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Introduzione

Nel 1979 David Kazhdan e George Lusztig pubblicarono Representations

of Coxeter groups and Hecke algebras, dove introdussero per la prima volta dei

polinomi, successivamente chiamati polinomi di Kazhdan–Lusztig. Nati per

definire delle particolari rappresentazioni delle Algebre di Hecke di un Gruppo

di Coxeter, trovarono presto applicazioni in altri ambiti. Per esempio, sono

utilizzati nella teoria delle rappresentazioni dei gruppi algebrici semisemplici,

nello studio dei moduli di Verma e nella geometria algebrica e la topologia

delle varietà di Schubert. Le proprietà dei polinomi di Kazhdan–Lusztig

sono state molto studiate negli anni, per esempio è stata dimostrata la non

negatività nel 2014 in [EW14]. L’invarianza combinatoria, invece, rimane

aperta nel caso generale, ma è stata provata in casi specifici, come intervalli

di lunghezza minore o uguale a 4 (una dimostrazione si può trovare in [Bre03])

oppure intervalli [e, v] dove e è l’identità del gruppo ([BCM06]).

Nel 1992, Richard P. Stanley in [Sta92] generalizzò queste funzioni polino-

miali a tutti gli insiemi parzialmente ordinati, mentre Brenti successivamen-

te le generalizzò ulteriormente agli insiemi debolmente graduati, in [Bre99],

dove coniò anche il nome funzioni di Kazhdan–Lusztig–Stanley. Questa teo-

ria unisce ambiti differenti della matematica, come l’enumerazione di punti,

linee, etc. in matroidi, l’enumerazione delle facce di politopi convessi, la

combinatoria e la teoria delle rappresentazioni dei gruppi di Coxeter.

Il primo capitolo fornisce i concetti fondamentali su cui si basano le teorie

trattate. Una prima parte riguarda i polinomi, in particolare le proprietà di

unimodalità, simmetria e non negatività. La seconda e la terza sezione, inve-
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ii INTRODUZIONE

ce, introducono gli insiemi parzialmente ordinati e le loro algebre di incidenza,

nate a metà degli anni ’60 per risolvere alcuni problemi di combinatoria, ma

considerate utili anche in altri ambiti come la teoria degli anelli.

Il secondo capitolo si concentra su una particolare categoria di insiemi

parzialmente ordinati, i poset euleriani. Questi sono caratterizzati da una

certa regolarità e comprendono classi importanti di poset, come i reticoli

booleani, i politopi e i gruppi di Coxeter con ordinamento di Bruhat. Su

questi ultimi verranno esposti alcuni risultati di base, utili all’introduzio-

ne degli R-polinomi e dei polinomi di Kazhdan–Lusztig, che non saranno

tuttavia trattati in dettaglio, ma come motivazione della teoria.

Il terzo capitolo è dedicato in modo approfondito alle funzioni di Kazhdan–

Lusztig–Stanley. Dopo l’introduzione del concetto di nuclei per gli insiemi

parzialmente ordinati, viene enunciato e dimostrato il risultato principale di

questo capitolo ossia l’esistenza delle funzioni KLS per ogni nucleo. In parti-

colare ogni nucleo può essere scritto come prodotto di inversione e riflessione

dello stesso polinomio, dove con riflessione si intende l’inversione dei coeffi-

cienti di un polinomio rispetto a un centro di simmetria. Inoltre, imponendo

una condizione sul grado, questa scrittura è unica.

Nell’ultimo capitolo viene trattata, invece, una nuova famiglia di funzio-

ni: le funzioni di Chow, introdotte per la prima volta nel 2024 in [FMV24].

Dopo la definizione, saranno messi in luce i legami con le funzioni di Kazh-

dan–Lusztig–Stanley. Sarà mostrato, in particolare, che le funzioni di Chow

sono simmetriche e verrà enunciato un risultato di unimodalità. Infine ver-

ranno introdotte le funzioni di Chow aumentate, e discusse le loro caratteri-

stiche principali. Nell’articolo citato vengono dimostrate ulteriori proprietà

delle funzioni di Chow per poset euleriani, che non verranno approfondite

in questa tesi, tra cui un teorema per cui la funzione di Chow associata al

nucleo εst(x) = (x − 1)ρst in un poset euleriano P equivale all’h-polinomio

del complesso d’ordine ∆(P ).
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4.2 Unimodalità e non negatività delle funzioni di Chow . . . . . . 44

4.3 Funzioni di Chow aumentate . . . . . . . . . . . . . . . . . . . 48

Bibliografia 53

iii





Capitolo 1

Concetti Preliminari

In questo capitolo saranno presentate alcune definizioni e risultati preli-

minari, su cui si poggeranno i contenuti dei capitoli successivi. In partico-

lare saranno introdotti concetti relativi ai polinomi, gli insiemi parzialmente

ordinati e le basi dell’algebra di incidenza, integrati da alcuni esempi sia

elementari, che più significativi.

1.1 Polinomi

Cominciamo con l’introdurre alcuni concetti fondamentali riguardanti i

polinomi.

Definizione 1.1. Sia p(x) = a0 + a1x + · · · + amx
m ∈ Z[x] un polinomio a

coefficienti non negativi. Allora il polinomio p(x) è unimodale se esiste un

indice j tale che

a0 ≤ a1 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ am.

Diciamo che p(x) è simmetrico se esiste un indice d tale che ai = ad−i per

ogni i (con la convenzione che ai = 0 se i < 0). In questo caso diciamo che

p(x) ha centro di simmetria d/2.

Osserviamo che la definizione di simmetria può essere espressa in modo

equivalente attraverso la formula p(x) = xdp(x−1).

1



2 1. Concetti Preliminari

Il seguente lemma fornisce una caratterizzazione dei polinomi a coefficienti

non negativi, simmetrici e unimodali. Per comodità, dato un polinomio

p(x) ∈ Z[x], diciamo che esso è non negativo se è a coefficienti non negativi.

Lemma 1.2. Sia p(x) un polinomio non negativo. Le seguenti sono equiva-

lenti:

1. p(x) è unimodale e simmetrico con centro di simmetria d/2.

2. Esistono dei numeri non negativi c0, c1, . . . , c⌊d/2⌋ tali che

p(x) =

⌊d/2⌋∑
i=0

cix
i(1 + x+ · · ·+ xd−2i).

Dimostrazione. Sia p(x) come nel punto 2, con ci ≥ 0, allora

p(x) =

⌊d/2⌋∑
i=0

cix
i(1 + x+ · · ·+ xd−2i) =

⌊d/2⌋∑
i=0

ci(x
i + · · ·+ xd−i).

Osserviamo che se k ≤ ⌊d/2⌋ allora il coefficiente di grado k è dato da

c0 + · · · + ck, se invece k > ⌊d/2⌋ il suo coefficiente è c0 + · · · + cd−k. Da

questo segue la simmetria poiché risulta [xk]p(x) = [xd−k]p(x). L’unimodalità

dei coefficienti deriva dalla non negatività dei ci.

Viceversa sia p(x) un polinomio a coefficienti positivi, unimodale e sim-

metrico

p(x) = a0 + a1x+ · · ·+ adx
d.

Allora possiamo trovare i ci risolvendo il sistema lineare
c0 = a0

c0 + c1 = a1
...

c0 + · · ·+ c⌊d/2⌋ = a⌊d/2⌋

Essi esistono perché è un sistema lineare associato alla matrice triangolare

inferiore con tutte le entrate uguali a 1, quindi invertibile. L’unimodalità di

p(x) garantisce che i ci siano non negativi.
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Si vede facilmente che se p(x) e q(x) sono polinomi non negativi, unimo-

dali e simmetrici ed entrambi hanno centro di simmetria d, allora p(x)+ q(x)

è non negativo, unimodale e simmetrico con centro di simmetria d. È meno

ovvio che anche il prodotto conservi queste proprietà.

Lemma 1.3. Siano p(x) e q(x) polinomi non negativi, simmetrici e unimo-

dali. Allora p(x)q(x) è non negativo, simmetrico e unimodale. Inoltre se

p(x) e q(x) hanno rispettivamente centro di simmetria c e d, allora il centro

di simmetria di p(x)q(x) è c+ d.

Dimostrazione. Definiamo

p(x) =
m∑
i=0

aix
i, q(x) =

n∑
j=0

bix
i.

Essi hanno centro di simmetria rispettivamente m/2 e n/2. Siano r :=

⌊m/2⌋, s := ⌊n/2⌋. Per convenzione consideriamo ai = 0 se i ̸= 0, ...,m e bj =

0 se j ̸= 0, ..., n. I polinomi p(x) e q(x) sono tali che

- ai, bj ≥ 0 per ogni i, j;

- ai = am−i, bj = bn−j;

- a0 ≤ · · · ≤ ar ≥ · · · ≥ am, b0 ≤ · · · ≤ bs ≥ · · · ≥ bn.

Allora si ha

r∑
i=0

(ai − ai−1)(x
i + · · ·+ xm−i) = a0(1 + · · ·+ xm)− a0(x+ · · ·+ xm−1)

+ a1(x+ · · ·+ xm−1)− a1(x
2 + · · ·+ xm−2) + · · · = p(x).

Analogamente q(x) =
∑s

j=0(bj − bj−1)(x
j + · · ·+ xn−j). Quindi

p(x)q(x) =
m∑
i=0

n∑
j=0

(ai − ai−1)(bj − bj−1)(x
i + · · ·+ xm−i)(xj + · · ·+ xn−j).

Il polinomio (xi + · · · + xm−i)(xj + · · · + xn−j) è banalmente a coefficienti

non negativi, simmetrico e unimodale con centro di simmetria (m+n)/2 per
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ogni i, j. Inoltre (ai − ai−1)(bj − bj−1) ≥ 0, ∀i ∈ {0, . . . , r}, j ∈ {0, . . . , s}.
Quindi si ha che p(x)q(x) è dato da somma di polinomi a coefficienti non

negativi, unimodali e simmetrici con centro di simmetria (m + n)/2, quindi

anche p(x)q(x) stesso lo è.

1.2 Insiemi parzialmente ordinati

Definizione 1.4. Un insieme parzialmente ordinato (detto anche po-

set) è una coppia (P , ≤ ) dove P è un insieme non vuoto e ≤ è una relazione

d’ordine.

Due elementi x, y ∈ P sono confrontabili se risulta x ≤ y o y ≤ x.

Definizione 1.5. Siano P, Q due insiemi parzialmente ordinati e sia f :

P → Q. Diciamo che f è un morfismo di insiemi parzialmente ordinati se

per ogni x ≤ y in P , si ha f(x) ≤ f(y). Se f è anche una biezione, diciamo

che è un isomorfismo di insiemi parzialmente ordinati. I poset P e Q sono

isomorfi se esiste un isomorfismo f : P → Q.

Definizione 1.6. Sia P un poset. Chiamiamo Int(P ) = {[s, t] : s, t ∈ P, s ≤
t} l’insieme degli intervalli chiusi di P , dove [s, t] = {w ∈ P : s ≤ w ≤ t}.

