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Abstract

This thesis investigates whether S-matrices in 1+1 dimensional integrable quantum

field theories remain valid at all energy scales or whether their thermodynamic be-

havior inevitably develops Hagedorn-like singularities that signal a scale where a

breakdown of the S-matrix description occurs. We begin with a review of scattering

theory and the role of integrability, emphasizing local conserved charges, factor-

izability, and the Yang–Baxter equation as central consistency conditions. Exact

two-particle S-matrices are then constructed via the bootstrap program, providing

the framework for analyzing both scattering amplitudes and thermodynamic behav-

ior.

We paid close attention to the statistics of the particle spectrum in these inte-

grable models, as the growth and distribution of states directly influence high-energy

thermodynamics. Several examples are examined in detail. The examples include

the sine-Gordon model as a standard example, the sausage model as a more intricate

example, and higher-spin particle theories where a generalized S-matrix construction

is developed through the quantum group symmetry algebra U𝑞 (𝔰𝔲2). The spin 3/2
case is worked out explicitly. These examples allow for a systematic exploration of

the validity of the S-matrix framework.

The analysis shows that while integrability permits exact control of scattering

processes, the thermodynamic properties of certain models suggest potential limi-

tations of the S-matrix description at extreme energies. These findings clarify the

domain of validity of S-matrix theories and highlight the role of particle spectrum’s

statistics in determining whether such theories remain consistent or exhibit signs of

Hagedorn-like behavior.
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Chapter 1
Introduction

Scattering theory is a fundamental framework in physics that studies how particles

or waves interact with a target, focusing on observable outcomes such as deflection

angles, cross sections, and transition probabilities, and thereby connecting theory di-

rectly with experiment. In general scattering theory, many systems are too complex

to solve exactly, so quantities like the S-matrix and phase shifts provide a practical

way to predict outcomes and infer properties of interactions, as in Rutherford scat-

tering or deep inelastic scattering, which revealed the nucleus and quark structure

of protons. Integrable scattering theories in 1 + 1 dimensions, on the other hand,

describe highly constrained systems with a large number of conserved quantities,

where multi-particle scatterings factorize into sequences of two-particle scatterings

without particle production or energy loss. This exact solvability allows physicists

to compute precise S-matrices, correlation functions, and excitation spectra, partic-

ularly in 1+1 dimensional quantum systems and models. While general scattering

theory provides the framework for understanding interactions and connecting with

experiments across quantum mechanics, condensed matter, and particle physics, in-

tegrable scattering theories serve as exact examples that reveal the role of symmetry,

conservation laws, and factorized dynamics, governing the scattering. Therefore, it

offers deep insights into strongly interacting systems and guiding approximations in

more complex non-integrable settings.
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CHAPTER 1. INTRODUCTION

Integrable scattering theories are deeply connected to the mathematical struc-

ture of exactly solvable models through the Yang–Baxter equation and the bootstrap

equations. Although the Yang-Baxter and bootstrap equations arise in different con-

texts, they embody the same fundamental principle, which is that self-consistency

is crucial to determine the dynamics. The Yang–Baxter equation ensures the con-

sistency of multi-particle scattering by guaranteeing that the order of sequential

two-particle scatterings does not affect the final outcome, which is precisely why

the factorization property holds in integrable systems. The bootstrap equations fur-

ther constrain the theory by relating the bound states to the elementary particles,

allowing one to compute their S-matrices consistently from the known two-particle

scattering data. Together, these equations form the algebraic and analytic founda-

tion of integrable models. They demonstrate that the solvability of such models is

not a coincidence, but a reflection of deep structural constraints. We will contem-

plate three of such examples, which are the sine-Gordon model, the sausage model,

and an example with higher-spin particles in this paper.

Firstly, the sine-Gordon model is an integrable quantum field theory in 1+1

dimensions, defined by the Lagrangian density

L𝑆𝐺 =
1

2
(𝜕𝜙)2 + 𝑚2

𝛽2
(cos(𝛽𝜙) − 1) , (1.1)

where the coupling 𝛽 controls the interaction strength. One should recall that we

use the Minkowski flat metric, which has the minus sign convention for the time co-

ordinate. Classically, it possesses a Lax pair and infinitely many conserved charges,

and in the quantum theory, the integrability persists, which constitutes the scatter-

ing is purely elastic, no particle production occurs, and the multi-particle S-matrix

factorizes into two-body processes. The spectrum consists of topological soliton and

antisoliton excitations together with neutral bound states called breathers. Their

corresponding breather masses are

𝑀𝑘 = 2𝑀 sin
𝜋𝑘

ℎ
, 𝑘 = 1, 2, · · · < 8𝜋

𝛽2
− 1 (1.2)

where ℎ = 16𝜋
𝛽2

(
1 − 𝛽2

8𝜋

)
and 𝑀 is the soliton mass. The exact two-particle S-matrix,
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CHAPTER 1. INTRODUCTION

worked out by Zamolodchikov and Zamolodchikov in the late 1970s [7]. It depends

only on the rapidity difference 𝜃 = 𝜃1− 𝜃2 and satisfies unitarity, crossing symmetry,

and the Yang–Baxter equation, while its pole structure encodes the bound-state

spectrum. Explicit forms are given either as products of Gamma functions or as

integral representations that make analytic properties transparent. Poles at

𝜃 =

(
1 − 𝑘

2

ℎ

)
𝜋𝑖, 𝑘 = 1, 2 . . . , (1.3)

𝜃 = 𝑘
2

ℎ
𝜋𝑖, 𝑘 = 1, 2 . . . , (1.4)

correspond to the breathers, with residues fixing their three-particle couplings [39].

The full multi-particle scattering is reconstructed from these two-body amplitudes

by the bootstrap. This S-matrix underpins further exact constructions such as the

form-factor program(see [32]) and the thermodynamic Bethe ansatz(see [25, 28, 35]).

The former builds exact matrix elements of local operators and correlation functions,

whereas the latter yields finite-temperature free energies and finite-volume spectra

through nonlinear integral equations.

Secondly, in the sausage model, the target space is continuously deformed into

an elongated, sausage-shaped surface by a single parameter, often written 𝜈 or 𝜆, in-

stead of mapping the 2D spacetime into a perfectly round sphere. One crucial fact is

that this deformation preserves the integrability, meaning the theory has infinitely

many conserved quantities and highly constrained scattering [34]. In their 1993

work, Fateev, Onofri, and Zamolodchikov constructed two one-parameter families

of such deformations (one family for the topological angle 𝜃 = 0 and the other for

𝜃 = 𝜋) and wrote down an exact, factorized S-matrix for the deformed theory that

obeys unitarity, crossing symmetry, and the Yang–Baxter equation. These analytic

scattering data allow one to compute physical quantities exactly in ways that are

impossible for generic interacting field theories [34]. To check that the scattering

description really corresponds to a deformed sigma model, they and subsequent au-

thors used Bethe ansatz and thermodynamic Bethe ansatz (TBA) methods. These

convert the S-matrix into equations for the finite-size energy levels and scaling func-
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CHAPTER 1. INTRODUCTION

tions, showing that the sausage model indeed interpolates between known fixed

points. It recovers the round 𝑂 (3) model when the deformation parameter goes to

zero and flows toward different behaviour in other limits. The geometric picture

is tied to renormalization-group ideas where the sausage appears as an “ancient”

solution of Ricci flow and is stable in two dimensions, where it flows back toward

the round sphere, while analogous higher-dimensional sausages show instability [44].

On the quantum side, the integrable structure has been developed in several ways.

Horváth and Takács used bootstrap-fusion techniques to relate the sausage model

to sine-Gordon theory and constructed free-field representations and integral for-

mulas for form-factors (the building blocks for correlation functions), which makes

it possible to compute matrix elements of operators exactly [38]. More recently,

researchers such as Bazhanov, Kotousov, and Lukyanov revisited the quantization

using the ODE/IQFT (ordinary differential equation / integrable quantum field

theory) correspondence and quantum inverse scattering ideas to obtain non-linear

integral equations (NLIEs) for the model’s quantum transfer matrices and vacuum

eigenvalues, where they give a very precise handle on the spectrum and thermo-

dynamics [47]. Altogether, the sausage model is valuable because it is a concrete,

solvable example showing how nontrivial target space geometry and exact quantum

solvability can coexist. It serves as a friendly toy model for methods like the Bethe

ansatz, TBA, form-factor bootstrap, and ODE/IQFT. It has appeared repeatedly

in connections to condensed matter spin chains, worldsheet sigma models in string

theory, and mathematical studies of geometric flows [34, 38, 47].

Finally, an example with higher-spin particles is established in [54]. The au-

thors construct the exact S-matrices for scattering theories where the asymptotic

particles transform in higher-spin representations of the quantum group U𝑞 (𝔰𝔲2).
They begin with the ordinary 𝔰𝔲2 algebra, where particles carry spin 𝑠 and corre-

sponding magnetic quantum numbers 𝑚 = −𝑠,−𝑠 + 1, . . . , 𝑠. The scattering of two

such particles is encoded in a two-particle S-matrix that must satisfy three fun-

damental conditions, which are the Yang–Baxter equation, unitarity, and crossing
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CHAPTER 1. INTRODUCTION

symmetry. To manage the structure, they decompose the two-particle Hilbert space

into irreducible spin-𝐽 sectors by using projectors built from Clebsch–Gordan co-

efficients [36]. This decomposition allows them to parametrize the S-matrix as a

sum of projectors weighted by scalar functions, where the latter are determined al-

most entirely by the Yang–Baxter equation, with only an overall scalar factor left

undetermined. Then, they move from the rational case, where the underlying sym-

metry is the undeformed 𝔰𝔲2, to the trigonometric case governed by the quantum

group U𝑞 (𝔰𝔲2). Here, the deformation parameter 𝑞 = 𝑒2𝜋𝑖𝛾 is linked to the physical

coupling constant. This generalization modifies both the representation theory and

the structure of Clebsch–Gordan coefficients, which leads to 𝑞-deformed projectors

and scalar functions. The authors of [26, 29] carefully derive the 𝑞-deformed Cleb-

sch–Gordan coefficients, while in the [31], the subtleties that arise when 𝑞 is a root

of unity, where the expressions can diverge, are discussed. They show how to recover

finite, consistent projectors in those cases using limiting procedures.

Once the structure of the S-matrix is established, unitarity and crossing symme-

try are imposed to determine the overall scalar factor 𝑆0(𝜃). As a result, formulas

for this factor are written explicitly both when the spin 𝑠 is an integer and when it

is a half-integer. The integer spins are expressed in terms of products of hyperbolic

functions, and in the more complicated half-integer case, they are expressed in terms

of Gamma functions. Despite the apparent differences, both cases can be rewrit-

ten in a unified way through an integral representation, which highlights important

physical properties. For instance, at the special value 𝛾 = 1/(2𝑠), the scalar factor

reduces to −1, corresponding to a “free point” where the interactions vanish. In

general, the resulting S-matrix is minimal, meaning that it does not contain CDD

factors. In the range 0 ≤ 𝛾 ≤ 1/(2𝑠), which corresponds to the repulsive regime, the

theory does not have poles in the physical strip, meaning there are no bound states.

To illustrate this construction, we will work out in detail the author’s examples

and give the results for the case 𝑠 = 3/2, which features four particle states labeled

by the magnetic quantum numbers 𝑚 = ±3/2,±1/2. The nonvanishing S-matrix
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CHAPTER 1. INTRODUCTION

elements are presented explicitly, and how they are built from the scalar prefactor

and the 𝑞-deformed matrix part is shown. We verify that the full set respects the

discrete symmetries of charge conjugation, parity, and time reversal. This exam-

ple provides the first explicit S-matrix with nontrivial interactions for higher-spin

particles beyond the well-known sine-Gordon (𝑠 = 1/2) and sausage (𝑠 = 1) models.

