
Dipartimento di Scienze Matematiche

Corso di Laurea in Matematica

Gruppi di omotopia
e teorie (co)omologiche

Relatore:
Chiar.mo Prof.
Giovanni Mongardi

Presentata da:
Xhemal Gremshi

Anno Accademico 2024/2025



Introduzione

La topologia si propone l’obiettivo di studiare le proprietà degli spazi che rimangono invariate
dopo aver effettuato delle trasformazioni continue, in particolare un problema centrale consiste
nello stabilire quando due spazi possono essere deformati in maniera continua l’uno nell’altro,
cioè se sono omeomorfi o meno. Come succede spesso in matematica, per affrontare questo
problema si introducono degli invarianti, cioè degli oggetti o delle proprietà che non cambiano
dopo aver effettuato una trasformazione continua. L’idea della topologia algebrica è quella di
costruire invarianti algebrici e associarli a ogni spazio; spesso questi sono gruppi, di cui abbiamo
già a disposizione una ricca teoria che ci può aiutare a calcolarli. Un linguaggio particolarmente
adatto in questo caso è quello categorico, con cui possiamo dire che la topologia algebrica si
occupa di studiare dei funtori fra la categoria degli spazi topologici e quella dei gruppi (o anche
anelli e moduli).
Forse gli invarianti algebrici più significativi sono i gruppi di omotopia e i gruppi di omologia
singolare. Questi vengono costruiti in modi diversi:

- Si considerano i lacci centrati in un punto x0 ∈ X e diciamo che due lacci sono omotopi
se possono essere deformati l’uno nell’altro rimanendo in X. Due lacci possono non essere
omotopi se, per esempio, all’interno di uno dei due lacci la superficie di X è "bucata", mentre
all’interno dell’altro laccio no; oppure, sul toro abbiamo il laccio che gira intorno al "foro
interno" del toro, mentre un altro che gira sul "tubo" che forma il toro, e questi non possono
essere deformati l’uno nell’altro senza essere strappati. Possiamo vedere un laccio come una
funzione continua con dominio S1, per cui possiamo generalizzare in dimensione generica
prendendo l’insieme di tutte le funzioni continue da Sn a X e quozientando per la relazione di
omotopia, quindi identificando le funzioni omotope. Gli insiemi così definiti ammettono una
struttura di gruppo e vengono chiamati gruppi di omotopia πn(X, x0). In un certo senso questi
gruppi ci danno informazioni su uno spazio misurando la presenza di qualcosa che ostacoli la
deformazione continua di una sfera all’interno dello spazio stesso.

- Chiamiamo n-simplesso singolare una qualsiasi funzione continua dal n-simplesso a uno spazio
X. Si associa ad X un complesso di catene, composto dai gruppi abeliani generati dagli n-
simplessi singolari Cn e un morfismo ∂n : Cn → Cn−1 con la proprietà che ∂n−1 ◦ ∂n = 0.
Si definisce l’n-esimo gruppo di omologia singolare Hn(X) come il quoziente fra Ker(∂n) e
Im(∂n+1). Se chiamiamo la cavità interna ad Sn un "buco n-dimensionale", in un certo senso
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l’omologia singolare misura la presenza di buchi n-dimensionali in X. Quest’interpretazione
nasce dal calcolo, che può essere effettuato dopo aver sviluppato un po’ di teoria, di Hn(S

m) =

Z per m=n, mentre è il gruppo banale altrimenti.

Si nota subito che nel primo caso si ha una forte intuizione che giustifica la costruzione, mentre
nel secondo si ha una costruzione molto tecnica e barocca, frutto di generalizzazioni e raffina-
menti avvenuti nel corso degli anni, nonostante le idee di base fossero già presenti nel testo del
1895 "Analysis situs" di Henri Poincaré, fino a giungere alla definizione moderna fornita da Ei-
lenberg nel 1944. Il vantaggio dell’omologia singolare è dato dal fatto che i gruppi sono più facili
da calcolare rispetto all’omotopia; la definizione è così tecnica proprio per far sì che abbia delle
proprietà che ne semplifichino il calcolo. L’omotopia invece, con la sua definizione più naturale
e intuitiva, presenta notevoli difficoltà computazionali, al punto che ad oggi non sono ancora
noti tutti i gruppi di omotopia delle sfere, nonostante la vasta gamma di strumenti sviluppati
nel tempo. Provando a individuare le proprietà che facilitano il calcolo per l’omologia, si ottie-
ne una descrizione assiomatica generale; questi sono noti come assiomi di Eilenberg-Steenrod.
Questa descrizione non è esclusiva per l’omologia singolare, infatti chiamiamo teoria omologica
un qualsiasi funtore fra Top e una qualche categoria algebrica che rispetti questi assiomi. Una
teoria omologica gode delle proprietà principali dell’omologia singolare che facilitano l’aspetto
computazionale, dato che queste seguono direttamente dagli assiomi.

Uno dei risultati fondamentali nella teoria dell’omotopia è il teorema di Freudenthal, che
permette di trovare una successione di gruppi di omotopia che si stabilizza facendo uso della
sospensione. Questo è il punto di partenza per la teoria dell’omotopia stabile, e degli oggetti
che vengono definiti naturalmente in questo contesto sono gli spettri: successioni di spazi con
delle mappe di struttura dalla sospensione di ogni spazio al successivo. Questi oggetti vengono
definiti proprio in modo che si comportino bene rispetto alla sospensione. Si estendono i gruppi
di omotopia, oltre che agli spazi topologici, anche agli spettri, di cui ci interessa il comporta-
mento solo al limite: infatti, vengono definiti come il limite diretto dei gruppi di omotopia dei
singoli spazi che compongono lo spettro. Queste definizioni li rendono candidati perfetti per
indagare fenomeni in omotopia stabile, e infatti nel corso degli anni sono diventati il linguaggio
preferito in questo contesto. Una proprietà notevole degli spettri è che c’è una corrispondenza
uno a uno fra le teorie omologiche, a meno di isomorfismo, e gli spettri, a meno di equivalenza
stabile, che è una relazione d’equivalenza fra spettri. Questa corrispondenza è possibile grazie
ai gruppi di omotopia degli spettri, nel senso che la teoria omologica è rappresentata dai gruppi
di omotopia di un certo spettro. Ciò fornisce un legame inaspettato fra gruppi di omotopia e
teorie omologiche, oltre al più classico teorema di Hurewicz.
Abbiamo legato l’omotopia degli spettri e le teorie omologiche, e grazie a ciò possiamo trovare
un legame più diretto fra gruppi di omotopia (di spazi topologici) e omologia. La teoria omo-
logica associata a uno degli spettri più naturali da definire, lo spettro di sospensione, è data
dai gruppi di omotopia stabili. Abbiamo dunque ottenuto una teoria omologica data da una
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variante dei gruppi di omotopia di spazi. Inoltre, l’omologia singolare è associata allo spettro
di Eilenberg-Maclane, composto da spazi la cui classe di equivalenza omotopica è determinata
dai gruppi di omotopia; questi invarianti trovano un punto d’incontro in questo modo del tutto
inaspettato, nonostante le differenze che abbiamo visto nella costruzione di omologia singolare
e gruppi di omotopia.

Lo scopo di questa tesi è approfondire i gruppi di omotopia superiori e alcuni dei legami che
hanno con l’omologia. Nel primo capitolo verranno definiti i gruppi di omotopia, la loro versione
relativa, e si studieranno le loro proprietà principali. Nel secondo capitolo si vedranno alcuni dei
teoremi fondamentali e degli strumenti utili per calcolare alcuni gruppi di omotopia, e alla fine del
capitolo effettueremo alcune computazioni. Nel terzo e ultimo capitolo introdurremo gli spettri,
parleremo delle loro proprietà essenziali, mostreremo come rappresentano teorie (co)omologiche
e nell’ultima sezione vedremo alcuni esempi espliciti.
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Capitolo 0

Preliminari

Notazioni

- Si indica con In := [0, 1]n il prodotto cartesiano dell’intervallo unitario con sè stesso n
volte, ovvero l’n-cubo dotato della topologia euclidea.

- Tutte le funzioni fra spazi topologici sono da intedersi continue. I termini funzione e mappa
sono interscambiabili.

- Si indica con (X,A) una coppia di spazi topologici con A ⊆ X. Quando X è un CW-
complesso allora A è da intendersi un sottocomplesso, cioè è composto da celle di X

- Si indica con f : (X,A) −→ (Y,B) una funzione tale che f(A) ⊆ B

- I funtori verranno indicati con la stessa notazione di una funzione, dove si specifica dove
vanno oggetti e subito sotto i morfismi, in questo modo

F : C −→ C ′

X 7−→ X ′

(f : X → Y ) 7−→ (f ′ : X ′ → Y ′)

- Indicheremo rispettivamente con Top, Top∗ e Top2 la categoria degli spazi topologici, gli
spazi topologici puntati, e le coppie di spazi topologici. I morfismi sono dati rispettivamente
dalle funzioni, le funzioni che preservano il punto base e quelle di coppie (tutte continue).

Omotopie

Definizione 0.1. Presi due spazi topologici X,Y, due funzioni continue f, g : X → Y si dicono
omotope se ∃ ht : X → Y ∀t ∈ [0, 1] famiglia di funzioni continue tale che

∀x ∈ X

h0(x) = f(x)

h1(x) = g(x)
e

[0, 1] → C(X, Y )

t 7−→ ht
continua
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e si indica con f ∼ g.
Si chiama omotopia fra f e g tale famiglia di funzioni, o equivalentemente la funzione
h : X × [0, 1] −→ Y con ht(x) = h(x, t)

Si dice omotopia rel A con A ⊆ X un’omotopia ht tale che ht
∣∣
A

non dipende da t, quindi fissa
A.

Cioè due funzioni si dicono omotope se possono essere deformate l’una nell’altra con conti-
nuità.

Osservazione 0.2. Essere omotope è una relazione d’equivalenza:

- riflessiva poichè basta prendere ht(x) = f(x) ∀t ∈ I,∀x ∈ X

- simmetrica poichè se ht è un’omotopia da f a g allora mt(x) = h1−t(x) è un’omotopia da g
a f

- transitiva poichè se ht e mt sono omotopie da f a g e da g a q rispettivamente, allora

rt(x) =

h2t(x) ∀t ∈ [0, 1
2
]

m2t−1(x) ∀t ∈ [1
2
, 1]

è un’omotopia da f a q.

Definizione 0.3. f : X → Y si dice equivalenza omotopica se ammette un inverso omotopico,
ovvero esiste g : Y → X tale che f ◦ g ∼ idY e g ◦ f ∼ idX .
Se tale f esiste si dice che X e Y sono omotopicamente equivalenti oppure che hanno lo stesso
tipo di omotopia

Ricordiamo che una retrazione di X in Y, un suo sottospazio, è una funzione r : X → X tale
che r(X) = Y e r

∣∣
Y
= idY

Definizione 0.4. Dati Y ⊆ X, una retrazione per deformazione è un’omotopia fra l’identità di
X e una sua retrazione in Y. Se tale omotopia esiste, Y si dice un retratto per deformazione di X

Euristicamente una retrazione per deformazione è una retrazione che dipende dal tempo con
continuità. Uno spazio X e un suo retratto per deformazione sono omotopicamente equivalenti,
segue facilmente dalla definizione.

Mapping cylinder

Definizione 0.5. Data f : X → Y chiamiamo Mf il cilindro ottenuto incollando Y a una faccia
di X × I, cioè Mf =

(X × I) ⊔ Y⧸∼ con f(x) ∼ (x, 0)
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X × I

Yf(X)

∼−→ Mf

Osservazione 0.6. Mf può essere retratto per deformazione in Y, infatti preso un qualsiasi
punto (x, t) ∈ Mf basta trascinarlo lungo il segmento che lo porta in (x, 1) ∼ f(x) ∈ Y , dove
Y è Mf × {0}. Esplicitamente abbiamo Hs : Mf → Mf con Hs([x, t]) = [x, (1− t)s + t], infatti
H0([x, t]) = [x, t] e H1([x, t]) = [x, 1] = [f(x)], cioè H omotopia fra id e una retrazione di Mf in
Y.

Osservazione 0.7. f è un’equivalenza omotopica fra X e Y se e solo se X è un retratto di
deformazione di Mf

CW-complessi

Definizione 0.8. Un CW-complesso è uno spazio topologico costruito induttivamente in questo
modo:

1) X0 un insieme discreto di punti

2) Chiamiamo Dk
α una k-cella e sia φα : Sk−1 → Xk−1 la sua funzione di attaccamento,

specifica come incollare il bordo della cella a Xk−1

3) Xk = Xk−1
⊔
α

Dk
α⧸∼ := Xk−1

⋃
enα dove x ∼ φα(x) per ogni x ∈ Sk−1 e per ogni α, mentre

enα indica semplicemente l’interno della k-cella Dk
α − ∂Dk

α dopo il quoziente, quindi già
"attaccata". Xk si chiama k-scheletro.

4) X =
⋃
n

Xn si dota X della topologia debole, caratterizzata da: U aperto in X ⇔ U ∩Xk è

aperto ∀k. Se X ha dimensione finita (cioè esiste n per cui non ci sono celle di dimensione
maggiore di n) la topologia debole coincide con la topologia quoziente.

Ogni cella Dk
α possiede una funzione caratteristica ϕα ottenuta componendo Dk

α ↪→ Xk−1 ⊔
Dk
α → Xk ↪→ X, e vale ϕα

∣∣
Sk−1 = φα. Si noti che la topologia debole è la meno fine che rende le

mappe di attaccamento continue.

Osservazione 0.9. Un insieme compatto C in un CW-complesso X interseca al più un numero
finito di celle. Si assuma per assurdo il contrario e chiamiamo S = {x1, x2, ...} un insieme di
punti di C, in modo che ogni xi stia in una cella diversa dagli altri punti, allora S è chiuso
in X. Per induzione assumiamo che S ∩ Xn−1 sia chiuso, (il passo base è banale poiché X0 è
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discreto per definizione, quindi ogni singoletto è chiuso), per ogni cella enα si ha che ϕ−1
α (S) è

chiuso perché ha al più un punto aggiuntivo rispetto a φ−1
α (S) che è chiuso per ipotesi induttiva,

i singoletti sono chiusi in Dn e l’unione di due chiusi lo è. Lo stesso ragionamento vale per ogni
sottoinsieme di S, cioè S ha la topologia discreta, ma se S è chiuso nel compatto C è anch’esso
compatto. Quindi S è compatto e discreto, cioè deve essere finito.

