
Alma Mater Studiorum · Università di Bologna

Corso di Laurea magistrale in Matematica

Left Atrial Appendage Analysis: 2D
Segmentation and Imaging Approaches

Supervisors:
Chiar.ma Prof. Serena Morigi
Chiar.ma Prof. Cristiana
Corsi

Candidate student:
Anna Terzi

Anno Accademico 2024/2025

Introduction

Stroke risk assessment in patients with atrial fibrillation represents one of the most
relevant challenges in both clinical and scientific contexts. In recent years, the digital
twin approach, namely, the construction of personalized digital models based on clini-
cal and imaging data, has opened new perspectives in the study of atrial dynamics and
thrombus formation. In particular, the works “A digital twin approach for stroke risk
assessment in Atrial Fibrillation Patients” and “A Proof of Concept for Computational
Fluid Dynamic Analysis of the Left Atrium in Atrial Fibrillation on a Patient Specific
Basis” have shown how computational fluid dynamics techniques, applied to cardiac ge-
ometries reconstructed from CT images, can provide advanced tools for thromboembolic
risk assessment.

However, one of the main limitations of these studies is related to the use of CT
images. While CT provides high spatial resolution, it also presents some critical issues:
low temporal resolution (about 10 frames per cardiac cycle), the need to artificially
simulate AF dynamics, and the invasive nature of the procedure, which makes it unsuit-
able for longitudinal studies. To overcome these limitations, the present work proposes
replacing CT data with echocardiographic acquisitions, both transthoracic (TTE) and
transesophageal (TEE). Ultrasound, in fact, offers much higher temporal resolution (up
to 50 frames per cycle), allows direct image acquisition in atrial fibrillation conditions
without additional simulations, and represents a non-invasive modality more suitable for
repeated follow-ups in fragile populations.

The project presented in this thesis stems from the idea of replicating the procedures
originally developed for CT-based studies, but replacing CT images with echocardio-
graphic data. This methodological choice introduces several new challenges, primarily
related to the intrinsic characteristics of ultrasound images, which are affected by speckle
noise and exhibit lower contrast compared to CT. As a result, specific preprocessing steps
are required to improve image quality and make subsequent analyses feasible.

For this reason, a part of this work is dedicated to denoising and filtering techniques
aimed at reducing speckle noise and enhancing the visualization of relevant anatomical
structures. Following this stage, the focus shifts to the two-dimensional segmentation of

i

ii INTRODUCTION

the left atrial appendage using advanced variational methods.
The core of this thesis focuses on the study and application of different two dimen-

sional variational segmentation methods in order to compare their effectiveness in the
processing of echocardiographic images. Among the models analyzed are “Convex non-
convex image segmentation”, “Unsupervised Multiphase Segmentation: a phase balancing
model” and “Frame based segmentation for medical images”, which represent advanced
mathematical approaches for the accurate reconstruction of anatomical structures. The
purpose of this analysis is to evaluate the performance of these techniques, highlighting
their potential and limitations in a realistic clinical context.

Finally, a direct comparison is presented between the three-dimensional segmenta-
tion obtained using the variational methods described in the previous chapters and the
three-dimensional segmentation produced by the ITK-SNAP software, which performs
automatic segmentation based on intensity and region-growing techniques. The aim of
this comparison is to assess whether the algorithms implemented in MATLAB can serve
as a valid alternative to commercial or open-source software for the segmentation of the
left atrial appendage from transesophageal echocardiographic images.

Contents

Introduction i

1 Preliminaries 1

1.1 Atrial fibrillation . 1

1.2 Structural and functional characterization of the LAA 2

1.3 Data analysis . 3

1.3.1 Results and discussion . 5

1.4 Methods . 6

1.5 Internship . 9

2 CT vs Ultrasound Imaging: A Comparative Study 13

2.1 CT vs Ultrasound Imaging . 14

2.1.1 Noise . 14

2.1.2 SNR . 17

2.1.3 CT imaging . 17

2.1.4 Eco imaging . 19

2.2 Denoising procedure . 21

2.3 Segmentation . 25

2.4 Post-segmentation processing . 28

2.5 Elastix and Transformix . 30

3 Variational model for 2D segmentation 35

3.1 Convex non-convex image segmentation 35

3.1.1 Construction of the penalty function 38

3.1.2 Convexity analysis and ADMM algorithm 39

3.1.3 Convergence analysis . 44

3.1.4 Results . 54

3.2 Unsupervised Multiphase Segmentation 64

3.2.1 Description of the model . 67

3.2.2 Fast algorithm for Multiphase Segmentation 72

iii

iv CONTENTS

3.2.3 Results . 75
3.3 Frame based segmentation for medical images 80

3.3.1 Frames and Framelets . 81
3.3.2 Segmentation model . 84
3.3.3 Results . 85

3.4 Comparative Evaluation of Different Methods 96
3.4.1 Analysis of the computational costs 96
3.4.2 Limitations of the three Segmentation Algorithms 99

4 Comparison Between 3D Segmentations: ITK-SNAP and Variational

Methods 103

4.1 3D Reconstruction from Variational Segmentation 103
4.2 3D Segmentation with ITK-SNAP . 105
4.3 Qualitative Comparison and Discussion 106

Bibliography 109

Web References 111

Chapter 1

Preliminaries

In this first chapter we introduce the studies from which we started: “A digital twin
approach for stroke risk assessment in Atrial Fibrillation Patients”, [2], and “A Proof
of Concept for Computational Fluid Dynamic Analysis of the Left Atrium in Atrial
Fibrillation on a Patient Specific Basis”, [1].

Before doing that, we present an introduction of the atrial fibrillation.

1.1 Atrial fibrillation

Atrial fibrillation (AF) is the most diffused arrhythmia in the entire population, its
prevalence increases with age and is often associated with symptoms that can impair
or reduce the quality of life. During atrial fibrillation the atrial electrical activity is
completely disorganized and it does not correspond to efficient mechanical activity. The
atrioventricular node receives lots of impulses from the atrium, it filters them and it
transmits a limited number of them to the ventricle: it corresponds to the detected
heart rate during the electrocardiogram. Variability in the atrioventricular conduction
makes the ventricles contract irregularly. The irregular and rapid contraction of the
heart chambers determines the reduction in the blood volume expelled at each systole,
which alters the blood supply to the organs and sometimes causes symptoms of heart
failure.

Atrial fibrillation can be classified in:

• Paroxysmal: episodes that resolve spontaneously within one week.

• Persistent: episodes lasting more than seven days and requiring medical interven-
tion to restore normal rhythm.

• Permanent: the arrhythmia is continuous and no attempt is made, or attempts
have failed, to restore sinus rhythm.

1

2 1. Preliminaries

Atrial fibrillation is associated with a five-fold increase in the risk of cerebrovascular
events and it is responsible for 15− 18% of all strokes: progressing episodes of AF lead
to a remodeling and reshaping of the left atrium and left atrial appendage and it favors
blood stasis and, consequently, risk of stroke. It has been noted that cardiovascular
stroke associated with AF is due to left atrial appendage (LAA) thrombi and that this is
the most common site for thrombus formation in the setting of AF. For this reason, the
aim of this study is to build a patient-specific model using hemodynamic information
on the left atrium and the left atrial appendage, which could clarify the hemodynamic
implications of AF on a patient-specific basis.

In this context it is now important to understand LAA anatomy and functionality.
We will start by describing some important anatomical aspects.

1.2 Structural and functional characterization of the

LAA

LAA is a small pouch of muscular tissue that extends out from your left atrium.
It is in a groove between that chamber and the one below it. In most hearts, the LAA
extends between the anterior and the lateral walls of the left atrium, and its tip is directed
anterosuperiorly, overlapping the left border of the right ventricular outflow tract or the
pulmonary trunk and the main stem of the left coronary or the circumflex artery. The
external appearance of the LAA is that of a slightly flattened tubular structure with
crenellations, often with one or more bends and terminating in a pointed tip. There
are considerable variations in its size, shape and relationship with adjacent cardiac and
extracardiac structures. An increased number of lobes was associated with the presence
of a thrombus independent of clinical risk and blood stasis. It has been studied, using
multidetector computed tomography (MDCT) and cardiac magnetic resonance (CMR),
that the shapes of the LAA in patients with drug-refractory AF were classified into 4

morphological types, with “chicken wing” being the most common (48%), followed by
“cactus” (30%), “windsock” (19%), and “cauliflower”. (3%).

The function of the left atrial appendage is to manage the amount of blood in your
heart: it can be seen as a spare blood, helping regulate blood flow inside the LA. It does
this by releasing natriuretic peptides (proteins) when blood volume is high enough to
make your LAA walls stretch too much. These peptides go into your bloodstream and
encourage your kidneys to get rid of more salt and water (in pee). The peptides also
dilate your blood vessels. These actions can lower your blood pressure.

Normal contraction of the LAA during sinus rhythm (SR) and adequate blood flow
within the LAA lower the risk of formation of thrombi inside its cavity. Thrombus

INDEX 3

formation is more likely to occur within the LAA when reduced contractility and stasis
ensue. During AF there is a decrease in LAA contractility and function, manifest as a
decrease in Doppler velocities and dilation of the LAA. The remodeling process associated
with AF causes the LAA to function as a static pouch, predisposing to stagnation and
thrombosis. LAA thrombi are present in up to 14% of patients with acute (< 3 days) AF.
Moreover, thrombus formation may develop even in patients with AF who are receiving
therapeutic anticoagulation therapy. A transesophageal echocardiography study found
that 1.6% of patients treated with anticoagulation for 1 month had echocardiographic
evidence of an LAA thrombus.

Computational fluid dynamics (CFD) simulations are essential for building a detailed,
patient-specific profile, complementing standard clinical data. These simulations allow
for an in-depth examination of blood flow within the heart, particularly in the LAA, and
help identify areas where blood may stagnate, thereby increasing the risk of thrombus
formation.

Given these considerations I report below a study based on Computed Tomography
images.

1.3 Data analysis

In the study, “A digital twin approach for stroke risk assessment in Atrial Fibrilla-
tion Patients”, it has been proposed the development of a digital twin of the LA and
the LAA. This digital model would be based on patient-specific data and would sim-
ulate blood flow in real time to accurately estimate the risk of thrombus formation.
By incorporating detailed anatomical information, individualized flow parameters, and
the biomechanical behavior of atrial walls, the digital twin would act as an integrated
platform for personalized stroke risk evaluation. This method has the potential to signifi-
cantly improve the precision of risk assessment and support more customized therapeutic
decisions, ultimately enhancing clinical outcomes for patients.

Thirty individuals were chosen among one hundred patients enrolled and were sub-
jected to a Contrast-Enhanced Computed Tomography while they were in sinus rhythm,
reconstructing ten volumes to cover a full cardiac cycle. For each patient it has been
assessed the blood velocity fields at both the ostium and within the LAA, metrics such as
time average wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence
time (RRT) and endothelial cell activation potential (ECAP) in the LAA.

• Wall shear stress measures the retarding force per unit area that the inner wall of
the left atrium applies to the adjacent flowing blood. It represents the tangential
force exerted by the blood movement on the surface of the endothelial cells and so

4 1. Preliminaries

it can provide valuable information about areas tat promote thrombus deposition
and growth. Since the heartbeat is periodic, it can be considered an average metric,

TAWSS =
1

T

∫ T

0

∥WSS∥2dt,

where WSS = µ⃗− (⃗µ · n)n⃗, in which µ⃗ is the viscous stress vector and n⃗ is the unit
normal vector extending from the fluid to the wall.

• The oscillatory shear index,

OSI =
1

2

(
1−
∥
∫ T

0
⃗WSSdt∥2∫ T

0
∥ ⃗WSS∥2dt

)
characterizes the deviation of the WSS vector from its average direction; a higher
OSI value indicates greater oscillation in the flow. It is elevated in areas where the
WSS fluctuates significantly throughout the cardiac cycle. The directional changes
in flow primarily contribute to the higher OSI values.

• The relative residence time,

RRT =
1

(1− 2OSI) ∗ TAWSS

represents the duration that blood spends close to the left atrial wall. It describes
the accumulation of inflammatory cells, which can lead to degradation of the LA
wall, potentially resulting in enlargement and particle deposition. This metric
highlights areas of the vessel wall exposed to low shear stress and fluctuating flow
patterns. Under these hemodynamic conditions, blood tends to remain near the
wall for longer periods. This prolonged residence time can promote the accumula-
tion of particles and potentially initiate an inflammatory response in the endothelial
layer.

• The endothelial cell activation potential

ECAP =
OSI

TAWSS

is used to identify areas of the wall that experience both high OSI and low TAWSS:
it measures the degree of “thrombogenic susceptibility” of the wall. Higher values
of the ECAP index are associated with conditions of elevated OSI and reduced
TAWSS, indicating increased endo thelial susceptibility. This measure is commonly
used in studies assessing thrombogenic risk within the LAA.

• To assess blood stasis, the residence time Tr is defined as the duration that blood
particles remain within the LA chamber.

INDEX 5

1.3.1 Results and discussion

The study found that blood flow velocities in the left atrium and left atrial appendage
were significantly higher in control subjects compared to those with atrial fibrillation.
Control participants had average LA velocities of 0, 5m/s, while PAR-AF and PER-
AF groups had lower velocities, 0.2m/s and 0.07m/s. Similar trends were observed in
the LAA and at the LAA ostium, where control subjects consistently showed higher
flow speeds. These findings suggest more efficient blood circulation and better cardiac
function in individuals without AF, potentially reducing their risk of thrombus formation.

The analysis showed that control subjects had significantly higher TAWSS values
at the LAA ostium compared to AF patients, indicating more effective blood flow. In
contrast, AF subjects (PAR-AF and PER-AF) had lower TAWSS values, suggesting
impaired flow dynamics.

OSI, which measures changes in flow direction, was higher in AF patients, but the
difference was not statistically significant. This indicates more chaotic blood flow in AF,
especially at the LAA tip.

RRT, indicating how long blood stays near the wall, was much higher in AF groups,
pointing to slower, more stagnant flow conditions that may promote clot formation and
inflammation.

Finally, ECAP values, a metric for thrombogenic potential, were also significantly
higher in AF patients, further highlighting their increased risk for thrombus development
in the LAA.

Secondary flow patterns, less restricted than primary ones, can greatly vary and
influence blood movement near the LAA ostium, impacting residence time in that region.
However, within the left atrial body, Tr remains fairly consistent across all groups at
about 1 second (one cardiac cycle), even in AF patients, rarely exceeding 2 cycles. By
contrast, residence time in the LAA shows notable differences: in healthy individuals,
Tr remains around 1 cycle; in paroxysmal AF, Tr can reach 5 cycles at the LAA tip;
in persistent AF, it is even longer. Additionally, AF patients show high variability in
Tr within the proximal LAA, a pattern seen consistently across all individuals in the
AF groups. A linear regression analysis was used to explore the relationship between
residence time, Tr, and two key hemodynamic indicators: TAWSS and ECAP in the
LAA.

The results show:

1. An inverse correlation between Tr and TAWSS: higher TAWSS values, associated
with higher blood velocity and better washout, correspond to shorter residence
times.

6 1. Preliminaries

2. A positive correlation between Tr and ECAP: regions with higher ECAP, indicating
greater thrombogenic potential, also exhibit longer residence times.

3. These findings suggest that in AF patients, the LAA is particularly sensitive to
hemodynamic changes, emphasizing the need for careful monitoring to prevent
thrombus formation.

