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Introduzione

Nel 1979 David Kazhdan e George Lusztig pubblicarono Representations
of Coxeter groups and Hecke algebras, dove introdussero per la prima volta dei
polinomi, successivamente chiamati polinomi di Kazhdan—Lusztig. Nati per
definire delle particolari rappresentazioni delle Algebre di Hecke di un Gruppo
di Coxeter, trovarono presto applicazioni in altri ambiti. Per esempio, sono
utilizzati nella teoria delle rappresentazioni dei gruppi algebrici semisemplici,
nello studio dei moduli di Verma e nella geometria algebrica e la topologia
delle varieta di Schubert. Le proprieta dei polinomi di Kazhdan-Lusztig
sono state molto studiate negli anni, per esempio ¢ stata dimostrata la non
negativita nel 2014 in [EW14]. L’invarianza combinatoria, invece, rimane
aperta nel caso generale, ma e stata provata in casi specifici, come intervalli
di lunghezza minore o uguale a 4 (una dimostrazione si puo trovare in [Bre03))

oppure intervalli [e, v] dove e ¢ l'identita del gruppo ([BCMO6]).

Nel 1992, Richard P. Stanley in [Sta92] generalizzo queste funzioni polino-
miali a tutti gli insiemi parzialmente ordinati, mentre Brenti successivamen-
te le generalizzo ulteriormente agli insiemi debolmente graduati, in [Bre99],
dove conio anche il nome funzioni di Kazhdan—Lusztig—Stanley. Questa teo-
ria unisce ambiti differenti della matematica, come ’enumerazione di punti,
linee, etc. in matroidi, 'enumerazione delle facce di politopi convessi, la

combinatoria e la teoria delle rappresentazioni dei gruppi di Coxeter.

Il primo capitolo fornisce i concetti fondamentali su cui si basano le teorie
trattate. Una prima parte riguarda i polinomi, in particolare le proprieta di

unimodalita, simmetria e non negativita. La seconda e la terza sezione, inve-
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ce, introducono gli insiemi parzialmente ordinati e le loro algebre di incidenza,
nate a meta degli anni '60 per risolvere alcuni problemi di combinatoria, ma
considerate utili anche in altri ambiti come la teoria degli anelli.

Il secondo capitolo si concentra su una particolare categoria di insiemi
parzialmente ordinati, i poset euleriani. Questi sono caratterizzati da una
certa regolarita e comprendono classi importanti di poset, come i reticoli
booleani, i politopi e i gruppi di Coxeter con ordinamento di Bruhat. Su
questi ultimi verranno esposti alcuni risultati di base, utili all’introduzio-
ne degli R-polinomi e dei polinomi di Kazhdan-Lusztig, che non saranno
tuttavia trattati in dettaglio, ma come motivazione della teoria.

Il terzo capitolo e dedicato in modo approfondito alle funzioni di Kazhdan—
Lusztig—Stanley. Dopo l'introduzione del concetto di nuclei per gli insiemi
parzialmente ordinati, viene enunciato e dimostrato il risultato principale di
questo capitolo ossia l'esistenza delle funzioni KLLS per ogni nucleo. In parti-
colare ogni nucleo puo essere scritto come prodotto di inversione e riflessione
dello stesso polinomio, dove con riflessione si intende I'inversione dei coeffi-
cienti di un polinomio rispetto a un centro di simmetria. Inoltre, imponendo
una condizione sul grado, questa scrittura ¢ unica.

Nell’ultimo capitolo viene trattata, invece, una nuova famiglia di funzio-
ni: le funzioni di Chow, introdotte per la prima volta nel 2024 in [FMV24].
Dopo la definizione, saranno messi in luce i legami con le funzioni di Kazh-
dan—Lusztig—Stanley. Sara mostrato, in particolare, che le funzioni di Chow
sono simmetriche e verra enunciato un risultato di unimodalita. Infine ver-
ranno introdotte le funzioni di Chow aumentate, e discusse le loro caratteri-
stiche principali. Nell’articolo citato vengono dimostrate ulteriori proprieta
delle funzioni di Chow per poset euleriani, che non verranno approfondite
in questa tesi, tra cui un teorema per cui la funzione di Chow associata al
nucleo e4(z) = (x — 1)P* in un poset euleriano P equivale all’h-polinomio
del complesso d’ordine A(P).
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Capitolo 1

Concetti Preliminari

In questo capitolo saranno presentate alcune definizioni e risultati preli-
minari, su cui si poggeranno i contenuti dei capitoli successivi. In partico-
lare saranno introdotti concetti relativi ai polinomi, gli insiemi parzialmente
ordinati e le basi dell’algebra di incidenza, integrati da alcuni esempi sia

elementari, che piu significativi.

1.1 Polinomi

Cominciamo con l'introdurre alcuni concetti fondamentali riguardanti i

polinomi.

Definizione 1.1. Sia p(z) = ap + a1z + - - - + ap2x™ € Z[z] un polinomio a
coefficienti non negativi. Allora il polinomio p(z) ¢ unimodale se esiste un

indice j tale che
ap <ap << aj S > Ajp = 2 Gy

Diciamo che p(z) e simmetrico se esiste un indice d tale che a; = a4_; per
ogni i (con la convenzione che a; = 0 se i < 0). In questo caso diciamo che

p(x) ha centro di simmetria d/2.

Osserviamo che la definizione di simmetria puo essere espressa in modo

equivalente attraverso la formula p(z) = z9p(x~1).

1
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Il seguente lemma fornisce una caratterizzazione dei polinomi a coefficienti
non negativi, simmetrici e unimodali. Per comodita, dato un polinomio

p(z) € Z|z], diciamo che esso ¢ non negativo se ¢ a coefficienti non negativi.

Lemma 1.2. Sia p(z) un polinomio non negativo. Le sequenti sono equiva-

lenti:
1. p(x) € unimodale e simmetrico con centro di simmetria d/2.

2. Esistono dei numert non negativi co,Cy, . .., Clq/2) tali che

ld/2) |
p(x) = Z Cz‘xz(l +x4-+ .’L’d_zl),
=0

Dimostrazione. Sia p(x) come nel punto 2, con ¢; > 0, allora

Ld/QJ ) ‘ Ld/zJ ' |
pla) =Y e’ (l+a+--+a) =) o'+ + 2"
=0 i=0

Osserviamo che se k < [d/2] allora il coefficiente di grado k£ ¢ dato da
co+ -+ + ¢k, se invece k > |d/2] il suo coefficiente € ¢y + - -+ + c4_x. Da

questo segue la simmetria poiché risulta [z*]p(z) = [x47¥]

p(x). L'unimodalita
dei coefficienti deriva dalla non negativita dei ¢;.

Viceversa sia p(x) un polinomio a coefficienti positivi, unimodale e sim-
metrico

p(z) = ag + a1w + - - + agx’.

Allora possiamo trovare i ¢; risolvendo il sistema lineare

.
Co = Qo

Co+cCc1L=a

Co+ -+ Cldj2) = Ald/2|

\
Essi esistono perché ¢ un sistema lineare associato alla matrice triangolare
inferiore con tutte le entrate uguali a 1, quindi invertibile. L’unimodalita di

p(z) garantisce che i ¢; siano non negativi. O]



1.1 Polinomi

Si vede facilmente che se p(z) e ¢(z) sono polinomi non negativi, unimo-
dali e simmetrici ed entrambi hanno centro di simmetria d, allora p(x) + q(z)
e non negativo, unimodale e simmetrico con centro di simmetria d. E meno

ovvio che anche il prodotto conservi queste proprieta.

Lemma 1.3. Siano p(z) e q(x) polinomi non negativi, simmetrici e unimo-
dali. Allora p(x)q(x) € non negativo, simmetrico e unimodale. Inoltre se
p(x) e q(x) hanno rispettivamente centro di simmetria ¢ e d, allora il centro

di simmetria di p(z)q(x) € c+d.

Dimostrazione. Definiamo

=
8
~—
I
S
H@.
=2
8
~—r
I
(]
&
&&

i=0 §=0

Essi hanno centro di simmetria rispettivamente m/2 e n/2. Siano r :=
|m/2], s := |n/2]. Per convenzione consideriamo a; = 0 se i # 0,....,m e b; =
0sej#0,..,n. I polinomip(x) e q(z) sono tali che

- a;,b; > 0 per ogni ¢, J;

- = Gy by =bpj;

cap <<y S, bg < <bg> > b,

Allora si ha

D (ai—ai)(@ 4+ 2™ ) =ag(l+ - +a™) —ag(z+ -+ +a")
=0

ta(z 442" ) —a @+ 2"+ = pla).

Analogamente g(z) = >°°_(bj — bj_1)(27 + -+ -+ 2"77). Quindi
p(r)a(r) = DD (a5 = aia)(by = bya) (&' + o a7 (@l + o).

Il polinomio (x* + -+ + 2™ *)(2/ + --- + 2"7) ¢ banalmente a coefficienti

non negativi, simmetrico e unimodale con centro di simmetria (m+n)/2 per
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ogni 4, j. Inoltre (a; — a;—1)(b; —bj—1) >0, Vi € {0,...,r},5 € {0,...,s}.
Quindi si ha che p(z)g(x) & dato da somma di polinomi a coefficienti non
negativi, unimodali e simmetrici con centro di simmetria (m + n)/2, quindi

anche p(x)q(z) stesso lo e. O

1.2 Insiemi parzialmente ordinati

Definizione 1.4. Un insieme parzialmente ordinato (detto anche po-
set) € una coppia (P, <) dove P & un insieme non vuoto e < & una relazione
d’ordine.

Due elementi x,y € P sono confrontabili se risulta z <y o y < z.