Definizione 1.7. Sia P un poset. Diciamo che P è limitato se esistono

0̂, 1̂ ∈ P tali che 0̂ ≤ x ≤ 1̂ ∀x ∈ P .

Definizione 1.8. Un poset P si dice finito se ha un numero finito di ele-

menti. Si dice localmente finito se per ogni coppia di elementi s ≤ t in P

l’intervallo chiuso [s, t] ha un numero finito di elementi.

Esempio 1.9. Il seguente grafico mostra un esempio di poset limitato e

finito, dove le frecce indicano la relazione d’ordine che, convenzionalmente,

va dal basso all’alto. Questa rappresentazione degli insiemi parzialmente

ordinati è detta diagramma di Hasse.
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0̂

a b

1̂

Esempio 1.10. Un insieme parzialmente ordinato può essere infinito, ma

localmente finito, per esempio consideriamo Z ordinato in modo standard. È

infinito, ma ogni intervallo [m,n] ⊆ Z contiene un numero finito di elementi,

più precisamente m− n+ 1.

Definizione 1.11. Sia P un poset limitato. P si dice graduato se, presi

due qualunque cammini massimali della forma

0̂ < w1 < · · · < wr−1 < 1̂,

essi hanno la stessa lunghezza r ∈ Z≥0. Possiamo dunque definire la funzio-

ne rango

ρ : P → Z≥0, ρ(s) = r,

dove r è la lunghezza di una qualunque catena massimale da 0̂ a s. Definiamo

anche una funzione più generale:

ρ : Int(P ) → Z≥0, ρst := ρ([s, t]) = ρ(t)− ρ(s).

Esempio 1.12. Il poset nell’Esempio 1.9 è graduato perché tutti i cammini

massimali tra gli elementi hanno la stessa lunghezza. Consideriamo ora il

seguente poset:

0̂

a
b

c

1̂
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Questo non è graduato perché esistono due cammini massimali da 0̂ a 1̂, che

sono 0̂ < b < c < 1̂ e 0̂ < a < 1̂, che hanno lunghezze diverse.

Dati un poset P e s, t ∈ P , un maggiorante di s e t è un elemento u ∈ P

che soddisfa u ≥ s e u ≥ t. Un estremo superiore (sup) di s e t è un

maggiorante u di s e t tale che per ogni altro maggiorante v vale u ≤ v.

Analogamente si definiscono minoranti e estremi inferiori (inf).

Definizione 1.13. Un poset P è un reticolo se ogni coppia di elementi ha

un estremo inferiore e un estremo superiore.

Esempio 1.14. I poset P1 e P2 in figura sono entrambi graduati e localmente

finiti, ma P1 è un reticolo, mentre P2 non lo è perché i maggioranti di a e b

sono {c, d, 1̂}, ma c ≰ d, d ≰ c.

0̂

a b

c d

1̂

= P1
0̂

a b

c d

1̂

= P2

Esempio 1.15. Un esempio di reticolo graduato è il reticolo Booleano Bn,

n ∈ N, ossia l’insieme delle parti di un insieme di n elementi ordinato per

inclusione. Per esempio se n = 3, si ottiene B3.

∅

{a} {b} {c}

{a, b} {b, c}{a, c}

{a, b, c}
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D’ora in poi P indicherà un insieme parzialmente ordinato localmente

finito e graduato e ρ la funzione rango.

1.3 Algebra di incidenza

Definizione 1.16. Sia P un poset eA un anello unitario. Definiamo l’algebra

di incidenza I(P ) di Int(P ) su A come l’A-modulo libero sull’insieme

Int(P ).

Possiamo vederla come l’insieme delle funzioni Int(P ) → A:

I(P ) = {f : Int(P ) → A}.

Per convenzione se f ∈ I(P ) e s, t ∈ P, s ≤ t indichiamo f([s, t]) =: fst.

Il prodotto in I(P ) è definito come convoluzione: se a, b ∈ P , il loro prodotto

è dato da:

(ab)st =
∑

s≤w≤t

aswbwt.

L’anello che useremo di più è l’anello dei polinomi a coefficienti interi

Z[x], quindi gli elementi di I(P ) saranno indicati con fst oppure con fst(x)

a seconda del contesto.

Osservazione 1.17. Il prodotto è ben definito perché P è localmente finito e

dunque [s, t] ha cardinalità finita per ogni s ≤ t in P . Osserviamo anche che

il prodotto è associativo, ma non commutativo. Inoltre esiste un elemento

neutro, il delta di Kronecker, definito come

δst =

1 se s = t,

0 se s ̸= t.

Infatti, sia a ∈ I(P ). Allora

(aδ)st =
∑

s≤w≤t

aswδwt = ast

perché δwt ̸= 0 se e solo se w = t. La dimostrazione di (δa)st = ast è analoga.
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Lemma 1.18. Sia P un poset e A un anello unitario. Un elemento a ∈ I(P )

è invertibile ⇐⇒ ass è invertibile in A per ogni s ∈ P .

Dimostrazione. (⇒) Sia a ∈ I(P ) invertibile e sia a−1 il suo inverso. Allora,

per ogni s ∈ P si ha 1 = δss = (aa−1)ss = assa
−1
ss quindi ass è invertibile.

(⇐) Sia a ∈ I(P ) tale che ∀s ∈ P, ass sia invertibile in A. Vogliamo definire

per induzione su ρst un elemento b ∈ I(P ) che sia l’inverso di a. Sia s ∈ P e

bss = (ass)
−1, si ha (ab)ss = assbss = 1. Sia ora s < t, definiamo:

bst = −(ass)
−1
( ∑

s<w≤t

aswbwt

)
.

Questo è effettivamente l’inverso cercato, infatti:

(ab)st = assbst +
∑

s<w≤t

aswbwt = 0.

Quindi a è invertibile da destra con inverso b. Prendendo poi c ∈ I(P )

definito come

cst =

1 se s = t,

(ass)
−1(
∑

s≤w<t cswawt) se s ̸= t,

si mostra in modo analogo che a è invertibile da sinistra con inverso c. Dunque

per associatività del prodotto in I(P ) si ha:

b = δb = (ca)b = c(ab) = cδ = c.

Quindi a è invertibile in I(P ) con inverso c = b.

Un esempio notevole di elemento dell’algebra di incidenza è dato dalla

funzione ζ definita come

ζst = 1 ∀s ≤ t ∈ P.

Il suo inverso si chiama funzione di Möbius: µ = ζ−1. Possiamo dare una

definizione ricorsiva della funzione di Möbius, facilmente calcolabile:

µst =


1 se s = t,

−
∑

s≤w<t

µsw se s ̸= t.
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O, equivalentemente, per unicità dell’inverso:

µst =


1 se s = t,

−
∑

s<w≤t

µwt se s ̸= t.

Esempio 1.19. Consideriamo Z>0 ordinato per divisibilità, ossia se n,m ∈ Z
si ha n ≤ m se e solo se m è divisibile per n. Osserviamo che l’intervallo

[m,n] è isomorfo a [1, m
n
]. Allora basta calcolare la funzione di Möbius per

ogni intervallo della forma [1, n] con n ∈ Z>0. Se n = 1, si ha µ1,1 = 1. Sia

n > 1 e supponiamo che n = pe11 . . . pekk sia la sua scomposizione in fattori

primi, allora si può dimostrare che vale la seguente formula per la funzione

di Möbius.

µ1,n =


1 se n = 1,

(−1)k se ei = 1 ∀i ∈ {1, . . . , k},

0 altrimenti.

Definizione 1.20. Sia A=Z[x] e sia f ∈ I(P ), fst(x) = xρst . La funzione

caratteristica χ ∈ I(P ) è definita come:

χst(x) = (µf)st(x) =
∑

s≤w≤t

µswx
ρwt

Se P è limitato, chiamiamo χP := χ0̂1̂(x) il polinomio caratteristico di P .

Esempio 1.21. Sia P =

0̂

u v

w

1̂
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Calcoliamo innanzitutto la funzione di Möbius:

µst =


1 se ρst = 0 o [s, t] = [0̂, w],

−1 se ρst = 1,

0 se s ∈ {u, v}, t = 1̂ o ρst = 3.

La funzione caratteristica è dunque

χst(x) =



1 se s = t,

x− 1 se ρst = 1,

x2 − 2x+ 1 se [s, t] = [0̂, w],

x2 − x se s ∈ {u, v}, t = 1,

x3 − 2x2 + x se ρst = 3.

In particolare il polinomio caratteristico è χP = x3 − 2x2 + x.



Capitolo 2

Poset Euleriani

Questo capitolo tratta dei poset euleriani, una classe di insiemi parzial-

mente ordinati che risulta particolarmente rilevante in vari ambiti della ma-

tematica. Iniziamo con un introduzione generale, successivamente vedremo

alcuni esempi, con particolare attenzione ai poset dati dai gruppi di Coxeter

dotati di ordinamento di Bruhat.

Definizione 2.1. Un poset P di dice euleriano se ∀s ≤ t ∈ P vale µst =

(−1)ρst , dove µ è la funzione di Möbius.

Esempio 2.2. Un politopo convesso di dimensione d è l’inviluppo convesso

di un insieme finito di punti in Rd; in particolare, per d = 2 si ottiene un

poligono convesso, mentre per d = 3 un poliedro convesso. Una faccia di

un politopo convesso P è l’intersezione di P con un iperpiano di supporto,

cioè con un iperpiano che contiene P in un semispazio chiuso. Le facce

comprendono il politopo stesso e l’insieme vuoto.

I politopi sono stati studiati in modo approfondito, per esempio in [Zie95],

ma non verranno trattati nello specifico in questa tesi. Ne vediamo solo una

proprietà, che li rende di rilevanza per gli argomenti trattati.

È possibile dimostrare che il reticolo delle facce di un politopo convesso,

ordinato per inclusione, costituisce un poset graduato euleriano. Possiamo

vederne un esempio nella Figura 2.1.

11
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v1 v2

v3v4

∅

{v1} {v2} {v3} {v4}

{v1, v2} {v2, v3} {v3, v4} {v4, v1}

P

Figura 2.1: Un quadrato e il suo reticolo delle facce

Proposizione 2.3 (Caratterizzazione dei poset euleriani). Un poset P è

euleriano se e solo se in ogni intervallo [s, t] ⊆ P sono presenti lo stesso

numero di elementi di rango pari e di rango dispari.

(Nota: con rango di w ∈ [s, t] si intende il rango in [s, t] come poset, ossia

ρsw).

Dimostrazione. (⇒) Riprendiamo la definizione ricorsiva della funzione di

Möbius. Siano s < t ∈ P ,

µst = −
∑

s≤w<t

µsw.

Si ha dunque

(−1)ρst = −
∑

s≤w<t

(−1)ρsw ⇐⇒
∑

s≤w≤t

(−1)ρsw = 0,

che è equivalente al fatto che l’intervallo [s, t] abbia lo stesso numero di

elementi di rango pari e dispari.

