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Introduzione

La topologia si propone l'obiettivo di studiare le proprieta degli spazi che rimangono invariate
dopo aver effettuato delle trasformazioni continue, in particolare un problema centrale consiste
nello stabilire quando due spazi possono essere deformati in maniera continua ’'uno nell’altro,
cio¢ se sono omeomorfi o meno. Come succede spesso in matematica, per affrontare questo
problema si introducono degli invarianti, cioé degli oggetti o delle proprieta che non cambiano
dopo aver effettuato una trasformazione continua. L’idea della topologia algebrica ¢ quella di
costruire invarianti algebrici e associarli a ogni spazio; spesso questi sono gruppi, di cui abbiamo
gia a disposizione una ricca teoria che ci puo aiutare a calcolarli. Un linguaggio particolarmente
adatto in questo caso € quello categorico, con cui possiamo dire che la topologia algebrica si
occupa di studiare dei funtori fra la categoria degli spazi topologici e quella dei gruppi (o anche
anelli e moduli).

Forse gli invarianti algebrici pin significativi sono i gruppi di omotopia e i gruppi di omologia

singolare. Questi vengono costruiti in modi diversi:

- Si considerano i lacci centrati in un punto zy € X e diciamo che due lacci sono omotopi
se possono essere deformati I'uno nell’altro rimanendo in X. Due lacci possono non essere
omotopi se, per esempio, all’interno di uno dei due lacci la superficie di X & "bucata", mentre
all’interno dell’altro laccio no; oppure, sul toro abbiamo il laccio che gira intorno al "foro
interno" del toro, mentre un altro che gira sul "tubo" che forma il toro, e questi non possono
essere deformati I’'uno nell’altro senza essere strappati. Possiamo vedere un laccio come una
funzione continua con dominio S', per cui possiamo generalizzare in dimensione generica
prendendo 'insieme di tutte le funzioni continue da S™ a X e quozientando per la relazione di
omotopia, quindi identificando le funzioni omotope. Gli insiemi cosi definiti ammettono una
struttura di gruppo e vengono chiamati gruppi di omotopia 7, (X, o). In un certo senso questi
gruppi ci danno informazioni su uno spazio misurando la presenza di qualcosa che ostacoli la

deformazione continua di una sfera all’interno dello spazio stesso.

- Chiamiamo n-simplesso singolare una qualsiasi funzione continua dal n-simplesso a uno spazio
X. Si associa ad X un complesso di catene, composto dai gruppi abeliani generati dagli n-
simplessi singolari C), e un morfismo 9, : C,, — C,,_; con la proprieta che 0,1 0 9, = 0.
Si definisce I'n-esimo gruppo di omologia singolare H,,(X) come il quoziente fra Ker(d,) e

Im(0,4+1). Se chiamiamo la cavita interna ad S™ un "buco n-dimensionale", in un certo senso



I’'omologia singolare misura la presenza di buchi n-dimensionali in X. Quest’interpretazione
nasce dal calcolo, che puo essere effettuato dopo aver sviluppato un po’ di teoria, di H, (S™) =

Z, per m=n, mentre ¢ il gruppo banale altrimenti.

Si nota subito che nel primo caso si ha una forte intuizione che giustifica la costruzione, mentre
nel secondo si ha una costruzione molto tecnica e barocca, frutto di generalizzazioni e raffina-
menti avvenuti nel corso degli anni, nonostante le idee di base fossero gia presenti nel testo del
1895 "Analysis situs" di Henri Poincaré, fino a giungere alla definizione moderna fornita da Ei-
lenberg nel 1944. Il vantaggio dell’omologia singolare é dato dal fatto che i gruppi sono piu facili
da calcolare rispetto all’omotopia; la definizione & cosi tecnica proprio per far si che abbia delle
proprieta che ne semplifichino il calcolo. L’omotopia invece, con la sua definizione pit naturale
e intuitiva, presenta notevoli difficolta computazionali, al punto che ad oggi non sono ancora
noti tutti i gruppi di omotopia delle sfere, nonostante la vasta gamma di strumenti sviluppati
nel tempo. Provando a individuare le proprieta che facilitano il calcolo per I'omologia, si ottie-
ne una descrizione assiomatica generale; questi sono noti come assiomi di Eilenberg-Steenrod.
Questa descrizione non ¢ esclusiva per I’omologia singolare, infatti chiamiamo teoria omologica
un qualsiasi funtore fra Top e una qualche categoria algebrica che rispetti questi assiomi. Una
teoria omologica gode delle proprieta principali dell’omologia singolare che facilitano ’aspetto

computazionale, dato che queste seguono direttamente dagli assiomi.

Uno dei risultati fondamentali nella teoria dell’omotopia ¢ il teorema di Freudenthal, che
permette di trovare una successione di gruppi di omotopia che si stabilizza facendo uso della
sospensione. Questo ¢ il punto di partenza per la teoria dell’omotopia stabile, e degli oggetti
che vengono definiti naturalmente in questo contesto sono gli spettri: successioni di spazi con
delle mappe di struttura dalla sospensione di ogni spazio al successivo. Questi oggetti vengono
definiti proprio in modo che si comportino bene rispetto alla sospensione. Si estendono i gruppi
di omotopia, oltre che agli spazi topologici, anche agli spettri, di cui ci interessa il comporta-
mento solo al limite: infatti, vengono definiti come il limite diretto dei gruppi di omotopia dei
singoli spazi che compongono lo spettro. Queste definizioni li rendono candidati perfetti per
indagare fenomeni in omotopia stabile, e infatti nel corso degli anni sono diventati il linguaggio
preferito in questo contesto. Una proprieta notevole degli spettri é che ¢’é una corrispondenza
uno a uno fra le teorie omologiche, a meno di isomorfismo, e gli spettri, a meno di equivalenza
stabile, che & una relazione d’equivalenza fra spettri. Questa corrispondenza & possibile grazie
ai gruppi di omotopia degli spettri, nel senso che la teoria omologica ¢ rappresentata dai gruppi
di omotopia di un certo spettro. Cio fornisce un legame inaspettato fra gruppi di omotopia e
teorie omologiche, oltre al piu classico teorema di Hurewicz.

Abbiamo legato I'omotopia degli spettri e le teorie omologiche, e grazie a cid possiamo trovare
un legame piu diretto fra gruppi di omotopia (di spazi topologici) e omologia. La teoria omo-
logica associata a uno degli spettri pitt naturali da definire, lo spettro di sospensione, ¢ data

dai gruppi di omotopia stabili. Abbiamo dunque ottenuto una teoria omologica data da una



variante dei gruppi di omotopia di spazi. Inoltre, 'omologia singolare ¢ associata allo spettro
di Eilenberg-Maclane, composto da spazi la cui classe di equivalenza omotopica ¢ determinata
dai gruppi di omotopia; questi invarianti trovano un punto d’incontro in questo modo del tutto
inaspettato, nonostante le differenze che abbiamo visto nella costruzione di omologia singolare

e gruppi di omotopia.

Lo scopo di questa tesi é approfondire i gruppi di omotopia superiori e alcuni dei legami che
hanno con I'omologia. Nel primo capitolo verranno definiti i gruppi di omotopia, la loro versione
relativa, e si studieranno le loro proprieta principali. Nel secondo capitolo si vedranno alcuni dei
teoremi fondamentali e degli strumenti utili per calcolare alcuni gruppi di omotopia, e alla fine del
capitolo effettueremo alcune computazioni. Nel terzo e ultimo capitolo introdurremo gli spettri,
parleremo delle loro proprieta essenziali, mostreremo come rappresentano teorie (co)omologiche

e nell’ultima sezione vedremo alcuni esempi espliciti.
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Capitolo O

Preliminari

Notazioni

- Si indica con I™ := [0,1]" il prodotto cartesiano dell’intervallo unitario con s¢ stesso n

volte, ovvero I'n-cubo dotato della topologia euclidea.

- Tutte le funzioni fra spazi topologici sono da intedersi continue. I termini funzione e mappa

sono interscambiabili.

- Si indica con (X,A) una coppia di spazi topologici con A C X. Quando X ¢ un CW-

complesso allora A é da intendersi un sottocomplesso, cioe¢ é composto da celle di X
- Siindica con f: (X, A) — (Y, B) una funzione tale che f(A) C B

- I funtori verranno indicati con la stessa notazione di una funzione, dove si specifica dove

vanno oggetti e subito sotto i morfismi, in questo modo

F: C — '
X — X'
(f: X=Y) — (f: X' =Y

- Indicheremo rispettivamente con Top, Top, e Top? la categoria degli spazi topologici, gli
spazi topologici puntati, e le coppie di spazi topologici. I morfismi sono dati rispettivamente

dalle funzioni, le funzioni che preservano il punto base e quelle di coppie (tutte continue).

Omotopie

Definizione 0.1. Presi due spazi topologici X,Y, due funzioni continue f,g: X — Y si dicono
omotope se 3 hy : X — Y Vt € [0, 1] famiglia di funzioni continue tale che

ho(x) = f(x) 0,1 — C(X,Y)

Vee X e continua
hi(x) = g(x) t he



e si indica con f ~ g.

Si chiama omotopia fra f e g tale famiglia di funzioni, o equivalentemente la funzione

h:X x[0,1] — Y con hy(x) = h(x,t)

Si dice omotopia rel A con A C X un’omotopia h; tale che h;|, non dipende da t, quindi fissa

A.

Cioé due funzioni si dicono omotope se possono essere deformate I'una nell’altra con conti-

nuita.
Osservazione 0.2. Essere omotope é una relazione d’equivalenza:
- riflessiva poiché basta prendere hy(x) = f(x) Vt € I,V € X

- simmetrica poiché se h; ¢ un’omotopia da f a g allora m;(x) = h;_¢(x) ¢ un’omotopia da g
af

- transitiva poiché se h; e m; sono omotopie da f a g e da g a q rispettivamente, allora
h2t<l’> Vit € [0, %]

¢ un’omotopia da f a q.
mgt,l(m) YVt € [%, 1]

ri(x) =
Definizione 0.3. f : X — Y si dice equivalenza omotopica se ammette un inverso omotopico,
ovvero esiste g : Y — X tale che fog~idy e go f ~idx.
Se tale f esiste si dice che X e Y sono omotopicamente equivalenti oppure che hanno lo stesso

tipo di omotopia

Ricordiamo che una retrazione di X in Y, un suo sottospazio, ¢ una funzione r : X — X tale
che r(X) =Y er|, =idy

Definizione 0.4. Dati Y C X, una retrazione per deformazione ¢ un’omotopia fra l'identita di

X e una sua retrazione in Y. Se tale omotopia esiste, Y si dice un retratto per deformazione di X

Euristicamente una retrazione per deformazione ¢ una retrazione che dipende dal tempo con
continuita. Uno spazio X e un suo retratto per deformazione sono omotopicamente equivalenti,

segue facilmente dalla definizione.

Mapping cylinder

Definizione 0.5. Data f : X — Y chiamiamo M il cilindro ottenuto incollando Y a una faccia
di X x I, cloe My = (X x 1) |—|Y/N con f(x) ~ (z,0)



Osservazione 0.6. M; puo essere retratto per deformazione in Y, infatti preso un qualsiasi
punto (z,t) € M; basta trascinarlo lungo il segmento che lo porta in (z,1) ~ f(z) € Y, dove
Y & My x {0}. Esplicitamente abbiamo H, : My — My con Hy([z,t]) = [z, (1 —t)s + t], infatti
Ho([z,t]) = [z,t] e Hi([z,t]) = [z, 1] = [f(x)], cioé¢ H omotopia fra id e una retrazione di My in
Y.

Osservazione 0.7. f é un’equivalenza omotopica fra X e Y se e solo se X & un retratto di

deformazione di My

CW-complessi

Definizione 0.8. Un CW-complesso é uno spazio topologico costruito induttivamente in questo

modo:
1) X% un insieme discreto di punti

2) Chiamiamo D* una k-cella e sia ¢, : S* ! — X% la sua funzione di attaccamento,

specifica come incollare il bordo della cella a X*~!

k1 k
3) Xk = X |E|DCVN = XF1Je" dove x ~ ¢, (x) per ogni x € S¥~! e per ogni o, mentre

n

" indica semplicemente l'interno della k-cella D*¥ — dDF dopo il quoziente, quindi gia

e

"attaccata". X* si chiama k-scheletro.
4) X = J X" si dota X della topologia debole, caratterizzata da: U aperto in X < U N Xk ¢
n
aperto Vk. Se X ha dimensione finita (cioé esiste n per cui non ci sono celle di dimensione

maggiore di n) la topologia debole coincide con la topologia quoziente.

Ogni cella D¥ possiede una funzione caratteristica ¢, ottenuta componendo DF — X* =1 ]
DE — X* — X, e vale ¢,

mappe di attaccamento continue.

= (o Sinoti che la topologia debole ¢ la meno fine che rende le

Osservazione 0.9. Un insieme compatto C in un CW-complesso X interseca al pitt un numero
finito di celle. Si assuma per assurdo il contrario e chiamiamo S = {z1,xs,...} un insieme di
punti di C, in modo che ogni x; stia in una cella diversa dagli altri punti, allora S & chiuso

in X. Per induzione assumiamo che S N X" ! sia chiuso, (il passo base ¢ banale poiché X° &
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discreto per definizione, quindi ogni singoletto ¢ chiuso), per ogni cella € si ha che ¢_'(S) ¢
chiuso perché ha al pitt un punto aggiuntivo rispetto a ¢ *(S) che ¢ chiuso per ipotesi induttiva,
i singoletti sono chiusi in D" e I'unione di due chiusi lo é. Lo stesso ragionamento vale per ogni
sottoinsieme di S, cio¢ S ha la topologia discreta, ma se S é chiuso nel compatto C ¢ anch’esso

compatto. Quindi S é compatto e discreto, cioé deve essere finito.