Then, we will see that their work establishes a family of exact, minimal S-matrices

for arbitrary spin multiplets of U𝑞 (𝔰𝔲2), in which all of them are consistent with

the integrability requirements. These S-matrices serve as the starting point for

the thermodynamic Bethe ansatz analysis, which is carried out in the same paper

[54] by the authors, where they explore the thermodynamics and the emergence of

Hagedorn-like singularities. In this thesis, we are investigating a question that arose

from this observation.

In 1+1 dimensional integrable quantum field theories, the exact S-matrix encodes

scattering data in a non-perturbative way, which is compatible with the bootstrap

program, and enables one to derive thermodynamic quantities via the thermody-

namic Bethe ansatz, even in the absence of a conventional Lagrangian. In many

physical systems, such as the theory of hadrons and string theory, one still en-

counters a Hagedorn temperature, a threshold beyond which the canonical partition

function diverges because the density of states grows exponentially [40].

Recent parallel advances in 𝑇𝑇 deformations of integrable QFTs have shown

that adding CDD factors to an S-matrix can induce a Hagedorn-like singularity

in the finite-size energy 𝐸 (𝑅) obtained from the TBA. In these deformed theories,

iterations of TBA equations break down below a critical scale 𝑅∗, and two branches

of solutions merge in a square-root branch point, which is interpreted as a Hagedorn

transition in the dual canonical interpretation [45, 46, 51].

These observations, together with the family of exact and minimal S-matrices in

this thesis, motivate a deeper question. It is possible that the presence of a Hagedorn

divergence is not merely an artifact of adding deformations or CDD factors, but is

already hidden in the minimal exact S-matrix construction. If so, this would imply

12
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the existence of an intrinsic scale for the S-matrix description at high energies or

temperatures. Therefore, one can ask [54]: do S-matrix theories remain valid at

all energy scales, or do they intrinsically develop Hagedorn-like singularities in their

thermodynamics that signal a breakdown of the S-matrix description? In this thesis,

we will be investigating this question, as well as analyzing the consistency of these

higher-spin S-matrices and the statistics of their particle spectrum.
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Chapter 2
S-Matrices

2.1 Review of The Scattering Theory

Let us consider an interacting theory, where we create initial and final states

|𝑖⟩ , | 𝑓 ⟩ (2.1)

measured before and after the scattering. They are called asymptotic states if they

are separated enough from the scattering point so that they behave like states in a

free theory, usually referred as 𝑡 → ±∞. When we compute the transition probability

of the initial state into the final state in the Heisenberg picture

⟨ 𝑓 | 𝑆 |𝑖⟩ , (2.2)

we make use of the operator 𝑆 called S-matrix. This picture with operator formalism

is more convenient and widely used in quantum field theory (QFT) calculations. Due

to the Heisenberg uncertainty principle, we will describe our states as wave packets

distributed around some momentum 𝑝𝑖.

|𝜙𝑖⟩ =
∫

𝑑3𝑘

(2𝜋)3
1

√
2𝐸𝒌

𝜙𝑖 (𝒌) |𝒌⟩ , (2.3)
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𝑝𝑖

𝜙(𝑘)

Figure 2.1: Distribution around 𝑝𝑖

where 𝜙(𝒌) is the Fourier transform of the wave function, and |𝒌⟩ is a one-particle

state with momentum 𝒌. We have the usual normalization conventions.

⟨𝜙𝑖 |𝜙𝑖⟩ =
∫

𝑑3𝑘

(2𝜋)3
|𝜙𝑖 (𝒌) |2 = 1 (2.4)

⟨𝒌 |𝒌′⟩ = 2𝐸𝒌 (2𝜋)3𝛿(𝒌 − 𝒌′) (2.5)

Let us now look at a 2 → 𝑛 process.

1 2

𝑛 3
4

. . .

. . .

Figure 2.2: A 2 → 𝑛 process represented diagrammatically

𝑝𝐴 + 𝑝𝐵 → 𝑝1 + 𝑝2 + · · · + 𝑝𝑛 , (2.6)

where we have the incoming states

|𝜙𝐴𝜙𝐵⟩in =

∫
𝑑3𝑘𝐴

(2𝜋)3
𝑑3𝑘𝐵

(2𝜋)3
𝜙𝐴 (𝒌𝐴)𝜙𝐵 (𝒌𝐵)𝑒−𝑖𝒃·𝒌𝐵√︁

(2𝐸𝐴) (2𝐸𝐵)
|𝒌𝐴𝒌𝐵⟩in , (2.7)

where 𝒃 = ⟨𝜙𝐵 | 𝒙⊥ |𝜙𝐵⟩ is the impact parameter, and the outgoing states

out⟨𝜙1𝜙2 . . . 𝜙𝑛 | =
(

𝑛∏
𝑖=1

∫
𝑑3𝑝𝑖

(2𝜋)3
𝜙𝑖 ( 𝒑𝑖)√
2𝐸𝑖

)
out⟨ 𝒑1 𝒑2 . . . 𝒑𝑛 | . (2.8)
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Therefore, the mapping between the incoming and the possible outgoing states is

given by

⟨ 𝒑1 𝒑2 . . . 𝒑𝑛 | 𝑆 |𝒌𝐴𝒌𝐵⟩ (2.9)

If the particles were not interacting with each other, 𝑆 would simply be the identity

operator. Since we are interested in the case where interactions are present, we can

decompose the part where they play a role.

𝑆 = I + 𝑖𝑇 , (2.10)

where 𝑇 is called the transfer matrix. This leads us to the definition of the invariant

matrix element M as follows.

⟨ 𝒑1 𝒑2 . . . 𝒑𝑛 | 𝑖𝑇 |𝒌𝐴𝒌𝐵⟩ = (2𝜋)4𝛿(4)
(
𝒌𝐴 + 𝒌𝐵 −

𝑛∑︁
𝑖=1

𝒑𝑖

)
𝑖M (2.11)

We can find physical information in terms of these matrix elements, such as cross-

sections and decay rates, that are measured in a scattering experiment. Since we

are focusing on the S-matrix part, we will not mention these applications here.

2.2 S-matrices of integrable systems in 1+1 dimen-

sions

2.2.1 Local conserved charges and factorizability arguments

Let us start by introducing some convenient definitions in 1+1 dimensional theories.

The light-cone momentas, which satisfy the mass-shell condition 𝑝𝑎𝑝𝑎 = 𝑚2
𝑎, are

given by

𝑝𝑎 = 𝑝0𝑎 + 𝑝1𝑎 = 𝑚𝑎𝑒
𝜃𝑎 , 𝑝𝑎 = 𝑝0𝑎 − 𝑝1𝑎 = 𝑚𝑎𝑒

−𝜃𝑎 , (2.12)

where (𝑝0𝑎, 𝑝1𝑎) = (𝑚𝑎 cosh 𝜃𝑎, 𝑚𝑎 sinh 𝜃𝑎) and 𝜃𝑎 is the rapidity of the relevant par-

ticle. In this parametrization, the asymptotic state of 𝑛 particles follows as

|𝐴𝑎1 (𝜃1)𝐴𝑎2 (𝜃2) . . . 𝐴𝑎𝑛 (𝜃𝑛)⟩ , (2.13)
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where 𝐴𝑎𝑛 (𝜃𝑛) represents a particle of type 𝑎𝑛 with the rapidity 𝜃𝑛.

The notion of being an asymptotic state and given collisions in 1 spatial dimen-

sion enables us to introduce a notation that indicates the ordering of the particles

concerning their rapidities. We will benefit from this notation whenever we write

the states out of the bra-ket notation like the following.

𝐴𝑎1 (𝜃1)𝐴𝑎2 (𝜃2) . . . 𝐴𝑎𝑛 (𝜃𝑛) ,with 𝜃1 > 𝜃2 > · · · > 𝜃𝑛 , (2.14)

𝐴𝑏1 (𝜃′1)𝐴𝑏2 (𝜃′2) . . . 𝐴𝑏𝑛 (𝜃′𝑛) ,with 𝜃′1 < 𝜃′2 < · · · < 𝜃′𝑛 , (2.15)

for 𝑖𝑛 and 𝑜𝑢𝑡 states respectively. Here, we put the fastest particle on the left-hand

side in the 𝑖𝑛 states and on the right-hand side in the 𝑜𝑢𝑡 states.

Factorizability of the S-matrices, together with no particle production and con-

servation of the initial and final momentas as a set, in an integrable theory is provided

by the existence of infinitely many integrals of motion [9, 12] that are integrals of

local densities and are in involution

𝑄𝑠 =

∫ ∞

−∞
T𝑠+1𝑑𝑥 . (2.16)

Being in involution means the local conserved charges, as operators acting on the

states,

𝑄𝑠 |𝐴𝑎1 (𝜃1) . . . 𝐴𝑎𝑛 (𝜃𝑛)⟩ =
𝑛∑︁
𝑖=1

𝛾𝑎𝑖𝑠 𝑒
𝑠𝜃𝑖 |𝐴𝑎1 (𝜃1) . . . 𝐴𝑎𝑛 (𝜃𝑛)⟩ (2.17)

are commuting. 𝛾
𝑎𝑖
𝑠 above are real numbers and satisfy 𝛾

𝑎𝑖
𝑠 = 𝛾

𝑎𝑖
−𝑠 due to parity

invariance. 𝑠 is called the Lorentz spin of 𝑄𝑠.

Analyzing the action of such infinitely many 𝑄𝑠 on an 𝑛 → 𝑚 amplitude

𝛾𝑎1𝑠 𝑒𝑠𝜃1 + · · · + 𝛾𝑎𝑛𝑠 𝑒𝑠𝜃𝑛 = 𝛾𝑏1𝑠 𝑒𝑠𝜃
′
1 + · · · + 𝛾𝑏𝑚𝑠 𝑒𝑠𝜃

′
𝑚 , (2.18)

readily fixes 𝑛 = 𝑚, 𝜃𝑖 = 𝜃′
𝑖
, and 𝛾

𝑎𝑖
𝑠 = 𝛾

𝑏𝑖
𝑠 for 𝑖 = 1 . . . 𝑛.

Hence, our initial and final 𝑛-particle states in the notation of the equations

(2.14) and (2.15) should be written as

𝐴𝑎1 (𝜃1)𝐴𝑎2 (𝜃2) . . . 𝐴𝑎𝑛 (𝜃𝑛) , (2.19)

𝐴𝑏1 (𝜃𝑛)𝐴𝑏2 (𝜃𝑛−1) . . . 𝐴𝑏𝑛 (𝜃1) , (2.20)
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respectively, where 𝜃1 > 𝜃2 > · · · > 𝜃𝑛 .

In particular, (Lorentz) spin |𝑠 | = 1 corresponds to conservation of the right and

left lightcone momenta
𝑛∑︁
𝑖=1

𝑚𝑎𝑖𝑒
𝜃𝑖 =

𝑛∑︁
𝑖=1

𝑚𝑏𝑖𝑒
𝜃𝑖 , (2.21)

𝑛∑︁
𝑖=1

𝑚𝑎𝑖𝑒
−𝜃𝑖 =

𝑛∑︁
𝑖=1

𝑚𝑏𝑖𝑒
−𝜃𝑖 . (2.22)

Note that the coefficients are equal to the masses of the particles and the same for

the values of 𝑠 = ±1.

2.2.2 The Yang-Baxter Equation

One can always utilize the commutative behavior of the 𝑄𝑠 and shift the initial

and final configurations of the particles via a momentum-dependent phase factor

without altering the scattering amplitude. This enables one to describe an n-particle

scattering process as a chain of two-particle scattering processes, and the n-particle

scattering amplitude as a product of 𝑛(𝑛 − 1)/2 two-particle scattering amplitudes.