(⇐) Per ipotesi ∀[s, t] ⊆ P vale
∑

s≤w≤t(−1)ρsw = 0. Dimostriamo che P

è euleriano per induzione su ρst. Se ρst = 1, t copre s e µst = −µss = −1

quindi la tesi. Sia ρst > 1, allora∑
s≤w≤t

(−1)ρsw = 0 = µst +
∑

s≤w<t

µsw = µst +
∑

s≤w<t

(−1)ρsw .
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E quindi µst = (−1)ρst .

Esempio 2.4. I reticoli Booleani Bn, visti nell’Esempio 1.15, sono euleriani.

Dimostrazione. Si osservi che ogni intervallo [s, t] ⊆ Bn è isomorfo a Bm con

m = ρst. Dunque basta dimostrare che in Bn ci sono lo stesso numero di

elementi di rango pari e dispari. In generale il numero di elementi di Bn di

rango k è
(
n
k

)
, quindi

# elementi di rango pari −#elementi di rango dispari

=
n∑

k=0

(−1)k
(
n

k

)
= (1− 1)n = 0.

Esempio 2.5. L’Esempio 1.9 rappresenta un poset euleriano. Per quanto

riguarda l’Esempio 1.14, P1 non è euleriano in quanto se si considera [0̂, c]

sono presenti due elementi di ordine pari, 0̂, c, ma uno solo di rango dispari, a.

Invece P2 è euleriano, perché gli intervalli [0̂, c], [0̂, d], [a, 1̂], [b, 1̂] sono isomorfi

all’Esempio 1.12.

Un importante esempio di insiemi parzialmente ordinati euleriani è da-

to dai gruppi di Coxeter dotati dell’ordinamento di Bruhat, che verranno

introdotti nelle prossime sezioni.

2.1 Gruppi di Coxeter

Cominciamo con l’introdurre una serie di definizioni di base.

Definizione 2.6. Una matrice di Coxeter di rango n è una matrice sim-

metrica n × n a coefficienti interi, in cui le entrate della diagonale hanno

tutte valore 1 e le altre hanno valore maggiore o uguale a 2. Un sistema

di Coxeter associato ad una matrice di Coxeter M = (mi,j) è una coppia
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(W,S), dove W è un gruppo e S := {s1, . . . , sn} è un sottoinsieme di W tale

che S genera W e valgono solamente le seguenti relazioni

s2i = e ∀i ∈ {1, . . . , n}, (sisj)
mi,j = e ∀i, j ∈ {1, . . . , n}, i ̸= j,

dove e è l’elemento neutro del gruppo.

Definizione 2.7. Un gruppo W viene detto gruppo di Coxeter se esiste

un suo sottoinsieme S tale che (W,S) è un sistema di Coxeter. L’insieme

S è detto insieme dei generatori di Coxeter per il gruppo W e |S| è il

rango del sistema di Coxeter (W,S).

Questo equivale a definire il gruppo di Coxeter W come un quoziente

F/N dove F è il gruppo libero sull’insieme S e N è il sottogruppo normale

generato dagli elementi (sisj)
mi,j per ogni i, j.

Esempio 2.8. I gruppi di Weyl di sistemi di radici sono dei gruppi di Coxeter.

In particolare quasi tutti i gruppi di Coxeter finiti sono gruppi di Weyl.

Esempi elementari di gruppi di Weyl sono i gruppi simmetrici Sn, infatti

essi sono generati dalle riflessioni semplici s1, . . . , sn−1, si = (i, i + 1) . Le

relazioni sono date da

mi,j = 2 se |i− j| > 1, mi,j = 3 altrimenti.

Dunque, se S = {s1 . . . sn}, (Sn, S) è un sistema di Coxeter di rango n − 1.

Consideriamo per esempio n = 3, S3 è generato da {s1, s2} e la matrice di

Coxeter è (
1 3

3 1

)
.

Se n = 4, invece, si ha la matrice
1 3 2

3 1 3

2 3 1

 .
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Osservazione 2.9. La matrice di Coxeter è simmetrica perché sisj e sjsi hanno

lo stesso ordine. Infatti:

(sisj)
mi,j = e ⇐⇒ sisjsisj · · · sisj︸ ︷︷ ︸

mi,j volte

= e ⇐⇒ sjsisj . . . si = sjsi

⇐⇒ e = sjsisjsi · · · sjsi︸ ︷︷ ︸
mi,j volte

⇐⇒ (sjsi)
mi,j = e.

Quindi (sisj)
mi,j = e implica anche (sjsi)

mi,j = e. Inoltre si può dimostrare

che si e sj commutano se e solo se mi,j = 2.

Osserviamo anche che, per definizione, ogni elemento di S è un’involuzione.

Un diagramma di Coxeter di un sistema di Coxeter (W,S) è un grafo

non orientato il cui insieme dei nodi è S ed esiste un arco che collega si a sj

se e solo se mi,j ≥ 3. Inoltre se mi,j ≥ 4, il lato viene etichettato con mi,j.

Esempio 2.10. Consideriamo ancora S3. Il suo diagramma di Coxeter è

s1 s2

Il diagramma di Coxeter di S4 è invece

s1 s2 s3

In generale osserviamo che per il gruppo simmetrico Sn, il diagramma di

Coxeter associato è dato dal diagramma di Dynkin di tipo An−1.

Esempio 2.11. Possiamo partire da un diagramma di Dynkin di tipo A3,

come abbiamo visto per S3, ma etichettare in modo differente, per esempio

s1 s2 s3
4

Questo grafo è chiamatoB3 e possiamo costruire un gruppo di Coxeter che ab-

bia B3 come diagramma. Si ha dunque il sistema di Coxeter (G,S), associato

alla matrice 
1 4 2

4 1 3

2 3 1





16 2. Poset Euleriani

dove S = {s1, s2, s3} e vale

(s1s2)
4 = e, (s1s3)

2 = 2, (s2s3)
3 = e, s2i = e ∀i ∈ {1, 2, 3}.

SeW è un gruppo di Coxeter, w ∈ W si può scrivere come w = si1si2 . . . sin .

Chiamiamo la parola si1si2 . . . sin nell’alfabeto S un espressione per w. La

lunghezza di un elemento w, indicata con l(w), è il minimo intero k tale che

w può essere scritto come prodotto di k generatori. Se w = si1si2 . . . sik , con

k = l(w), allora la parola si1si2 . . . sik è chiamata un espressione ridotta

di w.

Sui gruppi di Coxeter è possibile stabilire un ordinamento parziale tra gli

elementi, detto ordine di Bruhat. Saranno ora presentate alcune proprietà

dei gruppi di Coxeter che servono alla buona definizione di tale ordinamento,

le dimostrazioni si possono trovare in [BB05].

Avremo bisogno della seguente definizione:

Definizione 2.12. Una riflessione t in un gruppo di Coxeter W è il coniu-

gato, tramite un qualche w ∈ W , di un elemento dell’insieme dei generatori

s ∈ S: t = wsw−1. Chiamiamo T l’insieme delle riflessioni:

T = {wsw−1 : s ∈ S, w ∈ W}.

Teorema 2.13 (Proprietà di scambio forte). Supponiamo w = s1s2 . . . sk, si ∈
S, ∀i e sia t ∈ S. Se l(tw) < l(w), allora tw = s1s2 . . . ŝi . . . sk per qualche

i ∈ {1, . . . , k}.

La scrittura ŝi indica che si è stato rimosso, equivale a scrivere tw =

s1 . . . si−1si+1 . . . sk.

Definizione 2.14. Sia (W,S) un sistema di Coxeter e sia w ∈ W . Allora

DL(w) := {s ∈ S : l(sw) < l(w)}

DR(w) := {s ∈ S : l(ws) < l(w)}

sono detti rispettivamente insieme delle discese sinistre e insieme delle

discese destre.
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Corollario 2.15. Per ogni s ∈ S e per ogni w ∈ W , valgono le seguenti:

1. s ∈ DL(w) se e solo se qualche espressione ridotta per w inizia con la

lettera s.

2. s ∈ DR(w) se e solo se qualche espressione ridotta per w finisce con la

lettera s.

Teorema 2.16 (Proprietà di cancellazione). Se w = s1s2 . . . sk e l(w) < k,

allora w = s1 . . . ŝi . . . ŝj . . . sk, per qualche 1 ≤ i < j ≤ k.

Si può dimostrare che le proprietà di cancellazione e di scambio forte sono

equivalenti ed entrambe caratterizzano i gruppi di Coxeter. Infatti vale la

seguente caratterizzazione dei gruppi di Coxeter: sia W un gruppo e S un

suo gruppo di generatori, tale che ogni elemento di S sia di ordine 2. Sono

equivalenti le seguenti:

• (W,S) è un sistema di Coxeter;

• (W,S) gode della Proprietà di Scambio;

• (W,S) gode della Proprietà di Cancellazione.

Sia (W,S) un sistema di Coxeter. Definiamo una sottoparola di s1s2 . . . sk, si ∈
S come

si1si2 . . . siq , con 1 ≤ i1 ≤ i2 ≤ · · · ≤ iq ≤ k.

Corollario 2.17. Sia (W,S) un sistema di Coxeter, w ∈ W . Valgono le

seguenti

1. Qualsiasi espressione w = s1 . . . sk contiene un’espressione ridotta per

w come sottoparola.

2. Supponiamo che w = s1 . . . sk = s′1 . . . s
′
k siano due espressioni ridotte

per w. Allora l’insieme di lettere che appaiono nella parola s1 . . . sk è

uguale all’insieme delle lettere he compaiono nella parola s′1 . . . s
′
k.

3. S è un insieme minimale di generatori per W , ovvero nessun generatore

di Coxeter può essere espresso in termini di altri generatori.
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2.2 Ordinamento di Bruhat

In questa sezione useremo (W,S) per indicare un sistema di Coxeter.

Diamo innanzitutto alcune definizioni.

Definizione 2.18. Il grafo di Bruhat diW è il grafo orientato il cui insieme

dei vertici è W e dati u, v ∈ W si ha un arco u → v se e solo se v = ut per

qualche riflessione t ∈ T e l(u) < l(v).

Adesso possiamo definire l’ordinamento di Bruhat.

Definizione 2.19. L’ordinamento di Bruhat diW è la relazione di ordine

parziale definita da → ed estesa per transitività. Quindi dati u, v ∈ W vale

u ≤ v se e solo se esiste una catena

u = u0 → u1 → · · · → uk = v.

Possiamo caratterizzare l’ordinamento di Bruhat utilizzando il concetto

di sottoparola, definito nella sezione precedente.

Teorema 2.20 (Proprietà della Sottoparola). Siano u,w ∈ W . Sia w =

si1 . . . sik un’espressione ridotta per w. Allora u ≤ w se e solo se esiste

un’espressione ridotta di u come sottoparola di si1 . . . sik .

Dimostrazione. La dimostrazione si trova su [BB05].

Esiste una proposizione che caratterizza l’ordinamento dell’inverso degli

elementi di un gruppo di Coxeter.