This study demonstrated the feasibility of using computational fluid dynamics to
quantitatively assess hemodynamic parameters associated with stroke risk in patients
with atrial fibrillation, offering a framework for personalized risk evaluation. From the
measurement that has been performed, patients with AF showed lower Wall Shear Stress
(WSS) and higher values of Oscillatory Shear Index (OSI), Relative Residence Time
(RRT), and Endothelial Cell Activation Potential (ECAP): these indicate slower and
more oscillatory blood flow in the LAA, which can trigger endothelial activation and
promote thrombosis. Furthermore, regression analysis revealed a negative correlation
between WSS and Tr: higher flow velocities promote better blood washout and a positive
correlation between ECAP and Tr, areas with greater thrombogenic potential show longer
residence times.

From this research, we can conclude that the use of CFD offers a comprehensive and
individualized approach to stroke risk assessment in AF, moving beyond population-
based scores toward personalized medicine that could improve prevention and treatment
outcomes.

1.4 Methods

It follows a schematic summary of the workflow developed in this research. Firstly,
the use of the dynamic CT imaging to reconstruct the moving patient-specific three-
dimensional atrial anatomy over the cardiac cycle. Computed tomography dynamic
acquisition was performed in sinus rhythm using a 64-slice multi detector CT scanner
and volumetric CT images were reconstructed for a total of ten phases from ventricular
end-diastole. The processed patient data were then provided as input to the CFD solver;
a representative MV flow rate of intracardiac pulsed wave (PW) Doppler in AF patients
was used to set boundary conditions for the CFD simulations.

Then the definition of the anatomical model of the left atrium and the left atrial
appendage was performed. In order to identify the LA and the LAA, the first volume
of the CT dynamic acquisition was processed. A specific volume of interest containing
the left atrium was manually selected. Within this volume, the LA was automatically
identified in each eco image, and then a 3D reconstruction of the LA was generated.

INDEX 7

To segment the LA in 2D, an adaptive thresholding method was used based on the
histogram of each image. First of all, an eco image is acquired and we obtain a scan in
which the LA and other anatomical structures have different grey level. Then we compute
the histogram, that is the distribution of the grey level of the pixels in the image; the
peak of the histogram corresponds to the region of interest. In order to compute the
adaptive threshold, the maximum pixel intensity within the LA is determined as intmax;
two thresholds, thdown and thup, are established to define the range of accepted gray level
values for the LA,

thdown = intmaxq ∗ intmax, thup = intmax + q ∗ intmax

The constant q depended on the brightness level of intmax: if intmax was in the highest
third of intensity values, q = 5%, otherwise, q = 3%. Gray level values between thdown

and thup were used to perform a first rough segmentation of the LA. A binary mask is
generated by selecting pixels with intensity values between thdown and thup, allowing the
LA to be distinguished from surrounding structures. Since in the top slices of the axial
acquisition the LAA might be disconnected from the LA chamber, we automatically
detected these slices in which the two biggest connected regions corresponding to the
LA and the LAA were selected. After this procedure, to refine the segmentation, the
method applied morphological operations to separate regions and smooth the contours.
Once applied all the steps described previously, the 3D anatomy was then obtained
by stacking the two-dimensional segmentation and five cut planes were applied to the
four PVs and the MV to define inflows and outflow boundary subsets of the anatomical
model for the CFD simulation. This final anatomical model was used as the input for
the labeling and volume mesh generation algorithm.

The next phase involved the computation of the left atrium deformation throughout
the cardiac cycle. The deformation of the LA throughout the time instants of the cardiac
cycle was computed by applying a 3D nonrigid image registration step of the eco volumes.
Image registration is a technique that aligns two or more images to compare them and to
analyze the variation over time. Rigid registration allows global transformations such as
translations and rotations without changing the shape of the organ; nonrigid registration
allows local variations of the shape, adapting to the physiological deformations of the
organ over time. A LA reference image is selected, and a soft recording algorithm is ap-
plied to map each subsequent volume to the reference volume. This step allows to track
the deformation of the LA over time. After recording, the changes in shape and volume
of the left atrial appendage are analyzed, creating a dynamic model of its deformation.
In this way, it is possible to compute the displacement si→i+1(x) between two successive
eco volumes Imi(x) and Imi+1(x). Before the application of the nonrigid registration

8 1. Preliminaries

step, we decided to perform an affine transformation which is a type of geometric trans-
formation that preserves points, straight lines, and planes, and maintains parallelism,
but it does not necessarily preserve distances or angles. An affine transformation can
involve: translation, scaling, rotation, shearing and reflection and it is useful in order to
roughly align the images and to prepare them for the nonrigid registration. Subsequently
the result obtained was combined with the nonrigid transformation based on B-spline
model. It was defined as

T (x) = x+
∑

xk∈Nx

pkβ
3

(
x− xk
σ

)
(1.1)

with xk the control points, β3(x) the cubic multidimensional B-spline polynomial, pk the
B-spline coefficient vectors (the control point displacements), σ represents the spacing
of the B-spline control points, and Nx the set of all control points within the compact
support of the B-spline at x. The control points xk were defined on a regular grid,
overlayed on the fixed image. The control point grid was defined by the amount of
space between the control points σ = (σ1, . . . , σdimm

), which could be different for each
direction. The parameters in (1.1) were chosen for optimizing tracking quality as assessed
visually. Moreover, we employed the mean square difference as the image registration
measure similarity. Following this step, the global displacement of a general eco volume
at time i with respect to the reference volume (time 0) was computed by increasing the
successive interframe displacements:

si→0(x) = si→n−1(x) ◦ si−1→0(x),

with s0→0(x) = 0. Therefore, considering x0 the position of a mesh vertex at time 0, the
new position xi at time of the position i was calculated in this way

xi = x0 + sn→0(x0).

The motion field was then used to propagate the LA computational domain on the
entire cardiac cycle and to simulate LA motion in AF condition. Moreover, to improve
the temporal resolution, which refers to the ability to capture details over time and a high
temporal resolution ensures a more continuous and accurate representation of the LA
deformation in the cardiac cycle, we applied the Fourier interpolation to the displacement
field. It describes the movement of the left atrial appendage points during contraction
and relaxation. It is a function that assigns a shift vector over time to each point of
the LA mesh. Fourier interpolation is a technique that uses the Fourier transform to
reconstruct a continuous signal from discrete data. It consists in the following steps:

(i) Discrete displacement data of the LA are acquired at a few time instances.

INDEX 9

(ii) The Fourier Transform is applied to represent the signal in the frequency domain.

(iii) The missing frequencies are interpolated, and the signal is reconstructed in the
time domain using the Inverse Fourier Transform.

(iv) A continuous and smoother motion of the LA over time is obtained.

This procedure has many advantages: it increases temporal resolution without the need
to acquire more data, it generates a more realistic simulation of the heartbeat and it
avoids aliasing effects and distortions in the time-domain data. Thus, thanks to the
Fourier interpolation, the motion was reconstructed in a smooth and continuous way,
improving the simulation of atrial appendage contraction.

Therefore,we were able to recover a continuous and periodic function from the discrete
data available. The reconstruction of a continuous displacement function was necessary
to ensure the stability of the CFD numerical model.

Finally, the computational fluid dynamic model was computed. The fluid domain was
governed by the incompressible Navier-Stokes equations in the Arbitrary Lagrangian-
Eulerian (ALE) formulation, which accounts for the motion of the LA walls during the
cardiac cycle. To solve the equations, a Finite Element approach was used, with the
velocity and pressure fields as the primary unknowns. The blood was modeled as a
Newtonian fluid, and appropriate boundary conditions were applied at various parts of
the LA such as the mitral valve and pulmonary veins.

A pseudo-parabolic velocity profile was imposed at the pulmonary veins to mimic
inflow conditions, computed by solving Laplacian equations. A natural-type boundary
condition was introduced at the outflow boundary (mitral valve) to reduce nonphysical
backflow instabilities by penalizing outward velocity.

To enhance numerical stability, especially near the fluid-structure interface, the mo-
tion of the LA geometry was incorporated, and interpolation techniques were used to
maintain mesh quality. Temporal and spatial refinement was applied for accurate results.

Lastly, the flow rate profiles at each pulmonary vein were obtained from 4D flow
MRI data, and simulations were personalized for each patient in sinus rhythm or atrial
fibrillation.

1.5 Internship

During my internship, I was integrated into the host institution and had the op-
portunity to be actively involved in the activities of the Bioimaging research group,
collaborating closely with the scientific team on various topics in the cardiovascular

10 1. Preliminaries

field. In particular, I contributed by applying my mathematical knowledge to analyze
the biomedical problems presented to me. This experience was very different from the
purely theoretical world of mathematics I am used to; for the first time, I found myself
in a laboratory setting where I could put my knowledge into practice while also learning
new skills.

The aim of the internship project was to create a computational fluid dynamics
model, based on the Navier-Stokes equations, of the left atrium and auricle, starting
from transthoracic and transesophageal echocardiography images, rather than CT scans.

Specifically, I participated in:

• Advanced data analysis of medical imaging techniques, including computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and echocardiography, aimed at
building personalized anatomical models based on the patient’s specific character-
istics;

• Development of computational models to support the diagnosis and clinical man-
agement of patients with cardiac arrhythmias, using numerical simulations and
physiopathological modeling tools;

• Design and implementation of algorithms and codes for the modeling of echocar-
diographic images, with the goal of extracting relevant structural and functional
information;

• Application of signal processing techniques, with particular focus on denoising
methods and enhancing the quality of ultrasound images, to optimize visualization
and diagnostic analysis;

• Use of advanced software tools such as MATLAB, ITK-SNAP, MeshLab, and Par-
aView.

First, I focused on studying ultrasound images and their associated noise in order to
identify appropriate denoising techniques for the type of data I was working with. Then, I
examined the workflow previously developed for CT images, adapting various MATLAB
functions to handle ultrasound data. Building upon codes already implemented by the
team, I worked on modifying and extending them for the new data type, with particular
attention to implementing alternative methods for 3D segmentation, such as the Malladi
approach.

Below is the workflow diagram of my work and the following chapter provides a
detailed explanation of each step shown in the diagram.

INDEX 11

Unfiltered TEE

FILTERING

SEGMENTATION

ELASTIX
TRANSFORMIX

MESH CREATION

VOLUME CURVE

12 1. Preliminaries

Chapter 2

CT vs Ultrasound Imaging: A

Comparative Study

There are some limitations in the studies referenced above.

1. Dynamic imaging data were utilized to derive patient-specific anatomical details
and motion models during sinus rhythm and the developed workflow was evaluated
under two different conditions: SR and atrial fibrillation. Unfortunately, the CT
scanner available at the hospital that was involved in this study did not allow time
resolved images during AF episodes, so to simulate LA motion in AF, they modeled
atrial contraction by employing a random displacement applied independently to
each vertex of the anatomical LA model and consisting in a sinusoidal function at
a frequency of 4 Hz, defined considering the typical frequency of atrial fibrillatory,
multiplied by a random factor from an uniform probability density function from
0 to 1. This aimed to replicate the disorganized and unsynchronized contractions
characteristic of AF.

2. The results of the model in the two patients analyzed were not compared to exper-
imental clinical measurements, which were not available. The aim for the future
is to test the model on patients in which personalized intracardiac Doppler flow
measurements are available.

3. The approach used in the study does not use patient-specific boundary conditions
for the MV and PVs, the flowrates for the CFD model boundary conditions impo-
sition can be directly computed for each patient.

4. This study does not include long-term follow-up data, limiting our understanding of
how these hemodynamic parameters may evolve over time and how they correlate
with actual stroke outcomes in patients with atrial fibrillation. Longitudinal studies

13

14 2. CT vs Ultrasound Imaging: A Comparative Study

would be beneficial for assessing the predictive value of these parameters and for
informing long-term management strategies for these patients.

5. The relatively small sample size of 30 patients may restrict the generalizability of
the findings. Larger size multi-center studies are necessary to validate these results
across diverse populations and to confirm that the observed trends hold true across
various patient demographics and clinical settings

To address one of the limitations mentioned above, specifically the use of CT imaging
data, we aim to repeat this study using ultrasound data instead. This choice is moti-
vated by several important advantages associated with echocardiographic imaging. First,
ultrasound acquisitions typically provide a significantly higher temporal resolution, of-
ten capturing up to 50 frames per cardiac cycle, compared to the 10 frames commonly
available from cardiac CT. This allows for a more detailed and realistic representation
of cardiac motion.

Second, echocardiographic recordings, both transthoracic (TTE) and transesophageal
(TEE), can be performed while the patient is in atrial fibrillation, thus eliminating the
need to artificially simulate AF-induced motion in the left atrium. This enhances the
physiological accuracy of the motion model.

Third, ultrasound is a less invasive imaging modality compared to CT, making it
more suitable for longitudinal and repeatable studies, especially in vulnerable patient
populations.

Overall, the use of echocardiographic data is expected to improve both the physio-
logical fidelity and clinical applicability of the developed computational framework.

2.1 CT vs Ultrasound Imaging

In this section, we present a comparative analysis between computed tomography
and ultrasound imaging, focusing on their respective characteristics, the types of noise
typically encountered in each modality, and the denoising techniques adopted. This
comparison aims to highlight the strengths and limitations of both imaging methods in
the context of their application to cardiac modeling.

Before proceeding, I will introduce the concepts of noise and signal-to-noise ratio.

2.1.1 Noise

In an image, noise refers to unwanted variations in brightness or color information,
appearing as random speckles or distortions that obscure details and degrade image

INDEX 15

quality. It’s essentially a form of digital artifacting, similar to film grain in analog
photography. The causes can be the following:

(i) Low light: Images captured in low light often have more noise due to the sensor
needing to amplify the signal, which also amplifies the noise.

(ii) High ISO settings: Increasing the ISO on your camera makes the sensor more
sensitive to light, but it also amplifies noise.

(iii) Sensor limitations: All digital sensors have a certain level of inherent noise.

(iv) Heat: Heat generated by the camera sensor can also contribute to noise.

The noise model is described by b = N(Kx), where N is the noise operator (typically
of probabilistic nature).

Definizione 2.1 (White noise). A discrete random image n is said to be a white noise
matrix if its pixels each have a probability distribution with zero mean and finite variance,
and are statistically independent (statistically uncorrelated). The covariance matrix for
vector n is a diagonal matrix (a scaled multiple of the identity matrix), each element
cii = σ2

i · σ2
i is the variance of component ni.

Noise can be of different types: additive, multiplicative, impulsive salt and pepper
and Poisson.

Additive noise is a type of noise that is added to an image, resulting in a corrupted
image that is the sum of the original, uncorrupted image and the noise:

bi = (Ax)i + ni, i ∈ Ω ≡ {1, 2, . . . , d}

• Additive White Gaussian Noise (AWGN): ni ∼ G(0, σ) where

p(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
with µ ∈ R is the mean, σ ∈ R++ is the standard deviation, also called noise level.

• Additive White Uniform Noise (AWUN): ni ∼ U(0, σ) where

p(x) =

 1
2
√
3σ

for x ∈ [µ−
√
3σ, µ+

√
3σ]

0 for x /∈ [µ−
√
3σ, µ+

√
3σ]

with µ ∈ R is the mean, σ ∈ R++ is the standard deviation.

• Additive White Laplacian Noise (AWLN): ni ∼ L(0, σ) where

p(x) =

√
2

2σ
exp

(
−
√
2
|x− µ|
σ

)
with µ ∈ R is the mean, σ ∈ R++ is the standard deviation.

16 2. CT vs Ultrasound Imaging: A Comparative Study

Figure 2.1: Additive noise model

Multiplicative noise refers to an unwanted random image that gets multiplied
into some relevant image during capture, transmission, or other processing. Multiplica-
tive noise is a type of image-dependent noise in which the noise amplitude scales with
the intensity of the image:

bi = (Ax)i × ni, i ∈ Ω ≡ {1, 2, . . . , d}.

Unlike additive noise, which is independent of the image, multiplicative noise complicates
processing due to its dependence on the underlying image.