We can also see that this factorization property says the order of the two-particle

amplitudes doesn’t affect the result, and therefore, gives an equivalence relation also

known as the Yang-Baxter equation(YBE)

𝑆
𝛽𝛼

𝑖 𝑗
(𝜃12)𝑆𝑛𝛾𝛽𝑘 (𝜃13)𝑆

𝑚𝑙
𝛼𝛾 (𝜃23) = 𝑆

𝛽𝛾

𝑗 𝑘
(𝜃23)𝑆𝛼𝑙𝑖𝛾 (𝜃13)𝑆𝑛𝑚𝛼𝛽 (𝜃12). (2.23)

The Yang–Baxter equation is one of the most fundamental structures in the

study of integrable models, with roots both in mathematical physics and pure math-

ematics. It was first introduced by C. N. Yang [3] in his study of one-dimensional

many-body systems with factorized scattering, and independently by R. J. Baxter

[4] in his solution of lattice models such as the eight-vertex model. Since its discov-

ery, the YBE has become a cornerstone for integrability theory, quantum groups,

and even knot theory [18, 22].

Mathematically, the YBE is an algebraic consistency condition for an operator

𝑅(𝑢), called the R-matrix, which depends on a spectral parameter 𝑢. When acting
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on a tensor product of three vector spaces 𝑉1 ⊗ 𝑉2 ⊗ 𝑉3, the equation is usually

written in the form

𝑅12(𝑢 − 𝑣)𝑅13(𝑢 − 𝑤)𝑅23(𝑣 − 𝑤) = 𝑅23(𝑣 − 𝑤)𝑅13(𝑢 − 𝑤)𝑅12(𝑢 − 𝑣).

Here, the operator 𝑅𝑖 𝑗 acts non-trivially on the 𝑖-th and 𝑗-th spaces while leaving

the third space unchanged. The variables 𝑢, 𝑣, 𝑤 represent spectral parameters that

are often related to particle rapidities. This equation expresses the fact that two

different sequences of pairwise interactions among three objects must lead to the

same overall transformation.

Physically, the Yang–Baxter equation guarantees that in one-dimensional quan-

tum systems, multiparticle scattering can always be factorized into successive two-

body scattering processes. It asserts that no ambiguity arises from the order in which

particles are made to interact, which is essential for integrability in 1+1 dimensional

systems [11]. In the context of statistical mechanics, the YBE ensures that transfer

matrices commute with one another for different values of the spectral parameter,

a property that enables exact solutions of lattice models such as the six-vertex and

eight-vertex models [15].

The influence of the YBE extends far beyond statistical mechanics and scat-

tering theory. In mathematics, it plays a central role in the theory of quantum

groups developed by Drinfeld [18] and Jimbo [22], providing the algebraic backbone

for their definition. In topology, the R-matrix solutions of the YBE lead to braid

group representations, linking integrable systems to knot invariants like the Jones

polynomial [19]. One can conclude that the YBE serves as a unifying bridge across

physics and mathematics, embodying the principle that consistency of interactions

at a local level dictates the solvability of the global system.

2.3 Two-particle S-matrices

Since we have deduced that the knowledge of n-particle scattering processes can be

constructed from two-particle scattering processes in integrable theories, studying
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(1) (2) (3)

Figure 2.3: A 3 → 3 process at tree level, equality between (1) and (3) constitutes

the Yang-Baxter equation (2.23).

their two-particle scattering matrix became the main objective of the story.

𝑆𝑘𝑙
𝑖 𝑗
(𝜃1 − 𝜃2) =

𝐴𝑖 (𝜃1) 𝐴 𝑗 (𝜃2)

𝐴𝑙 (𝜃2) 𝐴𝑘 (𝜃1)

Figure 2.4: The two-particle S-matrix

Keeping our notation in the previous section in mind, the two-particle scattering

matrix can be written as

𝐴𝑎𝑖 (𝜃1)𝐴𝑎 𝑗
(𝜃2) = 𝑆𝑘𝑙𝑖 𝑗 (𝜃12)𝐴𝑎𝑙 (𝜃2)𝐴𝑎𝑘 (𝜃1) , (2.24)

where 𝜃1 > 𝜃2 and 𝜃12 = 𝜃1 − 𝜃2.

We can start determining the matrix elements in (2.24) by requiring the process

to satisfy the discrete symmetries C, P, and T as physical theories usually do.

• Charge conjugation: 𝑆𝑘𝑙
𝑖 𝑗
(𝜃) = 𝑆𝑘𝑙̄

𝑖̄ 𝑗̄
(𝜃)

• Parity inversion: 𝑆𝑘𝑙
𝑖 𝑗
(𝜃) = 𝑆𝑙𝑘

𝑗𝑖
(𝜃)

• Time reversal: 𝑆𝑘𝑙
𝑖 𝑗
(𝜃) = 𝑆

𝑗𝑖

𝑙𝑘
(𝜃)

Furthermore, We can deduce important constraints on the S-matrix as well as

information about its functional form from its analytical continuation. The contin-
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uation is usually carried out in Mandelstam variables

𝑠 = (𝑝1+𝑝2)2 , 𝑡 = (𝑝1−𝑝3)2 , 𝑢 = (𝑝1−𝑝4)2 , (2.25)

where 𝑠+𝑡+𝑢 =
∑4

𝑖=1𝑚
2
𝑖

and 𝑝𝑖 = (𝑝 (0)
𝑖

, 𝑝
(1)
𝑖

) = (𝐸𝑖, 𝑝
(1)
𝑖

). Equivalently, we can write

them in terms of rapidity 𝜃 by recalling our parametrization (2.12) as the following.

𝑠 = 𝑚2
1 + 𝑚2

2 + 2𝑚1𝑚2 cosh 𝜃12 (2.26)

𝑡 = 𝑚2
1 + 𝑚2

3 − 2𝑚1𝑚3 cosh 𝜃13 (2.27)

𝑢 = 𝑚2
1 + 𝑚2

4 − 2𝑚1𝑚4 cosh 𝜃14 (2.28)

We have only one linearly independent variable among them. The variable 𝑠 is

chosen conveniently in most of the literature as we will do. In this particular case,

we can set 𝑝3 = 𝑝2 and 𝑝4 = 𝑝1 such that 𝑡 = (𝑝1 − 𝑝2)2 = 2𝑚2
1 + 2𝑚2

2 − 𝑠 and 𝑢 = 0.

The physical values of 𝑠, corresponding real rapidity difference 𝜃12, are given by

𝑠 ≥ (𝑚1 + 𝑚2)2, and defined as 𝑠+ = 𝑠 + 𝑖0 on the 𝑠-plane. Analytical continuation

results in two branch cuts on the branch points 𝑠 = (𝑚1 + 𝑚2)2 and 𝑠 = (𝑚1 − 𝑚2)2

as 𝑠 ≥ (𝑚1 + 𝑚2)2 and 𝑠 ≤ (𝑚1 − 𝑚2)2. It can be seen that it is a single-valued

meromorphic function and is real analytic, which means 𝑆𝑘𝑙
𝑖 𝑗
(𝑠∗) =

[
𝑆𝑘𝑙
𝑖 𝑗
(𝑠)

]∗
. The

sheet that contains the physical values is called the physical sheet.

Additionally, we are going to consider two important assumptions for a physical

theory, namely, the unitarity and crossing symmetry. After we determine their form

in 𝑠-plane, we will express them in 𝜃 parametrization to make them simpler and

more useful for the context. Unitarity tells us

𝑆𝑘𝑙𝑖 𝑗 (𝑠+)
[
𝑆𝑛𝑚𝑘𝑙 (𝑠

+)
]∗

= 𝑆𝑘𝑙𝑖 𝑗 (𝑠+)𝑆𝑛𝑚𝑘𝑙 (𝑠
−) = 𝛿𝑛𝑖 𝛿

𝑚
𝑗 , (2.29)

where 𝑠− = 𝑠−𝑖0. In particular, if we take the discrete symmetries into consideration,

we arrive at

𝑆𝑘𝑙𝑖 𝑗 (𝑠+)𝑆𝑘𝑙𝑖 𝑗 (𝑠−) = 1 . (2.30)

Next, the crossing symmetry states the equality of the amplitudes on the crossed

channel 𝑡. For the physical values, we have

𝑆𝑘𝑙𝑖 𝑗 (𝑠+) = 𝑆
𝑘 𝚥̄

𝑖𝑙̄
(𝑡+) = 𝑆

𝑘 𝚥̄

𝑖𝑙̄
(2𝑚2

1 + 2𝑚2
2 − 𝑠+) , (2.31)
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where 𝑡+ = 𝑡 |𝑠=𝑠+ are the physical values on the crossed channel. As we promised, it

is now time to switch back to 𝜃 parametrization via equation (2.26).

𝜃12 = cosh−1
(
𝑠 − 𝑚2

1 − 𝑚2
2

2𝑚1𝑚2

)
(2.32)

= log

[
1

2𝑚1𝑚2

(
𝑠 − 𝑚2

1 − 𝑚2
2 +

√︁
(𝑠 − (𝑚1+𝑚2)2) (𝑠 − (𝑚1−𝑚2)2)

)]
(2.33)

This transforms the physical sheet into the so-called physical strip 0 ≤ Im(𝜃12) ≤ 𝜋

on the 𝜃-plane Fig.(2.5). After looking at the 𝜃-plane, it can be realized that 𝑆(𝜃) is

0

𝑖𝜋𝐴

𝐵

𝐷

𝐶

physical strip

(unphysical)

(unphysical)

×
×

×
×

𝜃

Figure 2.5: The 𝜃 plane

real for the 𝜃 values on the imaginary axis. As a result of what we have done so far,

the constraints on the 𝑆-matrix we found by the analytical continuation in terms of

the Mandelstam variables lead to the following constraints in terms of rapidity.

• Unitarity: 𝑆𝑛𝑚
𝑖 𝑗

(𝜃)𝑆𝑘𝑙𝑛𝑚 (−𝜃) = 𝛿𝑘
𝑖
𝛿𝑙
𝑗

• Crossing: 𝑆𝑘𝑙
𝑖 𝑗
(𝜃) = 𝑆

𝑘 𝚥̄

𝑖𝑙̄
(𝑖𝜋 − 𝜃)

Here, our goal is to construct the two-particle S-matrix of our theory to solve

all the 𝑛-particle scattering amplitudes. These constraints will guide us through the

determination of such an S-matrix since they impose strong conditions on it.

2.3.1 The Bootstrap Equation

The bootstrap equation has a powerful physical significance. It guarantees that once

a small set of fundamental scattering amplitudes is known, the amplitudes involving
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bound states follow automatically. This means that the full particle spectrum of a

model can be generated iteratively from a small starting point, provided the boot-

strap principle holds. it restricts the possible S-matrices so severely that in many

cases the exact scattering theory can be determined completely [11, 42].

In two-dimensional integrable quantum field theory, scattering processes are

highly constrained because of factorization. The bootstrap equation typically comes

into play when bound states appear in the spectrum. Therefore, one should be aware

that this S-matrix has to be the exact S-matrix, which contains all the physical parti-

cles(not the virtual particles) in the theory’s particle spectrum. To do so, one should

study the pole structure of the S-matrix in hand and introduce the new particles as

bound states on the poles on the physical strip. The position of each pole simply

tells us the rapidity difference(and therefore the fusing angle, see below) where the

new particle will be formed.

𝐴𝑖 (𝜃1) 𝐴 𝑗 (𝜃2)

𝐴𝑘 (𝜃3)

𝑢𝑘
𝑖 𝑗

Figure 2.6: The particles of type 𝑖 and 𝑗 fuses into a stationary bound state of type

𝑘 at 𝜃 = 𝑖𝑢𝑘
𝑖 𝑗

In order to make the S-matrix complete, we need to find the scattering amplitudes

of this new particle. To do so, we can utilize the following bootstrap equation for

diagonal S-matrices since they are required to be diagonal after we indicate all the

non-zero higher spin conserved charges.