Definizione 1.5. Siano P, () due insiemi parzialmente ordinati e sia f :
P — @. Diciamo che f ¢ un morfismo di insiemi parzialmente ordinati se
per ogni z < y in P, si ha f(z) < f(y). Se f e anche una biezione, diciamo
che € un isomorfismo di insiemi parzialmente ordinati. I poset P e () sono

isomorfi se esiste un isomorfismo f: P — Q.

Definizione 1.6. Sia P un poset. Chiamiamo Int(P) = {[s,t] : s,t € P, s <
t} l'insieme degli intervalli chiusi di P, dove [s,t] ={w € P:s <w < t}.

Definizione 1.7. Sia P un poset. Diciamo che P ¢ limitato se esistono
ﬁ,iGPtaliche()ngiVxEP.

Definizione 1.8. Un poset P si dice finito se ha un numero finito di ele-
menti. Si dice localmente finito se per ogni coppia di elementi s < ¢ in P

'intervallo chiuso [s,¢] ha un numero finito di elementi.

Esempio 1.9. Il seguente grafico mostra un esempio di poset limitato e
finito, dove le frecce indicano la relazione d’ordine che, convenzionalmente,
va dal basso all’alto. Questa rappresentazione degli insiemi parzialmente

ordinati ¢ detta diagramma di Hasse.



1.2 Insiemi parzialmente ordinati

a/l\b
\ /

Esempio 1.10. Un insieme parzialmente ordinato puo essere infinito, ma
localmente finito, per esempio consideriamo Z ordinato in modo standard. E
infinito, ma ogni intervallo [m,n| C Z contiene un numero finito di elementi,

piu precisamente m — n + 1.

Definizione 1.11. Sia P un poset limitato. P si dice graduato se, presi

due qualunque cammini massimali della forma
O<wy < - <wpq <1,

essi hanno la stessa lunghezza r € Z>(. Possiamo dunque definire la funzio-
ne rango

p: P — Zs, p(s) =,

dove r ¢ la lunghezza di una qualunque catena massimale da 0 a s. Definiamo

anche una funzione piu generale:

piInt(P) = Zoo,  pu = pl[s,1]) = p(t) — p(s).

Esempio 1.12. Il poset nell’Esempio 1.9 e graduato perché tutti i cammini
massimali tra gli elementi hanno la stessa lunghezza. Consideriamo ora il

seguente poset:

N

|
b
/

a/i
\0
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Questo non e graduato perché esistono due cammini massimali da 0 a 1, che

sono 0 <b<c<1e0<a< 1, che hanno lunghezze diverse.

Dati un poset P e s,t € P, un maggiorante di s e ¢ ¢ un elemento u € P
che soddisfa © > sew > t. Un estremo superiore (sup) di s e t & un
maggiorante v di s e t tale che per ogni altro maggiorante v vale u < v.

Analogamente si definiscono minoranti e estremi inferiori (inf).

Definizione 1.13. Un poset P ¢ un reticolo se ogni coppia di elementi ha

un estremo inferiore e un estremo superiore.

Esempio 1.14. I poset P, e P, in figura sono entrambi graduati e localmente
finiti, ma P; e un reticolo, mentre P, non lo € perché i maggioranti di a e b

sono {c,d,1}, mac £ d, d £ c.

C/l\d C/l\d
| b a><b
N S N S
0 - P 0 _

Esempio 1.15. Un esempio di reticolo graduato ¢ il reticolo Booleano B,,,
n € N, ossia I'insieme delle parti di un insieme di n elementi ordinato per

inclusione. Per esempio se n = 3, si ottiene Bs.

{a,b,c}

RN

{a,b} {a,c} {b,c}

I X X
\/




1.3 Algebra di incidenza

D’ora in poi P indichera un insieme parzialmente ordinato localmente

finito e graduato e p la funzione rango.

1.3 Algebra di incidenza

Definizione 1.16. Sia P un poset e A un anello unitario. Definiamo I’algebra
di incidenza I(P) di Int(P) su A come I’A-modulo libero sull'insieme
Int(P).

Possiamo vederla come I'insieme delle funzioni Int(P) — A:

I(P)=A{f:Int(P) — A}.

Per convenzione se f € I(P) e s,t € P, s <t indichiamo f([s,t]) =: f.
Il prodotto in I(P) e definito come convoluzione: se a,b € P, il loro prodotto

¢ dato da:

(a'b>st - Z aswbwt~

s<w<t
L’anello che useremo di piu e l'anello dei polinomi a coefficienti interi

Z[z], quindi gli elementi di I(P) saranno indicati con fy oppure con fy(x)

a seconda del contesto.

Osservazione 1.17. 1l prodotto ¢ ben definito perché P e localmente finito e

dunque [s,t] ha cardinalita finita per ogni s <t in P. Osserviamo anche che

il prodotto e associativo, ma non commutativo. Inoltre esiste un elemento

neutro, il delta di Kronecker, definito come

1 ses=t,
551}:
0 ses#t.

Infatti, sia a € I(P). Allora

(ad)st = Z aswéwt = Qg

s<w<t

perché 6, # 0 se e solo se w = t. La dimostrazione di (da)y = as ¢ analoga.



1. Concetti Preliminari

Lemma 1.18. Sia P un poset e A un anello unitario. Un elemento a € I(P)
¢ invertibile <= ags ¢ invertibile in A per ogni s € P.

Dimostrazione. (=) Sia a € I(P) invertibile e sia a™! il suo inverso. Allora,

per ogni s € P siha 1 =0, = (aa™),s = assag,

quindi a,, € invertibile.
(<) Sia a € I(P) tale che Vs € P, ag, sia invertibile in A. Vogliamo definire
per induzione su pg un elemento b € I(P) che sia I'inverso di a. Sia s € P e
bss = (ass) ™1, si ha (ab)ss = agsbss = 1. Sia ora s < t, definiamo:
bst = —(ass)_l( Z aswbwt>.
s<w<t
Questo ¢ effettivamente 'inverso cercato, infatti:
(ab)s = asshg + Z Asibuwt = 0.
s<w<t
Quindi a & invertibile da destra con inverso b. Prendendo poi ¢ € I(P)

definito come

1 se s =t,

(a55)71(28§w<t Cswawt) Se S 7£ t,

si mostra in modo analogo che a e invertibile da sinistra con inverso c¢. Dunque

Cst =

per associativita del prodotto in I(P) si ha:
b= b= (ca)b = c(ab) = cd = c.
Quindi @ ¢ invertibile in I(P) con inverso ¢ = b. O

Un esempio notevole di elemento dell’algebra di incidenza e dato dalla

funzione ¢ definita come
(e=1 Vs<teP

Il suo inverso si chiama funzione di Mébius: p = (~!. Possiamo dare una

definizione ricorsiva della funzione di Mo6bius, facilmente calcolabile:

1 se s =1,

st =9 = Z Usw S S Ft.

s<w<t
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O, equivalentemente, per unicita dell’inverso:

1 se s =t,

= - Z Mt S€ S F L.

s<w<t

Esempio 1.19. Consideriamo Z- ordinato per divisibilita, ossia se n, m € 7Z
si ha n < m se e solo se m e divisibile per n. Osserviamo che l'intervallo
[m,n] ¢ isomorfo a [1, ]. Allora basta calcolare la funzione di Mobius per
ogni intervallo della forma [1,n] con n € Z-o. Se n =1, si ha p;; = 1. Sia
n > 1 e supponiamo che n = p§'...p* sia la sua scomposizione in fattori
primi, allora si puo dimostrare che vale la seguente formula per la funzione
di Mébius.
1 sen =1,

i =94 (=1DF see;=1Vie{l,... k},

0 altrimenti.

Definizione 1.20. Sia A=Z[z| e sia f € I(P), fs(x) = 2. La funzione

caratteristica x € I(P) e definita come:

Xst( ) luf 875 Z Nswmpwt

s<w<t

Se P ¢ limitato, chiamiamo xp := x3;(2) il polinomio caratteristico di P.

Esempio 1.21. Sia P =

|
A\
$/
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Calcoliamo innanzitutto la funzione di Mobius:

A

1 se pst =00 [s,t] =0, w],
Hst = § —1  se pg =1,
0 se s € {u,v},t =10 py=3.

La funzione caratteristica ¢ dunque

1 se s =t,
r—1 se pst = 1,
Xst(®) = Qa2 =20 +1  se[s, t] = [0,w),

¢ -z se s € {u,v},t =1,

22 =22+ se py =3.
\

In particolare il polinomio caratteristico ¢ yp = 2% — 222 + 2.



Capitolo 2
Poset Euleriani

Questo capitolo tratta dei poset euleriani, una classe di insiemi parzial-
mente ordinati che risulta particolarmente rilevante in vari ambiti della ma-
tematica. Iniziamo con un introduzione generale, successivamente vedremo
alcuni esempi, con particolare attenzione ai poset dati dai gruppi di Coxeter

dotati di ordinamento di Bruhat.

Definizione 2.1. Un poset P di dice euleriano se Vs <t € P vale uy =

(=1)”st, dove p e la funzione di Mobius.

Esempio 2.2. Un politopo convesso di dimensione d ¢ I'inviluppo convesso
di un insieme finito di punti in R? in particolare, per d = 2 si ottiene un
poligono convesso, mentre per d = 3 un poliedro convesso. Una faccia di
un politopo convesso P e l'intersezione di P con un iperpiano di supporto,
cioeé con un iperpiano che contiene P in un semispazio chiuso. Le facce
comprendono il politopo stesso e I'insieme vuoto.

I politopi sono stati studiati in modo approfondito, per esempio in [Zie95],
ma non verranno trattati nello specifico in questa tesi. Ne vediamo solo una
proprieta, che li rende di rilevanza per gli argomenti trattati.

E possibile dimostrare che il reticolo delle facce di un politopo convesso,
ordinato per inclusione, costituisce un poset graduato euleriano. Possiamo

vederne un esempio nella Figura 2.1.