Osservazione 0.10. Presa f0 : X → Y , consideriamo ft : A × I → Y un’omotopia che parte
dalla restrizione f

∣∣
A

con A ⊆ X, quando è possibile estendere l’omotopia ad f si dice che (X,A)
possiede la proprietà di estensione dell’omotopia, la HEP, oppure come vedremo in 2.3 si dice
anche che i : A ↪→ X è una cofibrazione.
Si può mostrare che questo è equivalente a richiedere che X × 0 ∪ A × I sia un retratto di
deformazione di X × I e si può mostrare anche che se (X,A) è una coppia di CW-complessi,
allora questo è vero. Maggiori dettagli si possono trovare nell’ultima sezione di [Hat02, Chapter
0].

Osservazione 0.11. Il prodotto di CW-complessi X e Y può sempre essere dotato di una
naturale struttura di CW-complesso in cui le celle sono date dal prodotto cartesiano delle celle
dei singoli spazi X e Y. Il discorso sulla topologia da usare è più delicato, dato che la topologia
prodotto può essere meno fine della topologia debole, (potrebbe succedere quando né X né Y
sono localmente compatti o hanno un’infinità non numerabile di celle) in questo modo X × Y

non sarebbe un CW-complesso. Si potrebbe ogni volta imporre la topologia debole su X ×
Y ma nella pratica diventa complicato, quindi solitamente si passa alla categoria degli spazi
compattamente generati in cui la topologia sul prodotto coincide con quella debole. I dettagli di
questa discussione sono tecnici e superflui per gli scopi di questa tesi, ma possono essere trovati
in [Hat02, Theorem A.6].

Numero di Lebesgue

Definizione 0.12. Sia D ⊆ Y sottoinsieme di uno spazio metrico. Chiamiamo diametro di D
diam(D) := sup

x,y∈D
d(x, y) la massima distanza che posso ottenere prendendo due punti qualsiasi

su D.

Teorema 0.13 (Numero di Lebesgue). Sia Y uno spazio metrico compatto e V = {Vα} un
ricoprimento aperto. Allora ∃ λ > 0 tale che ogni D ⊆ Y con diam(D) < λ è contenuto in un
aperto di V. Chiamiamo λ il numero di Lebesgue del ricoprimento aperto V.

Dimostrazione. Per assurdo, se l’enunciato fosse falso potrei costruire due successioni xn e yn
tali che d(xn, yn) ≤ 1

n
∀n e nessun Vα che li contiene entrambi. Per sequenziale compattezza,

a meno di sottosuccessioni estratte, ∃ x limite di entrambe le successioni, ma ∃α : x ∈ Vα, ed
essendo aperto anche una palla Br(x) ⊂ Vα che conterrà punti arbitrariamente vicini ad x di
entrambe le successioni, quindi ∃ N : xN , yN ∈ Vα.
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Smash product

Definizione 0.14. Dati due spazi topologici X,Y, si chiama smah product fra essi X ∧ Y :=

X × Y/X ∨ Y

Posso considerare {x0} × Y e X × {y0} come sottospazi di X × Y , e questi si intersecano
in un solo punto, dunque posso pensare che questo sia il wedge di X e Y X ∨ Y e che sia un
sottospazio del prodotto anch’esso. Dunque il quoziente è ben definito.

Sospensione e spazio dei cammini

Definizione 0.15. La sospensione SX di uno spazio topologico X è uno spazio ottenuto quo-
zientando prima la faccia superiore X × {1} del cilindro X × I a un punto, successivamente
anche la faccia inferiore X × {0}.

X × I SX

Quindi la sospensione SX può essere pensata come l’unione di due coni CX := X × I⧸X × {1}
attaccati per la base, oppure come SX = CX⧸X. Anche una funzione f : X → Y passa a una
funzione Sf : SX → SY , si costruisce in questo modo:

X × I Y × I

CX CY

f×id

g
pX pY

Cf

CX CY

SX SY

Cf

pCX pCY

Sf

le proiezioni pY e pX sono le proiezioni al quoziente, la mappa obliqua è la composizione g =

(f × id) ◦ pY , mentre Cf è definita a partire dalla proprietà universale delle identificazioni nel
triangolo del diagramma inferiore (che può essere usata dato che g è costante su X×{1}, infatti
X × {0} f◦id7−−→ f(X)× {0} pY7−→ [(y, 1)]). Ora si fa la stessa cosa ma su Cf per ottenere Sf.
Ciò ci dice che si può vedere la sospensione come un funtore che chiameremo S

S : Top −→ Top

X 7−→ SX

(f : X → Y ) 7−→ (Sf : SX → SY )

Un esempio particolarmente importante è SSn ≃ Sn+1

Definizione 0.16. La sospensione ridotta di uno spazio X è ΣX = SX⧸x0 ∪ I dove x0 ∈ X e il
segmento viene collassato tutto in x0.
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Osservazione 0.17. Si può mostrare che fare la sospensione ridotta di uno spazio è come fare
lo smash product con S1, cioè ΣX ≃ X ∧ S1

Chiamiamo ΩX l’insieme dei lacci di X basati in x0. Nonostante non sia presente nella
notazione, con lo scopo di allegerirla, la scelta del punto base è necessaria per entrambi ΣX e
ΩX.

Osservazione 0.18. In generale, dati due funtori F : C → D e G : D → C questi si dicono
aggiunti se per ogni oggetto X ∈ Ob(C) e Y ∈ Ob(D) si ha che MorC(X,GY ) ≃ MorD(FX, Y )

sono in biezione.
Anche Σ e Ω sono funtori dalla categoria degli spazi topologici puntati Top∗ in sé. Sui morfismi
Σf è costruita come SX ma fissa il punto base x0, mentre Ωf(γ) = γ ◦ f . In particolare,
Σ e Ω sono aggiunti, dunque due funzioni come queste sono intercambiabili: f : ΣX → Y e
g : X → ΩY

Limiti diretti

Un diagramma D in una categoria C può essere pensato come una sottocategoria, ossia una scelta
di oggetti e morfismi fra essi. Preso X un oggetto di C, diremo che un morfismo Ψ : D → X

è una collezione di morfismi {ψB}B∈Ob(D) con ψB : B → X in modo che per ogni φ : B → B′

morfismo fra oggetti del diagramma, valga ψB ◦ φ = ψB′ , cioè commuti il seguente:

B B′

X

φ

ψB ψB′

Definizione 0.19. Preso un diagramma D in una categoria C, il colimite del diagramma lim−→D
è un oggetto X che ammette un morfismo Ψ : D → X per cui valga la seguente proprietà
universale: per ogni altro oggetto X’ che ammette un morfismo Ψ′ : C → B esiste un morfismo
γ : X → X ′ per cui il seguente diagramma commuti per ogni B ∈ D

B

X X ′

ψB′ψB

γ

La proprietà universale fa sì che il colimite, in caso esista, sia unico a meno di isomorfismo.

Chiamiamo un insieme diretto un insieme dotato di una relazione binaria ≥ riflessiva e
transitiva tale che ∀a, b ∈ I,∃c ∈ I tale che c ≥ a e c ≥ b.

Definizione 0.20. Preso un insieme diretto I un sistema diretto di gruppi è una collezione di
gruppi indicizzati da I {Ai}i∈I e (omo)morfismi fij : Ai → Aj in modo che fik = fjk ◦ fij per
ogni i ≤ j ≤ k e fii = id
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Osservazione 0.21. Il colimite di un sistema diretto si chiama limite diretto, e ha la seguente
utile caratterizzazione

lim−→Ai =

⊔
i∈I

Ai⧸∼

dove presi xi ∈ Ai e xj ∈ Aj si ha xi ∼ xj se ∃k ∈ I : fik(xi) = fjk(xj)

Noi ci concentriamo sui gruppi perché useremo solo quelli, ma in generale vale per categorie
"algebriche", come anelli, moduli, spazi vettoriali, etc.

Osservazione 0.22. Una collezione di mappe fra due sistemi diretti φi : Ai → Bi che fa
commutare i quadrati nel diagramma sotto, induce un morfismo φ : lim−→Aj → lim−→Bj. Basta
notare ψBi

◦φi : Ai → lim−→Bi per ogni i, per cui per la proprietà universale di lim−→Aj mi dice che
esiste il morfismo in questione, cioè φ.

lim−→Aj

Ai Ai+1 Ai+2 ...

Bi Bi+1 Bi+2 ...

lim−→Bj

φφi

ψAi

φi+1 φi+2

ψBi
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Capitolo 1

Teoria dell’omotopia

In questo capitolo introduciamo i gruppi di omotopia di uno spazio, sia la versione assolu-
ta che relativa, come una generalizzazione delle idee che portano alla definizione di gruppo
fondamentale.

1.1 Gruppi di omotopia

Definizione 1.1. Preso X uno spazio topologico e x0 ∈ X fissato, si denota con πn(X, x0)

l’n-esimo gruppo di omotopia di X basato in x0, che è l’insieme delle classi di omotopia delle
funzioni (In, ∂In) → (X, x0), dove si richiede che per l’omotopia valga ht

∣∣
∂In

(x) = x0 ∀x ∈ X

Una definizione alternativa più intuitiva di πn(X, x0) è la seguente: l’insieme delle classi di
omotopia di funzioni f : (Sn, s0) → (X, x0). Infatti collassando ∂In e passando al quoziente si
ha che In/∂In ≃ Sn e ∂In/∂In ≃ s0 ∈ Sn, da cui l’equivalenza fra le due definizioni è data dalla
proprietà universale delle identificazioni.

Osservazione 1.2. Per π1(X, x0) è noto che l’operazione data da

f + g :=

f(2t) ∀t1 ∈ [0, 1
2
]

g(2t− 1) ∀t1 ∈ [1
2
, 1]

fornisce la struttura di gruppo.
Analogamente, per f, g ∈ πn(X, x0)

f + g :=

f(2t1, t2, .., tn) ∀t1 ∈ [0, 1
2
]

g(2t1 − 1, t2, ..., tn) ∀t1 ∈ [1
2
, 1]

è un’operazione che fornisce la struttura di gruppo; infatti, essendo coinvolta una sola coordinata,
il ragionamento è uguale.
L’idea è che f+g è una nuova funzione ottenuta percorrendo f lungo un singolo lato di In a
velocità doppia, e per g la stessa cosa, dove il lato in questione è quello della prima coordinata
t1
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Osservazione 1.3. Generalmente πn(X, x0) può essere non abeliano per n=1, ad esempio per
π1(S

1 ∨ S1) ≃ Z ∗ Z. Invece per n ≥ 2 πn(X, x0) è sempre abeliano, infatti si costruisce
un’omotopia fra f+g e g+f nel seguente modo:

Le varie figure sono funzioni, rappresentano il dominio In e specificano quale funzione viene
applicata in ogni punto, dove non c’è niente viene applicata la funzione costante in x0. La prima
figura è semplicemente f+g, nella seconda si restringe il dominio di entrambe f e g ed è possibile
farlo con continuità dato che ogni funzione in πn(X, x0), dunque anche f+g, manda ∂In in x0.
Una volta ristrette a tal punto da avere abbastanza spazio per scambiarle di posto rimanendo
in In, le scambio e gonfio il dominio alla loro grandezza originale, ed ottengo un’omotopia fra
f+g e g+f. La figura mostra il caso per n=2 ma posso fare la stessa cosa per n ≥ 2 poiché a
differenza del caso n=1 ho "abbastanza spazio" per scambiare f e g.

Osservazione 1.4. Per uno spazio connesso per archi sappiamo che una scelta differente del
punto base produce gruppi fondamentali isomorfi, vediamo che succede la stessa cosa anche per
πn.
Sia quindi X connesso per archi e consideriamo γ : [0, 1] −→ X un cammino da x1 a x0, cioè
γ(0) = x1 e γ(1) = x0. Definiamo

βγ : πn(X, x0) → πn(X, x1)

[f ] 7−→ [γf ]
x0

x0
x0 x0

x1

x1

x1 x1f

Figura 1.1

dove presa f : (In, ∂In) −→ (X, x0) la funzione γf : (In, ∂In) −→ (X, x1) è ottenuta come
viene specificato in figura 1, cioè restringendo il dominio di f e inserendo il cammino γ in manie-
ra radiale in modo da connettere i bordi esterni dei due cubi. Si noti che nel caso n=1 il cubo è
un’intervallo e γf si riduce a

γ f γ−1

x1 x0 x0 x1 che è proprio come si tratta il caso per il gruppo fondamentale.

Concentriamoci sul caso n ≥ 2, innanzitutto βγ è ben definita poiché se cambio rappresen-
tante di [f ], cioè prendo una funzione g ∼ f tramite un’omotopia che fissa ∂In, questa induce
un’omotopia di γf con γg (si visualizza tramite la figura 1, applico l’omotopia da f a g nel blocco
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ristretto e lascio "la cornice" invariata).
Siano ora f, g ∈ πn(X, x0), γ cammino da x0 a x1 ed η cammino da x1 a x2, valgono le seguenti:

1) γ(f + g) ∼ γf + γg, cioè βγ(f + g) = βγ(f) + βγ(g)

x0

x0

x0 x0

x1

x1

x1 x1f g ∼ ∼
x0

x0

x0

x1

x1

x1 f x0

x0

x0

x0

x1

x1

x1x0 g

Il primo quadrato rappresenta γ(f+g), dato che sia f che g fissano ∂In in x0 allora anche la
linea che separa i due quadrati di f e g finisce in x0, dunque posso estendere con continuità
quella linea espandendola a un blocco in x0. A questo punto estendo mettendo tanti γ
come nell’ultimo passo. si conclude "schiacciando" i due rettangoli costanti in x0 al bordo
e "gonfiando" f e g, così da ottenere γf + γg.

2) η(γf) ∼ (γη)f , cioè βη(βγ(f)) = βγη(f) (γ e η si scambiano per come è definita la
composizione di cammini)

x2

x2

x2 x2

x1

x1

x1 x1

x0

x0

x0 x0f ∼
x0

x0
x0 x0

x2

x2

x2 x2f

È immediato, basta notare che nel primo quadrato fare γ e poi η per arrivare al bordo più
esterno è come fare γη, cioè la nota composizione di cammini come nella secondo quadrato.

