi − x̄)2

19
. (5.3)

The simulations were performed using a fixed τ value in order to have better-converged resultsfor the ground state energy and the polaron effective masses. The τ value was set to 2000for AlAS, AlP, SiC and ZnSe, 3000 for GaP, 10000 for GaN (to see if a bigger value for τ couldimprove the obtained result). As a rule of thumb, it is always better to have a greater fixed τvalue for energy and effective mass computation, especially if the energy of the optical phononis small or the coupling strength is high. This of course means that the computation times areinevitably longer. For effective masses, in the isotropic case only the computed value form∗
Pxwere used for the result, in the anisotropic case only m∗

Px (m∗
⊥) and m∗

Pz.
5.3 Results

material DMC (meV) Perturbative (meV) Feynman avg (meV)
AlAs-zb −10.52± 0.11 −8.8 −9.6AlP-zb −15.83± 0.19 −14.0 −15.1GaN-zb −30.11± 0.42 −29.6 −29.7GaP-zb −8.59± 0.24 -7.4 −8.3SiC-zb −34.72± 0.42 −32.7 34.8ZnSe-zb −8.66± 0.09 −8.1 −8.1

Table 2: Obtained polaron ground state energy with DMC (0 is the reference for the conductionband minimum), the values for Froehlich and Feynman were retrieved from [4].
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The results obtained for the ground state energy of the polaron (or Zero-Point RenormalizationZPR) are shown in 2 together with the values computed with a generalized Froehlich formal-ism and the average (in the anisotropic case) values obtained with the Feynman variationalapproach, the values are to be interpreted as a renormalization of the conduction band mini-mum (and thus are all negative). The data obtained shows that all the computed parametersare estimated to be lower than what is found with the Feynman technique, as it should besince this is a variational technique which provides an upper bound to the renormalizationenergy. In the case of an anisotropic electronic band, the Feynman result was found as

EF
Pavg =

2EF
P⊥ + EF

Pz

3
. (5.4)

DMC Perturbative Feynman
material m∗

P⊥ (a.u.) m∗
Pz (a.u.) m∗

P⊥ (a.u.) m∗
Pz (a.u.) m∗

P⊥ (a.u.) m∗
Pz (a.u.)AlAs-zb 0.2564 0.9256 0.2518 0.9155 0.2490 0.9409AlP-zb 0.2689 0.8423 0.2637 0.8322 0.2602 0.8574GaN-zb 0.1541 0.1541 0.1523 0.1523 0.1518 0.1518GaP-zb 0.2413 1.0894 0.2367 1.0786 0.2343 1.1086SiC-zb 0.2450 0.7089 0.2409 0.7007 0.2372 0.7235ZnSe-zb 0.0977 0.0977 0.0936 0.0936 0.09344 0.0934

Table 3: Obtained polaron effective masses using DMC, the values for Froehlich and Feynmanwere retrieved from [4].
In 3 instead the polaron effective masses are shown (error estimations are not given since theyare so small they can be neglected). As it can be seen in this case the values obtained have aless clear relationship with the perturbative and variational approaches (differently from whatis seen with the ground state energy, which is consistently inferior to the variational value) andit is not clear which one of the computed values better estimates the actual polaron effectivemass, also considering that for DMC we have employed the approximation 4.45 to obtain 4.48.Nevertheless the results obtained are still consistent with the symmetry of the model and withthe values provided by the other approaches.
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Conclusions
In this thesis we have seen how the Diagrammatic Monte Carlo approach can be used to sim-ulate polaronic states inside real cubic materials and obtain estimates about the renormaliza-tion of the ground state energy of conduction band minima and about the polaron effectivemasses in a range of isotropic and anisotropic materials.In Chapter 1 the failures of the Born-Oppenheimer approximation in modelling polaronic stateswere first presented, then the basic Froehlich model was derived and illustrated, together withthe main approaches that are used to solve it. Then the generalized Froehlich model was illus-trated, with a focus in particular on the non-degenerate anisotropic electron band case. Someanalytical solution techniques were provided for this model.In Chapter 2 the formalism provided by Quantum Many Body theory was used to obtain aGreen’s function (which is the solution to the Hamiltonian) which could be treated with Dia-grammatic Monte Carlo, in particular by employing the Matsubara imaginary time formalism,which gets rid of the complex nature of the original Green’s function and obtains a real non-negative representation, and using Wick’s theorem, which allows us to treat the original inter-acting Green’s function as a perturbative infinite series of non-interacting Green’s functionsand interaction vertices (both easy to evaluate).In Chapter 3 the Monte Carlo method was explained illustrating the basic features of this nu-merical method, which depends on estimating expectation values of given quantities. Thenthe direct Monte Carlo method was briefly described, which directly models the investigatedsystem, then the integration method, used to compute hard integrals, and the Markov chainMonte Carlo, a tool capable of generating random samples distributed as a target distribu-tion after a given relaxation time using the Metropolis-Hastings algorithm. The Markov chainMonte Carlo method is at the basis of the Diagrammatic Monte Carlo approach, which exten-sively uses it to compute transitions from different diagrams using suitable updates.In Chapter 4 the algorithm used for the Froehlich polaron simulation was discussed, from theway the free propagators and vertices were stored in the computer to the procedure used foreach one of the implemented updates. The main estimators which can be used to retrieveinformation about the Green’s function were also described.In Chapter 5 the obtained results for a range of real materials were shown, together with theinput data and basic information about the procedure which was undertaken.The work done in this thesis can be used as a starting point for a more complete and complexsimulation that takes into account degenerate electronic bands, electronic band anharmonic-ity and phonon mode anisotropy in order to simulate the electron and hole polarons in a widerrange of materials.
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Appendix
All the simulations have been performed using the code in [39], in order to use it you have toinclude in the compiler list the files main.cpp, Diagram.cpp, GreenFuncNph.cpp, GreenFunc-
NphBands.cpp,MC Benchmarking.cpp andprogressbar.cpp, the Eigen library is also requiredand its main directory must be present in the DQMC directory (otherwise specify the path inthe include files).The program was compiled in a Windows machine using the mingw64 g++ compiler and in aLinux machine using the native GNU/GCC compiler.Three text files must be included in order to start the simulation, simulation parameters.txt,
simulation settings.txt and simulations probabilities MC.txt.The main options of simulation parameters.txt are:

• type: set ”bands” for anisotropic multi-phonon mode calculations.
• thermalization steps: number of relaxation steps performed.
• simulation steps: number of MC steps performed.
• max tau value: maximum allowed tau value in the simulation.
• dimensions: number of dimensions of the system to simulate (3).
• kx: kx momentum.
• ky: ky momentum.
• kz: kz momentum.
• chemical potential: fictitious renormalization potential (provide negative values).
• max internal order: maximum number of allowed internal phonon propagator is halfthis quantity (provide even values).
• max num ext phonon: maximum number of allowed external phonon propagators.
• num bands: number of degenerate electronic bands (1).
• num phonon modes: number of phonon modes (1 or more).
• phonon mode(i): energy of the ith phonon mode (starting from 0 to n-1), values mustbe provided in Hartree (atomic units).
• dielectric response(i): dielectric response of ith phonon mode using atomic units.
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• mx: effective band mass along kx.
• my: effective band mass along ky.
• mz: effective band mass along kz.
• V 1BZ: unit cell volume (not necessary, can be set to 1 since the Froehlich model assumesthe continuum hypothesis).
• V BvK: Born-von Karman cell volume (set to 1).
• diel const: ϵ∞ in atomic units.

The main options of simulation settings.txt are:
• exact GF: boolean, computes the Green’s function with the exact estimator
• num points: number of points for which the exact GF is evaluated, spacing depends onmax tau value.
• selected order: number N of external phonons for which the exact GF is computed, ifthe value is negative the GF is computed for all N .
• histo: boolean, computes the Green’s function using the histogram method.
• bins (histogram): number of bins of the histogram, width depends on max tau value.
• gs energy: boolean, computes the ground state energy with the exact estimator.
• cutoff tau (gs energy): tau value cutoff for which the ground state energy is computed(lower bound).
• effective mass: boolean, computes the polaron effective masses with the exact estima-tor.
• cutoff tau (mass): same as for the energy cutoff.
• write diagram: boolean, method to print and visualize computed diagram, automati-cally disabled if simulation steps¿25000.
• time benchmark: boolean, computes the average time each update takes and the av-erage time per iteration.
• stats: boolean, collects statistics about MC simulation (average order, number of exter-nal phonons, number of internal phonons, order 0 diagrams).
• cutoff tau stats: tau value cutoff for which statistics is computed (lower bound).
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• fix tau value: boolean, fixes length of diagrams to max tau value (and changes updateprobabilities accordingly), useful to compute ground state energy and effective masses.

The options of simulation probabilities MC.txt are:
• prob length: diagram length update probability.
• prob add internal: add internal phonon update probability.
• prob remove internal: remove internal phonon update probability.
• prob add external: add external phonon update probability.
• prob remove internal: remove external phonon update probability.
• prob swap: swap update probability.
• prob shift: shift update probability (currently not working properly).
• prob stretch: stretch update probability.

If the probabilities given in input do not add to 1, they are properly normalized.
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[8] Herbert Fröhlich. Electrons in lattice fields. Advances in Physics, 3(11):325–361, 1954.
[9] Th Holstein. Studies of polaron motion: Part i. the molecular-crystal model. Annals of

physics, 8(3):325–342, 1959.
[10] Th Holstein. Studies of polaron motion: Part ii. the “small” polaron. Annals of physics,8(3):343–389, 1959.
[11] Cesare Franchini, Michele Reticcioli, Martin Setvin, and Ulrike Diebold. Polarons in ma-terials. Nature Reviews Materials, 6(7):560–586, 2021.
[12] Felix Bloch. Quantum mechanics of electrons in crystal lattices. Z. Phys, 52:555–600,1928.
[13] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt-Saunders, 1976.
[14] Jos Thijssen. Computational physics. Cambridge university press, 2007.



REFERENCES 77
[15] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review,136(3B):B864, 1964.
[16] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlationeffects. Phys. Rev., 140:A1133–A1138, 11 1965.
[17] GP Kerker. Non-singular atomic pseudopotentials for solid state applications. Journal of

Physics C: Solid State Physics, 13(9):L189, 1980.
[18] Paul Ziesche, Stefan Kurth, and John P Perdew. Density functionals from lda to gga. Com-

putational materials science, 11(2):122–127, 1998.
[19] Hermann Haken. Quantum Field Theory of Solids. An Introduction. 1976.
[20] Alexandre S Alexandrov and Jozef T Devreese. Advances in polaron physics, volume 159.Springer, 2010.
[21] Pedro Miguel MC de Melo, Joao C de Abreu, Bogdan Guster, Matteo Giantomassi, ZeilaZanolli, Xavier Gonze, and Matthieu J Verstraete. High-throughput analysis of fröhlich-type polaron models. npj Computational Materials, 9(1):147, 2023.
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