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Introduction

Bounded cohomology is a functional-analytic variant of ordinary cohomology and it is
a powerful tool in the study of manifold geometry, rigidity theory, stable commutator
length, and the dynamics of circle actions. Originally introduced in the seventies by
Johnson [Joh72] and Trauber in the context of Banach algebras, it was later extended
from groups to topological spaces through Gromov in the early eighties. In particular,
Gromov’s seminal work showcases the relation between bounded cohomology and other
topological invariants of manifolds such as the simplicial volume [Gro82].

In this thesis, we aim to study and discuss a result by Fournier-Facio, Monod and Nari-
man [FFMN24] concerning the bounded acyclicity of transformation groups of Euclidean
spaces (a group is said to be boundedly acyclic if its bounded cohomology with real coeffi-
cients vanishes in all positive degree). To this end, we first explore the foundations of the
theory of bounded cohomology beginning with the definition and its main properties and
results. Since here we aim to study the bounded cohomology of transformation groups,
we will focus on the bounded cohomology of groups, although the bounded cohomology
of topological spaces has also been widely studied.

In Chapter 1 we introduce the main players of this thesis. First, we briefly recall the
definition of group cohomology with values in a R[G]-module, where R is a commutative
ring and G a group. Group cohomology can be defined in various equivalent ways, some
with a more combinatorial flavor via cochain complexes, others with a more topological or
algebraic perspective: via classyfing spaces and injective strong resolutions, respectively.
For example, given a group G and a R|[G]|-module V| one can define for every n € N the
R[G]-module

C"(G,V)={f:G"" =V}

and a suitable differential d": C"(G,V) — C"Y(G,V). In this way, taking the G-

invariants, we have a cochain complex
0— UGV L G, V)¢ L G Vv)E L

whose cohomology is by definition the cohomology of the group G with values in the
R[G]-module V.

We then focus on bounded group cohomology. Bounded cohomology can be defined in
principle with values in any normed R[G]-module, where G is a group and R a commuta-
tive ring, but in this thesis we focus on real coefficients endowed with the trivial G-action.
In this case, the absolute value norm on R allows us to restrict our attention to bounded
cochains rather than arbitrary ones and so to define the so-called bounded cohomology.
If G is additionally a topological group, one can define continuous bounded cohomology by
considering only those bounded cochains that are continuous [Mon01, BM02]. However,
in this thesis, we focus our attention on the discrete case only. More precisely, given
a discrete group G we can define the ¢*°-norm for elements in C"(G,V'), where V is a
normed R|G|-module (e.g. V = R with the absolute value) by

HfHOO = sup Hf(9077gn)” € [07 —|—OO]
(go""vgn)EGn+l

We then restrict to the subspace

Cp (G, V) = {f € C"(G, V) | [[fllo <00} € C™(G; V),



and we can define the cochain complex of the G-invariants, whose cohomology is the
bounded cohomology of G with coefficients in V. Analogously, one can define bounded
cohomology using a more topological or algebraic approach as for standard cohomology
but taking the norm into account; the algebraic approach makes use of relative homological
algebra.

We then study the functoriality and the main properties of bounded cohomology.
Bounded cohomology presents some analogies with standard cohomology but drastically
differs in many other aspects. For instance, there is no analogue of the Mayer-Vietoris
sequence or excision properties (Section 1.5). This makes the computation of the bounded
cohomology hard also for tamed spaces or nice groups. Moreover, it can be readily seen
that bounded cohomology and bounded simplicial cohomology are not isomorphic in gen-
eral (indeed, the latter is not even a homotopy invariant). Thus, to study and compute
bouded cohomology more technical and sofisticated tools are needed. We study real
bounded cohomology in low degrees and see that it coincides with standard cohomol-
ogy in degree 0 but it vanishes for every group in degree 1. However, in degree 2 the
situation is much more complicated respect to standard cohomology, where a complete
characterization in terms of central extensions is available (Theorem 1.18). Fundamental
tools for the computation in degree 2 are quasimorphisms that are, roughly speaking,
homomorphisms up to a “bounded” defect. Quasimorphisms allow us to show that the
bounded cohomology in degree 2 of the non-abelian free group with two generators is
infinite-dimensional (Theorem 1.21). This computation showcases that bounded coho-
mology can behave wildly in comparison to standard cohomology: indeed it is not hard
to see that the standard cohomology of the non-abelian free group vanishes from degree 2
onwards.

Another tool to study bounded cohomology is the comparison map (Definition 1.16).
The inclusion of bounded cochains into all cochains (Cg(G;R),d*) — (C*(G;R),d*) in-
duces a map in cohomology that is, in general, neither injective nor surjective. Nev-
ertheless, understanding when this map is either injective or surjective plays a crucial
role in many computations. For instance, a classical theorem by Matsumoto and Morita
(Theorem 1.36) ensures the injectivity of the comparison map if the “UBC-condition" is
satisfied.

In Chapter 2, we introduce the class of amenable groups, which plays a significant
role in various areas of mathematics. They are groups that admit an invariant mean and
they encompass a wide range of groups, including finite, abelian, nilpotent and solvable
groups. A celebrated theorem by Johnson, which started the interest towards bounded
cohomology, says that amenable groups can be characterized as those groups that have
vanishing bounded cohomology with values in a certain class of coefficients in positive
degree (Theorem 2.12).

So far, we said that bounded cohomology is very hard to compute except for amenable
groups. A natural way to proceed in order to better understand its behaviour is to find an
example of a boundedly acyclic group which is not amenable. This is the content of Chap-
ter 3. We investigate the relevance of the comparison map, studying a technique widely
used to prove the bounded acyclicity of groups. The approach is fairly simple, at least
conceptually. One starts with a group that has been proved to have vanishing ordinary
cohomology in all positive degrees, uses a certain injectivity criterion for the comparison
map (like the one by Matsumoto and Morita mentioned before), and so concludes that
the given group is boundedly acyclic. Historically, the first group this technique was ap-
plied to is the group Homeo.(R") of self-homeomorphisms of the Euclidean space with



compact support. Indeed, it was proved to be acyclic by Mather in 1971 (Theorem 3.2),
and then to be boundedly acyclic by Matsumoto and Morita using their criterion for the
injectivity of the comparison map in 1985 (Theorem 3.4). We point out the compact-
ness hypothesis since the main result of this thesis is the bounded acyclicity of the group
Homeo(R™), i.e. without restricting to compacly supported homeomorphisms. The proof
of Mather goes as follows: since chains are defined by a finite numbers of elements only,
we can assume that every chain is supported in an n-dimensional ball B% of a certain
radius R. Than Mather exhibits an element k& € Homeo.(R") such that k7(B%) N By = 0
and lim;_, o k7 (E};) = p for some p € R”. Namely there exists an homeomorphism that
displace the ball infinite many times within a compact support (of course by shrinking it
to a point). This provides the key ingredient in the proof of the acyclicity of Homeo.(R")
and it is evident that without the compactness assumption such a k cannot exist (since
the support of ¢ € Homeo.(R") might be the whole R™). This group was the first known
example of a non-amenable boundedly acyclic group and the proof stands as a model
for many other results of this type. For instance, dissipated groups (Definition 3.8) are
those class of groups that allows the existence of an analogous element as the k used in the
proof of Mather’s Theorem. More generally, a similar approach is taken by Fournier-Facio,
Loh, and Moraschini for pseudo-mitotic groups (Theorem 3.14) when they computed the
bounded cohomology of dissipated groups. In this thesis, we define and analyze these
classes of groups and discuss the bounded acyclicity results mentioned above.

In Chapter 4, we show that we obtain bounded acyclicity of the transformation group
of Euclidean spaces even without the compactness hypothesis. Although relying on the
previous results, this has been proved via a new and different approach. Little is known
about the ordinary cohomology of transformation groups of Euclidean spaces, so at this
stage, showing the injectivity of the comparison map would not be enough to establish its
bounded acyclicity. Considering a group G acting on a set X, Fournier-Facio, Monod and
Nariman provide two criteria: one ensures bounded acyclicity (Theorem 4.2), the other
ensures standard acyclicity (Theorem 4.3). This represents a new strategy in the study of
bounded acyclicity without assuming acyclicity, but in fact provides a new criterion that
might well be exploited for investigating standard acyclicity. By verifying the criterion, the
authors show that Diff(R™) and thus also Homeo(R™) are boundedly acyclic. Remarkably,
this result does not rely on regularity, whereas it is known that Diff(R") has highly
nontrivial standard cohomology.

The criterion goes as follows. One let a group G act on a set X, and extend this
action to a poset P built from this set. Then, one consider the action of G on a G-
invariant subposet of P, say X. We ask for three conditions: the poset X satisfies a
certain combinatorial property, called W -property, the action of G on X is transitive and
one, or equivalently every, stabilizer in G of an element of X" is (boundedly) acyclic. If
these hypotheses hold, the group G is (boundedly) acyclic. The proof relies on the theory
of simplicial sets, a generalization of the standard simplicial complexes from algebraic
topology. We give a brief and intuitive discussion of it in Section 4.1. To show that the
group of transformation of the euclidean space satisfies the criterion, we will need to recall
some facts about isotopies (Definition 4.55) and in particular we will need the Isotopy
Extension Theorem (Theorem 4.56).

To sum up, in this thesis we explore the broad field of bounded cohomology, with a
primary focus on the cohomology of groups. We begin by presenting the foundations of
the theory. Then, we introduce amenable groups and we highlight their connection with
bounded cohomology. After that, we focus on the (bounded) acyclicity of the group of



self-homeomorphisms of Euclidean spaces with compact support. We eventually study
the 2024 article by Fournier-Facio, Monod and Nariman that removes the compactness
support hypothesis, giving particular attention to the criterion used, which potentially
has applicability in various other classes of groups.
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1 Bounded cohomology of groups

In this section we work in the category of (bounded) R[G]-modules, where R is an abelian
ring (usually R or Z) and G is a discrete group. Recall that an R[G]-module is an
R-module endowed with an action of G by R-linear maps, and an R[G]-map between
R|G]-modules is an R-linear map which commutes with the action of G. For simplicity’s
sake, we refer to this maps as G-maps when R is understood. We review the definition of
standard and bounded group cohomology, focusing on the latter and pointing out analogies
and differences. They can be defined in various equivalent ways, sometimes with a more
combinatorial flavor, others with a more topological or algebraic perspective.

Later in the chapter, we briefly recall the functorial properties of standard cohomology
and examine how they carry over to the bounded cohomology setting. We then define
the comparison map (Section 1.4), which is a map from bounded cohomology to standard
cohomology. The comparison map will play a crucial role in Section 3.2 when computing
the bounded cohomology of the group of compactly supported homeomorphisms of R™ in
Theorem 3.4. Next, we explore some properties of bounded cohomology, highlighting that
it does not admit a Mayer-Vietoris sequence nor satisfy the excision axiom. Afterward,
we study bounded cohomology in low degrees: in particular, we show that it vanishes
in degree 1 for real coefficients, while the realm of quasimorphisms arises in degree 2.
Finally, we consider another invariant, called ¢'-homology, and investigate the duality
properties of bounded cohomology. We also provide a criterion that, among other things,
describes properties of the aforementioned comparison maps and will again prove useful
for computing the bounded cohomology of the group of compactly supported homeomor-
phisms of R™ in Theorem 3.4. Namely, in Theorem 1.36 we prove that a normed chain
complex satisfies the so-called g-Uniform Boundary Condition for ¢ > 0 if and only if the
comparison map is injective in degree g + 1. Thus, proving that a group has vanishing
bounded cohomology in degree ¢+ 1 is equivalent to prove that it has vanishing standard
cohomology in degree g + 1 and that the ¢-Uniform Boundary Condition holds.

1.1 Group cohomology

We start briefly recalling three different definitions of standard group cohomology with
values in an R[G]-module V. As a source, we refer to the book of Brown [Bro82].

1.1.1 A combinatorial approach to group cohomology

For every n € N, denote by
C"(G,V)={f:G""" =V}, (1)
and we take 6": C"(G,V) — C""(G, V) to be the differential defined by

n+1

5nf(g07 s 7gn+1> = Z(—l)lf(gm s 7.6\1'7 s 7gn+1)-

i=0
Observe that C"(G, V') can be endowed with a structure of R[G]-module considering the
G-action

(9 £)(g0s - 9n) = 9(F(97 g0, -, 9™ gn))-

The cochain complex (C*(G,V),d°) is usually called the homogeneous complez; as we
will see below, it is sometimes useful to consider different complexes in the definition
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of bounded cohomology (e.g. the bar resolution). The complex of the G-invariants
C*(G,V)% is a subcomplex of C*(G,V) since 6" is a G-map for every n € N. The
cohomology of G with coefficients in V' is then defined as the cohomology of the complex

0— G, V)¢ 5 cv e v)¢ S e, v)e D
Definition 1.1 (Group cohomology). In the notation of before, the cohomology of G

with coefficients in V is defined as:

Z"(G,V)

B"G,V)’

where Z"(G,V) = C"(G,V) N keré” and B"(G,V) = §"YC" (G, V)%), with the
convention that B%(G,V) == 0.

H"(G,V) =

Recall that we say that a group is acyclic if its cohomology with integer coefficients
vanishes in every positive degree.

Remark 1.2. There is a simple reason for which we look only at the G-invariants: if
we tried to define the cohomology directly from the homogeneous complex, we would get
the trivial module in every degrees. This can be readily seen by considering the following
chain homotopy between the identity and the zero map defined by

Ett onti G V) = MG, V), K f(gos -y gn) = F(1, 905 Gn)-

With chain homotopy we intend a completly analogous definition given for other coho-
mology theories. It is straightforward to see that this implies that the induced maps in
cohomology are the same, hence the conclusion.

As said above, it will be in many computations convenient to have other kinds of
resolutions: for example, here we describe the bar resolution. This construction arises
from the observation that elements of C"(G; V') are determined by the values they take

n (n + 1)-tuples whose first entry is fixed.

Proposition 1.3 (The bar resolution). The complez (C°(G;V),8") is canonically iso-
morphic to the G-invariants of the homogeneous one, where:

@V)=v, TGV =N GY) =G = V)
and 8°: C*(G; V) — O™ (G, V) is defined by:
W) g)=g-v—v forveV zéo(G; V), g€ @G,
and for f € C"(G; V),
0" (f) (91, Gns1) = g1 f(925 - Gnt1)

+Z gl?"'agig’i+1v"'7gn+1)

+ (_1)n+1f(glv SR 7971)
Proof. For every n € N we have R-isomorphisms given by
Cn<Ga V)G — 6n(C;’? V)v p = ((gla s 7gn) = Qp(lvglvglg% s g1 gn)) :

Under this isomorphism, the differential §*: C*(G; V)¢ — C*T1(G; V)% descends to the
one defined above, and therefore we have an isomorphism of complexes. O]



1.1.2 An algebraic approach to group cohomology

We describe here how group cohomology can be defined with the standard approach of
resolutions of modules. In order to do so, we define in particular relatively injective strong
resolutions. We only provide the essential definitions and summarize the results leading
to group cohomology, without proving them; we refer to the book of Frigerio [Fril7,
Chapter 4] for the details.

Definition 1.4 (Strongly injective map). Let A, B be R[G]-modules and i: A — B
a G-map. We say that ¢ is strongly injective if there exists an R-linear map o0: B — A
sucht that o o7 = Id.

Remark 1.5. We point out that if 7 is strongly injective then it is injective. Moreover,
it is not requested for the map o to be G-equivariant.

Definition 1.6 (relatively injective module). Let V' be R[G]-modules. The module
V' is relatively injective if given any other two R[G]-modules A, B, a strongly injective
map 7: A — B and a G-map a: A — V, then there exists a map $: B — V such
that foi = a.

Remark 1.7. In the case R = R, the definitions of strongly injective and injective maps
coincide, so relatively injective R[G]-modules are just injective R[G]-modules.

An augmented complex of R[G]-modules of the form

5n—1

5 § On
S VA VAN VAN LN

Vn_>"'7

where € is an embedding, is said to be a relatively injective resolution of V it every

V; is relatively injective. In this context, in order to ensure that a map between two
modules can be extended to a map between their resolutions one needs to work with
strong resolutions.

Definition 1.8 (strong resolution). Let V be an R|G]-module. A resolution of V
is called strong if there exists a contracting homotopy, that is, a sequence of R-linear
maps k;: V; — V;_y such that 6;_; o k; + k;y1 09; = Idy, for ¢ > 0 and kgoe = Idy_,.

Remark 1.9. The maps in the definition of contracting homotopy are not required in
general to be G-invariant. Indeed, if they are assumed to be G-invariant, they provide an
equivariant cochain homotopy between the zero map and the identity map.

By defining the augmentation e¢: V' — C%(G, V) as ¢(v)(g) = v for everyv € V, g € G,
it is readily seen that the augmented homogeneous complex

0—VScmv)S ovr vy S e, v) S

is a relatively injective strong resolution of V', as showed in Proposition 4.3 of [Fril7].
Moreover, one can show that any two relatively injective strong resolutions of the same
R[G]-module are equivalent up to G-homotopy [Mon01, Lemmas 7.2.4 and 7.2.6]. There-
fore, group cohomology of an R[G]-module can be consistently defined as the cohomology
of any relatively injective strong resolution.



1.1.3 A topological approach to group cohomology

Given a group G one can consider a model of its classifying space BG, i.e. a pointed
connected CW-complex (X, z) together with an isomorphism 7 (X, z) = G such that the
universal covering of X is contractible. This can be performed for every group G, for
example constructing a suitable A-complex [Hat02, Example 1B.7, p. 87]. It is then a
standard result that any two different models are equivalent up to canonical homotopy
[Hat02, Section 1.B], and so it is possible to define the group cohomology of a group G
as the simplicial cohomology of any representative of its classifying space. In fact the
simplicial cochain complex assosciated to the model of BG constructed by Hatcher [Hat02,
Example 1B.7, p. 87] agree with the G-invariants of the homogeneous complex of G.

1.2 Bounded cohomology

By introducing a norm into the framework and considering only bounded cochains, we
define the main object of this thesis, namely the bounded cohomology of a group. For
simplicity we only consider the case of R = R or R = Z endowed with the usual absolute
value | - |. An R[G]-module is normed if it is endowed with a G-invariant norm, i.e. a
map || - || : V — R satisfying for every v,w € V, g € G and r € R:

e |lv]| =0 if and only if v =0,
o lrvll = 1Irf- vl

o flvtw| < o] + lJwl],

« g -vll =1l

A G-map between normed R[G]-module is an R[G]-map which is bounded with respect to
the norms. As before, we describe the combinatorial, algebraic and topological approaches
for defining bounded cohomology.

1.2.1 A combinatorial approach to bounded cohomology

We endow the space of cochains C™(G; V') defined in Equation (1) with a norm as follows:
for every f € C"(G,V), the (*°-norm is defined by

fle = sup 1F(g0,-g0) ]| € (0,00,

We then restrict to the subspace
Cy (G, V) ={f € C"(G,V) | [|fllec <00} € C™(G;V),

which is a normed R[G]-submodule of C"(G,V'). The differential of the (possibly un-
bounded) homogeneous complex restricts to the bounded cochains since it sends bounded
cochains to a finite sum of them. In a similar fashion as before, we consider the space
of bounded chain Z(G,V) = CPG,V)¢ N Kerd" and the space of bounded bound-
aries BY(G,V) = " 1(Cp~HG,V)Y), with the convention that BY(G, V) := 0 to define

Zy (G, V)

10



Definition 1.10 (Bounded cohomology of a group). We call H*(G, V) the bounded
cohomology of G with V' coefficients.

Analogously to the classical cohomology setting, as we shall see in the following chap-
ters, it is important to investigate the class of groups for which bounded cohomology
vanishes in positive degrees.

Definition 1.11 (Boundedly acyclic group). We say that a group is boundedly acyclic
if its bounded cohomology with trivial real coefficients vanishes in every positive degree.