• Multiplicative White Gaussian Noise (MWGN): ni ∼ G(1, σ) where

p(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
with µ ∈ R is the mean, σ ∈ R++ is the standard deviation, also called noise level.

• Multiplicative White Uniform Noise (MWUN): ni ∼ U(1, σ) where

p(x) =

 1
2
√
3σ

for x ∈ [µ−
√
3σ, µ+

√
3σ]

0 for x /∈ [µ−
√
3σ, µ+

√
3σ]

with µ ∈ R is the mean, σ ∈ R++ is the standard deviation.

• Multiplicative White Laplacian Noise (MWLN): ni ∼ L(1, σ) where

p(x) =

√
2

2σ
exp

(
−
√
2
|x− µ|
σ

)
with µ ∈ R is the mean, σ ∈ R++ is the standard deviation.

INDEX 17

Impulsive Salt and Pepper Noise (ISPN) is a form of noise sometimes seen on
digital images. For black and white or grayscale images, it presents as sparsely occurring
white and black pixels, giving the appearance of an image sprinkled with salt and pepper.

bi =

ni if i ∈ Ω0 ⊆ Ω

(Ax)i if i ∈ Ω \ Ω0

with ni ∈ {0, 255} and Prob(ni = 0) = Prob(ni = 255) = 0.5

Poisson noise is a basic form of uncertainty associated with the measurement of
light, inherent to the quantized nature of light and the independence of photon detections.
Its expected magnitude is signal dependent and constitutes the dominant source of image
noise except in low-light conditions.

bi realization of Bi ∼ POISS((Ax)i), i ∈ Ω ≡ {1, 2, . . . , d}

where p(x|µ) = µx exp(−µ)
x!

µ ∈ R+, x ∈ N and E[X] = V ar[X] = µ

2.1.2 SNR

The Signal-to-Noise Ratio, commonly abbreviated as SNR, is a measure used to
quantify the level of a desired signal relative to the level of background noise, it is used
in data processing to characterize data quality. In simpler terms, it is a metric that
measures how much of what you want to hear or see is present compared to what you
don’t want. Higher SNR values indicate a clearer signal with less interference from noise,
which is essential for the quality of communication and data transmission.

SNR is typically expressed in decibels (dB), a logarithmic unit that quantifies the ra-
tio between the difference in signal power and noise power:SNR (dB) = 10×log10

(Potenza segnale
Potenza rumore

)
and for the image we can express it as

SNR(b_exact, b) := 10 log10

(∑
w

∑
h(b_exact(x,y))2∑

w

∑
h(b_exact(x,y)-b(x,y))2

)
where b is the perceived image and b_exact is the real one. Higher SNR value indicates
a clearer signal, as it means that the signal power is much greater than the noise power.

Thus, in order to obtain ultrasound images with better resolution, we have to reduce
the noise and improve the SNR.

2.1.3 CT imaging

Computed Tomography is a radiological imaging technique that allows for the recon-
struction of cross-sectional (tomographic) and three-dimensional images of anatomical
structures, generated by computer-based analysis of the attenuation of an X-ray beam

18 2. CT vs Ultrasound Imaging: A Comparative Study

as it passes through a section of the body. It is a non-invasive technique, as it allows
for the acquisition of internal structural information without causing any damage to the
sample under investigation. However, despite the significant dose reductions achieved
with modern CT technology, CT scans still represent the largest source of artificial radi-
ation exposure in the general population and approximately 70% of the total radiation
dose in medical practice. Therefore, the benefits of each CT procedure must be carefully
weighed against its potential risks by both physicians and patients.

During a CT scan, a narrow beam of X-rays is directed at the body and rapidly rotated
around the body. The radiation detector typically consists of 4 to 64 or more rows of
sensors that record the radiation passing through the body. Depending on the amount
absorbed in a particular tissue, a different amount of X-rays will pass through and exit the
body. The data collected by the sensors represent a series of radiographic measurements
acquired from multiple angles around the subject. However, these measurements are
not displayed directly; they are sent to a computer, which processes them into two-
dimensional “slice-like” images (cross-sectional views) of the body. The computer can
also reconstruct three-dimensional images based on the acquired slices.

In computed tomography, image noise refers to random variations in pixel intensity
that do not correspond to actual anatomical structures. It can significantly impact image
quality, especially when working with low-dose scans. The primary sources of noise in
CT imaging include:

(i) Quantum noise: this is the most significant source of noise in CT images. It
arises from the random nature of X-ray photon arrival at the detector. When a low
radiation dose is used, fewer photons are detected, and the statistical fluctuations in
their number become more pronounced. As a result, the image appears grainier and
less sharp. Quantum noise follows a Poisson distribution with standard deviation
∼
√
N , withN being the detected photons, and becomes more prominent as photon

count decreases. Quantum noise typically appears as image graininess, which can
significantly degrade image quality. It reduces the visibility of fine anatomical
details, decreases the contrast between adjacent structures, and may even obscure
small abnormalities such as nodules or lesions. These effects are especially critical
in clinical contexts where accurate visualization of subtle features is essential for
diagnosis.

(ii) Electronic noise: this type of noise is generated by the electronic components
of the detector and the data acquisition system. While it was more problematic
in earlier CT scanners, it is generally less relevant in modern systems, thanks to
advances in hardware design and signal processing.

INDEX 19

(iii) Reconstruction noise: this noise is introduced during the image reconstruction
phase. It can occur when basic algorithms or poorly optimized filters are used.
In particular, reconstruction noise may distort fine anatomical details, especially if
the raw data is limited or of low quality.

Figure 2.2: Axial view, Sagittal view, Coronal view

2.1.4 Eco imaging

Ultrasound is a medical diagnostic imaging technique that does not use ionizing
radiation but instead employs ultrasound waves and is based on the principle of echo
emission and the transmission of ultrasonic waves. Unlike the radiation used in radiology,
ultrasound waves are harmless. For this reason, no special precautions are needed, and
the examination can be performed on any patient as many times as necessary. This makes
ultrasound a safe, non-invasive, and widely accessible diagnostic tool. It is often used as
a basic or screening examination before resorting to more complex imaging techniques
such as CT, MRI, or angiography.

Diagnostic ultrasound is based on the transmission of high-frequency sound waves
through the body, and their reflected echoes are analyzed by a computer to create high-
resolution tomographic images of organs, tissues, and blood flow. The image displayed on
the monitor is the result of the interaction between the ultrasound waves and the tissues.
The frequency of the ultrasound waves used typically ranges from approximately 2 MHz
to 15 MHz. The frequency is selected based on the understanding that higher frequencies
provide greater image resolution but penetrate less deeply into the body. Today, every
ultrasound machine is equipped with so-called real-time probes, in which ultrasound
waves are emitted and received sequentially in different directions through mechanical

20 2. CT vs Ultrasound Imaging: A Comparative Study

or electronic modulation of the probe. These waves are generated by a crystal that
utilizes the piezoelectric effect and is housed in a probe placed in direct contact with the
patient’s skin. The same probe is capable of detecting the returning echoes, which are
then processed by a computer and displayed on a monitor. By adjusting the emitting
aperture of the probe, it is possible to modify the beam’s angle and thereby control the
depth over which the ultrasound beam can be considered parallel.

Echocardiography is a technique used to study the heart and the flow of blood through
its valves using ultrasound waves. This method provides valuable information about
the heart’s contractility, the morphology of its valves, and the blood flow within its
chambers. There are various methods of performing echocardiography, transthoracic
echocardiography and transesophageal echocardiography.

Figure 2.3: Transthoracic Echocardiography

Ultrasound images are affected by a type of multiplicative noise called speckle noise,
which appears as a grainy texture superimposed on the image. It is not an external
artifact or technical error, but rather a consequence of the interaction between ultrasound
waves and biological tissues, especially with microscopic, heterogeneous structures like
muscle fibers or cells.

Speckle arises from the wave nature of ultrasound and results from constructive and
destructive interference among reflected echoes. It is a coherent, quasi-random phe-
nomenon that occurs when coherent acoustic pulses interact with rough or inhomoge-
neous tissue surfaces. Many tissues contain irregular distributions of ultrasound scatter-
ers, causing varying degrees of discontinuity that contribute to speckle.

Speckle is typically modeled as multiplicative Rayleigh noise, characterized by a con-

INDEX 21

Figure 2.4: Transesophageal Echocardiography

stant signal-to-noise ratio. Given an observed signal b resulting from the multiplication of
a clean signal component Ax and noise n, we have b = Ax×n. The Rayleigh distribution
is given by

f(b) =


b
σ2 exp

(
−b2

2σ2

)
if b > 0

0 otherwise

with mean σ
√
π/2 and variance σ2(2− π/2).

Although ultrasound imaging is widely used in medical diagnostics due to its non-
invasive nature, low cost, and real-time capabilities, speckle noise poses a significant
challenge. It reduces image contrast, obscures fine details, lowers SNR, and complicates
image interpretation and processing.

Because speckle affects the variance of pixel values (rather than their mean), it creates
a textured appearance that can distort important features. Therefore, it is often neces-
sary to apply specialized speckle filtering techniques that suppress noise while preserving
edges and structural details, in order to enhance image quality for further analysis or
clinical use.

2.2 Denoising procedure

When comparing image noise in CT scans and ultrasounds, it’s important to under-
stand that ultrasound images generally have more noise than CT images. Ultrasound
images are affected by a type of noise called speckle, which is a coherent, multiplicative
noise caused by the interference of ultrasound waves reflecting off microscopic structures

22 2. CT vs Ultrasound Imaging: A Comparative Study

in the tissue. This speckle noise appears as a grainy texture on the image and can reduce
image contrast and the ability to see fine details. On the other hand, CT images are
often filled with quantum noise, even if it is often depicted as additive noise, which is
both random and additive. This noise comes from statistical fluctuations in the number
of detected X-ray photons. Compared to ultrasound, CT images are generally cleaner
and less noisy, especially when the radiation dose is sufficient.

The speckle noise in ultrasound is difficult to completely eliminate because it is an
inherent physical effect of how ultrasound interacts with tissue. It also depends heavily
on factors like the operator’s technique, the position of the probe, and the patient’s
anatomy.

In summary, while ultrasound images tend to be noisier than CT images, ultrasounds
offer important advantages. They don’t use ionizing radiation, they are more affordable
and allow for real-time imaging, making them a valuable diagnostic tool despite the
increased noise.

Now I will outline the procedures we followed in processing ultrasound images, with
a particular focus on transesophageal echocardiography. The workflow we implemented
aligns with that employed in the reference studies above.

We started from the file ’0001 US 0012.seq.nrrd’ (our ultrasound), a NRRD file
with dimensions [46, 200, 200, 200], where 46 represents the time points, we scaled each
3D volume to correct the spatial proportions and obtain isotropic voxels. As a result,
we obtained a file with dimensions [46, 200, 257, 256]. We filtered every slice of the 46

volumes to reduce noise.
We have already said that the typical noise in ultrasound images is called speckle

noise. It is a multiplicative noise named so because it modulates the original image
intensity by multiplying it by a factor related to wave interference.

Therefore, we used filters specifically designed to remove speckle noise. We ap-
plied various combinations of denoising filters such as imnlmfilt, histeq, imadjust, and
adapthisteq. The final combination used was: imnlmfilt(volume(:,:,i), ’DegreeOfS-
moothing’, 7, ’SearchWindowSize’, 21, ’ComparisonWindowSize’, 7), followed by adapthis-

teq(uint8(volume(:,:,i)), ’ClipLimit’, 0.001, ’NumTiles’, [1616]).

We applied several filters that allowed us to enhance the resolution of the ultrasound
images. The main issue we encountered concerned the boundaries: the tissues separating
the different heart chambers were difficult to distinguish and poorly defined, due to
speckle noise and the limitations of the ultrasound device used for acquisition. To improve
the segmentation of the left atrial appendage, we introduced various filtering techniques.

• imnlmfilt applies a filter based on the “non-local means” method to the image

INDEX 23

really efficient for speckle noise. “Non-local means” is a method used for denoising
for digital image. Unlike classical filters, which use only the nearest pixels, NLM
exploits the similarity between even distant regions of the image. The main idea
is the following: if in the image there are similar areas, even if far away, then it is
useful use them to make a weighted average and reduce noise without blurring too
much detail.

The input arguments are “DegreeOfSmoothing”, which is a positive number indi-
cating the smoothing level of the image, if this value is not specified then it is
considered the default value that is the standard deviation of noise estimated from
the image; “SearchWindowSize”, which is an odd-valued positive integer indicating
the size of the area around each pixel used to search for similar regions and it
affects the quality of denoising (the higher the value, the better the result) and
the execution time (the higher the value, the slower the processing); “Comparison-
WindowSize”, which is an odd-valued positive integer indicating the size of the
image region around each pixel that is used for comparison with other regions by
computing similarity weights.

• Anisotropic diffusion is a filtering technique that reduces noise while preserv-
ing important edges in the image, based on a partial differential equation (PDE).
In practice, the filter diffuses the image values selectively, avoiding the blurring of
sharp edges: the filter is applied in a non-uniform way, high diffusion in homoge-
neous areas of the image (to reduce noise) and little or no diffusion near edges.

• imadjust maps the intensity values in grayscale image. It saturates the bottom
1% and the top 1% of all pixel values: it means that that pixels with values lower
than the first are set to 0 and those with values higher than the 99th percentile
are set to 1. The function linearly maps pixel values between the saturation limits
to values between 0 and 1, i.e. all intermediate values are scaled proportionally.
Since it expands the useful tone range this operation increases the contrast of the
output image.

The input arguments can be “ [low_in, high_in]-Contrast limits for input image”,
“[low_out,high_out]-Contrast limits for output image” and “γ”. The first is used to
linearly map intensity values in the input image, scaling the range between low_in
and high_in to the interval [0, 1]. The second is used when it is useful to map
intensity values, not to the interval [0, 1], but between low_out and high_out.
Lastly, γ is a non-negative scalar specifying the shape of curve describing the
relationship of input and output values. If γ is less than 1, then imadjust weights
the mapping toward higher (brighter) output values. If γ is greater than 1, then

24 2. CT vs Ultrasound Imaging: A Comparative Study

imadjust weights the mapping toward lower (darker) output values.

• histeq is used to enhance the contrast of grayscale images through histogram
equalization. It transforms the grayscale input image so that the histogram of
the output grayscale image with n bins (input argument) is approximately flat.
“Flat” means that the gray levels are more evenly distributed, resulting in improved
contrast, especially in dark or overexposed areas. When n is much smaller than
the number of gray levels in the input image (e.g. 256), the output image will have
an even flatter distribution, but with less details.

An input argument is “hgram”, the target histogram. It transforms the grayscale
input image so that the histogram of the output grayscale image approximately
matches the target histogram hgram. The number of bins in the histogram of the
output image is equal to the length of hgram.

• adapthisteq uses a technique called Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE), that is Adaptive Histogram Equalization (AHE) and Contrast-
Limited (CL): instead of equalizing the histogram of the entire image as histeq
does, equalization is performed locally on small regions (blocks) of the image; this
allows for improved contrast in specific areas, highlighting local details and in order
to avoid excessively amplifying noise (which sometimes happens with traditional
AHE), CLAHE limits the amplified contrast by setting a maximum threshold for
how much the contrast can be increased in each region.

The input arguments are “NumTiles-Number of tiles” that is the number of rectan-
gular contextual regions (tiles) into which adapthisteq divides the image, specified
as a 2−element vector of positive integers; “ClipLimit-Contrast enhancement limit”,
number in the range [0, 1], is a contrast factor that prevents over-saturation of the
image specifically in homogeneous areas, these areas are characterized by a high
peak in the histogram of the particular image tile due to many pixels falling inside
the same gray level range; “NBins” that corresponds to the number of histogram
bins used to build a contrast enhancing transformation, specified as a positive inte-
ger, higher values result in greater dynamic range at the cost of slower processing
speed; “Range-Range of output data”, “Distribution” that describes the desired his-
togram shape (uniform, rayleigh or exponential), and “α” that is a distribution
parameter, specified as a nonnegative number.