11
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., . TN

{v1,v2} {v2, v3} {v3, 4} {va, 1}

{vi} {v2} {vs} {va}

o v \\ //

0

Figura 2.1: Un quadrato e il suo reticolo delle facce

Proposizione 2.3 (Caratterizzazione dei poset euleriani). Un poset P é
euleriano se e solo se in ogni intervallo [s,t] C P sono presenti lo stesso
numero di elementi di rango pari e di rango dispari.

(Nota: con rango di w € [s,t| si intende il rango in [s,t] come poset, ossia

psw)'

Dimostrazione. (=) Riprendiamo la definizione ricorsiva della funzione di

Mobius. Siano s <t € P,

Hst = — Z Hsw-

s<w<t

Si ha dunque

D MG ST I
s<w<t s<w<t
che ¢ equivalente al fatto che l'intervallo [s,t] abbia lo stesso numero di
elementi di rango pari e dispari.
(«) Per ipotesi V[s,t] C P vale >, ,(=1)?* = 0. Dimostriamo che P
¢ euleriano per induzione su pg. Se py = 1, t copre s e jig = —figs = —1

quindi la tesi. Sia pg > 1, allora

D=1 =0=pt+ > prew=pa+ Y (=1

s<w<t s<w<t s<w<t
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13

E quindi pg = (—1)7.
O

Esempio 2.4. I reticoli Booleani B,,, visti nell’Esempio 1.15, sono euleriani.

Dimostrazione. Si osservi che ogni intervallo [s, t] C B,, & isomorfo a B,, con
m = pg. Dunque basta dimostrare che in B, ci sono lo stesso numero di
elementi di rango pari e dispari. In generale il numero di elementi di B,, di

rango k ¢ (Z), quindi

# elementi di rango pari — #elementi di rango dispari

_ g(—nk(;‘) —(1-1)"=0.
: 0

Esempio 2.5. L’Esempio 1.9 rappresenta un poset euleriano. Per quanto
riguarda I’Esempio 1.14, P, non ¢ euleriano in quanto se si considera [O, q]
sono presenti due elementi di ordine pari, 0, ¢, ma uno solo di rango dispari, a.
Invece P, & euleriano, perché gli intervalli [0, ¢], [0, d], [a, 1], [b, 1] sono isomorfi

all’Esempio 1.12.

Un importante esempio di insiemi parzialmente ordinati euleriani ¢ da-
to dai gruppi di Coxeter dotati dell’ordinamento di Bruhat, che verranno

introdotti nelle prossime sezioni.

2.1 Gruppi di Coxeter
Cominciamo con 'introdurre una serie di definizioni di base.

Definizione 2.6. Una matrice di Coxeter di rango n ¢ una matrice sim-
metrica n X n a coefficienti interi, in cui le entrate della diagonale hanno
tutte valore 1 e le altre hanno valore maggiore o uguale a 2. Un sistema

di Coxeter associato ad una matrice di Coxeter M = (m; ;) ¢ una coppia
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(W, S), dove W & un gruppo e S := {s1,...,5,} € un sottoinsieme di W tale

che S genera W e valgono solamente le seguenti relazioni
st=eVie€{l,...,n}, (s;5)™ =eVi,je{l,...,n}, i#j,
dove e ¢ '’elemento neutro del gruppo.

Definizione 2.7. Un gruppo W viene detto gruppo di Coxeter se esiste
un suo sottoinsieme S tale che (W,S) e un sistema di Coxeter. L’insieme
S ¢ detto insieme dei generatori di Coxeter per il gruppo W e |S| ¢ il

rango del sistema di Coxeter (W, 5).

Questo equivale a definire il gruppo di Coxeter W come un quoziente
F/N dove F ¢ il gruppo libero sull’insieme S e N ¢ il sottogruppo normale

generato dagli elementi (s;s;)™ per ogni 1, j.

Esempio 2.8. I gruppi di Weyl di sistemi di radici sono dei gruppi di Coxeter.
In particolare quasi tutti i gruppi di Coxeter finiti sono gruppi di Weyl.
Esempi elementari di gruppi di Weyl sono i gruppi simmetrici S, infatti
essi sono generati dalle riflessioni semplici sq,...,8,-1, s; = (i,4+ 1) . Le

relazioni sono date da
m;; =2 se |i —j| > 1, m;; = 3 altrimenti.

Dunque, se S = {s1...8,}, (Sn,S) € un sistema di Coxeter di rango n — 1.

Consideriamo per esempio n = 3, S3 € generato da {sy, s} e la matrice di

)

Se n = 4, invece, si ha la matrice

Coxeter ¢

o W =
w = W
W N



2.1 Gruppi di Coxeter 15

Osservazione 2.9. La matrice di Coxeter ¢ simmetrica perché s;s; e s;s; hanno

lo stesso ordine. Infatti:

(5i5;)77 =€ <= §;5;8iSj "+ Sj =€ <= §j5;8;...8 = S;jS;
= e =5;5;5;5; 8,8 = (s;8)" =e.
m; j volte
Quindi (s;s;)™» = e implica anche (s;s;)™ = e. Inoltre si puo dimostrare
che s; e s; commutano se e solo se m;; = 2.

Osserviamo anche che, per definizione, ogni elemento di .S & un’involuzione.

Un diagramma di Coxeter di un sistema di Coxeter (W, .S) ¢ un grafo
non orientato il cui insieme dei nodi ¢ .S ed esiste un arco che collega s; a s;

se e solo se m; ; > 3. Inoltre se m; ; > 4, il lato viene etichettato con m; ;.
Esempio 2.10. Consideriamo ancora S3. Il suo diagramma di Coxeter &

S — 52

Il diagramma di Coxeter di Sy € invece

S1 52 53

In generale osserviamo che per il gruppo simmetrico S, il diagramma di

Coxeter associato ¢ dato dal diagramma di Dynkin di tipo A,,_1.

Esempio 2.11. Possiamo partire da un diagramma di Dynkin di tipo As,

come abbiamo visto per S5, ma etichettare in modo differente, per esempio

4

S1 59 53

Questo grafo e chiamato B3 e possiamo costruire un gruppo di Coxeter che ab-
bia Bz come diagramma. Si ha dunque il sistema di Coxeter (G, S), associato

alla matrice

N
L =
_— W N
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dove S = {s1, 59,53} e vale
(s150) = e, (5183)> =2, (s283)° =¢, 57 =e Vi € {1,2,3}.

Se W e un gruppo di Coxeter, w € W si puo scrivere come w = S;,S;, . . - Sj, -

n

Chiamiamo la parola s;,s;, ...s;, nell’alfabeto S un espressione per w. La
lunghezza di un elemento w, indicata con [(w), € il minimo intero k tale che
w puo essere scritto come prodotto di k generatori. Se w = s;,8;, ... S;,, con

k = l(w), allora la parola s;,s;, ...s; € chiamata un espressione ridotta

K
di w.

Sui gruppi di Coxeter e possibile stabilire un ordinamento parziale tra gli
elementi, detto ordine di Bruhat. Saranno ora presentate alcune proprieta
dei gruppi di Coxeter che servono alla buona definizione di tale ordinamento,
le dimostrazioni si possono trovare in [BB05].

Avremo bisogno della seguente definizione:

Definizione 2.12. Una riflessione ¢ in un gruppo di Coxeter W e il coniu-
gato, tramite un qualche w € W, di un elemento dell’insieme dei generatori

s €S5: t=wsw™ . Chiamiamo T l’insieme delle riflessioni:
T={wsw':s5€8 weW}

Teorema 2.13 (Proprieta di scambio forte). Supponiamo w = s185... 8k, 8; €
S, Viesiat € S. Sel(tw) < l(w), allora tw = s189...$;...5s, per qualche
ie{l,...,k}.

La scrittura §; indica che s; e stato rimosso, equivale a scrivere tw =

$1...8i-18i41 - - - Sk.
Definizione 2.14. Sia (W, S) un sistema di Coxeter e sia w € W. Allora
Dy(w) :={s € §:l(sw) <l(w)}
Dr(w) :={s € S:l(ws) <l(w)}

sono detti rispettivamente insieme delle discese sinistre ¢ insieme delle

discese destre.
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Corollario 2.15. Per ogni s € S e per ogni w € W, valgono le sequenti:

1. s € Dp(w) se e solo se qualche espressione ridotta per w inizia con la

lettera s.

2. s € Dr(w) se e solo se qualche espressione ridotta per w finisce con la

lettera s.

Teorema 2.16 (Proprieta di cancellazione). Se w = sysq...5; e l(w) < k,

~

allora w = s1...8;...8;...5k, per qualche 1 <1i < j <k.

Si puo dimostrare che le proprieta di cancellazione e di scambio forte sono
equivalenti ed entrambe caratterizzano i gruppi di Coxeter. Infatti vale la
seguente caratterizzazione dei gruppi di Coxeter: sia W un gruppo e S un
suo gruppo di generatori, tale che ogni elemento di S sia di ordine 2. Sono

equivalenti le seguenti:

e (W,S) ¢ un sistema di Coxeter;
e (W,S) gode della Proprieta di Scambio;

e (W,S) gode della Proprieta di Cancellazione.

Sia (W, S) un sistema di Coxeter. Definiamo una sottoparola di s;ss ... s, s; €

S come

SiySiy -+ Sig, con 1 <ay <ig <00 < gy <k

Corollario 2.17. Sia (W, S) un sistema di Cozeter, w € W. Valgono le

sequents

1. Qualsiasi espressione w = S1 ...S, contiene un’espressione ridotta per

w come sottoparola.

2. Supponiamo che w = sy...s, = s} ...s) siano due espressioni ridotte
per w. Allora linsieme di lettere che appaiono nella parola sq...sy €

uguale all’insieme delle lettere he compaiono nella parola s) . .. sj.