The norm of the bounded cochains restricts to a norm on Z*(G,V') and descends to
a seminorm on the quotient Hy'(G,V') as follows:

ol = ,_jnt,
[f]=cx
It is a standard result of functional analysis that this is actually a norm if and only if
Bl(G,V) is closed in Z(G, V) [Rud91, Theorem 1.41].
One can also define the bounded bar resolution (C},d,) following step by step what it
has been done in Section 1.3 for the standard cohomology. Again the two approach lead
to isometrically isomorphic bounded cochain complexes.

1.2.2 An algebraic approach to bounded cohomology

Similarly to the case of standard cohomology, we can study bounded cohomology via the
notion of relatively injective strong resolutions of normed R[G]-modules. The definitions
and results are completely analogous, except that now we must keep track of the norm.
Referring to the notation introduced in Section 1.1.2, the only differences are the following;:

 in Definition 1.4 of strongly injective map, it is asked that the morphism o: A — B
satisfies ||o|| < 1;

o in Definition 1.6 of relatively injective normed R|G]|-module, we require that ||5]| < ||a]f;

o we ask for the augmentation € in the G-complex defined in Section 1.1.2 to be
isometric;

o the contracting homotopy k in Def 1.8 satisfies ||k|| < 1 for every n € N.
With this additional assumptions, one can prove the following:

Theorem 1.12 ([Fril7, Proposition 4.3 and Corollary 4.5]). Let V' be a normed R[G]-
module. Then the followings hold:

1. the bounded chain complex
0—VSCUGV) S CHG V) — - — CH(Gi V) — -+
where e: V. — CY(G; V) is defined by e(v)(G) = v for everyv € V, g € G is a

relatively injective strong resolution of V';

2. the cohomology H{'(V'*) of any relatively injective strong resolution (V,V*,0%) of V is
canonically isomorphic to the cohomology H{'(G, V') defined in Equation 1.10. More-
over, this isomorphism is bi-Lipschitz with respect to the seminorms of H]'(G,V)
and H*(V*).

11



The proof of this theorem relies on the usual machinery of homological algebra and
can be found in Frigerio’s book [Fril7, Proposition 4.3 and Corollary 4.5].

Even if it is not crucial for our purposes, the following fact is worth keeping in mind.
The theorem implies that, given a normed relatively injective strong resolution of our
R[G]-module, the induced seminorms are pairwise equivalent. However, it does not claim
(and in general it is not true) that these seminorms coincide. Since in many applications it
is important to know the precise value of the canonical seminorm, namely the one induced
by the standard resolution, the previous result is not as optimal as possible. This is not a
big issue since adding some extra hypothesis one actually gets an isometric isomorphism
[Fril7, Theorem 4.17].

1.2.3 A topological approach to bounded cohomology:

In this section, let X be a topological space and let R = R or R = Z. Consider the usual
complex of singular n-cochains (C*(X, R),*), which we endow with a norm as follows:
for every p € C"™(X, R), we define

|olloo = sup{|ep(s)| | s is a singular n-simplex in X'} € [0, co].
We denote by C}'(X; R) the R-module of bounded n-cochains, that is, the subspace
Gy (X5 R) = {p € C"(X, R) | [[¢]lc <00} € C"(X; R).

The differential 6* maps bounded cochains to bounded cochains, thus inducing a differen-
tial on the subcomplex of bounded cochains. The cohomology of this subcomplex is called
the bounded cohomology of the topological space X. The norm on the bounded cochains
descends to a seminorm in cohomology.

Since simplicial bounded cohomology of spaces is not the same as singular bounded
cohomology of a space, it is not as straightforward as in the standard case to iden-
tify H}(G; R) with H'(BG; R). However, with some extra work, we can get the desired
identification:

Theorem 1.13 ([Fril7, Theorem 5.5]). Let X an aspherical space. Then HJ'(X,R) is
isometrically isomorphic to H'(m(X), R) for every n € N,

What is quite surprising is that the previous theorem still holds without the assump-
tion of asphericity: in the case R = R, the latter isomorphism remains true for every
path-connected topological space.

Theorem 1.14 ([Ival7, Theorem 8.3] and [FM23, Theorem 0.2.8]). Let X be a path-
connected topological space. Then, for every n € N, we have that H'(X,R) is canonically
isometrically isomorphic to HJ'(m (X),R).

This theorem appeared in Gromov’s seminal paper [Gro82, Corollary D and Remark
E, page 46] without any assumption on the topology of X. Later, Ivanov proved it for
countable CW-complexes (see [[va87, Theorem 4.1]) and more recently extended the result
to every path-connected topological space. Moraschini and Frigerio gave a new proof of
this theorem following more closely Gromov’s original approach.

12



1.3 Functoriality

We now briefly study the functorial properties of group cohomology; if not stated other-
wise, the same statements hold verbatim for bounded cohomology. The described con-
struction actually defines not only a bunch of (seminormed) modules, but a bifunctor
which is controvariant with respect to restriction of scalars in the first entry and covari-
ant in the second one. More precisely:

First entry: let GGy, G5 be groups, let ¢: G; — G5 be a homomorphism, let R be
a commutative ring and let V' be an R[G3]-module. Then V' is in a natural way also
an R[G]-module where G, acts on V via ¢; we denote this module by ¢~ V. Note that
in the case V = R and G5 acts on R trivially, we have ¢~!V = R. Then, for every n € N
there are induced maps ¢" : C"(Gy,V) — C™(Gy,6 V). These induce cochain maps
such that ¢"(C™(Go, V)%2) C C™(G1, ¢ 1V) and therefore we have a well defined map
in cohomology for every n € N.

Second entry: let G be a group, let R be a commutative ring, let Vi, V5 be R[G]-
modules and let o : V; — V3 be an R|G|-map. Then, for every n € N, there are induced
maps o" : C"(G, V) — C"(G, V3) defined as the postcomposition with a which give rise
to well-defined homomorphisms in cohomology.

Observe moreover that if we have a short exact sequence of R|G]-modules
0=V SV, 5 -0,
then the induced sequence
0= C*(G, )% 25 (G, V5)¢ L5 (G, V)¢ — 0
is still exact and therefore there exists a long exact sequence of the form
0— HYG, Vi) = H°(G, Vo) = H°(G, V) = H (G, V1) = H (G, V3) — ....

Remark 1.15. To obtain the same long exact sequence in bounded cohomology, we need
to work with short exact sequences of Banach R[G]-modules (see [MR23, Theorem 2.31]
and [Mon01, Proposition 8.2.1]).

1.4 The comparison map

We now introduce a fundamental concept in the theory of bounded cohomology: the
comparison map.

Definition 1.16 (The comparison map). For every n € N, the inclusion of bounded
n-cochains in possibly unbounded n-cochains CJ'(G; V') < C™(G; V') induces a map

comp" : H'(G,V) — H"(G;V),

called the n-th comparison map. We denote with EH} (G, V) := ker(comp”) its kernel and
call it the n-th exact bounded cohomology.
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We point out that this map is, in general, neither injective nor surjective. However, we
will see that understanding the conditions under which this occurs is one of the key tools
in the theory. For instance, bounded cohomology can sometimes be studied by analyzing
the kernel and image of the comparison map. Specifically, we have the decomposition

H}(G; V)= EHy(G; V) @ Im(comp™),

where the first summand, EH}'(G; V), is sometimes computable-for example, via quasi-
morphisms in degree 2, as we shall see in Section 1.6. The second summand is often easier
to handle, as it belongs to the realm of standard cohomology. This is the approach we
use in Section 1.6 to compute the second bounded cohomology of the free group with two
generators.

1.5 Properties of bounded cohomology

In this section, we resume the main properties of bounded cohomology. The main dif-
ference with standard cohomology is the lack of any kind of Mayer-Vietoris sequence or
excision property, which makes its computation often very difficult. Furthermore, unlike
standard cohomology, there is no isomorphism between singular and simplicial bounded
cohomology, and the latter is not, in general, a homotopy invariant. For instance, con-
sider a finite simplicial complex, such as the wedge of two circles S'V S!. Every simplicial
cochain is bounded, so simplicial bounded cohomology coincides with standard singular
cohomology. However, its singular bounded cohomology is infinite dimensional already in
degree 2, as we will show in Theorem 1.21.

Given a couple (X,Y’), one can define its relative bounded cohomology groups tak-
ing bounded cochains which vanish on Y. As said above, one can not hope for an ax-
iomatic cohomology theory this way, since the excision axiom fails. Nevertheless, the
other Eilenberg-Steenrod axioms hold, namely:

« Homotopy invariance: Maps ¢°*,h*: H (Y, B; R) — H} (X, A; R) induced by ho-
motopic maps are identical.

« Exactness: For every pair (X, A) with inclusion mapsi: A — X and j : (X,0) —
(X, A), the sequence

D HPYAR) S HP(XGR) D HP(X, A;R) S HP (A R) S HPY(XGR) -
is exact.
« Additivity: For every family {X;};cs of spaces, the natural map
P H'(X;; R) —s H! <|_| X;: R>
iel iel
is an isomorphism.

« Dimension: For every singleton space X = {x}, we have

H)YX;R)~ R and H}(X;R)=0forn > 0.

14



The proofs of these facts are quite straightforward: they follow the standard arguments,
taking the norms into account and checking that everything that needs to be bounded
actually it is [Fril7]. For example, for the dimension axiom: there is only one singular
simplex in {*}, hence Cp(X; R) = C*(X; R) and so bounded and standard cohomologies
have to coincide.

We now investigate the behavior of bounded cohomology of groups in low degrees.
In degree 0, from the definitions we obtain C'(G; R) = Cy(G; R) = 0 and § = 0, hence
standard and bounded cohomology coincide:

H°(G;R) = H)(G;R) = R.

The first concrete difference we can see with standard cohomology is the behaviour of
bounded cohomology in degree 1 for real coefficients: it vanishes for every group. This
is clearly not the case for standard cohomology; consider for instance the group of the
integers Z. Its classifying space is S' and so we have H'(Z;R) = H'(SY;R) = R. In
general, it is well known, that H'(G;R) = Hom(G;R) [Bro82, Prop 2.3].

Proposition 1.17 (First bounded cohomology). Let G be a group. Then we have
H}(G;R) = 0.
Proof. Let us consider the bar resolution to compute bounded cohomology. By definition
C,(G;R) = {f: G — R bounded},
and the coboundary operator is given by

0f(g1,92) = fgn) + fg2) — f9192)-

Hence 6 f = 0 if and only if f is a group homomorphism. Moreover, since BL(G;R) = 0,
we have

H}(G;R) = Z}(G;R) /B4 (G; R) = { bounded homomorphisms G — R }.

We now want to show that there exist no non-trivial bounded group homomorphisms G — R.
Indeed, if ¢: G — R is a group homomorphism, then for every » € R we have

[@lloe =l - Dlloc = Ir| - l¢l]oo-
This identity can only hold for all » € R if and only if ||¢||« = 0, hence ¢ = 0. O

1.6 Bounded group cohomology in degree 2.
Recall that the second group cohomology is fully understood in degree 2:

Theorem 1.18 (Standard cohomology in degree 2 [Fril7, Proposition 2.5]). There
s a natural bijection:

H?(G;R) «— {

Equivalence classes of central
extensions of G by R ’

where we recall that a central extension of G by R is an exact sequence
0—-R5G 5G—0

such that «(R) is contained in the center of G'.
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On the other hand, in the case of bounded cohomology the situation is much more com-
plicated. A fundamental tool for the study of the second bounded cohomology groups
are quasimorphisms. Roughly speaking, quasimorphisms are homomorphisms up to a
“bounded” defect. In this section, we define quasimorphisms and homogeneous quasimor-
phisms, and we see how they are related to exact bounded cohomology in degree 2. Later,
we compute the second bounded cohomology of the free group with two generators with
real coefficients, showing that it is infinite-dimensional (Theorem 1.21). As announced,
this is a consequence of the lack of any kind of excision properties and it is one of the
biggest differences with standard cohomology.

Definition 1.19 (Quasimorphism). A map f: G — R is a quasimorphism if there
exists a number D > 0 such that

£(91) + f(92) = fgr92)| < D,

for every g1, go € G. The least D for which this inequality is true is called defect of f.
The space of quasimorphisms is denoted by Q(G; R) and is a normed R-module.

We observe that morphisms and bounded maps are trivially quasimorphisms: the first
ones have defect 0, the latter ones with defect bounded by 3 || f||« because of the triangle

inequality. Moreover, we point out that éll,(G; R) N Hom(G, R) = {0}, since bounded
homomorphisms are trivial.

Proposition 1.20 (Quasimorphisms and exact cohomology). There exists a short
exact sequence of the form

0 — Cp(G; R) & Hom(G; R) % Q(G; R) & EH2(G; R) — 0,

where the last map is induced by 5; : Q(G;R) — Z2(G; R). Therefore, we have the

following isomorphism:

Q(G; R)

EH}(G;R) & — :
C,(G; R) ® Hom(G; R)

Proof. We divide the proof in three steps:
1. Injectivity of a: It follows from the fact that @;(G; R)NHom(G, R) = {0}.

2. Surjectivity of 8: Let f € éi be a representative of an element in EH;(G; R).

This means that there exists a cochain ¢ € él(G : R) such that 0¢ = f (since f lies
in the kernel of the comparison map). Then, the map

f+G—=R, g ¢(g)

is a quasimorphism since f = §¢ is bounded, and by construction, 3( f ) = f, hence
the thesis.

3. tm(a) = ker (): It follows from the definition of the maps.
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This theorem implies that, in order to prove that H?(G;R) is non-trivial, it is enough
to construct quasimorphisms that are not at a bounded distance from any homomorphism
because EH; (G;R) C HZ(G;R). Moreover, when H?(G; R) = 0 we have that

HQ(G. R) Q(G; R) ‘
P C,(G; R) ® Hom(G; R)

(2)

We use this theorem to compute our first non-trivial bounded cohomology group. We
show that HZ(Fy;R) is infinite dimensional, where F} is the free non-abelian group of
rank 2. We observe that H?(F,;R) = 0, since the wedge of two circle is the classifying
space of Fy, and H?(S' v S R) = 0. Hence we have H]'(Fy;R) = EHJ(Fy;R), so we
can completely describe the second bounded cohomology group in terms of quasimor-
phisms. The third bounded cohomology group is infinite-dimensional, as shown by Soma
[Som97, Corollary C], but little is known from degree 4 onwards (only recently Kastenholz
announced that also Hj'(Fy;R) is non-trivial [Kas25]).

We now exhibit a family of non-trivial linearly independent quasimorphisms on F5.
The non-triviality of HZ(Fy;R) was first established by Johnson [Joh72]. Subsequently,
Brooks [Bro81] constructed an infinite family of quasimorphisms, which were shown to
define linearly independent elements in EHj(F,; R) by Mitsumatsu [Mit84]. The family
of quasimorphisms presented here is due to Rolli [Rol09]; see also [FFa20] for details.

Let s1, so generators of Fy, and consider the space of bounded odd sequences, i.e:

oqd(Z) = {u = (up)nez € £*(Z) | uy,, = —u_,, for every n € Z}.

For every such sequence u = (uy)nez, We can associate a map f,: 5 — R defined by

k
Fulsilsiy - s3) = 3ty
j=1

where we are using the fact that every element of a free group admits a unique rep-
resentation as reduced word. One can check then that this map is actually a quasimor-
phism [Rol09, Prop 2.1]. To conclude, let 5; the map of the last proposition 1.20 that
associates to a quasimorphism an element in HZ(G; R) via the isomorphism in (2). Then
we have:

Theorem 1.21. The map
00 —<1
loaa(Z) © Q(FyR) — Hp(Fy;R), (Un)nez — [0, (fu)],
is injective. In particular, this shows that HZ(Fy;R) is infinite dimensional.

Proof. Let s1, so be the generators of F,. Since the map above is linear, it suffices to
show that its kernel is trivial. Let (u,)nez € €594(Z) such that [gi(fu)] =0 € H(Fy;R).
Then, by Proposition 1.20, f, is a trivial quasimorphism. i.e. f, = h + b where h is a
homomorphism and b is bounded. For ¢+ =1, 2 and k£ € N, we have
k- h(si) = h(s})

= fu(sf) - b(Sf)

= uy — b(sh).
The last term is bounded, therefore letting &k going to infinity we see that h(s;) has to be
zero for every ¢ = 1, 2. Therefore, f, = b is a bounded quasimorphism. Take j, £ € N.
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We then have f,((s]53)*) = X%, u; = (2k)u; for all j,k € N. Since f, is bounded, we
conclude that u = 0.
[

Knowing the bounded cohomology of non-abelian free group of rank 2 is central in the
theory because it injects into the bounded cohomology of any group admitting a surjection
onto F.

Corollary 1.22. Let G be a group admitting an epimorphism ¢: G — Fy. Then HE(G,R)
1s infinite-dimensional.

Proof. Since Fy = (s1, s9) is free, we can find a right inverse of ¢. Let’s call it ¢. Since ¢
is surjective, there exist g1, go € G that get mapped to s; and sy respectively. It suffices
to define ¢: Fy, — G as the map that sends s; to g; and s to g9, extended by linearity.
By functoriality of HZ(:;R), the composition

H2 (i R) 2% m2(GsR) 229, 12(Fys )

is the identity, so HZ(¢) is a surjective homomorphism from an infinite-dimensional vector
space to HZ(G;R). O

1.7 /¢'-homology and duality

In this section, we show that under certain conditions it is possible to obtain the duality
between homology and cohomology that, in the standard setting and with real coeffi-
cients, is given by the Universal Coefficient Theorem. To this end we introduce the
notion of £*-homology and the q-Uniform Boundary Condition (q-UBC) for normed chain
complexes. Beyond duality, the study of UBC will provide a criterion for the injectivity
of the comparison map, as stated in Theorem 1.36.

We will consider the duals of cochain complexes (C,, ds). Depending on the context,
this may refer either to the algebraic or the topological dual. More precisely, we con-
sider the algebraic dual when working with standard homology and cohomology, and the
topological dual when working with ¢'-homology and bounded cohomology.

Definition 1.23 (Banach chain complex). Consider a chain complex of the form

0 1o)
0%C0<—101<—202<—"',

where C; is a normed real vector space for all i > 0. We say that the complex is Banach
if every C}; is Banach. An analogous definition applies to cochain complexes.

Remark 1.24. Recall that the dual of any normed real vector space is automatically
Banach [Rud91, Theorem 4.1], so whenever we work with a chain complex and we dualize
it we will obtain a Banach cochain complex.

Let G be a group and R a ring. In a similar way to the definition of group cohomology,
one can define group homology with coefficients in an R[G]-module V. Consider the
chain complex C,,(G;V) defined as the R[G]-module generated by G", with differential
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maps dy = 0; = 0,

On: Co(G5V) — Cmq1 (G V)
(9155 9n) = (G255 Gn)

JF%Zj(‘W(QL-~~79i9i+17---79n)
FED 1 00)
for n > 2. One then consider the R[G]-module of n-cycles as
Zn,(G; V) == ker 0,
and the R[G]-module of n-boundaries as
B, (G V) = 0p11(Crya (G; V).

Note that we are describing the bar resolution; to remain consistent, we should keep the
notation C,,(G; V) from Section 1.3. However, for simplicity, we will denote it as the
homogeneous complex.

Definition 1.25 (Group homology). In the notation of before, we define the group
homology of G with coefficients in V as

Zn(G; V)

H,(G)V) = B (G V)

From now onwards, we denote the chain complexes omitting the coefficients we are

working with, implying that we are using real coefficients. Thus, we will write C,,(QG)
rather then C,,(G;R), or H,(G) instead of H,(G;R) and so on.
We can endow C,(G;R) with the ¢!-norm defined by:

Hzaéh ~~~~~ gn<gl>"'7gn)H1 ::me ~~~~~ gn’

for every n-chain; this is well defined since the sum is finite.