INDEX 25

2.3 Segmentation

Once the filtered 3D ultrasound volume was obtained, it was imported into ITK-
SNAP, an interactive software application that allows users to navigate three-dimensional
medical images, manually delineate anatomical regions of interest, and perform auto-
matic image segmentation, where automatic segmentation was performed, with optional
manual refinement, to extract the 3D segmentation of the left atrial appendage (LAA).
The automatic segmentation in ITK-SNAP is based on the Active Contour Model, im-
plemented through a variant of the Level Set Method, a mathematical technique used to
represent curves or surfaces evolving over time, commonly applied to the segmentation
of 2D or 3D image data. This method, classified as a deformable geometric model, relies
on the theory of hypersurface evolution, where surfaces adapt according to geometric
properties extracted from the image. Since the evolution is independent of any specific
parameterization, evolving curves and surfaces are implicitly represented as level sets of a
higher-dimensional function. This implicit representation allows the model to naturally
handle complex topological changes, such as merging or splitting of regions, during the
segmentation process. Let us consider the curve Γ(s, t) : [0, L(t)] × [0, T) → R2 with s

is the arc-length of the curve at time t. The time evolution of the curve is given by

Γt = V, Γ(s, 0) = Γ0(s)

V = Vnn+ Vtt, Γt = (V · n)n+ (V · t)t, Γ(s, 0) = Γ0(s)

Using the Epstein-Gage theorem, which states that the tangential component of the

Figure 2.5: curva

velocity vector affects only the parametrization and not the geometric shape of the curve,

we obtain: Γt = Vnn and

xt = V n yS
(x2

s+y2s)
1/2

yt = V n xS

(x2
s+y2s)

1/2

26 2. CT vs Ultrasound Imaging: A Comparative Study

The underlying idea is to represent the curve Γ(s, t) implicitly by a level set function

ϕ(x, y, t) : R2 × [0, T)→ R.

In this framework, the zero level set ϕ(x, y, t) = 0 corresponds to the set of points
lying on the curve Γ(s, t). Therefore, the evolution of the curve Γ in time t is captured
by the zero level set of the function ϕ at time t.

Figure 2.6

The main question is how the function ϕ(t) must evolve in time so that its zero level
set accurately follows the motion of the curve Γ(t). The evolution of the level set function
is governed by the level set equation:

ϕt + V · ∇ϕ = 0.

Since V = Vnn+ Vtt, we have

ϕt + (Vnn+ Vtt) · ∇ϕ = 0.

The tangent vector t is orthogonal to ∇ϕ, so t ·∇ϕ = 0. Therefore, the level set equation
becomes

ϕt + Vnn · ∇ϕ = 0.

Computing the dot product

n · ∇ϕ =
∇ϕ
|∇ϕ|

· ∇ϕ =
|∇ϕ|2

|∇ϕ|
= |∇ϕ|

we obtain
ϕt + Vnn · ∇ϕ = 0⇒ ϕt + Vn|∇ϕ| = 0.

This leads to the Eulerian formulation of the level set evolutionϕt + Vn|∇ϕ| = 0

ϕ(x, y, 0) = ϕ0(x, y)

INDEX 27

where ϕ0(x, y)) is defined such that ϕ−1
0 (0) = Γ0. The initial condition is

ϕ(x, y, 0) =


−d if (x, y) is inside the contour

0 if (x, y) lies on the contour

d if (x, y) is outside the contour

where d is a signed distance function. By evaluating ϕ at a generic point (x0, y0), one
can determine its relative position to the interface:

• If ϕ(x0, y0) < 0 then (x0, y0) lies inside the interface;

• If ϕ(x0, y0) > 0 then (x0, y0) lies outside the interface;

• If ϕ(x0, y0) = 0 then (x0, y0) lies on the interface.

Figure 2.7

The curve evolution may be: at constant speed, curvature-driven, motion-field driven,
or geodesic curvature-driven.

In particular, ITK-SNAP uses the Malladi-Sethian model, a topologically flexible
approach based on the interaction of three terms:

• A balloon term g(−|∇ϕ|), responsible for uniform expansion or contraction of
the surface;

• A curvature term gϵK|∇ϕ| inducing motion by mean curvature;

• An advection term ν∇ϕ∇g, which pushes the contour toward image edges, fol-
lowing the gradient of an edge indicator function g.

This leads to the level set evolution equation
ϕt = g(ϵK − 1)|∇ϕ|+ ν∇ϕ · ∇g in Ω×]0,∞[

ϕ(x, y, t) = min(ϕ0) in ∂Ω×]0,∞[

ϕ(x, y, t) = ϕ0(x, y) in Ω

28 2. CT vs Ultrasound Imaging: A Comparative Study

The first two terms describe a weighted motion by g that smooths and inflates the
interface. The inflation term is active away from the object boundaries where g = 1 The
third term drives the level set toward the object boundaries. Parameters ϵ and ν control
the relative influence of curvature and advection. The discrete update rule is

ϕn+1
ij = ϕn

ij +∆t


gij
(
ϵKn

ij − 1
) (

(Dx
ij)

2 + (Dy
ij)

2
)1/2

+
[
ν
(
max(gxij, 0)D

−x
ij +min(gxij, 0)D

+x
ij

)
+ max(gyij, 0)D

−y
ij +min(gyij, 0)D

+y
ij

]


2.4 Post-segmentation processing

Once the segmentation was obtained, we used the following codes in MATLAB:
nifti_read, DicomtoFsl, main_convert2nii, converti_nii, dilate_segmentation.

(i) nifti_read: is used to load, visualize, process, and save a 3D segmentation of the
TEE ultrasound stored in NIfTI format. A filtered 3D image and its corresponding
segmentation are loaded; the code then aligns the segmented volume correctly with
the 3D image, displays them through an image, and finally saves the result (creating
a binary volume V ol_fin, where each voxel with value > 0 becomes 1, and all other
values become 0).

Figure 2.8: Segmentation

(ii) DicomtoFsl is used to convert DICOM image series into the NIfTI format compat-
ible with FSL, which is commonly used in medical image processing. The software

INDEX 29

used for the conversion is MRIConvert, via its command-line utility mcverter. The
purpose of the code is to convert DICOM series (acquired from TEE ultrasound)
into NIfTI (.nii) format, save the results into a structure of 46 organized folders,
and use mcverter to perform the conversion into FSL-compatible NIfTI format. As
a result, it creates 46 folders (named TEE_1, TEE_2, etc.), each containing the
volume in hdr format.

(iii) main_convert2nii is used to convert medical images from the Analyze format
(.hdr) to the NIfTI format (.nii), using an external software called Convert3D
(c3d). The goal of the code is to: read .hdr files from a directory, sort them based
on the sequence name (TEE_1, TEE_2, ...), convert them to .nii (NIfTI format)
using c3d, and save the new .nii files into a separate folder. Convert3D (c3d) is a
command-line tool for converting between various medical image formats (DICOM,
NIfTI, HDR).

(iv) converti_nii has the aim to apply a volumetric segmentation to a medical im-
age (NIfTI), visualize it, save it, and automatically crop it across all TEE images,
preparing the data for subsequent analysis by focusing only on the Region of In-
terest (ROI). The code saves the segmentation mask in NIfTI format and performs
a crop by calculating the minimum and maximum coordinates of the segmented
region and adding safety margins. Finally, it crops all TEE images, producing
cropped images named: “image.crop1.nii.gz”, “image.crop2.nii.gz”, etc.

Figure 2.9: Crop della TEE

(v) dilate_segmentation has the aim to clean and binarize a segmented mask, apply
a 3D dilation (i.e., expand the segmented area), and save the result as a new mask
mask.nii.gz. To perform the dilation, each active voxel is expanded by 1 in all
directions using a 3× 3× 3 cube. This improves anatomical coverage.

30 2. CT vs Ultrasound Imaging: A Comparative Study

2.5 Elastix and Transformix

The goal is to construct a time-varying deformable mesh to describe the motion of an
anatomical structure (in our case, the left atrial appendage) based on volumetric data
acquired from transesophageal echocardiography images. After data preparation, mask
generation and segmentation, we will focus on the registration, and deformation of 3D
medical images.

To accomplish this, we will use the software tools elastix and transformix.

(i) Elastix (registration) is an open-source framework for medical image registra-
tion. It can be interpreted as the mathematical formulation of the registration
process. Image registration is, in fact, an important tool in the field of medical
imaging. Combination of patient data, mono- or multi- modal, often yields addi-
tional clinical information not apparent in the separate images. For this purpose,
the spatial relation between the images has to be found. Image registration is the
task of finding a spatial one-to-one mapping from voxels in one image to voxels in
the other image.

Elastix is used to align two images (typically 3D, such as ultrasound volumes)
through geometric transformations and similarity optimization. One image is con-
sidered the moving image IM(x), and the other the fixed image IF (x). Registration
is the problem of finding a displacement u(x) that makes IM(x + u(x)) spatially
aligned to IF (x), thus the goal is to transform the moving image so that it aligns
as closely as possible with the fixed image.

The transformation is defined as a mapping from the fixed image to the moving
image, T : ΩF ⊂ Rd → ΩM ⊂ Rd where d is the images dimension, ΩF and ΩM

the spatial domain. The quality of alignment is defined by a distance or similarity

Figure 2.10: Image registration

measure S, such as the sum of squared differences (SSD), the correlation ratio,

INDEX 31

or the mutual information (MI) measure. Because this problem is ill-posed for
nonrigid transformations T , a regularisation or penalty term P is often introduced
that constrains T .

Commonly, the registration problem is formulated as an optimisation problem in
which the cost function C is minimised w.r.t. T :

T̂ = argminTC(T ; IF , IM), (2.1)

with

C(T ; IF , IM) = −S(T ; IF , IM) + γP(T) (2.2)

where γ weighs similarity against regularity.

To solve the above minimisation problem, there are basically two approaches: para-
metric and nonparametric and Elastix is based on the parametric one. In paramet-
ric methods, the number of possible transformations is limited by introducing a
parametrization (model) of the transformation. The original optimization problem
thus becomes

T̂µ = argminTµ
C(Tµ; IF , IM) (2.3)

where the subscript µ indicates that the transform has been parameterized. The
vector µ contains the values of the “transformation parameters”. For example, when
the transformation is modeled as a 2D rigid transformation, the parameter vector
µ contains one rotation angle and the translations in x and y direction.

We rewrite this equation as

µ̂ = argminµC(µ; IF , IM) (2.4)

From this equation it becomes clear that the original problem (2.1) has been sim-
plified. Instead of optimizing over a space of functions T , we now optimize over
the elements of µ. Figure 2.11 shows the general components of a parametric reg-

Figure 2.11: The basic registration components.

32 2. CT vs Ultrasound Imaging: A Comparative Study

istration algorithm in a block scheme. First of all, we have the images. Then
we have the cost function C, or “metric”, which defines the quality of alignment.
As mentioned earlier, the cost function consists of a similarity measure S and a
regularisation term P .

Elastix takes as input:

(a) a fixed image,

(b) a moving image,

(c) optional masks (to restrict the registration to a specific region of interest,
ignoring the rest),

(d) a parameter file that defines the registration settings (including the type of
transformation, similarity metric, and interpolation method).

It applies a transformation, rigid, affine, or non-rigid, to align the moving image to
the fixed one. A similarity metric (such as mutual information, mean squared dif-
ference, or normalized correlation) is used and optimized to find the transformation
that maximizes similarity between the fixed image and the transformed moving im-
age. Optimization methods include gradient descent, adaptive stochastic gradient
descent, and others. The output consists of the transformed moving image and a
file with the transformation parameters TransformParameters.0.txt.

In our case, the input includes:

(a) im1 = immagine.crop1.nii.gz (moving image),

(b) im2 = immagine.crop2.nii.gz (fixed image),

(c) the mask mask.nii.gz,

(d) the segmentation segmentazione.crop.nii.gz, from which the mesh will be
extracted.

The process involves three main steps:

1. Rigid Registration: elastix performs a rigid alignment of im1 (moving) to im2

(fixed) using the mask. The output is stored in res_elastix_1_2/rigid.

2. Non-Rigid Registration (B-spline): The rigid transformation is used as initial-
ization for a deformable registration using a B-spline model.

3. Inverse Transformation Calculation: The inverse of the transformation (from
im2 to im1) is computed. This inverse is necessary for deforming the mesh in step
(iii).

INDEX 33

(ii) STL Mesh Creation from Segmentation: The goal is to convert a 3D seg-
mentation (in .nii format) into an STL mesh with coordinates consistent with
the Elastix reference system, making it suitable for subsequent processing. The
segmented mask is loaded and binarized, and a tetrahedral volumetric mesh is
generated from the binary mask. The mesh points are then transformed into the
Elastix coordinate system and saved as an .stl file.

(iii) Transformix (deformation) is a tool used to apply transformations to images
or point sets. Once a transformation between two images has been estimated using
elastix, transformix can be used to apply that transformation to an entire image,
a mask (segmentation), or a set of points (e.g., a mesh).

After registration with elastix, a file called TransformParameters.0.txt is gener-
ated, which contains all the transformation parameters (rigid, affine, or B-spline).
With transformix, this transformation can be applied to new data such as im-
ages, segmentations or masks, and 3D meshes (STL format). The output is
outputpoints.txt, which contains the list of transformed points.

In our case, the mesh nodes are first written to a file named InputPoints_1.txt,
formatted for compatibility with transformix. Then, the inverse transformation
(obtained from the inverse registration) is applied to the mesh using the corre-
sponding TransformParameters.0.txt file. Finally, the transformed nodes are
imported, and the deformed mesh is visualized over the image im2 using an inter-
active 3D viewer.

This procedure is repeated to cover all 46 time frames. An iterative 3D image reg-
istration is performed using Elastix, followed by point transformation (mesh deforma-
tion) using Transformix, over a sequence of volumetric images. The sequence is pro-
cessed first from frame 2 to 24 (main_mesh_forward), and then from frame 46 to 25

(main_mesh_backward).
The goal is to align each volumetric image to the next one in time (e.g., 2 → 3,

3→ 4, etc.). Afterward, the inverse transformation is applied to a set of 3D points (the
anatomical mesh) to deform it over time. The transformed points (Outputpoints) are
then saved frame by frame.

34 2. CT vs Ultrasound Imaging: A Comparative Study

Figure 2.12: Deformed mesh

Chapter 3

Variational model for 2D segmentation

We chose to focus on the 2D segmentation stage and to explore alternative approaches
employing different mathematical models for anatomical segmentation, in contrast to
those implemented in ITK-SNAP.

Image segmentation is the process of dividing an image into regions that are ho-
mogeneous with respect to certain features, such as intensity or texture, in order to
extract higher-level, more meaningful information from the image. This task is essential
in numerous applications, particularly in computer vision, including object detection,
recognition, measurement, and tracking. Many effective segmentation approaches rely
on variational models, in which the desired regions or their boundaries are obtained by
minimizing appropriately defined energy functionals.

3.1 Convex non-convex image segmentation

Starting from the paper “Convex non-convex image segmentation”, [11], we present a
variational model, combining convex and non-convex components, for multiphase image
segmentation. Better control over segmentation boundaries and efficient management of
intensity inhomogeneities are made possible by the model’s newly created non-convex
regularization term, which locally adjusts to image structures. The Alternating Direction
Method of Multipliers (ADMM) is an effective method for solving the resulting nonlinear
optimization problem.