Osservazione 0.10. Presa fy : X — Y, consideriamo f; : A x I — Y un’omotopia che parte
dalla restrizione f ‘ 4 con A C X, quando ¢ possibile estendere I'omotopia ad f si dice che (X,A)
possiede la proprieta di estensione dell’omotopia, la HEP, oppure come vedremo in si dice
anche che 7 : A < X ¢ una cofibrazione.

Si pud mostrare che questo é equivalente a richiedere che X x 0 U A x I sia un retratto di
deformazione di X x I e si pud mostrare anche che se (X,A) & una coppia di CW-complessi,

allora questo é vero. Maggiori dettagli si possono trovare nell’ultima sezione di [Hat02, Chapter

0].

Osservazione 0.11. Il prodotto di CW-complessi X e Y puo sempre essere dotato di una
naturale struttura di CW-complesso in cui le celle sono date dal prodotto cartesiano delle celle
dei singoli spazi X e Y. Il discorso sulla topologia da usare ¢ pit delicato, dato che la topologia
prodotto puod essere meno fine della topologia debole, (potrebbe succedere quando né X né Y
sono localmente compatti o hanno un’infinitd non numerabile di celle) in questo modo X x Y
non sarebbe un CW-complesso. Si potrebbe ogni volta imporre la topologia debole su X x
Y ma nella pratica diventa complicato, quindi solitamente si passa alla categoria degli spazi
compattamente generati in cui la topologia sul prodotto coincide con quella debole. I dettagli di
questa discussione sono tecnici e superflui per gli scopi di questa tesi, ma possono essere trovati
in [Hat02, Theorem A.6].

Numero di Lebesgue

Definizione 0.12. Sia D C Y sottoinsieme di uno spazio metrico. Chiamiamo diametro di D

diam(D) := sup d(z,y) la massima distanza che posso ottenere prendendo due punti qualsiasi

z,yeD
su D.

Teorema 0.13 (Numero di Lebesgue). Sia Y uno spazio metrico compatto e V' = {V,} un
ricoprimento aperto. Allora 3 A > 0 tale che ogni D C Y con diam(D) < A é contenuto in un

aperto di V. Chiamiamo A il numero di Lebesgue del ricoprimento aperto V.

Dimostrazione. Per assurdo, se I’enunciato fosse falso potrei costruire due successioni z,, e y,
tali che d(z,,y,) < % Vn e nessun V,, che li contiene entrambi. Per sequenziale compattezza,
a meno di sottosuccessioni estratte, 4 T limite di entrambe le successioni, ma da : T € V,,, ed
essendo aperto anche una palla B,.(T) C V,, che conterra punti arbitrariamente vicini ad = di

entrambe le successioni, quindi 4 N : zy,yny € V,. O



Smash product

Definizione 0.14. Dati due spazi topologici XY, si chiama smah product fra essi X AY =
XxY/XVY

Posso considerare {zo} X Y e X x {yo} come sottospazi di X x Y, e questi si intersecano
in un solo punto, dunque posso pensare che questo sia il wedge di X e Y X VY e che sia un
sottospazio del prodotto anch’esso. Dunque il quoziente € ben definito.

Sospensione e spazio dei cammini

Definizione 0.15. La sospensione SX di uno spazio topologico X & uno spazio ottenuto quo-
zientando prima la faccia superiore X x {1} del cilindro X x I a un punto, successivamente

anche la faccia inferiore X x {0}.

T /N /N
X xI ‘A SX
W

Quindi la sospensione SX pud essere pensata come 'unione di due coni CX := X x [/ X x {1}

attaccati per la base, oppure come SX = CX/X. Anche una funzione f : X — Y passa a una

funzione Sf : SX — SY, si costruisce in questo modo:

XxI -2 ysr

cx <L oy
pxx pY lpcx lpcy
(JlX _9 ClY sx 2L gy

le proiezioni py e px sono le proiezioni al quoziente, la mappa obliqua ¢ la composizione g =
(f x id) o py, mentre Cf & definita a partire dalla proprieta universale delle identificazioni nel
triangolo del diagramma inferiore (che puo essere usata dato che g ¢ costante su X x {1}, infatti
X x {0} Jord, F(X) x {0} &5 [(y,1)]). Ora si fa la stessa cosa ma su Cf per ottenere Sf.

Cio ci dice che si puo vedere la sospensione come un funtore che chiameremo S

S Top — Top
X — SX
(f: X=Y) — (Sf:5X — SY)

Un esempio particolarmente importante ¢ SS™ ~ S"+!

Definizione 0.16. La sospensione ridotta di uno spazio X é XX = S X/I0 yJ dove zg € X el

segmento viene collassato tutto in zg.



Osservazione 0.17. Si puo mostrare che fare la sospensione ridotta di uno spazio € come fare
lo smash product con S!, cioé¢ XX ~ X A S?

Chiamiamo QX [linsieme dei lacci di X basati in xy. Nonostante non sia presente nella

notazione, con lo scopo di allegerirla, la scelta del punto base é necessaria per entrambi XX e

QX.

Osservazione 0.18. In generale, dati due funtori F' : C — D e G : D — C questi si dicono
aggiunti se per ogni oggetto X € Ob(C) e Y € Ob(D) si ha che More(X,GY) ~ Morp(FX,Y)
sono in biezione.

Anche ¥ e Q sono funtori dalla categoria degli spazi topologici puntati Top, in sé. Sui morfismi
Y f & costruita come SX ma fissa il punto base zy, mentre Qf(y) = v o f. In particolare,
Y e ) sono aggiunti, dunque due funzioni come queste sono intercambiabili: f : XX — Y e
g: X = QY

Limiti diretti

Un diagramma D in una categoria C puo essere pensato come una sottocategoria, ossia una scelta
di oggetti e morfismi fra essi. Preso X un oggetto di C, diremo che un morfismo ¥ : D — X
¢ una collezione di morfismi {¢5}gconp) con ¥p : B — X in modo che per ogni ¢ : B — B’

morfismo fra oggetti del diagramma, valga ¥g o p = ¥/, cioé commuti il seguente:

B L s B/
X

Definizione 0.19. Preso un diagramma D in una categoria C, il colimite del diagramma ligD

é un oggetto X che ammette un morfismo ¥ : D — X per cui valga la seguente proprieta
universale: per ogni altro oggetto X’ che ammette un morfismo ¥’ : C — B esiste un morfismo

~v: X — X' per cui il seguente diagramma commuti per ogni B € D

B
X 2l y X!

La proprieta universale fa si che il colimite, in caso esista, sia unico a meno di isomorfismo.
Chiamiamo un insieme diretto un insieme dotato di una relazione binaria > riflessiva e
transitiva tale che Va,b € I,dc € I tale che c > aec>b.

Definizione 0.20. Preso un insieme diretto I un sistema diretto di gruppi € una collezione di
gruppi indicizzati da I {A;}ier e (omo)morfismi f;; : A; — A; in modo che fi = fjx o fi; per
ognit<j<ke f; =1id

10



Osservazione 0.21. Il colimite di un sistema diretto si chiama limite diretto, e ha la seguente

utile caratterizzazione
) A
lim A; = I~
i 4= L4

dove presi z; € A; e xj € Ajsihax; ~x;se Ik € I fu(z;) = fir(z))
Noi ci concentriamo sui gruppi perché useremo solo quelli, ma in generale vale per categorie

"algebriche", come anelli, moduli, spazi vettoriali, etc.

Osservazione 0.22. Una collezione di mappe fra due sistemi diretti ¢; : A; — B; che fa
commutare i quadrati nel diagramma sotto, induce un morfismo ¢ : ligAj — ligBj. Basta
notare g, o p; : A; — hﬂ B; per ogni i, per cui per la proprieta universale di @Aj mi dice che

esiste il morfismo in questione, cioé .

\
l i l¢i+1 l@i+2 P

Bi — Bi+1 > Bi+2 > ...

11



Capitolo 1

Teoria dell’omotopia

In questo capitolo introduciamo i gruppi di omotopia di uno spazio, sia la versione assolu-
ta che relativa, come una generalizzazione delle idee che portano alla definizione di gruppo

fondamentale.

1.1 Gruppi di omotopia

Definizione 1.1. Preso X uno spazio topologico e xg € X fissato, si denota con m,(X, zq)
['m-esimo gruppo di omotopia di X basato in xy, che é I'insieme delle classi di omotopia delle
funzioni (1™, 0I") — (X, x¢), dove si richiede che per 'omotopia valga ht‘apb () =z YV e X

Una definizione alternativa piu intuitiva di m,(X,zo) ¢ la seguente: l'insieme delle classi di
omotopia di funzioni f : (S™, s9) — (X, zo). Infatti collassando OI™ e passando al quoziente si
ha che I"/0I" ~ 8™ e 91" JOI"™ ~ sy € S™, da cui 'equivalenza fra le due definizioni ¢ data dalla

proprieta universale delle identificazioni.

Osservazione 1.2. Per 7;(X, zg) ¢ noto che 'operazione data da

f(2t) th € [0, %]

f+yg:=
g(2t —1) vty € [5,1]

fornisce la struttura di gruppo.

Analogamente, per f,g € m,(X, xg)

(2t t, .. 1) Vi € [0, 5]

f+g:= !
g(Qtl - 1,t2, ,tn) th S [5, 1]

¢ un’operazione che fornisce la struttura di gruppo; infatti, essendo coinvolta una sola coordinata,
il ragionamento ¢ uguale.

L’idea é che f4g é una nuova funzione ottenuta percorrendo f lungo un singolo lato di I" a
velocita doppia, e per g la stessa cosa, dove il lato in questione ¢ quello della prima coordinata
31
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Osservazione 1.3. Generalmente m,(X, z9) pud essere non abeliano per n=1, ad esempio per
m (St v SY) ~ Z x Z. Invece per n > 2 m,(X, 1) ¢ sempre abeliano, infatti si costruisce

un’omotopia fra f+g e g-+f nel seguente modo:

Le varie figure sono funzioni, rappresentano il dominio I™ e specificano quale funzione viene
applicata in ogni punto, dove non c¢’é niente viene applicata la funzione costante in zy. La prima
figura é semplicemente f+g, nella seconda si restringe il dominio di entrambe f e g ed € possibile
farlo con continuita dato che ogni funzione in 7,(X, zo), dunque anche f+g, manda 9I™ in x.
Una volta ristrette a tal punto da avere abbastanza spazio per scambiarle di posto rimanendo
in I™, le scambio e gonfio il dominio alla loro grandezza originale, ed ottengo un’omotopia fra
f+g e g+f. La figura mostra il caso per n=2 ma posso fare la stessa cosa per n > 2 poiché a

differenza del caso n=1 ho "abbastanza spazio" per scambiare f e g.

Osservazione 1.4. Per uno spazio connesso per archi sappiamo che una scelta differente del
punto base produce gruppi fondamentali isomorfi, vediamo che succede la stessa cosa anche per
Tn-

Sia quindi X connesso per archi e consideriamo 7 : [0,1] — X un cammino da z; a xg, cioé

~v(0) = 21 e y(1) = . Definiamo
I

Zo

By (X, o) = mn (X, 1) rif o f Tof |71
[f] — [0 f] el

X1

Figura 1.1

dove presa f : (I",0I") — (X, zo) la funzione ~f : (I",0I") — (X, x;) é ottenuta come
viene specificato in figura 1, cioé restringendo il dominio di f e inserendo il cammino 7 in manie-
ra radiale in modo da connettere i bordi esterni dei due cubi. Si noti che nel caso n=1 il cubo &

un’intervallo e v f si riduce a

-1
gl / g
1 To To T1

che ¢ proprio come si tratta il caso per il gruppo fondamentale.
Concentriamoci sul caso n > 2, innanzitutto (8, ¢ ben definita poiché se cambio rappresen-

tante di [f], cioé prendo una funzione g ~ f tramite un’omotopia che fissa I", questa induce

un’omotopia di 7 f con g (si visualizza tramite la figura 1, applico 'omotopia da f a g nel blocco
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ristretto e lascio "la cornice" invariata).

Siano ora f, g € m,(X, z¢), 7 cammino da xy a x; ed n cammino da 7 a x9, valgono le seguenti:

1)

Y(f +9) ~vf +rg, cioe B, (f +g)=B,(f)+ B,(9)

I I Ty X1 T
X Ty T X T
ryxo f | 9 Rofrr ~ myEd f |To|To| 9 Fagn Y T1|Zo f | To To | 9 [Zo|T1
Lo o I Lo To
xT1 T1 T €T1 €T1

Il primo quadrato rappresenta v(f 4 g), dato che sia f che g fissano 9I" in z allora anche la
linea che separa i due quadrati di f e g finisce in xg, dunque posso estendere con continuita
quella linea espandendola a un blocco in zy5. A questo punto estendo mettendo tanti -y
come nell’ultimo passo. si conclude "schiacciando" i due rettangoli costanti in x( al bordo

e "gonfiando" f e g, cosi da ottenere v f + ~vg.

n(vf) ~ (yn)f, cioe B,(B,(f)) = By(f) (v e n si scambiano per come ¢ definita la
composizione di cammini)

To T2
L]
Ly Lo
Td T f od1 2 NNY X9 ) f X T
Py Zo
T
T2 T

E immediato, basta notare che nel primo quadrato fare v e poi n per arrivare al bordo piil

esterno € come fare 7, cioé¢ la nota composizione di cammini come nella secondo quadrato.