Definition 1.26 (¢!-homology). Let G be a group. Consider the chain complex (C,(G); 0,)
equipped with the ¢!-norm. Denote by Cﬁl(G) the completion of C,(G) with respect to
this norm. The differential 8, extends naturally to a map 8’ : CY(G) — C: (@), so
that (C¢'(G); dL') forms a Banach chain complex. The homology H’ (@) of this complex
is called the ¢*-homology of G with real coefficients.

From the definition, it follows that the topological dual of both the complete and
the possibly non-complete chain complexes gives rise to the bounded cochain complex
defined before (the topological dual consists of bounded functionals, so we get the bounded
cochains!). Observe that from Remark 1.24, we also obtain that C7'(G;R) is always a
Banach vector space.

Recall that the Universal Coefficients Theorem implies that, when working with coef-
ficients in a field, taking algebraic duals commute with taking cohomology, i.e. that for
a chain complex (Cs; 0s), we have Hom(H,,(C,),R) = H"(Hom(C,, R)) (see for example

19



[Hat02, Theorem 3.1] for details). One way to proceed to prove it is the following: denote
with (C*;d®) the algebraic dual of (Cs;d.) and consider the Kronecker pairing

H"(C*) x H,(C,) — R,
([e]; [o]) = p(a).

This induces a well-defined map between cohomology and the dual of homology, namely:
H"(C*) — Hom(H,(C,),R)
] — ([o] = ¢(0)).-

This map is in general surjective with kernel Ext(H,,_1(C,); R) if we work with coefficients
in a ring R. In the case R is a field, as in our case where R = R, this kernel vanishes and
we have the result.

In the bounded case we work with topological duals and this result does not hold
anymore; nevertheless, it is still possible to define an analogous Kronecker pairing and
it turns out that the last map is always surjective. If an additional condition, namely
keeping track of the norm of the cocycle and the coboundary (the ¢-UBC condition), is
satisfied, Matsumoto and Morita proved that in the Banach case this map is indeed an
isomorphism.

Proposition 1.27. Let (C4;0.) a normed chain complex. Then the map
H}'(C*) — Hom(H,(C,),R)
induced by the Kronecker pairing is surjective.

Proof. Let Z,, B, be the space of cycles and boundaries in C,,, respectively, and let
¢ € Hom(H,(C,),R). The element ¢ is a bounded functional Z,, — R that vanishes on
B,,. Such a functional admits a bounded extension to C,, by the Hahn—Banach theorem.
This extension defines a class in bounded cohomology that is mapped to ¢. O

We give now the precise condition mentioned above.

Definition 1.28 (¢-UBC condition). Let (C,;0,) be a normed chain complex. We say
that (C,; 0) satisfies the ¢-UBC' (¢-Uniform Boundary Condition) if

dK >0 : Vbe By, 3c € Cyyq such that 0,01¢ = b and ||c[|y < K||b]|1,

where B, is the space of the g-boundaries.
We say that (C,; 0d,) satisfies the q-UBCf1 if its /!-chain complex satisfies the ¢-UBC.

Remark 1.29. Without keeping track of the norm, the map Cy11/Z,41 — B, induced
by 0,41 is an isomorphism by the Isomorphism Theorems. This is, in general, no longer
true if we work with normed vector spaces, because we have to check continuity.

In our context this map is still a continuous bijection since the differential is linear
and bounded (i.e. continuous). However, we might lack the continuity of the inverse. The
¢-UBC can be seen as a condition ensuring it. In fact, to have continuity, we need that
there exists an uniform K > 0 such that for every b € B, we have:

10541011 < K [b]]1-
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Equivalently, this means that we can find a preimage ¢ € Cy41 of b such that
el < Kol

that is exactly the ¢-UBC condition. Therefore, we could restate the ¢-UBC as follows:
A normed chain complex (C,, 0,) satisfies the ¢-UBC if and only if the map

Cot1

q+1

— B,

induced by 0,41 is an isomorphism of normed vector spaces.

As announced, the next theorem states that if a Banach normed chain complex satisfies
the ¢-UBC, then an analogous of the Universal Coefficient Theorem holds.

For convenience, we collect here some preliminaries that we need for the proof.

The following is a consequence of the Open Mapping Theorem [Rud91, Theorem 2.11}:

Lemma 1.30 ([Rud91, Lemma 2.12]). A continuous bijective linear operator between
Banach spaces has continuous inverse.

We will use it this way: the map Cyy1/Z,41 — B, induced by 0,41 is a continuous,
bijective and linear operator between a Banach space and a normed space. If we know
that also B, is a Banach space, we obtain that the inverse of that map is continuous,
hence it is an isomorphism of normed vector spaces. Thus, we have obtained yet another
characterization of the ¢-UBC:

A chain complex (C,; 0,) satisfies the ¢-UBC if and only if the subspace of g-boundaries
is Banach.

We will also need the Closed Range Theorem:

Theorem 1.31 ([Rud91, Theorem 4.14]). Let X and Y be Banach spaces, let X', Y" be

the dual of X and'Y respectively and let T : X — 'Y be a continuous linear operator with
dual T' : Y — X'. Then the following are equivalent:

1. Im(T') is closed in Y;
2. Im(T") is weak*-closed in X';
3. Im(T") is norm-closed in X'.
Lastly, we will use the following observation:
Remark 1.32. Consider the map induced by the Kronecker pairing:
H}'(C*) — Hom(H,(C,),R)
[e] — (o] = (o).

If an element [p] € H}'(C*) has vanishing seminorm, then it is in the kernel of this map.

Indeed, having vanishing seminorm means that there exists a sequence {; }ien C ZJ"
of representatives of [p] such that for every ¢ > 0 there exists an N € N with the property
that ||on|l1 < e for all N > N. Therefore, for every [o] € H,(C,) and for every £ > 0,
one can find a representative of [p] such that p(o) < €. This shows that the image of [¢]
is the zero map.
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Theorem 1.33 (Matsumoto-Morita’s theorem [MMS85, Theorem 2.3]). Let (Cs; 0,)
be a chain complex with dual cochain complex (C*;d®). Then the following are equivalent:

1. the chain complex (C,; 0s) satisfies the ¢-UBCY ;

. 1 .
2. the seminorm on Hg (C4) is a norm;

3. the seminorm on HI™'(C*) is a norm;

4. the Kronecker product induces an isomorphism
H{(C*) = Hom(Hy,,(C.), R).

Proof. Let us fix the notations. We denote with:

« Z! B the spaces of cycles and boundaries of (Cfl,ﬁfl);
o Zp,Bp the spaces of cycles and boundaries of (C*®,d*).

(1) < (2): Recall that the seminorm on HSI(C’.) is a norm if and only if Bgl is
closed in Zfl (see, e.g., [Rud91l, Theorem 1.41]). Moreover, a subspace of a Banach space
is itself Banach if and only if it is closed, since completeness is equivalent to requiring
that all limit points lie in the subspace.

By Remark 1.29, condition (1) is equivalent to asking that the map

Cfﬂ/zﬁl . le

induced by 8511 is an isomorphism. The quotient C’gil / Zgil is Banach, since ijrl is the
kernel of a linear and continuous map, hence it is closed.

By Lemma 1.30, we have that (1) is equivalent to Bgl being Banach

Thus, (1) holds if and only if Bgl is Banach, which is equivalent to condition (2).

(2) <= (3): Condition (2) holds if and only if Im 8511 = Bgl is closed, while condition
(3) holds if and only if Im 851“ = B{™ is closed. This two are equivalent by the Closed
Range Theorem 1.31.

(1) = (4): We proved in 1.27 that the map induced by the Kronecker pairing is
always surjective.

Let f € Z{™" be such that [f] = 0 € Hom(H’,,(C,),R). Then f(Z.,,) = 0.

By Remark 1.29, the ¢-UBC is equivalent to asking that the map Cg:q /Zgil

el
1 — B,
induced by 85 41 s an isomorphism.

Hence f can be written as the composition

01 01 8511 01 g
Cor/Zpy — B, — R
By the Hahn-Banach Theorem, § admits a continuous extension g : Cfl — R. Thus
we have
1
f=god,, =dyg
by definition of the dual differential. Therefore f is a coboundary and hence belongs to
the zero class.

(4) = (3): By Remark 1.32, if an element has vanishing seminorm then it is in
the kernel of the map H{ ™ (C*) — Hom(Hle(C.),R). This map is an isomorphism by
hypothesis, hence its kernel is trivial.

O
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As a consequence of Theorem 1.33 we have that H7(e) is always a Banach space,
regardless the group or path-connected topological space we are working with.

Corollary 1.34. Let G be a group and let X be a path-connected topological space. Then
HZ(G) and H(X) are Banach spaces.

Proof. The result about path-connected topological spaces follows from the one about
groups by Theorem 1.14.

Thanks to Theorem 1.33, it suffices to prove that 1-UBC* always holds. Consider the
map

k k
(9>, 9%).

N —

S:G—Cy(G), Sg =Y

k=1

We have ||S(g)|: = 1 and 8% S(g) = g for every g € G. Extending S to a bounded map
S: C'(G) = CY(G), we obtain that C¢ (G) satisfies the 1-UBC, hence the thesis . [

As discussed in Section 1.4, the comparison map is in general neither injective nor
surjective. The following theorem gives criteria to ensure its injectivity, and we will use
it to prove the bounded acyclicity of Homeo.(R™) in the next chapter. For the proof, we
will need the following observation:

Remark 1.35. If we have a sequence {0}, cn converging to an element b in a normed
space, it is possible to construct an absolutely convergent series 3120 b, whose sum is b,
and which moreover satisfies

+00
> 1Bkl < 210
k=0
Indeed, since b™ — b, for every k € N we can choose an index ny such that
[ — b < 27*+2jp].

Define now
by = b, b, = b™) — pe-1) for > 1.

Then, by construction,

so that > =, br = b.
Moreover, for k > 1 we have

x| = [jpt™) — b=
< |6 — bl + [[b — b
< 27| p|| 4 27D o
<2. 2‘(k+1)||b||
=27"1p]|.
Therefore,

> llowll < f1Boll + > 27" (1Bl < 1ol + l[oll = 2],
k=0 k=1

after adjusting the choice of ng if necessary.
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Theorem 1.36 ([MMS85, Theorem 2.8]). Let (Cs;0s) be a chain complex with (algebraic
or topological) dual cochain complex (C*;d®). Then the following are equivalent:

1. (C,;0,) satisfies the q-UBC;

2. (Cs; 0,) satisfies the q—UBCE1 and the space of (q+ 1)-cycles of Cyyy is dense in the
space of (¢ + 1)-cycles of C’glﬂ;

3. the comparison map compt': HITH(C*) — HITL(C*) is injective.
Proof. Let us fix the notations. We denote with:

e Z,, B, the spaces of cycles and boundaries of (Cs, 0,);
« 7% B! the spaces of cycles and boundaries of (C¢',9%);

o Zp, By the spaces of cycles and boundaries of (C*®,d*), the topological dual of the
other two chain complexes.

(1) = (2): We have to prove the following:

IK*" >0 : Vbe BY, 3c e CL, such that 9%, = b and ||c[[; < K]|b]):.

Hence, let b € Bgl. Observe that B, is the image via a continuous map of a dense
subspace, therefore it is dense in its image. In other words, B, is dense in Bgl. Thus,
there exists a sequence {b(”)}neN C B, converging to b. By Remark 1.35, we can construct
an absolutely convergent series 3720 b, with sum b and such that 3720 [|b,||1 < 2|0

The chain complex (C,;0) satisfies the ¢-UBC, thus for every n € N we can find
™ € C, such that 9c™ = b and [|c™|; < K|b™|, for some fixed K > 0.
Then 329 ¢™ is absolutely convergent, in fact:

+oo +o0
STl < ST KBy < 2Kb])1-

n=0 n=0

Thus the sum converges to an element ¢ € C’gil such that

o"c=0" lim ™ = lim 9c™ = lim b™ =0b.
n——+00 n——+00 n—-+0o
Moreover, we have the estimate ||¢||; < 2K]|b|1, hence (C¢', ") satisfies the ¢-UBC.
Now we need to prove that Z,,, is dense in Zflﬂ, that is, every element z € Zfil is
the limit of a sequence in Zg 4.
By the density of Cy4, in its completion C’ﬁl, there exists a sequence {c™},en C Cot1
such that

lim ™ = 2.
n—-+4o0o

We now apply the ¢-UBC to the boundaries d(—c™): for each n € N, there exists
& € C,y, such that

9™ = 9(—c™) and ||é™|, < Ko™ ;.

Then 9(¢™ + ™) = 0, so that we can define 2™ = &™ 4 ¢ € Z .. Moreover, we
have:

1)y < K [0 |y = K[[0" (™ = 2)[ly < K0° |1 ¢ = 2s — 0 as n — +oc.
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Therefore, &™ — 0, and it follows that

z= lim 2™ = lim (™ 4 &™),
n—-+00 n—-+00
(2) = (1): Let b € B, be a boundary and let ¢ € C,4; such that dc = b.
Since (C’fl, (9[1) satisfies the ¢-UBC condition, there exist an un uniform constant K
and an element ¢ € C’flﬂ such that ¢ = b and |||y < K*||b||;.

We have ¢ — ¢ € Z!. ,, indeed:
' c—0e)=0"c—08"¢é=b—b=0.

Therefore, by density of Z,,; in Zﬁl, there exists z € Z,41 such that ||[(c—¢)—z[|1 < ||b]|;.
Then we have d(¢ — z) = dc = b and

le—zlh = le—é+&=zlli < lle—&—zll + el < (K + Dbl

thus (Cs; 0, ) satisfies the ¢-UBC with constant K% +1.
(2) = (3): Let [ € Zgil be such that [f] = 0 € H?'(C*). By the Universal
Coefficient Theorem, we have

HTTH(C*) = Hom(H,11(C), R),

where we are taking the algebraic dual. Thus, f vanishes on Z,,;.

By density of Z,4 in Zf;l, it follows that f also vanishes on Zfil, where f is extended
using the Hahn-Banach Theorem, and we are taking the topological dual.

Finally, by Theorem 1.33, this coincides with H{™'(C*), and the thesis follows.

(3) = (2): By Theorem 1.33, if we prove that the seminorm on HJ™(C*) is a norm,
we have that (C,;J,) satisfies the q—UBCZl. Hence, we reduce to prove that the class of
an element [f] with vanishing seminorm is the class of 0. If [f] has vanishing seminorm,
then it is in the kernel of the comparison map. This kernel is trivial by hypothesis, hence
we have the thesis.

Next, we prove that Z,;; is dense in Zfirl. Suppose, by contradiction, that this is
false. Then by the Hahn—Banach theorem there exists a continuous functional f such
that f|z,,, = 0 but f|Z§1+1 # 0. Since By11 C Z,11, the functional f vanishes on B4,

therefore f defines a cocycle in the topological dual complex, i.e. f € Z{fﬂ.
On the other hand, because f|z,,, = 0, the class of f is trivial in the algebraic
cohomology:

[f]=0€ H™(C*),

by the Universal Coefficient Theorem. However f does not vanish on Z°.

415 SO its class is
nonzero in bounded cohomology:

[f1#0 e HT(C).

By Theorem 1.33, but this contradicts the injectivity of the comparison map. O

2 Amenability

In this section, we recall the definition, the main properties and examples of amenable
group.
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Amenable groups were introduced by Neumann [Neu29] in connection with the Banach-
Tarski paradox. Intuitively, a group is amenable if it has an invariant mean, that is, if
it is possible to assign to every subset of G a well-defined ”proportion” of the group it
occupies.

In the previous chapter, we observed how difficult bounded cohomology is to be com-
puted in general. By contrast, we will see in Theorem 2.12 that amenable groups can
be characterized as precisely those groups whose bounded cohomology vanishes in every
positive degree, for a large class of coefficients including the real numbers.

This result, due to Johnson, was historically one of the main motivations for the
development of bounded cohomology.

Examples of amenable groups include all finite groups and all abelian groups. On
the other hand, the prototypical example of a non-amenable group is the non-abelian
free group on two generators. Indeed, by Theorem 1.2.1, its second bounded cohomology
group with real coefficients is infinite-dimensional, and hence it fails the aforementioned
characterization.

In this section we will use the following notations. Let G be a group and consider the
space

(°(G) = CY(G;R) = {f: G — R f is bounded},

with the structure of R[G]-module given by g - f(h) := f(g~' - h)) for all f € (*(G) and
g, h e G.

Definition 2.1 (Amenable group). A group G is said amenable if it admits a left
G-invariant mean, i.e. and R-linear map m: (*°(G) — R satisfying:

1. Normalization: m(1) = 1, where 1 denotes the constant functional equal to 1.
2. Positivity: m(f) > 0 for every f € £°(G) such that f > 0.
3. Left-invariance: m(g - f) = m(f) for every f € £>°(G) and every g € G.

We denote by AG the class of all amenable groups.

Note that it is irrelevant whether the mean is left-invariant, right-invariant, or both:
one can show that these conditions are all equivalent [Fril7, Chapter 3]. Hence, from now
on, we will simply refer to invariant means, without specifying the side of invariance and
the group G if it is understood from the context.

There exist many other characterization of amenability for discrete group. For in-
stance, one can show that AG is exactly the class of non-paradoxical group in the context
of the Banach-Tarski paradox [Loh17, Theorem 9.2.12]. For our purposes it will be useful
the following characterization:

Lemma 2.2 ([Fril7, Lemma 3.2]). Let G be a group. Then the following are equivalent:
1 there exists an invariant mean on G, i.e. G is amenable,
2 there exists a non-trivial left-invariant ¢ € ((>°(Q))’,

3 there exists a left-invariant finitely additive probability measure on G.
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2.1 Example of amenable groups

As a first example, we show that every finite group belongs to this class. In this case we
can give a precise formula for the invariant mean: for a finite group G and an element
f € £(G) we average over all the elements of the group, i.e. we set:

1
m(f):@Zf(g)-

geG

One can check that this mean is in fact invariant.

Another important and less trivial example of amenable groups is given by the class
of abelian group, This result is due to Von Neumann [Neu29, Theorem A], and here we
prove it following Frigerio [Fril7, Theorem 3.3], who in turn built on Paterson [Pat88].

For convenience, we recall some results in functional analysis that we will need during
the proof.

Theorem 2.3 (Banach-Alaoglu Theorem [Rud91, Theorem 3.15]). If X is a normed
space then the closed unit ball in the continuous dual space X' (endowed with its usual
operator norm) is compact with respect to the weak™ topology.

Theorem 2.4 (Markov-Kakutani Fixed-Point Theorem [Rud91, Theorem 5.11]).
Let X be a locally convex topological vector space, with a compact conver subset K. Let
S be a family of continuous mappings of K to itself which commute and are linear. Then
the mappings in S share a fized point.

Theorem 2.5 (Abelian groups are amenable [Neu29|). Every abelian group is amenable.

Proof. Let G be a group and let (>°(G)’ its topological dual with the weak™ topology. By
the Banach-Alouglu Theorem 2.3, the closed unit ball is compact.

We want to find a left-invariant mean. It is not hard to show that a mean exists. For
instance, consider the evaluation on the identity of G:

ev: I*(G) — R, f+—— fleg).

What is not immediate is that there exists a mean ¢ € £*°(G)" such that ¢(g - f) = ¢(f)
for every g € G and f € (>(G).
Consider the set of (possibly non-invariant) means:

K= {p € ((GY | 9(1) = 1, 9(f) > 0 for every f € (=(G)}.
Let S := {L,}4ec be the family of mappings defined by:

Ly: £2(G) = 62(G), Le(@)(f) = (g - ).

We want to find a common fixed point for the mappings of S restricted to K. The
subset K is closed inside the compact unit ball, hence it is compact. Moreover it is a
subvector space of ¢>°(G)’, thus it is convex. The mappings of S are linear and commute
since GG is abelian, therefore by Markov-Kakutani Fixed-Point Theorem 2.4, there exists
indeed a common fixed point, i.e. a mean ¢ € K such that for every g € G and for every
f € £>*(G), we have:

Plg- f) = Le(@)(f) = &(g- f)-

This shows that ¢(g - f) is a left G-invariant mean, therefore G is amenable. O
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From this two class of amenable groups, one can construct many other examples in
virtue of the following:

Proposition 2.6 (Ereditary properties of amenability [Loh17, Proposition 9.1.9]).
The class AG of amenable groups is closed under taking:

subgroups,

quotients,

extensions,

direct unions.