This model is given by the sum of a smooth convex quadratic fidelity term, which
measures how much the segmentation deviates from the original image, and a non-smooth
non-convex regularization term, which quantifies the deviation of the segmentation from
the original image:

min
u∈Rn
J (u;λ, T, a), J (u;λ, T, a) := λ

2
||u− b||22 +

n∑
i=1

ϕ(||(∇u)i||2;T, a) (3.1)

35

36 3. Variational model for 2D segmentation

where λ > 0 is the regularization parameter, b ∈ Rn is the (vectorized) observed image,
(∇u)i ∈ R2 represents the discrete gradient of the image u ∈ Rn at pixels i, || · ||2 denotes
the l2-norm and ϕ(·;T, a) : [0,+∞) → R is a parameterized, piecewise-defined non-
convex penalty function with parameters T > 0, a > 0 with the following properties.
The parameter a allows to tune the degree of non-convexity of the regularizer, i.e. it
controls the extent to which the function ϕ is non-convex, while the parameter T is
devised to represent a given gradient magnitude threshold above which the boundaries
surrounding the features in the image are considered salient in a given context. This
parameter is essential for determining which pixels in the image do not need to be
regarded as the borders of the segmented areas. The penalty function ϕ plays two
roles in the regularization term of functional J . Since the corresponding pixels belong
to the inner parts of the regions to be segmented, ϕ smooths the image values when
the gradient magnitudes fall within the first interval [0, T). In the interval [T,+∞), ϕ
is non-convex and then flat, penalizing all possible gradient magnitudes in a manner
that is roughly equivalent. The parameters λ and a determine whether the non-smooth
functional J is convex or non-convex. The quadratic fidelity term is really highly convex,
and its positive second-order derivatives have the ability to offset the regularization
term’s negative second-order derivatives.

The idea of optimizing convex functionals that include non-convex, sparsity-promoting
terms is known as the Convex Non-Convex (CNC) strategy. This approach constructs
a globally convex functional that still incorporates locally non-convex components, such
as sparsity-inducing terms that encourage a limited number of boundaries and sharp,
well-defined segmentations. The CNC paradigm is designed to combine the best of both
worlds: the modeling flexibility and expressiveness of non-convex terms, together with
the stability and uniqueness of solutions ensured by global convexity.

In this framework, promoting sparsity in the image gradient consists in encourag-
ing the gradient magnitude to be zero almost everywhere, producing large homogeneous
regions, while permitting only a small number of locations where the gradient is signif-
icant, corresponding to clear discontinuities between regions. This behavior is a direct
consequence of non-convex regularization: sparsity induces piecewise-constant solutions
in which boundaries are sharp and localized. Large variations are penalized less severely,
as the penalty function ϕ becomes flat beyond a prescribed threshold T while small
variations incur a stronger penalty.

Sparsity is typically enforced through non-convex penalty functions (such as ϕ in the
proposed model), which are designed to heavily penalize small gradient magnitudes, driv-
ing them to zero, while imposing only mild penalties on large gradients, thus preserving
true edges. This selective treatment enables the model to suppress spurious variations

INDEX 37

likely attributable to noise, while maintaining significant discontinuities that correspond
to genuine structural boundaries in the image.

The attractiveness of such CNC approach resides in its ability to promote sparsity
more strongly than it is possible by using only convex terms while at the same time
maintaining convexity of the total optimization problem, so that well-known reliable
convex minimization approaches can be used to compute the (unique) solution.

The method used is a two-stage variational segmentation method: in the first stage
an approximate solution u∗ is computed, which represents a smoothed or regularized
version of the original image, obtained by minimizing the variational functional J (u);
once u∗ is obtained, the second stage consists in segmenting the image by dividing the
values into regions (phases) using thresholds. The thresholds can be selected manually,
or determined automatically, for example, using K-means, a clustering algorithm that
groups pixels into K classes.

In the variational model, a specially designed regularization function ϕ is introduced,
serving two purposes simultaneously:

(i) Smoothing the interior regions of the areas to be segmented, thereby removing
noise and unnecessary discontinuities,

(ii) Preserving important details along the boundaries (e.g., edges, contours, corners),
thus avoiding the smoothing of significant features at the margins.

Achieving both objectives is challenging with a simple or purely convex regularization
function, as “classical” convex regularization tends to smooth the entire image, including
its edges. The preservation of boundary features in this model is made possible by
the non-convex nature of the regularization function. Specifically: for small gradient
magnitudes (inside homogeneous regions), the function imposes a high penalty, leading
to strong smoothing; for large gradient magnitudes (at boundaries), the function applies
a low or constant penalty, thereby preserving the edges.

The practical advantage of this approach lies in its relation to the original Mumford-
Shah model, which aims to achieve sharp boundaries and smooth regions but is fully
non-convex and thus computationally difficult to solve. The proposed method adopts
the Convex-Non-Convex (CNC) strategy: the functional is constructed to retain overall
(or partial) convexity while incorporating a non-convex term to ensure crisp, well-defined
boundaries.

38 3. Variational model for 2D segmentation

3.1.1 Construction of the penalty function

The penalty function ϕ : R+ → R is constructed such that it can fulfill the twofold
aim: in the first interval [0, T) it has to behave like a smoothing regularizer, namely a
quadratic penalty, and in the second interval [T,+∞) it serves to control the length of
the region boundaries, and is realized by a concave penalty function prolonged with a
horizontal line. To fulfill the above requirements we used a piecewise polynomial function
defined over three subdomains [0, T), [T, T2) and [T2,∞), with the following properties:

• ϕ continuously differentiable for t ∈ R+

• ϕ twice continuously differentiable for t ∈ R+ \ {T, T2}

• ϕ convex and monotonically increasing for t ∈ [0, T)

• ϕ concave and monotonically non-decreasing for t ∈ [T, T2)

• ϕ constant for t ∈ [T2,∞)

• inf
t∈R+\{T,T2}

ϕ′′ = −a

The parameter T2 is defined to allow for a good balancing between the two terms,
a and T in the functional. In particular, the graph of the penalty function ϕ must be
pushed down when a increases. Towards this aim, we set T2 as T2(a) in such a way that
the slope in T given by ϕ′(T ;T, a) = (T2−T)a is a monotonically decreasing function of
the parameter a. In this work we set ϕ′(T ;T, a) = 1/a so that T2 is set to be T2 = T + 1

a2
.

Therefore, in the following we restrict the number of free parameters to a and T only.
The minimal degree polynomial function fulfilling the above requirements, turns out

to be the following piecewise quadratic penalty function:

ϕ(t;T, a) :=


ϕ1(t;T, a) :=

a(T2−T)
2T

t2 t ∈ [0, T)

ϕ2(t;T, a) := −a
2
t2 + aT2t− aTT2

2
t ∈ [T, T2)

ϕ3(t;T, a) :=
aT2(T2−T)

2
t ∈ [T2,∞)

(3.2)

which has been obtained by imposing the following constraints:

• ϕ1(0;T, a) = ϕ′
1(0;T, a) = 0

• ϕ1(T ;T, a) = ϕ2(T ;T, a)

• ϕ′
1(T ;T, a) = ϕ′

2(T ;T, a)

• ϕ′
2(T2;T, a) = 0

INDEX 39

• ϕ′′
2(t;T, a) = −a ∀t ∈ [T, T2)

• ϕ3 constant ∀t ∈ [T2,∞)

The use of a simple second-order piecewise polynomial as the penalty function is
justified by considerations of computational efficiency.

3.1.2 Convexity analysis and ADMM algorithm

We now present sufficient conditions on the model parameters, λ, T, a, guaranteeing
the strict convexity of J . Before stating the theorem we introduce some lemmas that
will be fundamental for the proof of the theorem.

First of all we rewrite J (·;λ, T, a) in (3.1) in explicit double-indexed form:

J (·;λ, T, a) =
∑

(i,j)∈Ω

λ

2
(ui,j − bi,j)2 +

∑
(i,j)∈Ω

ϕ

(√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2;T, a

)
(3.3)

Lemma 3.1. The function J (·;λ, T, a) : Rn → R defined in (3.3) is strictly convex if
the function f(·;λ, T, a) : R3 → R defined by

f(x1, x3, x3;λ, T, a) =
λ

6
(x21 + x22 + x23) + ϕ(

√
(x2 − x1)2 + (x3 − x1)2;T, a) (3.4)

is strictly convex.

Lemma 3.2. The function f(·;λ, T, a) : R3 → R defined in (3.4) is strictly convex if the
function g(·;λ, T, a) : R2 → R defined by

g(y1, y2;λ, T, a) =
λ

18
(y21 + y22) + ϕ

(√
y21 + y22;T, a

)
(3.5)

is strictly convex.

Lemma 3.3. Let ψ : R2 → R be a radially symmetric function defined as

ψ(x) := z(||x||2), z : R+ → R, z ∈ C1(R+). (3.6)

Then, ψ is strictly convex in x if and only if the function z : R→ R defined by

z(t) := z(|t|) (3.7)

is strictly convex in t.

Lemma 3.4. The function g(·;λ, T, a) : R2 → R defined in (3.5) is strictly convex if and
only if the function h(·;λ, T, a) : R→ R defined by

h(t;λ, T, a) =
λ

18
t2 + ϕ(|t|;T, a) (3.8)

is strictly convex.

40 3. Variational model for 2D segmentation

Theorem 3.5. Let ϕ(·;T, a) : R+ → R be the penalty function defined in (3.1). Then, a
sufficient condition for the functional J (·;λ, T, a) to be strictly convex is that the pair of
parameters (λ, a) ∈ R∗

+ × R∗
+ satisfies:

λ > 9a⇔ λ = τc9a, τc ∈ (1,+∞) (3.9)

Proof. It follows from Lemmas 3.1, 3.2 and 3.4 that a sufficient condition for the func-
tional J (·;λ, T, a) in (3.1) to be strictly convex is that the function h(·;λ, T, a) in (3.8)
is strictly convex. Recalling the definition of the penalty function ϕ(·;T, a) in (3.2),
h(·;λ, T, a) in (3.8) can be rewritten in the following explicit form:

h(t;λ, T, a) :=


h1(t;λ, T, a) := (λ

18
− a

2
+ a T2

2T
)t2 |t| ∈ [0, T)

h2(t;λ, T, a) := (λ
18
− a

2
)t2 + aT2|t| − aTT2

2
|t| ∈ [T, T2)

h3(t;λ, T, a) :=
λ
18
t2 + aT2(T2−T)

2
|t| ∈ [T2,∞)

(3.10)

Clearly, the function h above is even and piecewise quadratic; and, as far as regularity is
concerned, it is immediate to verify that h ∈ C∞(R \ {±T,±T2})∩C1(R). In particular,
the first-order derivative function h′ : R → R and the second-order derivative function
h′′ : R \ {±T,±T2} → R are as follows:

h′(t;λ, T, a) :=


h′1(t;λ, T, a) := (λ

9
− a+ aT2

T
)t |t| ∈ [0, T)

h′2(t;λ, T, a) := (λ
9
− a)t+ aT2sign(t) |t| ∈ [T, T2)

h′3(t;λ, T, a) :=
λ
9
t |t| ∈ [T2,∞)

(3.11)

h′′(t;λ, T, a) :=


h′′1(t;λ, T, a) := (λ

9
− a+ aT2

T
) |t| ∈ [0, T)

h′′2(t;λ, T, a) :=
λ
9
− a |t| ∈ [T, T2)

h′′3(t;λ, T, a) :=
λ
9

|t| ∈ [T2,∞)

(3.12)

We notice that the functions h in (3.10) and h′ in (3.11)) are both continuous at points
t ∈ {±T,±T2}, whereas for the function h′′ in (3.12) we have at points t ∈ {T, T2}
(analogously at points t ∈ {−T,−T2}):

T : lim
t↑T

h′′1(t;λ, T, a) =
λ

9
− a+ a

T2
T
̸= λ

9
− a = lim

t↓T
h′′2(t;λ, T, a)

T2 : lim
t↑T2

h′′2(t;λ, T, a) =
λ

9
− a ̸= λ

9
= lim

t↓T2

h′′3(t;λ, T, a)

(3.13)

After recalling that λ, T, a > 0 and T2 > T, we notice that

h′′1(t;λ, T, a) =
λ

9
+
a

T
(T2 − T) > 0, h′′3(t;λ, T, a) =

λ

9
> 0 (3.14)

hence the function h is strictly convex for |t| ∈ [0, T) and |t| ∈ (T2,∞). A sufficient
condition (it is also a necessary condition since the function is quadratic) for h to be

INDEX 41

strictly convex in |t| ∈ (T, T2) is that the second-order derivative h′′2(t;λ, T, a) defined
in (3.12) is positive. This clearly leads to condition (3.9) in the theorem statement.
We have thus demonstrated that if (3.9) is satisfied then h is strictly convex for t ∈
{±T,±T2}. It remains to handle the points ±T,±T2 where the function h does not
admit second-order derivatives. Since h is even and continuously differentiable, it is
sufficient to demonstrate that if condition (3.9) is satisfied then the first-order derivative
h′ is monotonically increasing at points t ∈ {T, T2}. In particular, we aim to prove:

T :

h′(t1;λ, T, a) < h′(T ;λ, T, a) ∀t1 ∈ (0, T)

h′(t2;λ, T, a) > h′(T ;λ, T, a) ∀t2 ∈ (T, T2)

T2 :

h′(t2;λ, T, a) < h′(T2;λ, T, a) ∀t2 ∈ (T, T2)

h′(t3;λ, T, a) > h′(T2;λ, T, a) ∀t3 ∈ (T2,+∞)

(3.15)

Recalling the definition of h′ in (3.11), we obtain:

T :

(λ
9
− a+ aT2

T
)t1 < (λ

9
− a)T + aT2 ∀t1 ∈ (0, T)

(λ
9
− a)t2 + aT2 > (λ

9
− a)T + aT2 ∀t2 ∈ (T, T2)

T2 :

(λ
9
− a)t2 + aT2 <

λ
9
T2 ∀t2 ∈ (T, T2)

λ
9
t3 > λ

9
T2 ∀t3 ∈ (T2,+∞)

(3.16)

and, after simple algebraic manipulations:

T :


(
λ

9
− a︸ ︷︷ ︸
>0

+ a
T2
T︸︷︷︸

>0

) (t1 − T)︸ ︷︷ ︸
<0

< 0 ∀t1 ∈ (0, T)

(
λ

9
− a)︸ ︷︷ ︸
>0

(t2 − T)︸ ︷︷ ︸
>0

> 0 ∀t2 ∈ (T, T2)

T2 :


(
λ

9
− a)︸ ︷︷ ︸
>0

(t2 − T)︸ ︷︷ ︸
<0

< 0 ∀t2 ∈ (T, T2)

λ

9︸︷︷︸
>0

(t3 − T2)︸ ︷︷ ︸
>0

> 0 ∀t3 ∈ (T2,+∞)

(3.17)

Since λ, T, a > 0 and we are assuming λ > 9a and 0 < t1 < T < t2 < T2 < t3, inequalities
in (3.17) are satisfied, hence the proof is completed.

The algorithm used to numerically solve the model (3.1) under the parameters con-
dition of the theorem 3.5 is the ADMM. First of all we resort to the variable splitting

42 3. Variational model for 2D segmentation

technique and introduce the auxiliary variable t ∈ R2n, such that model (3.1) is rewritten
in the following linearly constrained equivalent form:

{u∗, t∗} ← argmin
u,t

{
λ

2
||u− b||22 +

n∑
i=1

ϕ(||ti||2;T, a)

}
(3.18)

subject to t = Du.