𝑆𝑙𝑘 (𝜃) = 𝑆𝑙𝑖 (𝜃 − 𝑖𝑢
𝑗

𝑘𝑖
)𝑆𝑙 𝑗 (𝜃 + 𝑖𝑢𝑖𝑗 𝑘 ) , (2.34)

where 𝑙 is a particle scattering with 𝑘 formed by the fusing of 𝑖 and 𝑗 with the

fusing angles 𝑢𝑘
𝑖 𝑗

= 𝜋 − 𝑢𝑘
𝑖 𝑗

and 𝑢𝑘
𝑖 𝑗
, determined by the kinematics of the bound-

state formation, where 𝜃𝑖 𝑗 = 𝑖𝑢𝑘
𝑖 𝑗
. The equation asserts that the amplitude for the
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bound state scattering is exactly equivalent to the product of the amplitudes of its

constituents, with appropriately shifted rapidities.

𝑚𝑖

𝑚 𝑗𝑚𝑘

Figure 2.7: The mass triangle

The mass of the particle 𝑘 follows from

𝑠 = 𝑚2
𝑘 = 𝑚2

𝑖 + 𝑚2
𝑗 + 2𝑚𝑖𝑚 𝑗 cos 𝑢

𝑘
𝑖 𝑗 , (2.35)

which already looks similar to the cosine theorem, but differs by a minus sign in the

last term.

As a result, it has a geometric interpretation of fusing angles as outer angles of

the so-called mass triangle Fig.(2.7) and gives

𝑢𝑘𝑖 𝑗 + 𝑢𝑖𝑗 𝑘 + 𝑢
𝑗

𝑘𝑖
= 2𝜋 . (2.36)

Moreover, we can extend the equation (2.17) for the complex rapidities and

consider the action of 𝑄𝑠 on a fusing process to generalize (2.35) further, which is

called the generalized mass triangle Fig.(2.8).

𝛾𝑖𝑠

𝛾
𝑗
𝑠

𝛾𝑘
𝑠

Figure 2.8: The generalized mass triangle

𝛾𝑘
𝑠 = 𝛾𝑖𝑠𝑒

𝑖𝑠𝑢
𝑗

𝑘𝑖 + 𝛾
𝑗
𝑠 𝑒

−𝑖𝑠𝑢𝑖
𝑘 𝑗 , (2.37)
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where we picked 𝜃1 = 𝑢
𝑗

𝑘𝑖
and 𝜃2 = −𝑢𝑖

𝑘 𝑗
. They give a condition on the numbers

representing the action of 𝑄𝑠 without specifying a local density. The equations (2.37)

are known as the conserved charge bootstrap equations.

The bootstrap equation (2.34) arises from a different but equally powerful consis-

tency principle like YBE (2.23). Its origins lie in the bootstrap program of the 1960s,

which proposed that strongly interacting particles should be viewed as composites

of one another with no fundamental constituents [2]. This bootstrap philosophy

survived and remains central in the study of integrable quantum field theories, par-

ticularly in two dimensions. It has far-reaching implications in both physics and

mathematics. In integrable quantum field theories such as the sine-Gordon model

and affine Toda field theories, it is the essential tool for determining the full spectrum

of bound states and their scattering properties [17, 30]. In more modern develop-

ments, the bootstrap philosophy has been generalized beyond two dimensions to

the so-called conformal bootstrap and numerical bootstrap, where self-consistency

conditions on correlation functions replace those on scattering amplitudes. These

approaches have yielded highly non-trivial results in the study of conformal field

theories, critical phenomena, and strongly coupled quantum systems [41, 49].
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Chapter 3
Examples of Factorized Scattering

Theories in 1+1 Dimensions

3.1 The Sine-Gordon Model

The sine-Gordon model is a nonlinear field theory that has roots reaching back to

the 19th century. Its general description is given by the following equation.

𝜕2𝜙

𝜕𝑡2
− 𝜕2𝜙

𝜕𝑥2
+ sin 𝜙 = 0 (3.1)

This was first studied in a purely mathematical context in the 1860s by Ferdinand

Minding, and later Albert Bäcklund and Luther Pockels in connection with problems

in differential geometry. In particular, it described the Gaussian curvature of sur-

faces of constant negative curvature. This geometric interpretation was eventually

rediscovered in the 20th century.

It gained prominence in the 1960s and 1970s as part of a broader interest in

nonlinear wave equations and solitons [5, 16, 20, 21]. This interest was catalyzed by

advances in computational methods and the inverse scattering transform (IST)[14],

developed in the context of the Korteweg-de Vries (KdV) equation.

In 1971, G. L. Lamb, M. Ablowitz, D. Kaup, and others showed that the sine-

Gordon equation is integrable, meaning it admits an infinite number of conserved
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quantities and exact soliton solutions. This sparked a flurry of research on inte-

grable models and their rich mathematical structures. It appears as one of the

1+1-dimensional scalar field theories, although often as a toy model, to study non-

perturbative phenomena like topological solitons and kinks. The sine-Gordon equa-

tion in soliton theory supports kink, antikink, and breather solutions. These solu-

tions exhibit non-trivial scattering yet retain their shape, which made the model a

cornerstone in the study of integrable systems [6, 50]. Therefore, this model is one

of the most studied integrable models in the community. Similarly, it also has one

of the first exact S-matrix solutions [7].

With the flat Minkowski metric, which has the minus sign convention for the

time coordinate, the sine-Gordon model is described by the Lagrangian density

L𝑆𝐺 =
1

2
(𝜕𝜙)2 + 𝑚2

𝛽2
(cos(𝛽𝜙) − 1) , (3.2)

which has the well-known classical solutions with the boundary conditions

𝜙 → 0 𝑥 → −∞, 𝜙 → 2𝜋

𝛽
𝑥 → ∞, (3.3)

and

𝜙 → 2𝜋

𝛽
𝑥 → −∞, 𝜙 → 0 𝑥 → ∞, (3.4)

that lead to soliton(𝑠) and antisoliton(𝑠̄) solutions, respectively. There is a topolog-

ical charge with spin zero

𝑄0 =
𝛽

2𝜋

∫ ∞

−∞
𝜕𝑥𝜙𝑑𝑥 (3.5)

associated with 𝑠 and 𝑠̄ solutions. 𝑄0 corresponds to the conservation of the total

number of solitons and equals +1 and −1 for 𝑠 and 𝑠̄, respectively. The model shows

an infinite set of local conserved charges, both on the classical and on the quantum

levels. The S-matrix of the quantum sine-Gordon model has been given in [7]. Since

its quantum S-matrix solves the Yang-Baxter equation, it is therefore integrable,

which is an equivalent way to realize that integrability survives on the quantum
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level. The only non-diagonal part in the S-matrix

𝑆𝑆𝐺 (𝜃) =

©­­­­­­­«

𝑆(𝜃)
𝑆𝑇 (𝜃) 𝑆𝑅 (𝜃)
𝑆𝑅 (𝜃) 𝑆𝑇 (𝜃)

𝑆(𝜃)

ª®®®®®®®¬
(3.6)

is where the total soliton number is equal to zero. In equation (3.6), we defined

𝜃 = 𝜃12 ≡ 𝜃1−𝜃2, and the basis for the S-matrix as {|𝑠⟩⊗|𝑠⟩ , |𝑠⟩⊗| 𝑠̄⟩ , | 𝑠̄⟩⊗|𝑠⟩ , | 𝑠̄⟩⊗| 𝑠̄⟩}.
Hence, we can write

𝐴𝑠 (𝜃1)𝐴𝑠 (𝜃2) = 𝑆(𝜃)𝐴𝑠 (𝜃2)𝐴𝑠 (𝜃1) , (3.7)

𝐴𝑠 (𝜃1)𝐴𝑠̄ (𝜃2) = 𝑆𝑇 (𝜃)𝐴𝑠̄ (𝜃2)𝐴𝑠 (𝜃1) + 𝑆𝑅 (𝜃)𝐴𝑠 (𝜃2)𝐴𝑠̄ (𝜃1) . (3.8)

It can be clearly seen that 𝑆𝑇 (𝜃) stands for the transmission and 𝑆𝑅 (𝜃) stands for

the reflection amplitudes. It is easy to check that they satisfy the unitarity condition

𝑆(𝜃)𝑆(−𝜃) = 1 , (3.9)

𝑆𝑇 (𝜃)𝑆𝑇 (−𝜃) + 𝑆𝑅 (𝜃)𝑆𝑅 (−𝜃) = 1 , (3.10)

𝑆𝑇 (𝜃)𝑆𝑅 (−𝜃) + 𝑆𝑅 (𝜃)𝑆𝑇 (−𝜃) = 0 , (3.11)

and the crossing symmetry

𝑆(𝑖𝜋 − 𝜃) = 𝑆𝑇 (𝜃) , (3.12)

𝑆𝑅 (𝑖𝜋 − 𝜃) = 𝑆𝑅 (𝜃) . (3.13)

𝑆𝑆𝐺 (𝜃) amplitudes are explicitly given in [7] as the following.

𝑆𝑇 (𝜃) = − 𝑖

𝜋
sinh

(
8𝜋

𝛾
𝜃

)
𝑅(𝜃)𝑅(𝑖𝜋 − 𝜃), (3.14)

𝑆𝑅 (𝜃) =
1

𝜋
sin

(
8𝜋2

𝛾

)
𝑅(𝜃)𝑅(𝑖𝜋 − 𝜃), (3.15)

𝑆(𝑖𝜋 − 𝜃) = 𝑆𝑇 (𝜃), (3.16)
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with

𝑅(𝜃) = Γ

(
1 + 𝑖

8𝜃

𝛾

) ∞∏
𝑙=1

Γ

(
2𝑙 8𝜋

𝛾
+ 𝑖 8𝜃

𝛾

)
Γ

(
1 + 2𝑙 8𝜋

𝛾
+ 𝑖 8𝜃

𝛾

)
Γ

(
(2𝑙 + 1) 8𝜋

𝛾
+ 𝑖 8𝜃

𝛾

)
Γ

(
1 + (2𝑙 − 1) 8𝜋

𝛾
+ 𝑖 8𝜃

𝛾

) , (3.17)

where 𝛾 = 𝛽2
(
1 − 𝛽2

8𝜋

)−1
, and 𝑙 is from −𝑙𝜋 < Im (𝜃) < (−𝑙 + 1)𝜋. These amplitudes

also contain the information about the pole structure and the bound states which

are outside the physical strip. We will now take a closer look at the pole structure

inside the physical strip, which corresponds to 𝑙 = 0, since we are interested in the

physical spectrum.