Recall that given a group GG and a subgroup H < G with property P, we say that G
is virtually P if the index [G : H] is finite.

If G is amenable, then H is amenable as well, by Proposition 2.6. Conversely, suppose
that H is amenable and that [G : H] < co. Then there is a short exact sequence

0—-H—-G—G/H—D0,

which means that G is an extension of the finite group G/H by H. Hence, by Proposi-
tion 2.6 again, GG is amenable.
In conclusion, we have shown the following:

Proposition 2.7. A group is amenable if and only if it is virtually amenable.

We denote with £G the class of elementary amenable group, i.e. the smallest class of
groups containing all finite and abelian groups and that is closed under taking subgroups,
quotients, extensions and direct unions. Thanks to Proposition 2.6, we have £G < AG.
One may wonder whether this is an equality, but it turns out that this is not the case:
there exist groups which are amenable but not elementary amenable. An example is given
by the first Grigorchuk group [Gri84].

An important class of examples of non-amenable groups is given by non-abelian free
groups, as we will show combining Theorem 2.12 and Theorem 1.21. A different proof of
this fact not involving bounded cohomology can be found in [L.oh17, Theorem 9.1.5 and
Corollary 9.1.10].

The next examples of non-amenable groups will be of crucial relevance for what we
will study later: the group of diffeomorphism of R™ with or without compact support.
Its importance is due to the fact that the bounded cohomology of an amenable group
is very simple to compute: it vanishes for a large class of coefficients, as we will see in
Theorem 2.12. We will show that Homeo..(R") contains a non-abelian free group of rank 2:
this implies the non-amenabiity by Proposition 2.6. In order to prove it, we recall the
statement of the ping-pong lemma.

Theorem 2.8 (Ping-pong lemma [L.oh17, Theorem 4.3.1]). Let G be a group acting
on a set X and let a, b € G. Suppose there exist A, B C X non-empty subset with B not
contained in A such that for every n € N we have

a" - B C A, b" - AC B.

Then {(a,b) is a non-abelian free subgroup of rank 2 .
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Example 2.9 (Non-amenability of Diff,(R") and Diff"(R")). Let » € N. Since
Homeo,(R") C Diff,,(R"), it suffices to show that Homeo.(R") is non-amenable.

This follows from the ping-pong lemma 2.8. Indeed, consider the action of Homeo.(R™)
on R™ and let A, B be non-empty, disjoint open balls of R™. It is possible to choose
elements a, b C Homeo.(R") such that " - B C A and " - A C B for every n € N.
Then (a, b) is a non-abelian free group of rank 2 by the ping-pong lemma 2.8.

2.2 Amenability and bounded cohomology

In this section we prove that the amenability of a discrete group can be entirely char-
acterised via its bounded cohomology with coefficients in dual normed R|[G]-modules.
An R[G]-module V is called dual if it is isomorphic to the topological dual of some
normed R[G]-module W with the action defined by ¢ - f(w) = f(g~' - w). Recall that
dual of normed spaces are always Banach (since R is so0), so we can assume we are working
with complete spaces.

The proof goes as follow: to prove that an amenable group has vanishing bounded
cohomology for every dual R[G]-module one can construct a G-homotopy between the
zero map and the identity.

For the other implication, we will rely on a result of Johnson stating that there exists
a coclass in degree one for a specific dual R[G]-module that vanishes if and only if G is
amenable. More precisely: consider the R[G]-module V := (*(G) /R, where R is the R[G]-
module of constant functions. Since the latter is closed in £*°(G), the quotient inherits the
structure of Banach R[G]-module. Note that V' is the subspace of elements of (¢*°(G))’
that vanish on constant functions. At the cochain level, the Johnson 1-cocycle is defined as
the difference of two Dirac deltas. Here for Dirac deltas we mean elements ¢, € (¢>°(G))’
defined as 0,(f) = f(g) for all f € (*°(G) and a fixed g € G. Namely, we have the
following:

Lemma 2.10. The element J € CHG; V') given by
J:G*— V' (g0, 91) — 84, — S0
defines a coclass in H}(G; V"), called Johnson class.
Proof. We have to prove:
1. J(g1,g2) € V' for every g1, go € G
2. Je ZHG; V).

1) J(g1,92) is in (£>°(G)) by definition and it is readily that it vanishes on constant
functions.

2) We have to show that J € Z}(G;V’) and that J is G-invariant. Let f € V’; then
J is a cocycle since:

6J(g0, 91, 92) (f) = J (g1, 92)(f) — J (9o, 92)(f) + J (g0, 91)(f)
= (09, — 09, )(f) = (8g, — 00 )(f) + (g, — dgo) ()

) +
= f(g2) — f(g1) — f(g2) + f(g0) + f(g1) — f(g0)
= 0.
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Moreover J is G-invariant. Indeed, note that G acts on the Dirac delta via g-dg,
Then we have

= 5990 .

(g I)(go,91) = 9(J (97" 90,9 1))
= 9(59‘190 - (59‘191)
— 0

9971

99~ 190

= 690 - 591
= J(.QOagl)-

Lemma 2.11. If the Johnson class [J] € H}(G; V') vanishes, then G is amenable.

Proof. Recall that by lemma 2.2 it suffices to show that there exists a non-trivial invariant
element ¢ € ((>°(G))'.

If [J] = 0, then J is a coboundary, that is: there exists ¢ € CP(G; (£*(G)/R))“ such
that J = 6. For every g € G, let ¢(g) € (£°(G))’ be the pullback via the canonical
projection 7: (*°(G) — (*(G)/R, i.e. the map ¥(g) o 7.

We claim that the element ¢ € (£°(G)), ¢ = & — (1) is the desired functional,
namely it is non-trivial and it is G-invariant. The non-triviality can be seen for example
evaluating ¢ in the constant function equal to 1 and using that zﬁ vanishes on constant

A~

functions, obtaining ¢(1) = 6,(1) —¥(1) = 6;(1) — 0 = 1. For the G-invariance we have
to prove that g - ¢ = ¢. We already know that g - d; = d,; noting that ¢ inherits the
G-invariance from v, we have

A~

U(9) = (g-¥)(g) = g- ((1)), for every g € G. (3)
Since J = 1, it follows that

89 — 0go = V(1) — U(go), for every go, g1 € G;

in particular

Hence:

Now we are ready to state and prove the aforementioned theorem:

Theorem 2.12 (Johnson’s characterization of amenability). The following are
equivalent:

1. G is amenable.

2. H}G;V) =0 for every dual normed R|G]|-module V' and for every n € N.q.
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8. HNG; V) =0 for every dual normed R[G]-module V.

Proof. (1) = (2): Recall that the bounded cohomology of GG is defined as the cohomology
of the complex:

0 — %G, V)¢ 5 ol V)¢ S cX(a,v)e S 2 onGL Ve 2

A standard tool in (co)homology theory to show that an object has vanishing (co)homology
is to find an homotopy between the zero map and the identity map as explained in Sec-
tion 1.2.1. More precisely, we will find maps

kot G vV)© — op(GEV)©

such that k"' o 6" + "' o k» = Id using amenability, i.e. averaging over elements
of G. Let m be an invariant mean on G and f € CJ"™(G; V). Let W be the normed
R[G]-module such that V' = W’'; we will see f(go,...gnt1) as an element of W', and we
will construct k"*1(f) as a function G — W’'. Which means: we have to look for an
expression for k""(f)(go, ... gn)(w), where go,...g, € G, w € W.

For all such go,...9, € G, w € W, define f, € (>(G), fulg) = f(g,90,---gn)(w).
Then we can average via m this element and obtain k" "1(f)(go, ... gn)(w) = ( fw)- To
resume: the image of f is given by the following composition:

G — (W — (°(G) — R).
(907 cee 7gn> — (U] L fw — m(fw))
By the definitions and some calculation we obtain what is left to prove, i.e.:

e fu is indeed an element of (>°(G) and not just a function G — R,

the function (w — m(f,)) is continuous and bounded,

the map j*™! is bounded and G-equivariant,

it holds k"1 o §™ 4+ "t o k™ = 1d.

(2) = (3): Obvious.

(3) = (1): If HY(G;V) = 0 for every dual normed R[G]-module V', then in particular

HL(G; ((=(G))) = 0, so the Johnson class vanishes and we conclude with Lemma 2.11.
O]

Using this theorem we obtain a proof of the non-amenability of Fy: the free group
with two or more generator has bounded cohomology with real coefficients non-trivial, in
fact infinite-dimensional, hence it is non-amenable (Theorem 1.21). Note that R is a dual
R[G]-module since R = {*}’, where the singleton is endowed with the trivial G-action.
Moreover, since by Proposition 2.6 amenability is preserved by taking subgroups, if a
group contains a non-abelian free group then it is non-amenable.

A natural question is what happens when we drop the assumption that the module is
dual and consider all normed R[G]-modules for which the bounded cohomology vanishes.
It turns out that this condition characterizes finite groups, as the following theorem shows:

Theorem 2.13 (Characterization of finite groups). The following are equivalent:
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1. G is finite.
2. H(G;V) =0 for every normed R[G]-module V' and for every n € Nxq.
3. HX(G;V) =0 for every normed R|G]-module V.

Proof. The proof is analogous to the one given for the Johnson’s characterization of
amenability: (1) = (2) can be showed by finding a suitable homotopy, (2) = (3) is
obvious and (3) = (1) is done by proving that the vanishing of the so-called characteristic
coclass in a proper Banach (non-necessarily dual) G-module implies the finiteness of G.
For further details we refer to [Fril7, Theorem 3.2]. O

An important result concerning amenability and bounded cohomology of topological
space is the following Gromov’s Mapping Theorem.

Theorem 2.14 (Gromov’s Mapping Theorem [Ival7, Theorem 8.4] and [FM23, The-
orem 5.0.1)). Let X, Y be path-connected topological spaces and let f: X — Y be a contin-
wous map inducing a surjective map at level of fundamental groups with amenable kernel.
Then the induced map in bounded cohomology

Hy'(f): Hy(Y) — Hy' (X)
s an isometric isomorphism for every n € N.

This theorem, as Theorem 1.14, appeared first in Gromov’s seminal paper [Gro82, Sec-
tion 3.1, page 40]. Ivanov gave a completely different proof for spaces that are homotopy
equivalent to countable CW-complex [Iva87] and later for every path-connected topolog-
ical space. Recently, Moraschini and Frigerio proved it following more closely Gromov’s
original approach.

3 The bounded cohomology of transformation groups
of euclidean spaces: the compact case

So far we have seen how bounded cohomology can behave wildly, and we have pointed out
several times how hard it is to be computed. For amenable groups things are actually very
easy for a large class of coefficients: it vanishes in every positive degree (see Section 2.12).
A natural way to proceed in order to better understand the behaviour of this invariant is
to find an example of bounded acyclic group which is not amenable. Historically, the first
group with this property that was discovered is the group Homeo.(R™) of homeomorphisms
of the Fuclidean space with compact support. Relying on a result of Mather who proved
the acyclity of this group [Mat71], Matsumoto and Morita were able to prove also its
bounded acyclicity by finding a criterion which ensures the injectivity of the comparison
map [MMS85]. Thus, bounded cohomology injects into the trivial group, therefore it has
to vanish.

Later in this chapter, we introduce the notion of dissipated groups and show that
Homeo,.(R") belongs to this class. Dissipated groups form a subclass of binate groups,
which have been proven much more recently to be boundedly acyclic by Fournier-Facio,
Loh and Moraschini [FFLM23].
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3.1 Standard cohomology of Homeo.(R")

In this section we follow what was done by Mather in 1971 in his article [Mat71] to
prove that the group Homeo.(R™) is acyclic, meaning that its cohomology with integer
coefficients vanishes in every positive degree. This actually implies that, thanks to the
Universal Coefficient Theorem [Hat02, Section 3.1], all homology and cohomology groups
with coefficients in any R-module is trivial. In this section we omit the coefficient group,
implying that we are working with integer coefficients.

The proof of Mather goes as follows: since chains are defined by a finite number of
elements only, we can assume that every chain is supported on an n-dimensional ball
B}, C R™ of a certain radius R > 0. Then Mather exhibits an element k£ € Homeo.(R"™)
such that k7(B%)N B = 0 and lim;_,, k7(B}%) = p for some p € R™. Namely, there exists
a homeomorphism that displaces the ball infinitely many times within a compact support
(of course by shrinking it to a point). This provides the key ingredient in the proof of the
acyclicity of Homeo,.(R"), and it is evident that without the compactness assumption on
the support of ¢ such a k cannot exist (since the support of ¢ € Homeo.(R™) might be
the whole R™).

From now on, we will denote for brevity by G,, the group Homeo.(R™). Recall that
the support of a homeomorphism ¢ € R" is defined as

supp(p) = {z € R" [ p(z) # }.
The support of a chain o = >0 a; (g1,...,9,) € Cy(G) is
q
supp() = | supp(g,)-
i=1
Denote by B;(0) the open unit ball in R”, and let
G, = {¢ € Gu | supp(p) € Bi(0)}.

The inclusion i: G2 — G,, induces the map i, in cohomology, which turns out to be
an isomorphism.

Lemma 3.1. The map induced by the inclusion i,: Hy(G%) — H,(G,) is an isomorphism.

Proof. We prove before the surjectivity and then the injectivity of the map ..
Surjectivity: Let h € H,(G,,) and let ¢ € C,(G,,) a cycle representing h; the element ¢
has the form

q
c= Zai(gl,...,gq),
i=1

with g; € G, for every i = 1, 2, ..., ¢. We look for an element i’ € H,(G") such
that i,A" = h. The support of ¢ is compact, therefore there exists ¢ € G, such that
¢(supp(c)) € By(0). Consider the inner automorphism

I,: G, = G,
g+ egp".
We claim that [(I,).(h)] is the desired element A'. We have to prove that:

L [(I,)«(h)] € Hy(GY),
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2. h=i.[(I,).(h)].

The first statement follows from supp I,c = ¢ suppc C By(0), while the second follows
from the fact that inner automorphisms induce the identity in homology. More precisely,
(I,)«h = h and (1,).h = [I,c]. This gives the thesis.

Injectivity: Let h € H,(G?) such that i,h = 0 and let ¢ € C,(G2) be a cycle rep-
resenting h. Since i.h = 0 € H,(G,), there exists ¢ € Cy41(G,) such that dd/ = i.c.
Because ¢ has compact support contained in Bj;(0), there exist ¢ € G, and a neighbor-
hood U(suppc) of suppc such that w‘U = Id and ¢(suppc) C B;(0). We have

that:
1. I,d € Cpir(GY);
2. d(1,d) = 1,(dd) = I,c=c.
Thus we obtain h = [c] = [d(L,c)] = [0]. O

(suppc)

Mather’s theorem states that any homology class of G,, vanishes, and to prove it we
will work with the assumption that a general homeomorphism has support contained in
B1(0). The lemma shows exactly this: the precise support of a homeomorphism is not
so important as long as it is compact, since we can always reduce to the case where it is
contained in the unit ball.

Theorem 3.2 (Mather). Let G,, the group of homeomorphisms of R™ with compact
support. Then we have:

H,(Gn;Z) =0
for every q > 0.
Proof. We will divide the proof in three parts. In the first one we will use a homeomor-
phism that displaces the ball infinitely many times within a compact support (of course
by shrinking it to a point) to define the conjugate homomorphisms ¢g, ¢1: G2 — G,,. In

the second part we show a relation between the expression of ¢g and ¢, that we will use
to conclude the thesis by induction in the third part.

1. There exists an element k& € G,, such that:

(i) k7(B1(0)) N B1(0) = 0 for every j > 0;
(ii) there exists a point p € R™ such that kj<Bl(O)) — p;
j—o0

(iii) &7(B1(0)) € Bg(0) for every j > 0 and R sufficiently big.
Define now, for every g € G2 and i = 0, 1, the maps ¢;: G2 — G,, by
kigk=i(z), if z € k?(B1(0)) and j > i,

di(g)(x) = {@ if £ ¢ Ujs k7 (B1(0)).

By item (i), k(B1(0)) N k7" (B1(0)) = 0 if j # 5', hence ¢; are well defined.

Furthermore, item (iii) ensures that the support of ¢;(g) is compact, so that ¢;(g) € G,
for every g € GY, for i = 0, 1.

Moreover, ¢y and ¢; are conjugate homomorphism since ¢1(g) = kgo(g)k™" and
therefore they induce the same map in homology.
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2. Let n the map defined by
n: G x G — G,
In order to prove that n is a homomorphism, we need to show that g commutes
with ¢1(h). This follows from the fact that supp g N supp ¢1(h) = 0 since supp g C B;(0)

and supp ¢1(h) € U;»; k7(B1(0)) U p.

Let A be the diagonal homomorphism, i.e.:

A: G — G2 x @Y,
g+—(9,9).

A computation shows that ¢y = nA.

3. Now we are ready to prove the thesis by induction: for 1 < r < ¢, we prove that
H,.(G%) =0.

Base step: recall that for » = 1, the first homology of a group coincides with
its abelianization [Bro82, Section 3.3]. Explicitly, we have H{(GY) = G?/[G?, GY],
so it is enough to show that the commutator subgroup equals the entire group,
i.e., that G® is a perfect group. This fact is established in the next proposition
(Proposition 3.3), which we state separately for clarity.

Inductive step: assume the statement true until degree ¢ — 1. Recall that the
Kinneth formula for real coefficients boils down to:

Hy(Gh < GY) = @ Hi(GY)® Hy(Gh);

i+j=q

the only possibly non-null coefficients occur for © = ¢ and j = 0, and conversely,
hence we have:

H, (G x GY) = H,(GY) @ Hy(GY).

Take h € H,(G?). Noting that A.h = h @ h and recalling that (¢o). = (¢1)«, since
the differ by a conjugated, we have:

(0)uh = Dt = ik + (61)uh = iuh + (60).h,
so we obtain 7,h = 0 and by Lemma 3.1 it follows that h = 0, hence the thesis.
O
Proposition 3.3. The group G = {g € Homeo.(R"™) | supp(g) C B;1(0)} is perfect, i.e.
G, =G, Gyl.

Proof. Let g € G%; we have to prove that g can be written as product of commutators.
Since supp(g) is compact and B;(0) is open, there exists h, € G2 such that

i. hi(supp(g)) Nsupp(g) = O for every j > 0,

ii. there exists a point p € B;(0) such that hg( supp(g)) — D

j—00
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Note that this is similar but it is not the same map as before: for instance, we take it
with support contained in the unit ball.
Define a map a, € Homeo.(R") by
() {hgghg"(x), if x € hy(supp(g)) for some n > 1,
ag(x) = .
xz, if z ¢ UnZl h;(supp(g))

Then supp(a,) C B1(0) and [h; ', a,] = g. O

g

3.2 Bounded cohomology of Homeo.(R")

Combining the standard acyclicity of Homeo.(R™) proved in Mather’s Theorem 3.2 and
Matsumoto-Morita’s Theorem 1.33, we obtain the bounded acyclicity of Homeo.(R™). As
we already mentioned, to prove it we will show that the chain complex of Homeo.(R")
satisfies the ¢-UBC condition for every ¢ > 1. This then implies that the comparison map
injects into the trivial group, hence the thesis.

Theorem 3.4 ([MMS85, Theorem 3.1]). For every ¢ > 1, we have
H}(Homeo.(R")) = Hﬁl(Homeoc(R”)) = 0.
Proof. Let us fix the notations:

 let G be the group Homeo.(R");

o let C,, Z, and B, be respectively the chain complex, the cycles and the boundaries
of G;

e let G' .= {g € G | supp(g) C int(5B*(0))}, where jB?*(0) C R" is the n-ball
centered at 0 with ray j;

o let C!, Z¢ and B! be respectively the chain complex, the cycles and the boundaries

of G.