Proposizione 2.21. Siano u, v ∈ W . Le seguenti sono equivalenti:

1. u ≤ v;

2. u−1 ≤ v−1.

Dimostrazione. Per il Teorema 2.20 esiste un’espressione di v ridotta tale

che u sia una sua sottoparola. Sia questa v = s1 . . . sn e sia u = si1 . . . sik .

Allora un’espressione ridotta di v−1 è sn . . . s1 e u
−1 = sik . . . si1 dunque si ha

u−1 ≤ v−1. Il viceversa è analogo.
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Esempio 2.22. Riprendiamo l’Esempio 2.10. L’insieme parzialmente ordi-

nato dato dall’ordinamento di Bruhat di S3 è:

e

s1 = (1, 2) s2 = (2, 3)

s1s2 = (1, 2, 3) s2s1 = (1, 3, 2)

s1s2s1 = s2s1s2 = (1, 3)

Esempio 2.23. Consideriamo ora il gruppo di Coxeter avente come dia-

gramma associato B2:

s1 s2
4

.

Le relazioni sono

(i) s21 = s22 = e

(ii) (s1s2)
4 = (s2s1)

4 = e

Dalla condizione (ii) otteniamo

s1s2s1s2 = s2s1s2s1

Dunque il poset associato sarà:

e

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2 = s2s1s2s1
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Esempio 2.24. Torniamo ad Sn, per trovare l’ordinamento per n grande,

computare ogni prodotto è più complicato. C’è un modo per calcolare la

lunghezza di un elemento di Sn, attraverso il concetto di inversione. Sia

w ∈ Sn chiamiamo inversione di w una coppia (i, j) ∈ {1, . . . , n}2, i < j,

tale che wi > wj, dove wk = w(k) ∀k ∈ {1, . . . , n}. Indichiamo con inv(w) il

numero di inversioni di w. Si può dimostrare che

inv(w) = l(w).

Scriviamo w = [w1 . . . wn], allora si ha che w ≤ u e l(u) = l(w) + 1 se

e solo se u = [u1 . . . un] si ottiene da w scambiando wi e wj per qualche

i, j ∈ {1, . . . , n} in modo tale da avere

inv(u) = inv(w) + 1.

In questo modo è possibile costruire il diagramma di Hasse per esempio di

S4, Figura 2.2.

Osserviamo che i poset ottenuti negli esempi sono euleriani. Possiamo

generalizzare questo risultato.

Teorema 2.25. L’insieme parzialmente ordinato ottenuto da un gruppo di

Coxeter W con l’ordinamento di Bruhat è euleriano.

Dimostrazione. La dimostrazione di questo teorema si trova in [Ver71].

Sui gruppi di Coxeter con ordine di Bruhat, Kazhdan e Lusztig hanno

inizialmente sviluppato il concetto di nucleo, che vedremo nel capitolo suc-

cessivo. In particolare hanno definito dei polinomi, chiamati R-polinomi ed

hanno dimostrato alcune proprietà di questi, oltre che la buona definizione.

Siano x,w ∈ W , e sia s ∈ DL(w) il polinomio Rx,w(q) è definito in maniera

ricorsiva come segue

Rx,w(q) =



0 se x ≰ w,

1 se x = w,

Rsx,sw se s ∈ DL(x),

(q − 1)Rx,sw(q) + qRsx,sw se s /∈ DL(x).
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[1 2 3 4]

[1 2 4 3] [1 3 2 4] [2 1 3 4]

[1 4 2 3] [1 3 4 2] [2 1 4 3] [3 1 2 4] [2 3 1 4]

[1 4 3 2] [4 1 2 3] [2 4 1 3] [3 1 4 2] [3 2 1 4] [2 3 4 1]

[4 1 3 2] [4 2 1 3] [3 4 1 2] [2 4 3 1] [3 2 4 1]

[4 3 1 2] [4 2 3 1] [3 4 2 1]

[4 3 2 1]

Figura 2.2: Diagramma di Hasse dell’ordinamento di Bruhat di S4.
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A partire dagli R-polinomi si possono costruire i polinomi di Kazhdan–

Lusztig in modo ricorsivo. Per ogni x ≤ w in W

ql(w)−l(x)Px,w(q
−1) =

∑
a∈[x,w]

Rx,aPa,w.

Sin dagli inizi (ossia la pubblicazione di [KL79] nel 1979) si congetturava

che i polinomi di Kazhdan–Lusztig avessero coefficienti non negativi per ogni

gruppo di Coxeter. Per i gruppi di Weyl, grazie all’interpretazione geometrica

dei coefficienti dei polinomi come dimensioni di certi gruppi di coomologia,

era nota la non negatività. La dimostrazione del caso generale arrivò solo

nel 2014 con il lavoro di Elias e Williamson, [EW14].

Stanley in [Sta92] ha generalizzato la teoria a tutti gli insiemi parzial-

mente ordinati, introducendo delle funzioni che furono poi chiamate funzioni

di Kazhdan–Lusztig–Stanley, che saranno trattate nel prossimo capitolo.



Capitolo 3

Funzioni di

Kazhdan–Lusztig–Stanley

In questo capitolo riprenderemo molte definizioni presentate nei concetti

preliminari, in particolare l’algebra di incidenza di un insieme parzialmente

ordinato. D’ora in poi l’anello unitario su cui è definita l’algebra di incidenza

sarà sempre considerato come Z[x].

3.1 P-Nuclei

Sia P un Poset e ρ una funzione rango. Definiamo Iρ(P ) ⊆ I(P ) come

Iρ(P ) = {a ∈ I(P ) : deg(ast) ≤ ρst}.

Questo insieme costituisce un sottoanello dell’algebra di incidenza I(P ).

Infatti: siano a, b ∈ Iρ(P ), allora:

- δ ∈ Iρ(P );

- deg[(a + b)st] = deg(ast + bst) ≤ max{deg ast, deg bst} ≤ ρst quindi

a+ b ∈ Iρ(P );

- deg[(ab)st] = deg

( ∑
s≤w≤t

aswbwt

)
≤ max

s≤w≤t
{deg asw + deg bwt}

≤ max
s≤w≤t

{ρsw + ρwt} = ρst quindi ab ∈ Iρ(P ).

23
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Definizione 3.1. In Iρ(P ) è definita un’involuzione:

rev : Iρ(P ) → Iρ(P )

a 7→ arev,

dove (arev)st := ast(x
−1) ·xρst . Si dice che a è simmetrica se risulta arev = a.

Lemma 3.2. Siano f, g ∈ Iρ(P ). Allora valgono le seguenti:

1. (fg)rev = f revgrev.

2. Se f invertibile, (f−1)rev = (f rev)−1.

Dimostrazione. 1.

[(fg)rev]st(x) = (fg)st(x
−1) xρst =

∑
s≤w≤t

fsw(x
−1)gwt(x

−1)xρsw+ρwt

=
∑

s≤w≤t

(f rev)sw(x) (g
rev)wt(x) = (f revgrev)st(x).

2.

(f−1)revf rev = (f−1f)rev = δrev = δ,

dove si è usato il punto 1 e il fatto che δrev = δ poiché è un polinomio

di grado 0, quindi invariante rispetto a rev.

Analogamente si dimostra f rev(f−1)rev = δ e dunque la tesi.

Definizione 3.3. Sia k ∈ Iρ(P ) tale che kss = 1 ∀s ∈ P . Diciamo che k è

un nucleo (o P-nucleo) se

krev = k−1.

Lemma 3.4. Sia a ∈ Iρ(P ) invertibile. Allora

k = a−1arev e h = areva−1

sono dei nuclei.
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Dimostrazione. Dimostriamolo per k, per h la dimostrazione è analoga.

krev = (a−1arev)rev = (a−1)rev(arev)rev = (arev)−1a = (a−1arev)−1 = k−1.

Esempio 3.5. La funzione caratteristica è un nucleo per ogni poset P . In-

fatti siano P un poset e s, t ∈ P, s ≤ t, per il lemma si ha che ζ−1ζrev è un

nucleo.

(ζrev)st(x) = ζst(x
−1) · xρst = xρst

Quindi

(ζ−1ζrev)st(x) = (µζrev)st(x) =
∑

s≤w≤t

(µsw(x) · xρwt) = χst(x)

Esempio 3.6. Consideriamo il poset euleriano associato a S3 con ordina-

mento di Bruhat, visto nell’Esempio 2.22 e la funzione εst(x) = (x − 1)ρst .

Mostriamo che ε è un nucleo in tale poset.

εrevst = (1− x)ρst .

Verifichiamo εrevε = δ :

- ρst = 0, s = t, allora (εrevε)ss(x) = 1.

- ρst = 1, (εrevε)st(x) = x− 1 + 1− x = 0.

- ρst = 2, ogni intervallo di rango 2 ha struttura:

s

w1 w2

t

quindi (εrevε)st(x) = (x− 1)2 − 2(x− 1)2 + (x− 1)2 = 0.

- ρst = 3, quindi s = e, t = s1s2s3. Si ha (εrevε)st = (x − 1)3 − 2(x −
1)3 + 2(x− 1)3 + (1− x)3 = 0.
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Possiamo generalizzare questo risultato a tutti i poset euleriani, più pre-

cisamente esso ne fornisce una caratterizzazione.

Teorema 3.7. Un poset P è euleriano se e solo se l’elemento ε ∈ Iρ(P ),

εst(x) = (x− 1)ρst ∀s ≤ t ∈ P

è un nucleo.

Dimostrazione. Osserviamo che εrevst (x) = (1− x)ρst . Inoltre εss = 1 ∀s ∈ P

quindi è invertibile.

(εrevε)st =
∑

s≤w≤t

(1− x)ρws(x− 1)ρwt = (x− 1)ρst
∑

s≤w≤t

(−1)ρsw .

Poichè deve valere ∀x questo è uguale a δst se e solo se
∑

s≤w≤t(−1)ρsw = 0

ossia P è euleriano.

3.2 Funzioni KLS

Un teorema di Stanley garantisce che ogni nucleo ha la forma vista nel

Lemma 3.4, sebbene lui consideri solamente la funzione indicata con k nel

lemma (e non h); il risultato rimane comunque valido. Questo enunciato

costituisce il teorema centrale di questa sezione. Stanley, infatti, definisce

un P -nucleo come una funzione f invertibile che soddisfa f rev = fk. Se f

soddisfa solo quest’ultima condizione, si dice che è k-totalmente accettabile.

Inoltre, aggiungendo una condizione sul grado, abbiamo l’unicità delle fun-

zioni k-totalmente accettabili.

Per dimostrarlo è necessario il seguente lemma:

Lemma 3.8. Sia k ∈ Iρ(P ) un nucleo e siano s, t ∈ P . Suppongo che

f ∈ Iρ(P ) soddisfi ∀w ∈ P, s < w ≤ t

(kf)wt =
∑

w≤u≤t

kwufut = (f rev)wt.
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Allora il polinomio

Qst(x) =
∑

s<w≤t

ksw(x)fwt(x)

è antisimmetrico, cioè Qrev = −Q.