To solve problem (3.18) we define the augmented Lagrangian functional

L(u, t; ρ) = λ

2
||u− b||22 +

n∑
i=1

ϕ(||ti||2;T, a)− ⟨ρ, t−Du⟩+
β

2
||t−Du||22 (3.19)

where β > 0 is a scalar penalty parameter and ρ ∈ R2n is the vector of Lagrange multi-
pliers associated with the system of linear constraints. We then consider the following
saddle-point problem:

Find (u∗, t∗; ρ∗) ∈ Rn × R2n × R2n s.t. L(u∗, t∗; ρ) ≤ L(u∗, t∗; ρ∗) ≤ L(u, t; ρ∗) (3.20)

∀(u, t; ρ) ∈ Rn × R2n × R2n.
Given the previously computed (or initialized for k = 1) vectors t(k−1) and ρ(k),

the k-th iteration of the proposed ADMM-based scheme applied to the solution of the
saddle-point problem (3.19)-(3.20) reads as follows

u(k) ← arg min
u∈Rn
L(u, t(k−1); ρ(k)), (3.21)

t(k) ← arg min
t∈R2n

L(u(k), t; ρ(k)), (3.22)

ρ(k+1) ← ρ(k) − β(t(k) −Du(k)). (3.23)

Our focus now is on addressing the subproblems for u, (3.21), and t, (3.22).
The minimization subproblem for u in (3.21) can be rewritten as follows

u(k) ← arg min
u∈Rn

{
λ

2
||u− b||22 − ⟨ρ(k), Du⟩+

β

2
||t(k−1) −Du||22

}
(3.24)

where constant terms have been omitted. Equivalently the minimization subproblem for
t in (3.22) can be rewritten in the following component-wise form

t(k) ← arg min
t∈R2n

{
n∑

i=1

ϕ(||ti||2;T, a) +
β

2
||ti − r(k)i ||22

}
(3.25)

where the n vectors r(k)i ∈ R2, i = 1, . . . , n which are constant with respect to the
optimization variable t, are defined by

ri(k) = (Du(k))i +
1

β
(ρ(k))i (3.26)

INDEX 43

The quadratic minimization problem (3.24) has first-order optimality conditions which
lead to the following linear system:(

In +
β

λ
DTD

)
u = b+

β

λ
DT

(
t(k−1) − 1

β
ρ(k)
)

(3.27)

Since, β
λ
, the coefficient matrix of the linear system (3.27) is symmetric, positive def-

inite and highly sparse, therefore (3.27) can be solved very efficiently by the iterative
(preconditioned) conjugate gradient method.

With regard to the subproblem for t, the minimization problem in (3.25) is thus
equivalent to the following n independent 2-dimensional problems:

t
(k)
i ← arg min

ti∈R2

{
Θi(ti) := ϕ(||ti||2;T, a) +

β

2
||ti − r(k)i ||22

}
, i = 1, . . . , n (3.28)

where we introduced the cost functions Θi : R2 → R, i = 1, . . . , n.

Since we are under the condition of Theorem 3.5, such that the original functional
J (u;λ, T, a) is strictly convex we aim at avoiding non convexity of the ADMM sub-
problems (3.28). In the first part of Proposition 3.6 below we give a necessary and
sufficient condition for strict convexity of the cost functions in (3.28).

Proposition 3.6. Let T, a, β ∈ R∗
+ and r ∈ R2 be given constants, and let ϕ(·;T, a) :

R+ → R be the penalty function defined in (3.2). Then:

1. The function
Θ(x) := ϕ(||x||2;T, a) +

β

2
||x− r||22, x ∈ R2 (3.29)

is strictly convex (convex) if and only if the following condition holds

β > a (β ≥ a) (3.30)

2. In case that (3.30) holds, the strictly convex minimization problem

arg min
x∈R2

Θ(x) (3.31)

admits the unique solution x∗ ∈ R2 given by the following shrinkage operator

x∗ = ξ∗r, with ξ∗ ∈ (0, 1] (3.32)

equal to

a) ξ∗ = k1 if ||r||2 ∈ [0, k0) (3.33)

b) ξ∗ = k2 −
k3
||r||2

if ||r||2 ∈ [k0, T2) (3.34)

c) ξ∗ = 1 if ||r||2 ∈ [T2,+∞) (3.35)

44 3. Variational model for 2D segmentation

and with

k0 = T +
a

β
(T2 − T), k1 =

T

k0
, k2 =

β

β − a
, k3 =

aT2
β − a

(3.36)

Based on (3.29) and (3.30) we can state that all the problems in (3.28) are strictly
convex if and only if

β > a (3.37)

In case that (3.37) is satisfied, the unique solutions of the strictly convex problems
(3.28) can be obtained based on (3.32) in the above proposition, that is:

t
(k)
i = ξ

(k)
i r

(k)
i , i = 1, . . . , n, (3.38)

where the shrinkage coefficients ξ(k)i ∈ (0, 1] are computed according to 3.33, 3.20, 3.21.
The solutions of problems (3.28) can thus be determined very efficiently by the closed

forms given in 3.33, 3.20, 3.21 with computational cost O(n).

3.1.3 Convergence analysis

In this section, we analyze convergence of the proposed ADMM-based minimization
approach, whose main computational steps are reported in Algorithm 1.

Algorithm 1 ADMM-based scheme for the solution of CNC problem (4.1)

input: observed image b ∈ Rn

output: approximate solution u∗ ∈ Rn of (4.1)
parameters: MODEL: T > 0 and λ > 0

1. initialization: t(0) = Db, ρ(1) = 0

set a s.t. λ > 9a according to (4.3),
set β > 0 s.t. β ≥ max{2a, a λ

λ−8a
} according to (4.30)

2. for k = 1, 2, 3, . . . until convergence do:

update primal variables:

· compute u(k) by solving (4.13)
· compute t(k) by (4.12), (4.19), (4.20), (4.21) and (4.24)

update dual variable:

· compute ρ(k+1) by (4.9)

3. end for

4. u∗ = u(k)

In particular, we prove convergence of Algorithm 1 in case that conditions (3.9) and
(3.44) are satisfied.

INDEX 45

To simplify the notations in the subsequent discussion, we give the following defini-
tions concerning the objective functional in the (u, t)-split problem (3.18):

G(u, t) :=
λ

2
||u− b||22︸ ︷︷ ︸

F (u)

+
n∑

i=1

ϕ(||ti||2;T, a)︸ ︷︷ ︸
R(t)

, (3.39)

where the parametric dependencies of the fidelity term F (u) on λ and of the regularization
term R(t) on T and a are dropped for brevity. The augmented Lagrangian functional in
(3.19) can thus be rewritten as

L(u, t; ρ) = F (u) +R(t)− ⟨ρ, t−Du⟩+ β

2
||t−Du||22, (3.40)

and the regularization term in the original proposed model (3.1), referred to as R(u),
reads

R(u) = R(Du). (3.41)

To prove convergence, we rely on the optimality conditions of the augmented La-
grangian with respect to the primal variables (u, t) and on the construction of suitable
Fejér-monotone sequences. In our model, the overall functional J is convex, but the reg-
ularization term is non-convex, which requires adapting the standard proof techniques.
The proof is structured as follows:

1. derivation of the optimality conditions for problem (3.1);

2. analysis of convexity conditions for the augmented Lagrangian (3.40);

3. proof of the equivalence between the split problem (3.18) and the saddle-point
problem (3.19)-(3.20);

4. proof of convergence of Algorithm 1 to a solution of (3.19)-(3.20), and hence to the
unique solution of (3.1).

Regarding point 1, specifically the analysis of the optimality condition, since the
regularization term is non-smooth and non-convex, tools from non-smooth nonconvex
analysis are required, in particular the concept of Clarke’s generalized gradient. In the
following we will denote by ∂x[f](x∗) and by ∂x[f](x∗) the subdifferential and the Clarke
generalized gradient, respectively, with respect to x of the function f calculated at x∗.

Before giving the first-order optimality conditions for problem (3.1) we state a lemma
providing some results on locally Lipschitz continuity which are necessary for the gener-
alized gradients being defined.

46 3. Variational model for 2D segmentation

Lemma 3.7. For any pair of parameters (λ, a) satisfying condition (3.9), the functional
J in (3.1) and, separately, the regularization term R in (3.41) and the quadratic fidelity
term, are locally Lipschitz continuous functions.

Proposition 3.8. For any pair of parameters (λ, a) satisfying condition (3.9), the func-
tional J : Rn → R in (3.1) has a unique (global) minimizer u∗ which satisfies

0 ∈ ∂u[J](u∗) (3.42)

where 0 denotes the null vector in Rn and ∂u[J](u∗) ⊂ Rn represents the sub-differential
(with respect to u, calculated at u∗) of functional J . Moreover, it follows that

0 ∈ DT∂t[R](Du
∗) + λ(u∗ − b), (3.43)

where ∂t[R](Du∗) ⊂ Rn denotes the Clarke generalized gradient (with respect to t, calcu-
lated at Du∗) of the non-convex non-smooth regularization function R defined in (3.39).

Subsequently, regarding point 2, namely the convexity conditions for the augmented
Lagrangian we focus on showing the convexity with respect to the pair of primal variables
(u, t).

In our case, where the regularization term is non-convex, the convexity conditions is
given by the following Proposition:

Proposition 3.9. For any given vector of Lagrange multipliers ρ ∈ R2n, the augmented
Lagrangian functional L(u, t; ρ) in (3.40) is proper, continuous and coercive jointly in
the pair of primal variables (u, t). Moreover, in case that condition (3.9) is satisfied,
L(u, t; ρ) is jointly convex in (u, t) if the penalty parameter β satisfies

β ≥ a
λ

λ− 8a
, (3.44)

or, equivalently
β ≥ 9a

τc
9τc − 8

, τc ∈ (1,+∞). (3.45)

Finally, we focus on point 4, that is, the demonstration of convergence of Algorithm
1 to a solution of (3.19)-(3.20), and hence to the unique solution of (3.1). We will
not dwell on point 3, namely the demonstration of equivalence (in terms of solutions)
between the split problem (3.18) and the saddle-point problem (3.19)-(3.20), since this
aspect is not essential for the purposes of the present work. The only statement we will
make regarding point 3 is the following theorem:

Theorem 3.10. For any pair of parameters (λ, a) satisfying condition (3.9) and any
parameter β fulfilling condition (3.45), the saddle-point problem (3.19)-(3.20) admits at
least one solution and all the solutions have the form (u∗, Du∗; ρ∗), with u∗ denoting the
unique global minimizer of functional J in (3.1).

INDEX 47

Given the existence and the good properties of the saddle points of the augmented
Lagrangian functional in (3.40), highlighted in Theorem 3.10, it remains to demonstrate
that the ADMM iterative scheme outlined in Algorithm 1 converges towards one of these
saddle points, that is towards a solution of the saddle-point problem (3.19)-(3.20). This
is the goal of Theorem 3.11 below.

Theorem 3.11. Assume that (u∗, t∗; ρ∗) is a solution of the saddle-point problem (3.19)-
(3.20). Then, for any pair of parameters (λ, a) satisfying condition (3.9) and any pa-
rameter β fulfilling condition

β > β := max

{
2a, 9a

τc
9τc − 8

}
, (3.46)

the sequence {(u(k), t(k); ρ(k)}+∞
k=1 generated by Algorithm 1 satisfies:

lim
k→+∞

u(k) = u∗, (3.47)

lim
k→+∞

t(k) = t∗ = Du∗. (3.48)

Proof. Let us define the following errors:

u(k) = u(k) − u∗, t
(k)

= t(k) − t∗, ρ(k) = ρ(k) − ρ∗. (3.49)

Since (u∗, t∗, ρ∗) is a saddle-point of the augmented Lagrangian functional in (3.19),
it follows from Theorem 3.10 that t∗ = Du∗. This relationship, together with the ADMM
updating formula for the vector of Lagrange multipliers in (3.23), yields:

ρ(k+1) = ρ(k) − β(t(k) −Du(k)). (3.50)

It then follows easily from (3.50) that

||ρ(k)||22 − ||ρ(k+1)||22 = 2β⟨ρ(k), t(k) −Du(k)⟩ − β2||t(k) −Du(k)||22. (3.51)

Now we focus on the computation of a lower bound for the right-hand side of (3.51).
Since (u∗, t∗; ρ∗)) is a saddle-point of the augmented Lagrangian functional in (3.19), it
satisfies the following optimality conditions:

F (u)− β1
2
∥t∗ −Du∥22 − F (u∗) +

β1
2
∥t∗ −Du∗∥22+

−
〈
DT
(
(β + β1)(t

∗ −Du∗)− ρ∗
)
, u− u∗

〉
≥ 0 ∀u ∈ Rn, (3.52)

R(t) +
β2
2
||t−Du∗||22 −R(t∗)−

β2
2
||t∗ −Du∗||22

+ ⟨(β − β2)(t∗ −Du∗)− ρ∗, t− t∗⟩ ≥ 0 ∀t ∈ R2n. (3.53)

48 3. Variational model for 2D segmentation

Similarly, by the construction of (u(k), t(k)) in Algorithm 1, we have:

F (u)− β1
2
∥t(k−1) −Du∥22 − F (u(k)) +

β1
2
∥t(k−1) −Du(k)∥22+

−
〈
DT
(
(β + β1)(t

(k−1) −Du(k))− ρ(k)
)
, u− u(k)

〉
≥ 0 ∀u ∈ Rn, (3.54)

R(t) +
β2
2
||t−Du(k)||22 −R(t(k))−

β2
2
||t(k) −Du(k)||22

+
〈
(β − β2)(t(k) −Du(k))− ρ(k), t− t(k)

〉
≥ 0 ∀t ∈ R2n. (3.55)

Taking u = u(k) in (3.52), u = u∗ in (3.54) and recalling that ⟨DTw, z⟩ = ⟨w,Dz⟩, by
addition we obtain:

−⟨ρ(k), Du(k)⟩︸ ︷︷ ︸
A1

+ β⟨t(k−1)
, Du(k)⟩︸ ︷︷ ︸

B1

− (β + β1)||Du(k)||22︸ ︷︷ ︸
C1

≥ 0. (3.56)

Similarly, taking t = t(k) in (3.53) and t = t∗ in (3.55), after addition we have:

−⟨ρ(k), t(k)⟩︸ ︷︷ ︸
A2

+ β⟨t(k), Du(k)⟩︸ ︷︷ ︸
B2

− (β + β2)||t
(k)||22︸ ︷︷ ︸

C2

≥ 0, (3.57)

where, we recall, the parameters β1 and β2 in (3.56)-(3.57) satisfy the constraints

−β < β1 ≤ τc
9

8
a, a ≤ β2 < β. (3.58)

By summing up (3.56)-(3.57), we obtain:

⟨ρ(k), t(k) −Du(k)⟩ − β⟨t(k) − t(k−1)
, Du(k)⟩+

−
(
(β − β2)||t

(k)||22 − 2β⟨t(k), Du(k)⟩+ (β + β1)||Du(k)||22
)
≥ 0 (3.59)

that is

⟨ρ(k), t(k) −Du(k)⟩ − β⟨t(k) − t(k−1)
, Du(k)⟩ − β + β3

2
||t(k) −Du(k)||22((

− β2 −
β3
2

+
β

2

)
||t(k)||22 − (β − β3)⟨t

(k)
, Du(k)⟩+

(
β1 −

β3
2

+
β

2

)
||Du(k)||22

)
≥ 0

(3.60)

where we introduced the positive coefficient β3 > 0 (the reason will be clear later on).
We want that the last term in (3.60) takes the form

−||c1t
(k) − c2Du(k)||22

with c1, c2 > 0. Hence, first we impose that the coefficients of ||t(k)||22 and ||Du(k)||22 in
(3.60) are strictly positive, which yields:

β1 >
β3
2
− β

2
, β2 < −

β3
2

+
β

2
. (3.61)

INDEX 49

Combining (3.61) with conditions (3.58), we obtain:

β3
2
− β

2
< β1 ≤ τc

9

8
a, a ≤ β2 < −

β3
2

+
β

2
, 0 < β3 < β − 2a. (3.62)

From condition on β3 in (3.62), the following constraint for β is derived:

β > 2a. (3.63)

We notice that condition (3.63) can be more stringent than (3.45), depending on τc, hence
it has been taken as an hypothesis of this theorem and will be considered, together with
(3.45), in the rest of the proof. From condition on β3 in (3.62) it also follows that the
coefficient β − β3 of the scalar product in (3.60) is positive.