1f ~ f7 cioe 61 = idﬂn(X,wo)

f ~ f

Zo

In questo caso tutti i cammini radiali che connettono i due bordi sono costanti in xq, basta

espandere f a tutto il quadrato per concludere.

La proprieta 1) ci dice che £, ¢ un omomorfismo di gruppi, le proprieta 2) e 3) dicono che & un

isomorfismo dato che 35 & I'inversa di 3+, infatti 3,05 = 35, = /1 = id, quindi per spazi CPA,

a meno di isomorfismo, possiamo scrivere solamente 7, (X) omettendo il punto base.
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Nuovamente i disegni sono in dimensione 2 per ovvie ragioni, ma lo stesso ragionamento si
estende in dimensione maggiore di 2.
E interessante notare che se consideriamo solo il caso in cui 7 sia un cammino chiuso allora

[v] — B, € un’azione di m (X, x¢) su m, (X, xo)
Osservazione 1.5. Possiamo vedere 7,, come un funtore definito cosi:

Top™ — Grp
(X, z0) — (X, o) dove ¢, manda [f] — [ o f]
¢ : (Xa xU) — (}/7 yO) = %U* : Wn(Xa l’o) — 7Tn<Yv yO)

Chiameremo v, funzione sospinta. I morfismi nelle due categorie sono rispettivamente funzioni
continue che fissano il punto base e omomorfismi di gruppi. Le seguenti verifiche mostrano che

7, & un funtore ben definito
- 1, & ben definito, infatti se g ~ f allora o f ~1og
- ¥, ¢ un omomorfismo, infatti ¢.(f +g) =1 o (f +g) =vo f+ Y og=1.(f) +¥(g)
- (901)s = .0y, infatti (¢ o )u(f) = (¢od)o f=do(Pof)=o.(Pu(f))
- (1d(x,20)), = 1, (X ,20), Ifatti (id(xz,)),(f) =ido f = f
Proposizione 1.6. Valgono le seguenti affermazioni:
1) 9 ~ ¢ tramite hy, con hy(xg) = xo Vt € [ = 1, = ¢,
2) (X,20) ~ (Y,y0) = ma(X, o) = ma(Y, 30) V1

Dimostrazione. 1) se  ~ ¢ ho o f ~ ¢o fVf € m(X, ), cioe ¥.(f) = ¢.(f) Vf €
T (X, o).

2) Equivalenza omotopica vuol dire che 3 6,p : 0 0 p ~ idy,yy) € po 8 = idxg,, € usando
proprieta mostrate nell’osservazione precedente vediamo che ), o ¢, = (¢ 0 ¢), = id, = id

e analogamente per ¢, o 1), cioé la funzione sospinta 6, é un isomorfismo

m
I gruppi di omotopia si comportano bene rispetto a prodotti.

Proposizione 1.7. Per una collezione arbitraria X, di spazi CPA vale m,([[ Xa) =~ [[ 7n(Xa)

[e%
Dimostrazione. Una mappa f : 8" — [] X, € la stessa cosa di una collezione di mappe f, :

(03
S™ — X, e similmente per un’omotopia f; da cui I'isomorfismo. O
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1.2 Gruppi di omotopia relativi

Esiste un’utile generalizzazione dei gruppi d’omotopia, per definirla fissiamo qualche notazione.

Le facce di I™ sono delle copie in I~} in particolare chiamo /™! la faccia che ha come punti quelli

con ultima coordinata uguale a 0, e chiamo J" ! = 9I" — I"~1 la chiusura del complementare.

Indico con (X, A, zg) la tripla dove zyp € A C X sottospazio. Si indica con m,(X, A, xy) per

n > 1 'n-esimo gruppo di omotopia relativo della coppia (X,A) con punto base xg, che é I'insieme

delle classi d’omotopia di mappe della forma f : (I",0I", J" 1) — (X, A, xg), dove si richiede

che anche I'omotopia abbia la stessa forma.

Osservazione 1.8. 1) Notiamo che m,(X, xg,z9) = m,(X, xg) cosiche il caso assoluto & un

2)

3)

caso particolare di quello relativo
Non c¢’¢ un modo soddisfacente per estendere la definizione al caso n=0

La stessa operazione del caso assoluto puo essere usata anche nel caso relativo con la
differenza che I'ultima coordinata ha gia un ruolo privilegiato nella definizione per cui non
puo essere usato per la somma. Quindi usiamo lo stesso ragionamento con una coordinata

in meno e concludiamo che 7,(X, A, xy) é un gruppo per n > 2 ed é abeliano per n > 3.

Per n=1 non si ha una struttura naturale di gruppo. m (X, A, xg) é 'insieme delle classi
di omotopia delle funzioni f : ([0, 1],{0},{1}) — (X, A, z), cioé le classi di omotopia
di cammini che finiscono in zy ma iniziano da un qualsiasi punto di A. Usando la solita
operazione potrebbe non aver senso concatenare due di questi cammini poiché il punto
finale di uno potrebbe non coincidere col punto iniziale dell’altro.

Se A fosse CPA si potrebbe pensare di portare tramite un’omotopia il punto iniziale in
xo e poi usare l'operazione del gruppo fondamentale; questo non funziona, ad esempio nel
toro spostando il punto iniziale posso ottenere un cammino omotopo ad entrambi i lacci
che generano Z x Z, per cui la concatenazione non ¢ ancora ben definita dato che dipende

dalla scelta dell’omotopia.

Analogamente al caso assoluto una mappa ¢ : (X, A, zg) — (Y, B, yo) passa a un omomorfi-
Smo (per n Z 2) ¢* : 71-n(*er A7 {Eo) — 71-’rL(}/’ B7 y0)7 € valgono (1/}O¢)* = w*ogbh (id(X,A,xo))* =
idr, (X, Awp), € @ ~ Y = ¢, = 1),. Le dimostrazioni del caso assoluto funzionano anche in

questo caso notando che la condizione f(A) C B e analoghe sono rispettate.

Possiamo eliminare la dipendenza dal punto base se A ¢ CPA a meno di isomorfismo,

infatti sia v cammino da x; a o e definiamo 3, e 7 f cosi:
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T

By (X, A, x) = (X, A, ) o
[f] — [’Yf] T X f Zo X1

v A g
B, € un isomorfismo, le dimostrazioni del caso assoluto si possono estendere a questo

facendo queste modifiche in ognuna delle figure: si "eliminano" le copie di v che collegano
i lati inferiori del quadrato intero ed esterno, poi il quadrato interno si sposta in modo
da fargli toccare il lato inferiore, che va in A. Il ragionamento continua a funzionare. (in
dimensione generica si fa la stessa cosa con la faccia con ultima coordinata 0, in dimensione

2 ¢ il lato inferiore, come in figura)

7) Possiamo vedere 7,(X, A, z9) anche come l'insieme delle classi di omotopia di funzioni
(D", 8"t s0) — (X, A, zp), si collassa J"7! e dato che I"/J""! ~ D" 9I"/J" ~
Sr=to g1/ gl ~ 54 si puo concludere grazie alla proprieta universale delle identificazio-

ni.

Un modo molto utile per caratterizzare le funzioni che stanno nella classe dell’elemento neutro

del gruppo di omotopia relativo ¢ il seguente

Proposizione 1.9. (Criterio di compressione) Sia f € 7, (X, A, o), allora [f] = [0] < ¢ omotopa

rel S"~! a una mappa con immagine in A

Dimostrazione. =) Ho F : D" x I — X omotopia fra f e la funzione costante in xy nella
prima figura, costruisco un’altra omotopia componendo H : D™ x [ S D x I 5 X dove
G manda ogni (D" x {t}) omeomorficamente in (D" x {t}) U (S""! x [0,]) come nella
seconda figura.

CR=/D D D D
s o  Jab> a»

In questo modo G porta ogni circonferenza nella circonferenza che fa da base al cilindro, cioé¢
H(S™ x {t}) = F(G(S" ! x {t})) = F(S"! x {0}) = f(S™1), quindi H & un’omotopia
rel S"~1. Inoltre H(D™ x {1}) = F(G(D" x {1})) = F((D" x {1}) U (S™! x [0,1])) =
g UF(S" ! x[0,1]) € A, che ¢ quello che volevamo.

<) Sia g la funzione con immagine in A a cui ¢ omotopa f, mostriamo che [g] = [0]. Sia

R una retrazione per deformazione di D™ in sq, allora ho che per go R : D" x I — A
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vale (go R)(x,0) = g(z) e (go R)(x,1) = g(sy) = x¢ (dato che 'omotopia fissa S"~* ho
9(so) = f(s0) = o

) cioé ¢ un’omotopia fra g e la funzione costante in

]

Se volessimo usare 'interpretazione di m,, coi cubi al posto dei dischi, il ruolo di S"~! verrebbe

preso da 91", oltre a cio enunciato e dimostrazione rimangono uguali.

Consideriamo una tripla con punto base (X, A, B,xg) dove zg € B C A C X e le inclusio-
nii: (A B,z9) = (X,B,x), j : (X,B,z0) = (X, A, x0) e la funzione 0 : m,(X, A, z9) —
Tn_1(A, B, 1) che manda f : (I",0I", J"™1) — (X, A, xy) nella sua restrizione a I"~1, la faccia
con ultima coordinata 0, & ha come immagine 7,,_1(A, B, xq) poiché¢ 91"~ C J"~! che finisce in
9 € B

Teorema 1.10. La seguente sequenza € esatta

T (X A, ) 9, (A, B, xg) LN (X, B, x0) 2= (X, A, z0) 9, Tn1(A, B, zg) — ...

e ™ 7T1(X,A,I0)

Dimostrazione. Mostro I'uguaglianza fra immagine di una funzione e nucleo della successiva per

i tre oggetti che si ripetono al diminuire di n, in questo modo ho I'esattezza di tutta la succesione

- Esattezza per m,(A, B,xg): Per vedere che Im(d,) C ker(i,) si nota che i, 0 9 = 0. Questo
& vero perché se prendo una funzione f : ("1 9I"" J") — (X, A, 1), chiamo g la
restrizione a I™ e posso vedere f come un’omotopia che all’istante 0 mi da g per definizione
di g, mentre all’istante 1 mi da la funzione costante in zg, infatti un punto di I"*! con
ultima coordinata 1 sta su una faccia diversa da I", cioé sta in J" che per definizione di f
va in zg. Il ragionamento funziona in m,(X, B, z¢) dato che I'omotopia ¢ f e finisce in X,
per questo funziona solo se compongo con i,. Dunque Im(9) C ker(i.).

Viceversa sia f € ker(i,), cioe f : (I",0I", J"') — (A, B,zy) omotopa alla funzione
costante in zy tramite funzioni della forma F, : (I",0I",J" ') — (X, B,xy), cioe F ha

come dominio I™ x [
Zo To Zo Zo

f g9 f g9 f f
Chiamo g la restrizione a I"~! x I di F, rappresentata nella prima figura. Riparamentrizzo
come nella seconda figura ed ho un elemento nell'immagine di 9, a questo punto 'omotopia

illustrata mi dice dall’'ultima immagine che f € Im(9), da cui Im(9) 2D ker(i,).

- Esattezza per m,(X, B, xy): j« o i, = 0 direttamente dalla proposizione precedente, quindi
Im(iy) C ker(j.).

Viceversa sia f € ker(j.), sempre per la proposizione precedente é omotopa a una funzione
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con immagine contenuta in A, ma questo vuol dire che appartiene all'immagine di i, quindi
Im(iy) 2 ker(j).

- Esattezza per m,(X, A, x¢): 0o j, = 0, infatti presa la restrizione di una funzione f :
(I",01", J" 1) — (X, B,zy) a I""! ho che finisce in B, dunque per la proposizione prece-
dente & nullo. Quindi Im(j,) C ker(0).

Viceversa sia f € ker(d), cioé una funzione f : (I",0I",J"7 ') — (X, A, z0) la cui re-
strizione a I"~! ¢ l’elemento neutro di m,_1(A, B, 1), cioé¢ omotopa a una funzione con

immagine contenuta in B tramite un’omotopia F che fissa 9I""! (in B).

T Z Lo
! f
i A g VY Zo Tog v i f Zo
A
F
F
B B A

Se "unisco" F : I"' x I — A a f ottengo una funzione di m,(X, B, x(), come nella pri-
ma figura, a questo punto si nota che se da questa funzione si schiaccia il blocco di F
si ottiene un’omotopia con f, come nell'immagine. Questo dice che f € Im(j.), da cui
Im(j.) 2 ker(0).

]

Nel caso B = xq la successione esatta fornisce una relazione fra i gruppi assoluti e relativi di
(X,A)

Tt (X, A, 20) D (A, 20) 2 ma(X, 20) 25 m0(X, A, 20) 2 mao1 (A, 20)...