It turns out that there is a family of solutions called breather solutions, which

correspond to the bound states formed by 𝑠 and 𝑠̄. They have breather mass

𝑀𝑘 = 2𝑀 sin
𝜋𝑘

ℎ
, 𝑘 = 1, 2, · · · < 8𝜋

𝛽2
− 1 (3.18)

where ℎ = 16𝜋
𝛽2

(
1 − 𝛽2

8𝜋

)
and 𝑀 is the soliton mass. These solutions are located at

the poles of the amplitudes

𝜃 =

(
1 − 𝑘

2

ℎ

)
𝜋𝑖, 𝑘 = 1, 2 . . . for 𝑆𝑇 (𝜃), (3.19)

𝜃 = 𝑘
2

ℎ
𝜋𝑖, 𝑘 = 1, 2 . . . for 𝑆(𝜃), (3.20)

𝜃 =

(
1 − 𝑘

2

ℎ

)
𝜋𝑖 & 𝜃 = 𝑘

2

ℎ
𝜋𝑖, 𝑘 = 1, 2 . . . for 𝑆𝑅 (𝜃), (3.21)

on the physical strip. These special points 𝜃 = 𝑖𝑢𝑏𝑠𝑠̄ on the 𝜃-plane, where 𝑠 and 𝑠̄

fuse into a breather 𝑏, defines the fusing angle 𝑢𝑏𝑠𝑠̄ Fig.(2.6). The first breather’s,

corresponding to 𝑘 = 1 in equation (3.18), scattering element can be given by

𝑆𝑏𝑏 (𝜃, 𝜆) =
sinh 𝜃 + 𝑖 sin (𝛾/8)
sinh 𝜃 − 𝑖 sin (𝛾/8) , (3.22)

where 𝛾 = 𝛽2
(
1 − 𝛽2

8𝜋

)−1
and 2𝑚 cosh 𝜃 = 𝑠−2𝑚2, [7]. The equation (3.22) is a typical

form of a CDD factor (named after Castillejo, Dalitz, and Dyson, [1]), which is an

extra multiplicative factor in an S-matrix that is not determined by the unitarity,

analyticity, and crossing symmetry alone. Although the symmetry properties of the
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S-matrix remain the same under these factors, the new pole structure is immensely

dissimilar. We can utilize these CDD factors to shift some poles outside or inside

the physical strip. Hence, they lead to two distinct physical theories which have

completely different particle spectrums while preserving the basic properties of an

S-matrix.

3.2 The Sausage Model

Figure 3.1: The deformed target space in the sausage model. For 𝜈 → 0, it ap-

proaches a sphere, and for large 𝜈, it becomes elongated like a cylinder in the family

of 𝑆𝑆𝑀 (𝜃)
𝜈 theories. (Color Code: Bologna Sausage #ffcfdc)

The sausage model is a two-dimensional quantum field theory that can be thought

of as a smooth, integrable “squashing” of the familiar 𝑂 (3) nonlinear sigma model

Fig.(3.1). Therefore, let us first introduce the 𝑂 (3) sigma model . It is described by

the following action.

𝑆𝑂 (3) =
1

2𝑔

3∑︁
𝑎=1

∫ (
𝜕𝜇𝑛𝑎

)2
d2𝑥 + 𝑖Θ𝑇 , (3.23)

where 𝑛𝑎 (𝑥) are unit vector fields of 𝑂 (3) with
∑3

𝑎=0 𝑛
2
𝑎 = 1, 0 ≤ Θ < 2𝜋 is the

topological angle, and 𝑇 is the integer valued instanton charge

𝑇 =
1

8𝜋

∫ ∑︁
𝑎𝑏𝑐

𝜖𝑎𝑏𝑐 𝑛𝑎 𝜕𝜇𝑛𝑏 𝜕𝜈𝑛𝑐 𝜖𝜇𝜈 d
2𝑥 . (3.24)

We will follow the notation in [34] and call this field theory as 𝑆𝑆𝑀
(𝜃)
0 field theory.

We will discuss the special points where the topological angle Θ equals 0 and 𝜋

only. These points are the two integrable points along the set of points. It is worth
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noting that the on-mass-shell physics depends on Θ values in general. Hence, even

at this stage, we would expect the two theories will describe different physics at large

distances. In particular, 𝑆𝑆𝑀 (0)
0 is a massive theory with a finite correlation length,

whereas 𝑆𝑆𝑀 (𝜋)
0 doesn’t have a mass gap, and its correlation length is infinite in the

IR limit. This scale invariance of the 𝑆𝑆𝑀
(𝜋)
0 at large distances is described by the

𝑆𝑈 (2) × 𝑆𝑈 (2) WZW theory at level 𝑘 = 1, a conformal field theory with a central

charge 𝑐 = 1 Fig.(3.2).

IR CFT

𝑆𝑆𝑀
(𝜋)
0

Figure 3.2: RG trajectory of the 𝑂 (3) sigma model at 𝜃 = 𝜋.

The particle spectrum of the 𝑆𝑆𝑀
(0)
0 theory has three massive particles 𝐴𝑎,

𝑎 = 1, 2, 3. The factorized scattering with respect to them is characterized by the

two-particle S-matrix. In the non-commutative notation that we introduced in the

section (2.2.1), we have

𝐴𝑎 (𝜃1)𝐴𝑏 (𝜃2) = 𝑆𝑐𝑑𝑎𝑏 (𝜃)𝐴𝑑 (𝜃2)𝐴𝑐 (𝜃1) , (3.25)

where 𝜃1 > 𝜃2 and 𝜃 = 𝜃12 = 𝜃1 − 𝜃2. This mapping between the incoming and the

outgoing states can be written as

𝑆(𝜃)𝑐𝑑𝑎𝑏 = 𝑆0(𝜃) (𝑃0)𝑐𝑑𝑎𝑏 + 𝑆1(𝜃) (𝑃1)𝑐𝑑𝑎𝑏 + 𝑆2(𝜃) (𝑃2)𝑐𝑑𝑎𝑏 , (3.26)

where

(𝑃0)𝑐𝑑𝑎𝑏 =
1

3
𝛿𝑎𝑏𝛿𝑐𝑑 , (3.27)

(𝑃1)𝑐𝑑𝑎𝑏 =
1

2
𝛿𝑎𝑐𝛿𝑏𝑑 −

1

2
𝛿𝑎𝑑𝛿𝑏𝑐 , (3.28)

(𝑃2)𝑐𝑑𝑎𝑏 =
1

2
𝛿𝑎𝑐𝛿𝑏𝑑 +

1

2
𝛿𝑎𝑑𝛿𝑏𝑐 −

1

3
𝛿𝑎𝑏𝛿𝑐𝑑 (3.29)
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are the projectors on the two-particle states with isospin 0, 1, and 2, respectively.

The partial amplitudes are

𝑆0(𝜃) =
𝜃 + 2𝑖𝜋

𝜃 − 2𝑖𝜋
, (3.30)

𝑆1(𝜃) =
(𝜃 − 𝑖𝜋) (𝜃 + 2𝑖𝜋)
(𝜃 + 𝑖𝜋) (𝜃 − 2𝑖𝜋) , (3.31)

𝑆2(𝜃) =
𝜃 − 𝑖𝜋

𝜃 + 𝑖𝜋
. (3.32)

The UV central charge is shown to be 𝑐𝑈𝑉 = 2 as one might expect [23, 24, 33].

On the other hand, the particle spectrum of the 𝑆𝑆𝑀
(𝜋)
0 theory has two massless

particles called left-movers 𝐿𝜎 (𝜃) and right-movers 𝑅𝜎 (𝜃), which are 𝑆𝑈 (2)-doublets

with 𝜎 = ±. The corresponding S-matrix elements are given by

𝐴𝑅𝜎1
(𝜃1)𝐴𝑅𝜎2

(𝜃2) = 𝑆(𝑅𝑅)
𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃)𝐴𝑅𝜎′

2
(𝜃2)𝐴𝑅𝜎′

1
(𝜃1) , (3.33)

𝐴𝐿𝜎1
(𝜃1)𝐴𝐿𝜎2

(𝜃2) = 𝑆(𝐿𝐿)
𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃)𝐴𝐿𝜎′

2
(𝜃2)𝐴𝐿𝜎′

1
(𝜃1) , (3.34)

𝐴𝑅𝜎1
(𝜃1)𝐴𝐿𝜎2

(𝜃2) = 𝑆(𝑅𝐿)
𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃)𝐴𝐿𝜎′

2
(𝜃2)𝐴𝑅𝜎′

1
(𝜃1) , (3.35)

where

𝑆(𝐿𝐿)
𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃) = 𝑆(𝑅𝑅)

𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃) = 𝑆(𝑅𝐿)

𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃) =

Γ

(
1
2 +

𝜃
2𝑖𝜋

)
Γ

(
− 𝜃
2𝑖𝜋

)
Γ

(
1
2 −

𝜃
2𝑖𝜋

)
Γ

(
𝜃
2𝑖𝜋

) (
𝜃𝛿

𝜎′
1

𝜎1𝛿
𝜎′
2

𝜎2 − 𝑖𝜋𝛿
𝜎′
2

𝜎1𝛿
𝜎′
1

𝜎2

𝜃 − 𝑖𝜋

)
.

(3.36)

For 𝑆𝑆𝑀 (𝜋)
0 theory, it is shown that the theory interpolates between two CFT’s with

𝑐𝑈𝑉 = 2 and 𝑐𝐼𝑅 = 1 [33]. It can also be written as the summation of the projectors

on the two-particle states with the corresponding partial amplitudes, in fact, the

gamma function in front of the parentheses in the (3.36) is the partial amplitude of

the isospin-1 channel.

Now, let us study the sausage model as a deformation of the two types of 𝑂 (3)
nonlinear sigma model we introduced. We will refer to these factorized scattering

theories as the sausage scattering theories(𝑆𝑆𝑇 (±)
𝜆

). The (+) and (−) cases have the

same particle spectrum as 𝑆𝑆𝑀
(0)
0 and 𝑆𝑆𝑀

(𝜋)
0 , respectively.

33



CHAPTER 3. EXAMPLES OF FACTORIZED SCATTERING THEORIES IN 1+1
DIMENSIONS

Let us begin with 𝑆𝑆𝑇
(+)
𝜆

, first studied in [13]. Here, the triplet (+, 0,−) represents

three massive particles. Their scattering process results in the following amplitudes.

𝑆++++(𝜃) = 𝑆+−+−(𝑖𝜋 − 𝜃) = sinh (𝜆(𝜃 − 𝑖𝜋))
sinh (𝜆(𝜃 + 𝑖𝜋)) , (3.37)

𝑆0++0(𝜃) = 𝑆00+−(𝑖𝜋 − 𝜃) = −𝑖 sin(2𝜋𝜆)
sinh (𝜆(𝜃 − 2𝑖𝜋)) 𝑆

++
++(𝜃), (3.38)

𝑆+0+0(𝜃) =
sinh (𝜆𝜃)

sinh (𝜆(𝜃 − 2𝑖𝜋)) 𝑆
++
++(𝜃), (3.39)

𝑆−++−(𝜃) = − sin(𝜋𝜆) sin(2𝜋𝜆)
sinh (𝜆(𝜃 − 2𝑖𝜋)) sinh (𝜆(𝜃 + 𝑖𝜋)) , (3.40)

𝑆0000(𝜃) = 𝑆+0+0(𝜃) + 𝑆+−−+(𝜃). (3.41)

In the limit 𝜆 → 0, the amplitudes (3.37)-(3.41) of 𝑆𝑆𝑇 (+)
𝜆

reduce to the amplitudes

(3.26)-(3.32) of 𝑆𝑆𝑀 (0)
0 . In the limit 𝜆 → 1/2, the theory becomes a free theory with

±1 in the diagonal S-matrix representing two massive fermionic particles and one

massive bosonic particle. When 𝜆 > 1/2, the theory has bound states and therefore

a more complicated particle spectrum, which requires more complicated tools to

study due to its pole structure.