Then, we have to impose that the coefficient of the term −⟨t(k), Du(k)⟩ in (3.60) is
twice the product of the square roots of the (positive) coefficients of ||t(k)||22 and ||Du(k)||22,
that is:

β − β3 = 2

√(
− β2 −

β3
2

+
β

2

)(
β1 −

β3
2

+
β

2

)
=⇒ β = β3 + 2

β1β2
β1 − β2

. (3.64)

By imposing condition on β3 in (3.62), namely β−β3 > 2a, it is easy to verify that (3.64)
admits acceptable solutions only in case that β1 > β2. By setting in (3.64) β1 = τc

9
8
a and

β2 = a, which are acceptable values according to this last result (since τc > 1, clearly
β1 > β2) and also conditions (3.62), we obtain:

β = β3 + 2a
9τc

9τc − 8
. (3.65)

We now check if there exist acceptable values for the two remaining free parameters,
namely β and β3, such that (3.65) holds. We impose that β in (3.65) satisfies its constraint
in (3.45), which guarantees convexity of the augmented Lagrangian functional, and the
derived condition in (3.63):β3 + 2a 9τc

9τc−8
≥ a 9τc

9τc−8

β3 + 2a 9τc
9τc−8

> 2a
=⇒

β3 ≥ −a 9τc
9τc−8

β3 > −a 16
9τc−8

(3.66)

Since τc > 1 (and a > 0), bot conditions in (3.66) are satisfied for any β3 > 0. Hence, for
β1 = τc

9
8
a, β2 = a and any 0 < β3 < β − 2a, with β > 2a, the last term in (3.60) can be

written in the form

−||c1t
(k) − c2Du(k)||22 with

c1 =
β−β3

2
− a

c2 =
β−β3

2
+ τc

9
8
a

(3.67)

50 3. Variational model for 2D segmentation

where c1, c2 > 0, c1 ̸= c2. Replacing the expression in (3.67) for the last term in (3.60),
we have:

⟨ρ(k), t(k) −Du(k)⟩ − β + β3
2
||t(k) −Du(k)||22 − β⟨t

(k) − t(k−1)
, Du(k)⟩+

− ||c1t
(k) − c2Du(k)||22 ≥ 0

⇐⇒2β⟨ρ(k), t(k) −Du(k)⟩ − β2||t(k) −Du(k)||22 ≥ ββ3||t
(k) −Du(k)||22

+ 2β2⟨t(k) − t(k−1)
, Du(k)⟩+ 2β||c1t

(k) − c2Du(k)||22, (3.68)

where in (3.68) we multiplied both sides by the positive coefficient 2β. We notice that
the left-hand side of (3.68) coincides with the right-hand side of (3.51), hence it follows
that:

||ρ(k)||22 − ||ρ(k+1)||22 ≥ ββ3||t
(k) −Du(k)||22 + 2β2 ⟨t(k) − t(k−1)

, Du(k)⟩︸ ︷︷ ︸
T

+ 2β||c1t
(k) − c2Du(k)||22. (3.69)

At this point, we concentrate on the computation of a lower bound for the term T in
(3.69).

We can write:

⟨t(k) − t(k−1)
, Du(k)⟩ = ⟨t(k) − t(k−1)

, Du(k) −Du(k−1)⟩

+ ⟨t(k) − t(k−1)
, Du(k−1) − t(k−1)⟩

+ ⟨t(k) − t(k−1)
, t

(k−1)⟩. (3.70)

First, we notice that:

⟨t(k) − t(k−1)
, t

(k−1)⟩ = 1

2

(
||t(k)||22 − ||t

(k−1)||22 − ||t
(k) − t(k−1)||22

)
. (3.71)

Then, from the construction of t(k−1) (from u(k−1)), we have:

R(t) +
β2
2
||t−Du(k−1)||22 −R(t(k−1))− β2

2
||t(k−1) −Du(k−1)||22

+ ⟨(β − β2)(t(k−1) −Du(k−1))− ρ(k−1), t− t(k−1)⟩ ≥ 0 ∀t ∈ R2n. (3.72)

Taking t = t(k−1) in (3.55) and t = t(k) in (3.72), we obtain:

R(t(k−1) +
β

2
||t(k−1) −Du(k)||22 −R(t(k))−

β2
2
||t(k) −Du(k)||22

+ ⟨(β − β2)(t(k) −Du(k))− ρ(k), t(k−1) − t(k)⟩ ≥ 0, (3.73)

R(t(k)) +
β2
2
||t(k) −Du(k−1)||22 −R(t(k−1))− β2

2
||t(k−1) −Du(k−1)||22

+ ⟨(β − β2)(t(k−1) −Du(k−1))− ρ(k−1), t(k) − t(k−1)⟩ ≥ 0. (3.74)

INDEX 51

By addition of (3.73) and (3.74), we have that

β⟨⟨t(k) − t(k−1)
, Du(k) −Du(k−1)⟩+ ⟨t(k) − t(k−1)

, ρ(k) − ρ(k−1)⟩ ≥ (β − β2)||t
(k) − t(k−1)||22

(3.75)
Recalling that

ρ(k) − ρ(k−1) = ρ(k) − ρ(k−1) = −β(t(k−1) −Du(k−1)), (3.76)

replacing (3.76) into (3.75) and then dividing by β, we obtain:

⟨t(k) − t(k−1)
, Du(k) −Du(k−1)⟩+ ⟨t(k) − t(k−1)

, Du(k−1) − t(k−1)⟩ ≥ β − β2
β
||t(k) − t(k−1)||22.

(3.77)
From (3.70), (3.71) and (3.77), we have:

⟨t(k) − t(k−1)
, Du(k)⟩ ≥ 1

2

(
||t(k)||22 − ||t

(k−1)||22 − ||t
(k) − t(k−1)||22

)
+
β − β2
β
||t(k) − t(k−1)||22

=
1

2

(
||t(k)||22 − ||t

(k−1)||22 +
β − 2β2

β
||t(k) − t(k−1)||22

)
. (3.78)

We proceed to state the convergence results for sequences t(k), Du(k), ρ(k).
From (3.69) and (3.78), we obtain:

||ρ(k)||22 − ||ρ(k+1)||22 ≥ β2||t(k)||22 − β2||t(k−1)||22 + β(β − 2β)||t(k) − t(k−1)||22
+ ββ3||t

(k) −Du(k)||22 + 2β||c1t
(k) − c2Du(k)||22, (3.79)

that is (
||ρ(k)||22 + β2||t(k−1)||22

)
︸ ︷︷ ︸

s(k)

−
(
||ρ(k+1)||22 + β2||t(k)||22

)
︸ ︷︷ ︸

s(k+1)

≥ β(β − 2β2)||t
(k) − t(k−1)||22 + ββ3||t

(k) −Du(k)||22
+ 2β||c1t

(k) − c2Du(k)||22 ≥ 0. (3.80)

where we have introduced the scalar sequence {s(k)}, which is clearly bounded from below
by zero. We notice that the coefficient β− 2β2 in (3.80) is positive due to the constraint
β > 2a. Since the right-hand side of the first inequality in (3.80) is nonnegative, {s(k)}
is monotonically non-increasing, hence convergent. This implies that the right-hand side
of (3.80) tend to zero as k →∞. From these considerations and (3.80) it follows that:

{ρ(k)}, {t(k)}, {Du(k)} are bounded =⇒ {ρ(k)}, {t(k)}, {Du(k)} bounded, (3.81)

lim
k→∞
||t(k) − t(k−1)||2 = lim

k→∞
||t(k) − t(k−1)||2 = 0, (3.82)

lim
k→∞
||t(k) −Du(k)||2 = lim

k→∞
||t(k) −Du(k)||2 = 0, (3.83)

lim
k→∞
||c1t

(k) − c2Du(k)||2 = 0. (3.84)

52 3. Variational model for 2D segmentation

Since the two coefficients c1, c2 in (3.84) satisfy c1, c2 ̸= 0, c1 ̸= c2, then it follows from
(3.83)-(3.84) that both the sequences {t(k)} and {Du(k)} tend to zero as k →∞. Results
in (3.81)-(3.84) can thus be rewritten in the following more concise and informative form:

{ρ(k)} is bounded, (3.85)

lim
k→∞

t
(k)

= 0⇐⇒ lim
k→∞

t(k) = t∗ = Du∗, (3.86)

lim
k→∞

Du(k) = 0⇐⇒ lim
k→∞

Du(k) = Du∗, (3.87)

where the last equality in (3.86) comes from the saddle-point properties stated in Theo-
rem 3.10. Since it will be useful later on, we note that it follows from (3.86) that

lim
k→∞

R(t(k)) = R(t∗). (3.88)

Finally we give the convergence results for sequence u(k). We now prove that limk→∞ u(k) =

u∗. Since (u∗, t∗; ρ∗) is a saddle point of the augmented Lagrangian functional L(u, t; ρ),
we have

L(u∗, t∗; ρ∗) ≤ L(u, t; ρ∗) ∀(u, t) ∈ Rn × R2n. (3.89)

By taking u = u(k), t = t(k) in (3.89) and recalling the definition of L(u, t; ρ) in (3.40) we
have:

F (u∗) +R(t∗)− ⟨ρ∗, t∗ −Du∗︸ ︷︷ ︸
0

⟩+ β

2
|| t∗ −Du∗︸ ︷︷ ︸

0

||22

≤ F (u(k)) +R(t(k))− ⟨ρ∗, t(k) −Du(k)⟩+ β

2
||t(k) −Du(k)||22

⇐⇒ F (u∗) ≤ F (u(k)) +R(t(k))−R(t∗)

− ⟨ρ∗, t(k) −Du(k)⟩+ β

2
||t(k) −Du(k)||22. (3.90)

Taking u = u∗ in (3.54) and t = t∗ in (3.55), we obtain:

F (u∗)− β1
2
∥t(k−1) −Du∗∥22 − F (u(k)) +

β1
2
∥t(k−1) −Du(k)∥22+

−
〈
DT
(
(β + β1)(t

(k−1) −Du(k))− ρ(k)
)
, u∗ − u(k)

〉
≥ 0, (3.91)

R(t∗) +
β2
2
||t∗ −Du(k)||22 −R(t(k))−

β2
2
||t(k) −Du(k)||22

+
〈
(β − β2)(t(k) −Du(k))− ρ(k), t∗ − t(k)

〉
≥ 0. (3.92)

By summing up (3.91) and (3.92), we have:

F (u∗) ≥ F (u(k)) +R(t(k))−R(t∗) + β1
2
||Du(k)||22 −

β1
2
||Du(k)||22

− β1⟨t(k−1), Du∗ −Du(k)⟩ − β2
2
||t∗ −Du(k)||22 +

β2
2
||t(k) −Du(k)||22

+ ⟨(β + β1)(t
(k−1) −Du(k))− ρ(k), Du∗ −Du(k)⟩

− ⟨(β − β2)(t(k) −Du(k))− ρ(k), t∗ − t(k)⟩. (3.93)

INDEX 53

Taking lim inf of (3.90) and lim sup of (3.93), and using the result in (3.85)-(3.88), we
have

lim inf F (u(k)) ≥ F (u∗) ≥ lim supF (u(k)) (3.94)

It follows from (3.94) that
lim
k→∞

F (u(k)) = F (u∗). (3.95)

We now manipulate F (u(k)) as follows:

F (u(k)) =
λ

2
||u(k) − b||22 =

λ

2
⟨u(k) − b, u(k) − b⟩

=
λ

2

〈u(k) + u∗

2
− b, u(k) − b

〉
+
λ

2

〈u(k) − u∗
2

, u(k) − b
〉

=
λ

2

〈u(k) + u∗

2
− b, u

(k) + u∗

2
− b
〉
+
λ

2

〈u(k) + u∗

2
− b, u

(k) − u∗

2

〉
+
λ

2

〈u(k) − u∗
2

, u(k) − b
〉

=
λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2
2

+
λ

2

〈u(k) − u∗
2

,
u(k) + u∗

2
− b+ u(k) − b

〉
=
λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2
2

+
λ

2

〈u(k) − u∗
2

,
u(k) − u∗

2
+ u(k) + u∗ − 2b

〉
=
λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2
2

+
λ

2

∥∥∥∥u(k) − u∗2

∥∥∥∥2
2

+ λ
〈u(k) − u∗

2
,
u(k) + u∗

2
− b
〉

≥ λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2
2

+ λ
〈u(k) − u∗

2
,
u(k) + u∗

2
− b
〉
. (3.96)

On the other hand, we have that

⟨ρ∗, Du(k) −Du∗⟩ = ⟨ρ∗, D(u(k) − u∗)⟩ = ⟨DTρ∗, u(k) − u∗⟩

= λ⟨u∗ − b, u∗ − u(k)⟩, (3.97)

where in (3.97) we have used the (optimality) condition

ρ∗ ∈ ∂t[R](Du∗) such that DTρ∗ + λ(u∗ − b). (3.98)

From (3.96) and (3.97) it follows that

F (u(k)) + ⟨ρ∗, Du(k) −Du∗⟩

≥ λ

2

∥∥∥∥u(k) + u∗

2
− b
∥∥∥∥2
2

+ λ
〈u(k) − u∗

2
,
u(k) + u∗

2
− b
〉
+ λ⟨u∗ − b, u∗ − u(k)⟩

=
λ

2
||u∗ − b||22︸ ︷︷ ︸

F (u∗)

+
3

8
λ||u(k) − u∗||22, (3.99)

54 3. Variational model for 2D segmentation

that is
F (u(k))− F (u∗) + ⟨ρ∗, Du(k) −Du∗⟩ ≥ 3

8
λ||u(k) − u∗||22. (3.100)

Taking the limit for k →∞ of both sides of (3.100) and recalling (3.87) and (3.95), we
obtain:

0 ≥ lim
k→∞

3

8
λ||u(k) − u∗||22 =⇒ lim

k→∞
u(k) = u∗, (3.101)

thus completing the proof.

We conclude this analysis with the following final theorem,

Theorem 3.12. Let the pair of parameters (λ, a) satisfy condition (3.9) and let the
parameter β satisfy condition (3.46). Then, for any initial guess, the sequence {u(k)}+∞

k=1

generated by Algorithm 1 satisfies:

lim
k→+∞

u(k) = u∗, (3.102)

with u∗ denoting the unique solution of problem (3.1).

3.1.4 Results

We recall that the proposed CNC method consists of two steps. In the first step an
approximate solution of the minimization problem (3.1) is computed by means of the
ADMM-based iterative procedure illustrated in Algorithm 1; iterations are stopped as
soon as two successive iterates satisfy ||u(k) − u(k−1)||2/||u(k−1)||2 < 10−4. In the second
step the segmented regions are obtained by means of a thresholding procedure.

In order to satisfy all the conditions mentioned above, such as (3.9), (3.30), (3.44) or
(3.45) we set τc = 10 and λ = 30, then the parameter a and, then, the lower bound β of
the ADMM penalty parameter β are automatically obtained based on (3.9) and (3.45):
a = λ

9τc
= 1

3
and β > β = max

{
2a, 9a τc

9τc−8

}
= max

{
2
3
, 30
82

}
= 2

3
. So we choose to impose

β = 10.
Once we have choose the parameters, in the first part of the code, we address

the resolution of OUR_Seg_SPL (Phase 1), which consists in solving a CNC variant of
the Mumford-Shah/Chan-Vese segmentation model formulated in a gradient-regularized
framework.