1.3 Connessione omotopica

In topologia esistono vari concetti legati all'idea di connessione, infatti uno spazio puo essere
convesso, stellato, connesso per archi, connesso, semplicemente connesso. Esiste un’ulteriore
generalizzazione che puo essere definita grazie ai gruppi di omotopia. Uno spazio X si dice
n-connesso se m;(X,z9) = 0 Vi <n. La 0-connessione corrisponde ad essere CPA (dato che
conta le componenti CPA), la 1-connessione invece alla semplice connessione. Nonostante nella
definizione ci sia il punto base xg, dato che la n-connessione implica la 0-connessione i gruppi di
omotopia non dipendono dal punto base a meno di isomorfismo, per questo la n-connessione non
dipende dal punto base. Un modo di riformulare questa proprieta evidenziando l'indipendenza

dal punto base ¢ il seguente
Proposizione 1.11. Sono equivalenti le seguenti proprieta:

1) X & n-connesso
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2) Ogni mappa S* — X ¢ omotopa a una funzione costante Vi < n
3) Ogni mappa S* — X si estende a una mappa D! — X Vi <n

Dimostrazione. 1) < 2) ¢é la definizione

2) = 3) Sia H : S x I — X l'omotopia fra f e una funzione costante in Six 1 s X
Ty, cio¢ H(z,1) = xg, cio¢ H ¢ costante su S* x {1}, quindi posso lp %
collassarlo e passare al quoziente S* x I/S" x {1} = C'S* ~ D' pitl

La funzione ottenuta passando al quoziente é la funzione cercata dato che f = H

=F

(p © F) SiX{O}
lidentita)

3)=2) Fisso f : S" - X e FF: D™ — X tale che F

‘ Six{0} —
¢ (dato che p collassa S* x {1} e su tutto il resto si comporta come

g = f. Sidefinisce H : S* x [ — X

con H(x,t) = F((1 — t)x), in questo modo ho H(x,0) = F(z) = f(x) dato che z € S, e

H(z,1) = F(0) cio¢ una funzione costante.

Si estende il concetto anche alle coppie (X,A) grazie ai gruppi di omotopia relativi.

coppia (X,A) si dice n-connessa se m;(X, A, x9) =0 Vi < n con i > 0.
Proposizione 1.12. Sono equivalenti le seguenti proprieta:

1) (X,A) é n-connesso

]

Una

2) Ogni funzione (D*, S 1) — (X, A) & omotopa rel S~! a una funzione con immagine in A

Vi<n

3) Ogni funzione (D, S ') — (X, A) ¢ omotopa tramite mappe della stessa forma a una

funzione con immagine in A Vi <n

4) Ogni mappa (D', S*"1) — (X, A) & omotopa a una funzione costante Vi < n

Dimostrazione. 1) < 2) < 4) & immediato dal criterio di compressione e dalla definizione di

T, 2) = 3) ¢ immediata poiché un’omotopia rel S°~! & anche della forma (D¢, S*™1) — (X, A),

dato che f lo é.

Per 3) = 2) si puo usare la stessa idea della figura nella dimostrazione del criterio di compressione

1.9} cioé costruire una nuova omotopia che fissi il bordo.

]

Nonostante mo(X, A, zo) non sia definito si puo estendere la nozione anche per i=0 grazie alle

proprieta 2), 3) e 4). Dato che D° ¢ un punto e il suo bordo & nullo D° x I ~ I, un’omotopia

diventa un cammino, quindi le 3 condizioni per i=0 equivalgono a dire che esiste un cammino

da un punto di X a uno di A, cioé che in ogni componente CPA di X ci sono punti di A. Questa

¢ dunque linterpretazione di (X,A) 0-connesso.
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Definizione 1.13. Una mappa f : X — Y si dice n-connessa se f. : mi(X, z9) = m(Y,y0) & un

isomorfismo per ¢ < n e suriettiva per i =n

Richiedere che un’inclusione X < Y sia n-connessa ¢ equivalente a richiedere che la coppia
(X,Y) sia n-connessa, segue direttamente dalla successione esatta lunga di (X,Y). Il concetto
si estende anche per la co-connessione, cioé una mappa che induce isomorfismi su tutti i gruppi

di omotopia.

In tutta questa sezione potremmo nuovamente usare l'interpretazione di m, coi cubi al posto
dei dischi, basterebbe sostituire D* con I* e S* con 9I*
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Capitolo 2

Risultati fondamentali e tecniche di

computazione

In questo capitolo verranno viste alcune delle proprieta fondamentali e verranno introdotti degli
importanti strumenti che permetteranno di calcolare alcuni gruppi di omotopia, anche non ba-
nali. Molti risultati vengono enunciati solo per CW-complessi, un fatto che euristicamente puo
essere motivato ricordando che i CW-complessi sono composti da celle omeomorfe a dischi, e
dunque i gruppi di omotopia, essendo composti da funzioni con dominio S™, contengono molte

informazioni su di essi.

2.1 Approssimazione cellulare

Una funzione fra CW-complessi f : X — Y si dice cellulare se f(X") C Y™ Vn. Una
funzione del genere ha delle proprieta desiderabili, e sarebbe naturale adottarle ogni qualvolta
fosse possibile. In questo senso é sorprendente che, a meno di omotopia, cid é sempre possibile,

come afferma il seguente

Teorema 2.1. Sia f : X — Y una funzione fra CW-complessi, allora f ¢ omotopa a una funzione

cellulare. Se f é gia cellulare su un sottocomplesso A, 'omotopia puo essere presa in modo che
fissi A.

Dimostrazione. Per induzione sul n-scheletro. Per n=0 é vero perché posso sempre trovare un’o-
motopia di f che sia cellulare su X°, infatti le 0-celle di X finiscono in delle celle di Y, che sono
attaccate a delle celle di dimensione minore; dunque esiste sempre un cammino da un punto di
Y a una 0-cella, che fornisce 'omotopia di f cercata.

Assumiamo che f sia omotopa a una funzione che sia cellulare su X"~ U A. Sia € una n-cella di
X-A, notiamo che la sua chiusura é compatta in X dato che & ¢, (D), quindi f(el) é compatto
in Y e dunque interseca un numero finito di celle in Y. Sia e} la cella di dimensione massima che
interseca f(e”) e supponiamo che r>n, altrimenti f sarebbe gia cellulare su X"~ U e”.

Diamo per buono un risultato, lemma 4.10 di Hatcher, che ci permette di dire che f | Sn—1Ugn
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n

") non contenga

puo essere deformata tramite omotopia rel X! a una funzione g tale che g(e
un punto p € eg. Dato che eg puo essere retratto in p, posso ulteriormente deformare g compo-
nendo con la retrazione di Y — {p} in ¥ — e} e ottengo fi, la cui immagine non interseca ej,.
Ripetendo il procedimento un numero finito di volte ottengo una funzione la cui immagine, se
ristretta a €, non tocca nessuna delle celle in Y che intersecavano f(e!) inizialmente (che come
abbiamo detto sono in numero finito). Se faccio la stessa cosa per ogni n-cella di X-A e lascio
invariato il comportamento sulle celle di A™ (dove f ¢ gia cellulare) ottengo un’omotopia di f ! n
rel X" 11U A",

Dato che (X,X™) ¢ una coppia di CW-complessi posso usare la proprieta di estensione dell’omo-
topia e dunque f € omotopa su tutto X ad una funzione cellulare su X”. Questo non basta a
concludere perché potrebbero esserci celle di dimensione maggiore di n su cui f non é cellulare.
Se X ha dimensione finita posso dividere l'intervallo [0, 1] in tanti pezzi quante le applicazioni
del passo induttivo in modo da creare un’omotopia unica che in ogni intervallino ¢ una di quelle
ottenute a un passo induttivo. Se X ha dimensione infinita allora si applica la stessa idea ma

con questa suddivisione: [1 — 3¢, 1 — 5], composta da [0, 1], [3, 2], [3, I].... O

Osservazione 2.2. L’approssimazione cellulare puo essere facilmente estesa a coppie di CW-
complessi f : (X, A) — (Y, B), infatti basta usare I'approssimazione cellulare ad f | , ed estendere
I’'omotopia ad X usando la proprieta di estensione dell’omotopia [0.10] A questo punto uso I'ap-

prossimazione cellulare della funzione su x con un’omotopia rel A.

2.2 Teorema di Whitehead

Abbiamo visto che spazi omotopicamente equivalenti hanno gruppi di omotopia isomorfi, il

viceversa & quasi vero per CW-complessi, ed & quello che afferma il teorema di Whitehead.

Lemma 2.3 (di compressione). Sia (X,A) una coppia di CW-complessi e (Y,B) una coppia
qualsiasi di spazi topologici con B # (), tale che per ogni n per cui X — A ha una cella di
dimensione n vale 7, (Y, B.yy) = 0 Vyo € B. Allora ogni funzione f : (X, A) — (Y, B) ¢ omotopa

rel A a una funzione con immagine in B.

Per n=0 l'ipotesi ¢ da intendere come (Y,B) 0-connesso. Questo & un risultato tecnico che

verra utilizzato per la dimostrazione del teorema principale.

Dimostrazione. Mostriamo I’enunciato per X* il k-scheletro, per induzione su k. Si noti che se
X-A non ha celle di dimensione k, allora X* C A dunque f ‘ «» ha gia immagine contenuta in B,
quindi analizziamo solo il caso in cui X-A ha celle di dimensione k, cioé¢ in cui m,(Y, B,y,) =0
Per k=0 abbiamo che (Y,B) ¢ 0-connesso, cioé¢ ogni componente CPA di Y contiene punti di B,
ma X° ¢ un insieme discreto di punti dunque posso vedere f | o come tante funzioni costanti.

Ma allora considero i cammini che vanno dai punti nell’immagine di cioé in Y, ai punti di
XO? )
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B che sono presenti nella stessa componente CPA, e questi mi danno un’omotopia di f ‘ o & una
funzione con immagine in B.

Ora si assuma che per f esista un’omotopia ad una funzione che manda X*~! in B. Sia ora D¥
k-cella di X-A e ¢ : DX — X la sua funzione caratteristica, f|,, o ¢q : (DX, S*1) — (Y, B)
ammette un’omotopia rel S*~1 a una funzione con immagine in B dato che 7 (Y, B,yy) = 0.
Unisco le due funzioni (f’Xk_l, f!Xk 0 ¢) sull'unione disgiunta X*~1 1 DX e 'omotopia appena
definita me ne fornisce una per questa funzione fissando X*~!, H che nell’istante finale mi da

una funzione con immagine in B (dato che f ‘ «+1 10 fa gia per ipotesi induttiva).

(DFuXxFYx1 —2L 5y

P
(DﬁLleil/N )X[

Pa

k k—1
DEuXE

Passando al quoziente ho f ristretta su ma posso passare al quoziente anche

con 'omotopia H come nel diagramma. Quindi ottezgo un’omotopia per f ristretta ad X*!
con 'aggiunta di una k-cella che fissa X*~!, posso fare lo stesso per tutte le k-celle, e posso
aggiungere anche A (che potrebbe avere celle di dimensione maggiore di k) fissandolo. Quindi
ho un’omotopia di f | xiua4 10 una funzione che finisce in B rel A.

A questo punto si usa la proprieta di estensione dell’omotopia e si conclude come nella dimo-

strazione dell’approssimazione cellulare. O

Teorema 2.4 (di Whitehead). Sia f : X — Y una funzione fra CW-complessi tale che f, :
(X, z0) = ™ (Y, f(v0)) sia un isomorfismo Vn, allora X e Y hanno lo stesso tipo di omotopia.

Inoltre, se f é I'inclusione di un sottocomplesso, allora X é un retratto di deformazione di Y.

Dimostrazione. Vediamo prima 1'ultima affermazione. Si consideri la successione esatta della
coppia (Y,X) che, dato che per ipotesi I'inclusione di X in Y induce isomorfismi sui gruppi di
omotopia, assume questa forma: ..0 — m,(X) — 7, (Y) — 0..., cioé¢ Vn vale 7,(Y, X) = 0,
siamo dunque nelle ipotesi del lemma precedente. Applicandolo all’identita id : (Y, X) — (Y, X)
la deformiamo in una funzione r : Y — X, cioé una retrazione, cioé abbiamo che X é un retratto
di deformazione di Y.

Per il caso generale ci riconduciamo a quello appena trattato usando il mapping cylinder, in
particolare f si pud vedere come la composizione di X M f 5 Y dove I'ultima funzione &
un’equivalenza omotopica per l'osservazione [0.6) dunque anche i induce isomorfismi ¢, poiché
i, =1, o f,. Vorremmo mostrare che se f, ¢ un isomorfismo per ogni n allora M ¢ si retrae per
deformazione su X, da cui si conclude ricordando 1’osservazione . Se f ¢ cellulare allora My ¢
un CW-complesso, (vedi sotto) e se non lo é usiamo il teorema di approssimazione cellulare ,
da cui (M;,X) é una coppia di CW-complessi. A questo punto abbiamo i che & un’inclusione
che induce isomorfismi tramite il funtore m,, per cui possiamo applicare la prima parte ad i e

concludere che X ¢ un retratto per deformazione di M}
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Per finire vediamo perché f cellulare implica che My ¢ un CW-complesso: considero X x I (che
¢ un CW-complesso per 'osservazione e A:= X x {0} la faccia a cui verra incollato Y. A
é una copia di X quindi posso vedere f come una funzione da A — Y. Per la struttura di CW su
M basta considerare le celle di (X x I) — A (& composto da celle essendo A un sottocomplesso)
e Y, dato che A si identifica con Y. La richiesta che f sia cellulare serve a far si che il bordo di
n-celle finisca in (n-1)-celle, infatti le celle di (X x I) — A che hanno bordo in X™~! vanno bene,

quelle che hanno bordo in A vengono mandate in Y~ ! grazie al fatto che f ¢ cellulare. O

Il teorema non richiede che i gruppi di due spazi siano isomorfi, ma che esista una funzione
la cui sospinta sia un’isomorfismo per ogni n, ovvero che f sia oo-connessa, che é una richie-
sta piu forte. Esistono infatti controesempi di spazi con gruppi di omotopia isomorfi e non

omotopicamente equivalenti.