Dimostrazione.
Qrev

st =
∑

s<w≤t

krev
sw f rev

wt

=
∑

s<w≤t

krev
sw (kf)wt

=
∑

s<w≤t

krev
sw

∑
w≤u≤t

kwufut

=
∑

s<w≤u≤t

krev
sw kwufut

=
∑
s<u≤t

fut
∑

s<w≤u

krev
sw kwu

=
∑
s<u≤t

fut((k
revk)su − ksu)

= −
∑
s<u≤t

ksufut = −Qst

dove abbiamo usato (krevk)su = δsu = 0.

Ai fini del teorema, definiamo

I1/2(P ) = {a ∈ I(P ) : ass = 1 ∀s ∈ P e deg(ast) < ρst/2 ∀s, t ∈ P, s < t}.

Osservazione 3.9. Questo insieme non costituisce una sottoalgebra di I(P ),

perché se a, b ∈ I1/2(P ), allora a+b /∈ I1/2(P ), perché (a+b)ss = ass+bss = 2

per ogni s ∈ P . Costituisce invece un gruppo moltiplicativo, infatti siano

a, b ∈ I1/2(P ), allora per ogni s ∈ P, (ab)ss = assbss = 1. Siano ora s < t in

P si ha

deg[(ab)st] = deg

( ∑
s≤w≤t

aswbwt

)
≤ max

s≤w≤t
{deg asw + deg bwt} < max

s≤w≤t
{1
2
ρsw +

1

2
ρwt} =

1

2
ρst.

Quindi ab ∈ I1/2(P ).
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Teorema 3.10. Se k ∈ Iρ(P ) è un nucleo, allora esistono e sono uniche

f, g ∈ I1/2(P ) tali che f rev = kf e grev = gk.

Dimostrazione. Dimostriamo il teorema per f , per g è analogo.

Procediamo per induzione su ρst. Per il passo base, se s ∈ P basta prendere

fss = 1 e si ha

f rev
ss = 1 = kssfss.

Siano ora s, t ∈ P, s < t fissati e supponiamo che fwt(x) sia definito ∀w ∈
P, tale che s < w ≤ t in modo tale che valga

f rev
wt = (kf)wt.

Definiamo

Qst :=
∑

s<w≤t

kswfwt.

Allora f rev = kf in [s, t] diventa

(f rev)st = (kf)st = Qst + kssfst.

Usando kss = 1 dunque si ottiene

f rev
st − fst = Qst. (3.1)

Per il lemma Qst è antisimmetrico. Dunque esiste una sola scelta per fst tale

che deg(fst) < ρst/2 perché sia soddisfatta (3.1).

Ora, dunque, è ben posta la seguente definizione.

Definizione 3.11. Sia k ∈ Iρ(P ) un nucleo. Chiamiamo funzioni di

Kazhdan–Lusztig–Stanley (o funzioni KLS) destra e sinistra associate

a k rispettivamente le funzioni f, g ∈ I1/2(P ) tali che

k = f revf−1 = g−1grev.

Vediamo un risultato che dà informazioni sui coefficienti di f e g che sarà

utile più avanti.
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Lemma 3.12. Sia k un P -nucleo e siano f e g le funzioni KLS associate a

k. Valgono le seguenti uguaglianze per i coefficienti:

[x0]fst(x) = [xρst ]f rev
st (x) = [xρst ]kst(x),

[x0]gst(x) = [xρst ]grevst (x) = [xρst ]kst(x).

Dimostrazione. Proviamo il lemma per g, la dimostrazione per f è analoga.

Per ogni s ≤ t vale

grevst (x) = (gk)st(x) =
∑

s≤w≤t

gsw(x)kwt(x).

Separando dalla sommatoria i termini con w = s e w = t otteniamo

grevst (x)− gst(x) = kst(x) +
∑

s<w<t

gsw(x)kwt(x).

Poichè deg gst < ρst/2 e ogni termine della sommatoria ha al più grado ρsw
2

+

ρwt < ρst, quindi solo kst e g
rev
st hanno un coefficiente di grado ρst, che dunque

deve essere uguale.

In generale, le funzioni KLS destra e sinistra associate a un nucleo possono

avere comportamenti molto diversi tra loro. Di seguito alcuni esempi che lo

mostrano chiaramente.

Esempio 3.13. La funzione KLS sinistra associata alla funzione caratteri-

stica χ è g = ζ, come visto nell’Esempio 3.5. La funzione destra, invece, ha

una struttura decisamente più complessa e non verrà trattata in dettaglio.

Tuttavia, nel caso di un poset semplice, è possibile seguire la dimostrazione

del teorema e costruirla tramite un calcolo diretto. Si osservi che, poichè

deg(fst) < ρst/2, si ha che fst è uno scalare per ρst < 3. Dunque, per avere

esempi non banali, serve avere un poset di rango almeno 3 (ρ0̂1̂ = 3). Per

esempio considerando l’Esempio 1.21 P =
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0̂

u v

w

1̂

si ottiene

fst(x) =

1− x se [s, t] = [0̂, 1̂],

1 altrimenti.

Aumentando il rango dell’insieme parzialmente ordinato si ottengono risultati

più complessi, come per esempio Q =

0̂

α β

γ

δ η θ

1̂

La funzione KLS destra associata alla funzione caratteristica χ in Q è

fst(x) =



x+ 1 se [s, t] = [0̂, 1̂],

1− x se s = 0̂, t ∈ {δ, η, θ},

2x+ 1 se s ∈ {α, β}, t = 1̂,

1 altrimenti.

Quindi è sostanzialmente differente dalla funzione sinistra che è costantemen-

te uguale a 1.
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Esempio 3.14. Sia B3 il reticolo Booleano con tre atomi, Esempio 1.15. Sia

m ∈ Z, definiamo k ∈ Iρ(B3) come segue:

kst(x) =



1 se ρst = 0,

x− 1 se ρst = 1,

x2 − 2x+ 1 se ρst = 2,

x3 +mx2 −mx− 1 se ρst = 3.

Verifichiamo innanzitutto che k sia un nucleo calcolando esplicitamente krev,

determinando per ogni ρst il prodotto (krevk)st e verificando che equivalga a

δst.

krev
st (x) =



1 se ρst = 0,

1− x se ρst = 1,

1− 2x+ x2 se ρst = 2,

1 +mx−mx2 − x3 se ρst = 4.

Osserviamo che per ρst = 2 si ha kst(x) = (x− 1)2.

- ρst = 0, banalmente (krevk)(x)ss = krev
ss kss(x) = 1 = δss.

- ρst = 1, (krevk)st(x) = x− 1 + 1− x = 0 = δst.

- ρst = 2, (krevk)st(x) = (x−1)2−(x−1)2+(x−1)2−(x−1)2 = 0 = δst.

- ρst = 3, (krevk)st(x) = x3 +mx2 −mx + 1 + 3(1 − x)(1 − 2x + x2) +

3(x− 1)(1− 2x+ x2) + 1 +mx−mx2 −mx3 = 0.

Quindi abbiamo dimostrato che k è effettivamente un B3-nucleo, quindi per

il Teorema 3.10 sappiamo che esistono e sono uniche le funzioni di Kazhdan–

Luztig–Stanley. Questo esempio è particolare perché le funzioni destra e

sinistra coincidono,

fst(x) = gst(x) =

1 se ρst = 0, 1, 2,

1 + (m+ 3)x se ρst = 3.
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Esempio 3.15. Concentriamoci, come ultimo esempio, su un altro insieme

parzialmente ordinato euleriano: quello ottenuto imponendo l’ordinamento

di Bruhat sul gruppo di Coxeter associato al diagramma di tipo B2 (Esempio

2.23). Nel Teorema 3.7 abbiamo dimostrato che la funzione εst(x) = (x−1)ρst

è un nucleo in tale poset. Quindi possiamo calcolare le funzioni di Kazhadan–

Lusztig–Stanley, che, analogamente all’esempio precedente, coincidono:

fst(x) = gst(x) =


1 se ρst ≤ 2,

1− x se ρst = 3,

1− 2x se ρst = 4.

Introduciamo ora una funzione che risulta di particolare interesse, la

funzione Z, costruita a partire dai concetti di funzione KLS destra e sinistra.

Definizione 3.16. Sia k un nucleo e siano f, g rispettivamente le funzioni

KLS destra e sinistra associate a k. La funzione Z associata a k è definita

come

Z = gkf.

Proposizione 3.17. Si ha Z = grevf = gf rev. In particolare Z è simmetri-

ca.

Dimostrazione. grev = gk, quindi si ha Z = gkf = grevf . Analogamente,

poiché f rev = kf risulta Z = gkf = gf rev.

Vale anche l’implicazione inversa, la quale fornisce un criterio utile per

verificare che due funzioni f e g siano rispettivamente KLS destra e sinistra.

Proposizione 3.18. Siano f, g ∈ I1/2(P ). Allora f e g sono le funzioni KLS

destra e sinistra associate a un nucleo k se e solo se grevf è simmetrica.

Dimostrazione. Siano kf := f revf−1 e kg := g−1grev. Quindi si ha grevf =

gkgf e gf rev = gkff , dunque otteniamo:

grevf = (grevf)rev = gf rev ⇐⇒ gkgf = gkff ⇐⇒ kg = kf .
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Esempio 3.19. Consideriamo il poset P dell’Esempio 3.13 e come nucleo la

funzione caratteristica χ. Allora la funzione Z è data da

Zst(x) =



1 se ρst = 0,

1 + x se ρst = 1,

1 + 2x+ x2 se [s, t] = [0̂, w],

1 + x+ x2 se s ∈ {u, v}, t = 1̂,

1 + x+ x2 + x3 se ρst = 3.

Osserviamo che, come dimostrato nella Proposizione 3.17 la funzione Z è

simmetrica.

Esempio 3.20. Riprendiamo ora l’Esempio 3.14. La funzione Z associata

al nucleo k è data da

Zst(x) =



1 se ρst = 0,

1 + x se ρst = 1,

1 + 2x+ x2 se ρst = 2,

1 + (m+ 6)x+ (m+ 6)x2 + x3 se ρst = 3.

Concludiamo il capitolo con un risultato sull’insieme dei P -nuclei, per il

quale saranno utili le seguenti definizioni:

• Ĩ(P ) = {h ∈ Iρ(P ) : hss = 1 ∀s ∈ P}. Questo è un gruppo moltiplica-

tivo perché se h, l ∈ Ĩ(P ), allora (hl)ss = hsslss = 1.

• S̃(P ) = {h ∈ Ĩ(P ) : h = hrev} sottogruppo di Ĩ(P ). Costituisce un

sottogruppo per il Lemma 3.2.

• K(P ) è l’insieme di tutti i P -nuclei.