3) 1f ∼ f , cioè β1 = idπn(X,x0)

f

x0

∼ f

In questo caso tutti i cammini radiali che connettono i due bordi sono costanti in x0, basta
espandere f a tutto il quadrato per concludere.

La proprietà 1) ci dice che βγ è un omomorfismo di gruppi, le proprietà 2) e 3) dicono che è un
isomorfismo dato che βγ è l’inversa di βγ, infatti βγβγ = βγγ = β1 = id, quindi per spazi CPA,
a meno di isomorfismo, possiamo scrivere solamente πn(X) omettendo il punto base.
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Nuovamente i disegni sono in dimensione 2 per ovvie ragioni, ma lo stesso ragionamento si
estende in dimensione maggiore di 2.
È interessante notare che se consideriamo solo il caso in cui γ sia un cammino chiuso allora
[γ] 7−→ βγ è un’azione di π1(X, x0) su πn(X, x0)

Osservazione 1.5. Possiamo vedere πn come un funtore definito così:

Top∗ −→ Grp
(X, x0) 7−→ πn(X, x0)

ψ : (X, x0) → (Y, y0) 7→ ψ∗ : πn(X, x0) → πn(Y, y0)

dove ψ∗ manda [f ] 7→ [ψ ◦ f ]

Chiameremo ψ∗ funzione sospinta. I morfismi nelle due categorie sono rispettivamente funzioni
continue che fissano il punto base e omomorfismi di gruppi. Le seguenti verifiche mostrano che
πn è un funtore ben definito

- ψ∗ è ben definito, infatti se g ∼ f allora ψ ◦ f ∼ ψ ◦ g

- ψ∗ è un omomorfismo, infatti ψ∗(f + g) = ψ ◦ (f + g) = ψ ◦ f + ψ ◦ g = ψ∗(f) + ψ∗(g)

- (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗, infatti (ϕ ◦ ψ)∗(f) = (ϕ ◦ ψ) ◦ f = ϕ ◦ (ψ ◦ f) = ϕ∗(ψ∗(f))

- (id(X,x0))∗ = idπn(X,x0), infatti (id(X,x0))∗(f) = id ◦ f = f

Proposizione 1.6. Valgono le seguenti affermazioni:

1) ψ ∼ ϕ tramite ht, con ht(x0) = x0 ∀t ∈ I ⇒ ψ∗ = ϕ∗

2) (X, x0) ∼ (Y, y0) ⇒ πn(X, x0) ≃ πn(Y, y0) ∀n

Dimostrazione. 1) se ψ ∼ ϕ ho ψ ◦ f ∼ ϕ ◦ f ∀f ∈ πn(X, x0), cioè ψ∗(f) = ϕ∗(f) ∀f ∈
πn(X, x0).

2) Equivalenza omotopica vuol dire che ∃ θ, ρ : θ ◦ ρ ∼ id(Y,y0) e ρ ◦ θ = id(X,x0), e usando
proprietà mostrate nell’osservazione precedente vediamo che ψ∗ ◦ ϕ∗ = (ψ ◦ ϕ)∗ = id∗ = id

e analogamente per ϕ∗ ◦ ψ∗, cioè la funzione sospinta θ∗ è un isomorfismo

I gruppi di omotopia si comportano bene rispetto a prodotti.

Proposizione 1.7. Per una collezione arbitraria Xα di spazi CPA vale πn(
∏
α

Xα) ≃
∏
α

πn(Xα)

Dimostrazione. Una mappa f : Sn →
∏
α

Xα è la stessa cosa di una collezione di mappe fα :

Sn → Xα, e similmente per un’omotopia ft da cui l’isomorfismo.
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1.2 Gruppi di omotopia relativi

Esiste un’utile generalizzazione dei gruppi d’omotopia, per definirla fissiamo qualche notazione.
Le facce di In sono delle copie in In−1, in particolare chiamo In−1 la faccia che ha come punti quelli
con ultima coordinata uguale a 0, e chiamo Jn−1 = ∂In − In−1 la chiusura del complementare.
Indico con (X,A, x0) la tripla dove x0 ∈ A ⊆ X sottospazio. Si indica con πn(X,A, x0) per
n ≥ 1 l’n-esimo gruppo di omotopia relativo della coppia (X,A) con punto base x0, che è l’insieme
delle classi d’omotopia di mappe della forma f : (In, ∂In, Jn−1) → (X,A, x0), dove si richiede
che anche l’omotopia abbia la stessa forma.

Osservazione 1.8. 1) Notiamo che πn(X, x0, x0) = πn(X, x0) cosìche il caso assoluto è un
caso particolare di quello relativo

2) Non c’è un modo soddisfacente per estendere la definizione al caso n=0

3) La stessa operazione del caso assoluto può essere usata anche nel caso relativo con la
differenza che l’ultima coordinata ha già un ruolo privilegiato nella definizione per cui non
può essere usato per la somma. Quindi usiamo lo stesso ragionamento con una coordinata
in meno e concludiamo che πn(X,A, x0) è un gruppo per n ≥ 2 ed è abeliano per n ≥ 3.

5) Per n=1 non si ha una struttura naturale di gruppo. π1(X,A, x0) è l’insieme delle classi
di omotopia delle funzioni f : ([0, 1], {0}, {1}) → (X,A, x0), cioè le classi di omotopia
di cammini che finiscono in x0 ma iniziano da un qualsiasi punto di A. Usando la solita
operazione potrebbe non aver senso concatenare due di questi cammini poichè il punto
finale di uno potrebbe non coincidere col punto iniziale dell’altro.
Se A fosse CPA si potrebbe pensare di portare tramite un’omotopia il punto iniziale in
x0 e poi usare l’operazione del gruppo fondamentale; questo non funziona, ad esempio nel
toro spostando il punto iniziale posso ottenere un cammino omotopo ad entrambi i lacci
che generano Z×Z, per cui la concatenazione non è ancora ben definita dato che dipende
dalla scelta dell’omotopia.

4) Analogamente al caso assoluto una mappa ψ : (X,A, x0) → (Y,B, y0) passa a un omomorfi-
smo (per n ≥ 2) ψ∗ : πn(X,A, x0) → πn(Y,B, y0), e valgono (ψ◦ϕ)∗ = ψ∗◦ϕ∗, (id(X,A,x0))∗ =

idπn(X,A,x0), e ϕ ∼ ψ ⇒ ϕ∗ = ψ∗. Le dimostrazioni del caso assoluto funzionano anche in
questo caso notando che la condizione f(A) ⊆ B e analoghe sono rispettate.

6) Possiamo eliminare la dipendenza dal punto base se A è CPA a meno di isomorfismo,
infatti sia γ cammino da x1 a x0 e definiamo βγ e γf così:
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βγ : πn(X,A, x0) → πn(X,A, x1)

[f ] 7−→ [γf ] f

Aγ γ

x0 x0

x0
x1 x1

x1

βγ è un isomorfismo, le dimostrazioni del caso assoluto si possono estendere a questo
facendo queste modifiche in ognuna delle figure: si "eliminano" le copie di γ che collegano
i lati inferiori del quadrato intero ed esterno, poi il quadrato interno si sposta in modo
da fargli toccare il lato inferiore, che va in A. Il ragionamento continua a funzionare. (in
dimensione generica si fa la stessa cosa con la faccia con ultima coordinata 0, in dimensione
2 è il lato inferiore, come in figura)

7) Possiamo vedere πn(X,A, x0) anche come l’insieme delle classi di omotopia di funzioni
(Dn, Sn−1, s0) → (X,A, x0), si collassa Jn−1 e dato che In/Jn−1 ≃ Dn, ∂In/Jn−1 ≃
Sn−1, Jn−1/Jn−1 ≃ s0 si può concludere grazie alla proprietà universale delle identificazio-
ni.

Un modo molto utile per caratterizzare le funzioni che stanno nella classe dell’elemento neutro
del gruppo di omotopia relativo è il seguente

Proposizione 1.9. (Criterio di compressione) Sia f ∈ πn(X,A, x0), allora [f ] = [0] ⇔ è omotopa
rel Sn−1 a una mappa con immagine in A

Dimostrazione. ⇒) Ho F : Dn × I → X omotopia fra f e la funzione costante in x0 nella
prima figura, costruisco un’altra omotopia componendo H : Dn × I

G−→ Dn × I
F−→ X dove

G manda ogni (Dn × {t}) omeomorficamente in (Dn × {t}) ∪ (Sn−1 × [0, t]) come nella
seconda figura.

F0 = f

F1 = x0

Ft

In questo modo G porta ogni circonferenza nella circonferenza che fa da base al cilindro, cioè
H(Sn−1 × {t}) = F (G(Sn−1 × {t})) = F (Sn−1 × {0}) = f(Sn−1), quindi H è un’omotopia
rel Sn−1. Inoltre H(Dn × {1}) = F (G(Dn × {1})) = F ((Dn × {1}) ∪ (Sn−1 × [0, 1])) =

x0 ∪ F (Sn−1 × [0, 1]) ∈ A, che è quello che volevamo.

⇐) Sia g la funzione con immagine in A a cui è omotopa f, mostriamo che [g] = [0]. Sia
R una retrazione per deformazione di Dn in s0, allora ho che per g ◦ R : Dn × I → A
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vale (g ◦ R)(x, 0) = g(x) e (g ◦ R)(x, 1) = g(s0) = x0 (dato che l’omotopia fissa Sn−1 ho
g(s0) = f(s0) = x0) cioè è un’omotopia fra g e la funzione costante in x0

Se volessimo usare l’interpretazione di πn coi cubi al posto dei dischi, il ruolo di Sn−1 verrebbe
preso da ∂In−1, oltre a ciò enunciato e dimostrazione rimangono uguali.

Consideriamo una tripla con punto base (X,A,B, x0) dove x0 ∈ B ⊆ A ⊆ X e le inclusio-
ni i : (A,B, x0) → (X,B, x0), j : (X,B, x0) → (X,A, x0) e la funzione ∂ : πn(X,A, x0) →
πn−1(A,B, x0) che manda f : (In, ∂In, Jn−1) → (X,A, x0) nella sua restrizione a In−1, la faccia
con ultima coordinata 0, ∂ ha come immagine πn−1(A,B, x0) poiché ∂In−1 ⊂ Jn−1 che finisce in
x0 ∈ B

Teorema 1.10. La seguente sequenza è esatta

...πn+1(X,A, x0)
∂−→ πn(A,B, x0)

i∗−→ πn(X,B, x0)
j∗−→ πn(X,A, x0)

∂−→ πn−1(A,B, x0) → ...

...→ π1(X,A, x0)

Dimostrazione. Mostro l’uguaglianza fra immagine di una funzione e nucleo della successiva per
i tre oggetti che si ripetono al diminuire di n, in questo modo ho l’esattezza di tutta la succesione

- Esattezza per πn(A,B, x0): Per vedere che Im(∂∗) ⊆ ker(i∗) si nota che i∗ ◦ ∂ = 0. Questo
è vero perchè se prendo una funzione f : (In+1, ∂In+1, Jn) → (X,A, x0), chiamo g la
restrizione a In e posso vedere f come un’omotopia che all’istante 0 mi dà g per definizione
di g, mentre all’istante 1 mi dà la funzione costante in x0, infatti un punto di In+1 con
ultima coordinata 1 sta su una faccia diversa da In, cioè sta in Jn che per definizione di f
va in x0. Il ragionamento funziona in πn(X,B, x0) dato che l’omotopia è f e finisce in X,
per questo funziona solo se compongo con i∗. Dunque Im(∂) ⊆ ker(i∗).
Viceversa sia f ∈ ker(i∗), cioè f : (In, ∂In, Jn−1) → (A,B, x0) omotopa alla funzione
costante in x0 tramite funzioni della forma Ft : (I

n, ∂In, Jn−1) → (X,B, x0), cioe F ha
come dominio In × I

x0

g x0

f

∼

x0

x0 x0

g f

∼

x0

x0 x0

g f

∼

x0

x0 x0

f

Chiamo g la restrizione a In−1× I di F, rappresentata nella prima figura. Riparamentrizzo
come nella seconda figura ed ho un elemento nell’immagine di ∂, a questo punto l’omotopia
illustrata mi dice dall’ultima immagine che f ∈ Im(∂), da cui Im(∂) ⊇ ker(i∗).

- Esattezza per πn(X,B, x0): j∗ ◦ i∗ = 0 direttamente dalla proposizione precedente, quindi
Im(i∗) ⊆ ker(j∗).
Viceversa sia f ∈ ker(j∗), sempre per la proposizione precedente è omotopa a una funzione
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con immagine contenuta in A, ma questo vuol dire che appartiene all’immagine di i∗, quindi
Im(i∗) ⊇ ker(j∗).

- Esattezza per πn(X,A, x0): ∂ ◦ j∗ = 0, infatti presa la restrizione di una funzione f :

(In, ∂In, Jn−1) → (X,B, x0) a In−1 ho che finisce in B, dunque per la proposizione prece-
dente è nullo. Quindi Im(j∗) ⊆ ker(∂).
Viceversa sia f ∈ ker(∂), cioè una funzione f : (In, ∂In, Jn−1) → (X,A, x0) la cui re-
strizione a In−1 è l’elemento neutro di πn−1(A,B, x0), cioè omotopa a una funzione con
immagine contenuta in B tramite un’omotopia F che fissa ∂In−1 (in B).

f

F

x0

x0 x0

B

A ∼ f

F

x0

x0 x0

B

A
∼ f

x0

x0 x0

A
Se "unisco" F : In−1 × I → A a f ottengo una funzione di πn(X,B, x0), come nella pri-
ma figura, a questo punto si nota che se da questa funzione si schiaccia il blocco di F
si ottiene un’omotopia con f, come nell’immagine. Questo dice che f ∈ Im(j∗), da cui
Im(j∗) ⊇ ker(∂).

Nel caso B = x0 la successione esatta fornisce una relazione fra i gruppi assoluti e relativi di
(X,A)

...πn+1(X,A, x0)
∂−→ πn(A, x0)

i∗−→ πn(X, x0)
j∗−→ πn(X,A, x0)

∂−→ πn−1(A, x0)...