Next, the 𝑆𝑆𝑇
(−)
𝜆

theory contains two massless particles, which are the same

as we mentioned above as left-movers and right-movers. They are written as the

doublets (+,−). Its S-matrix follows as

𝑆(𝐿𝐿)
++
++(𝜃) = 𝑆(𝐿𝐿)

−−
−−(𝜃) = 𝑈0(𝜃), (3.42)

𝑆(𝐿𝐿)
+−
+−(𝜃) = 𝑆(𝐿𝐿)

−+
−+(𝜃) = − sinh (𝜆𝜃/(1 − 𝜆))

sinh (𝜆(𝜃 − 𝑖𝜋)/(1 − 𝜆))𝑈0(𝜃), (3.43)

𝑆(𝐿𝐿)
+−
−+(𝜃) = 𝑆(𝐿𝐿)

−+
+−(𝜃) = −𝑖 sin (𝜋𝜆/(1 − 𝜆))

sinh (𝜆(𝜃 − 𝑖𝜋)/(1 − 𝜆))𝑈0(𝜃), (3.44)

𝑆(𝑅𝑅)
𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃) = 𝑆(𝐿𝐿)

𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃), (3.45)

𝑆(𝑅𝐿)
𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃) = 𝑆(𝐿𝐿)

𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃) (3.46)

where

𝑈0(𝜃) = − exp

[
𝑖

∫ ∞

0

sinh ((1 − 2𝜆)𝜋𝜔/(2𝜆)) sin(𝜔𝜃)
cosh(𝜋𝜔/2) sinh ((1 − 𝜆)𝜋𝜔/(2𝜆))

𝑑𝜔

𝜔

]
. (3.47)
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Here, we assumed 𝑆(𝑅𝐿)
𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃) = 𝑆(𝐿𝐿)

𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃−𝜃0) = 𝑆(𝑅𝑅)

𝜎′
1𝜎

′
2

𝜎1𝜎2
(𝜃−𝜃0) for an arbitrary

real shift 𝜃0 and set it to zero. These amplitudes match the Sine-Gordon model’s

amplitudes (3.14)-(3.17) in the integral representation up to a redefinition of the

couplings in the action.

In the limit, 𝜆 → 0, we obtain the 𝑆𝑆𝑀 (𝜋)
0 FST (3.36) back. In the limit 𝜆 → 1/2,

the theory seems to contain free massless fermions with an S-matrix equals to −I.
However, there is a pole entering the s-channel cut as 𝜆 approaches 1/2, which makes

a neutral boson 𝐵0 formed by 𝑅+𝐿− or 𝑅−𝐿+, a stable particle in the spectrum.

Hence, the full spectrum of 𝑆𝑆𝑇 (−)
1/2 has two complex, massless, and charged fermions

𝑅± and 𝐿± and one neutral and massive boson 𝐵0. It is a free field theory with

𝑐𝑈𝑉 = 2, as one can expect. When 𝜆 > 1/2, poles begin to enter the physical

strip. This makes the theory extremely complicated since the bootstrap program

is a challenging process in general. Therefore, we strictly take 𝑆𝑆𝑇
(±)
𝜆

theories with

0 ≤ 𝜆 ≤ 1/2 into account throughout this paper.

3.3 Exact Scattering Processes of The Higher-spin

Particles

Recent research studies provided an S-matrix construction for particles with general

spins [54]. They constructed and studied a new class of exact factorized scatter-

ing theories, which generalize the sine-Gordon and sausage models to higher-spin

representations of the quantum group U𝑞 (𝑠𝑢(2)). These models come equipped

with minimal exact S-matrices, meaning no additional CDD factors, that satisfy

unitarity, crossing symmetry, and the Yang–Baxter equation. Building upon these

S-matrices, the authors derive corresponding TBA equations and analyze the free

energies. What they find is striking: for spins greater than or equal to 3/2, the

free energy develops singularities reminiscent of the Hagedorn transition. While the

critical scale at which the singularity appears depends on both the spin and the

coupling constant, the critical exponent associated with the divergence is found to
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be universal, close to 1/2, suggesting a square-root type singularity.

This issue has been highlighted recently in studies of 𝑇𝑇 deformations of inte-

grable QFTs. Such deformations effectively add CDD factors to the S-matrix [46],

and in most cases, they generate Hagedorn-like singularities in the free energy. Al-

though some fine-tuned cases can avoid the singularity and flow to ultraviolet com-

plete theories [46, 52], the general expectation is that irrelevant deformations trigger

these singular behaviors. Yet, this leaves open the possibility that singularities may

be intrinsic to the original undeformed scattering theories themselves.

3.3.1 The General S-matrix Construction

Let us introduce the 𝔰𝔲2 algebra generated by J±, J3, which has the following com-

mutation relations and the Casimir operator Q.

[J±, J3] = ±J± , [J+, J−] = 2J3 (3.48)

Q = J2 =
J+J− + J−J+

2
+ J23 (3.49)

Now, consider a two-particle S-matrix 𝑆(𝜃) of an FST between particles that belong

to the spin 𝑠 irreducible representation of the 𝔰𝔲2. We can decompose the S-matrix

similar to Eq.(3.26) as

𝑆(𝜃) = 𝑃

2𝑠∑︁
𝐽=0

𝑓 [𝐽] (𝜃) P[𝐽] , (3.50)

where P is the permutation matrix, P[𝐽] the projector on the spin-𝐽 representation,

and 𝑓 [𝐽] (𝜃) are the scalar functions

𝑓 [𝐽] (𝜃) =
𝐽∏

𝑘=1

𝑖𝜋𝑘 − 𝜃

𝑖𝜋𝑘 + 𝜃
(3.51)

to be determined by the Yang-Baxter equation up to an overall function. The matrix

elements of the projectors are given by the Clebsch-Gordan coefficients as

P[𝐽]𝑚′
1𝑚

′
2

𝑚1𝑚2
=

𝐽∑︁
𝑀=−𝐽

⟨𝑠, 𝑚′
1; 𝑠, 𝑚

′
2 |𝐽, 𝑀⟩⟨𝐽, 𝑀 |𝑠, 𝑚1; 𝑠, 𝑚2⟩. (3.52)
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They also satisfy
2𝑠∑︁
𝐽=0

P[𝐽] = I , and
(
P[𝐽]

)2
= P[𝐽] . (3.53)

Such S-matrices have been known and studied for some time [36]. We will focus on

the deformations of the S-matrices of this kind to generalize them to arbitrary spins.

Our deformation parameter 𝑞 ∈ C belongs to the quantum group symmetry

algebra U𝑞 (𝔰𝔲2), which is generated by J±, 𝑞±J3 , with the following commutation

relations and the Casimir operator Q.

[J±, J3] = ±J±, [J+, J−] = [2J3] (3.54)

Q = J+J− +
[
J3 −

1

2

]
= J−J+ +

[
J3 +

1

2

]
, (3.55)

where

[𝜆] ≡ 𝑞𝜆/2 − 𝑞−𝜆/2

𝑞1/2 − 𝑞−1/2
. (3.56)

An eigenvector |𝐽, 𝑀⟩ of the operators Q and J3 reads

Q|𝐽, 𝑀⟩ =
[
𝐽 + 1

2

]
|𝐽, 𝑀⟩ , J3 |𝐽, 𝑀⟩ = 𝑀 |𝐽, 𝑀⟩ . (3.57)

It is worth to mention the definition of a q-factorial for future use at this point. It

is defined for non-negative integer 𝑛 as

[𝑛]! = [𝑛] [𝑛 − 1] · · · [1], [0]! = 1, [−𝑛]! = ∞. (3.58)

By comparison with the equation (3.50), the q-version of the S-matrix of the asymp-

totic particles is given by

𝑆(𝜃) = 𝜎

(
𝑃

2𝑠∑︁
𝐽=0

𝑓
[𝐽]
𝑞 (𝜃) P[𝐽]

𝑞

)
𝜎−1 , (3.59)

where P[𝐽]
𝑞 are q-deformed projectors, 𝑃 is a permutation matrix, 𝜎 is the gauge

transformation

𝜎 = 𝑞J3 𝜃1/2𝜋𝑖 ⊗ 𝑞J3 𝜃2/2𝜋𝑖, (3.60)
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and 𝑓
[𝐽]
𝑞 (𝜃) are the trigonometric scalar functions

𝑓
[𝐽]
𝑞 (𝜃) = 𝑆0(𝜃)

𝐽∏
𝑘=1

sinh[𝛾(𝑖𝜋𝑘 − 𝜃)]
sinh[𝛾(𝑖𝜋𝑘 + 𝜃)] , 𝐽 = 0, 1, . . . , 2𝑠 (3.61)

with

𝑆0(𝜃) = −
2𝑠∏
𝑘=1

[
sinh [𝛾(𝑖𝜋𝑘 + 𝜃)]
sinh [𝛾(𝑖𝜋𝑘 − 𝜃)]

( ∞∏
𝑙=1

sinh [𝛾(𝑖𝜋(𝑘 + 𝑙) − 𝜃)] sinh [𝛾(𝑖𝜋(𝑘 − 𝑙) − 𝜃)]
sinh [𝛾(𝑖𝜋(𝑘 + 𝑙) + 𝜃)] sinh [𝛾(𝑖𝜋(𝑘 − 𝑙) + 𝜃)]

)]
,

(3.62)

where we bring in the coupling constant 𝛾 via

𝑞 = 𝑒2𝜋𝑖𝛾 . (3.63)

The scalar prefactor 𝑆(𝜃) is determined by the unitarity and crossing symmetry

constraints

𝑆0(𝜃)𝑆0(−𝜃) = 1 and 𝑆0(𝑖𝜋 − 𝜃) =
2𝑠∏
𝑘=1

sinh [𝛾(𝑖(𝑘 + 1)𝜋 − 𝜃)]
sinh [𝛾(𝑖𝑘𝜋 + 𝜃)] 𝑆0(𝜃) , (3.64)

respectively.

Hitherto, we were able to build the projectors P[𝐽] in equation (3.52) with

Clebsch-Gordan coefficients. Comparably, we will assemble the q-deformed pro-

jectors P[𝐽]
𝑞 by using quantum Clebsch-Gordan coefficients(qCGs) , studied in the

early 1990’s [26, 29, 31]

⟨𝑠, 𝑚1; 𝑠, 𝑚2 |𝐽, 𝑀⟩𝑞 = 𝑓 (𝐽) · 𝑞 (2𝑠−𝐽) (2𝑠+𝐽+1)/4+𝑠(𝑚2−𝑚1)/2 (3.65)

× {[𝑠 + 𝑚1]![𝑠 − 𝑚1]![𝑠 + 𝑚2]![𝑠 − 𝑚2]![𝐽 + 𝑀]![𝐽 − 𝑀]!}1/2
∑︁
𝜈≥0

(−1)𝜈 𝑞
−𝜈(2𝑠+𝐽+1)/2

D𝜈

,

where

𝑓 (𝐽) =

{
[2𝐽 + 1] ( [𝐽]!)2 [2𝑠 − 𝐽]!

[2𝑠 + 𝐽 + 1]!

}1/2
, (3.66)

D𝜈 = [𝜈]![2𝑠 − 𝐽 − 𝜈]![𝑠 − 𝑚1 − 𝜈]![𝑠 + 𝑚2 − 𝜈]![𝐽 − 𝑠 + 𝑚1 + 𝜈]![𝐽 − 𝑠 − 𝑚2 + 𝜈]! .

Therefore, the q-deformed projectors read

P[𝐽]
𝑞

𝑚′
1𝑚

′
2

𝑚1𝑚2
=

𝐽∑︁
𝑀=−𝐽

⟨𝑠, 𝑚′
1; 𝑠, 𝑚

′
2 |𝐽, 𝑀⟩𝑞 ⟨𝐽, 𝑀 |𝑠, 𝑚1; 𝑠, 𝑚2⟩𝑞 . (3.67)
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The particles are a part of the spin 𝑠 representation of U𝑞 (𝔰𝔲2).
The authors in [54] were able to recast the S-matrix (3.59) by introducing a

prefactor in the integral representation

𝑆𝑠𝑠𝑠𝑠 (𝜃) = − exp

∫ ∞

−∞

𝑑𝑘

𝑘

sinh(𝜋𝑘𝑠) sinh 𝜋𝑘 (𝑠 − 1
2𝛾 )

sinh 𝜋𝑘
2𝛾 sinh 𝜋𝑘

𝑒𝑖𝑘𝜃 , (3.68)

which has the same form for all integer and half-integer spin values 𝑠. The S-matrix

with this prefactor is described as

𝑆(𝜃) = 𝑆𝑠𝑠𝑠𝑠 (𝜃) · 𝑆mat(𝜃), (3.69)

where

𝑆mat(𝜃) ≡ 𝜎

(
𝑃

2𝑠∑︁
𝐽=0

[
2𝑠∏

𝑘=𝐽+1

sinh [𝛾(𝑖𝑘𝜋 + 𝜃)]
sinh [𝛾(𝑖𝑘𝜋 − 𝜃)]

]
P[𝐽]
𝑞

)
𝜎−1. (3.70)

It is discussed in [54] that the scattering theory becomes free at 𝛾 = 1
2𝑠 .