3. S € un insieme minimale di generatori per W, ovvero nessun generatore

di Coxeter puo essere espresso in termini di altri generatori.
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2.2 Ordinamento di Bruhat

In questa sezione useremo (W, S) per indicare un sistema di Coxeter.

Diamo innanzitutto alcune definizioni.

Definizione 2.18. Il grafo di Bruhat di IV ¢ il grafo orientato il cui insieme
dei vertici ¢ W e dati u,v € W si ha un arco u — v se e solo se v = ut per

qualche riflessione t € T' e I(u) < [(v).
Adesso possiamo definire I'ordinamento di Bruhat.

Definizione 2.19. L’ordinamento di Bruhat di W ¢ la relazione di ordine
parziale definita da — ed estesa per transitivita. Quindi dati u,v € W vale

u < v se e solo se esiste una catena
U=Uyg—>UL —> " —> U = .

Possiamo caratterizzare 'ordinamento di Bruhat utilizzando il concetto

di sottoparola, definito nella sezione precedente.

Teorema 2.20 (Proprieta della Sottoparola). Siano u,w € W. Sia w =

Siy - - - Si, un’espressione ridotta per w. Allora u < w se e solo se esiste

un’espressione ridotta di u come sottoparola di s;, . ..s;, .

Dimostrazione. La dimostrazione si trova su [BB05]. O

Esiste una proposizione che caratterizza 1’ordinamento dell’inverso degli

elementi di un gruppo di Coxeter.
Proposizione 2.21. Siano u,v € W. Le sequenti sono equivalenti:

1. u <w;

2. u <o L

Dimostrazione. Per il Teorema 2.20 esiste un’espressione di v ridotta tale

che u sia una sua sottoparola. Sia questa v = s7...s, e sia u = s, ...5;
1

-
Allora un’espressione ridotta div™' ¢ s,,...s1 eu™! = s;_...s; dunque si ha

u~! < w7 1l viceversa & analogo. O
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Esempio 2.22. Riprendiamo I'Esempio 2.10. L’insieme parzialmente ordi-

nato dato dall’ordinamento di Bruhat di S5 e:

§158281 = S$9251S9 = (1,3)

e

s189 = (1,2,3) s951 = (1,3,2)
>
s1=(1,2) S =(2,3)

Esempio 2.23. Consideriamo ora il gruppo di Coxeter avente come dia-

gramma associato Bs:

S1

S2

Le relazioni sono
(i) st=s3=¢
(ii) (s182)* = (s2s1)* = ¢

Dalla condizione (ii) otteniamo
51528152 = 52515251

Dunque il poset associato sara:

51525182 = 52515251

N

515251 595152

>

5152 5251

| >

S1 59

~N S

(&
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Esempio 2.24. Torniamo ad S,,, per trovare l'ordinamento per n grande,
computare ogni prodotto e piu complicato. C’¢ un modo per calcolare la
lunghezza di un elemento di S, attraverso il concetto di inversione. Sia
w € S, chiamiamo inversione di w una coppia (i,5) € {1,...,n}? i < j,
tale che w; > wj, dove wy, = w(k) Vk € {1,...,n}. Indichiamo con inv(w) il

numero di inversioni di w. Si puo dimostrare che

inv(w) = l(w).

Scriviamo w = [w; ... w,], allora si ha che w < w e l(u) = l(w) + 1 se
e solo se u = [uy...u,] si ottiene da w scambiando w; e w; per qualche
i,7 € {1,...,n} in modo tale da avere

inv(u) = inv(w) + 1.

In questo modo e possibile costruire il diagramma di Hasse per esempio di
Sy, Figura 2.2.

Osserviamo che i poset ottenuti negli esempi sono euleriani. Possiamo

generalizzare questo risultato.

Teorema 2.25. L’insieme parzialmente ordinato ottenuto da un gruppo di

Coxeter W con l'ordinamento di Bruhat ¢ euleriano.

Dimostrazione. La dimostrazione di questo teorema si trova in [Ver71]. [

Sui gruppi di Coxeter con ordine di Bruhat, Kazhdan e Lusztig hanno
inizialmente sviluppato il concetto di nucleo, che vedremo nel capitolo suc-
cessivo. In particolare hanno definito dei polinomi, chiamati R-polinomi ed
hanno dimostrato alcune proprieta di questi, oltre che la buona definizione.
Siano z,w € W, e sia s € Dy (w) il polinomio R, ,(q) € definito in maniera

ricorsiva come segue

/

0 se x £ w,
1 se T = w,
Rm,w(Q) -
Rsx,sw se s € DL(Q?),
L (¢ — DResw(q) + qRszsw  se s & Dr(x).
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4321
/ \

4312 4231 3421
M %&\
4132 4213 3412 2431 3241
/W\
(1432 (4123 241 3] 3142 (321 4] 2341]
\ KT/
1423 1342 2143 3124 2314
\V% W
1243 1324 2134
\/

1234

Figura 2.2: Diagramma di Hasse dell’ordinamento di Bruhat di 5j.
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A partire dagli R-polinomi si possono costruire i polinomi di Kazhdan—

Lusztig in modo ricorsivo. Per ogni < w in W

@) = Y ReaPaw
a€lz,w]

Sin dagli inizi (ossia la pubblicazione di [KL79] nel 1979) si congetturava
che i polinomi di Kazhdan—Lusztig avessero coefficienti non negativi per ogni
gruppo di Coxeter. Per i gruppi di Weyl, grazie all'interpretazione geometrica
dei coefficienti dei polinomi come dimensioni di certi gruppi di coomologia,
era nota la non negativita. La dimostrazione del caso generale arrivo solo
nel 2014 con il lavoro di Elias e Williamson, [EW14].

Stanley in [Sta92] ha generalizzato la teoria a tutti gli insiemi parzial-
mente ordinati, introducendo delle funzioni che furono poi chiamate funzioni

di Kazhdan-Lusztig-Stanley, che saranno trattate nel prossimo capitolo.



Capitolo 3

Funzioni di

Kazhdan—Lusztig—Stanley

In questo capitolo riprenderemo molte definizioni presentate nei concetti
preliminari, in particolare 1’algebra di incidenza di un insieme parzialmente
ordinato. D’ora in poi I’anello unitario su cui ¢ definita 1’algebra di incidenza

sara sempre considerato come Z[z].

3.1 P-Nuclei

Sia P un Poset e p una funzione rango. Definiamo 1,(P) C I(P) come
I,(P) ={a € I(P) : deg(ast) < pst}-

Questo insieme costituisce un sottoanello dell’algebra di incidenza I(P).

Infatti: siano a,b € 1,(P), allora:
- 0 € I,(P);

- degl[(a + b)st] = deg(ast + bs;) < max{degag,degbs} < ps quindi
a+be l,(P);

- deg[(ab)st] = deg < ;t aswbwt) S sl’élggt{deg Asy + deg bwt}

< rgai(t{psw + put} = pst quindi ab € I,(P).

23
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Definizione 3.1. In I,(P) e definita un’involuzione:
"L (P) = 1,(P)
arra"

rev)

dove (a™)y := agx(z™!) 2P+, Sidice che a ¢ simmetrica se risulta a™’ = a.

Lemma 3.2. Siano f,g € 1,(P). Allora valgono le sequenti:

1_ (fg>rev — frevgrev‘

. Se f invertibile, (f~1)re = (frev)—1

Dimostrazione. 1.
[(f9) ™ Nael) = (f)a(a™) 2 = 7 fawla™)gur(a™Ha? o0
= > (" )awl(z) (grev)wt(x) = (9" )se().
2.

(ffl)revfrev — (fflf)rev = STV — 5’

dove si e usato il punto 1 e il fatto che 0"¥ = § poiché € un polinomio

di grado 0, quindi invariante rispetto a "".

71)7‘61}

Analogamente si dimostra fm(f =0 e dunque la tesi.

]

Definizione 3.3. Sia k € I,(P) tale che ks = 1 Vs € P. Diciamo che k ¢
un nucleo (o P-nucleo) se
frev — ]{}71.

Lemma 3.4. Sia a € 1,(P) invertibile. Allora
k= a—larev e h= areva—l

sono dei nucles.
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Dimostrazione. Dimostriamolo per k, per h la dimostrazione ¢ analoga.
rev __ —1_revyrev __ —1I\rev/ rev\rev __ revy—1 ___ -1 _revy—1 __ 7.—1
E'Y = (a""a"")" " = (=)™ (a"")" = (a"")"a = (aa"")" =k .
O

Esempio 3.5. La funzione caratteristica ¢ un nucleo per ogni poset P. In-

\

fatti siano P un poset e s,t € P, s < t, per il lemma si ha che (7'¢"® & un

nucleo.
(Crev)st(x) _ Cst(m_l) . pPst — pPst

Quindi

(Cilcrev)st(x) = (Mcrev)st(m) = Z (,usw(x) : lﬂwt) = Xst(x)

s<w<t

Esempio 3.6. Consideriamo il poset euleriano associato a S3 con ordina-
mento di Bruhat, visto nell’Esempio 2.22 e la funzione ey4(x) = (z — 1)°.

Mostriamo che € € un nucleo in tale poset.
e = (1 -z
Verifichiamo €"Ve = § :
- pst =0, s =1, allora (") () = 1.
-pst =1, ()g(z) =z —1+1—2=0.

- pst = 2, ogni intervallo di rango 2 ha struttura:

N

quindi (e"¢)y(z) = (z —1)* = 2(x — 1) + (x — 1) = 0.

- pst = 3, quindi s = e, t = 518953. Si ha (") = (x — 1) — 2(z —
1P +2x—-1P3+(1-2)*=0.
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Possiamo generalizzare questo risultato a tutti i poset euleriani, piu pre-

cisamente esso ne fornisce una caratterizzazione.

Teorema 3.7. Un poset P ¢ euleriano se e solo se l'elemento € € 1,(P),
eg(x) =(x—1) Vs<teP

e un nucleo.