1.3 Connessione omotopica

In topologia esistono vari concetti legati all’idea di connessione, infatti uno spazio può essere
convesso, stellato, connesso per archi, connesso, semplicemente connesso. Esiste un’ulteriore
generalizzazione che può essere definita grazie ai gruppi di omotopia. Uno spazio X si dice
n-connesso se πi(X, x0) = 0 ∀i ≤ n. La 0-connessione corrisponde ad essere CPA (dato che π0
conta le componenti CPA), la 1-connessione invece alla semplice connessione. Nonostante nella
definizione ci sia il punto base x0, dato che la n-connessione implica la 0-connessione i gruppi di
omotopia non dipendono dal punto base a meno di isomorfismo, per questo la n-connessione non
dipende dal punto base. Un modo di riformulare questa proprietà evidenziando l’indipendenza
dal punto base è il seguente

Proposizione 1.11. Sono equivalenti le seguenti proprietà:

1) X è n-connesso
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2) Ogni mappa Si → X è omotopa a una funzione costante ∀i ≤ n

3) Ogni mappa Si → X si estende a una mappa Di+1 → X ∀i ≤ n

Dimostrazione. 1) ⇔ 2) è la definizione

2) ⇒ 3) Sia H : Si × I → X l’omotopia fra f e una funzione costante in
x0, cioè H(x, 1) = x0, cioè H è costante su Si × {1}, quindi posso
collassarlo e passare al quoziente Si × I/Si × {1} = CSi ≃ Di+1

Si × I X

Di+1

H

p
F

La funzione ottenuta passando al quoziente è la funzione cercata dato che f = H
∣∣
Si×{0} =

(p ◦ F )
∣∣
Si×{0} = F

∣∣
Si (dato che p collassa Si × {1} e su tutto il resto si comporta come

l’identità)

3) ⇒ 2) Fisso f : Si → X e F : Di+1 → X tale che F
∣∣
Si = f . Si definisce H : Si × I → X

con H(x, t) = F ((1 − t)x), in questo modo ho H(x, 0) = F (x) = f(x) dato che x ∈ Si, e
H(x, 1) = F (0) cioè una funzione costante.

Si estende il concetto anche alle coppie (X,A) grazie ai gruppi di omotopia relativi. Una
coppia (X,A) si dice n-connessa se πi(X,A, x0) = 0 ∀i ≤ n con i > 0.

Proposizione 1.12. Sono equivalenti le seguenti proprietà:

1) (X,A) è n-connesso

2) Ogni funzione (Di, Si−1) → (X,A) è omotopa rel Si−1 a una funzione con immagine in A
∀i ≤ n

3) Ogni funzione (Di, Si−1) → (X,A) è omotopa tramite mappe della stessa forma a una
funzione con immagine in A ∀i ≤ n

4) Ogni mappa (Di, Si−1) → (X,A) è omotopa a una funzione costante ∀i ≤ n

Dimostrazione. 1) ⇔ 2) ⇔ 4) è immediato dal criterio di compressione e dalla definizione di
πn, 2) ⇒ 3) è immediata poiché un’omotopia rel Si−1 è anche della forma (Di, Si−1) → (X,A),
dato che f lo è.
Per 3) ⇒ 2) si può usare la stessa idea della figura nella dimostrazione del criterio di compressione
1.9, cioè costruire una nuova omotopia che fissi il bordo.

Nonostante π0(X,A, x0) non sia definito si può estendere la nozione anche per i=0 grazie alle
proprietà 2), 3) e 4). Dato che D0 è un punto e il suo bordo è nullo D0 × I ≃ I, un’omotopia
diventa un cammino, quindi le 3 condizioni per i=0 equivalgono a dire che esiste un cammino
da un punto di X a uno di A, cioè che in ogni componente CPA di X ci sono punti di A. Questa
è dunque l’interpretazione di (X,A) 0-connesso.
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Definizione 1.13. Una mappa f : X → Y si dice n-connessa se f∗ : πi(X, x0) → πi(Y, y0) è un
isomorfismo per i < n e suriettiva per i = n

Richiedere che un’inclusione X ↪→ Y sia n-connessa è equivalente a richiedere che la coppia
(X, Y ) sia n-connessa, segue direttamente dalla successione esatta lunga di (X, Y ). Il concetto
si estende anche per la ∞-connessione, cioè una mappa che induce isomorfismi su tutti i gruppi
di omotopia.

In tutta questa sezione potremmo nuovamente usare l’interpretazione di πn coi cubi al posto
dei dischi, basterebbe sostituire Dk con Ik e Sk con ∂Ik
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Capitolo 2

Risultati fondamentali e tecniche di
computazione

In questo capitolo verranno viste alcune delle proprietà fondamentali e verranno introdotti degli
importanti strumenti che permetteranno di calcolare alcuni gruppi di omotopia, anche non ba-
nali. Molti risultati vengono enunciati solo per CW-complessi, un fatto che euristicamente può
essere motivato ricordando che i CW-complessi sono composti da celle omeomorfe a dischi, e
dunque i gruppi di omotopia, essendo composti da funzioni con dominio Sn, contengono molte
informazioni su di essi.

2.1 Approssimazione cellulare

Una funzione fra CW-complessi f : X → Y si dice cellulare se f(Xn) ⊆ Y n ∀n. Una
funzione del genere ha delle proprietà desiderabili, e sarebbe naturale adottarle ogni qualvolta
fosse possibile. In questo senso è sorprendente che, a meno di omotopia, ciò è sempre possibile,
come afferma il seguente

Teorema 2.1. Sia f : X → Y una funzione fra CW-complessi, allora f è omotopa a una funzione
cellulare. Se f è già cellulare su un sottocomplesso A, l’omotopia può essere presa in modo che
fissi A.

Dimostrazione. Per induzione sul n-scheletro. Per n=0 è vero perché posso sempre trovare un’o-
motopia di f che sia cellulare su X0, infatti le 0-celle di X finiscono in delle celle di Y, che sono
attaccate a delle celle di dimensione minore; dunque esiste sempre un cammino da un punto di
Y a una 0-cella, che fornisce l’omotopia di f cercata.
Assumiamo che f sia omotopa a una funzione che sia cellulare su Xn−1∪A. Sia enα una n-cella di
X-A, notiamo che la sua chiusura è compatta in X dato che è ϕα(Dn

α), quindi f(enα) è compatto
in Y e dunque interseca un numero finito di celle in Y. Sia erβ la cella di dimensione massima che
interseca f(enα) e supponiamo che r>n, altrimenti f sarebbe già cellulare su Xn−1 ∪ enα.
Diamo per buono un risultato, lemma 4.10 di Hatcher, che ci permette di dire che f

∣∣
Xn−1∪enα
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può essere deformata tramite omotopia rel Xn−1 a una funzione g tale che g(enα) non contenga
un punto p ∈ erβ. Dato che erβ può essere retratto in p, posso ulteriormente deformare g compo-
nendo con la retrazione di Y − {p} in Y − erβ e ottengo f1, la cui immagine non interseca enα.
Ripetendo il procedimento un numero finito di volte ottengo una funzione la cui immagine, se
ristretta a enα, non tocca nessuna delle celle in Y che intersecavano f(enα) inizialmente (che come
abbiamo detto sono in numero finito). Se faccio la stessa cosa per ogni n-cella di X-A e lascio
invariato il comportamento sulle celle di An (dove f è già cellulare) ottengo un’omotopia di f

∣∣
Xn

rel Xn−1 ∪ An.
Dato che (X,Xn) è una coppia di CW-complessi posso usare la proprietà di estensione dell’omo-
topia e dunque f è omotopa su tutto X ad una funzione cellulare su Xn. Questo non basta a
concludere perché potrebbero esserci celle di dimensione maggiore di n su cui f non è cellulare.
Se X ha dimensione finita posso dividere l’intervallo [0, 1] in tanti pezzi quante le applicazioni
del passo induttivo in modo da creare un’omotopia unica che in ogni intervallino è una di quelle
ottenute a un passo induttivo. Se X ha dimensione infinita allora si applica la stessa idea ma
con questa suddivisione: [1− 1

2k
, 1− 1

2k+1 ], composta da [0, 1
2
], [1

2
, 3
4
], [3

4
, 7
8
]....

Osservazione 2.2. L’approssimazione cellulare può essere facilmente estesa a coppie di CW-
complessi f : (X,A) → (Y,B), infatti basta usare l’approssimazione cellulare ad f

∣∣
A

ed estendere
l’omotopia ad X usando la proprietà di estensione dell’omotopia 0.10. A questo punto uso l’ap-
prossimazione cellulare della funzione su x con un’omotopia rel A.

2.2 Teorema di Whitehead

Abbiamo visto che spazi omotopicamente equivalenti hanno gruppi di omotopia isomorfi, il
viceversa è quasi vero per CW-complessi, ed è quello che afferma il teorema di Whitehead.

Lemma 2.3 (di compressione). Sia (X,A) una coppia di CW-complessi e (Y,B) una coppia
qualsiasi di spazi topologici con B ̸= ∅, tale che per ogni n per cui X − A ha una cella di
dimensione n vale πn(Y,B.y0) = 0 ∀y0 ∈ B. Allora ogni funzione f : (X,A) → (Y,B) è omotopa
rel A a una funzione con immagine in B.

Per n=0 l’ipotesi è da intendere come (Y,B) 0-connesso. Questo è un risultato tecnico che
verrà utilizzato per la dimostrazione del teorema principale.

Dimostrazione. Mostriamo l’enunciato per Xk il k-scheletro, per induzione su k. Si noti che se
X-A non ha celle di dimensione k, allora Xk ⊆ A dunque f

∣∣
Xk ha già immagine contenuta in B,

quindi analizziamo solo il caso in cui X-A ha celle di dimensione k, cioè in cui πn(Y,B, yo) = 0

Per k=0 abbiamo che (Y,B) è 0-connesso, cioè ogni componente CPA di Y contiene punti di B,
ma X0 è un insieme discreto di punti dunque posso vedere f

∣∣
X0 come tante funzioni costanti.

Ma allora considero i cammini che vanno dai punti nell’immagine di f
∣∣
X0 , cioè in Y, ai punti di
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B che sono presenti nella stessa componente CPA, e questi mi danno un’omotopia di f
∣∣
X0 a una

funzione con immagine in B.
Ora si assuma che per f esista un’omotopia ad una funzione che manda Xk−1 in B. Sia ora Dk

α

k-cella di X-A e ϕα : Dk
α → X la sua funzione caratteristica, f

∣∣
Xk ◦ ϕα : (Dk

α, S
k−1) → (Y,B)

ammette un’omotopia rel Sk−1 a una funzione con immagine in B dato che πk(Y,B, y0) = 0.
Unisco le due funzioni (f

∣∣
Xk−1 , f

∣∣
Xk ◦ ϕα) sull’unione disgiunta Xk−1 ⊔Dk

α e l’omotopia appena
definita me ne fornisce una per questa funzione fissando Xk−1, H che nell’istante finale mi dà
una funzione con immagine in B (dato che f

∣∣
Xk−1 lo fa già per ipotesi induttiva).

(Dk
α ⊔Xk−1)× I Y

(D
k
α ⊔Xk−1

⧸∼φα
)× I

H

p
H̃

Passando al quoziente ho f ristretta su Dk
α ⊔Xk−1

⧸∼φα
, ma posso passare al quoziente anche

con l’omotopia H come nel diagramma. Quindi ottengo un’omotopia per f ristretta ad Xk−1

con l’aggiunta di una k-cella che fissa Xk−1, posso fare lo stesso per tutte le k-celle, e posso
aggiungere anche A (che potrebbe avere celle di dimensione maggiore di k) fissandolo. Quindi
ho un’omotopia di f

∣∣
Xk∪A in una funzione che finisce in B rel A.

A questo punto si usa la proprietà di estensione dell’omotopia e si conclude come nella dimo-
strazione dell’approssimazione cellulare.

Teorema 2.4 (di Whitehead). Sia f : X → Y una funzione fra CW-complessi tale che f∗ :

πn(X, x0) → πn(Y, f(y0)) sia un isomorfismo ∀n, allora X e Y hanno lo stesso tipo di omotopia.
Inoltre, se f è l’inclusione di un sottocomplesso, allora X è un retratto di deformazione di Y.

Dimostrazione. Vediamo prima l’ultima affermazione. Si consideri la successione esatta della
coppia (Y,X) che, dato che per ipotesi l’inclusione di X in Y induce isomorfismi sui gruppi di
omotopia, assume questa forma: ...0 → πn(X) → πn(Y ) → 0..., cioè ∀n vale πn(Y,X) = 0,
siamo dunque nelle ipotesi del lemma precedente. Applicandolo all’identità id : (Y,X) → (Y,X)

la deformiamo in una funzione r : Y → X, cioè una retrazione, cioè abbiamo che X è un retratto
di deformazione di Y.
Per il caso generale ci riconduciamo a quello appena trattato usando il mapping cylinder, in
particolare f si può vedere come la composizione di X

i
↪−→ Mf

r−→ Y dove l’ultima funzione è
un’equivalenza omotopica per l’osservazione 0.6, dunque anche i induce isomorfismi i∗ poiché
i∗ = r−1

∗ ◦ f∗. Vorremmo mostrare che se f∗ è un isomorfismo per ogni n allora Mf si retrae per
deformazione su X, da cui si conclude ricordando l’osservazione 0.7. Se f è cellulare allora Mf è
un CW-complesso, (vedi sotto) e se non lo è usiamo il teorema di approssimazione cellulare 2.1,
da cui (Mf ,X) è una coppia di CW-complessi. A questo punto abbiamo i che è un’inclusione
che induce isomorfismi tramite il funtore πn, per cui possiamo applicare la prima parte ad i e
concludere che X è un retratto per deformazione di Mf
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Per finire vediamo perché f cellulare implica che Mf è un CW-complesso: considero X × I (che
è un CW-complesso per l’osservazione 0.11) e A := X ×{0} la faccia a cui verrà incollato Y. A
è una copia di X quindi posso vedere f come una funzione da A→ Y . Per la struttura di CW su
Mf basta considerare le celle di (X × I)−A (è composto da celle essendo A un sottocomplesso)
e Y, dato che A si identifica con Y. La richiesta che f sia cellulare serve a far sì che il bordo di
n-celle finisca in (n-1)-celle, infatti le celle di (X × I)−A che hanno bordo in Xn−1 vanno bene,
quelle che hanno bordo in A vengono mandate in Y n−1 grazie al fatto che f è cellulare.