2.3 Fibrati

In dimensione 1 abbiamo i rivestimenti che possiamo vedere come una realizzazione geometrica
del gruppo fondamentale. Una proprieta vitale di questi oggetti € il fatto che le omotopie si
possano sollevare ad essi. A partire da cio sviluppiamo una generalizzazione di questo concetto:
le fibrazioni. L’esempio di fibrazione che ci tornera piu utile sono i fibrati, oggetti che localmente

si comportano come un prodotto cartesiano.

Fibrazioni

Definizione 2.5. Una funzione p : E — B ha la proprieta di sollevamento dell’omotopia per lo
spazio Y, che chiameremo anche HLP (homotopy lifting property), se ogni omotopia f; : Y — B
che ammette un sollevamento f, per la funzione fo, cioé tale che fo = p o fy, ammette un

sollevamento f~t a sua volta, che parte da fo.

. E X
X ——3 B Y «+— A

E interessante notare che se si dualizza la nozione di sollevamento dell’omotopia si ottiene quella
dell’estensione dell’omotopia [0.10, che abbiamo gia usato.

Definizione 2.6. Una mappa p : E — B si dice fibrazione se ha la proprieta di sollevamento

dell’omotopia per ogni spazio topologico X.

Sempre dualizzando la definizione si ottiene una cofibrazione ¢ : A — X, cioé una mappa per
cui la proprieta di estensione dell’omotopia vale per ogni spazio Y.

Nel seguito ci concentreremo solo sulle fibrazioni, su alcuni tipi in particolare.
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Definizione 2.7. Una mappa p : £ — B per cui vale la proprieta di sollevamento delle omotopie

per ogni disco D* si dice fibrazione di Serre
Essendo D* ~ I*, avere la HLP per dischi o cubi & equivalente.

Osservazione 2.8. Abbiamo definito i gruppi di omotopia richiedendo che le omotopie fossero
della stessa forma delle funzioni che consideriamo, quindi puo essere utile considerare il solleva-
mento di omotopie di coppie: si dice che una funzione p : E — B ha la proprieta di sollevamento
dell’omotopia per la coppia (X,A) se ogni omotopia f; : X — B, per cui esiste gia un solleva-
mento f; : A — E, si solleva a un’omotopia ft : X — E che parte dal sollevamento f, di f che
estende I'omotopia data su A.

L’unica richiesta aggiuntiva ¢ che il sollevamento sia l’estensione di un’omotopia gia data su
A, dunque la proprieta equivale a poter estendere un sollevamento di una mappa definita su
(X xI,X x{0}UAXI).

Osservazione 2.9. Per sollevare un’omotopia da D* o (D* 0D*) devo sollevarla da (D*, D* x
{0}) (per fissare fo) o (D*, D¥ x {0} UOD* x I) (per quanto detto sopra) rispettivamente, come
in figura, ma essendo questi ultimi due spazi omeomorfi, a meno di comporre per ’'omeomorfismo

o il suo inverso, la HLP per D* e per la coppia (D*,dD*) sono equivalenti.

In particolare possiamo sollevare le omotopie a partire da una coppia di CW-complessi (X,A)
solo richiedendo la proprieta per i dischi, infatti per induzione sul n-scheletro basta costruire il
sollevamento ft su ogni singola cella di X-A, sollevando D % x L Be posso attaccare le
omotopie costruite nelle varie celle grazie all’ipotesi induttiva, perché posso fissare nel tempo il
comportamento sul bordo 9D .

Concludendo, le fibrazioni di Serre ammettono la HLP per ogni CW-complesso.

Proposizione 2.10. Sia p : E — B una fibrazione di Serre, by € B, F := p~'(by) e 29 € F.
Allora p, : m,(F, F,z9) — m,(B, by) & un isomorfismo per n>0.

Dimostrazione. Mostriamo prima che p, é suriettiva e poi che ¢ iniettiva. (ricordando che un

cubo I™ & un CW-complesso, quindi posso usare la HLP)

- Sia f € m,(B,by), dunque della forma f : (I™,0I") — (B,by). Si nota che la funzione
costante in xy ¢ un sollevamento di f|,, ,, infatti f(J"™') = by = p(zo). Dato che
oI" c J" ! posso applicare HLP per la coppia (I""!,0I"1) e ottenere f : ["" ! x [ — E
che solleva f, e vale f(8I") = by = p(f(dI")) dunque f(OI") C F, cioé f € mu(E, F,x) e

p«(f) = f. Quindi p, & suriettiva
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- Siano fo, fi € mu(E, F, ) tali che p.(fo) = po(f1). Sia H : I"*' — B un’omotopia fra
po fo epo fl, abbiamo gia un sollevamento parziale sul bordo del cilindro /™ x I meno

una faccia, dato da

(o) = fi(z) (z,t) e I" x {t}, te{0,1}
ne T (z,t) € I x T

In I™ x I Pultima coordinata ¢ il tempo, e H, ¢ definita su I"™ x 91 U J"~! x I. Se scambio
le ultime due coordinate di questo insieme ho che I'ultima coordinata non ¢ mai nulla, in
particolare diventa J". Usando HLP per la coppia (I™*!, J") ottengo un’omotopia su tutto

I che solleva H, e questa ¢ un’omotopia fra po fo e po fi.
O

Si prende la successione esatta lunga della coppia (E,F) e si sostituisce usando 'isomorfismo

della proposizione p,

o (F, xg) s mn(E, x0) SELEN (B, F, 20) —2= mu_1(F, o)

\ lp* /

(B, by)

Le due mappe oblique sono p, o7, e dop, !, che chiamo, in maniera piu sintetica, rispettivamente

P« € 0, ottenendo cosi la successione esatta associata a una fibrazione di Serre

0(F, 20) 5 10 (B, 20) 2 m0(B, bo) 2 s (F, 20)...

Fibrati

Definizione 2.11. Un fibrato é una struttura (E,F,p,B) dove p : E — B & una mappa per cui
V b € B,3 U intorno di B tale che p~'(U) & omeomorfo a U x F tramite ¢y e in modo che il

diagramma commuti.

pH(U)
e
UxF —— U

Chiamiamo E lo spazio totale, B lo spazio base e F la fibra. Diremo direttamente che p : £ — B
é un fibrato con fibra F, e useremo anche F' — B — F per indicare pitt comodamente qual € la
fibra.

Proposizione 2.12. Un fibrato ¢ una fibrazione di Serre
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Dimostrazione. Dobbiamo mostrare che la mappa p : E — B con fibra F ammette la HLP per
ogni disco I™. Sia h: [" x I — B, con h(x,t) = hy(x), 'omotopia che vogliamo sollevare avendo
gia hg sollevamento di hg. Sia U = {U,} un ricoprimento aperto di B, {h~!(U,)} & naturalmente
un ricoprimento di I"™ x I, e dato che é compatto esiste il numero di Lebesgue A del ricoprimento,
grazie al teorema m, per cui prendendo cubi C e intervalli [; = [t;,t,;+1] abbastanza piccoli
(di diametro inferiore a A) C' x I; finiscono in un U,. Assumendo per induzione su n che
g: sia gia stata sollevata su 0C, che sono cubi di dimensione n-1. Inoltre possiamo sollevare
g+ sull’interno di C costruendo separatamente ogni pezzo in ogni I;, in questo modo ci siamo
ricondotti a dover sollevare in ogni singolo C' x I; per poi attaccare tutti i pezzi. Essendo C' x I;
una riparametrizzazione di I™ x I ci concentriamo su quest’ultimo e nel caso in cui h lo mandi

tutto in un U,.

~ p~ ' (Ua)
/h | l{k

Considerando la commutativita del diagramma, fare h & come comporre h con l'inversa della

I x 1 U, x F

proiezione al primo fattore, con ¢,. Per induzione e per ipotesi ho gia ﬁ([ " x{0yUoI" xI)C
p Y (U,) = U, x F, per cui la prima componente di h ¢ semplicemente h, che ¢ data, abbiamo
quindi A(z,t) = (h(z,t), ¢(z,t)). Possiamo ottenere ¢ come composizione di 1" x I — I" x {0}U

0I" x I — F dove la prima é una retrazione e la seconda ¢é la funzione che avevamo gia. O]

Esempio 2.13. Se prendiamo una fibra F' discreta abbiamo che il fibrato p : £ — B ¢ un
rivestimento a |F| fogli. Dato che in questo caso F ha tutti i gruppi di omotopia nulli per n > 1

la successione esatta lunga ci dice che 7,(E) ~ 7,(B) Vn > 2, per n—=1 abbiamo
. > 0— 7Tl<E, .1'0) — 7T1(B,b0) — Z‘Flil — Wo(E,.IU) — Fo(B,bo)

che ci dice che la mappa p, : m(F,x9) — m(B,by) € iniettiva, come gia noto dalla teoria dei
rivestimenti.

2n+1
S /g1 quozientando

Esempio 2.14. Si ha un fibrato dato da S — S§***! — P"C dove P"C =
per l'azione di S' data dal prodotto per elementi di norma 1 di C. La mappa del fibrato
p: S?H — PC ¢ la proiezione al quoziente, per cui é evidente che la fibra sia S'. Prendiamo
il ricoprimento dato dalle carte affini U; = {20, ..., z,] € P"C | 2; # 0}, ho che ¢; : p~1(U;) —
U; x S data da ¢;(20, ..., 2n) = ([21, - 20l
Alzi

Zi

continue. Quindi é un fibrato.

Z—’l) ¢ un’omeomorfismo, dato che ([zo, ..., 2n], A) —

|2

(20, ..., 2n) € la sua inversa (basta comporre e vedere che esce identita) e sono entrambe

Esempio 2.15. Senza entrare nei dettagli, I'idea del caso precedente pud essere usata usando
anche i numeri reali R, quaternioni H e ottonioni O al posto dei complessi, si ottengono cosi i
seguenti fibrati: S° — S™ — P"R, S3 — S4*3 5 PrH e ST — ST — PrQ.

In tutti e 3 i casi l'idea ¢ la stessa, infatti lo spazio base ¢ ottenuto come quoziente dello spazio
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totale per l'azione data dalla moltiplicazione per gli elementi della fibra. Tralasciando il caso

reale, per n=1 forniscono i cosiddetti fibrati di Hopf (gli unici):

Sl 8% 5 52 S35 87 — 54 ST — 815 5 g8

2.4 Escissione

Da quello che abbiamo visto finora, i gruppi di omotopia sembrano un buon candidato per essere
una teoria omologica; purtroppo perd l'escissione fallisce. Si pud recuperare questa proprie-
ta restringendoci in un certo intervallo dimensionale per spazi che soddisfano certe ipotesi di

connettivita.

Proposizione 2.16 (escissione omotopica). Sia X = A U B uno spazio topologico, A e B due
aperti tali che C' = AN B sia CPA e non vuoto. Se (A, C) & p-connesso e (B, (') & g-connesso,
allora j, : m(A,C) — m(X, B), la sospinta dell’inclusione, ¢ un isomorfismo per i<p-+q ed &

suriettiva per i=p-+q.

L’escissione omologica assume questa forma: siano Z C A C X in modo che Z C ;1, allora
I'inclusione induce isomorfismi H,(X — Z, A — Z) — H,(X, A).
Notiamo che se siamo nelle ipotesi della proposizione allora B — A C l%, e dato che X —(B—A) =
Ae B— (B — A) = C applicando 'escissione omologica ho m,(A,C) = 7, (X — (B — A),B —
(B—A)) ~m,(X,B). Per questo chiamiamo "escissione" anche la proprieta della proposizione,
che pero vale sotto delle ipotesi piu stringenti rispetto a una qualsiasi teoria omologica, per le

quali I’escissione & uno degli assiomi. Vediamo prima delle conseguenze

Teorema 2.17 (di Freudenthal). Sia X uno spazio (n-1)-connesso, allora la mappa S data dal

funtore di sospensione m;(X) — m;41(SX) € un isomorfismo per i<2n-1 ed ¢ suriettiva per i=2n-1.

Dimostrazione. Per n=0 ’enunciato non ha senso, quindi si ha n>0, per cui X € sempre almeno
CPA.

Chiamiamo 7 : X x I — SX la proiezione al quoziente, e consideriamo i coni A = (X x [0, 2[)
e B=m(X X]%, 1]) & facile vedere che questi sono aperti in SX (sono la proiezione al quoziente
3
Xx]g,2[. Ora siano C1X e C»X i due coni attaccati alla base X che formano SX, questi non
sono necessariamente aperti, quindi non potrei usare l’escissione a priori, ma retraendo per
deformazione si ha A ~ C1X, B~ (CyX e ANB ~ X =(C; X NC5X, dunque hanno gli stessi
gruppi di omotopia. Per questo motivo, a meno di isomorfismo, continuo il ragionamento usando
solo C1 X, (X e C1 X NCLYX = X.