Dimostrazione. Osserviamo che €’¢¥(z) = (1 — z)*=*. Inoltre 53 = 1 Vs € P

quindi e invertibile.

= Y (A=ap=(o =1 = (e =1 3 (-1

s<w<t s<w<t
Poiche deve valere Vx questo ¢ uguale a dy se e solo se >, (=1)" =0
ossia P e euleriano. O

3.2 Funzioni KLS

Un teorema di Stanley garantisce che ogni nucleo ha la forma vista nel
Lemma 3.4, sebbene lui consideri solamente la funzione indicata con k nel
lemma (e non h); il risultato rimane comunque valido. Questo enunciato
costituisce il teorema centrale di questa sezione. Stanley, infatti, definisce
un P-nucleo come una funzione f invertibile che soddisfa ™’ = fk. Se f
soddisfa solo quest’ultima condizione, si dice che & k-totalmente accettabile.
Inoltre, aggiungendo una condizione sul grado, abbiamo 'unicita delle fun-
zioni k-totalmente accettabili.

Per dimostrarlo e necessario il seguente lemma:

Lemma 3.8. Sia k € I,(P) un nucleo e siano s,t € P. Suppongo che
f e l,(P) soddisfiVw e P, s <w <t

(kf)wt = Z kwufut = (frev)wt-

w<u<t
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Allora il polinomio

Qst Z ksw fwt )

s<w<t

e antisimmetrico, cioe Q™Y = —Q).

Dimostrazione.
rev __ Tev frev
st T E ksw fwt
s<w<t

_ Z krev

s<w<t

= Z k;‘z}v Z k'wufut

s<w<t wlu<lt

= Z k,;c;}v kwu fut

s<w<u<t

= Z fut Z krevkwu

s<u<t s<w<u

= Z fut((krevk)su - ksu)

s<u<t

- - Z ksufut = _Qst

s<u<t

dove abbiamo usato (k"k)g, = ds, = 0. ]
Ai fini del teorema, definiamo
Lijp(P)={a € I(P):as,s=1Vs € Pe deg(as) < pst/2 Vs,t € P, s <t}.

Osservazione 3.9. Questo insieme non costituisce una sottoalgebra di I(P),
perché se a,b € Iy/5(P), allora a+b & I, /5(P), perché (a+b)ss = ass+bss = 2
per ogni s € P. Costituisce invece un gruppo moltiplicativo, infatti siano
a,b € I,/5(P), allora per ogni s € P, (ab)ss = assbss = 1. Siano ora s < t in
P si ha

deg|(ab)y] = deg( > aswbwt)

s<w<t

1 1 1
< - : _
< gﬂ?ﬁdeg Us + deg by} < srgg%ct{ 5Psw prt} 5 Pst

Quindi ab € [1/2(P)
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Teorema 3.10. Se k € I,(P) é un nucleo, allora esistono e sono uniche
f.9 € Ii)2(P) tali che " =kf e g™ = gk.

Dimostrazione. Dimostriamo il teorema per f, per g ¢ analogo.
Procediamo per induzione su pg. Per il passo base, se s € P basta prendere
fss =1 esiha

fgfv =1= kSsts-

Siano ora s,t € P, s < t fissati e supponiamo che f,;(x) sia definito Yw €

P, tale che s < w <t in modo tale che valga

wi = (Kf)ut-

Definiamo

Qst = Z kswfwt-

s<w<t

Allora ™" = kf in [s,t] diventa

(fTev>St - (kf>st = Qst + kssfst-

Usando ks, = 1 dunque si ottiene

o — fsao = Qs (3.1)

Per il lemma @4 € antisimmetrico. Dunque esiste una sola scelta per f,; tale
che deg(fs:) < pst/2 perché sia soddisfatta (3.1). O

Ora, dunque, ¢ ben posta la seguente definizione.

Definizione 3.11. Sia k € I,(P) un nucleo. Chiamiamo funzioni di
Kazhdan—Lusztig—Stanley (o funzioni KLS) destra e sinistra associate

a k rispettivamente le funzioni f, g € I2(P) tali che

k‘ — frevffl — gflgrev.

Vediamo un risultato che da informazioni sui coefficienti di f e g che sara

utile piu avanti.
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Lemma 3.12. Sia k un P-nucleo e siano f e g le funzioni KLS associate a

k. Valgono le sequenti uguaglianze per i coefficienti:
[2°) fae(@) = [27] " () = [27* ]kt (),

[2%]gat(2) = [27]g%" (2) = [2" ks ().

Dimostrazione. Proviamo il lemma per g, la dimostrazione per f e analoga.

Per ogni s <t vale

9st' () = (gk)st(x) = Z s (T) Kt ().

s<w<t

Separando dalla sommatoria i termini con w = s e w = t otteniamo
g;t&}(x) - gst(x) = kst(x) + Z gsw(x)k:wt<x)-

Poiche deg gy < psi/2 e ogni termine della sommatoria ha al piti grado 25 +

€

Puwt < Pst, quindi solo kg e gty hanno un coefficiente di grado ps, che dunque

deve essere uguale. [

In generale, le funzioni KLS destra e sinistra associate a un nucleo possono
avere comportamenti molto diversi tra loro. Di seguito alcuni esempi che lo

mostrano chiaramente.

Esempio 3.13. La funzione KLS sinistra associata alla funzione caratteri-
stica xy € g = (, come visto nell’Esempio 3.5. La funzione destra, invece, ha
una struttura decisamente pitt complessa e non verra trattata in dettaglio.
Tuttavia, nel caso di un poset semplice, e possibile seguire la dimostrazione
del teorema e costruirla tramite un calcolo diretto. Si osservi che, poiche
deg(fst) < pst/2, si ha che fy & uno scalare per py < 3. Dunque, per avere
esempi non banali, serve avere un poset di rango almeno 3 (ps; = 3). Per

esempio considerando I’Esempio 1.21 P =
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|
N

u (%

N S

~

si ottiene

fole) = 1—z sel[s,t]=[0,1],

1 altrimenti.

Aumentando il rango dell’insieme parzialmente ordinato si ottengono risultati

piu complessi, come per esempio () =

RN
) n 6
N
RN
a 3
N/

La funzione KLS destra associata alla funzione caratteristica y in Q) e

(241 se [s,t] = [0,1],

1—z ses=0,te{n,6},
fst<x): .
2e+1 sese{a,f}t=1,

1 altrimenti.

Quindi e sostanzialmente differente dalla funzione sinistra che & costantemen-

te uguale a 1.
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Esempio 3.14. Sia Bj il reticolo Booleano con tre atomi, Esempio 1.15. Sia

m € Z, definiamo k € 1,(B3) come segue:

)
1 se pst = 0,
z—1 se pst = 1,
kst(a}) =
2 —2x+1 se po = 2,
(2® + ma® —ma —1 se py =3

Verifichiamo innanzitutto che k sia un nucleo calcolando esplicitamente £,
determinando per ogni pg il prodotto (k"™ k) e verificando che equivalga a
Ost-

1 se pst = 0,
ow 1—=x se pst = 1,
kst ([L’) =

1 — 2z + 22 se po = 2,

(1 +mz —ma® — 2% se py =4

Osserviamo che per py; = 2 si ha ky(z) = (z — 1)%

- pst = 0, banalmente (k"Vk)(x)ss = kIkss(2) = 1 = 5.

pst =1, (K"k)g(x) =2 —14+1—2=0=dq4.

pst = 2, (K"k)g(z) = (x—1)?—(z—1)*+(z—1)2—(z—1)> =0 = 6.

- pst =3, (K"K (x) = 2 + ma? —max +1+3(1 —2)(1 — 2z + 2%) +
3x—1)(1 =22+ 2% +1+mz—ma®—mz®=0.

Quindi abbiamo dimostrato che k e effettivamente un Bs-nucleo, quindi per
il Teorema 3.10 sappiamo che esistono e sono uniche le funzioni di Kazhdan—
Luztig-Stanley. Questo esempio ¢ particolare perché le funzioni destra e

sinistra coincidono,

1 s5€ pst - 07 1a 27
fst() = gu(z) =
1+ (m+3)x seps=3.
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Esempio 3.15. Concentriamoci, come ultimo esempio, su un altro insieme
parzialmente ordinato euleriano: quello ottenuto imponendo 'ordinamento
di Bruhat sul gruppo di Coxeter associato al diagramma di tipo B (Esempio
2.23). Nel Teorema 3.7 abbiamo dimostrato che la funzione e4(x) = (z—1)°s
e un nucleo in tale poset. Quindi possiamo calcolare le funzioni di Kazhadan—

Lusztig—Stanley, che, analogamente all’esempio precedente, coincidono:
1 s€ pst S 27
fa(@) =ga(z) =1 —2x se pst = 3,
1 -2z sepg =4.

Introduciamo ora una funzione che risulta di particolare interesse, la

funzione Z, costruita a partire dai concetti di funzione KLS destra e sinistra.

Definizione 3.16. Sia k£ un nucleo e siano f, g rispettivamente le funzioni
KLS destra e sinistra associate a k. La funzione Z associata a k ¢ definita

come

Z = gkf.

Proposizione 3.17. Si ha Z = g™ f = gf"". In particolare Z ¢ simmetri-

ca.

Dimostrazione. g™’ = gk, quindi si ha Z = gkf = ¢"*f. Analogamente,
poiché frv = kf risulta Z = gkf = gf"". n

Vale anche I'implicazione inversa, la quale fornisce un criterio utile per

verificare che due funzioni f e g siano rispettivamente KLS destra e sinistra.

Proposizione 3.18. Siano f,g € I,/2(P). Allora f e g sono le funzioni KLS

destra e sinistra associate a un nucleo k se e solo se g"° f € simmetrica.