Il teorema non richiede che i gruppi di due spazi siano isomorfi, ma che esista una funzione
la cui sospinta sia un’isomorfismo per ogni n, ovvero che f sia ∞-connessa, che è una richie-
sta più forte. Esistono infatti controesempi di spazi con gruppi di omotopia isomorfi e non
omotopicamente equivalenti.

2.3 Fibrati

In dimensione 1 abbiamo i rivestimenti che possiamo vedere come una realizzazione geometrica
del gruppo fondamentale. Una proprietà vitale di questi oggetti è il fatto che le omotopie si
possano sollevare ad essi. A partire da ciò sviluppiamo una generalizzazione di questo concetto:
le fibrazioni. L’esempio di fibrazione che ci tornerà più utile sono i fibrati, oggetti che localmente
si comportano come un prodotto cartesiano.

Fibrazioni

Definizione 2.5. Una funzione p : E → B ha la proprietà di sollevamento dell’omotopia per lo
spazio Y, che chiameremo anche HLP (homotopy lifting property), se ogni omotopia ft : Y → B

che ammette un sollevamento f̃0 per la funzione f0, cioè tale che f0 = p ◦ f̃0, ammette un
sollevamento f̃t a sua volta, che parte da f̃0.

E

X B

p

ft

f̃t

X

Y A
ft

i

È interessante notare che se si dualizza la nozione di sollevamento dell’omotopia si ottiene quella
dell’estensione dell’omotopia 0.10, che abbiamo già usato.

Definizione 2.6. Una mappa p : E → B si dice fibrazione se ha la proprietà di sollevamento
dell’omotopia per ogni spazio topologico X.

Sempre dualizzando la definizione si ottiene una cofibrazione i : A→ X, cioè una mappa per
cui la proprietà di estensione dell’omotopia vale per ogni spazio Y.
Nel seguito ci concentreremo solo sulle fibrazioni, su alcuni tipi in particolare.
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Definizione 2.7. Una mappa p : E → B per cui vale la proprietà di sollevamento delle omotopie
per ogni disco Dk si dice fibrazione di Serre

Essendo Dk ≃ Ik, avere la HLP per dischi o cubi è equivalente.

Osservazione 2.8. Abbiamo definito i gruppi di omotopia richiedendo che le omotopie fossero
della stessa forma delle funzioni che consideriamo, quindi può essere utile considerare il solleva-
mento di omotopie di coppie: si dice che una funzione p : E → B ha la proprietà di sollevamento
dell’omotopia per la coppia (X,A) se ogni omotopia ft : X → B, per cui esiste già un solleva-
mento f̃t : A → E, si solleva a un’omotopia f̃t : X → E che parte dal sollevamento f̃0 di f0 che
estende l’omotopia data su A.
L’unica richiesta aggiuntiva è che il sollevamento sia l’estensione di un’omotopia già data su
A, dunque la proprietà equivale a poter estendere un sollevamento di una mappa definita su
(X × I,X × {0} ∪ A× I).

Osservazione 2.9. Per sollevare un’omotopia da Dk o (Dk, ∂Dk) devo sollevarla da (Dk, Dk ×
{0}) (per fissare f0) o (Dk, Dk×{0}∪ ∂Dk× I) (per quanto detto sopra) rispettivamente, come
in figura, ma essendo questi ultimi due spazi omeomorfi, a meno di comporre per l’omeomorfismo
o il suo inverso, la HLP per Dk e per la coppia (Dk, ∂Dk) sono equivalenti.

In particolare possiamo sollevare le omotopie a partire da una coppia di CW-complessi (X,A)
solo richiedendo la proprietà per i dischi, infatti per induzione sul n-scheletro basta costruire il
sollevamento f̃t su ogni singola cella di X-A, sollevando Dk

α

ϕα−→ X
f−→ B e posso attaccare le

omotopie costruite nelle varie celle grazie all’ipotesi induttiva, perché posso fissare nel tempo il
comportamento sul bordo ∂Dk

α.
Concludendo, le fibrazioni di Serre ammettono la HLP per ogni CW-complesso.

Proposizione 2.10. Sia p : E → B una fibrazione di Serre, b0 ∈ B, F := p−1(b0) e x0 ∈ F .
Allora p∗ : πn(E,F, x0) → πn(B, b0) è un isomorfismo per n>0.

Dimostrazione. Mostriamo prima che p∗ è suriettiva e poi che è iniettiva. (ricordando che un
cubo In è un CW-complesso, quindi posso usare la HLP)

- Sia f ∈ πn(B, b0), dunque della forma f : (In, ∂In) → (B, b0). Si nota che la funzione
costante in x0 è un sollevamento di f

∣∣
Jn−1 , infatti f(Jn−1) = b0 = p(x0). Dato che

∂In−1 ⊂ Jn−1 posso applicare HLP per la coppia (In−1, ∂In−1) e ottenere f̃ : In−1×I → E

che solleva f, e vale f(∂In) = b0 = p(f̃(∂In)) dunque f̃(∂In) ⊆ F , cioè f̃ ∈ πn(E,F, x0) e
p∗(f̃) = f . Quindi p∗ è suriettiva
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- Siano f̃0, f̃1 ∈ πn(E,F, x0) tali che p∗(f̃0) = p∗(f̃1). Sia H : In+1 → B un’omotopia fra
p ◦ f̃0 e p ◦ f̃1, abbiamo già un sollevamento parziale sul bordo del cilindro In × I meno
una faccia, dato da

H̃t(x) =

{
ft(x) (x, t) ∈ In × {t}, t ∈ {0, 1}
x0 (x, t) ∈ Jn−1 × I

In In× I l’ultima coordinata è il tempo, e H̃t è definita su In× ∂I ∪ Jn−1 × I. Se scambio
le ultime due coordinate di questo insieme ho che l’ultima coordinata non è mai nulla, in
particolare diventa Jn. Usando HLP per la coppia (In+1, Jn) ottengo un’omotopia su tutto
In+1 che solleva H, e questa è un’omotopia fra p ◦ f̃0 e p ◦ f̃1.

Si prende la successione esatta lunga della coppia (E,F) e si sostituisce usando l’isomorfismo
della proposizione p∗

...πn(F, x0) πn(E, x0) πn(E,F, x0) πn−1(F, x0)

πn(B, b0)

i∗ j∗ ∂

p∗

Le due mappe oblique sono p∗◦j∗ e ∂ ◦p−1
∗ , che chiamo, in maniera più sintetica, rispettivamente

p∗ e ∂, ottenendo così la successione esatta associata a una fibrazione di Serre

...πn(F, x0)
i∗−→ πn(E, x0)

p∗−→ πn(B, b0)
∂−→ πn−1(F, x0)...

Fibrati

Definizione 2.11. Un fibrato è una struttura (E,F,p,B) dove p : E → B è una mappa per cui
∀ b ∈ B, ∃ U intorno di B tale che p−1(U) è omeomorfo a U × F tramite φU e in modo che il
diagramma commuti.

p−1(U)

U × F U

p
φU

Chiamiamo E lo spazio totale, B lo spazio base e F la fibra. Diremo direttamente che p : E → B

è un fibrato con fibra F, e useremo anche F → B → E per indicare più comodamente qual è la
fibra.

Proposizione 2.12. Un fibrato è una fibrazione di Serre
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Dimostrazione. Dobbiamo mostrare che la mappa p : E → B con fibra F ammette la HLP per
ogni disco In. Sia h : In× I → B, con h(x, t) = ht(x), l’omotopia che vogliamo sollevare avendo
già h̃0 sollevamento di h0. Sia U = {Uα} un ricoprimento aperto di B, {h−1(Uα)} è naturalmente
un ricoprimento di In×I, e dato che è compatto esiste il numero di Lebesgue λ del ricoprimento,
grazie al teorema 0.13, per cui prendendo cubi C e intervalli Ij = [tj, tj+1] abbastanza piccoli
(di diametro inferiore a λ) C × Ij finiscono in un Uα. Assumendo per induzione su n che
gt sia già stata sollevata su ∂C, che sono cubi di dimensione n-1. Inoltre possiamo sollevare
gt sull’interno di C costruendo separatamente ogni pezzo in ogni Ij, in questo modo ci siamo
ricondotti a dover sollevare in ogni singolo C× Ij per poi attaccare tutti i pezzi. Essendo C× Ij

una riparametrizzazione di In × I ci concentriamo su quest’ultimo e nel caso in cui h lo mandi
tutto in un Uα.

p−1(Uα)

In × I Uα Uα × F

p

h

h̃
φα

Considerando la commutatività del diagramma, fare h̃ è come comporre h con l’inversa della
proiezione al primo fattore, con φα. Per induzione e per ipotesi ho già h̃(In × {0} ∪ ∂In × I) ⊆
p−1(Uα) ≃ Uα × F , per cui la prima componente di h̃ è semplicemente h, che è data, abbiamo
quindi h̃(x, t) = (h(x, t), ϕ(x, t)). Possiamo ottenere ϕ come composizione di In×I → In×{0}∪
∂In × I → F dove la prima è una retrazione e la seconda è la funzione che avevamo già.

Esempio 2.13. Se prendiamo una fibra F discreta abbiamo che il fibrato p : E → B è un
rivestimento a |F | fogli. Dato che in questo caso F ha tutti i gruppi di omotopia nulli per n ≥ 1

la successione esatta lunga ci dice che πn(E) ≃ πn(B) ∀n ≥ 2, per n=1 abbiamo

...→ 0 → π1(E, x0) → π1(B, b0) → Z|F |−1 → π0(E, x0) → π0(B, b0)

che ci dice che la mappa p∗ : π1(E, x0) → π1(B, b0) è iniettiva, come già noto dalla teoria dei
rivestimenti.

Esempio 2.14. Si ha un fibrato dato da S1 → S2n+1 → PnC dove PnC = S2n+1
⧸S1 quozientando

per l’azione di S1 data dal prodotto per elementi di norma 1 di C. La mappa del fibrato
p : S2n+1 → PnC è la proiezione al quoziente, per cui è evidente che la fibra sia S1. Prendiamo
il ricoprimento dato dalle carte affini Ui = {[z0, ..., zn] ∈ PnC | zi ̸= 0}, ho che φi : p−1(Ui) →
Ui × S1 data da φi(z0, ..., zn) = ([z1, .., zn],

zi
|zi|) è un’omeomorfismo, dato che ([z0, ..., zn], λ) 7→

λ|zi|
zi

(z0, ..., zn) è la sua inversa (basta comporre e vedere che esce l’identità) e sono entrambe
continue. Quindi è un fibrato.

Esempio 2.15. Senza entrare nei dettagli, l’idea del caso precedente può essere usata usando
anche i numeri reali R, quaternioni H e ottonioni O al posto dei complessi, si ottengono così i
seguenti fibrati: S0 → Sn → PnR, S3 → S4n+3 → PnH e S7 → S8n+7 → PnO.
In tutti e 3 i casi l’idea è la stessa, infatti lo spazio base è ottenuto come quoziente dello spazio
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totale per l’azione data dalla moltiplicazione per gli elementi della fibra. Tralasciando il caso
reale, per n=1 forniscono i cosiddetti fibrati di Hopf (gli unici):

S1 → S3 → S2 S3 → S7 → S4 S7 → S15 → S8

2.4 Escissione

Da quello che abbiamo visto finora, i gruppi di omotopia sembrano un buon candidato per essere
una teoria omologica; purtroppo però l’escissione fallisce. Si può recuperare questa proprie-
tà restringendoci in un certo intervallo dimensionale per spazi che soddisfano certe ipotesi di
connettività.

Proposizione 2.16 (escissione omotopica). Sia X = A ∪ B uno spazio topologico, A e B due
aperti tali che C = A ∩ B sia CPA e non vuoto. Se (A,C) è p-connesso e (B,C) è q-connesso,
allora j∗ : πi(A,C) → πi(X,B), la sospinta dell’inclusione, è un isomorfismo per i<p+q ed è
suriettiva per i=p+q.

L’escissione omologica assume questa forma: siano Z ⊆ A ⊆ X in modo che Z ⊆
◦
A, allora

l’inclusione induce isomorfismi Hn(X − Z,A− Z) → Hn(X,A).
Notiamo che se siamo nelle ipotesi della proposizione allora B − A ⊆

◦
B, e dato cheX−(B−A) =

A e B − (B − A) = C applicando l’escissione omologica ho πn(A,C) = πn(X − (B − A), B −
(B −A)) ≃ πn(X,B). Per questo chiamiamo "escissione" anche la proprietà della proposizione,
che però vale sotto delle ipotesi più stringenti rispetto a una qualsiasi teoria omologica, per le
quali l’escissione è uno degli assiomi. Vediamo prima delle conseguenze

Teorema 2.17 (di Freudenthal). Sia X uno spazio (n-1)-connesso, allora la mappa S data dal
funtore di sospensione πi(X) → πi+1(SX) è un isomorfismo per i<2n-1 ed è suriettiva per i=2n-1.