Dato che CX & contraibile ha tutti i gruppi di omotopia nulli; in particolare le successioni esatte

delle coppie (C1X, X) e (SX,CyX) sono rispettivamente

di aperti saturi, dove [0, 2[ ¢ aperto nella topologia di sottospazio di I). Si ha che AN B =

0= 1 (C1 X, X) = m(X) — 0. 0= m(SX) = m,(SX,C2X) —0...

29



che mi danno gli isomorfismi fra gli elementi non nulli che ci sono; usando cid posso vedere
la mappa di sospensione come la composizione m,(X) ~ m,41(C1X, X) LN Tn(SX, CoX) ~
Tnt1(SX) dove la mappa centrale é la sospinta dell’inclusione.

Ricordando che SX = C1 X UCyX e C1 X NCyX = X con X CPA, mancano solo le ipotesi di
connettivita per poter applicare l'escissione: essendo X (n-1)-connesso, i suoi primi n-1 gruppi
di omotopia sono nulli, la successione esatta lunga delle coppie (C1X, X) e (C2.X, X) mi dice che
entrambe le coppie sono n-connesse.

Applico Pescissione che mi dice che i, ¢ un isomorfismo. n

Dimostrazione dell’escissione

D’ora in poi A e B saranno aperti di X con X = AU B e C = AN B non vuota e CPA. Sia
QX;A,B) ={w:I— X |w(0) e A, w(l)e€ B} l'insieme dei cammini in X che partono in A
e finiscono B. Si nota che Q(A; A, C) C Q(X; A, B). Questi sono spazi topologici se dotati della
topologia compatta aperta, quindi posso considerarne i gruppi di omotopia.

Useremo i seguenti risultati, le loro dimostrazioni sono nell’appendice [A]

Teorema 2.18. Siano (A, C) e (B, C) rispettivamente p-connesso e g-connesso. Allora l'inclu-
sione a: Q(A; A, C) — Q(X; A, B) é (p+q-1)-connessa.

Proposizione 2.19. Sia (p1,ps) : (E1, E2) — B in modo che p; sia una fibrazione di Serre e
anche la restrizione, che chiamiamo p,, lo sia a sua volta. Allora (F4, Ey) ¢ n-connessa < la

coppia di fibre (p;!(b), py (b)) & n-connessa per ogni b € B.

Proposizione 2.20. La mappa p; : Q(X; A, B) — X definita da p(y) = v(0) & una fibrazione
di Serre. Lo stesso vale per py : Q(A; A, C) — A.

Ora dimostriamo ’escissione.

Dimostrazione. Prendiamo le fibrazioni della proposizione precedente [2.20] le fibre di un punto
b € B e c € C sono rispettivamente Q(X;b, B) e Q(A;¢,C). Abbiamo il seguente diagramma

commutativo:

Q(X:b,B) — Q(X;A B) 25 X

| ] I

Q(A;e,C) —— QA A C) 25 A
Il teorema dice che a & (p-+q-1)-connessa, mentre la proposizione dice che (8 ha la stessa

connettivita, dunque anche § & (p-+q-1)-connessa

Si ha 7, (X3, B)) ~ m,41(X, B, b), infatti preso un rappresentante della classe d’omotopia
f:(m0I") — (UX;b, B),y) con 7, il cammino costante in b. Ho che f(x) ¢ un cammino per
ogni X, posso passare in maniera naturale a una mappa g : I" x I — X con g(z,t) = f(x)(t).
Questa mappa g possiede le seguenti proprieta: finisce in X; 9I" x IUI™ x {0} viene mandato in

b, ed ¢ omeomorfo ad J"~1; OI" x {1} finisce in B. Questo ci dice che, a meno di riparametrizzare,
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g ¢ il rappresentante di una classe 7, (X, B,b). Si puo considerare anche la costruzione inversa e
ottenere 'isomorfismo. Si fa la stessa cosa per m,(2(A4; ¢, C')) e si ottiene il seguente diagramma

commutativo:
ﬂ—n(Q<X7 b> B)’ ’yb) i) 7Tn+1(X7 B: b)

o] i

7Tn<Q(Aa ¢, C)a 70) L) Tn+1 <A7 Ca C)

Dato che 3 ¢ (p+q-1)-connessa e il diagramma commuta, la sospinta dell’inclusione j, ¢ un

isomorfismo per n +1 < p+ g — 1, cioé per n < p + ¢ ed ¢ suriettiva per n = p + ¢ O

2.5 Alcuni calcoli

In questa sezione raccogliamo i frutti di tutti i risultati esposti finora e vediamo come possiamo

calcolare diversi gruppi di omotopia.

1) Come conseguenza dell’isomorfismo fra gruppi di omotopia di un rivestimente e lo spazio
rivestito, (esempio [2.13]) abbiamo che uno spazio X che ammette rivestimento universale
contraibile ha 7, (X, x9) = 0 Vn > 2. Ad esempio S! ha rivestimento universale R, T" =
St x ... x 8! ha rivestimento universale R”, e quelle superfici di Riemann di genere g>1
che hanno come rivestimento universale il disco di Poincaré.

Per lo stesso motivo, dato che S* riveste P'R, si ha 7, (P'R) ~ 7, (S") per n # 1

2) m,(S™) =0 Vn < m, quindi S™ & (n-1)-connesso. Si considera la stuttura di CW-complesso
su S™ data da un punto e una n-cella col bordo collassato sulla O-cella. Per una qualsiasi
funzione (S™,s9) — (S™,s;1) si considera 'omotopia data dall’approssimazione cellulare

2.1] che finisce in una funzione costante dato che I'n-scheletro di S™ & la singola 0-cella.

3) Se (X,A) ¢ una coppia di CW-complessi tale che X" = A", applicando I’approssimazione

cellulare per funzioni fra coppie (osservazione a (D', 0D") — (X, A) con i <n ho che
queste sono nulle per il criterio di compressione [I.9]
Questo dice che se X-A ha solo celle di dimensione maggiore di n allora (X,A) & n-connesso.
In particolare (X, X™) & n-connesso, e la successione esatta lunga ci dice che 7, (X) =~
mi(X™) Vi < n. Dunque gli n-scheletri di un CW-complesso sono un approssimazione
dello spazio sempre migliore con gruppi di omotopia fino ad n uguali.

Ad esempio P"R e P™R avranno gruppi di omotopia isomorfi fino all’indice min{n, m}

4) Le successioni esatte associate ai fibrati di Hopf (esempio[2.15]) ¢i danno alcune informazioni

Interessanti.

Lo (S1) — m(S3) — m(S?) — m(St) — T (S?) — w1 (S?)

I I I I
0 0 0 0
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dunque 71(S') ~ m5(5?). Inoltre, come visto in 1), 7,(S') = 0 per n # 1, percio il resto

della successione dice che 7,(5?) ~ 7,(S%) per n>2.

T (S™) ~ Z. Come mostrato in 2) S™ ¢ (n-1)-connesso, dunque il teorema di Freuden-
thal mi dice che 7,,(S™) ~ 7,1(S™), 'unico caso degenere ¢ n=1 per cui Freudenthal mi
dice solo che la mappa ¢ suriettiva, ma come visto in 4) 7,(S*) ~ m,(S5?), e sapendo che

71 (S1) = Z si conclude.

Per gli altri fibrati di Hopf non tutta la successione ci da informazioni che riusciamo ad
utilizzare come nel primo caso, perché non abbiamo un informazione analoga a ,(S') = 0
per n # 1. Possiamo sfruttare il range di indici in cui i gruppi di omotopia della sfera di
dimensione maggiore che compare nel fibrato si annullano, mentre i gruppi delle altre sfere

no:

Z 0
I I

7T7(Sd) — 7T7(S7) — 7T7<S4> — 7T6(53) — 7T6(S7) — 7T6<S4> — 7T5(53) —

— 7T5(S7) — 7T5(S4) — 7T4(83> — 7T4(S7) — 7T4(S4) — 7T3(83) — 7T3(S7)...

I I I I I
0 0 Z Z 0

Ne deduciamo che m,(S%) ~ 7,_1(S%) per 4 < n < 6 e che m(S?) & un quoziente di 77(S*)
per il primo teorema di isomorfismo.
Lo stesso ragionamento con 1'ultimo fibrato di Hopf dice ,,(S%) ~ 7, _1(S7) per 8 < n < 14

e che m4(S7) ¢ un quoziente di my5(S®)

I punti 4) e 5) ci dicono piu esplicitamente che 73(S5?) ~ 73(S?) ~ Z ~ m(S?)

Usando questi calcoli possiamo fornire un esempio che mostra che I’escissione non funziona
in ogni dimensione. Se l'escissione funzionasse avremmo 7,(X, A) ~ WH(X/ '4), come in
omologia. La successione esatta della coppia (D?, S') dice che 7,(D? S') ~ 7,1(S') =0
per n # 0 (dato che D? ¢ contraibile) mentre D2/51 ~ S? per cui Z ~ 7r2(D/S1) o
mo(D?, S1) = 0, similmente per 73
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Capitolo 3
Omotopia e (co)omologia

Abbiamo visto che i gruppi di omotopia non formano una teoria omologica, ma ci sono comunque
delle relazioni fra omotopia e omologia. In questo capitolo approfondiremo gli spettri, degli
oggetti che in un certo senso rappresentano le teorie (co)omologiche, e vedremo anche grazie a
questi dei legami fra omotopia e omologia difficilmente intuibili dalle definizioni. Ci concentriamo

sui CW-complessi.

3.1 Teorie (co)omologiche

Definizione 3.1. Una teoria omologica straordinaria é una successione di funtori h,, : CW? —
AbGrp e trasformazioni naturali d, : h, — h,_1; in modo che valgano le seguenti proprieta,

note come assiomi di Eilenberg-Steenrod:
1) Invarianza omotopica: f ~ g = h,(f) = hn(g) Vn

2) Escissione: per ogni coppia (X,A), sia U C Atale che U C ;1, allora i, : h,(X-U, A-U) —

hn (X, A) é un isomorfismo.

3) Successione esatta: ponendo h,(A) := h,(A,0), ogni coppia (X,A) induce la seguente

successione esatta lunga

B (A) = ho(X) = h(X, A) 25 by (A) — ...

4) Additivita: se X = | | X, allora @ i., : @ hn(Xa) = hy(X) € un isomorfismo

Una teoria coomologica straordinaria si ottiene con gli stessi assiomi ma su (CW?)??| quindi i
funtori A" sono contravarianti; inoltre, nel terzo assioma si considera il prodotto e non la somma

diretta dei gruppi.

Osservazione 3.2. Chiameremo h,(X) := h, (X, 0) la versione assoluta, h,(X, A) quella rela-
tiva e h,(X,pt) = hp(X) la versione ridotta; queste sono legate da hy(X) = hy(pt) @ ha(X).
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Fornire una teoria relativa o la sua versione ridotta é equivalente, infatti possono essere facilmen-
te costruite 'una conoscendo l'altra. Per la versione ridotta si possono riformulare gli assiomi
togliendo Pescissione, mettendo nella successione esatta h,(X/A) al posto di h, (X, A) e usando
il wedge al posto dell’'unione disgiunta, dato che stiamo specificando un punto base per ogni
spazio.

Si dice che la teoria soddisfa 1'"assioma della dimensione" se h,(pt) = 0 per ogni n # 0. Se
questa proprieta é soddisfatta, la teoria si dice ordinaria, e non straordinaria. I gruppi h,(pt) si

chiamano coefficienti della teoria. Analogamente per h”".

Osservazione 3.3. Nella definizione stiamo usando un abuso di notazione, abbiamo detto che

Op & una trasformazione naturale, cioé il seguente diagramma commuta per ogni coppia (X,A)

ho(X, A) —2" 5 h,_ (X, A)

lhn(f) lhn—l(f)

ho(X7, A') =22 (X7, AY)

Quello che facciamo per ottenere una mappa h,(X, A) — h,_1(A) & considerare il diagramma
con (X,A”)=(A,D), e comporre h,(X, A) KN hn_1(X, A) LIEION hn—1(A) (oppure 0,1 © hy,(i)

per commutativita).

Questi assiomi colgono le proprieta essenziali dell’omologia e coomologia singolare che le
rendono piu facili da computare rispetto all’omotopia; come abbiamo visto, nonostante i risultati
teorici del secondo capitolo, conosciamo ancora pochi gruppi di omotopia espliciti, anche per le
sole sfere. In particolare abbiamo visto che 1’escissione fallisce, dunque i gruppi di omotopia non

formano una teoria omologica poiché non vale il secondo assioma.

Definizione 3.4. Due teorie omologiche h,, e k, si dicono isomorfe se esistono trasformazioni
naturali 7 : h, — k, tali che per ogni oggetto X, 7 : h,(X) — k,(X) sia un isomorfismo per

ogni n.

3.2 Spettri

Definizione 3.5. Uno spettro E ¢ una successione di CW-complessi F,, e mappe di strutture
€n : 2E, — E, 1 per ogni n.
Un Q-spettro & uno spettro per cui le mappe di struttura F,, — QF, 1 sono co-connesse, cioé

inducono isomorfismi fra tutti i gruppi di omotopia di ¥ F,, e E, 1 per ogni n.

Ricordando che 3 e € sono aggiunti (osservazione|0.18]), le mappe di struttura possono essere
prese equivalentemente come XFE, — E,.1 o E, — QF,1; nonostante cio, in generale se una

mappa XX — Y & oo-connessa allora la mappa associata X — QY puo non esserlo, e viceversa.
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Per gli Q2-spettri si richiede proprio che la mappa E,, — QF, ., sia co-connessa.