Dimostrazione. Siano ky := frf~! e k, :== ¢g7'¢". Quindi si ha ¢"f =

gkef e gf" = gk f, dunque otteniamo:

grevf — (grevf)rev — gfrev — gkgf — gkff — kg — kf-
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Esempio 3.19. Consideriamo il poset P dell’Esempio 3.13 e come nucleo la

funzione caratteristica y. Allora la funzione Z e data da

(

1 se pst = 0,
1+ se pst = 1,

Zs(x) = 1+ 2z + 2 se [s,t] = [0, w],
1+ x+ 2? se s € {u,v},t=1,
\1+x+a¢2+x3 se pst = 3.

Osserviamo che, come dimostrato nella Proposizione 3.17 la funzione Z ¢

simmetrica.

Esempio 3.20. Riprendiamo ora ’Esempio 3.14. La funzione Z associata

al nucleo k£ ¢ data da

(

1 se pst = 0,

1+ se pst = 1,
Zst(x) =

1+ 22 + 22 se pg = 2,

L1+ (m+6)x+ (m+6)2” +2°  sepy =3

Concludiamo il capitolo con un risultato sull’insieme dei P-nuclei, per il

quale saranno utili le seguenti definizioni:

e [(P)={h€I,(P):hy=1VYsc P} Questoe un gruppo moltiplica-
tivo perché se h,l € f(P), allora (hl)ss = hsslss = 1.

e S(P) = {h € I(P) : h = h™"} sottogruppo di I(P). Costituisce un
sottogruppo per il Lemma 3.2.

e [C(P) e linsieme di tutti i P-nuclei.

Inoltre, consideriamo I/5(P) come un gruppo moltiplicativo, proprieta di-

mostrata nell’Osservazione 3.9.
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Proposizione 3.21. Sia I(P)/S(P) linsieme delle classi laterali destre
S(P)-h, con h € I(P). Allora le mappe

p1: I(P)/S(P) = K(P), w2 Lijs(P) = K(P)

@1(S(P)-h) =h™'h™,  @y(h) = h™'h™

sono delle biezioni. Infatti I,5(P) costituisce un insieme di rappresentanti
delle classi laterali destre di S(P) in I(P) e oy (k) = g dove g ¢ la funzione

KLS sinistra associata a k.

Dimostrazione. oy & ben definita perché se S(P)-h = S(P)-l allora h = pl per
qualche [ = " quindi h=*h™ = (pl)~L(pl) e = ["1p~Lpl™® = (71", Inol-
tre ogni nucleo puo essere scritto come h™1h™ quindi ¢, ¢ suriettiva. Si vede
facilmente che ¢; ¢ iniettiva, per I'unicita delle funzioni k-accettabili, Teo-
rema 3.10. La biettivita di ¢y segue dall’unicita della funzione KLS sinistra

dimostrata nel Teorema 3.10. O



Capitolo 4

Funzioni di Chow

In questo capitolo studieremo una nuova classe di funzioni, le funzioni
di Chow, la loro relazione con le funzioni di Kazhdan—Lusztig—Stanley, e ne
vedremo alcuni esempi.

Per prima cosa introduciamo il concetto di nuclei ridotti, che servira per
la definizione delle funzioni di Chow. Per farlo abbiamo bisogno del seguente

lemma.
Lemma 4.1. Sia k un P-nucleo. Allora per ogni s <t in P
k8t<1) - O

Dimostrazione. Si procede per induzione su pg. Il passo base e dato dal caso

in cui t copre s (pg = 1). Per definizione di nucleo, vale kk™ = §, che

diventa:
0 = kos(2)k" (@) + k(@) ki (2) = ki () + ko ().
Dunque ky(r) = —k"(x) = —aPky(x'), che, calcolato in z = 1 da
kst(1) = —kg(1) e quindi k(1) = 0. Per il passo induttivo, osserviamo
che
= Z krev Euwi Z‘ — kvs"tev( )+kst Z ksw krev )
s<w<t s<w<t

35
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I polinomi kg, (z) e kj50(z) per s < w < t sono associati a intervalli piu

piccoli di [s,t], dunque per ipotesi induttiva
0=— " kaw(DK 1) = k(1) + ka(1),
s<w<t

da cui deriva la tesi. O

Alla luce del lemma appena dimostrato, la seguente definizione ¢ ben

posta.

Definizione 4.2. Sia £ un P-nucleo. Il P-nucleo ridotto associato a k ¢

Ielemento k € I,(P) dato da:
l%st(x) _ rz—1

Osserviamo che per il Lemma 1.18 i nuclei ridotti sono invertibili.
Siamo ora in grado di definire 'oggetto centrale di questo capitolo, la

funzione di Chow.

Definizione 4.3. Sia k£ un P-nucleo. La funzione di Chow associata a k

¢ elemento H € I,(P) definito da

E conveniente introdurre anche una definizione ricorsiva, che risulta utile
per il calcolo esplicito della funzione. Le seguenti formulazioni sono equiva-

lenti e derivano direttamente dalla definizione.

1 se s =t,
Ho(z) = Z Eow(2)Hyi(7)  se s <t. (4.1)
\ s<w<t
(
1 se s =t,
H = _ 4.2
a1() Z Hgop(2)kui(z)  se s <t (42)

\ s<w<t
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Osserviamo che H,, = 1 Vs € P per come abbiamo definito k.
Ora sara enunciata una proposizione che fornisce informazioni sui coeffi-
cienti della funzione di Chow come polinomio. In particolare risulta impor-

tante la simmetria, con centro di simmetria (pg — 1)/2.

Proposizione 4.4. Siano k,H € I,(P) un P-nucleo e la sua funzione di

Chow associata. Valgono le sequenti proprieta.
1. Per ogni s < t, vale
[P N Hy () = [27) k.
In particolare, se deg(ks;) = pst allora deg(Hg) = pg — 1 Vs < t.
2. H é simmetrica, cioe

Hy(z) = 2 "Hy(z ™).

Dimostrazione. Dalla definizione ricorsiva di H, equazione (4.1), si ottiene

Hy(x) = ka(x) + Y Fow() Hu(2). (4.3)

s<w<t

Dimostriamo entrambi i punti per induzione su py. Per il passo base consi-

deriamo s coperto da t, allora (4.3) diventa Hy(x) = ky(x) e in particolare
[z Ha (@) = [27 kg (2) = [27 ko (2).

Per dimostrare la simmetria consideriamo = # 1, perché I'equazione Hy(z) =
Pt Hy,(z7') ¢ banalmente sempre verificata in z = 1. Procedendo come

nella dimostrazione del Lemma 4.1, da kk™" = 0 deriva
0 = k' (2)+ko(x) = 27 kg (27 ) +ko(2) = 27 (27 =D kg (27 )+(2—1) kg ()
e usando H (1) = ky(z) otteniamo

o1 — 2)Hy (o) + (x — 1) Hy(z) = 0,
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che, poiché = # 1, semplificando x — 1 da la tesi. Ora, se s e t non sono
adiacenti, nella sommatoria nell’equazione (4.3), per ipotesi induttiva, ogni
termine ha grado minore o uguale a pg, — 1 + pyy — 1 = pg — 2. Quindi
la sommatoria non porta contributi ai termini di grado py; — 1 e dunque,

analogamente al passo base, si ha
(2 Hy(2) = [277 ks (2) = [0 kst (2).

Ora, per dimostrare la seconda proprieta, moltiplichiamo la formula del-
I'equazione (4.3) per z — 1 e sottraiamo il polinomio kg (x) da entrambi i
lati:

(z = D) Ha(x) = k() = (4.4)
— ;@ ks (%) Hot (2) (4.5)
- S;t Fesw(2)27 " oy (271) (4.6)
- ;t ( - ; ksu(a:)xp“wkuw(a:_l)> P T (27t (47)
__ Z g ()2 <§ | kuw(:cl)Hwt(xl)>
- ;t g ()27 ((x—l — D) Hy(z7h) — k:ut(x‘l)) (4.8)
— a:_; ;t Koo () 2P Koy (271 (4.9)

! ;‘”” ;t ksu(z)a™ ™ Hup(z7")

_ ékst(ib')_‘f‘ & — ! ;t ksu(x)2? ™ Hog(271), (4.10)

dove in (4.6) abbiamo usato l'ipotesi induttiva poiché [w,?] ¢ un intervallo
strettamente piu piccolo di [s, ¢], in (4.7) abbiamo usato che k € un P-nucleo,

in (4.8) abbiamo usato di nuovo l'equazione (4.5) ma cambiando la variabile

1

x con 7' e w con u, mentre in (4.10) abbiamo usato di nuovo che k ¢ un
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P-nucleo. Ora, semplificando 1'espressione a sinistra dell’'uguale in (4.5) con
(4.10) si ottiene:

rHy(x) = ka(x) + Y ka(r)z" " Hy(z ")

s<u<t

= kg (z) + 27 Hy( Z ksy(x)Hy ().

s<u<t

Dove abbiamo sostituito 27 ' H,;(z~') = H,(x) usando l'ipotesi induttiva
su [u,t], con s < u. Dunque (4.5) diventa, dopo aver aggiunto Hy(z) da

entrambi 1 lati

" Hy (271 = Hy(x).

]

Esempio 4.5. Riprendiamo I’Esempio 3.13, dove abbiamo calcolato le fun-

zioni KLS destra associata alla funzione caratteristica per i poset P e Q).

pP= Q=

1
|
w Y

U/// \\\U
%

La funzione caratteristica di P e stata trovata nell’Esempio 1.21. Possiamo
allora calcolare la funzione di Chow associata alla funzione caratteristica in
P.
1 se pst = 0,1,
Hy(z) =<z +1 se pst = 2,
22+ 22+1  sepy =3.
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Per quanto riguarda @), invece, scrivere la funzione caratteristica risulta molto

complicato, ma possiamo calcolare la funzione di Chow.