Dimostrazione. Per n=0 l’enunciato non ha senso, quindi si ha n>0, per cui X è sempre almeno
CPA.
Chiamiamo π : X × I → SX la proiezione al quoziente, e consideriamo i coni A = π(X × [0, 2

3
[)

e B = π(X×]1
3
, 1]) è facile vedere che questi sono aperti in SX (sono la proiezione al quoziente

di aperti saturi, dove [0, 2
3
[ è aperto nella topologia di sottospazio di I). Si ha che A ∩ B =

X×]1
3
, 2
3
[. Ora siano C1X e C2X i due coni attaccati alla base X che formano SX, questi non

sono necessariamente aperti, quindi non potrei usare l’escissione a priori, ma retraendo per
deformazione si ha A ∼ C1X, B ∼ C2X e A ∩ B ∼ X = C1X ∩ C2X, dunque hanno gli stessi
gruppi di omotopia. Per questo motivo, a meno di isomorfismo, continuo il ragionamento usando
solo C1X, C2X e C1X ∩ C2X = X.
Dato che CX è contraibile ha tutti i gruppi di omotopia nulli; in particolare le successioni esatte
delle coppie (C1X,X) e (SX,C2X) sono rispettivamente

...0 → πn+1(C1X,X) → πn(X) → 0... ...0 → πn(SX) → πn(SX,C2X) → 0...
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che mi danno gli isomorfismi fra gli elementi non nulli che ci sono; usando ciò posso vedere
la mappa di sospensione come la composizione πn(X) ≃ πn+1(C1X,X)

i∗−→ πn(SX,C2X) ≃
πn+1(SX) dove la mappa centrale è la sospinta dell’inclusione.
Ricordando che SX = C1X ∪ C2X e C1X ∩ C2X = X con X CPA, mancano solo le ipotesi di
connettività per poter applicare l’escissione: essendo X (n-1)-connesso, i suoi primi n-1 gruppi
di omotopia sono nulli, la successione esatta lunga delle coppie (C1X,X) e (C2X,X) mi dice che
entrambe le coppie sono n-connesse.
Applico l’escissione che mi dice che i∗ è un isomorfismo.

Dimostrazione dell’escissione

D’ora in poi A e B saranno aperti di X con X = A ∪ B e C = A ∩ B non vuota e CPA. Sia
Ω(X;A,B) := {w : I → X | w(0) ∈ A, w(1) ∈ B} l’insieme dei cammini in X che partono in A
e finiscono B. Si nota che Ω(A;A,C) ⊂ Ω(X;A,B). Questi sono spazi topologici se dotati della
topologia compatta aperta, quindi posso considerarne i gruppi di omotopia.
Useremo i seguenti risultati, le loro dimostrazioni sono nell’appendice A.

Teorema 2.18. Siano (A,C) e (B,C) rispettivamente p-connesso e q-connesso. Allora l’inclu-
sione α : Ω(A;A,C) ↪→ Ω(X;A,B) è (p+q-1)-connessa.

Proposizione 2.19. Sia (p1, p2) : (E1, E2) → B in modo che p1 sia una fibrazione di Serre e
anche la restrizione, che chiamiamo p2, lo sia a sua volta. Allora (E1, E2) è n-connessa ⇔ la
coppia di fibre (p−1

1 (b), p−1
2 (b)) è n-connessa per ogni b ∈ B.

Proposizione 2.20. La mappa p1 : Ω(X;A,B) → X definita da p(γ) = γ(0) è una fibrazione
di Serre. Lo stesso vale per p2 : Ω(A;A,C) → A.

Ora dimostriamo l’escissione.

Dimostrazione. Prendiamo le fibrazioni della proposizione precedente 2.20, le fibre di un punto
b ∈ B e c ∈ C sono rispettivamente Ω(X; b, B) e Ω(A; c, C). Abbiamo il seguente diagramma
commutativo:

Ω(X; b, B) Ω(X;A,B) X

Ω(A; c, C) Ω(A;A,C) A

p1

β

p2

α

Il teorema 2.18 dice che α è (p+q-1)-connessa, mentre la proposizione 2.19 dice che β ha la stessa
connettività, dunque anche β è (p+q-1)-connessa
Si ha πn(Ω(X; b, B)) ≃ πn+1(X,B, b), infatti preso un rappresentante della classe d’omotopia
f : (In, ∂In) → (Ω(X; b, B), γb) con γb il cammino costante in b. Ho che f(x) è un cammino per
ogni x, posso passare in maniera naturale a una mappa g : In × I → X con g(x, t) = f(x)(t).
Questa mappa g possiede le seguenti proprietà: finisce in X; ∂In× I ∪ In×{0} viene mandato in
b, ed è omeomorfo ad Jn−1; ∂In×{1} finisce in B. Questo ci dice che, a meno di riparametrizzare,
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g è il rappresentante di una classe πn(X,B, b). Si può considerare anche la costruzione inversa e
ottenere l’isomorfismo. Si fa la stessa cosa per πn(Ω(A; c, C)) e si ottiene il seguente diagramma
commutativo:

πn(Ω(X; b, B), γb) πn+1(X,B, b)

πn(Ω(A; c, C), γc) πn+1(A,C, c)

≃

β∗

≃

j∗

Dato che β è (p+q-1)-connessa e il diagramma commuta, la sospinta dell’inclusione j∗ è un
isomorfismo per n+ 1 < p+ q − 1, cioè per n < p+ q ed è suriettiva per n = p+ q

2.5 Alcuni calcoli

In questa sezione raccogliamo i frutti di tutti i risultati esposti finora e vediamo come possiamo
calcolare diversi gruppi di omotopia.

1) Come conseguenza dell’isomorfismo fra gruppi di omotopia di un rivestimente e lo spazio
rivestito, (esempio 2.13) abbiamo che uno spazio X che ammette rivestimento universale
contraibile ha πn(X, x0) = 0 ∀n ≥ 2. Ad esempio S1 ha rivestimento universale R, T n =

S1 × ... × S1 ha rivestimento universale Rn, e quelle superfici di Riemann di genere g>1
che hanno come rivestimento universale il disco di Poincarè.
Per lo stesso motivo, dato che Si riveste PiR, si ha πn(PiR) ≃ πn(S

i) per n ̸= 1

2) πn(Sm) = 0 ∀n < m, quindi Sn è (n-1)-connesso. Si considera la stuttura di CW-complesso
su Sn data da un punto e una n-cella col bordo collassato sulla 0-cella. Per una qualsiasi
funzione (Sn, s0) → (Sm, s1) si considera l’omotopia data dall’approssimazione cellulare
2.1, che finisce in una funzione costante dato che l’n-scheletro di Sm è la singola 0-cella.

3) Se (X,A) è una coppia di CW-complessi tale che Xn = An, applicando l’approssimazione
cellulare per funzioni fra coppie (osservazione 2.2) a (Di, ∂Di) → (X,A) con i ≤ n ho che
queste sono nulle per il criterio di compressione 1.9.
Questo dice che se X-A ha solo celle di dimensione maggiore di n allora (X,A) è n-connesso.
In particolare (X,Xn) è n-connesso, e la successione esatta lunga ci dice che πn(X) ≃
πi(X

n) ∀i ≤ n. Dunque gli n-scheletri di un CW-complesso sono un approssimazione
dello spazio sempre migliore con gruppi di omotopia fino ad n uguali.
Ad esempio PnR e PmR avranno gruppi di omotopia isomorfi fino all’indice min{n,m}

4) Le successioni esatte associate ai fibrati di Hopf (esempio 2.15) ci danno alcune informazioni
interessanti.

...π2(S
1) π2(S

3) π2(S
2) π1(S

1) π1(S
3) π1(S

2)

0 0 0 0
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dunque π1(S1) ≃ π2(S
2). Inoltre, come visto in 1), πn(S1) = 0 per n ̸= 1, perciò il resto

della successione dice che πn(S2) ≃ πn(S
3) per n>2.

5) πn(Sn) ≃ Z. Come mostrato in 2) Sn è (n-1)-connesso, dunque il teorema 2.17 di Freuden-
thal mi dice che πn(Sn) ≃ πn+1(S

n+1), l’unico caso degenere è n=1 per cui Freudenthal mi
dice solo che la mappa è suriettiva, ma come visto in 4) π1(S1) ≃ π2(S

2), e sapendo che
π1(S

1) ≃ Z si conclude.

6) Per gli altri fibrati di Hopf non tutta la successione ci dà informazioni che riusciamo ad
utilizzare come nel primo caso, perchè non abbiamo un informazione analoga a πn(S1) = 0

per n ̸= 1. Possiamo sfruttare il range di indici in cui i gruppi di omotopia della sfera di
dimensione maggiore che compare nel fibrato si annullano, mentre i gruppi delle altre sfere
no:

Z 0

...π7(S
3) π7(S

7) π7(S
4) π6(S

3) π6(S
7) π6(S

4) π5(S
3) −→

−→ π5(S
7) π5(S

4) π4(S
3) π4(S

7) π4(S
4) π3(S

3) π3(S
7)...

0 0 Z Z 0

Ne deduciamo che πn(S4) ≃ πn−1(S
3) per 4 ≤ n ≤ 6 e che π6(S3) è un quoziente di π7(S4)

per il primo teorema di isomorfismo.
Lo stesso ragionamento con l’ultimo fibrato di Hopf dice πn(S8) ≃ πn−1(S

7) per 8 ≤ n ≤ 14

e che π14(S7) è un quoziente di π15(S8)

7) I punti 4) e 5) ci dicono più esplicitamente che π3(S2) ≃ π3(S
3) ≃ Z ≃ π2(S

2)

Usando questi calcoli possiamo fornire un esempio che mostra che l’escissione non funziona
in ogni dimensione. Se l’escissione funzionasse avremmo πn(X,A) ≃ πn(X⧸A), come in
omologia. La successione esatta della coppia (D2, S1) dice che πn(D2, S1) ≃ πn+1(S

1) = 0

per n ̸= 0 (dato che D2 è contraibile) mentre D2
⧸S1 ≃ S2 per cui Z ≃ π2(

D2
⧸S1) ̸≃

π2(D
2, S1) = 0, similmente per π3
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Capitolo 3

Omotopia e (co)omologia

Abbiamo visto che i gruppi di omotopia non formano una teoria omologica, ma ci sono comunque
delle relazioni fra omotopia e omologia. In questo capitolo approfondiremo gli spettri, degli
oggetti che in un certo senso rappresentano le teorie (co)omologiche, e vedremo anche grazie a
questi dei legami fra omotopia e omologia difficilmente intuibili dalle definizioni. Ci concentriamo
sui CW-complessi.

3.1 Teorie (co)omologiche

Definizione 3.1. Una teoria omologica straordinaria è una successione di funtori hn : CW2 →
AbGrp e trasformazioni naturali ∂n : hn → hn−1 in modo che valgano le seguenti proprietà,
note come assiomi di Eilenberg-Steenrod:

1) Invarianza omotopica: f ∼ g ⇒ hn(f) = hn(g) ∀n

2) Escissione: per ogni coppia (X,A), sia U ⊆ A tale che U ⊆
◦
A, allora i∗ : hn(X−U,A−U) →

hn(X,A) è un isomorfismo.

3) Successione esatta: ponendo hn(A) := hn(A, ∅), ogni coppia (X,A) induce la seguente
successione esatta lunga

...hn(A) → hn(X) → hn(X,A)
∂n−→ hn−1(A) → ...

4) Additività: se X =
⊔
Xα allora

⊕
i∗α :

⊕
hn(Xα) → hn(X) è un isomorfismo

Una teoria coomologica straordinaria si ottiene con gli stessi assiomi ma su (CW2)op, quindi i
funtori hn sono contravarianti; inoltre, nel terzo assioma si considera il prodotto e non la somma
diretta dei gruppi.

Osservazione 3.2. Chiameremo hn(X) := hn(X, ∅) la versione assoluta, hn(X,A) quella rela-
tiva e hn(X, pt) = h̃n(X) la versione ridotta; queste sono legate da hn(X) = hn(pt) ⊕ h̃n(X).
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Fornire una teoria relativa o la sua versione ridotta è equivalente, infatti possono essere facilmen-
te costruite l’una conoscendo l’altra. Per la versione ridotta si possono riformulare gli assiomi
togliendo l’escissione, mettendo nella successione esatta h̃n(X/A) al posto di hn(X,A) e usando
il wedge al posto dell’unione disgiunta, dato che stiamo specificando un punto base per ogni
spazio.
Si dice che la teoria soddisfa l’"assioma della dimensione" se hn(pt) = 0 per ogni n ̸= 0. Se
questa proprietà è soddisfatta, la teoria si dice ordinaria, e non straordinaria. I gruppi hn(pt) si
chiamano coefficienti della teoria. Analogamente per hn.

Osservazione 3.3. Nella definizione stiamo usando un abuso di notazione, abbiamo detto che
∂n è una trasformazione naturale, cioè il seguente diagramma commuta per ogni coppia (X,A)

hn(X,A) hn−1(X,A)

hn(X
′, A′) hn−1(X

′, A′)

∂n

hn(f) hn−1(f)

∂n

Quello che facciamo per ottenere una mappa hn(X,A) → hn−1(A) è considerare il diagramma

con (X’,A’)=(A,∅), e comporre hn(X,A)
∂n−→ hn−1(X,A)

hn−1(i)−−−−→ hn−1(A) (oppure ∂n−1 ◦ hn(i)
per commutatività).

Questi assiomi colgono le proprietà essenziali dell’omologia e coomologia singolare che le
rendono più facili da computare rispetto all’omotopia; come abbiamo visto, nonostante i risultati
teorici del secondo capitolo, conosciamo ancora pochi gruppi di omotopia espliciti, anche per le
sole sfere. In particolare abbiamo visto che l’escissione fallisce, dunque i gruppi di omotopia non
formano una teoria omologica poiché non vale il secondo assioma.

Definizione 3.4. Due teorie omologiche hn e kn si dicono isomorfe se esistono trasformazioni
naturali τ : hn → kn tali che per ogni oggetto X, τ : hn(X) → kn(X) sia un isomorfismo per
ogni n.

3.2 Spettri

Definizione 3.5. Uno spettro E è una successione di CW-complessi En e mappe di strutture
ϵn : ΣEn → En+1 per ogni n.
Un Ω-spettro è uno spettro per cui le mappe di struttura En → ΩEn+1 sono ∞-connesse, cioè
inducono isomorfismi fra tutti i gruppi di omotopia di ΣEn e En+1 per ogni n.

Ricordando che Σ e Ω sono aggiunti (osservazione 0.18), le mappe di struttura possono essere
prese equivalentemente come ΣEn → En+1 o En → ΩEn+1; nonostante ciò, in generale se una
mappa ΣX → Y è ∞-connessa allora la mappa associata X → ΩY può non esserlo, e viceversa.
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Per gli Ω-spettri si richiede proprio che la mappa En → ΩEn+1 sia ∞-connessa.
Esiste un teorema di Milnor che afferma che se X è un CW-complesso allora ΩX è omotopica-
mente equivalente a un CW-complesso. Per un Ω-spettro si potrebbe richiedere direttamente che
le mappe di struttura siano equivalenze omotopiche, grazie al teorema di Whitehead 2.4. Questa
modifica non semplificherebbe la trattazione, e in generale si lavora non solo coi CW-complessi,
quindi lasceremo la richiesta più debole per le mappe di struttura.