Inoltre, consideriamo I1/2(P ) come un gruppo moltiplicativo, proprietà di-

mostrata nell’Osservazione 3.9.
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Proposizione 3.21. Sia Ĩ(P )/S̃(P ) l’insieme delle classi laterali destre

S̃(P ) · h, con h ∈ Ĩ(P ). Allora le mappe

φ1 : Ĩ(P )/S̃(P ) → K(P ), φ2 : I1/2(P ) → K(P )

φ1(S̃(P ) · h) = h−1hrev, φ2(h) = h−1hrev

sono delle biezioni. Infatti I1/2(P ) costituisce un insieme di rappresentanti

delle classi laterali destre di S̃(P ) in Ĩ(P ) e φ−1
2 (k) = g dove g è la funzione

KLS sinistra associata a k.

Dimostrazione. φ1 è ben definita perché se S̃(P )·h = S̃(P )·l allora h = pl per

qualche l = lrev quindi h−1hrev = (pl)−1(pl)rev = l−1p−1plrev = l−1lrev. Inol-

tre ogni nucleo può essere scritto come h−1hrev quindi φ1 è suriettiva. Si vede

facilmente che φ1 è iniettiva, per l’unicità delle funzioni k-accettabili, Teo-

rema 3.10. La biettività di φ2 segue dall’unicità della funzione KLS sinistra

dimostrata nel Teorema 3.10.



Capitolo 4

Funzioni di Chow

In questo capitolo studieremo una nuova classe di funzioni, le funzioni

di Chow, la loro relazione con le funzioni di Kazhdan–Lusztig–Stanley, e ne

vedremo alcuni esempi.

Per prima cosa introduciamo il concetto di nuclei ridotti, che servirà per

la definizione delle funzioni di Chow. Per farlo abbiamo bisogno del seguente

lemma.

Lemma 4.1. Sia k un P -nucleo. Allora per ogni s < t in P

kst(1) = 0.

Dimostrazione. Si procede per induzione su ρst. Il passo base è dato dal caso

in cui t copre s (ρst = 1). Per definizione di nucleo, vale kkrev = δ, che

diventa:

0 = kss(x)k
rev
st (x) + kst(x)k

rev
tt (x) = krev

st (x) + kst(x).

Dunque kst(x) = −krev
st (x) = −xρstkst(x

−1), che, calcolato in x = 1 dà

kst(1) = −kst(1) e quindi kst(1) = 0. Per il passo induttivo, osserviamo

che

0 =
∑

s≤w≤t

krev
sw (x)kwt(x) ⇐⇒ krev

st (x) + kst(x) = −
∑

s<w<t

ksw(x)k
rev
wt (x).

35
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I polinomi ksw(x) e krev
wt (x) per s < w < t sono associati a intervalli più

piccoli di [s, t], dunque per ipotesi induttiva

0 = −
∑

s<w<t

ksw(1)k
rev
wt (1) = krev

st (1) + kst(1),

da cui deriva la tesi.

Alla luce del lemma appena dimostrato, la seguente definizione è ben

posta.

Definizione 4.2. Sia k un P -nucleo. Il P-nucleo ridotto associato a k è

l’elemento k̄ ∈ Iρ(P ) dato da:

k̄st(x) =


kst(x)
x−1

se s < t,

−1 se s = t.

Osserviamo che per il Lemma 1.18 i nuclei ridotti sono invertibili.

Siamo ora in grado di definire l’oggetto centrale di questo capitolo, la

funzione di Chow.

Definizione 4.3. Sia k un P -nucleo. La funzione di Chow associata a k

è l’elemento H ∈ Iρ(P ) definito da

Hst = −(k̄)−1.

È conveniente introdurre anche una definizione ricorsiva, che risulta utile

per il calcolo esplicito della funzione. Le seguenti formulazioni sono equiva-

lenti e derivano direttamente dalla definizione.

Hst(x) =


1 se s = t,∑
s<w≤t

k̄sw(x)Hwt(x) se s < t.
(4.1)

Hst(x) =


1 se s = t,∑
s≤w<t

Hsw(x)k̄wt(x) se s < t.
(4.2)
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Osserviamo che Hss = 1 ∀s ∈ P per come abbiamo definito kss.

Ora sarà enunciata una proposizione che fornisce informazioni sui coeffi-

cienti della funzione di Chow come polinomio. In particolare risulta impor-

tante la simmetria, con centro di simmetria (ρst − 1)/2.

Proposizione 4.4. Siano k,H ∈ Iρ(P ) un P -nucleo e la sua funzione di

Chow associata. Valgono le seguenti proprietà.

1. Per ogni s < t, vale

[xρst−1]Hst(x) = [xρst ]kst.

In particolare, se deg(kst) = ρst allora deg(Hst) = ρst − 1 ∀s < t.

2. H è simmetrica, cioè

Hst(x) = xρst−1Hst(x
−1).

Dimostrazione. Dalla definizione ricorsiva di H, equazione (4.1), si ottiene

Hst(x) = k̄st(x) +
∑

s<w<t

k̄sw(x)Hwt(x). (4.3)

Dimostriamo entrambi i punti per induzione su ρst. Per il passo base consi-

deriamo s coperto da t, allora (4.3) diventa Hst(x) = k̄st(x) e in particolare

[xρst−1]Hst(x) = [xρst−1]k̄st(x) = [xρst ]kst(x).

Per dimostrare la simmetria consideriamo x ̸= 1, perché l’equazione Hst(x) =

xρst−1Hst(x
−1) è banalmente sempre verificata in x = 1. Procedendo come

nella dimostrazione del Lemma 4.1, da kkrev = δ deriva

0 = krev
st (x)+kst(x) = xρstkst(x

−1)+kst(x) = xρst(x−1−1)k̄st(x
−1)+(x−1)k̄st(x)

e usando Hst(x) = k̄st(x) otteniamo

xρst−1(1− x)Hst(x
−1) + (x− 1)Hst(x) = 0,
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che, poiché x ̸= 1, semplificando x − 1 dà la tesi. Ora, se s e t non sono

adiacenti, nella sommatoria nell’equazione (4.3), per ipotesi induttiva, ogni

termine ha grado minore o uguale a ρsw − 1 + ρwt − 1 = ρst − 2. Quindi

la sommatoria non porta contributi ai termini di grado ρst − 1 e dunque,

analogamente al passo base, si ha

[xρst−1]Hst(x) = [xρst−1]k̄st(x) = [xρst ]kst(x).

Ora, per dimostrare la seconda proprietà, moltiplichiamo la formula del-

l’equazione (4.3) per x − 1 e sottraiamo il polinomio kst(x) da entrambi i

lati:

(x− 1)Hst(x)− kst(x) = (4.4)

=
∑

s<w<t

ksw(x)Hwt(x) (4.5)

=
∑

s<w<t

ksw(x)x
ρwt−1Hwt(x

−1) (4.6)

=
∑

s<w<t

(
−
∑

s≤u<w

ksu(x)x
ρuwkuw(x

−1)

)
xρwt−1Hwt(x

−1) (4.7)

=−
∑
s≤u<t

ksu(x)x
ρut−1

( ∑
u<w<t

kuw(x
−1)Hwt(x

−1)

)
=−

∑
s≤u<t

ksu(x)x
ρut−1

(
(x−1 − 1)Hut(x

−1)− kut(x
−1)
)

(4.8)

= x−1
∑
s≤u<t

ksu(x)x
ρutkut(x

−1) (4.9)

− 1− x

x

∑
s≤u<t

ksu(x)x
ρut−1Hut(x

−1)

=− 1

x
kst(x) +

x− 1

x

∑
s≤u<t

ksu(x)x
ρut−1Hut(x

−1), (4.10)

dove in (4.6) abbiamo usato l’ipotesi induttiva poiché [w, t] è un intervallo

strettamente più piccolo di [s, t], in (4.7) abbiamo usato che k è un P -nucleo,

in (4.8) abbiamo usato di nuovo l’equazione (4.5) ma cambiando la variabile

x con x−1 e w con u, mentre in (4.10) abbiamo usato di nuovo che k è un
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P -nucleo. Ora, semplificando l’espressione a sinistra dell’uguale in (4.5) con

(4.10) si ottiene:

xHst(x) = kst(x) +
∑
s≤u<t

ksu(x)x
ρut−1Hut(x

−1)

= kst(x) + xρst−1Hst(x
−1) +

∑
s<u<t

ksu(x)Hut(x).

Dove abbiamo sostituito xρut−1Hut(x
−1) = Hut(x) usando l’ipotesi induttiva

su [u, t], con s < u. Dunque (4.5) diventa, dopo aver aggiunto Hst(x) da

entrambi i lati

xρst−1Hst(x
−1) = Hst(x).

Esempio 4.5. Riprendiamo l’Esempio 3.13, dove abbiamo calcolato le fun-

zioni KLS destra associata alla funzione caratteristica per i poset P e Q.

P =

0̂

u v

w

1̂

Q =

0̂

α β

γ

δ η θ

1̂

La funzione caratteristica di P è stata trovata nell’Esempio 1.21. Possiamo

allora calcolare la funzione di Chow associata alla funzione caratteristica in

P .

Hst(x) =


1 se ρst = 0, 1,

x+ 1 se ρst = 2,

x2 + 2x+ 1 se ρst = 3.
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Per quanto riguardaQ, invece, scrivere la funzione caratteristica risulta molto

complicato, ma possiamo calcolare la funzione di Chow.

Hst =



1 se ρst = 0, 1,

x+ 1 se ρst = 2,

x2 + 2x+ 1 se s = 0̂, t ∈ {δ, η, θ},

x2 + 4x+ 1 se s ∈ {α, β}, t = 1̂,

x3 + 5x2 + 5x++1 se ρst = 4.

Esempio 4.6. Torniamo ora all’Esempio 3.14. La funzione di Chow asso-

ciata al nucleo k è

Hst =


1 se ρst = 0, 1,

x+ 1 se ρst = 2,

x2 + (m+ 7)x+ 1 se ρst = 3.

Esempio 4.7. Infine procediamo con l’Esempio 3.15. Possiamo calcolare il

nucleo ridotto:

ε̄st(x) =

−1 se s = t,

(x− 1)ρst−1 altrimenti.

La funzione di Chow ha una forma esplicita molto semplice:

Hst(x) =

1 se s = t,

(x+ 1)ρst−1 altrimenti.

Il seguente teorema mostra come nel Teorema 3.10 sia fondamentale la

condizione sul rango. Infatti la funzione di Chow soddisfa k = H−1Hrev =

HrevH−1, ossia è k-totalmente accettabile, ma ha grado ρst − 1.

Teorema 4.8. Sia k un P -nucleo. La funzione di Chow H è l’unico elemento

in Iρ(P ) tale che

1. Hss(x) = 1 ∀s ∈ P .
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2. Per ogni s < t in P il polinomio Hst(x) è simmetrico, con centro di

simmetria 1
2
(ρst − 1).

3. kH = Hrev.