𝑆𝑠𝑠𝑠𝑠 (𝜃) = −1 for 𝛾 =
1

2𝑠
(3.71)

The physical strip is free from poles for the values 0 ≤ 𝛾 ≤ 1
2𝑠 , which is called the

repulsive regime. The region 𝛾 > 1
2𝑠 is known as the attractive regime, where the

theory begins to contain bound states. Before considering the spin 3/2 case, let us

briefly mention the results for the spin 1/2 and the spin 1 cases when 𝛾 tends to 1
2𝑠 .

For 𝑠 = 1/2, we arrive at the S-matrix of the sine-Gordon model by following the

above procedure after choosing a suitable permutation matrix. Here, our q-deformed

projectors are

P[0]
𝑞 |𝛾=1 =

©­­­­­­­«

0 0 0 0

0 1
2 −1

2 0

0 −1
2

1
2 0

0 0 0 0

ª®®®®®®®¬
, (3.72)

P[1]
𝑞 |𝛾=1 =

©­­­­­­­«

1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1

ª®®®®®®®¬
. (3.73)
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Let us present the S-matrix, constructed from the q-deformed projectors above, via

(3.69) and (3.70). In the free point, where 𝛾 = 1
2𝑠 = 1, the S-matrix is given by

𝑆 |𝛾=1 =

©­­­­­­­«

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

ª®®®®®®®¬
. (3.74)

The exchange rules that we can derive from this S-matrix imply that the particles in

the spectrum should obey only the fermionic statistics. We have two free fermions.

For 𝑠 = 1, by using qCGs (3.65), q-deformed projectors (3.67) becomes

P[0]
𝑞 |𝛾= 1

2
=

©­­­­­­­­­­­­­­­­­­­­­«

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3 0 −1

3 0 1
3 0 0

0 0 0 0 0 0 0 0 0

0 0 −1
3 0 1

3 0 −1
3 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3 0 −1

3 0 1
3 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®®®®®®®¬

(3.75)

P[1]
𝑞 |𝛾= 1

2
=

©­­­­­­­­­­­­­­­­­­­­­«

0 0 0 0 0 0 0 0 0

0 1
2 0 −1

2 0 0 0 0 0

0 0 1
2 0 0 0 −1

2 0 0

0 −1
2 0 1

2 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2 0 −1

2 0

0 0 −1
2 0 0 0 1

2 0 0

0 0 0 0 0 −1
2 0 1

2 0

0 0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®®®®®®®¬

(3.76)
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P[2]
𝑞 |𝛾= 1

2
=

©­­­­­­­­­­­­­­­­­­­­­«

1 0 0 0 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0 0

0 0 1
6 0 1

3 0 1
6 0 0

0 1
2 0 1

2 0 0 0 0 0

0 0 1
3 0 2

3 0 1
3 0 0

0 0 0 0 0 1
2 0 1

2 0

0 0 1
6 0 1

3 0 1
6 0 0

0 0 0 0 0 1
2 0 1

2 0

0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®¬

(3.77)

The S-matrix, constructed from these q-deformed projectors, results in the same

S-matrix (3.37)-(3.41) of 𝑆𝑆𝑇 (+)
𝜆

after a suitable change of basis. In the free point,

where 𝛾 = 1
2𝑠 = 1/2, the S-matrix is given by

𝑆 |𝛾= 1
2
=

©­­­­­­­­­­­­­­­­­­­­­«

−1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −1

ª®®®®®®®®®®®®®®®®®®®®®¬

, (3.78)

which corresponds to the S-matrix of the 𝑆𝑆𝑇
(+)
1
2

. Therefore, it also has the same

particle spectrum as well. We have two free fermionic particles 𝐴± and one free

bosonic particle 𝐴0. If we interpret 𝐴± as components of a free Dirac fermion and

𝐴0 as a free boson on the fixed point, we can immediately see how their contribution

adds up to 𝑐𝑈𝑉 = 2. In this case, the exchange rules that we can derive from this

S-matrix bring about not only fermionic but also bosonic statistics between particles.
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Similarly, the S-matrix of 𝑆𝑆𝑇 (−)
𝜆

(3.42)-(3.47) can also be decomposed into ir-

reducible spin-𝐽 sectors by using the q-deformed projectors, which allows us to

compute the S-matrix as a sum of the q-projectors. In fact, its S-matrix is the

sine-Gordon model’s S-matrix in the integral representation.

3.3.2 The Spin 3/2 Case

For 𝑠 = 3/2, the authors of [54] stated that, with the above formulation, the S-matrix

for this case is given by

𝑆1111 = 1, 𝑆1212 =
(0)
(3) , 𝑆2112 =

𝑠3

(3) , 𝑆1313 =
(0) (−1)
(2) (3) , 𝑆2213 =

𝑠2
√︁
𝑠3/𝑠1(0)
(2) (3) , (3.79)

𝑆3113 =
(𝑠1𝑠4 + 2𝑠2) (0)

(2) (3) , 𝑆2222 =
𝑓1

(2) (3) , 𝑆1414 =
(0) (−1) (−2)
(1) (2) (3) , 𝑆2314 =

𝑠3(0) (−1)
(1) (2) (3) ,

𝑆3214 =
𝑠2𝑠3(0)
(1) (2) (3) , 𝑆4114 =

𝑠1𝑠2𝑠3

(1) (2) (3) , 𝑆2323 =
(0) 𝑓1

(1) (2) (3) , 𝑆3223 =
𝑠2 𝑓2

(1) (2) (3) ,

where

𝑠𝑛 ≡ 2 sinh(𝑖𝑛𝜋𝛾), (3.80)

(𝑛) ≡ 2 sinh [𝛾(𝜃 − 𝑖𝜋𝑛)] , (3.81)

𝑓1 = 2 cosh [𝛾(2𝜃 − 𝑖𝜋)] + 𝑠10

𝑠5
− 2

𝑠2

𝑠1
, (3.82)

𝑓2 = 2
𝑠2

𝑠1
cosh [𝛾(2𝜃 − 𝑖𝜋)] + 𝑠22 − 2𝑠21 − 4. (3.83)

We can determine all of the matrix elements by using the usual charge conju-

gation, parity, and time reversal symmetry of an S-matrix. The indices 𝑖, 𝑗 , 𝑘, 𝑙 of

𝑆𝑘𝑙
𝑖 𝑗

in (3.79) take values from 1, 2, 3, 4, which represent the four particles 𝐴𝑚 with

𝑚 = −3/2,−1/2, 1/2, 3/2. They also satisfy 𝐴𝑚 = 𝐴−𝑚 i.e. 1̄ = 4 and 2̄ = 3. These

matrix elements should be multiplied by the integral representation of the prefactor

in the equation (3.68). Note that qCG coefficients in (3.65) are divergent for this

case, therefore, one has to consult the [31] to construct the q-projectors. Let us

have a look at the special point which corresponds to 𝛾 = 1
2𝑠 = 1

3 . The prefactor

𝑆𝑠𝑠𝑠𝑠 (𝜃) = 𝑆𝑠𝑠𝑠𝑠 |𝛾= 1
3
= −1 as normal for all 𝛾 = 1

2𝑠 . Hence, the S-matrix becomes
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𝑆 |𝛾= 1
3
(𝜃) =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 𝐴(𝜃) 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 𝐶 (𝜃) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 𝐷 (𝜃) 0 0 𝐵(𝜃) 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 𝐴(𝜃) 0 0

0 0 𝐴(𝜃) 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 𝐵(𝜃) 0 0 𝐷 (𝜃) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 𝐶 (𝜃) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 𝐴(𝜃) 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
(3.84)

where

𝐴(𝜃) = −2
√
3 + 3𝑖

√
3 cosh

(
𝜃
3

)
− 𝑖 sinh

(
𝜃
3

) , (3.85)

𝐵(𝜃) =
−3 cosh

(
𝜃
3

)
− 𝑖

√
3 sinh

(
𝜃
3

)
2 cosh

( 2𝜃
3

)
+ 1

, (3.86)

𝐶 (𝜃) =
√
3 cosh

(
𝜃
3

)
+ 𝑖 sinh

(
𝜃
3

)
√
3 cosh

(
𝜃
3

)
− 𝑖 sinh

(
𝜃
3

) , (3.87)

𝐷 (𝜃) =
1 − 2 sin

(
𝜋
6 − 2𝑖𝜃

3

)
2 cosh

( 2𝜃
3

)
+ 1

. (3.88)

Interestingly, this special point does not seem like a free point as opposed to the

𝑠 = 1/2 and 𝑠 = 1 cases. Our S-matrix depends on the rapidity 𝜃, implying that

there are some interactions.
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A recent study suggests that this S-matrix is a Zamolodchikov-Faddeev(ZF) S-

matrix, which appears in the ZF algebra, and has a nontrivial braiding statistics since

it is rapidity-dependent. It is related to the physical S-matrix S by a multiplication

of the R-matrix [56].

The equal rapidity limit 𝜃 → 0 of this S-matrix leads to the following.

When 𝜃 → 0 , 𝐴(𝜃) → −2 + 𝑖
√
3, 𝐵(𝜃) → −1, 𝐶 (𝜃) → 1, 𝐷 (𝜃) → 0 (3.89)

After acting with a suitable permutation matrix, which exchanges the 7th and 10th

row, the S-matrix has the following transmission and reflection amplitudes.

𝑆
𝑖 𝑗

𝑖 𝑗
= ±1 (3.90)

𝑆3113 = 𝑆1331 = 𝑆4224 = 𝑆2442 = −2 + 𝑖
√
3 (3.91)

The asymptotic limit 𝜃 → ∞ leads to the following amplitudes.

When 𝜃 → ∞ , 𝐴(𝜃) & 𝐵(𝜃) → 0, 𝐶 (𝜃) →

(
1 + 𝑖

√
3
)

2
, 𝐷 (𝜃) →

(
−1 + 𝑖

√
3
)

2

(3.92)

When 𝜃 → −∞ , 𝐴(𝜃) & 𝐵(𝜃) → 0, 𝐶 (𝜃) →

(
1 − 𝑖

√
3
)

2
, 𝐷 (𝜃) →

(
−1 − 𝑖

√
3
)

2

(3.93)

In this limit, the S-matrix does not become trivial, which suggests that one usually

needs to adjust the crossing relations. To do so, one has to find the R-matrix to

determine the modified crossing equations.