Definizione 3.6. Una funzione fra spettri (X∗, ϵ∗) e (Y∗, γ∗) è un insieme di mappe fn : Xn → Yn

in modo che il seguente diagramma commuti

ΣXn Xn+1

ΣYn Yn+1

ϵn

Σf fn+1

γn

Definizione 3.7. Il k-esimo gruppo d’omotopia dello spettro E è dato dal limite diretto

πk(E) := lim−→ πk+n(En)

Dove le mappe del sistema su cui calcolare il limite sono date da

πk(Ek)
Σ−→ πk+1(ΣEk)

(ϵn)∗−−−→ πk+1(Ek+1)

Osservazione 3.8. Abbiamo definito il gruppo d’omotopia di uno spettro tenendo conto dei
gruppi di omotopia dei singoli spazi che lo compongono e delle mappe di struttura. Un modo di
visualizzare quello che sta succedendo è il seguente:

π2(E0) π3(E1) π4(E2) ... π2(E)

π1(E0) π2(E1) π3(E2) ... π1(E)

π0(E0) π1(E1) π2(E2) ... π0(E)

π0(E1) π1(E2) ... π−1(E)

π0(E2) ... π−2(E)

E0 E1 E2 ... E
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Sulle colonne abbiamo i gruppi di omotopia dei singoli spazi, e ogni colonna aggiunta viene
traslata verso il basso: questo permette di avere sulle righe il sistema su cui calcolare il colimite
per i gruppi di omotopia dello spettro E, che mettiamo come ultima colonna. La definizione,
come risulta ancora più evidente dallo schema appena illustrato, permette di parlare anche dei
gruppi di omotopia dello spettro in grado negativo, quindi sono definiti per ogni k ∈ Z

Definizione 3.9. Un’equivalenza stabile fra spettri E e F è una funzione che induce isomorfismi
fra f∗ : πk(E) → πk(F ) per ogni k.
Un’equivalenza grado per grado fra spettri E e F è una funzione fra spettri tale che ogni k
fk : Xk → Yk è ∞-connessa.

Osservazione 3.10. L’equivalenza grado per grado implica quella stabile. Infatti essendo le
mappe (fk)∗ che collegano i gruppi di En e Fn isomorfismi, posso fare il ragionamento dell’os-
servazione 0.22 sia con (fk)∗ che con le loro inverse, e ottenere mappe fra i limiti diretti, ovvero
πk(E) e πk(F ), che possiamo verificare essere inverse.

πk(Xk+n) πk+1(ΣXk+n) πk+1(Xk+n+1) ...

πk(Fk+n) πk+1(ΣFk+n) πk+1(Fk+n+1) ...

≃ ≃ ≃

Si può anche mostrare che il viceversa è vero per Ω−spettri.

Osservazione 3.11. Si può verificare che, prendendo gli spettri come oggetti e le funzioni fra
essi come morfismi, si ottiene una categoria. Considerando che una funzione fra spettri passa
naturalmente a una fra i gruppi di omotopia (ogni fn passa a una funzione (fn)∗ fra i gruppi di
omotopia degli spazi che formano lo spettro, poi si usa l’osservazione 0.22), con qualche verifica
in più, si può dire che πk è un funtore dalla categoria degli spettri appena citata ai gruppi abeliani
per ogni k.
Ci sono diversi modelli di spettri che vengono esaminati e varie definizioni di funzioni fra essi;
ciò è legato al tentativo di definire una categoria che abbia delle proprietà desiderabili. Una
definizione soddisfacente si può ottenere in diversi modi e viene chiamata categoria stabile. Per
maggiori dettagli si consultino [Ada74] e [Mal23, Chapter 3].

Esempio 3.12. Preso X CW-complesso con punto base, lo spettro di sospensione di X, che si
indica con Σ∞X, è definito da

(Σ∞X)n = ΣnX := Σ...Σ︸ ︷︷ ︸
n

X Σn+1X = ΣXn
id−→ Xn+1 = Σn+1X

Lo spettro che si ottiene ponendo X = S0, cioè Σ∞S0, si chiama spettro di sfere.
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Esempio 3.13. Indichiamo con K(G, n), dove G è un gruppo, uno spazio di Eilenberg-Maclane,
cioè uno spazio che ha come n-esimo gruppo di omotopia G e tutti gli altri nulli. Un CW-
complesso con questa proprietà può essere sempre costruito; in generale K(G, n) è univocamente
determinato, a meno di equivalenza omotopica, da n e G ([Hat02, Thm 4.30]). Dalla relazione
di aggiunzione dell’osservazione 0.18 si ottiene che πk(X) ≃ πk−1(ΩX), e per X = K(G, n) si
ottiene che πk(K(G, n)) ≃ πk−1(ΩK(G, n)), che ci dice che ΩK(G, n) = K(G, n − 1) (dato che
è caratterizzato univocamente dai gruppi di omotopia con le informazioni di G e n).
Possiamo costruire lo spettro di Eilenberg-Maclane, che indichiamo con HG, in questo modo:

(HG)n = K(G, n) K(G, n) → ΩK(G, n+ 1)

le mappe di struttura sono le equivalenze omotopiche, che rendono lo spettro HG un Ω-spettro.
Vale π0(HG) = G e πn(HG) = 0 per n ̸= 0, quindi lo spettro HG si comporta in modo simile
allo spazio K(G,n).

Preso uno spettro E e un CW-complesso X possiamo definire un altro spettro, che chiamiamo
X ∧ E, in questo modo:

(X ∧ E)n = X ∧ En Σ(X ∧ En) = X ∧ En ∧ S1 = X ∧ (ΣEn)
(id,ϵn)−−−→ X ∧ En+1

dove le prime due uguaglianze per definire le mappe di struttura sono date, ricordando l’osser-
vazione 0.17, dal fatto che ΣX = X ∧ S1. Presi due spazi X,Y, indichiamo con [X, Y ] le classi
di omotopia delle mappe fra X e Y; per esempio si ha πn(X) = [Sn, X]

Questo ci permette di enunciare il seguente teorema:

Teorema 3.14. Sia E uno spettro e F un Ω-spettro. Allora

1) Ek(X,A) := πk((X/A)∧E) è una teoria omologica straordinaria, i cui gruppi dei coefficienti
sono π∗(E)

2) F k(X,A) := [(X/A), Fk] è una teoria coomologica straordinaria, i cui gruppi dei coefficienti
sono π−∗(F )

Idea della dimostrazione. Dato che teorie omologiche ridotte e non ridotte sono equivalenti, ci
concentriamo su quelle ridotte, che in questo caso sono Ẽk(X) = Ek(X, pt) = πk(X ∧ E) e
F̃ k(X) = [X,Fk]∗ (l’escissione sarebbe immediata dato che nella formula compare il quoziente,
preso Z ⊂ A si ha X/A ≃ (X/Z)/(A/Z))

1) L’invarianza omotopica segue dal fatto che se f ∼ g allora f∧id ∼ g∧id e per la funtorialità
di π∗ sulla categoria degli spettri si conclude.
Per la successione esatta lunga si considera che dato che siamo in CW-complessi A ↪→ X

ha la HEP (osservazione 0.10), che passa a una cofibrazione A ↪→ X → X/A. Facendo lo
smash product si ottiene una cofibrazione di spettri A ∧ E ↪→ X ∧ E → X/A ∧ E a cui è
sempre associata una successione esatta lunga dei gruppi di omotopia.
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Per l’additività si usa il fatto che ogni mappa Sk →
∨
α∈A

Xα fattorizza a una Sk →
∨
α∈B

Xα

dove B ⊆ A con B finito (si usa il fatto che Sk è compatto e interseca un numero finito di
celle, come nell’osservazione 0.9). Sfruttando l’identità (

∨
α∈A

Xα) ∧ E =
∨
α∈A

(Xα ∧ E) e la

proprietà appena enunciata per passare alla somma diretta, si ottiene:

πk((
∨
α∈A

Xα) ∧ E) = πk(
∨
α∈A

(Xα ∧ E)) = lim−→[Sk+n, (
∨
α∈A

(Xα ∧ E))n] ≃

≃ lim−→
⊕
a

[Sn, (Xα ∧ E)n] ≃
⊕
a

lim−→[Sn, (Xα ∧ E)n] =
⊕
a

πk(Xa ∧ E)

Dove si usano delle proprietà categoriche per scambiare la somma diretta con il limite
diretto.
Per tutti i dettagli si consulti [Mal23, Prop 2.5.7] oppure [Hat02, Section 4.F].

2) La struttura di Ω−spettro permette di averne una di gruppo su [X,Fk], infatti se considero
X → Fk

≃−→ ΩFk+1 l’operazione di gruppo è data usando la concatenazione di cammini, a
meno di omotopia.
Per l’invarianza di omotopia si considera che f : X → Y passa a f ∗ : [X,Fk] → [Y, Fk] data
dalla composizione con f, e mappe omotope inducono la stessa mappa dato che lavoriamo
all’interno di classi di omotopia di mappe.
Per l’additività basta notare che una mappa

∨
α

Xα → Fk è una collezione di mappe

Xα → Fk, per cui si ha [
∨
α

Xα, Fk] ≃
∏
α

[Xα, Fk]

La succesione esatta lunga si ottiene facilmente usando uno strumento noto come succes-
sione di Puppe, tutti i dettagli possono essere trovati in [Hat02, Thm 4.58].

Per le teorie coomologiche abbiamo una richiesta più restrittiva sullo spettro, ma questo ci
permette anche di avere più informazioni sulla teoria coomologica, dato che il teorema fornisce
una descrizione che usa ogni grado dello spettro.
Un fatto sorprendente è che anche il viceversa è vero: presa una teoria (co)omologica straor-
dinaria hn (hn), esiste un (Ω-)spettro, unico a meno di equivalenza stabile, tale che la formula
data dal teorema è isomorfa a hn (hn). Questo è il contenuto del teorema di rappresentabilità di
Whitehead, per l’omologia, e di Brown, per la coomologia. (Le dimostrazioni si possono trovare
rispettivamente in [Mal23, Thm 4.2.23] e [Hat02, Thm 4E.1])

3.3 Gruppi di omotopia stabili e (co)omologia singolare

Abbiamo visto che un qualsiasi spettro (o Ω-spettro) rappresenta una teoria omologica (o coo-
mologica) sfruttando la formula della proposizione. Sfruttiamo questo fatto prendendo dei par-
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ticolari (Ω-)spettri e vediamo quali teorie (co)omologiche otteniamo, non dovendo verificare a
mano gli assiomi di Eilenberg-Steenrod.

Gruppi di omotopia stabili

Il teorema di Freudenthal può essere enunciato anche con la sospensione ridotta: ci dice che,
preso X uno spazio n-connesso, si ha πi(X) ≃ πi+1(ΣX) per i<2n+1. In particolare vale per
i ≤ n, quindi se prendo un qualsiasi spazio X n-connesso questo avrà i primi n gruppi nulli,
dunque ΣX avrà i primi n+1 gruppi nulli (anche π0, se X è CPA anche ΣX lo è).
Questa discussione ci dice che anche se prendo uno spazio X senza nessuna ipotesi (possiamo
prenderlo CPA, altrimenti potremmo restringerci sulle componenti CPA), da un certo punto in
poi nella seguente successione saranno tutti isomorfismi, partendo da un qualsiasi i

πi(X) → πi+1(ΣX) → πi+2(Σ
2X) → ...

Chiamiamo l’i-esimo gruppo di omotopia stabile πsi (X) un rappresentante della classe di isomor-
fismo che si ottiene nella successione dopo un numero adeguato di sospensioni.
Un modo equivalente di definire questi gruppi stabili è πsi (X) = lim−→ πi+n(Σ

nX): ricordando la
caratterizzazione data nell’osservazione 0.21, otteniamo che se le mappe di un sistema diretto
da un certo punto in poi sono tutti isomorfismi, allora il limite diretto coincide con un rappre-
sentante di questa classe di isomorfismo.

Da questa caratterizzazione risulta evidente che i gruppi di omotopia stabili sono i gruppi di
omotopia dello spettro di sospensione visto nell’esempio 3.12, cioè πsn(X) = πn(Σ

∞X). Inoltre,
ricordando l’osservazione 0.17, si ha che X ∧ Sn = ΣnX, per cui si ottiene che

πn((X/A) ∧ Σ∞S0) = πn(Σ
∞(X/A)) = πsn(X/A) = πsn(X,A)

cioè la teoria omologica associata allo spettro di sfere Σ∞S0 è proprio quella data dai gruppi di
omotopia stabili. Questo ci permette di dire, senza doverlo verificare a mano, che questi gruppi
entrano in una successione esatta lunga e l’additività (assiomi 3) e 4)), a differenza dei gruppi
di omotopia.

(Co)omologia singolare

Sia ∆n l’n-simplesso, e indichiamo con δi : ∆n−1 → ∆n l’inclusione dell’i-esima faccia. Indichiamo
con Cn(X;G) l’insieme delle combinazioni lineari formali di simplessi singolari, ovvero le funzioni
σ : ∆n → X, a coefficienti in G. Si definisce il complesso di catene singolari nel seguente modo:

...→ Cn
∂n−→ Cn−1

∂n+1−−−→ Cn+2 → ... ∂n(σ) =
n∑
i=0

(−1)iσ ◦ δi

Si verifica che ∂n−1 ◦ ∂n, per cui sono ben definiti i gruppi di omologia singolare di X, definiti da
Hn(X;G) = Ker ∂n/Im ∂n+1; si dice anche che è l’omologia associata al complesso di catene.
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Preso A ⊂ X si verifica che C(X,A;G) = C∗(X;G)/C∗(A;G) è anch’esso un complesso di catene
singolari, l’omologia associata a questo complesso si indica con H∗(X,A;G) e forma una teoria
omologica ordinaria, mentre quella vista prima è la sua versione assoluta.
Per costruire la coomologia singolare si considera C∗

n(X;G) = Hom(Cn, G) e si forma il com-
plesso di cocatene singolari, dato da ∂n : C∗

n → C∗
n+1. L’omologia associata a questo complesso

è la coomologia singolare Hn(X;G), e anche per questa si può definire la versione per coppie.
Quest’ultima forma una teoria coomologica ordinaria, la cui versione assoluta è data dalla ver-
sione definita poco sopra.