By Theorem 3.2, we have Z, = B, and Z! = B..
To continue, we need the existence of certain bounded linear operators. We state this
fact as a lemma and we prove it later.

Lemma 3.5. In the notation above, there exist bounded linear operators S : B; — Cyt1
such that 0,415, = i., where i : G;, — Homeo.(R") is the inclusion.

We show now that G! satisfies ¢-UBC (Definition 1.28), i.e.:

dK >0 : Vbe B;, dc € C’;H such that d,41c = b and ||c|; < K]||b||;.
Let b € B; and choose ¢ € G such that:
L. @lsupp(e) = id;

2. supp Sy (b) % int By (7).
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Consider the inner automorphism
I _
G—=G, Il =pgp .

We claim that ¢ = (1,).(S4(b)) is the desired element. Indeed by Equation (2) we
have that (I,).(Sq(b)) € Cy, . Moreover its norm satisfies

1) (Sg (0D = 1(Sa 0 < 1[S4l]]2]

and finally, using (1) we have
Og+1(1)(Sq(b)) = (1) 0q4154(b) = (Lp)*i*(b) =b. u

One of the main ingredients of the proof is the existence of bounded linear opera-
tors Sq: By — Cyq1 such that 0,415, = i., where i: G}, — Homeo (R") is the inclusion.
These operators work as follows: S, takes a g-boundary b € B; and produces a (q + 1)-
chain S,(b) € C,41 such that its boundary is b, considered inside C,;. Moreover, S, is
bounded, meaning that there exists a uniform bound on the norms.

To clarify what is going on, let us consider an analogous map in simplicial homology.
Take the standard 2-simplex with vertices {vg, v1, v}, corresponding to a triangle if we
look at its geometric realization. The 1-cycle b = [vg, v1] + [v1, V2] — [v2, Vo] is a boundary,
and S; would send it to the 2-chain [vg, vq, vo].

To prove Lemma 3.5, we need some preliminaries. We refer to [Mac63, Chapter VIII,
Section 8] for details.

Recall that, given groups G, H, there exist chain maps

a: Co(G x H) —s Co(G) @ Cu(H),
B: Cu(G) ® Cu(H) —s Cu(G x H).

entirely determined up to chain homotopy by naturality and their definitions on 0-chains,

alr,y) =r®y,  Blrey) = (r,y)

By Eilenberg-Zilber Theorem [Mac63, Theorem 8.1], o and 3 are mutually inverse, hence
they define a natural chain equivalence

Cu(G x H) <_a__5>0.(G) © Cu(H).

They are functorial and if we endow the chain complexes with a norm, they are bounded
linear.

During the proof we denote with the same letters this maps for G and G', for every
i>1.

One can also give an explicit formula for these maps. We need the following represen-
tation of a:

Theorem 3.6 ([Mac63, Theorem 8.5]). For any group G, H, a natural chain transforma-
tion a: Co(G x H) = Co(G) — Co(H) for the Eilenberg-Zilber theorem is given in degree
n by:

n

a($o,---$n;yo,---7yn) :Z(x()?"'axp)(g)(yp)"'ayn)
p=0

This chain transformation is known as the Alexander-Whitney map.
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Intuitively, we are taking an n-simplex in Co(G x H), which is a pair of n-simplices,
one in C,(G) and the other in C,,(H). The Alexander-Whitney map is then defined as
a sum over all possible ways of decomposing these simplices into pairs of (p, ¢)-simplices
with p + ¢ = n.

Proof of Lemma 3.5. Let us denote by i': G — G?,%2: G? = G3, i?0it =13 G = G3
and i: G* — G the inclusions. We prove by induction the following statement:

For every j > 0 and for i = 1,2, there exist bounded linear operators Si: Bl — Cit]
and S;: By — Cyy1 such that 8q+1S§i) =i,

_The base step is trivial: the space of 0-coboundaries is trivial, therefore we can define

S(()Z) as the map sending 0 in 0. This maps satisfy the inductive hypothesis.

For the inductive step, suppose we have already defined Sj: Bj — C?,, and S7: B — C%,,
for 0 < j < ¢ — 1. We want to construct: S,: le — Cjq1.

Recall that by acyclicity boundaries and cycles coincide, hence the operators are de-
fined also on cycles.

Consider the diagonal morphism A: G* — G! x G, defined by Ag = (g, g).

Define )
o
Z(C'eCh) = Z,C'oCHYNY . CleC,

q—’
i=1

that is, the g-cycles of C' ® C! whose components lie strictly in the “interior”, i.e., they
have no part in Cj ® C, or C; @ Cj.
Let us define the bounded and linear map

D:B; — Z(C'®C"), D(z)=alz-(201+1®z).

The image of D is a cycle. Indeed, the maps o and A, are chain maps, therefore the
commute with the differential. Since x € B;, we have 0z = 0, thus we obtain:

OD(z) = 0(aA,2) —0(z®@1+1® 2)
=l (02) — (02 ® 1+ 1® 02)
=0—-(0+0)=0.

Moreover, the image of D lies in 7] C! ® C,_; by definition of the Alexander-Whitney
map as given in Theorem 3.6: the addendum (z ® 1 + 1 ® 2) is exactly the component
outside the "interior”.

Define now the chain complexes

« Z' by (Z') = Z, with trivial differential;
« B'by (El)q = B,_, with trivial differential.
Thus, we have a short exact sequence:

0—Clozt st 2% e B — 0
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Connecting the rows, we obtain the following commutative diagram with exact rows:

0—— (C'®@ 2Ny —— (C*' @ CY g 19, (ct ®§1)q+1 — 0

| | L
0—— (C'e2Y), —— (C'eCY, —2° (C*®B');, —— 0

} ! :

0 —— (C' @2 —— (C'®CY e —2% (C' @ B)er —— 0,

where the horizonatal maps from the second and the third columns are induced by the
identity and the inclusion.

We can write similar diagrams for G* and G® and connect them via i} and 2.

Since dD(z) € Z(C' ® C") for every z € B}, we have that

(109)D(z) e Z(C'®B) = (Z'® B,

In other words, (1®9d)D(z) lives in the interior degrees, where we have already defined S*
by inductive hypothesis. Hence we can consider

(8'® SN (1®0)D(2) = (8" ® $'9)D(2) € (C* @ C*)gu1.
Let us consider now the following element:
u:=(iL®i;)D(z) — 9(S' ® S'9)D(2) € (C* @ 02);.

We are pushing D(z) in C? ® C?, hence only interior degrees are involved. We want to
apply S? on u. Our goal is to apply S? to u. Recall that, by the inductive hypothesis, S?
has already been defined on cycles up to degree ¢ — 1. Therefore, it suffices to show that
u is a cycle lying in interior degrees. We look for a lift of u in (C* ® Z?),, i.e.: we want
to show that u is in the image of the firt map in the short exact sequence

0— (C?® 2%), = (C?® C?), 2% (C* @ BY), — 0.

Equivalently, we need to show that u € Ker(1 ® 0). This is true since dD(z) = 0.
Moreover, u is a g-cycle of this chain complex. i.e. du = 0, therefore:

ue Z(C*® 2% = (2> Z°),
Thus, by inductive hypothesis we can consider the element
(S?® (i2 — S*0))u € (C* @ C*)yq
Let us compute its differential. We have:

9(S? ® (i2 — S%0))u = (0S* ® (i2 — S?0))u + (—1)7(S? ® 9(i? — S*0))u
(i2 @ i2)u + (—1)7(S* @ (02 — 0i2))u
(i2 @ )

The equality for the first addendum follows by this: decompose u as follows

k
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The equality (1 ® 0)u = 0 means that db, = 0, thus for every k£ we obtain
(852 X (Zi — 528))<6Lk & bk) = z'iak & (Zzbk — 528bk)
= i%ay, @ (i2b, — 0)
= (¥ ® i) (ax @ by).
We work now in the same notation of the proof of Theorem 3.2; for details about well

definition of the involved morphisms we refer to the comment therein. There exists an
element k € G such that

o kP (3Bl-”(0)> N k4 (SB[”(O)) = () for every p # q € N;

. kj(3BZ-"(O))) —— p for some p € R™.
j—00

Define now, for every ¢ € G® and i = 0, 1, the maps ¢;: G> — G by

¢i(g9)(x) =

kigk=(x), ifx € k/(3B*0)) and j > 1,
x, if z ¢ Uj>i K (3B7(0)).

These morhpisms are well defined and conjugates. We denote with the same letters their
restriction to G*.
Let 1 the map defined by

PG — G
(g, 1) = g é1(h).
A computation shows ¢y = nA
Define E: Z)(C' ® C") — (C® ® C%)q41 by
E= (25 ® 25%) + (S* ® (i2—5%0)) (il — (5" © §19)),

we have (i'? @ i'3)D(2) = O(ED(2)).
Moreover, a calculation shows:

(i @i")alAz = (P @i") @1+ 9(ED(2)) + (i ®@i"*) (1 ® 2)
and applying 7,3, by naturality of the cross product this becomes
N (i x i), Bal,z = i,z + 1, 0(ED(2)) + ¢y 2.

Recall that there exists a bounded chain homotopy between Sa and the identity, i.e. there
exists a bounded linear map h: Co(G' x G') — Coy1 (G x G') such that fa—1d = Oh+ho.
Thus the equality becomes

Go-z + 0. (i < i), 0hA 2 = iz + N BIED(2) + ¢1-2.

Since ¢1 and ¢ are conjugated, there exists a bounded chain homotopy H: Cy — Cq 4
such that ¢1 — ¢g = HO + OH.
Thus, if we define

Sy = 77*(@'1’3 X i1’3)*hA* — H—-n.8ED

we obtain i, = 0,415, and this concludes the proof since S, is sum and composition of
bounded linear maps.
O
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Roughly, the idea is this. We want to construct inductively S, using operators coming
from lower degrees. We decompose the problem via the Alexander-Whitney map and
we deal with the single components. The “extern” ones are the easier, for example it
suffices to subtract 1 ® z and z ® 1. For the “intern” components one has to be careful
using already constructed operators and homotopies. Everything can be done since the
Eilenberg-Zilber construction is bounded.

3.3 Dissipated groups

In this section we will see that what was shown for Homeo.(R") is just an instance of a
more general behaviour. Recall that the key ingredient in Mather’s proof of the acyclicity
of Homeo.(R") was the existence of a certain homeomorphism that displaces the ball
infinitely many times within compact support. The class of dissipated groups consists
exactly of those groups that admit a similar element. Hence, it will be clear that what
was done by Mather can be replicated in this context and thus the same proof leads to
the acyclicity of dissipated groups.

More in general, we will see the notion of pseudo-mitotic groups, that are a further gen-
eralization of dissipated groups. Recently, this class of group was proved to be boundedly
acyclic, as we will state in Theorem 3.14.

Lastly, Theorem 3.15 states that many groups of compactly supported diffeomorphisms
are boundedly acyclic. We will apply this result in Lemma 4.54, as a part of the proof
that the group Diff"(R") is boundedly acyclic.

Recall that an action of a group G on a space X is called faithful if g - x = x for
every x € X implies that g is the identity element.

Recall moreover that a directed union of sets is defined as follows. Let (I, <) be an
index set with a partial directed order < on it, i.e. we require that for every i, j € I there
exists k € I such that i < k and j < k. Consider a family of sets {X;}ier such that
whenever ¢ < j, we have X; C X;. The directed union of {X,};cs is the set

iel
Similarly, one can define the directed union of groups, which is a group again.

Definition 3.7 (Boundedly supported group). Let G be a group acting faithfully on
a directed union of sets X = UJ;c; X;. For every i € I, let

G; ={g € G| g is supported in X;}.

We say that G is boundedly supported if GG is the directed union of the subgroups G;. If
this happens, each of the X, is called bounded set.

Definition 3.8 (Dissipated group). Let G be a dissipated group acting on X and
let (G;, X;)ier be as before. A dissipator for G; is an element p; € G such that:

L pMX)NnX; =0 foralk>1;
2. For all g € G, the bijection of X defined by
plgpF(x), if x € pf(X;) for some k > 1,
ei(g)(@) =

x, otherwise,

belongs to G.
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If there exists a dissipator for every G;, we say that G is dissipated.

Remark 3.9. The properties of being boundedly supported and dissipated are invariant
under isomorphism. Indeed, let G and H isomorphic groups via a map f: G — H. If G
acts on a space X, then we can define an action of H on X via h-z = f~!(h) -z for
every h € H.

Suppose that G is boundedly supported with X = U;c; X; and G = U;¢; G; as in Defi-
nition 3.7. Then (f~1(G;), X;)ics satifies the condition for H to be boundedly supported.

Analogously, considering the isomorphic image of p; via f in Definition 3.8, we obtain
that if G is dissipated then H is dissipated too.

With this result, it follows that the group Homeo.(R™) is dissipated: consider the
isomorphic group G = {¢ € Homeo.(R") | supp(¢) C B;(0)}; then, what was done in
Proposition 3.3 proves exactly that this group is dissipated.

Example 3.10 (Examples of dissipated groups). The following are some examples
of dissipated groups.

o Let C be the Cantor set embedded in [0,1]. The group of homeomorphisms of C
that are the identity around 0 and 1 is dissipated.

e Let K =R or Q with euclidean topology and let G be the group of homeomorphisms
of K with support contained in some interval. Then G is dissipated [SV90, Theorem
1.13].

e The group of bijections of Q with support contained in some open interval is dissi-
pated [SV87, Theorem 3.2].

Following verbatim what was done to prove Mather’s Theorem in 3.2, we obtain the
following;:

Proposition 3.11. Dissipated groups are acyclic, i.e. if G is dissipated, then we have
H,(G;Z) =0,
for everyn > 1.

This result can be seen as a particular case of a more general phenomenon. Namely,
dissipated groups fall into the class of pseudo-mitotic groups, that have been shown to be
acyclic indipendently by Varadarajan [Var85, Theorem 1.7] and Berrick [Ber89]. Berrick
in fact uses a different but equivalent definition of binate group. For more details about
the equivalence of the definitions, see for instance [BV94, Remark 2.3].

Definition 3.12 (Pseudo-mitotic group). Let G a group and H a subgroup. We say
that H admits a pseudo-mitosis in G if there exist ¢g, ¢1: H — G and g € G such that
for every h, ' € H it holds:

L. ¢o(h) = hoy(h);
2. [h, 1 (R)] = ¢;
3. ¢1(h) = g do(h)g.
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A group G is called pseudo-mitotic if every finitely-generated subgroup of G admits a
pseudo-mitosis in G.

The definition can be roughly stated as follows. Let H be a subgroup of G. Suppose
we have a homomorphism

¢13H—>G

such that the image ¢1(H) commutes with A inside G. This homomorphism allows us to
define another homomorphism

po: H— G, ¢o(h) = hoi(h).
If there exists an element g € G such that ¢g and ¢, are conjugate by ¢ in G, i.e.,
do(h) =goi(h)g~' forall h € H,

then we say that H has a pseudo-mitosis in G.
As said before, we have this result:

Proposition 3.13 ([Ber02, Section 3.1.6] and [SV90, Theorem 1.5]). Dissipated groups
are pseudo-mitotic.

Fournier-Facio, Loh and Moraschini proved the following:
Theorem 3.14 ([FFLM23, Theorem 3.5]). Pseudo-mitotic groups are boundedly acyclic.

Therefore, we obtain another proof of the fact that Homeo.(R™) is boundedly acyclic.
One can prove with similar but essentially new techniques the same result for a wider
class of space:

Theorem 3.15 ([MN23, Theorem 4.2 and Corollary 4.3]). Let n € N*, r € N* U {400},
let M be a closed C"-manifold and let Z be a manifold C"-diffeomorfic to M x R™. Then
the groups Homeo.(Z) and Diff.(Z) are boundedly acyclic.

Moreover, any (possibly infinite) product of such groups is boundedly acyclic.

4 The bounded cohomology of transformation groups
of euclidean spaces: the general case

In this section we show that the main result of the previous chapter, i.e. that Homeo,(R")
is boundedly acyclic, also holds without the assumption of compact support. As we have
seen, compact support was a crucial and necessary hypothesis for the technique previously
employed. We now proceed as follows: in the first part, we state and prove a different
criterion that ensures bounded acyclicity; in the second part we show how it can be applied
to the group Diff"(R™). Moreover, we see the statement of an analogous criterion that
ensures the standard acyclicity of a group and that can be proved with similar ideas.

As we shall see, this new criterion is, at least in principle, independent of the previous
result on bounded acyclicity. In other words, one could, conceptually, use this technique
to prove the bounded acyclicity of Diff"(R™) without assuming the bounded acyclicity
of Diff’(R™). Nevertheless, when applying the criterion to a given group G, one of the
hypotheses requires certain subgroups of G to be boundedly acyclic. In our case, these
subgroups turn out to be precisely the groups of compactly supported diffeomorphisms
(or products of them). Thus, while the criterion itself is logically independent from the
results obtained so far, its application in this setting ultimately relies on them.

These criteria and almost all the content of this section is taken from the paper by
Fournier-Facio, Monod and Nariman [FFMN24].
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4.1 A criterion for (bounded) acyclicity

In this section, we present the aforementioned criteria, which guarantee that a group G
satisfying certain hypotheses is (boundedly) acyclic.

Suppose that G is acting on a set X. We aim to extend this action to a poset P built
from this set. To this end, we consider the set of sequences of elements of X, partially
ordered by the subsequence relation: a sequence is declared smaller than another whenever
it appears as a subsequence of it. We consider the induced action of G on any G-poset of
sequences in X, i.e. any G-invariant subposet X of P.

We ask for three conditions:

1. the poset X satisfies a certain combinatorial property, called W -property;
2. the action of G on X is transitive;
3. one, or equivalently every, stabilizer in G of an element of X is (boundedly) acyclic.

If these conditions hold, the group G is then (boundedly) acyclic.

The proof goes roughly as follows. When a group G acts on a simplicial set X,, it
is possible to prove that under certain hypotheses the (bounded) cohomology of G is
isomorphic to the (bounded) cohomology of the orbit complex X,/G.

Intuitively, simplicial sets are a combinatorial way to encode informations of an object,
as simplicial complexes do. For example, one can treat the homology of a well-behaved
topological space X by choosing a simplicial complex K whose geometric realization |K |
is homotopy equivalent to X. This allows us to compute the homology of X by working
with the simplicial chain complex of K, avoiding the more cumbersome singular chain
complex built from all continuous maps from standard simplices into X. Simplicial sets
are conceptually analogous to simplicial complexes but allows more freedom in contruct-
ing them. We shall see that simplicial sets naturally arise when constructing (co)chain
complexes to define homology and (bounded) cohomology. For example, one could define
the homology of a group G by taking its nerve, a simplicial set whose geometric realiza-
tion is the classisfying space of G. In the same spirit, we will see how to define bounded
cohomology of posets and of monoids.

One of the hypotheses that are required to prove the isomorphism aformentioned
between the (bounded) cohomology of G and of the orbit complex X,/G is that the
simplicial set X, is (boundedly) acyclic. This holds whenever we take the associated
simplicial set of a poset satisfying the W-property. Another condition is that the stabilizer
of the action of G on X, is (boundedly) acyclic. This is analogous to what we ask in the
hypothesis of our criterion. Lastly, there must be finitely many isomorphism classes of
such stabilizers, and this follows from the transitivity of the action of G on X.

To resume, at this point we are in the following situation. The group G acts on a
set X and we define a certain poset X from it. We take the simplicial set X, associated
to X, and we see that it satisfies the hypothesis for which Hy, (G) = Hj (X /G).

Now, we show that, regardless the specific group, if G satisfies our hypothesis we
obtain an isomorphism

Hiyy (X, /G) = Hiy(Emb. (N¥),),

for all n > 0, where Emb_ (N*) is the monoid of orientation-preserving of N*. Here again
the transitivity of the action of G on X will be crucial.