Esiste un teorema di Milnor che afferma che se X ¢ un CW-complesso allora 2.X & omotopica-
mente equivalente a un CW-complesso. Per un 2-spettro si potrebbe richiedere direttamente che
le mappe di struttura siano equivalenze omotopiche, grazie al teorema di Whitehead 2.4 Questa
modifica non semplificherebbe la trattazione, e in generale si lavora non solo coi CW-complessi,

quindi lasceremo la richiesta piti debole per le mappe di struttura.

Definizione 3.6. Una funzione fra spettri (X,, €,) e (Y4, 7%) € un insieme di mappe f, : X,, = Y,

in modo che il seguente diagramma commuti

vX, — Xnt1

J/Zf lfn+1

YY, —— Yo
Definizione 3.7. Il k-esimo gruppo d’omotopia dello spettro E é dato dal limite diretto
m(E) = ligmﬁn(En)
Dove le mappe del sistema su cui calcolare il limite sono date da
(€n)«

m(Er) = T (SER) 22 M1 (Bip)

Osservazione 3.8. Abbiamo definito il gruppo d’omotopia di uno spettro tenendo conto dei
gruppi di omotopia dei singoli spazi che lo compongono e delle mappe di struttura. Un modo di

visualizzare quello che sta succedendo ¢ il seguente:

mo(Ey) —— m3(Ey) —— ma(Ea) —— .. o (E)
™ (Ey) —— mo(Ey) —— m3(Ea) —— .. ™ (E)
mo(Ey) —— m(Ey) —— mo(Ey) — .. mo(E)
mo(Ey) —— m(By) — .. 71 (E)
mo(Bs) —— ... 7_o(E)

E, By E, E
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Sulle colonne abbiamo i gruppi di omotopia dei singoli spazi, e ogni colonna aggiunta viene
traslata verso il basso: questo permette di avere sulle righe il sistema su cui calcolare il colimite
per i gruppi di omotopia dello spettro E, che mettiamo come ultima colonna. La definizione,
come risulta ancora pitl evidente dallo schema appena illustrato, permette di parlare anche dei

gruppi di omotopia dello spettro in grado negativo, quindi sono definiti per ogni k € Z

Definizione 3.9. Un’equivalenza stabile fra spettri E e F' ¢ una funzione che induce isomorfismi
fra f, : m(F) — m(F') per ogni k.
Un’equivalenza grado per grado fra spettri E e F é una funzione fra spettri tale che ogni k

fr : Xx — Y}, & oo-connessa.

Osservazione 3.10. L’equivalenza grado per grado implica quella stabile. Infatti essendo le
mappe (fi)« che collegano i gruppi di E,, e F,, isomorfismi, posso fare il ragionamento dell’os-
servazione sia con (fx). che con le loro inverse, e ottenere mappe fra i limiti diretti, ovvero

m(E) e m(F), che possiamo verificare essere inverse.

Wk(Xk+n) E— 7Tk+1(2Xk+n> E— 7Tk+1(Xk+n+1) _— ...

! ; B

Wk(Fk+n) — ﬂ-k‘—l—l(EFk‘-i-n) — 7Tk+1(Fk+n+1) _— ...

Si puo anche mostrare che il viceversa € vero per 2—spettri.

Osservazione 3.11. Si puo verificare che, prendendo gli spettri come oggetti e le funzioni fra
essi come morfismi, si ottiene una categoria. Considerando che una funzione fra spettri passa
naturalmente a una fra i gruppi di omotopia (ogni f, passa a una funzione (f,), fra i gruppi di
omotopia degli spazi che formano lo spettro, poi si usa 1’osservazione , con qualche verifica
in piu, si puo dire che 7, é un funtore dalla categoria degli spettri appena citata ai gruppi abeliani
per ogni k.

Ci sono diversi modelli di spettri che vengono esaminati e varie definizioni di funzioni fra essi;
cio ¢ legato al tentativo di definire una categoria che abbia delle proprieta desiderabili. Una
definizione soddisfacente si puo ottenere in diversi modi e viene chiamata categoria stabile. Per
maggiori dettagli si consultino [Ada74] e [Mal23, Chapter 3].

Esempio 3.12. Preso X CW-complesso con punto base, lo spettro di sospensione di X, che si

indica con X*°X, é definito da

(5°X), =2"X =35 X SHX = 9X, % X, =X

n

Lo spettro che si ottiene ponendo X = S°, cio¢ X>°8°, si chiama spettro di sfere.
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Esempio 3.13. Indichiamo con K (G, n), dove G & un gruppo, uno spazio di Eilenberg-Maclane,
cioé uno spazio che ha come n-esimo gruppo di omotopia G e tutti gli altri nulli. Un CW-
complesso con questa proprieta pud essere sempre costruito; in generale K (G, n) & univocamente
determinato, a meno di equivalenza omotopica, da n e G ([Hat02, Thm 4.30]). Dalla relazione
di aggiunzione dell’osservazione si ottiene che mp(X) ~ m,_1(2X), e per X = K(G,n) si
ottiene che 7, (K (G,n)) ~ m_1(QK(G,n)), che ci dice che QK (G,n) = K(G,n — 1) (dato che
¢ caratterizzato univocamente dai gruppi di omotopia con le informazioni di G e n).

Possiamo costruire lo spettro di Eilenberg-Maclane, che indichiamo con HG, in questo modo:
(HG),, = K(G,n) K(G,n) — QK(G,n+1)

le mappe di struttura sono le equivalenze omotopiche, che rendono lo spettro HG un 2-spettro.
Vale mo(HG) = G e m,(HG) = 0 per n # 0, quindi lo spettro HG si comporta in modo simile
allo spazio K(Gn).

Preso uno spettro E e un CW-complesso X possiamo definire un altro spettro, che chiamiamo

X A E, in questo modo:

(X ANE), = X AE, S(XAE) =XAE,AS =X A(SE) 9 X A B,

dove le prime due uguaglianze per definire le mappe di struttura sono date, ricordando 1’osser-
vazione [0.17] dal fatto che XX = X A S'. Presi due spazi X,Y, indichiamo con [X,Y] le classi
di omotopia delle mappe fra X e Y; per esempio si ha m,(X) = [S", X]

Questo ci permette di enunciare il seguente teorema:
Teorema 3.14. Sia E uno spettro e F un (2-spettro. Allora

1) Ex(X,A) :=m((X/A)AFE) ¢ una teoria omologica straordinaria, i cui gruppi dei coefficienti

sono m,(F)

2) FF(X, A) :=[(X/A), F},] é una teoria coomologica straordinaria, i cui gruppi dei coefficienti

sono m_,(F)

Idea della dimostrazione. Dato che teorie omologiche ridotte e non ridotte sono equivalenti, ci
concentriamo su quelle ridotte, che in questo caso sono Ei(X) = Ex(X,pt) = m(X A E) e

F*(X) = [X, F},], (Uescissione sarebbe immediata dato che nella formula compare il quoziente,

preso Z C Asiha X/A~ (X/Z)/(A/Z))

1) L’invarianza omotopica segue dal fatto che se f ~ g allora fAid ~ gAid e per la funtorialita
di 7, sulla categoria degli spettri si conclude.
Per la successione esatta lunga si considera che dato che siamo in CW-complessi A — X
ha la HEP (osservazione [0.10), che passa a una cofibrazione A < X — X/A. Facendo lo
smash product si ottiene una cofibrazione di spettri ANE — X AE — X/AAE acui é

sempre associata una successione esatta lunga dei gruppi di omotopia.
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Per ladditivita si usa il fatto che ogni mappa S* — \/ X, fattorizza a una S* — \/ X,

acA aeB
dove B C A con B finito (si usa il fatto che S* ¢ compatto e interseca un numero finito di
celle, come nell’osservazione [0.9). Sfruttando U'identita (\/ Xo) AE =\ (Xoa AE) ela
acA acA

proprieta appena enunciata per passare alla somma diretta, si ottiene:

m((\ Xa) A B) = m(\/ (Xa A B)) = lig[SH, (\] (Xa A E)),] =

acA acA acA

13@5" (Xo A E)y @135" (Xo A E)y @wkx A E)

Dove si usano delle proprieta categoriche per scambiare la somma diretta con il limite
diretto.
Per tutti i dettagli si consulti [Mal23|, Prop 2.5.7] oppure [Hat02, Section 4.F].

2) La struttura di Q2—spettro permette di averne una di gruppo su [X, Fy|, infatti se considero
X — F, = QF,.1 Poperazione di gruppo & data usando la concatenazione di cammini, a
meno di omotopia.

Per I'invarianza di omotopia si considera che f : X — Y passaa f*: [X, Fy| — [V, F}] data
dalla composizione con f, e mappe omotope inducono la stessa mappa dato che lavoriamo
all’interno di classi di omotopia di mappe.

Per D'additivita basta notare che una mappa \/ X, — F; & una collezione di mappe

Xo — F, per cui si ha [\/ Xo, F] ~ H[Xa, Fy

«

La succesione esatta lunga si ottiene facﬂmente usando uno strumento noto come succes-

sione di Puppe, tutti i dettagli possono essere trovati in [Hat02, Thm 4.58].
m

Per le teorie coomologiche abbiamo una richiesta piti restrittiva sullo spettro, ma questo ci

permette anche di avere piti informazioni sulla teoria coomologica, dato che il teorema fornisce
una descrizione che usa ogni grado dello spettro.
Un fatto sorprendente ¢ che anche il viceversa ¢ vero: presa una teoria (co)omologica straor-
dinaria h, (h™), esiste un (Q-)spettro, unico a meno di equivalenza stabile, tale che la formula
data dal teorema ¢ isomorfa a h,, (™). Questo ¢ il contenuto del teorema di rappresentabilita di
Whitehead, per 'omologia, e di Brown, per la coomologia. (Le dimostrazioni si possono trovare
rispettivamente in [Mal23, Thm 4.2.23] ¢ [Hat02, Thm 4E.1])

3.3 Gruppi di omotopia stabili e (co)omologia singolare

Abbiamo visto che un qualsiasi spettro (o Q-spettro) rappresenta una teoria omologica (o0 coo-

mologica) sfruttando la formula della proposizione. Sfruttiamo questo fatto prendendo dei par-
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ticolari (2-)spettri e vediamo quali teorie (co)omologiche otteniamo, non dovendo verificare a

mano gli assiomi di Eilenberg-Steenrod.

Gruppi di omotopia stabili

Il teorema di Freudenthal puo essere enunciato anche con la sospensione ridotta: ci dice che,
preso X uno spazio n-connesso, si ha m;(X) ~ m;11(XX) per i<2n+1. In particolare vale per
¢ < n, quindi se prendo un qualsiasi spazio X n-connesso questo avra i primi n gruppi nulli,
dunque X avra i primi n+1 gruppi nulli (anche 7, se X ¢ CPA anche ¥.X lo &).

Questa discussione ci dice che anche se prendo uno spazio X senza nessuna ipotesi (possiamo
prenderlo CPA; altrimenti potremmo restringerci sulle componenti CPA), da un certo punto in

poi nella seguente successione saranno tutti isomorfismi, partendo da un qualsiasi i
WZ(X) — 7TZ‘+1(ZX) — ’/TiJrQ(ZQX) — ...

Chiamiamo l'i-esimo gruppo di omotopia stabile 7f(X) un rappresentante della classe di isomor-
fismo che si ottiene nella successione dopo un numero adeguato di sospensioni.

Un modo equivalente di definire questi gruppi stabili ¢ 77(X) = @Wi+n(Z”X ): ricordando la
caratterizzazione data nell’osservazione otteniamo che se le mappe di un sistema diretto
da un certo punto in poi sono tutti isomorfismi, allora il limite diretto coincide con un rappre-

sentante di questa classe di isomorfismo.

Da questa caratterizzazione risulta evidente che i gruppi di omotopia stabili sono i gruppi di
omotopia dello spettro di sospensione visto nell’esempio [3.12} cioe 75(X) = 7,(X*°X). Inoltre,

ricordando 'osservazione [0.17], si ha che X A S™ = X" X, per cui si ottiene che
Ta(X/A) NEZ8) = 1, (E%(X/A)) = 1, (X/A) = m(X, A)

cioé la teoria omologica associata allo spettro di sfere S ¢ proprio quella data dai gruppi di
omotopia stabili. Questo ci permette di dire, senza doverlo verificare a mano, che questi gruppi
entrano in una successione esatta lunga e 'additivita (assiomi 3) e 4)), a differenza dei gruppi

di omotopia.

(Co)omologia singolare

Sia A" I'n-simplesso, e indichiamo con §; : A"~! — A" I'inclusione dell’i-esima faccia. Indichiamo
con C,(X; G) l'insieme delle combinazioni lineari formali di simplessi singolari, ovvero le funzioni
o: A" — X, a coefficienti in G. Si definisce il complesso di catene singolari nel seguente modo:

n

o O 2 O Y Oy (o) = (~1)io 05,
i=0
Si verifica che 0,,_1 0 0, per cui sono ben definiti i gruppi di omologia singolare di X, definiti da

H,(X;G) = Ker 0,/Im 0,41; si dice anche che ¢ 'omologia associata al complesso di catene.
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Preso A C X si verifica che C(X, A; G) = C.(X; G)/C.(A; G) & anch’esso un complesso di catene
singolari, 'omologia associata a questo complesso si indica con H,(X, A;G) e forma una teoria
omologica ordinaria, mentre quella vista prima ¢ la sua versione assoluta.