Per una larga classe di spazi, ovvero la categoria degli spazi omotopicamente equivalenti a
CW-complessi, una teoria (co)omologica ordinaria è determinata dal suo gruppo dei coefficienti,
cioè presa una teoria ordinaria hn con h0(pt) = G si ha hn ≃ Hn(·;G) (la dimostrazione si
può trovare in [Hat02, Thm 4.59]), dunque vale anche per CW-complessi. La teoria omologica
associata allo spettro di Eilenberg-Maclane dell’esempio 3.13, cioè πn(X/A∧HG), ha gruppi dei
coefficienti

π∗(HG) = ... 0 0 G
↑
0

0 0 ...

Dunque per il teorema appena citato questa è isomorfa proprio all’omologia singolare: Hn(X,A;G) ≃
πn(X/A ∧ HG). Lo stesso ragionamento può essere effettuato per la coomologia singolare, da
cui si ottiene Hn(X,A;G) ≃ [X/A,K(G, n)].

Le costruzioni dell’omologia e coomologia singolare a priori non hanno nessuna relazione con
l’omotopia, eppure entrambe possono essere caratterizzate tramite l’omotopia. Il solo fatto che
per descrivere una generica teoria si possano usare i gruppi di omotopia di uno spettro, per
l’omologia, e le classi di omotopia di certe funzioni, per la coomologia lega omologia e omotopia;
in particolare il caso della (co)omologia singolare mi dà un legame molto più forte, infatti per
rappresentarla si usano gli spazi di Eilenberg-Maclane, spazi che sono determinati dai loro gruppi
di omotopia.
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Appendice A

Lemmi per l’escissione in omotopia

La dimostrazione seguirà le idee contenute in [Die08, Section 6.9]. Fissiamo un po’ di notazione.

W (a, δ, L) = {x ∈ Rn | ai ≤ xi ≤ ai + δ per i ∈ L, ai = xi per i ̸∈ L}

è un cubo, dove a = (a1, ..., an) ∈ Rn, δ > 0 e L ⊆ {1, ..., n}. Possiamo vedere a come uno
spigolo, δ la lunghezza del lato e L come la dimensione del cubo W immerso in Rn, infatti
poniamo dimW = |L|. Una faccia di W è

W ′(L0, L1) = {x ∈ W | xi = ai per i ∈ L0, xj = aj + δ per j ∈ L1}

dove L0, L1 ⊂ L. Diciamo che se i sta in L0 ci mettiamo nella faccia di una dimensione inferiore
perpendicolare all’asse i che contiene a0, se invece sta in L1 nella faccia opposta. Quindi alla
fine W ′(L0, L1) identifica una faccia di dimensione |L| − (|L0|+ |L1|)
Nel seguito useremo anche i seguenti insiemi:

Kp = {x ∈ W | xi < ai +
δ

2
per almeno p coordinate di L}

Gp = {x ∈ W | xi > ai +
δ

2
per almeno p coordinate di L}

Se p>dimW poniamo questi insiemi vuoti. Per un’intuizione geometrica sono illustrati alcuni
esempi di K1(I

3), K2(I
3) e K3(I

3).

Lemma A.1. Prendiamo W = W (a, δ, L), f : W → Y e A ⊂ Y per cui, fissato p≤dimW , vale

f−1(A) ∩W ′ ⊂ Kp(W
′) per ogni W ′ ⊆ ∂W

Allora esiste una mappa g omotopa rel ∂W ad f tale che g−1(A) ⊂ Kp(W ) (Analogamente con
Gp al posto di Kp)
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Dimostrazione. Definiamo una funzione h : W → W in questo modo: sia x = (a1+
δ
4
, ..., an+

δ
4
),

consideriamo una semiretta r che parte da x. Chiamiamo P (r) = r ∩ ∂W (a, δ
2
, L) l’intersezione

fra la semiretta e il cubo di lato dimezzato che parte da a, mentre Q(r) = r∩∂W . Considerando
tutte le possibili semirette r definiamo h in modo che mandi il segmento fra x e P (r) nel segmento
da P (r) a Q(r), mentre quest’ultimo segmento viene collassato direttamente in Q(r). Per come
è definita vale (h(z))i = (ai +

δ
4
) + t(zi − (ai +

δ
4
)) per i punti che stanno fra x e P (r) per t.

H(z, t) = (1− t)z + th(z) è un’omotopia rel ∂W (poiché h|∂W = id∂W ) fra h e l’identità.
Poniamo g = f ◦h, che dunque è già omotopa a f per quanto appena detto, ci manca di verificare
che g−1(A) ⊂ Kp(W ). Siano z ∈ W e g(z) ∈ A, vogliamo mostrare che in realtà z ∈ Kp(W ). Se
zi < ai +

δ
2

per ogni i allora ho già concluso, altrimenti esiste almeno una coordinata i per cui
zi > ai +

δ
2
, che quindi è situata in W −W (a, δ

2
, L), per cui h(z) ∈ ∂W , cioè sta in una faccia

W ′ di dimensione |L| − 1. Dato che f(h(z)) = g(z) ∈ A si ha h(z) ∈ f−1(A) dunque per ipotesi
h(z) ∈ Kp(W

′), cioè (h(z))i < ai +
δ
2

per almeno p coordinate, e dalla descrizione esplicita di h
scritta sopra possiamo dedurre la stessa cosa per zi.

D’ora in poi A e B saranno aperti di X con X = A ∪B e C = A ∩B non vuota

Proposizione A.2. Sia f : In → X, W un qualsiasi cubo di una scomposizione di In e siano
(A,C) e (B,C) rispettivamente p-connesso e q-connesso. Allora esiste un’omotopia ft di f con
le seguenti proprietà:

1) f(W ) ⊂ A⇒ ft(W ) ⊂ A (o con B al posto di A)

2) f(W ) ⊂ C ⇒ ft è costante su W

3) f(W ) ⊂ A⇒ f−1
1 (A− C) ∩W ⊂ Kp+1(W )

4) f(W ) ⊂ B ⇒ f−1
1 (B − C) ∩W ⊂ Gq+1(W )

Dimostrazione. A e B formano un ricoprimento aperto di X, quindi {f−1(A), f−1(B)} è un
ricoprimento aperto di In, dunque esiste il numero di Lebesgue 0.13 e una scomposizione di In

in cubi W tali che f li manda in A o in B. Sia Ck l’unione dei cubi di dimensione minore di k,
costruiamo l’omotopia di f su Ck × I per induzione su k.
Per il passo base k=0, sia W di dimensione 0, cioè un punto. Se f(W ) ∈ C allora possiamo
considerare l’omotopia costante e abbiamo il punto 2). Se f(W ) ∈ A considero un cammino da
f(W ) a un punto di C (che esiste poiché (A,C) è in particolare 0-connesso). Prendiamo questa
come omotopia di f che rispetta le condizione 1) e 3) (quest’ultima diventa banale in questo
caso dato che f−1

1 (A − C) = ∅). Lo stesso ragionamento con f(W ) ∈ B fornisce la condizione
4).
Assumiamo per induzione che l’omotopia sia definita su Ck−1. Dato che un cubo è in particolare
un CW-complesso e le sue facce lo sono a loro volta, (W,∂W ) è una coppia di CW-complessi,
dunque possiamo usare la HEP 0.10 per definire ft su W di dimensione k e preservare le proprietà
1) e 2). Sia ora f(W ) ⊂ A, se dimW ≤p esiste un’omotopia rel ∂W tale che f1(W ) ⊂ C, dato
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che (A,C) è p-connesso (si ricordi la caratterizzazione della p-connessione 1.12); in questo caso
la condizione 3) è soddisfatta. Se dimW ≥ p allora si usa il lemma precedente che fornisce
un’omotopia per cui f1 soddisfa la condizione 3). Si fa la stessa cosa per la condizione 4) con
f(W ) ⊂ B.

Sia Ω(X;A,B) := {w : I → X | w(0) ∈ A, w(1) ∈ B} l’insieme dei cammini in X da A a
B. Si nota che Ω(A;A,C) ⊂ Ω(X;A,B). Questi sono spazi topologici se dotati della topologia
compatta aperta, quindi ne posso considerare i gruppi di omotopia.

Teorema A.3. Siano (A,C) e (B,C) rispettivamente p-connesso e q-connesso. Allora l’inclu-
sione Ω(A;A,C) ↪→ Ω(X;A,B) è (p+q-1)-connessa.

Dimostrazione. Considerando la successione esatta associata alla coppia (Ω(X;A,B),Ω(A;A,C))

basta mostrare che πi((Ω(X;A,B),Ω(A;A,C))) = 0 per i ≤ p+ q− 1, quindi vogliamo mostra-
re che presa φ : (I i, ∂I i) → (Ω(X;A,B),Ω(A;A,C)) è omotopa a una funzione che finisce in
Ω(A;A,C) (si ricordi il criterio di compressione 1.9).
Per ogni x ∈ I i ho un cammino φ(x) : I → X, in particolare la funzione φ passa a una funzione
Φ : I i×I → X definita da Φ(x, t) = φ(x)(t) che è continua dato che è la composizione di funzioni

continue (x, t)
(φ,id)7−−−→ (φ(x), t)

ev7−→ φ(x)(t) (ev è continua grazie alla topologia compatto-aperta).
In particolare il fatto che φ fosse una mappa fra coppie si riflette su Φ facendo sì che abbia
queste proprietà:

• Φ(x, 0) ⊂ A per ogni x ∈ I i

• Φ(x, 1) ⊂ B per ogni x ∈ I i

• Φ(x, t) ⊂ A per ogni (x, t) ∈ (∂I i, I)

Chiamiamo una mappa che rispetta queste proprietà ammissibile, vogliamo deformare ϕ, tramite
mappe ammissibili, in una mappa che finisce in A. Consideriamo una scomposizione di I i × I

in cubi W che vadano in A o in B tramite Φ (possibile grazie al numero di Lebesgue 0.13),
e deformiamo Φ in Ψ tramite un’omotopia come nel lemma precedente su ogni cubo W . Le
condizioni 1) e 2) del lemma precedente ci danno una condizione di compatibilità, una volta
definita l’omotopia su tutti i cubi possiamo "incollare" i vari pezzi su tutto I i × I.
Ora sia P : I i × I → I i la proiezione, notiamo che P (Ψ−1(X − A)) ∩ P (Ψ−1(X − B)) = ∅,
infatti sia y ∈ Ψ−1(X−A) ⊂ Kp+1(W ) (l’inclusione è data dal punto 3) del lemma), quindi P (y)
ha almeno p coordinate minori di δ

2
; analogamente, se y fosse anche in Ψ−1(X − B) avrebbe q

coordinate maggiori di δ
2
, ma stiamo lavorando in i < p+q, dunque abbiamo un assurdo. Inoltre,

dato che Φ manda (∂I i, I) in A, usando la proprietà 1) del lemma anche Ψ lo manda in A, per
cui P (Ψ−1(X −A))∩ ∂I i = ∅. Ricordando che Ψ(x, ·) è un cammino, questo ci dice che le x per
cui il cammino associato Ψ(x, ·) ammette dei tempi t in cui (x, t) sta in X −A o in X −B sono
disgiunti, e non dipendono dal tempo (poiché consideriamo la proiezione P). Quindi i cammini
Ψ(x, ·) se ammettono un tratto in X − A non hanno nessun tratto in X −B e viceversa.
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Queste considerazioni ci permettono di definire τ : I i → I continua tale che τ(P (Ψ−1(X−A))) =
0 e τ(∂I i∪P (Ψ−1(X−B))) = 1, in questo modo τ assume valori compresi fra 0 e 1 solo se tutto
Ψ(x, ·) sta in C. A questo punto definiamo

Gs : I i × I → X

(x, t) 7→ Ψ(x, (1− s)t+ stτ(x))

Gs è una mappa ammissibile per ogni s, infatti

• Gs(x, 0) = Ψ(x, 0) ⊂ A per ogni x ∈ I i

• Gs(x, 1) = Ψ(x, (1− s)1+ sτ(x)) e per come è definita τ , τ(x) ̸= 1 solo se Ψ(x, ·) sta tutto
in X − A ⊂ B, quindi l’unico caso di cui ci dobbiamo occupare è τ(x) = 1. Ma in questo
caso si ha Gs(x, t) = Ψ(x, 1) ⊂ B dato che Ψ è ammissibile.

• Sia x ∈ ∂I i, allora Gs(x, t) = Ψ(x, ((1− s)t+ stτ(x)) ⊂ A poiché Ψ è ammissibile.

inoltre G0 = Ψ e G1 è una mappa che finisce in A, poiché G1(x, t) = Ψ(x, tτ(x)) ⊂ A, infatti se
τ(x) ̸= 0 segue direttamente da come è definita τ e se x ∈ ∂I i per quanto detto poco sopra; se
τ(x) = 0 si ha G1(x, t) = Ψ(x, 0) per ammissibilità.
Quindi Gs è l’omotopia cercata.

Proposizione A.4. Sia (p1, p2) : (E1, E2) → B in modo che p1 sia una fibrazione di Serre e
anche la sua restrizione a E2, che chiamiamo p2, lo sia a sua volta. Allora (E1, E2) è n-connessa
se e solo se, per ogni b ∈ B, la coppia di fibre (F 1

b , F
2
b ) := (p−1

1 (b), p−1
2 (b)) è n-connessa.

La dimostrazione è in [Die08, Thm 6.3.8]

Proposizione A.5. La mappa p1 : Ω(X;A,B) → X definita da p1(γ) = γ(0) è una fibrazione
di Serre. Lo stesso vale per p2 : Ω(A;A,C) → A.

Dimostrazione.
Ω(X;A,B)

In X

p

Gt

G̃t

Abbiamo G̃0 che solleva G0, cioè G̃0(x) è un cammino che parte da G0(x) e termina in B. Per
costruire il resto del sollevamento posso definire G̃t(x) come un cammino da Gt(x) a G0(x) (che
esiste sempre poiché essendo (A,C) e (B,C) 0-connessi e C CPA posso sempre spostarmi nella
componente CPA di G0(x) per ogni x) per poi comporlo con G̃0(x). Per Ω(A;A,C) si fa la stessa
cosa.
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