At this point, we have proved that every group satisfying our hypothesis has the same
(bounded) cohomology. Thus, it suffices to find a single group satisfying our hypothesis
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that is boundedly acyclic. To this aim, we use the group of countably supported bijections
of an uncountable set, that is binate and hence (boundedly) acyclic by Theorem 3.14.

Recall that a poset is a pair P = (X, <) where X is a set and < is a partial order
on X i.e. a reflexive, transitive and antisymmetric binary relation.

Definition 4.1 (IW-property). Let P be a poset. We say that P satisfies the W property
if the following holds: for every @ C P finite subposet of P with minimal elements
xl 2?2 for every I C {1,2,...,k}, there exists y/ € P such that:

1. if I C J, then 3! < y/;
2. ifx € Qand 2° < z for every i € I, then y! < x

The following picture exhibits the property in the case @ = {z1, x5} and justifies the

name.
T Tq
\ {12}
/ \
in Ya

Source: [FFMN24].

Let G be a group acting on a set X. Consider the poset P of all sequences x = (z;);en
of pairwise distinct elements of X, where we say that x < y if x is a subsequence of y.
Observe that we have an induced order-preserving action of G on such a poset. We call
G-poset of sequences in X any G-invariant subposet X of P.

We can now state the main theorem of this section. As said, it is a criterion to show
the bounded acyclicity of a group G satisfying certain hypothesis.

Theorem 4.2 (Criterion for bounded acyclicity [FFMN24, Theorem 2.2]). Let G be
a group acting on a set X and let X be a G-poset of sequences in X. Suppose that:

1. the poset X satisfies the W -property;

2. the induced action of G on X is transitive;

3. the stabilizer of some (or, equivalently, every) sequence x € X is boundedly acyclic;
Then, the group G is boundedly acyclic.

Remarkably, the same ideas can be applied to prove an analogous criterion for the
acyclicity of a group. For completeness we also state this result but we prove the bounded
cohomology version only. The proof of the next result follows the same ideas and can be
found in the paper of Forunier-Facio, Monod and Nariman [FFMN24, Section 4.5].

Theorem 4.3 (Criterion for acyclicity [FFMN24, Theorem 2.3]). Let G be a group
acting on a set X and let X be a G-poset of sequences in X. Suppose that:

1. the poset X satisfies the W -property;
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2. the induced action of G on X is transitive;
3. the stabilizer of some (or, equivalently, every) sequence x € X is acyclic;
Then, the group G is acyclic.

We introduce a framework to produce posets satisfying the W-property. Recall that a
preorder < is a reflexive and transitive binary relation and that an equivalence relation =
is contained in < if whenever x = y, then x < y.

Recall that, given a set endowed with a preorder (X, <), we say that a sequence (z;);e;
of elements of X is cofinal if for every x € X there exists some z; in the sequence such
that © < z;.

For example, cofinal sequences in (R, <) are precisely those that are unbounded from
above (they do not need to be convergent).

Let (X, <, %) be a set endowed with an equivalence relation 2 contained in a preorder

r~)

relation <. Let X be the set
X = {cofinal increasing sequences of pairwise inequivelent elements of X }.

Explicitly, an element of X" is a sequence (z,,)nen such that:
1. cofinal: for all x € X, there exists n € N such that x < z,;
2. increasing: if n < m, then x,, < x,,;

3. pairwise distinct elements: if n # m, then z, 2 x,,.

Observe that if (z,,),eny € X and we take a subsequence, the resulting sequence is still
an element of X’. In other words:

Lemma 4.4. The set X is closed under taking subsequences.

We give a poset structure to X via the subsequence partial order. That means, we
define a partial order as follows: given two sequences x, y € X', we say x < y if x is a
subsequence of y.

Proposition 4.5 (Criterion for the W-property). Let (X, <, %) be a set endowed
with an equivalence relation = contained in a preorder relation < and let X be the poset
of cofinal increasing sequences of pairwise inequivalent elements of X with the subsequence

partial order. Then, the poset X satisfies the W -property.

Proof. Let @ C X be a finite subposet with minimal elements {x!,...,x*}. We have to
check that for every I C {1,2,...,k}, there exists y! € X such that:

1. if I C J, then y! <y’;
2. if x € Q and x! < x for every i € I, then y' <x

We construct the various y! as subsequences of a single sequence y = (y,)nen. Denote
with x/ the sequence (#7),en.

We construct a sequence y such that y; is an element of x/ for j = i mod k by
induction.

Base step: for n =1, let y; = 1.
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Inductive step: to simplify the notation, we show how to choose y, and see that
the actual inductive step is almost identical, but with more indices to take into account.
We choose 1, among the elements of x2. Since Q is a set of cofinal, increasing, pairwise
inequivalent sequences, we can select ¢ € N such that for every x € Q and for every r > ¢,
we have x, 2 .

Indeed, it may happen that for a given x € Q, we have z; = y; for j € N, but then
we must have x, 2 y; for all » > j, since otherwise we would have two equivalent distinct
elements. For each x € Q, denote by jx the index j such that z; = y;, and set j, = 0 if
x, Z y for all » > 0. Finally, define

= Iax Jx.
The maximum is achieved since Q is finite.

Since x? is increasing and cofinal, there exists p > ¢ such that y; < a:f,. We set 9 == xg.
This way, (y1,y2) is increasing and y; 2 ys.

The actual inductive step is analogous. Suppose to have defined 4, . . . , y,,, with y; € x/
for j =4 mod k. We choose y,; among elements of x™! or x! if j = 0 mod k. We can
again follow the same procedure of before.

This way, y is by definition an increasing sequence of pairwise distinct elements, and it
is cofinal because it shares a subsequence with a cofinal sequence (namely, each of the x*
for 0 <i < k). Therefore y € X

Take I C {1,...,k} and define y’ as the subsequence of y that selects only those
indices that are congruent to an element of I modulo k. For instance, if I = {1,...,k},
then y! = y.

Then by definition if I C J then y! < y”’.

By construction, it is clear that the second condition of the W-property holds. Indeed,
let x € Q with x! < x for all i € I. We are constructing y by interweaving elements of x’,
hence y < x. Since we define y! by taking a subsequence of y, we have y! <y < x.

m

4.1.1 Bounded cohomology of simplicial sets

We recall here the notion of simplicial set and of its bounded cohomology. For an intro-

duction on theses contructions, we refer to the survey of Frigerio [Fri23], of Ivanov [Iva20],

of Li, Moraschini and Raptis [LMR25] and for more details to the book of May [May92].
We start by briefly recalling what a simplicial complex is.

Definition 4.6 (Simplicial complex). An abstract simplicial complez (which, for sim-
plicity, we will just call a simplicial complez) is a pair K = (V,S) consisting of a set V/
of vertices and a set S of simplices, where each element of S is a finite subset of V. An
element o € S is called an n-simplex if it contains exactly n + 1 vertices. Moreover, we
require the following conditions:

1. Every vertex v € V determines a 0O-simplex, i.e. {v} € S
2. If c € Sand ¢/ C o, then o’ € S.

For an n-simplex o € S, its subsets are called faces, and in particular the subsets that
are (n — 1)-simplices are called its boundary faces.

Given two simplicial complexes K; = (V4,51) and Ky = (V4,5,), a simplicial map
from Kj to Ks is a function f: Vi — V5 such that f(o) € Sy for every o € 5.
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Example 4.7 (Standard n-simplex). In the notation of before, let V := {0,1,...,n}
and S consisting of every non-empty subset of V. Then (V,S) is called standard n-simplez,
and we denote it A™.

To a simplicial complex, which is purely a combinatorial object, one can always asso-
ciate a topological space, its geometric realization.

Definition 4.8 (Geometric realization). The geometric realization of a simplicial com-
plex K = (V,S) is a topological space |K| defined as follows. Let I' be the set of all
functions ¢: V — I, so that each element t € I is determined by a family of real num-
bers (t,)vey with ¢, € [0, 1].

For each n-simplex o = {vg,...,v,} € S, we define
lo| ::{te[v Ztvzlandtvzoforallv¢a}.
veo

This set sits inside the finite-dimensional vector space R? = R"*! and we endow it with
the subspace topology inherited from this vector space.
As a set, the geometric realization of K is then defined by

K|=J|o] € I".

ogeSs

If K is finite, then |K| is contained in the finite-dimensional vector space RY, and we
endow it with the corresponding subspace topology. In the general case, we define the
topology on | K| by declaring a set U C | K| to be open if and only if U N|o| is open in |o]|
for every o € S.

A triangulation of a topological space X is a homeomorphism between X and the
geometric realization of a simplicial complex.

For example, the geometric realizations of the standard simplices are as follows:
e the standard O-simplex: a single point;

o the standard 1-simplex: a line segment;

o the standard 2-simplex: a triangle;

When defining simplicial homology, one typically requires the set of vertices V' to be
totally ordered and considers only those n-simplices corresponding to strictly increasing
(and hence non-repeating) (n + 1)-tuples, leading to the notion of ordered simplicial com-
plexes. One then defines appropriate face maps which allows the construction of simplicial
homology. Namely, for every n > 1 and 0 < ¢ < n, we define the face map d; from the set of
n-simplices to the set of (n— 1)-simplices as the map that takes an n-simplex and removes
the i-th vertex (for more details see, for instance, [Fri23, Section 2.3]). We denote ordered
simplices using square brackets. For example, the ordered standard n-simplex is the or-
dered simplicial complex whose set of vertices is V' = {0,1,...,n} and whose k-simplices
are the (k + 1)-tuples of vertices of the form [ig, ..., i) with 0 <ig < iy < -+ < i < n.

While simplicial complexes provide a combinatorial way to build topological spaces
from simplices, they are somewhat rigid. For instance, it is not straightforward to define
the product of two simplicial complexes or to find triangulations of even relatively simple
topological spaces (see, for example, [Hat02] for more details). We will not discuss these
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issues in depth, but they typically arise when working in algebraic topology (see, for
example, Friedman’s essay on simplicial sets, [Fri23, Chapter 5]). To overcome these
limitations and to have a more flexible framework suitable for our purposes, it is useful
to work with simplicial sets. Simplicial sets generalize simplicial complexes by encoding
the combinatorial structure through face and degeneracy maps.

Definition 4.9 (Simplicial set). A simplicial set is a collection of sets X, = { X, X1, Xo, . ..
together with maps between them: face maps d,,;: X,, — X,,_; for every n > 1 and for
every 0 < ¢ < n and degeneracy maps sy ;: X, — X,41 for every n > 0 and for every
0 < i < n. If nis understood, we simply write d; and s; for face and degeneracy maps,
respectively. Moreover, we ask for this functions to satisfy some compatibility conditions:

d;d; = d;_1d; if 1 < 7,
dis; = sj_1d; if1 <7,
d;s; = djp18; = id,

d;s; = sjdi_y ife>7+1,
5i8j = Sj+15; if 1 <.

A morphism between simplicial sets (X, de, So) and (Ys, ds, Se) consists of maps f,,: X,, — Y,
that commute with face and degeneracy maps.

For n > 0, the elements of X,, are called n-simplices, and the elements of X, are called
vertices. An n-simplex can be represented as an (n+1)-tuple of vertices, where repetitions
are allowed. The face map d;: X,, — X,,_1 takes an n-simplex and returns its i-th face,
that is, the (n — 1)-simplex obtained by removing the i-th vertex. On the other hand,
si: X, — Xy takes an n-simplex and gives us back the (n 4 1)-simplex obtained by
duplicating the ¢-th vertex. Sometimes, one has to be careful with the precise definition of
the face and degeneracy maps; see, for example, how they are defined in the construction
of the nerve of a group 4.18.

Thus, contrary to what happens when working with simplicial complex, here we allow
simplices with repeated vertices. Whenever a simplex has repeated vertices, we call it
degenerate. Notice that degenerate simplices are those that can be written as s;(z) for
some n-dimensional simplex z.

Example 4.10. Any simplicial complex can be regarded as a simplicial set, where the n-
simplices are the same and the face and degeneracy maps are defined as in Definition 4.9:
the face map d;: X,, — X,,_1 removes the i-th vertex of an n-simplex, while the degeneracy
map s;: X, — X, duplicates the i-th vertex of an n-simplex.

Example 4.11. Consider the standard 2-simplex with vertices {vg, vi,v2}. Define two
vertex maps 7,7 by

W(Uo) = o, 7'('(’01) = V1, 7T<'U2) =V,
and
%(Uo) = o, %(Ul) =1, 7~T<U2) = Up.

Both maps collapse the geometric realization of the 2-simplex onto its face with ver-
tices {vg, v1}. If we work in the context of simplicial complexes, the images 7({vg, v1,v2})
and 7({vg, v1,v2}) coincide (they are both the edge {vg,v1}), so the two simplicial maps
send the 2-simplex to the same 1-simplex.
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If, instead, we work with simplicial sets (where simplices are ordered tuples and repe-
tition are allowed), then the induced maps on the 2-simplex [vg, vy, vo] are

W([U()) U1, UQ]) — [U(b U1, Ul]a 77—([”07 VU1, UQ]) - [/U07 U1, UO]?
Thus the images of the two maps are different for simplicial sets.

Remark 4.12. We have been slightly sloppy when talking about vertex maps, maps
between simplicial complexes, and maps between simplicial sets. When working with
simplicial complexes there is no ambiguity: any simplicial map is completely determined
by its action on the vertices.

By contrast, this is no longer true for simplicial sets: one also has to specify what
happens to simplices of higher degree (see Example 4.13). The image of degenerate
simplices, however, is completely determined by the compatibility relation

f(si(x)) = si(f(x)).

Similarly, we do not have to specify the image of all faces explicitly, because they are
determined by the identities

f(di(@)) = di(f()).
Thus, we do no not have to specify every single value of a simplicial map, but still it does
not suffice, in general, to declare only the image of the vertices.

Nevertheless, ordered simplicial complexes are in fact completely determined by their
vertices; thus, when such a complex is regarded as a simplicial set, specifying the image of
each vertex is sufficient to determine the entire simplicial map. This is because simplicial
maps must commute with the face and degeneracy maps, which uniquely determines the
images of all higher-dimensional and degenerate simplices from the images of the vertices.
This is the case of Example 4.11 where we are working with ordered simplicial complexes
regarded as simplicial sets. For instance,

W[U(];UO’Ul’UZ;UQ] = 7T(S450[U0,711,U2]) = 54507[1)07?11,@2] = 8480[7)07?11,@1] = [U07U0;U17U177}1]~

Here, the action of 7 on the degenerate simplex [vg, vg, v1, Vs, 5] is entirely determined by
its action on the non-degenerate simplex [vg, v, va].

Example 4.13. Consider the standard 1-simplex A! with vertices {vg,v;}, and the sim-
plicial set X with a single vertex w and two 1-simplices: one given by the degenerate
simplex [w,w], and a “loop” ¢ that starts and ends at w.

Maps A! — X are not determined solely by their action on vertices: both vy and v,
must be sent to w, but the 1-simplex [vy,v1] can be sent either to the degenerate sim-
plex [w,w] or to the non-degenerate loop o, yielding two distinct well-defined simplicial
maps.

As with simplicial complexes, it is possible to associate to a simplicial set X, that is
a purely combinatorial object, a topological space | X| called geometric realization of X.
Let [n] ={0,1,...,n} denote the finite ordered sets. Define the maps

D;:[n]—[n+1], i=0,...,n,

as the order-preserving maps that skip i:



Define moreover
Si:[n+1] = n], i=0,...,n,

as the order-preserving maps that duplicate i:
Si([0,...,n+1]) =1[0,...,4,%,...,n].

Definition 4.14 (Geometric realization). Let X, be a simplicial set, let |[A"| be the
geometric realization of the standard n-simplex and let D;, S; as before. Endow X,, with
the discrete topology for every n > 0 and |A"| with the Eucliden topology. The geometric
realization |X| of a simplicial set X, is given by

X1 = [ Xa x (A7) / ~,
n=0
where ~ is the equivalence relation generated by
(z, Di(p)) ~ (di(z),p) for x € Xpi1, p € [A"],

and
(x,Si(p)) ~ (si(x),p) forze X, 1,pe|A".

Example 4.15. Let n € N. The sphere S™ can be obtained as the geometric realization
of a simplicial set as follows.

For every m > 0, consider the set of m-simplices in X, given by elements of the
form [ig, ..., 4], where 0 <ip < -+ <, < n.

The face maps d; remove the i-th element, and the degeneracy maps s; duplicate the
i-th vertex.

Another simplicial set yielding the same geometric realization is the following. The
only non-degenerate simplices are the 0-simplex [0] and the n-simplex [0, ..., n]; all other
simplices in X, for 1 <m < n — 1 are of the form [0, ...,0]. Face and degeneracy maps
are defined as before. -

One can check that the geometric realizations | X | and | X| are indeed (homeomorphic
to) the n-sphere.

Definition 4.16 (Connected simplicial complex). Let X, be a simplicial set. We say
that X, is connected if its geometric realization | X| is connected.

Equivalently, X, is connected if and only if for every vertex xi,x5 € Xy, there ex-
ists a path of 1-simplices connecting them, that is: the graph |X;| with set of ver-
tices {z; | x; € Xo} and set of edges {[z;, x;] | [xi, z;] € X1} is connected.

Definition 4.17 (Simplicial action). Let G be a group and X, a simplicial set. We
say that G acts simplicially on X, if every g € G acts by simplicial maps X, — X,.

The next example will be of fundamental relevance for what we will do later: given a
group G, one can often associate a simplicial set to it, its nerve.

Example 4.18 (Nerve of a group). The nerve of a group G is the simplicial set N(G),,
defined as follows:

o the n-simplices are N(G),, = G™, with G° being the trivial group {e};
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o the face maps d; : G* — G"~! are given by

dO(gh s 7gn) = (927 s 7g’n)a dn(gb cee agn) = (g17 s 7gn—1)7

and for 0 < i < n,
di(gr, - 9n) = (91, GiGit1s -+ Gn);
o the degeneracy maps s; : G™ — G™*1 are

80(91, s 7gn) - (67917 s 7gTZ)7 Sn(gla s 7971) = (glv s 7gn76)

and for 0 <7 < n,
Si(gla' e agn) = (glv' -3 95,6, Gig 1, - - - 7gn)7

The action of G on itself induces a natural simplicial action on N(G)s,.

Remark 4.19. There exists an intermediate construction between simplicial complexes
and simplicial sets: semisimplicial sets, also called Delta sets or A-sets, defined similarly
to simplicial sets but without taking into account the degeneracy maps, thus not allowing
repeated vertices. This construction yields to the definition of homology of a semisimplicial
set: as we shall see in Section 4.23, we will construct a differential d, using only the face
maps. Nevertheless, some technical problems arise when not allowing degeneracies. For
example, only using face maps when defining the nerve of a group lead to degeneracies
that should be treated in a different way when working with semisimplicial sets.

Consider for instance the group G = Z and the 3-simplex [2,3,6] € N(Z)3;. Then we
have

dl [27 35 6] = [67 6]7

that is a degenerate simplex! Thus, it is more natural to work with simplicial sets for our
purposes.

The notion of nerve can be defined not only for groups, but also for many other
mathematical objects. For instance, one can construct nerves for monoids and posets.
The nerve construction provides a systematic way to associate a simplicial set to these
structures, encoding their combinatorial and algebraic properties.

Example 4.20 (Nerve of a monoid). Recall that a monoid is a triple (M, -, e), where
M is a set, - is a binary associative operation, and e € M is the identity element. In other
words, a monoid is like a group but without the requirement that every element has an
inverse.

Some examples, besides groups, are:

o the set of positive integers N with addition;
e the set of square matrices of fixed size with matrix multiplication;
o the set of ordered preserving embeddings of N*, as we will see in Section 4.40.

The construction presented in Example 4.18 applies verbatim in this context and leads
to the definition of nerve of a monoid.