4. Hk = Hrev.

Dimostrazione. Abbiamo dimostrato nella Proposizione 4.4 che se H è la

funzione di Chow associata a un nucleo k, i primi due punti sono validi;

quindi dimostriamo gli ultimi due e l’unicità. Consideriamo la definizione

ricorsiva (4.1) della funzione di Chow. Allora moltiplicando entrambi i lati

per x− 1 otteniamo

(x− 1)Hst(x) =
∑

s<w≤t

ksw(x)Hwt(x)

e aggiungendo Hst(x) ad entrambi i lati diventa

xHst(x) =
∑

s≤w≤t

ksw(x)Hwt(x) = (kH)st(x).

Ora applichiamo la simmetria di H dimostrata nel punto 2 della Proposizione

4.4

Hrev
st (x) = xρstHst(x

−1) = x · xρst−1Hst(x
−1) = xHst(x) = (kH)st(x).

Quindi abbiamo ottenuto il terzo punto, Hrev = kH. Allo stesso modo a

partire dall’equazione (4.2) otteniamo Hrev = Hk.

Ora consideriamo un qualunque elemento h ∈ Iρ(P ) che soddisfi i tre

punti dell’enunciato. Per ogni s < t

xhst(x) = hrev
st (x) =

∑
s≤w≤t

ksw(x)hwt(x).

Spostiamo a destra dell’uguale il termine con w = s e dividiamo per x− 1 e

rimane

hst(x) =
∑

s<w≤t

k̄sw(x)hwt(x),

che equivale a k̄h = δ, dunque per definizione di funzione di Chow e unicità

dell’inverso si ha h = H.
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Proposizione 4.9. Sia H ∈ Iρ(P ), tale che Hss(x) = 1 ∀ ∈ P e tale che per

ogni s < t in P il polinomio Hst(x) sia simmetrico e con centro di simmetria
1
2
(ρst − 1). Allora esiste un unico P -nucleo k tale che H sia la sua funzione

di Chow associata.

Dimostrazione. Definiamo il P -nucleo come

k = HrevH−1.

Questo è un nucleo per il Lemma 3.4 e vale kH = Hrev quindi sono verificati

tutti i punti del Teorema 4.8 perciò H è la funzione di Chow associata a k.

Supponiamo che esista k̃ la cui funzione di Chow associata sia sempre H.

Dimostriamo che k̃ = k per induzione sulla dimensione degli intervalli su cui

valutiamo la funzione. Se s ∈ P vale kss(x) = 1 = k̃ss(x). Ora, se s < t

abbiamo ∑
s≤w≤t

k̃sw(x)Hwt(x) = Hrev
st (x) =

∑
s≤w≤t

ksw(x)Hwt(x)

e quindi

k̃st(x) +
∑

s<w≤t

k̃sw(x)Hwt(x) = kst(x) +
∑

s<w≤t

ksw(x)Hwt(x).

Per l’ipotesi induttiva per ogni s < w ≤ t si ha k̃sw = ksw, quindi le

sommatorie a destra e sinistra dell’uguale sono uguali, perciò rimane k̃st =

kst.

4.1 Relazione tra funzioni di Chow e funzioni

KLS

In questa sezione verranno enunciati e dimostrati alcuni risultati piuttosto

tecnici. Per semplicità verrà indicato sempre con k un P -nucleo, con H la

funzione di Chow associata a k, e con f, g le funzioni KLS rispettivamente

destra e sinistra associate a k.
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Lemma 4.10. Per ogni s ≤ t in P , il prodotto in Iρ(P ) tra le funzioni KLS

associate a un nucleo e il nucleo stesso ridotto è dato da:

(k̄f)st(x) =


f rev
st (x)− xfst(x)

x− 1
se s < t,

−1 se s = t.
(4.11)

(gk̄)st(x) =


grevst (x)− xgst(x)

x− 1
se s < t,

−1 se s = t.
(4.12)

Dimostrazione. Dimostriamo la tesi solo per g, in quanto la dimostrazione

per f è analoga. Se s = t, (gk̄)ss = gssk̄ss = −1. Sia s < t. Per il Teorema

3.10 abbiamo che per ogni s < t

grevst (x) =
∑

s≤w≤t

gsw(x)kwt.

Sottraendo da entrambi i lati il termine corrispondente a w = t, otteniamo:

grevst (x)− gst(x) =
∑

s≤w<t

gsw(x)kwt(x)

= (x− 1)
∑

s≤w<t

gsw(x)k̄wt(x)

= (x− 1)[(gk̂)st(x) + gst(x)],

da cui deriva la tesi.

Segue un teorema che fornisce una formula per calcolare la funzione di

Chow a partire da quelle di KLS.

Teorema 4.11. Valgono le seguenti:

Hst(x) =
f rev
st (x)− fst(x)

x− 1
+
∑

s<w<t

Hsw(x)
fwt(x)− xfwt(x)

x− 1
, (4.13)

Hst(x) =
grevst (x)− gst(x)

x− 1
+
∑

s<w<t

grevsw (x)− xgsw(x)

x− 1
Hwt(x). (4.14)
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Dimostrazione. Mostreremo di nuovo solo il risultato per g poichè la dimo-

strazione è analoga per f . Innanzitutto possiamo scrivere g come g = gδ =

g(−k̄)H = −(gk̄)H. Possiamo usare dunque il Lemma 4.10 e ottenere

gst(x) = −
(
−Hst(x) +

∑
s<w≤t

grevsw (x)− xgsw(x)

x− 1
Hwt(x)

)
.

Riarrangiando i termini si ha la tesi:

Hst(x) = gst(x) +
∑

s<w≤t

grevsw (x)− xgsw(x)

x− 1
Hwt(x) (4.15)

=
grevst (x)− gst(x)

x− 1
+
∑

s<w<t

grevsw (x)− xgsw(x)

x− 1
Hwt(x).

4.2 Unimodalità e non negatività delle fun-

zioni di Chow

Poiché le funzioni KLS e le funzioni di Chow sono dei polinomi, è na-

turale chiedersi quali proprietà esse possano avere come tali. Abbiamo di-

mostrato la simmetria delle funzioni di Chow; nel seguito valuteremo altre

proprietà caratteristiche, ci concentreremo in particolare sull’unimodalità e

la non negatività.

Innanzitutto osserviamo che le funzioni KLS non godono della proprietà di

non negatività, infatti nell’Esempio 3.13 la funzione KLS destra f associata

alla funzione caratteristica χ presenta coefficienti negativi per entrambi i

poset considerati. Anche nell’Esempio 3.14 per m < 3 sia f che g presentano

coefficienti negativi.

Per quanto riguarda le funzioni di Chow, nell’Esempio 4.6 per m < 7

si ottengono dei coefficienti negativi. Inoltre se consideriamo ad esempio

m = 7, notiamo anche che il polinomio non è unimodale.

Nel seguente teorema, che costituisce un risultato centrale di questo ca-

pitolo, mostreremo tuttavia che esiste una profonda connessione tra la non
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negatività delle funzioni KLS e la non negatività e unimodalità della funzione

di Chow.

Teorema 4.12. Sia k un P -nucleo. Se almeno una tra la funzione KLS

destra f e la sinistra g è non negativa, allora la funzione di Chow H è non

negativa e unimodale.

Dimostrazione. Supponiamo che g sia non negativa, la dimostrazione è simile

per f . Procediamo per induzione su ρst. Per il passo base ρst = 0 implica

s = t, si ha Hss(x) = 1 ∀s ∈ P che è banalmente unimodale e non negativo.

Sia ρst > 0, per il passo induttivo assumiamo che Hst(x) sia unimodale e non

negativo per ogni s ≤ t tali che ρst ≤ l e consideriamo tutti gli intervalli [s, t]

tali che ρst = l+1. Sappiamo che deg g < ρst
2

e quindi deg gst ≤ ⌊ρst−1
2

⌋ =: d,

dunque possiamo scrivere g in forma polinomiale per comodità nei calcoli:

gst(x) =
d∑

i=0

gix
i,

dove gi ≥ 0 ∀i. Consideriamo l’equazione (4.14), dimostriamo che tutti i ter-

mini della somma sono non negativi, unimodali e hanno centro di simmetria
1
2
(ρst − 1). Si ha

grevst (x)− gst(x) = g0x
ρst + g1x

ρst−1 + · · ·+ gdx
ρst−d − gdx

d − · · · − g1x− g0.

Poiché 2d > ρst, vale ρst − d > d e quindi tutti i monomi hanno esponente

diverso. Quindi possiamo raccogliere i termini:

grevst (x)− gst(x) =
d∑

i=0

gi
(
xρst−i − xi

)
= (x− 1)

d∑
i=0

gix
i
(
1 + x+ · · ·+ xρst−2i−1

)
,

da cui deriva

grevst (x)− gst(x)

x− 1
=
∑
i=0

gix
i
(
1 + x+ · · ·+ xρst−2i−1

)
,
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che, poiché gi ≥ 0 per ogni i, è non negativo, unimodale e simmetrico con

centro di simmetria ρst/2 per il Lemma 1.2. Sia ora w ∈ P, s < w < t,

scriviamo gsw(x) = g0 + g1x+ · · ·+ gdx
d, dove d = ⌊ρsw−1

2
⌋. Si ha

grevsw (x)−xgsw(x) = g0x
ρsw+g1x

ρsw−1+· · ·+gdx
ρsw−d−gdx

d+1−· · ·−g1x
2−g0x.

Se ρsw è dispari c’è una cancellazione del termine di grado ρsw − d = d + 1,

ma in ogni caso vale

grevsw (x)− xgsw(x) = x
d∑

i=0

gi
(
xρsw−i−1 − xi

)
= x(x− 1)

d∑
i=0

gix
i
(
1 + x+ · · ·+ xρsw−2i

)
.

Possiamo dedurre in modo analogo al caso precedente che grevsw (x)−xgsw(x)
x−1

è non

negativo, unimodale e simmetrico con centro di simmetria ρsw/2.

Per ipotesi induttiva Hwt(x) è non negativo e unimodale per s < w < t.

Inoltre per la Proposizione 4.4 il centro di simmetria è ρwt−1
2

. Quindi per il

Lemma 1.3 il prodotto

grevsw (x)− xgsw(x)

x− 1
Hwt(x)

è non negativo, unimodale e simmetrico, con centro di simmetria ρsw
2
+ρwt−1

2
=

ρst−1
2

. Quindi Hst(x) è somma di polinomi non negativi e unimodali, perciò

soddisfa le stesse proprietà.

Questo teorema garantisce che la funzione di Chow associata agli R-

polinomi sia unimodale e non negativa. Per vederne una formula esplici-

ta, riprendiamo i grafi di Bruhat, Definizione 2.18. Siano W un gruppo di

Coxeter, e u, v ∈ W , indichiamo con B(u, v) il grafo di Bruhat associato

all’intervallo [u, v] ⊂ W e scriviamo ∆ ∈ B(u, v) se ∆ è un cammino da u a

v nel grafo di Bruhat.

Esempio 4.13. Possiamo rappresentare l’intervallo B(u, v) con u = e, v =

[4 2 3 1], del grafo di Bruhat di S4, di cui abbiamo costruito l’ordinamento
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nell’Esempio 2.24. Le linee tratteggiate rappresentano i lati che vengono

aggiunti nel grafo di Bruhat rispetto al diagramma di Hasse dell’ordinamento.