In the notation of [56], it can be found by this asymptotic 𝜃 → ∞ limit by

assuming it is given as

R12 = 𝑅12𝑢(𝜃12) + 𝑅−1
21𝑢(𝜃21) , (3.94)

where 𝑢(𝜃) is the Heaviside function, whereas the 𝑅12 and 𝑅−1
21 are constant unitary

matrices which satisfy the YBE. They usually do not satisfy the braiding unitarity

𝑅12 ≠ 𝑅−1
21 . Then, we would say

𝑆12(𝜃)
𝜃→∞−−−−→ 𝑅12 , 𝑆12(−𝜃)

𝜃→∞−−−−→ (𝑅21)−1 . (3.95)
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In our case, we have

𝑆12
𝜃→∞−−−−→ R12 , (3.96)

where we used (3.95) and the fact that 𝜃1 > 𝜃2. Now, one can consider the S-matrix

(3.84) along with (3.92) as a diagonal R-matrix. In our case, it has the form

R𝐶𝐷
𝐴𝐵 = 𝛿𝐶𝐴𝛿

𝐷
𝐵 𝑒−2𝜋𝑖 𝑠𝐴𝐵 , (3.97)

where 𝑠𝐴𝐵 = 𝑠𝐵𝐴 is a real number in Mod(1). The braiding factors 𝑠𝐴𝐵 of out

S-matrix are given as

𝑠11 = 𝑠13 = 𝑠24 = 𝑠31 = 𝑠42 = 𝑠44 =
1

2
, 𝑠22 = 𝑠33 =

5

6
, (3.98)

𝑠12 = 𝑠14 = 𝑠21 = 𝑠34 = 𝑠41 = 𝑠43 = 0, 𝑠23 = 𝑠32 =
2

3
. (3.99)

It would be interesting to see where these braiding factors lead to when they are

applied to the relations and ideas in [56]. Here, we exclude this possibility because

it is outside the scope of this thesis.

We can see the plots of the S-matrix amplitudes, which depend on rapidity in

Fig.(3.3) and Fig.(3.4). The plots show how the S-matrix (3.84) becomes diagonal

and constant for large 𝜃 values.

However, we observe that the consistency for unitarity

𝑆(𝜃)𝑆(−𝜃) = I (3.100)

is not satisfied in 𝜃 → 0 limit, 𝑆(0)𝑆(0) ≠ I, whereas it is satisfied in the 𝜃 → ∞
limit, 𝑆(∞)𝑆(−∞) = I. We can see the plot of the matrix elements of 𝑆(𝜃)𝑆(−𝜃) in

Fig.(3.8) and Fig.(3.9) to see how it shifts from non-unitary to unitary for large 𝜃

values.

Furthermore, we can obtain a diagonal S-matrix (3.101) by picking a suitable

particle basis, where the new particles will be represented as a combination of the

particles in the current spectrum. The diagonal S-matrix becomes the following.
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Figure 3.3: The 𝜃 plot for the rapidity-dependent non-diagonal elements of the S-

matrix (3.84).

𝑆 |diag.
𝛾= 1

3

(𝜃) =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 𝐴′
1(𝜃) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 𝐴′
1(𝜃) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 𝐴′
2(𝜃) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 𝐴′
2(𝜃) 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 𝐶 (𝜃) 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 𝐶 (𝜃) 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝐷′
1(𝜃) 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 𝐷′
2(𝜃)

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
(3.101)
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Figure 3.4: The 𝜃 plot for the rapidity-dependent diagonal elements of the S-matrix

(3.84).

where

𝐴′
1(𝜃) = −𝐴(𝜃) − 1 (3.102)

𝐴′
2(𝜃) = 𝐴(𝜃) − 1 (3.103)

𝐷′
1(𝜃) = 𝐷 (𝜃) − 𝐵(𝜃) (3.104)

𝐷′
2(𝜃) = 𝐷 (𝜃) + 𝐵(𝜃) (3.105)

In the diagonal S-matrix, we can clearly see the braiding statistics between par-

ticles. It is worth mentioning that we have full control over the alignment of the

elements(eigenvalues) on the diagonal since we can change their order by changing

the order of the eigenvectors.

The equal rapidity limit 𝜃 → 0 leads to the following amplitudes.

When 𝜃 → 0 , 𝐴′
1(𝜃) → 1 − 𝑖

√
3, 𝐴′

2(𝜃) → −3 + 𝑖
√
3, 𝐷′

1(𝜃) → 1, 𝐷′
2(𝜃) → −1

(3.106)

We can plot the behaviour of 𝐷′
1(𝜃) and 𝐷′

2(𝜃) as in the Fig.(3.5).
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Figure 3.5: The 𝜃 plot for the 𝐷′
1(𝜃) and 𝐷′

2(𝜃).

The asymptotic limit 𝜃 → ∞ leads to the amplitudes

When 𝜃 → ∞ , 𝐴′
1(𝜃) & 𝐴′

2(𝜃) → −1, 𝐷′
1(𝜃) & 𝐷′

2(𝜃) →

(
−1 + 𝑖

√
3
)

2
, (3.107)

When 𝜃 → −∞ , 𝐴′
1(𝜃) & 𝐴′

2(𝜃) → −1, 𝐷′
1(𝜃) & 𝐷′

2(𝜃) →

(
−1 − 𝑖

√
3
)

2
,

(3.108)

together with the 𝐶 (𝜃 → ±∞) amplitudes already given above. In the trivial scat-

tering limit, S-matrices are the same 𝑆 |𝛾= 1
3
(𝜃 → ±∞) = 𝑆 |diag.

𝛾= 1
3

(𝜃 → ±∞). How-

ever, we can still observe that the unitarity is not satisfied in the small 𝜃 values,

whereas it is satisfied in the large 𝜃 limit. We can realize how it interpolates be-

tween non-unitarity and unitarity continuously from the plot of the matrix elements

of 𝑆(𝜃)𝑆(−𝜃) in Fig.(3.6) and Fig.(3.7). It turns out that this non-unitarity in the

small 𝜃 values is caused by the 𝐴′
1(𝜃) and 𝐴′

2(𝜃) amplitudes.
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Figure 3.6: The 𝜃 plot for the rapidity-dependent elements of the unitarity check

𝑆(𝜃)𝑆(−𝜃) = I for (3.101).

Figure 3.7: The 𝜃 plot for the rapidity-dependent elements of the unitarity check

𝑆(𝜃)𝑆(−𝜃) = I for (3.101).

Figure 3.8: The 𝜃 plot for the rapidity-dependent elements of the unitarity check

𝑆(𝜃)𝑆(−𝜃) = I for (3.84).
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Figure 3.9: The 𝜃 plot for the rapidity-dependent elements of the unitarity check

𝑆(𝜃)𝑆(−𝜃) = I for (3.84).
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Chapter 4
Conclusion

The central aim of this thesis has been to investigate the structure and proper-

ties of scattering matrices in integrable quantum field theories in 1 + 1 dimensions.

Integrability provides an exceptional framework in which scattering processes can

be determined exactly, thanks to the presence of infinitely many conserved charges

and the resulting constraints on multiparticle interactions. In this setting, factor-

ization of the S-matrix reduces the problem of understanding general scattering to

the analysis of two-particle processes, governed by powerful algebraic consistency

conditions.

In Chapter 2, we established the theoretical foundation by reviewing scattering

theory and the role of S-matrices in integrable models. We analyzed the key struc-

tural elements, such as unitarity, analyticity, and crossing symmetry, alongside the

Yang–Baxter and bootstrap equations [8, 11, 39]. These principles ensure the con-

sistency of factorized scattering and provide the algebraic machinery through which

the S-matrix is constrained. Particular attention was paid to how local conserved

charges enforce factorizability and how the Yang–Baxter equation guarantees the

associativity of multiparticle scattering, both of which are essential in maintaining

integrability.

In Chapter 3, we analyze concrete realizations of factorized scattering. The

sine-Gordon model served as a typical example. Its exact S-matrix illustrates how
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integrability not only yields analytic control but also unifies physical and algebraic

perspectives. The sine-Gordon bootstrap program provides a textbook demonstra-

tion of how bound states and soliton excitations emerge naturally from consistency

conditions [6, 7, 8]. The sausage model, in contrast, showed how the deformations of

the integrable theories can produce qualitatively new scattering behavior, but still

remain exactly solvable within the integrable framework [34, 37]. This highlighted

the strength of the methods and their adaptability to a wide class of models.

The most original part of this thesis focused on higher-spin excitations, in par-

ticular, the spin 3/2 case. Here, we constructed and analyzed exact S-matrices

for scattering processes involving higher-spin particles, where we extended the in-

tegrable machinery to more complex excitations beyond the well-studied spin 1/2
and spin 1 cases. The spin 3/2 construction required careful use of algebraic con-

sistency conditions and provided new insights into how integrability accommodates

particles with richer internal structure. In this analysis, a particularly striking result

emerged. Even at the "free point", where one would expect scattering to become

trivial, the spin 3/2 S-matrix exhibited a nontrivial dependence on rapidity. This

behavior is not present in the sine-Gordon or sausage models, where the free point

limit corresponds to trivial and rapidity-independent scattering, compatible with

bosonic or fermionic exchange [7, 34, 54]. The persistence of rapidity dependence in

the free spin 3/2 case suggests a shift from conventional quantum statistics.

Recent advances in the study of non-trivial exchange relations and modified

crossing equations provide a natural framework for interpreting this observation.

Frolov, Polvara, and Sfondrini [56] have shown that when the free point S-matrix is

nontrivial or rapidity-dependent, the underlying excitations typically obey braided

statistics rather than standard Bose or Fermi exchange. In such systems, creation

and annihilation operators satisfy Zamolodchikov–Faddeev-type exchange relations

that encode braiding phases, and the resulting S-matrix inherits these non-standard

features. Models such as the SU(N) chiral Gross–Neveu theory and the Φ21 de-

formation of tricritical Ising model provide examples for this phenomenon, where
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modifications of the crossing equations arise directly from the presence of nontrivial

braiding [10, 27, 56]. Our spin 3/2 result thus situates this sector firmly within the

emerging class of integrable models with generalized exchange relations.

This discovery brings about several remarkable implications. First, it shows that

higher-spin integrable excitations can realize statistics that are qualitatively distinct

from those of their lower-spin counterparts, which may suggest a deeper link between

spin, integrability, and exchange properties. Second, it opens the possibility that

categorical or quantum group symmetries underlie the algebraic structure of these

S-matrices, providing a unifying principle for the appearance of braided statistics.

Indeed, recent work has linked modified crossing equations to categorical symmetries

[56]. This suggests that the braiding observed here may be rooted in such generalized

symmetry principles. Third, it proposes the spin 3/2 case as a concrete example

where integrability intersects with broader themes in mathematical physics, such as

anyonic behavior and the role of generalized statistics in low-dimensional systems.

Beyond its technical significance, the presence of braiding in the spin 3/2 S-

matrix enriches the conceptual picture of what integrability can reveal. It under-

scores that integrable models are not merely solvable toy theories but also testing

grounds for discovering new forms of quantum statistics and symmetry principles.

This resonates with recent developments in condensed matter physics, where any-

onic excitations and braiding are central, as well as in high-energy contexts such as

AdS/CFT(for reviews, see [43] and references therein), where integrable structures

continue to surface in unexpected ways.

Although the thesis has focused on selected models in dimensions 1+1, the com-

prehensive picture is that integrability provides both an apparatus for calculations

and a medium where new phenomena can be exposed. Future work could pursue

several directions. Some of them are the following.

• Systematizing the role of braided statistics in higher-spin theories.

• Exploring possible quantum group or categorical symmetry origins of the

braiding.
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• Enhancing the bootstrap program to include these nontrivial exchange rela-

tions explicitly [55].

• Extending the analysis to models with supersymmetry or to deformations that

interpolate between different statistical regimes.

• There is also a possibility of connecting these results with developments in

AdS/CFT integrability, particularly via the similarities with modified crossing

equations in AdS3 × S3 × T4 models [56].

In a nutshell, this thesis has shown how the combination of integrability and

algebraic consistency conditions enables the exact construction of S-matrices in

low-dimensional quantum field theories. It has also demonstrated that such con-

structions do more than solve scattering problems. They also uncover new forms

of statistics and deepen our understanding of the relation between symmetry, spin,

and integrability. The result that the spin 3/2 case shows braided statistics, even

at the "free point", points to a significant step in widening the scope of integrable

quantum field theory. By revealing a scenario where higher-spin particles obey ex-

otic exchange rules, this work opens the way for further explorations of braided

integrability and its implications across both mathematics and physics.
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