52



Example 4.21 (Nerve of a poset). Let (P, <) be a poset. We can associate to it a
simplicial set N(P), called nerve of P as follows:

o the set of n-simplices N(P), is given by all totally ordered chains of length n + 1
{ro < <}, w3 €P
o the ¢-th face map
di : N(P)p — N(P)n—1
is defined by deleting the i-th element of the chain:
difwg < - <apf={vg < <7 < - Sy,
where x; means that x; is omitted;

o the ¢-th degeneracy map
$i : N(P)yp — N(P)ns1

is defined by duplicating the i-th element of the chain:
sz <o Sy < Sapf={rg <Ly <y <-- S )
In this way, N(P). is a well-defined simplicial set. For simplicity, we denote the nerve
simply by P,.

Lemma 4.22. Let X be a poset satisfying the W -property. Then, the simplicial set X, is
connected.

Proof. We show that every vertex x1, x5 € Xy can be connected by a path in Xj.

Consider the case where xy and x5 are comparable. Without loss of generality, sup-
pose x1 < x9. Then the 1-simplex {x; < x5} connects them.

Now assume that x; and x5 are incomparable. Then both are minimal elements of the
finite subposet Q = {x1,x2}.

By the W-property 4.1, there exist elements y(1y, ¥y, ¥f1,2) With

Yoy < 2, Yqoy < X9, Y1y, Y2y < Y12}
Hence we obtain a path connecting z; and xs. O

As mentioned, we can define the homology of a simplicial set by defining a chain
complex with a suitable differential.

Definition 4.23 (Homology of a simplicial set). Let (X,,d,, ss) be a simplicial set
and let R be a ring. For every n > 0, let C,,(X; R) be the free R-module generated by X,.
Define the boundary operator

On: Ch(X;R) — Crq1 (X5 R), O0n0 = Z(—l)idia.

This gives a chain complex (Co(X; R), ds) called the simplicial chain complex of X,. The
homology of the simplicial set X, is defined as

Hy(Xe; R) := Ha(Co(X; R)).
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When working with real coefficients, we can endow the simplicial chain complex with

the ¢'-norm via
1> arowl = Ja|
% %

for every Y arop € C,(Xe; R).

From now on, we will omit the coefficients implying that we are working with real
ones.

For convenience, we will work with reduced homology of simplicial sets. This means
that we take the reduced chain complex C, (X,), defined as usual in positive degrees, and
we set C_;(X,) = R, with the differential J: Co(X,) — C_1(X,) sending every vertex
to 1 € R. The reduced homology He(X,) is the homology of this chain complex.

Definition 4.24 (Bounded homotopy). Let f,g: X, — Y, be two simplicial maps
between simplicial sets. A bounded homotopy between f and g is a sequence of bounded
linear maps h,: Cp(Xs) = Cpi1(Ys) for all p > 0 such that, for all p € N*,

diho = fo — 9o, dp+1hp+hp—1dp = fp_gp'

We say that f and g are boundedly homotopic if there exists a bounded homotopy
between them.

Two simplicial sets are boundedly homotopy equivalent if there exist simplicial maps
f: Xe—=Y,and g: Y, = X, such that f o g and g o f are both boundedly homotopic to
the respective identity maps.

Definition 4.25 (Bounded cohomology of a simplicial set). Given a simplicial
set (X,,ds, Se), we can define its bounded cohomology Hp(X,) with real coefficients as
the cohomology of the cochain complex

0 — 2°(Xo) D o(X) L 0o(Xy) Lo

where the differentials d": ¢°(X,,) — ¢°(X,,+1) are obtained by dualizing the face maps.

A simplicial set is said boundedly acyclic if its bounded cohomology with real coeffi-
cients vanishes for every positive degree.

Example 4.26. Let G be a group acting simplicially on its nerve N(G), as in Exam-
ple 4.18. Then the bounded cohomology of G is precisely the bounded cohomology of the
simplicial sets of orbits N(G)./G.

More generally, whenever we have a group G acting simplicially on a simplicial set X,
satisfying certain additional hypotheses, we have that the simplicial set of orbits computes
the bounded cohomology of GG. More precisely, we have the following:

Theorem 4.27 ([MN23, Theorem 3.3]). Let G be a group acting on a connected, bound-
edly acyclic simplicial set Xo. Suppose that, for all p € N, we have:

1. the stabilizer of X, is boundedly acyclic;
2. there are only finitely many isomorphism classes of such stabilizers.

Then, we have an isomorphism H'(G) = H}'(X./G).
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Definition 4.28 (Uniform acyclity). Let X, be a simplicial set. We say that X, is
uniformly acyclic if it is R-acyclic (i.e. H,(Xs;R) = 0 for all n > 0) and it satisfies the
¢-UBC condition (Definition 1.28) for all ¢ > 0.

By Theorem 1.36,the following lemma is straightforward:
Lemma 4.29. If a simplicial set X, is uniformly acyclic, then it is boundedly acyclic.

Example 4.30 (Cone over a simplicial set). Let (X, d., ss) be a simplicial set. The
cone over X, is the simplicial set C'X, obtained by adding a new vertex v ¢ X, and
connecting every simplex of X, to v.

More precisely, an n-simplex of C'X, is a tuple of the form

(x,v,...,v), € Xy, 0<qg<n.
~———
q times

If x € X,,_, is non-degenerate, then the non-degenerate simplices of C'X, are:
o those with ¢ = 0, i.e., the original simplices of X,;
o those with ¢ = 1, i.e., simplices obtained by connecting x to the new vertex v.

The face maps d;: CX,, - CX,,_; are defined by

(x,v,...,v), 0<i<yq,

1

di(xz,v,...,v) = -
—_— (di—qz,v,...,0), ¢<i<n

Degeneracy maps s;: C'X,, — CX,; are defined similarly by inserting a repeated
vertex either in x or in the copies of v. Precisely:

(m,v,...,v), 0<1<q,
——
Si(ZE,U,...,U) = g+l .
— (si_qx,v,...,v), qg<i<n.
q ——

q

Analogously to what happens in the standard cohomology setting, one can prove that
a cone over a simplex is uniformly acyclic.

Lemma 4.31 ([KKS23, Theorem 7.18]). Let X, be a simplicial set and C X, the cone over
it. Then CX, is uniformly acyclic with constants for the UBC bounded by 1.

Definition 4.32 (Uniformly acyclic map). Let X,,Y, simplicial sets and f: X, — Y,
a simplicial map. We say that f is uniformly acyclic if for every ¢ > 0, there exists a
constant K g > 0 such that for every cycle z € C’Q(X.), there exists ¢ € éqH(Y) such
that dgy1¢ = fo(z) and ||¢]| < K| 2.

If it is clear from the context, we will denote the constant K ({ simply by K.
A cycle z € éq(X.) is a finite linear combination of g-simplices in X, that is,

N
z:Zaiai, o; € Xy, a; €R,
i=1
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such that 0z = 0.

Notice that even if X, is infinite, each chain involves only finitely many simplices.
Therefore, to check whether the UBC holds for X,, it suffices to verify it on all finite
subsimplicial sets Yy C X, containing the simplices appearing in the cycle. More precisely,
it holds the following;:

Lemma 4.33. Let X, be a simplicial set such that every finite subsimplicial set Y, C X,
is uniformly acyclic with constants for the UBC bounded by K > 0. Then X, is uniformly
acyclic with constants for the UBC bounded by K.

Lemma 4.34. Let X,,Y, be simplicial sets and let f: X4 — Y, be a simplicial map
that factors through the simplicial cone CXo of Xe, i.e. there exists a simplicial map
f: CXy =Y, such that the following diagram commutes:

X, — OX.
\ |7
Y.,

where i: Xy — CX, is the canonical inclusion. Then f is uniformly acyclic with constant
bounded by 1.

Lemma 4.35 ([FFMN24, Lemma 4.9]). Let X, Y, be simplicial sets, and let f,g: Xoe — Y
be simplicial maps. Suppose that f and g are boundedly homotopic via a family of
maps {hy}p>o-

Then f is uniformly acyclic if and only if g is uniformly acyclic. Moreover, the con-
stants satisfy

KY < K]+ [y
for all p > 0.

Definition 4.36 (Carrier). Let X, and Y, be simplicial sets. A carrier ¢ is a map
that sends simplices 0 € X, to subsimplicial sets of Y, and such that ¢(c) C ¢(7)
whenever o C 7 (i.e. o is a face of 7).

A carrier ¢ is called uniformly acyclic if ¢(o) is a uniformly acyclic simplicial set for
every o € X,. Moreover, we ask for the constants K;f’(") to be bounded in every degree
by a constant K, that does not depend on o.

If f: X¢ — Y, is a simplicial map and ¢ is a carrier, we say that ¢ is a carrier for f
if f(o) C ¢(o) for every o € X,.

Carriers are a useful tool to prove that maps between simplicial sets are boundedly
homotopic, as shown by the following proposition.

Lemma 4.37 ([FFMN24, Lemma 4.11)). Let X, andY, be simplicial sets, and let f,g: Xo — Y,
be simplicial maps.

If there exists a uniformly acyclic common carrier ¢ for f and g, then f and g are
boundedly homotopic.

Moreover, if {K,}p,en are the constants witnessing the uniform acyclicity of ¢, and
if 1 < K, < K41 for every p, then the bounded homotopy {h,}pen satisfies

1Byl < 2(p+1)KE  for every p € N.
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When working with posets, there are relatively simple conditions that allow one to
apply this result. In particular, we have the following bounded version of Quillen’s Order
Homotopy Theorem [Bjo95, Theorem 10.11].

Theorem 4.38 (Bounded Version of Quillen’s Order Homotopy Theorem).
Let Xo be a simplicial set, let (P,<) be a poset, and let f,g: X¢ — Po be simplicial
maps, where P, is the nerve of P as in Example 4.21.

If f(x) < g(z) for every vertex v € Xo, then there exists a bounded homotopy {h,}pen
between f and g such that

|holl <2(p+1)  forallpeN.

Proof. We want to apply Lemma 4.37, so we look for a common uniformly acyclic carrier ¢
for f and g.

Let ¢ be the map that associate to o € X, the subsimplicial set generated by f(o)Ug(0)
for all p € N. Since f and g are simplicial maps, if 0 C 7 then ¢(0) C ¢(7) and
clearly f(0),g(c) C ¢(0), thus ¢ is a carrier. We have to prove the uniform acyclicity, i.e.
that ¢(o) is uniformly acyclic for every o € X, for every p € N. Let v be the minimal
element of f(o). Then v is lower or equal to every vertex of ¢(o), that is: ¢(0) is a cone.
Thus, by Lemma 4.31, ¢(¢) is uniformly acyclic with constants bounded by 1, hence we
have the thesis by Lemma 4.37. O]

The reason why we introduced posets and their bounded cohomology lies in the next
theorem. To apply Theorem 4.27, we need the simplicial set we are working with to be
boundedly acyclic. It turns out that this condition is satisfied if we work with the nerve
of a poset satisfying the W-property.

Theorem 4.39. Let P be a poset, and let P, be its nerve. If P satisfies the W -property,
then Ps is acyclic and uniformly acyclic.

Recall that we defined uniform acyclicity using real coefficients. Therefore, uniform
acyclicity does not imply (integral) acyclicity, which is defined with integer coefficients.

Proof. We prove here the uniform acyclity using the Bounded Version of Quillen’s Or-
der Homotopy Theorem 4.38. The acyclity follows from the same arguments, without
taking track of the norms and using the Quillen’s Order Homotopy Theorem [Bjo95,
Theorem 10.11].

Let Q be a finite subposet of P. Let {x,...zx} be the minimal elements of Q and
let y! be the element whose existence comes from the W-property for all I C {z1, ..., zx}.
We want to show that the inclusion i: @ — P is uniformly acyclic to apply Lemma 4.33.
Define the map

f:Q — P, T YI,,

where

L={ie{l,....k}|z; <z}

By Theorem 4.38, the map f is boundedly homotopic to the inclusion i via {h,},en such
that ||h,]] <2(p+1) for all p € N. In fact, by definition of the W-property 4.1, we have:

1. the map f is order preserving since f(y') < f(y’) whenever I C J;

2. yr, <z for every z € Q.
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Thus, we obtain f(x) < x for every z € Q.

Moreover, every element of f(Q) is dominated by the element yg;, 1}, that means: f(Q,)
is contained in a cone. Therefore, by Lemma 4.34, we obtain that f is uniformly acyclic
with constant bounded by 1. Thus by Lemma 4.35, this shows that 7 is boundedly acyclic
with constant bounded by 1+ 2(p + 1), which is independent of Q. We conclude by
applying Lemma 4.33. ]

4.1.2 The orbit complex and the embedding monoid

In this section we work in the setting of Theorem 4.2, namely the setting of the criterion
we want to prove. We have a group action of G on a set X and a G-poset X of sequences in
X. This poset satisfies the W-property, thus by Theorem 4.39 it is acyclic and uniformly
acyclic. The induced action of G on X is transitive and every stabilizer is (boundedly)
acyclic. In this section we show that the (bounded) cohomology of G is the same as
the one of the embedding monoid Emb.(N*). To prove it, we rely on Theorem 4.27
which states that, under certain hypothesis, we have isomorphisms H]'(G) = H}'(X,/G)
for every n € N. Thus, working with the orbit complex X,/G, we will show that it is
isomorphic to the nerve of the embedding monoid.

Definition 4.40 (Embedding monoid). We define the embedding monoid Emb_(N*)
as the monoid of orientation-preserving embeddings N* — N* where the operation is
given by the right action of Emb_(N*) on N*. Precisely, given 7,7, € Emb_(N*), their
product 1;7s is the embedding obtained applying n; and then 7,.

Recall that, by Example 4.20, it is always possible to associate a simplicial set to a
monoid by taking its nerve. Let us denote the nerve of Emb_(N*) by Emb_(N*),.
We want to define a simplicial map

I,: Xy - Emb_(N*),
and show that it induces a simplicial isomorphism
I,: X,/)G = Emb_(N*),.

Let p € N. A p-simplex in &), is a chain of p+ 1 sequences of pairwise distinct elements
of X of the form {xy <--- < z,}, where x; < x;; means that z; is a subsequence of ;.
Define the index map :

i x; — N¥, xl(-J 7,

which associates to each element of the sequence z; = (xgj )) jen+ its index. Since z;_; is
a subsequence of x;, the sequence x;_; is entirely determined by which indices it takes
from x;. That is, once x; is given, we can recover x;_; in terms of an order-preserving

embedding 7; € Emb_(N*) such that the following diagram commutes

Ti—1 — T4

!

N* — ", N*.
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Example 4.41. Let X = R. Consider the sequence z; = (1,2,3,...) of positive integers.
The map ¢; sends n € x; to n € N*. Consider the order-preserving embedding

ni: N*—= N m— 2m.
The sequence z;_1 is the sequence (2,4,6,...) of even positive numbers.

Proceeding inductively, we obtain that a p-simplex {xy < --- < z,} can be given
specifying the greatest sequence z, and prescribing p order-preserving embeddings of N*
such that the following diagram commute:

T T e Ty — Ty
Lol Lll Lp_1‘/ ‘/l,p
N* m N* 2 . N* Mp N*

We define the map I, as
I,: X, — Emb_(N"),, {xg <+ <apt— (M,...,mp).

This map is clearly not a bijection: as we already observed, one would also need to
specify the greatest element of each sequence in order to fully recover it. Nevertheless,
this map descends to a map on the quotient &,/G — Emb_(N*), and we prove that here
we obtain a bijection. We still denote this induced map by I,,.

Lemma 4.42. The map I,: X, — Emb_(N*), induces a bijection X,/G — Emb_(N*),
for every p > 0.

Proof. To prove that I, descends to a map on the quotient, we have to check that I, is
constant on the orbits, i.e. that for every {zo < --- < z,} € X, and for every g € G, we
have I,,(g - {xo < --- < z,}) = [,({zo < --- < x,}). This is true since the action of G is
order-preserving.

To prove that I,: X,/G — Emb_(N*), is a bijection, we have to prove

1. Surjectivity: Let (11,...,7n,) € Emb_(N*),. Take any sequence z, and define z,_,
as the subsequence of z,, determined by the indices prescribed by 7,. Proceeding
inductively, we construct a sequence {zy < --- < x,} whose image under I, is, by
construction, (n,...,n,) € Emb_(N*),.

2. Injectivity: Suppose that {zo < --- < z,} and {yo < --- < y,} € &), have the
same image under [,,. By the transitivity of G on X, there exists g € G such that
g -, = Yp. The indices defining y,_1 as a subsequence of y, are the same defining
g - Tp—1 as a subsequence of g - x, = y, since, again, the action is orientation-
preserving. Thus, g - z,-1 = y,—1. Proceeding inductively, we obtain

g {ro< - <z} ={y < <yl
hence this elements represent the same equivalence class. [

We have now bijections in every degree of the simplicial sets X,/G and Emb_(N*),.
To assemble them into a single simplicial map, it remains to check that they commute
with the face maps and the degeneracy maps.
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Lemma 4.43. The map
I,: X,/G — Emb_(N"),

s a stmplicial map.

Proof. We have to show that for every p > 1 and every 0 <1 < p,
I,_1od; =d;ol,

and that for every p > 0 and every 0 < i < p,
Iyi108; =s;01,

Consider a p-simplex {zo < --- < x,} € X,. We split into three cases:

1. Case ¢ = 0: For the face maps we have:

L (do({mo < - < 2p})) = La ({21 < -+ < m,})
= (772a'~-777p)
=do(n1, .- 777p> = dO(Ip({xO < < xp}))a

while for the degeneracy maps:
L (s0({zo < -+ <)) = La(fwo <y < -+ < )
= (N1, e,...1p)
= So (IP({IO <. < xp}))‘
2. Case i = p: For the face maps we have:

Loa(dp({mo < - < 2}) = L ({mo < -+ <y}
= (M, 1p-1)
= dp(ﬁla o 77712) = dp<lp({x0 <-- < I,,})),

while for the degeneracy maps:

La(sp({zo < -+ < 1)) = Ln({wo < - < @, < 1)

= (7717"‘7771)—17771776)
= Sp(N1y -5 p1,Mp) = Sp(]p({xi) < < xp}))-

3. Case 0 < i < p:
Ip—1<di({$0 <. < iUp})) =1 1({zo < <ximg <21 <--- < 1,})

= (771, w1 TETi41, M2y - - - ﬂ?p)
- di(nlv cee 7np) - dz(Ip({xO S e S .%'p}))

60



while for the degeneracy maps:
]p+1(81({$0 <SS Sxp})) =L({ro <<y <o <o <y}

- (771,'--7771‘76777i+1»~--777p>

= Si(My - Miy e Mp)

=si(L,({zo <~ <)) O
To summarize, we have obtained:

Lemma 4.44. The simplicial sets Xo/G and Emb.(N*), are isomorphic. In particular,
there is an isomorphism in bounded cohomology:

H'(X./G) = Hy (Emb_(N%),), for alln > 0.

As we announced, we obtain that in this setting, whenever the group we are work-
ing with satisfies our hypothesis, its bounded cohomology is the same as the bounded
cohomology of the embedding monoid. Precisely:

Proposition 4.45. Let G be a group acting on a set X and let X be a G-poset of sequences
in X. Suppose that:

1. the poset X satisfies the W -property;
2. the induced action of G on X is transitive;
3. the stabilizer of some (or, equivalently, every) sequence x € X is boundedly acyclic.
Then, we have isomorphisms in all degrees n > 0
H}(G) = H}(Emb.(N*),).

Proof. By Lemma 4.44, we have H}(X,/G) = H}'(Emb.(N*),) for all n > 0. Hence,
it suffices to prove that H'(G) = H(X,/G) for all n > 0. To this end we verify the
hypotheses of Theorem 4.27:

1. X, is boundedly acyclic and connected.

The poset set X satisfies the W-property; hence, by Theorem 4.39, its nerve X, is
uniformly acyclic. Then, by Lemma 4.29, it is boundedly acyclic. Moreover, the
simplicial set &, is connected by Lemma 4.22.