Consideriamo ∆ ∈ B(u, v), allora ∆ può avere lunghezza 5, 3 oppure 1.

[1 2 3 4]

[1 2 4 3] [1 3 2 4] [2 1 3 4]

[1 4 2 3] [1 3 4 2] [2 1 4 3] [3 1 2 4] [2 3 1 4]

[1 4 3 2] [4 1 2 3] [2 4 1 3] [3 1 4 2] [3 2 1 4] [2 3 4 1]

[4 1 3 2] [4 2 1 3] [2 4 3 1] [3 2 4 1]

[4 2 3 1]

Esistono ordinamenti totali sulle riflessioni, detti ordinamenti di riflessio-

ne, che soddisfano determinate proprietà di convessità, che non richiamiamo

in questa tesi.

Definizione 4.14. SianoW un gruppo di Coxeter, u, v ∈ W , T l’insieme del-

le riflessioni e < un ordinamento di riflessione. Sia ∆ ∈ B(u, v) un cammino

da u a v:

u = u0 → u1 → · · · → uk = v,

dove u−1
i−1ui = ti, ti ∈ T per i ∈ {1, . . . , k}. Diciamo che i è un’ascesa di ∆

se ti−1 < ti. Analogamente diciamo che i è una discesa di ∆ se ti−1 > ti.



48 4. Funzioni di Chow

Indichiamo con asc(∆) il numero di ascese di ∆ e con des(∆) il numero di

discese.

Osserviamo che vale asc(∆) = l(∆)− des(∆)− 1.

Sia W un gruppo di Coxeter e u, v ∈ W, u ≤ v, allora la funzione di

Chow associata all’R-polinomio è data da:

Huv(x) =
∑

∆∈B(u,v)

x
ρuv−l(∆)

2
+asc(∆) =

∑
∆∈B(u,v)

x
ρuv−l(∆)

2
+des(∆).

La dimostrazione di questa formula si trova su [FMV24].

4.3 Funzioni di Chow aumentate

Introduciamo ora un nuovo concetto, le funzioni di Chow aumentate,

costruite a partire dalla funzione di Chow e di Kazhdan–Lusztig–Stanley

associate ad un nucleo. Ne vedremo le proprietà fondamentali, tra cui un

risultato sulla loro unimodalità e non negatività, e alcuni esempi. In questa

sezione tornerà utile la funzione Z introdotta nella Definizione 3.16.

Definizione 4.15. Sia k un P -nucleo, H la funzione di Chow, f, g le funzio-

ni di Kazhdan–Lusztig–Stanley associate a k. Chiamiamo rispettivamente

funzione di Chow aumentata destra e funzione di Chow aumentata

sinistra associate a k le seguenti funzioni:

F = Hf rev, G = grevH.

Osserviamo che, poiché f, g,H ∈ Iρ(P ), si ha anche F,G ∈ Iρ(P ).

Esistono dei risultati per le funzioni di Chow aumentate, analoghi alla

Proposizione 4.4 e al Teorema 4.11.

Proposizione 4.16. Siano F,G ∈ Iρ(P ) le funzioni di Chow aumentate

associate a un nucleo k. Valgono le seguenti proprietà:

1. Per ogni s ≤ t, si ha

[xρst ]Fst(x) = [xρst ]Gst(x) = [xρst ]kst(x).

In particolare se deg kst = ρst, anche degFst = degGst = ρst.
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2. Le funzioni di Chow aumentate sono simmetriche:

F rev = F, Grev = G.

Dimostrazione. Dimostriamo entrambi i punti per G, per F la dimostrazione

è analoga. Dalla definizione di G si ha che per ogni s ≤ t:

Gst(x) =
∑

s≤w≤t

grevsw (x)Hwt(x) = grevst (x) +
∑

s≤w<t

grevsw (x)Hwt(x).

Nella sommatoria ogni termine ha grado al massimo ρsw + ρwt − 1 = ρst − 1,

quindi non influisce sul termine di grado ρst, pertanto, per il Lemma 3.12

vale

[xρst ]Fst(x) = [xρst ]Gst(x) = [xρst ]kst(x).

Dimostriamo ora la simmetria:

G = grevH = (gk)H = g(kH) = gHrev = (grevH)rev = G,

dove abbiamo usato kH = Hrev, visto nel Teorema 4.8.

Teorema 4.17. Sia k un P -nucleo, consideriamo la funzione Z associata a

k. Allora possiamo calcolare le funzioni aumentate di Chow destra e sinistra

come segue:

Fst(x) = Zst(x) +
∑

s<w≤t

grevsw (x)− xgsw(x)

x− 1
Fwt(x), (4.16)

Gst(x) = Zst(x) +
∑

s≤w<t

Gsw(x)
f rev
wt (x)− xfwt(x)

x− 1
. (4.17)

Dimostrazione. Come di consueto dimostriamo la formula per G, per F la

dimostrazione è analoga. Innanzitutto osserviamo che si può riscrivere la

funzione Z:

Z = grevf = −grev(Hk̄)f = −G(k̄f).

Combinando questo risultato con l’uguaglianza (4.11) dimostrata nel Lemma

4.10 si ha:

Zst(x) = −

(
Gst(x) +

∑
s≤w<t

Gsw(x)
f rev
wt (x)− xfwt(x)

x− 1

)
,

da cui otteniamo la tesi.
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Come per le funzioni KLS, c’è distinzione tra destra e sinistra, le quali

possono avere comportamenti differenti. Vediamo degli esempi espliciti delle

funzioni di Chow aumentate.

Esempio 4.18. Proseguiamo con l’Esempio 4.5, in cui il nucleo è la funzione

caratteristica, e consideriamo il poset Q. Le funzioni di Chow aumentate

destra e sinistra, se ρst ≤ 2 sono uguali,

Fst(x) = Gst(x) =



1 se ρst = 0,

x+ 1 se ρst = 1,

x2 + 3x+ 1 se [s, t] = [0̂, γ],

x2 + 2x+ 1 se s ∈ {α, β}, t ∈ {δ, η, θ},

x2 + 4x+ 1 se [s, t] = [γ, 1̂].

Per ρst ≥ 3, invece, presentano delle differenze:

Fst(x) =


x3 + 3x2 + 3x+ 1 se s = 0̂, t ∈ {δ, η, θ},

x3 + 7x2 + 7x+ 1 se s ∈ {α, β}, t = 1̂,

x4 + 8x3 + 16x2 + 8x+ 1 se ρst = 4.

Gst(x) =


x3 + 4x2 + 4x+ 1 se s = 0̂, t ∈ {δ, η, θ},

x3 + 5x2 + 5x+ 1 se s ∈ {α, β}, t = 1̂,

x4 + 7x3 + 14x2 + 7x+ 1 se ρst = 4.

Osserviamo che le funzioni trovate sono simmetriche.

Esempio 4.19. Tornando nuovamente all’Esempio 4.6, ancora una volta le

funzioni destra e sinistra coincidono:

Fst(x) = Gst(x) =



1 se ρst = 0,

x+ 1 se ρst = 1,

x2 + 3x+ 1 se ρst = 2,

x3 + (m+ 10)x2 + (m+ 10)x+ 1 se ρst = 3.
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Esempio 4.20. Calcoliamo ora le funzioni di Chow aumentate per l’insieme

parzialmente ordinato ottenuto a partire dal gruppo di Coxeter associato

al diagramma B2 e munito di ordinamento di Bruhat. Nell’Esempio 3.15

abbiamo visto le funzioni KLS associate a εst(x) = (x−1)ρst in questo poset,

mentre nell’Esempio 4.7 abbiamo esplicato la funzione di Chow. Dunque

possiamo calcolare le funzioni di Chow aumentate:

Fst(x) = Gst(x) =



1 se ρst = 0,

x+ 1 se ρst = 1,

x2 + 3x+ 1 se ρst = 2,

x3 + 4x2 + 4x+ 1 se ρst = 4,

x4 + 5x3 + 7x2 + 5x+ 1 se ρst = 4.

Infine abbiamo un risultato di non negatività e unimodalità anche per le

funzioni di Chow aumentate, strettamente legato alle stesse proprietà per le

funzioni KLS e per la funzione Z.

Teorema 4.21. Sia k un P -nucleo e F e G rispettivamente le funzioni di

Chow aumentate destra e sinistra. Valgono le seguenti:

1. Se f (rispettivamente g) è non negativa, anche F (rispettivamente G)

lo è.

2. Se Z è non negativa e unimodale e g è non negativa (rispettivamente

f) allora F (rispettivamente G) è unimodale.

Dimostrazione. Dimostriamo il teorema per F , in quanto la dimostrazione

per G è identica. Per il Teorema 4.12 se f è non negativa, anche H lo è,

quindi F = Hf rev è non negativa perchè somma di monomi non negativi.

Mostriamo ora la seconda proprietà, supponiamo che g sia non negativa,

nella dimostrazione del Teorema 4.12 abbiamo visto che

grevsw (x)− xgsw(x)

x− 1
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è non negativo, simmetrico e unimodale e ha centro di simmetria 1
2
ρsw. Anche

Fwt(x) è simmetrica e ha centro di simmetria 1
2
ρwt. Procediamo per induzione

su ρst per dimostrare l’unimodalità di F . Il caso di ρst = 0 è banalmente

vero. Sia ora ρst > 1 e consideriamo (4.16), si ha che∑
s<w≤t

grevsw (x)− xgsw(x)

x− 1
Fwt(x)

è somma di polinomi aventi lo stesso centro di simmetria, 1
2
ρsw+

1
2
ρwt =

1
2
ρst.

Abbiamo dimostrato nella Proposizione 3.17 che Z è simmetrica con centro

di simmetria 1
2
ρst. Quindi anche Fst(x) è unimodale per (4.16).
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[KL79] David Kazhdan and George Lusztig, Representations of coxeter

groups and hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184.

53



54 BIBLIOGRAFIA

[Pro18] Nicholas Proudfoot, The algebraic geometry of kazhdan–lusztig–

stanley polynomials, EMS Surv. Math. Sci. 5 (2018), no. 1-2, 99–

127.

[Sta89] Richard P. Stanley, Log-concave and unimodal sequences in algebra,

combinatorics, and geometry, Graph Theory and its Applications:

East and West (Jinan, 1986), Ann. New York Acad. Sci., vol. 576,

New York Acad. Sci., New York, 1989, pp. 500–535.

[Sta92] , Subdivisions and local h-vectors, J. Amer. Math. Soc. 5

(1992), no. 4, 805–851.

[Sta94] , A survey of eulerian posets, Polytopes:Abstract, Convex

and Computational, Springer Dordrecht, 1994, pp. 301–333.

[Sub23] R. Subbarayan, On pleasant eulerian posets, Discussiones Ma-

thematicae: General Algebra and Applications 43 (2023), no. 1,

161.
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