Per costruire la coomologia singolare si considera C(X;G) = Hom(C,,G) e si forma il com-
plesso di cocatene singolari, dato da 0" : C; — C;; ;. L’omologia associata a questo complesso
¢ la coomologia singolare H"(X;G), e anche per questa si puo definire la versione per coppie.
Quest’ultima forma una teoria coomologica ordinaria, la cui versione assoluta ¢ data dalla ver-

sione definita poco sopra.

Per una larga classe di spazi, ovvero la categoria degli spazi omotopicamente equivalenti a
CW-complessi, una teoria (co)omologica ordinaria ¢ determinata dal suo gruppo dei coefficienti,
cio¢ presa una teoria ordinaria h, con ho(pt) = G si ha h, ~ H,(-;G) (la dimostrazione si
puo trovare in [Hat02, Thm 4.59]), dunque vale anche per CW-complessi. La teoria omologica
associata allo spettro di Eilenberg-Maclane dell’esempio , cioé m,(X/ANHG), ha gruppi dei
coefficienti

m.(HG)=..0 0 CT; 0 0
0

Dunque per il teorema appena citato questa & isomorfa proprio all’omologia singolare: H,, (X, A; G) ~
m(X/A N HG). Lo stesso ragionamento puo essere effettuato per la coomologia singolare, da
cui si ottiene H"(X, A; G) ~ [X/A, K(G,n)].

Le costruzioni dell’omologia e coomologia singolare a priori non hanno nessuna relazione con
I’omotopia, eppure entrambe possono essere caratterizzate tramite ’'omotopia. Il solo fatto che
per descrivere una generica teoria si possano usare i gruppi di omotopia di uno spettro, per
I’omologia, e le classi di omotopia di certe funzioni, per la coomologia lega omologia e omotopia;
in particolare il caso della (co)omologia singolare mi da un legame molto piu forte, infatti per
rappresentarla si usano gli spazi di Eilenberg-Maclane, spazi che sono determinati dai loro gruppi

di omotopia.
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Appendice A

Lemmi per l’escissione in omotopia

La dimostrazione seguira le idee contenute in [Die08), Section 6.9]. Fissiamo un po’ di notazione.
Wi(a,0,L)={z€R" |a; <z;<a;+dperi€ L,a;=ux; peri¢ L}

¢ un cubo, dove a = (ay,...,a,) € R", § > 0e L C {1,...,n}. Possiamo vedere a come uno
spigolo, 0 la lunghezza del lato e L come la dimensione del cubo W immerso in R", infatti

poniamo dimW = |L|. Una faccia di W &
W' (Lo, L) ={x € W | 2;=a; peri € Ly, xj =a; + 0 per j € L}

dove Lgy, L1 C L. Diciamo che se i sta in Ly ci mettiamo nella faccia di una dimensione inferiore
perpendicolare all’asse ¢ che contiene ag, se invece sta in L; nella faccia opposta. Quindi alla
fine W'(Ly, L,) identifica una faccia di dimensione |L| — (|Lo| + |L1])

Nel seguito useremo anche i seguenti insiemi:
J : .
K,={xeW |z <a+ 5 ber almeno p coordinate di L}
J
Gp={zeW |z >a+ 5 per almeno p coordinate di L}

Se p>dimW poniamo questi insiemi vuoti. Per un’intuizione geometrica sono illustrati alcuni
esempi di K1(I?), Ky(I?) e K3(I?).

\
\
\
N

\
\
\

|

Lemma A.1. Prendiamo W = W(a,d,L), f: W —Y e ACY per cui, fissato p<dimW, vale
A NW C K,(W') per ogni W C oW

Allora esiste una mappa g omotopa rel OW ad f tale che g7'(A) C K,(W) (Analogamente con
G al posto di K))
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Dimostrazione. Definiamo una funzione h : W — W in questo modo: sia x = (a; + %, ey Oy + g),
,g, L) l'intersezione

fra la semiretta e il cubo di lato dimezzato che parte da a, mentre Q(r) = rNOW. Considerando

consideriamo una semiretta r che parte da . Chiamiamo P(r) =r N oW (a

tutte le possibili semirette r definiamo h in modo che mandi il segmento fra x e P(r) nel segmento
da P(r) a Q(r), mentre quest’ultimo segmento viene collassato direttamente in Q(r). Per come
¢ definita vale (h(2)); = (a; + 2) 4+ t(2; — (a; + 2)) per i punti che stanno fra « e P(r) per t.
H(z,t) = (1 —t)z 4+ th(z) ¢ un’omotopia rel OW (poiché hlaow = idaw ) fra h e I'identita.

Poniamo g = foh, che dunque é gia omotopa a f per quanto appena detto, ci manca di verificare
che g71(A) C K,(W). Siano z € W e g(z) € A, vogliamo mostrare che in realta z € Kp(W). Se
z < a; + g per ogni i allora ho gia concluso, altrimenti esiste almeno una coordinata i per cui
2 > a; + g, che quindi ¢ situata in W — W(a, g, L), per cui h(z) € OW, cioé sta in una faccia
W’ di dimensione |L| — 1. Dato che f(h(z)) = g(z) € A si ha h(z) € f~'(A) dunque per ipotesi
h(z) € K,(W'), cioé (h(z)); < a; +  per almeno p coordinate, e dalla descrizione esplicita di h

scritta sopra possiamo dedurre la stessa cosa per z;. ]
D’ora in poi A e B saranno aperti di X con X = AU B e C = AN B non vuota

Proposizione A.2. Sia f : I" — X, W un qualsiasi cubo di una scomposizione di I"™ e siano
(A,C) e (B, C) rispettivamente p-connesso e g-connesso. Allora esiste un’omotopia f; di f con

le seguenti proprieta:
1) fW)c A= fi(W) C A (o con B al posto di A)
2) f(W)cC C = f; é costante su W
3) (W) C A= fT{(A=C) AW C Kyppa(W)
4) fW)Cc B= fiH(B-C)NW C Gu1(W)

Dimostrazione. A e B formano un ricoprimento aperto di X, quindi {f~!(A), f~1(B)} ¢ un
ricoprimento aperto di /", dunque esiste il numero di Lebesgue [0.13| e una scomposizione di I™
in cubi W tali che f li manda in A o in B. Sia C* I'unione dei cubi di dimensione minore di k,
costruiamo l'omotopia di f su C*¥ x I per induzione su k.

Per il passo base k=0, sia W di dimensione 0, cioé¢ un punto. Se f(W) € C allora possiamo
considerare 'omotopia costante e abbiamo il punto 2). Se f(W) € A considero un cammino da
f(W) a un punto di C' (che esiste poiché (A, C') ¢ in particolare 0-connesso). Prendiamo questa
come omotopia di f che rispetta le condizione 1) e 3) (quest’ultima diventa banale in questo
caso dato che f;*(A — C) = ). Lo stesso ragionamento con f(W) € B fornisce la condizione
4).

Assumiamo per induzione che ’omotopia sia definita su C*~!. Dato che un cubo ¢ in particolare
un CW-complesso e le sue facce lo sono a loro volta, (WW,0W) & una coppia di CW-complessi,
dunque possiamo usare la HEP per definire f; su W di dimensione k e preservare le proprieta
1) e 2). Sia ora f(W) C A, se dimWW <p esiste un’omotopia rel OW tale che f1(W) C C, dato
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che (A, C) ¢ p-connesso (si ricordi la caratterizzazione della p-connessione [L.12)); in questo caso
la condizione 3) ¢ soddisfatta. Se dimI¥ > p allora si usa il lemma precedente che fornisce
un’omotopia per cui f; soddisfa la condizione 3). Si fa la stessa cosa per la condizione 4) con
f(W) c B. O

Sia Q(X;A,B) :={w:I - X | w(0) € A, w(l) € B} I'insieme dei cammini in X da A a
B. Si nota che Q(A; A, C) C Q(X; A, B). Questi sono spazi topologici se dotati della topologia

compatta aperta, quindi ne posso considerare i gruppi di omotopia.

Teorema A.3. Siano (A, C) e (B, C) rispettivamente p-connesso e g-connesso. Allora I'inclu-
sione (A; A, C) — Q(X; A, B) ¢ (p+q-1)-connessa.

Dimostrazione. Considerando la successione esatta associata alla coppia (2(X; A, B), Q(A; A, C))
basta mostrare che m;((Q2(X; A, B),Q(A; A,C))) =0 per i < p+ g — 1, quindi vogliamo mostra-
re che presa ¢ : (I',0I') — (UX; A, B),Q(A4; A, C)) & omotopa a una funzione che finisce in
Q(A; A, C) (si ricordi il criterio di compressione [1.9).

Per ogni x € I’ ho un cammino ¢(z) : I — X, in particolare la funzione ¢ passa a una funzione
: I'x I — X definita da ®(x,t) = p(x)(t) che & continua dato che ¢ la composizione di funzioni
continue (x,t) LGN (o(x),t) = @(z)(t) (ev & continua grazie alla topologia compatto-aperta).
In particolare il fatto che ¢ fosse una mappa fra coppie si riflette su ® facendo si che abbia

queste proprieta:
e O(z,0) C A per ogni x € I
e &(z,1) C B per ogni x € I
e ®(x,t) C A per ogni (z,t) € (OI',I)

Chiamiamo una mappa che rispetta queste proprieta ammissibile, vogliamo deformare ¢, tramite
mappe ammissibili, in una mappa che finisce in A. Consideriamo una scomposizione di I* x [
in cubi W che vadano in A o in B tramite ® (possibile grazie al numero di Lebesgue ,
e deformiamo ® in ¥ tramite un’omotopia come nel lemma precedente su ogni cubo W. Le
condizioni 1) e 2) del lemma precedente ci danno una condizione di compatibilita, una volta
definita I’'omotopia su tutti i cubi possiamo "incollare" i vari pezzi su tutto I* x I.

Ora sia P : I' x I — I' la proiezione, notiamo che P(V"1(X — A)) N P(¥~X — B)) = 0,
infatti siay € =X — A) C K,41(W) (Uinclusione ¢ data dal punto 3) del lemma), quindi P(y)
ha almeno p coordinate minori di g; analogamente, se y fosse anche in ¥~1(X — B) avrebbe q
coordinate maggiori di g, ma stiamo lavorando in ¢ < p+ ¢, dunque abbiamo un assurdo. Inoltre,
dato che ® manda (9I',I) in A, usando la proprieta 1) del lemma anche ¥ lo manda in A, per
cui P(U~1(X — A))N oI’ = . Ricordando che ¥(z,-) ¢ un cammino, questo ci dice che le x per
cui il cammino associato ¥(z, -) ammette dei tempi t in cui (z,t) stain X — A o in X — B sono
disgiunti, e non dipendono dal tempo (poiché consideriamo la proiezione P). Quindi i cammini

U(z,+) se ammettono un tratto in X — A non hanno nessun tratto in X — B e viceversa.
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Queste considerazioni ci permettono di definire 7 : I* — I continua tale che 7(P(¥~1(X —A))) =
0e7(0I'UP(¥~1(X —B))) = 1, in questo modo T assume valori compresi fra 0 e 1 solo se tutto

U(z,-) sta in C. A questo punto definiamo
Gy: I'xI — X
(x,t) +— Uz, (1 —s)t+ str(z))
(G5 ¢ una mappa ammissibile per ogni s, infatti
e G(z,0)=¥(z,0) C A perognizel

o Gy(z,1) =V(x,(1—5s)l+s7(x)) e per come ¢ definita 7, 7(z) # 1 solo se ¥(z, -) sta tutto
in X — A C B, quindi l'unico caso di cui ci dobbiamo occupare & 7(z) = 1. Ma in questo
caso si ha Gy(z,t) = U(x,1) C B dato che ¥ ¢ ammissibile.

e Sia x € OI°, allora G4(z,t) = ¥(z, ((1 — s)t + stT(x)) C A poiché ¥ ¢ ammissibile.

inoltre Gy = ¥ e G; é una mappa che finisce in A, poiché G;(z,t) = U(z,t7(x)) C A, infatti se
7(x) # 0 segue direttamente da come ¢ definita 7 e se # € dI' per quanto detto poco sopra; se
7(x) =0 si ha Gy(z,t) = ¥U(x,0) per ammissibilita.

uindi G4 € 'omotopia cercata. O
Q p

Proposizione A.4. Sia (p1,p2) : (E1, E2) — B in modo che p; sia una fibrazione di Serre e
anche la sua restrizione a Fs, che chiamiamo p,, lo sia a sua volta. Allora (E7, E3) € n-connessa

se e solo se, per ogni b € B, la coppia di fibre (F}, F?) := (p; *(b),p; (b)) & n-connessa.
La dimostrazione ¢ in [Die08, Thm 6.3.8|

Proposizione A.5. La mappa p; : Q(X; A, B) — X definita da p;(7) = v(0) & una fibrazione
di Serre. Lo stesso vale per py : Q(A; A, C) — A.

Dimostrazione.

m X
Abbiamo Gy che solleva Gy, cioé Go(x) & un cammino che parte da Go(x) e termina in B. Per
costruire il resto del sollevamento posso definire G4(x) come un cammino da Gy(z) a Go(z) (che
esiste sempre poiché essendo (A,C) e (B, C) 0-connessi e C CPA posso sempre spostarmi nella
componente CPA di Gy(z) per ogni x) per poi comporlo con Gy(z). Per Q(A; A, C) si fa la stessa

cosa. O
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