2. The stabilizer of each p-simplex is boundedly acyclic.

The stabilizer of a chain {z( < --- < x,} coincides with the stabilizer of z,, since z;
are subsequences of x,, for 0 <4 < p. By hypothesis, the stabilizer of z, is boundedly
acyclic.

3. There exists only finitely many isomorphism classes of such stabilizers.
By transitivity of the action, all stabilizers are conjugate, so there is only one iso-

morphism class. [

The last statement justify why in the hypothesis of our criterion 4.2 it is equivalent
to require either that just one or every orbit are boundedly acyclic: when we look at the
action on the resulting simplicial set, they are all conjugated.
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4.1.3 Proof of the criterion

Recall the setting we are working with. We have a group G acting on a set X, and there
exists a G-poset X of sequences in X such that the following properties hold:

1. the poset X satisfies the WW-property;
2. the induced action of G on X is transitive;
3. the stabilizer of some (equivalently, every) sequence x € X is boundedly acyclic.

Let Emb_ (N*) be the monoid of orientation-preserving embeddings N* — N*. Its bounded
cohomology is defined as the bounded cohomology of its nerve, which is a simplicial set.

In Proposition 4.45 we proved that, under these assumptions, the bounded cohomology
of the group G and of Emb_(N*) coincide. This means that every group satisfying our
hypotheses has the same bounded cohomology, hence to prove the criterion it suffices to
find one explicit boundedly acyclic group fitting into this framework.

In this section, we show that taken an uncountable set X and the group G of countably
supported bijections, then G satisfies our hypothesis and it is binate, thus boundedly
acyclic by Theorem 3.14.

Theorem 4.46. Let GG be the group of countably supported bijections of an uncountable
set X. Then G is binate and, in particular, it is boundedly acyclic

Proof. We have to show that for every finitely generated subgroup H of G, there exist
two homomorphisms ¢g, ¢1: H — G and an element g € GG such that for every h,h’ it
holds:

1. ¢o(h) = he(h):
2. [h, o1 (N)] = ¢;
3. ¢1(h) = g " ¢o(h)g.

Since every element of H has countable support and H is finitely generated, there exists

a countable subset Yy C X such that H is supported on Yj. Moreover, by uncountability

of X, we can choose pairwise disjoint countable sets Y; disjoint from Y for every ¢ € Z*.
For every ¢ € Z, fix bijections 7;: Y;_1 — Y, and let

I, =mom_j0---0om: Yy — Y,
Now define ¢y : H — G by setting, for all h € H and z € X,

I; A1 Y (2), ifzeY;,i>1
¢1(h)(x) =

x, otherwise.

For every h € H, ¢1(h) is supported on U;>; Y;. Hence, ¢1(h) is an element of G. We
then set ¢o(h) := heoy(h) for every h € H.
Consider the following element g € G: for every x € X, we define

mi(x), ifxeY,_q,
g@%z{(> )

x, otherwise.
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Then ¢ is indeed an element of G because it is supported on U;cz Yi.

Since the sets Y; are pairwise disjoint, we can prove that [h, ¢ (h')] = e for every
h,h' € H.

Indeed, let x € X and let us consider three cases:

o If v ¢ U;>Yi: neither h nor ¢1(h') (nor their inverses) move z, so
hor (W) (x) = g1 (h)h(x) = x.
o If z €Yy ¢1(h) acts trivially on Y, hence
hey(h)(x) = h(z) = ¢1(h)h(z).
o If x €Y, with ¢ > 1: h acts trivially on Y}, so
ho (W) (z) = ¢1(h)(x) = ¢1(h)h(x).

Thus h and ¢;(h') commute for every z € X, and hence [h, ¢1(h')] = e. An analogous
computation shows that ¢;(h) = g '¢g(h)g, thus we have the thesis. O

It is left to prove that the group of countably supported bijections of an uncountable
set satisfies our hypotheses. To do so, we will have to find a suitable set on which G
acts on and use Proposition 4.5 to show that the associated poset of sequences satisfies
the W-property. Once this is done, the proof of the criterion in Theorem 4.2 is concluded.

Lemma 4.47. The group G of countably supported bijections of an uncountable set X
satisfies the hypotheses of Theorem 4.2. Namely G acts on a set X, and there exists a
G-poset X of sequences in X such that the following properties hold:

1. the poset X satisfies the W -property;
2. the induced action of G on X is transitive;
3. the stabilizer of some (equivalently, every) sequence x € X 1is boundedly acyclic.

Proof. The group G acts naturally on X. Consider the trivial preorder < on X (i.e. x Sy
for all z,y € X) and the trivial equivalence = (i.e. x = y if and only if x = y). Then the
poset X of all sequences of pairwise distinct elements of X is a G-poset, and it satisfies
the W-property by Lemma 4.5.

Since sequences are countable, it is always possible to find a bijection between any
two of them. In other words, the action is transitive.

Let © = (z,)nen. The stabilizer G, of x in G consists of all bijections that fix every
element of x, that is, the subgroup of G whose support is contained in X \ U,en n-
The complement X \ U, cn 2y is still uncountable, so G, is itself the group of countably
supported bijections of an uncountable set. Hence, by Lemma 4.46, GG, is boundedly
acyclic. O]
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4.2 Veriftying the criterion

In this section we show that the group Diff’ (R™) of orientation-preserving C"-diffeo-
morphisms satisfies the hypotheses of Theorem 4.2, and hence it is boundedly acyclic.
The proof will use the action of G on fat spheres, i.e., C"-diffeomorphic images of germs
of embeddings of spheres. This allows us to define the Diff’, (R")-poset of fat sequences.
This poset will satisfy the W-property, all the stabilizers of G on this poset will be
boundedly acyclic, and the action of G on this poset will be transitive.

The result for Diff, (R") also implies that the group of possibly non-orientation-
preserving diffeomorphisms is boundedly acyclic. Indeed, recall that a topological group
is a topological space with a structure of a group where the maps corresponding to the
sum and the inverse are continuous. The group Diff"(R™) with the strong topology is a
topological group (see [Hir76, Chapter 2]). Taking the Jacobian and then the determinant
gives rise to a continuous map

Diff" (R") — GLy,(R) = {+1, -1},

where GL,(R) has the induced topology from R™ and {41, —1} has the discrete topology.
From this, we see that the connected components of Diff"(R") are the preimage of +1
and —1 respectively, namely: the group of orientation-preserving and orientation-reversing
diffeomorphisms. The connected component containing the identity is always a (closed
and normal) subgroup of a topological group whose index corresponds to the number of
connected components [Bou89, Section 3.2, Proposition 7]). In this case, this component
is the group Diff’ (R™) of orientation-preserving diffeomorphism. Thus, it has finite index

equal to 2 and we have that the result for this group implies the result for the entire
Diff"(R™) by the following:

Theorem 4.48 ([Mon01, Corollary 8.8.5]). Let G be a group and H < G a finite-index
subgroup of G. Then, for all n > 0, we have an isometric isomorphism

Hy(G;R) = Hy'(H;R)“/™
between the bounded cohomology of G and the G /H -invariants of the bounded cohomology
of H.

To resume: if we want to prove that a group is boundedly acyclic, we can use instead
a finite-index subgroup. Therefore, instead of working with Diff"(R") we will use its
finite-index subgroup Diff’, (R™), that from now on we will denote by G. This will be
useful when proving the transitivity of the action of G on the poset of fat sequences. In
particular, we will use the fact that any orientation-preserving diffeomorphism is isotopic
to the identity [Mil65, Lemma 6.2].

Definition 4.49 (Model of the fat sphere). The model of the fat sphere is the germ
at S"1 x {0} of the orientation-preserving C"-embedding

¥ S x (—%, %) — R, (z,p)— (1+p)z.
We define:
« the core as the embedding ¥: $"~' — R™ obtained by restricting ¥ to S™! x {0};

« the bounded component of R™\ Im Y. as the ball ¥, := B?(0);
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« the unbounded component of R"\ Im ¥ as the complement %, := R™ \ B}(0).

Given an orientation-preserving C"-diffeomorphism > and g € GG, we can consider the
orientation-preserving C"-diffeomorphism ¢.3 := g o 3.

Definition 4.50 (Fat sphere). A fat sphere is the germ at S"~! x {0} of an orientation-
preserving C"-embedding S: S"! x (—%, %) — R” that can be obtained as ¢.% for some
g € G. We define:

« the core of S, denoted by S, as the embedding S 'S”*1 — R™ obtained by restrict-
ing S to S"1 x {0}. Note that if S =g - ¥ then S =g -

o the bounded component of R™ \ Im S, denoted by S, as Sy = g - Ts:
o the unbounded component of R™\ Im S, denoted by S, as S, = g - 2.

Intuitively, one can think at the model of the fat sphere is a germ of the embedding
that sends the cilinder S™™' x (=1, 1) to an annullus in R", “squeezing” it. A fat sphere
can be pictured as a C"-deformation of this annullus.

Observe that we have a natural action of G on the set of fat spheres. Indeed, this
set is the one we use to satisfy the hypotheses of Theorem 4.2. Moreover, note that this

action is transitive by definition of fat spheres.
Definition 4.51. Let B C R" be a set. We say that a fat sphere S englobes B if B C Sy,

We define a poset of sequences of fat spheres as prescribed by Proposition 4.5, so that
it satisfies automatically the W-property. Let S and T be fat spheres and define the
equivalence relation = and the preorder < as follows: we say S =T if S =T and S < T
if either S = T or T englobes S.

Clearly 2 is contained in <, thus the poset F of cofinal increasing sequences of pair-
wise inequivalent fat spheres with the subsequence partial order relation satisfies the W-
property by Proposition 4.5.

We can describe more explicitly the poset F as follows:

Definition 4.52 (Fat sequence). We say that a sequence of fat spheres (.S;);en is con-
centric going to infinity if

e S; englobes Im S;_; for all 4 > 1;
o for every compact set K C R", there exists N >> 0 such that Sy englobes K.
A fat sequence is a concentric going to infinity sequence of fat spheres.

The poset F is the set of fat sequences with the following partial order relation: given
two sequences S = (5;);eny and T = (T});en, we say that S < T if S is a subsequence of T.
As we shall see, having concentric fat spheres that does not intersect will be crucial for
our purposes, in particular for the proof of the transitivity of the action.

For convenience, we fix a particular fat sequence 3 which we will use to simplify some
steps in the proof of the remaining items of Theorem 4.2. Namely, we will prove that the
stabilizer Gy of 3 in G is boundedly acyclic and that the action of G on fat sequences is
transitive by showing that every fat sequence S can be written as ¢.3 for some g € G.
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Definition 4.53 (Model fat sequence). Let X be the model fat sphere. For every ¢ € N*
define ¥; to be the image of ¥ via the homothety of ray ¢. The sequence X = (%;);en+ is
a fat sequence, and we call it the model fat sequence.

Observe that for every i € N* we have that Im3; is 5™, the n-sphere of radius
around the origin.

Lemma 4.54. The stabilizer Gx of ¥ in G is C"-diffeomorphic to the infinite product
Diff’(R™) x Diff’,(S"~! x R)N. In particular, it is boundedly acyclic.

Proof. An element g € G lies in the stabilizer of 3 if it is the identity in a neighborhood
of Im; = 4S™ for all i € N* (so that ¢.3; and ¥; define the same germ).
Thus, we have that the stabilizer is isomorphic to:

Diff;(B}'(0)) x T Diff(B}'(0) \ B-,(0)).

Since B"(0) is C"-diffeomorphic to R" and Diff.(B}*(0) \ B ,(0)) is C"-diffeomorphic
to S™~! x R, we have the thesis.
The bounded acyclity now follows from Theorem 3.15. O

We are left to show that the action is transitive. The proof of this fact is a bit
tangled, but the idea goes as follows. The action of the group Diff’, (R") on fat spheres
is transitive by definition of fat sphere. What we have to prove is that for every fat
sequence S = (.5;);en+, there exists an element g € G such that for every ¢ € N* we
have ¢.3; = S;, where X = (X;);en+ is the model fat sequence. Fat spheres are defined
as diffeomorphic images of germs of embeddings of (compact) spheres. Moreover this
spheres are concentric going to infinity, meaning that this compact sets are disjoint. We
have different embeddings g¢; for ¢« € N*, each of these fixing the corresponding fat sphere
S;. We want to find a global embedding g agreeing with all these g;’s. To this aim, we need
to recall some facts about isotopies and in particular we will use the Isotopy Extension
Theorem,

Two embeddings (that is, injective immersions which are homeomorphic into their im-
ages) f,g: V < M are isotopic if one can be deformed to the other through embeddings.
Such a deformation is called isotopy between f and g. In other words: an isotopy is a
1-parameter family of embeddings.

A useful property of isotopies is given by the Isotopy Extension Theorem, that can
be applied to show that an embedding can be extended to a larger domain under certain
hypothesis.

More precisely we have the following:

Definition 4.55 (Isotopy). Let V and M be manifolds. An isotopy from V to M is a
map F:V x I — M such that, for every t € Y, the map

F:V — M,
r — F(x,t).

is an embedding.

We say that two embeddings f,g: V — M are isotopic embeddings if there exists an
isotopy F' from V to M such that f(z) = F(z,0) and g(z) = F(z,1)

An isotopy F': M x I — M such that F; is a diffeomorphism for all ¢t € I is called
diffeotopy. Moreover, given a diffeotopy F': M x I — M such that Fy = Id|y and
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f: V. — M embedding, we have that F(f(v),t) is a diffeotopy between f and F o f.
Sometimes such diffeotopy is called ambient isotopy.

The support of an isotopy F: V x I — M is defined as the closure of
{r € V| F(x,t) # F(x,0) for some t € I}

Theorem 4.56 (Isotopy Extension Theorem [Hir76, Theorem 1.3, Chapter 8]). Let M
be a manifold, let V- C M be a compact submanifold and let F':'V x I — M be an isotopy.
If either Im F' C OM or ImF C M \ OM, then F extends to a compactly supportated
ambient isotopy of M.

A corollary is the following: if we want to extend the domain of definition of an
embedding, we can show that it is isotopic to another embedding that is already known
to be extendable.

Theorem 4.57 ([Hir76, Theorem 1.5, Chapter 8]). Let N, M be manifolds, let VC N be
a compact submanifold and let fo, fi — V — M isotopic embeddings in M \ OM. Then,
if fo can be extended to an embedding N — M, so does f;.

We are now ready to conclude the proof of Theorem 4.2 by showing the transitivity
of the action of G on F.

Lemma 4.58. The action of G on F is transitive.

Proof. The action of GG on the fat spheres is transitive by definition. What we have to
prove is that given two fat sequences S = (5;)iey and T = (T;);en, there exists a C"-
diffeomorphism such that

gS = (g.So,g.Sl, .. ) = (TQ,Th .. ) =T.

In other words, given two fat sequences, we have to find an element that works simulta-
neously for all the fat spheres of the sequences.

Let 3 be the model fat sequence and S = (.S;);en+ any other fat sequence. By tran-
sitivity of the action on fat spheres, for every ¢ € N there exists an element g; € G such
that ¢;.3; = S;. Moreover, one can choose these elements such that for some ¢; € (0,1/4),
the sets 3;(S™"™! x (—¢;,¢;)) and the sets ¢;.3;(S"™ 1 x (—¢;,¢;)) are pairwise disjoint.

Goal: show that there exists g € GG such that for every ¢ € N* we have

g Ei(S"—lx(fei,si)) = gl Ei(sn_lX(fsi,Ei))'

If we prove it, then the germs of the embeddings are the same and we have ¢.3 = S.
We construct by induction a family of maps hy € G for all £ > 1 such that:

2. hy = hy41 in an open neighborhood of the ball B (0) = (3),.
Then we define g as

g(x) = lim hg(z), for every z € R".

k—+o00

This is well-defined since, for each x € R™, there exists K € N such that hi(x) assumes
the same value for all & > K. Therefore, the limit is eventually constant and coincides
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with hg(x). Moreover, the first item ensures that ¢ is indeed the element we are looking
for.

Base step: for k =1, let hy = g;.

Inductive step: suppose hy, is given. We construct hyy; via an element v € G whose
support does not intersect an open neighborhood of gy o X3 (S™! x {0}). Then, we will
define hy1 = 7 o hy, so that the second item of our construction will be satisfied.

We have two different embeddings Y5 1(S™ ™! x [—epi1,ex41]) = R™ given by g1
and hy, respectevely. Both are global C"-diffeomorphisms, and here we look at their
restrictions, which we denote with the same name. Recall that every element of Diff”, (R")
is isotopic to the identity (see for instance [Mil65, Chapter 6, Lemma 2]), thus gz, and
hy. are isotopic embeddings.

We need to check that this isotopy does not intersects gi, o X5 (S"~! x {0}), so that the
support of v will not intersect it.

To this end, we need the following version of the Annullus Theorem.

Lemma 4.59 ([Hir76, Section 8], [Pal60] and [EKT71]). Let W; be the region between two
consecutive cores of the fat spheres, namely:

Si = g; 0 Ez (Sn_l X {O}) and Si—i—l ‘= (g;+1 0 Zi—l—l (Sn_l X {0})

Then the manifold W; is C"-diffeomorphic to S™~* x [0, 1].

We can isotope gr11 0 S 1(S™! x {0}) to a neighborhood of g o X5 (S™* x {0}) by
pushing along the region between them, since the latter is C"-diffeomorphic to the annullus
S™1 % [0,1] by Lemma 4.59. Analogously, we can do the same for hy, 0 X, 1 (S™ x {0})
and gzoX; (St x{0}): the region between them is again C"-diffeomorphic to an annullus.

Therefore, we see that there exists an isotopy between ggy103511(S™ ™' X [—€ps1, Ext1])
and hpoX, 1 (S x[—ept1,Ers1]) that does not intersect g,oX;(S™ ' x{0}). This exactly
means that the region that we wanted not to modify is indeed untouched.

The sets involved are compact, so this isotopy is compactly supported. Thus, by the
Isotopy Extension Theorem 4.56, we can extend the isotopy to the whole int(B%(0)) for
R sufficiently big. This isotopy provides the element v we are looking for. Indeed, there
exists v € Diff, (int(B%(0)) satisfying:

1. the support of v does not intersect a neighborhood of g, o 3;(S"™! x {0});
2. y sends hy, o Ek+1<5n_1 X [_5k+1;5k+1]) to gry1 © Zk+1(5n_1 X [_5k+175k+1])

We define now hyy1 := v o hy; by the two properties above, we see that hy,; satisfies
the two conditions (1) and (2), therefore we have the thesis. O

Proof of Lemma 4.59. To simplify the notations, let us denote by S(r) the n-sphere
around the origin with ray r.

By radial dilation, we can send Ei(S”_l X {0}) to X1 (S"_l X {O}), so we can
find an element f € G that shrinks the cores of the fat spheres. Precisely, we have an
clement f € G such that f(S;;,) = S; for all i > 1. For such an element, we have
S’ = f(S(1)) € B}(0). Concretely, what we are doing is a change of coordinates to
reduce the problem to show that the region between S” and S(1) is C"-diffeomorphic to
St x [0, 1].

Recall that f is isotopic to the identity since it is an element of Diff’ (R™) [Mil65,
Lemma 6.2]. Thus, the sphere S(1) is isotopic to S(1/2). Since we are dealing with
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compact sets, we can assume that this isotopy is compactedly supported in B%(0) for a
large enough R > 0. Then the Isotopy Extension Theorem 4.56 says that we can extend
this isotopy to a compactly supported isotopy on the entire B}(0). In other words, we
have a path of C"-diffeomorphism of BJ(0) that are the identity on 0B%(0) = S(R).
Thus, we found an element g € Diff](B%(0)) such that g(S") = S(1/2).

The region between S’ and S(1) is C"-diffeomorphic to the region between S’ and S(k),
since we are just adding the annulus between S(1) and S(k). Moreover, the map g defines
a C"-diffeomorphism from the region between S" and S(k) onto the region between S(1/2)
and S(k), which is C"-diffeomorphic to S"~! x [0,1]. Therefore, the claim follows. O
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