(1 se pst = 0,1,

z+1 se pst = 2,
Hy=q22+2zv+1 se s =0,t € {0,n,0},

22+ 4z +1 se s € {a, B}, t =1,

22+ 522+ 5+ +1  se py = 4.

\

Esempio 4.6. Torniamo ora all’Esempio 3.14. La funzione di Chow asso-

ciata al nucleo k ¢

1 se pst = 0,1,
Hy=<2+1 se pst = 2,
2?2+ (m+Tzx+1  sepy=3.

Esempio 4.7. Infine procediamo con I'Esempio 3.15. Possiamo calcolare il

nucleo ridotto:

~ -1 se s =t,
Est(x) =
(x —1)P+~1  altrimenti.

La funzione di Chow ha una forma esplicita molto semplice:

1 se s =t,
Hst(l‘) =

(x+1)P~1  altrimenti.

Il seguente teorema mostra come nel Teorema 3.10 sia fondamentale la
condizione sul rango. Infatti la funzione di Chow soddisfa k = H-'H"™ =

Hr*H=1 ossia ¢ k-totalmente accettabile, ma ha grado py — 1.

Teorema 4.8. Sia k un P-nucleo. La funzione di Chow H e ['unico elemento

in 1,(P) tale che

1. H(z)=1Vs e P.
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2. Per ogni s < t in P il polinomio Hy(x) € simmetrico, con centro di

simmetria 3 (py — 1).
3. kH = H™.
4. Hk = H™.

Dimostrazione. Abbiamo dimostrato nella Proposizione 4.4 che se H ¢ la
funzione di Chow associata a un nucleo k, i primi due punti sono validi;
quindi dimostriamo gli ultimi due e 'unicita. Consideriamo la definizione
ricorsiva (4.1) della funzione di Chow. Allora moltiplicando entrambi i lati

per x — 1 otteniamo
(0= DHa(@) = 3 ol Hual0)
e aggiungendo Hg(z) ad entrambi i lati diventa
rHy(x) = Z ksw(@)Hut(2) = (KH ) s (2).

s<w<t

Ora applichiamo la simmetria di H dimostrata nel punto 2 della Proposizione
4.4

H'(z) = a:p“HSt(:fl) =x- a:”“’let(a:’l) =cHgy(x) = (kH)s(x).

Quindi abbiamo ottenuto il terzo punto, H™ = kH. Allo stesso modo a
partire dall’equazione (4.2) otteniamo H"*" = Hk.
Ora consideriamo un qualunque elemento h € I,(P) che soddisfi i tre

punti dell’enunciato. Per ogni s < ¢
wha () = B () = Y Fa(@)han ().

Spostiamo a destra dell’'uguale il termine con w = s e dividiamo per x — 1 e

rimane

hst(x) = Z l%sw(x)hwt<x>7

s<w<t
che equivale a kh = ¢, dunque per definizione di funzione di Chow e unicita
dell’inverso si ha h = H. ]
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Proposizione 4.9. Sia H € 1,(P), tale che Hys(x) =1V € P e tale che per
ogni s < t in P il polinomio Hy(x) sia simmetrico e con centro di simmetria
%(pst —1). Allora esiste un unico P-nucleo k tale che H sia la sua funzione

di Chow associata.

Dimostrazione. Definiamo il P-nucleo come
l{ — HrevH—l

Questo e un nucleo per il Lemma 3.4 e vale kH = H"" quindi sono verificati
tutti i punti del Teorema 4.8 percio H e la funzione di Chow associata a k.
Supponiamo che esista k la cui funzione di Chow associata sia sempre H.
Dimostriamo che k = k per induzione sulla dimensione degli intervalli su cui
valutiamo la funzione. Se s € P vale ky(x) = 1 = ky(x). Ora, se s < ¢

abbiamo

e quindi

<t s<w<t

Per lipotesi induttiva per ogni s < w < t si ha kg = ke, quindi le
sommatorie a destra e sinistra dell’'uguale sono uguali, percio rimane kg =

Egt. [l

4.1 Relazione tra funzioni di Chow e funzioni

KLS

In questa sezione verranno enunciati e dimostrati alcuni risultati piuttosto
tecnici. Per semplicita verra indicato sempre con k£ un P-nucleo, con H la
funzione di Chow associata a k, e con f, g le funzioni KLS rispettivamente

destra e sinistra associate a k.
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Lemma 4.10. Per ogni s <t in P, il prodotto in I,(P) tra le funzioni KLS

associate a un nucleo e il nucleo stesso ridotto € dato da:

(frev(z) — o fy(x) ses <t
(Ff) () = ol | v
» se s =t.
’ g;fv( ) — :L‘gst(x) ses <t
(g)a() = o | -
1 se s =t.

\

Dimostrazione. Dimostriamo la tesi solo per g, in quanto la dimostrazione
per f & analoga. Se s = t, (gk)ss = gsskss = —1. Sia s < t. Per il Teorema
3.10 abbiamo che per ogni s < ¢

g (@) = Y geulx

s<w<t

Sottraendo da entrambi i lati il termine corrispondente a w = ¢, otteniamo:

95" (%) = gu(2) = Y Goul@)hun(2)

da cuil deriva la tesi. O]

Segue un teorema che fornisce una formula per calcolare la funzione di

Chow a partire da quelle di KLS.

Teorema 4.11. Valgono le sequenti:

Hst<x>: re”( ) fst + Z st fwt >—l‘fwt(l’), (4.13)

x—1 r—1
s<w<t
rev — g, ;‘;’U T TG (T
Hy(z) = % (x)_lgt< )y 3 e l_1g O ). @)
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Dimostrazione. Mostreremo di nuovo solo il risultato per g poiche la dimo-
strazione e analoga per f. Innanzitutto possiamo scrivere g come g = g =

g(—k)H = —(gk)H. Possiamo usare dunque il Lemma 4.10 e ottenere

gu() = —( CHaw) o+ Y

s<w<t

Riarrangiando i termini si ha la tesi:

Ho() = gala) + 3 0L 200l8) gy (@.15)

TEev

— gst

(£) = gula) | 5~ g

z—1

4.2 Unimodalita e non negativita delle fun-

zioni di Chow

Poiché le funzioni KLS e le funzioni di Chow sono dei polinomi, & na-
turale chiedersi quali proprieta esse possano avere come tali. Abbiamo di-
mostrato la simmetria delle funzioni di Chow; nel seguito valuteremo altre
proprieta caratteristiche, ci concentreremo in particolare sull'unimodalita e
la non negativita.

Innanzitutto osserviamo che le funzioni KL.S non godono della proprieta di
non negativita, infatti nell’Esempio 3.13 la funzione KLS destra f associata
alla funzione caratteristica x presenta coefficienti negativi per entrambi i
poset considerati. Anche nell’Esempio 3.14 per m < 3 sia f che g presentano
coefficienti negativi.

Per quanto riguarda le funzioni di Chow, nell’Esempio 4.6 per m < 7
si ottengono dei coefficienti negativi. Inoltre se consideriamo ad esempio
m = 7, notiamo anche che il polinomio non ¢ unimodale.

Nel seguente teorema, che costituisce un risultato centrale di questo ca-

pitolo, mostreremo tuttavia che esiste una profonda connessione tra la non



4.2 Unimodalita e non negativita delle funzioni di Chow

45

negativita delle funzioni KLS e la non negativita e unimodalita della funzione
di Chow.

Teorema 4.12. Sia k un P-nucleo. Se almeno una tra la funzione KLS
destra [ e la sinistra g € non negativa, allora la funzione di Chow H é non

negativa e unimodale.

Dimostrazione. Supponiamo che g sia non negativa, la dimostrazione e simile
per f. Procediamo per induzione su pg. Per il passo base pi; = 0 implica
s =t, si ha Hy(z) =1 Vs € P che ¢ banalmente unimodale e non negativo.
Sia pg > 0, per il passo induttivo assumiamo che Hg(x) sia unimodale e non
negativo per ogni s < ¢ tali che pg < [ e consideriamo tutti gli intervalli [s, t]
tali che py = [+ 1. Sappiamo che deg g < %! e quindi deg g, < L”S‘Tflj =:d,

dunque possiamo scrivere ¢ in forma polinomiale per comodita nei calcoli:

d

gst () = Z gix',

dove g; > 0 Vi. Consideriamo l'equazione (4.14), dimostriamo che tutti i ter-

mini della somma sono non negativi, unimodali e hanno centro di simmetria

$(pst — 1). Siha
9o (1) — gat(w) = goa’t + a4+ gaa?t T — gaat — - — g1z — go.

Poiché 2d > pg, vale pg — d > d e quindi tutti i monomi hanno esponente

diverso. Quindi possiamo raccogliere i termini:

d

9o’ (x) — gse(z) = Zgi (zPs" — ')

d
= (.I' - 1) Zgle(l 4+ x4+ 4+ :L-pst*Zi*l)’

da cul deriva

rev(

gst

- __19“ Zgl (14 a4 are 20,
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che, poiché g; > 0 per ogni 7, ¢ non negativo, unimodale e simmetrico con
centro di simmetria pg/2 per il Lemma 1.2. Sia ora w € P, s < w < t,

seriviamo g () = go + g1z + -+ + gaz?, dove d = [22=1|. Si ha

Ghw (1) =G () = goa™ +graP T - A ggr T = gga® = —gia® —gox.
Se ps, € dispari ¢’e una cancellazione del termine di grado pg, —d = d + 1,

ma in ogni caso vale

d
g;euv(a:) - xgsw(-r) = Z g; (l’psw*i*l — ml)
=0

d
=ux(z—1) Zgixi(l tr++ xpsw—%)'
i=0

gsi (B)—xgsw (@)

¢ non
r—1

Possiamo dedurre in modo analogo al caso precedente che
negativo, unimodale e simmetrico con centro di simmetria pg, /2.

Per ipotesi induttiva H,,(z) € non negativo e unimodale per s < w < t.
Inoltre per la Proposizione 4.4 il centro di simmetria e p“’tT_l. Quindi per il
Lemma 1.3 il prodotto

g’r‘ev ) — :I;g T
sw ( l_ 1 sw( )Hwt(l')

€ non negativo, unimodale e simmetrico, con centro di simmetria %—1—%‘1 =
”StTfl. Quindi Hy(x) & somma di polinomi non negativi e unimodali, percio
soddisfa le stesse proprieta. O

Questo teorema garantisce che la funzione di Chow associata agli R-
polinomi sia unimodale e non negativa. Per vederne una formula esplici-
ta, riprendiamo i grafi di Bruhat, Definizione 2.18. Siano W un gruppo di
Coxeter, e u,v € W, indichiamo con B(u,v) il grafo di Bruhat associato

allintervallo [u,v] C W e scriviamo A € B(u,v) se A ¢ un cammino da u a

v nel grafo di Bruhat.

Esempio 4.13. Possiamo rappresentare l'intervallo B(u,v) con u = e, v =

[4 2 3 1], del grafo di Bruhat di S,, di cui abbiamo costruito I'ordinamento
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nell’Esempio 2.24. Le linee tratteggiate rappresentano i lati che vengono
aggiunti nel grafo di Bruhat rispetto al diagramma di Hasse dell’ordinamento.

Consideriamo A € B(u,v), allora A puo avere lunghezza 5, 3 oppure 1.

423 1]

/

[4132] [421 3]

1432

1234

Esistono ordinamenti totali sulle riflessioni, detti ordinamenti di riflessio-
ne, che soddisfano determinate proprieta di convessita, che non richiamiamo

in questa tesi.

Definizione 4.14. Siano W un gruppo di Coxeter, u,v € W, T I'insieme del-
le riflessioni e < un ordinamento di riflessione. Sia A € B(u,v) un cammino

da u a v:

U=Uy —> U —> " —> U, =1,

dove u; ju; = t;, t; € T per i € {1,...,k}. Diciamo che i & un’ascesa di A

se t;_1 < t;. Analogamente diciamo che ¢ ¢ una discesa di A se t;_; > t;.
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Indichiamo con asc(A) il numero di ascese di A e con des(A) il numero di

discese.

Osserviamo che vale asc(A) = I(A) — des(A) — 1.
Sia W un gruppo di Coxeter e u,v € W, u < v, allora la funzione di
Chow associata all’ R-polinomio ¢ data da:
Hyo(z) = Z g2t B ase(A) _ Z g2t B des(8).
A€B(u,v) A€B(u,v)

La dimostrazione di questa formula si trova su [FMV24].

4.3 Funzioni di Chow aumentate

Introduciamo ora un nuovo concetto, le funzioni di Chow aumentate,
costruite a partire dalla funzione di Chow e di Kazhdan-Lusztig-Stanley
associate ad un nucleo. Ne vedremo le proprieta fondamentali, tra cui un
risultato sulla loro unimodalita e non negativita, e alcuni esempi. In questa

sezione tornera utile la funzione Z introdotta nella Definizione 3.16.

Definizione 4.15. Sia £ un P-nucleo, H la funzione di Chow, f, g le funzio-
ni di Kazhdan-Lusztig-Stanley associate a k. Chiamiamo rispettivamente
funzione di Chow aumentata destra e funzione di Chow aumentata

sinistra associate a k le seguenti funzioni:
F = Hf'rev’ G = grevH'

Osserviamo che, poiché f, g, H € I,(P), si ha anche F,G € I,(P).
Esistono dei risultati per le funzioni di Chow aumentate, analoghi alla

Proposizione 4.4 e al Teorema 4.11.

Proposizione 4.16. Siano F,G € I,(P) le funzioni di Chow aumentate

associate a un nucleo k. Valgono le sequenti proprieta:
1. Per ogni s <'t, si ha
(27| Fa(z) = [27]Ga(z) = [27 ko ().

In particolare se deg kg = pg, anche deg Fyy = deg Gy = pg.
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2. Le funzioni di Chow aumentate sono simmetriche:

FrY=F, G =Q.

Dimostrazione. Dimostriamo entrambi i punti per G, per F' la dimostrazione
e analoga. Dalla definizione di G si ha che per ogni s < ¢:
Gulr) = 3 G50 () (o) = g5"(0) + 3 015 (0) ()
s<w<t s<w<t

Nella sommatoria ogni termine ha grado al massimo pgs, + pwt — 1 = pst — 1,
quindi non influisce sul termine di grado py, pertanto, per il Lemma 3.12
vale

(27| Fe(x) = [27]G () = [27"]kar(2).
Dimostriamo ora la simmetria:

G — gT'eUH — (gk)H — g(kH) — gHT'BU — (gTE’I)H)T‘G’U — G’

dove abbiamo usato kH = H™", visto nel Teorema 4.8. O]

Teorema 4.17. Sia k un P-nucleo, consideriamo la funzione Z associata a
k. Allora possiamo calcolare le funzioni aumentate di Chow destra e sinistra

come seque:

D=, )

Go(x) = Zgy(z) + Z Gyw() ﬁiv(x)x—_xlfwt(x)

s<w<t

Fu(r) = Zu(x) + Y Feo

(4.17)

Dimostrazione. Come di consueto dimostriamo la formula per G, per F' la
dimostrazione e analoga. Innanzitutto osserviamo che si puo riscrivere la
funzione Z:

Z=g"f=—g""(Hk)f = —=G(kf).
Combinando questo risultato con I'uguaglianza (4.11) dimostrata nel Lemma
4.10 si ha:

Zst(x):_<Gst(x)+ Z Gsw(17> ﬁi”(ﬁ)_l'fwt(f))?

r—1
s<w<t

da cul otteniamo la tesi. ]
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Come per le funzioni KLS, c¢’e distinzione tra destra e sinistra, le quali
possono avere comportamenti differenti. Vediamo degli esempi espliciti delle

funzioni di Chow aumentate.

Esempio 4.18. Proseguiamo con I'Esempio 4.5, in cui il nucleo ¢ la funzione
caratteristica, e consideriamo il poset (). Le funzioni di Chow aumentate
destra e sinistra, se pgs < 2 sono uguali,

;

1 se pst = 0,

r+1 se pst = 1,

Fy(r) = Gu(z) = {22+ 3z +1  se[s,t] = [0,7],

> +2x+1 sese{a B}, te{dn b},

2 +4x+ 1 se s, t] = [y, 1].

\

Per ps > 3, invece, presentano delle differenze:

( .

23+ 322+ 3z +1 se s =0,t € {0,n,0},

Fa(z) = Q2%+ 722+ 7o + 1 se s € {a,f},t =1,
\.ZE4+8.733+ 1622 +8x +1 se py = 4.

23+ 42% + 4+ 1 se s =0,t € {0,n,0},
Ga(x) = 2 + 522 + bz + 1 se s € {a, B}, t =1,

|2+ T+ Ma? +Te 4+ 1 se py = 4.
Osserviamo che le funzioni trovate sono simmetriche.

Esempio 4.19. Tornando nuovamente all’Esempio 4.6, ancora una volta le
funzioni destra e sinistra coincidono:

(

1 se pst = 0,
rz+1 se pst = 1,
Fst(x) = Gst(x) =
224+ 3z+1 se pst = 2,
(2% 4+ (m +10)2” + (m +10)z + 1 se py = 3.
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Esempio 4.20. Calcoliamo ora le funzioni di Chow aumentate per 'insieme
parzialmente ordinato ottenuto a partire dal gruppo di Coxeter associato
al diagramma By e munito di ordinamento di Bruhat. Nell’Esempio 3.15
abbiamo visto le funzioni KLS associate a e5(x) = (x —1)P* in questo poset,
mentre nell’Esempio 4.7 abbiamo esplicato la funzione di Chow. Dunque

possiamo calcolare le funzioni di Chow aumentate:

(

1 se pst = 0,

r+1 se pst = 1,

Fy(z) =Gu(x) =< 22+ 3z + 1 se pg = 2,
23 +4x? + 4o+ 1 se psg = 4,
\x4+5x3+7x2+5m+1 se pg = 4.

Infine abbiamo un risultato di non negativita e unimodalita anche per le
funzioni di Chow aumentate, strettamente legato alle stesse proprieta per le

funzioni KLS e per la funzione Z.

Teorema 4.21. Sia k un P-nucleo e F e G rispettivamente le funzioni di

Chow aumentate destra e sinistra. Valgono le sequenti:

1. Se f (rispettivamente g) é non negativa, anche F (rispettivamente G)

lo e.

2. Se Z ¢ non negativa e unimodale e g € non negativa (rispettivamente

f) allora F (rispettivamente G) é unimodale.

Dimostrazione. Dimostriamo il teorema per F', in quanto la dimostrazione
per G ¢ identica. Per il Teorema 4.12 se f ¢ non negativa, anche H lo ¢,
quindi F' = H f"" & non negativa perche somma di monomi non negativi.
Mostriamo ora la seconda proprieta, supponiamo che g sia non negativa,
nella dimostrazione del Teorema 4.12 abbiamo visto che
955 (x) — 29 ()
r—1
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€ non negativo, simmetrico e unimodale e ha centro di simmetria % Psw- Anche
F,(2) & simmetrica e ha centro di simmetria £ p,;. Procediamo per induzione
su pg per dimostrare I'unimodalita di F. 1l caso di ps; = 0 € banalmente

vero. Sia ora pg > 1 e consideriamo (4.16), si ha che

> A

e somma di polinomi aventi lo stesso centro di simmetria, % Psw+ % Puwt = % Pst-
Abbiamo dimostrato nella Proposizione 3.17 che Z e simmetrica con centro

di simmetria £py. Quindi anche Fy(x) ¢ unimodale per (4.16). O
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