The objective is to recover a function u, representing a smoothed and segmented
image, that remains faithful to the observed data Img (fidelity term weighted by the
parameter λ) while promoting piecewise regular structures with sharp discontinuities
(nonconvex regularization on the gradient magnitude |∇u|, controlled by the parameters
a, T, α).

To this end, we employ the Alternating Direction Method of Multipliers (ADMM),
introducing an auxiliary variable t = (tx, ty) to approximate the image gradient |∇u|.

INDEX 55

This reformulation enables the treatment of the nonconvex regularizer through an asso-
ciated proximal mapping, which is implemented as a nonlinear shrinkage operator with
a double-threshold structure. The ADMM iterations consist of two main steps:

(i) Update in u: the variable u is obtained as the solution of the elliptic linear system

(λI − β∆)u = λImg + βdiv(t− ρ/β),

which is solved efficiently in the Fourier domain (FFT) under periodic boundary
conditions.

(ii) Update in t: the variable t is updated by applying a nonconvex proximal map
(depending on a, T, α) to the “perturbed” gradient vectors, which incorporate the
ADMM multipliers ρ.

The input arguments of the function are

• the image Img,

• λ: weight of the data fidelity term (the larger it is the closer u remains to Img),

• β: ADMM penalty parameter that influences convergence and the subproblems,

• τc: scaling factor for a,

• T : “shape threshold” of the nonconvex regularizer,

• α: shape parameter of the penalty (handled in a special way in the code when
α == 1/3),

• its_max : maximum number of iterations,

• err_th: stopping threshold on the relative variation of u.

whereas the outputs are the reconstructed image u and the number of iterations i.
We now provide a detailed description of the algorithmic steps implemented in the

code, specifying the operations performed at each stage.

1. Initialization and constants for the penalty where a must satisfy a < λ
9

for
convexity of the CNC functional, β > a to guarantee convexity of the t-subproblem,
K1, TH1, TH2, γ1, γ2, γ3 define the proximal operator of the SPL penalty (piece-
wise shrinkage thresholds). Here it is also called the function phi_spl2 that has
as inputs an array of points (ts), a threshold that divides the behaviors of the
function (T), parameters that shape the shape of the penalty (a, α), a constant K1

56 3. Variational model for 2D segmentation

Figure 3.1

(depending on a) and flag_norm which normalizes the function so that it gets to
1 at most. The outputs are ys whose values are the values of the function ϕ(ts),
i.e. the penalty applied to the gradient and V that is the upper threshold value.
The function defines a piecewise non-convex penalty. In case of small gradients
(ts < T) the penalty grows slowly so as not to over-penalize small variations; in
case of medium gradients (T ≤ ts < V) the penalty grows less than linearly reduc-
ing bias on strong edges; in case of big gradients (ts ≥ V) the penalty is constant
preserving edges.

2. ADMM variables: We start from u = Img and we initialize the auxiliary t and

Figure 3.2

multipliers ρ to zero.

3. Kernel for u subproblem: It builds the 5-point Laplacian stencil with periodic
boundary conditions; it transforms it to Fourier space: Â = λ + β∆̂. It enables
solving linear systems with a simple division in Fourier domain.

4. Main loop: The first part is for the u-step: it is computed the right hand side

Figure 3.3

INDEX 57

Figure 3.4

of the linear system λImg + βdiv(t − ρ/β) where Dxt, Dyt are adjoint difference
operators and the linear system (λI − β∆)u = λImg + βdiv(t − ρ/β) is solved
using the inverse fast Fourier transform. It is measured then the relative change
in u for stopping. In the second part the subproblem for t is solved: first of all,
r = ∇u + ρ/β is computed, it is the argument fed into the proximal operator; it
represents the current gradient of the image corrected by the ADMM dual variable
serving as the input to the shrinkage step, where the algorithm decides whether to
shrink (suppress noise/small gradients) or keep (preserve edges/large gradients).
Then there are two cases: the one in which a = 0 and the one in which a > 0, that
is the nonconvex case. When a = 0, the non convexity of the CNC regularizer dis-
appears and the penalty reduces to the Total Variation (TV) norm of the gradient,
i.e. ∑

ϕ(|∇u|)⇒
∑
|∇u|.

The segmentation model, thus becomes a Chan-Vese type model with TV regular-
ization. In this situation is applied an isotropic soft-thresholding shrinkage. When
a > 0, the shrinkage factor ξi is introduced and if α = 1/3, i.e. our case, it is defined
piecewise: to small ||r|| corresponds heavy shrinkage (denoising), to medium ||r||
corresponds partial shrinkage and to large ||r|| corresponds no shrinkage (preserve
strong edges). Then tx and ty are computed. Finally the Lagrange multiply ρ is
updated enforcing the t = ∇u.

Subsequently, we analyze the Phase 2 of the code, the one that focuses on the segmen-
tation. Once the image u has been regularized, phase 2 consists in two steps: calculating
segmentation thresholds automatically with ThdKmeans and visualization and construc-
tion of final segmentation with SegResultShow.

58 3. Variational model for 2D segmentation

Figure 3.5

1. This function is intended to find the (k − 1) thresholds that divide the image into
k classes. The input arguments are the denoised image u and the k classes. A
K-means pixel clustering is performed. K-means is applied to u image intensity
values (not to coordinates) and each pixel receives a label from 1 to k. The result
is idx, that is an image of cluster labels. Then the average values for each cluster
are calculated. For each cluster, it takes the pixels of u in that cluster and it
calculate the average intensity of the pixels. Next it reorders these averages in
ascending order. Last the construction of the thresholds is carried out computing
the averages between adjacent average values. The output will be th, a vector of
(k − 1) thresholds dividing the image into k regions.

Figure 3.6

2. This function has the objective to display contours and generate segmented image

INDEX 59

seg.
In the first part, the outlines are visualized by constructing a Boolean mask for each
threshold. The second part concerns the construction of the final segmentation:
for each region, defined by thresholds, all pixels are assigned the average value of u
in the region and then it is added to seg. The output seg is a piecewise-constant
image with k regions, that represents the final segmentation.

The algorithm was applied to three transesophageal ultrasound images, each correspond-
ing to a different individual with atrial fibrillation. For each image, a region of interest
(ROI) was selected to make the segmentation more targeted. The parameter k = 4 was
chosen for the thresholds employed later in the segmentation process. Subsequently, the
parameters λ, a and T were selected to obtain a clean and accurate segmentation. Af-
ter the execution of the two phases of the algorithm, the ADMM phase and the actual
segmentation phase, the largest connected component within the segmentation was ex-
tracted. Since this component consisted of two parts, namely the left atrial appendage
and an adjacent region, a manual separation was performed between the two, and only
the left atrial appendage was retained as the final mask.

1. Patient 1: λ = 30, T = 0.001, k = 4, α = 1/3, τc = 10, β = 10.

60 3. Variational model for 2D segmentation

(a) (b)

(c) (d)

Figure 3.7

Figure 3.8: Final segmentation

INDEX 61

2. Patient 2: λ = 30, T = 0.001, k = 4, α = 1/3, τc = 10, β = 10.

(a) (b)

(c) (d)

Figure 3.9

62 3. Variational model for 2D segmentation

Figure 3.10: Final segmentation

3. Patient 3: λ = 30, T = 0.001, k = 4, α = 1/3, τc = 10, β = 10.

INDEX 63

(a) (b)

(c) (d)

Figure 3.11

64 3. Variational model for 2D segmentation

Figure 3.12: Final segmentation

3.2 Unsupervised Multiphase Segmentation

Starting from the paper “Unsupervised Multiphase Segmentation: a phase balancing
model”, [12] we introduce a variational model investigating multiphase segmentation with
a new regularization term that yields an unsupervised segmentation model.

In this work, we introduce a method for multiphase image segmentation that incor-
porates a new regularization term, leading to an unsupervised segmentation model. In
other words, this model does not require the number of phases to be fixed a priori, but
instead decides it automatically during the segmentation process.

The proposed functional is designed not only to segment the image but also to auto-
matically determine a suitable number of phases. This means that the model simultane-
ously identifies the regions and decides how many distinct phases are necessary, avoiding
both under- and over-segmentation.

The new regularization term relies on the scale measure of the phases, which can
be seen as a weight depending on the size of each region. Unlike classical models such
as Chan-Vese, where the regularization typically penalizes the length of the contours to
enforce smooth boundaries, here the scale measure introduces a preference toward larger
and more stable regions. In practice, bigger objects are “rewarded”, while very small or
noisy phases are penalized, reducing the risk of spurious segmentations.

As a consequence, larger objects are preferred to be identified, while small or in-
significant regions tend to merge into bigger ones unless they exhibit a strong intensity
difference. At the same time, the segmentation itself is still driven by the intensity fitting
term, which ensures that pixels are grouped into phases whose mean intensity closely

INDEX 65

matches their own gray-level values. Thus, the intensity fitting term enforces the separa-
tion of regions based on their grayscale distributions, while the scale-based regularization
determines how many phases should remain and favors the elimination of unstable small
regions.

Our focus is on multiphase segmentation, meaning the task of distinguishing more
than two distinct regions within a given image. This is fundamentally more challenging
than simple object/background separation, since the model must simultaneously locate
the regions and determine their number in an unsupervised fashion.

Image segmentation divides an image into different regions in order to simplify its
analysis and facilitate object identification. Over time, numerous approaches have been
developed, ranging from mixed random field models and the variational model of Mum-
ford and Shah to more complex methods such as Monte Carlo Markov chains, graph-cut
techniques and spectral methods, and variational models for texture segmentation. A
fundamental contribution came from the Mumford-Shah model, which inspired many
extensions.

This work specifically addresses multiphase segmentation, namely the identification
of more than two regions within an image. Several region-based multiphase models have
been proposed in the literature, including those of Vese and Chan, Chung and Vese,
Brox and Weickert, Tai and Chan, Lie, Lysaker and Tai, Jung, Kang and Shen, and
Bae and Tai. These approaches include: the generalization of the two-phase model
using multiple level sets, multilayer methods inspired by island dynamics in epitaxial
growth, energy minimization strategies within the level set framework, piecewise level
set methods with constant values for each phase, the use of graph-cut algorithms in the
multiphase Mumford-Shah model, and relaxed models based on Γ-convergence analysis.

Let Ω be a bounded Lipschitz domain, and u0 : Ω → R+ ∪ {0} be a given image.
Recall that the classical Mumford-Shah segmentation is to minimize

Ems[u,Γ|u0] = α

∫
Ω\Γ
|∇u|2dx+ βH1(Γ) +

∫
Ω

(u− u0)2dx, (3.103)

where Γ ∈ Ω denotes the edge set of the image u, and H1 represents the 1-dimensional
Hausdorff measure. The energy functional is made of three main terms:

• α
∫
Ω\Γ |∇u|

2dx penalizes intensity variations inside the regions. In practice, it en-
forces smoothness of the function u within each phase, away from the edges. This
means that, within a single region, the intensity is encouraged to remain regular
and not oscillate too much.

66 3. Variational model for 2D segmentation

• βH1(Γ) penalizes the length of the boundaries Γ. Every additional contour in-
creases the energy, so the model favors segmentations with fewer, simpler, and
smoother boundaries. This prevents over-segmentation and promotes more com-
pact regions.

•
∫
Ω
(u−u0)2dx is the data fitting term. It requires the segmented image u to remain

close to the original image u0. In other words, it prevents the segmentation from
deviating too far from the actual data and ensures that the result still reflects the
observed image.

Multiphase segmentation identifies different phases by the intensity discontinuities.
For identifying piecewise constant objects, the reduced Mumford-Shah functional can be
written as, minimizing

Ecv[u,Γ|u0] = βH1(Γ) +
N∑
i=1

∫
Ωi

|u0 − ci|2, (3.104)

where Ωis are the connected components of Ω \ Γ and ci is the intensity average of u in
each Ωi.

The simplified Mumford-Shah model, when successfully implemented with level-sets
for a two-region segmentation, is commonly known as the Chan-Vese (CV) model. One
key disadvantage of these multiphase segmentation approaches is that the number of
separate regions (phases) must usually be fixed in advance, that is, chosen before running
the algorithm. Many classical methods, such as simplified Mumford-Shah or Chan-Vese,
require the user to explicitly set a parameter K, telling the algorithm to divide the image
into K regions. This is a limitation, since in practice we do not always know beforehand
how many objects or classes are present in an image.

One common strategy to avoid making this choice is to start with a large number of
initial contours, in the hope that, during the optimization, the unnecessary contours will
vanish and only the meaningful ones will remain. The idea is that the evolution of the
level sets or contours will naturally suppress redundant phases. However, this approach
is heuristic and does not guarantee an optimal result.

In practice, if more phases are supplied than truly needed, the outcome is often
over-segmentation: the image is divided into too many regions, more than what is se-
mantically meaningful. This results in fragmented outputs where small, insignificant
areas are treated as separate phases, even though they do not correspond to real objects
or relevant structures. Over-segmentation is therefore a direct consequence of initializing
the model with an excessive number of phases or setting the phase parameter too high.
In addition, for the functional models, such as (3.103) and (3.104), there are at least one

INDEX 67

free parameter to choose, like α, β, µ and, often for multiphase segmentation, the result
becomes very sensitive to the choice of these parameters.

3.2.1 Description of the model

We propose a new model for unsupervised segmentation, which automatically chooses
the number of phases without any user input. In other words, the model decides on its
own how many distinct regions are required. Unlike classical approaches, the user does
not need to specify in advance whether the image should be divided into, for example,
three or five classes, the number of phases emerges automatically during the process.

This model not only detects the boundaries of the regions but also simultaneously
determines a “reasonable” number of phases, neither too few nor too many. As a result,
the method avoids common issues such as under-segmentation, where relevant structures
are missed, and over-segmentation, where the image is fragmented into excessively many
small regions.

The contribution of this work is twofold. First, we propose a new variational func-
tional for unsupervised multiphase segmentation. This functional incorporates a regular-
ization mechanism that naturally penalizes unnecessary phases, allowing the appropriate
number of regions to emerge from the optimization. Second, we provide a fast numerical
algorithm for solving the problem, making the method not only theoretically well-founded
but also computationally practical.

In particular, instead of deriving and solving the Euler-Lagrange equations typically
used for such nonlinear variational models, which would lead to a system of PDEs, we
introduce a brute-force algorithm. This approach, while simple, is efficient and easy to
implement, often working by updating pixel labels in a discrete fashion. Such a strategy
makes the method more accessible while still maintaining strong performance.

The segmented image is represented as a linear combination of different phases, each
of which is defined by a characteristic functions χi representing that phase. The

∑
i χi

covers the entire image domain Ω and χi ∩ χj = ∅. Each χi is defined by one intensity
average value ci, and each phase may be disconnected, i.e. it may consist of many
separate regions. The average value is computed by

ci =

∫
χi
u0(x)dx∫
χi
1dx

,

which corresponds to the ratio of the sum of the pixel intensities in phase i to the number
of pixels in that phase. Then, the final segmented result is obtained combining all the

68 3. Variational model for 2D segmentation

phases where each pixel takes the average value of the phase to which it belongs:

u =
K∑
i=1

ci ∗ χi (3.105)

In the CV model (3.104) the main two terms represent the intensity fitting term
and the regularization term. In order to prevent oscillatory boundary identification, the
length of the boundaries is kept to a minimum while the intensity drives the segmentation.

We design our new functional based on this CV model (3.104) and retain these
two terms for our segmentation model. In order to create an unsupervised model that
automatically determines the number of phases and image segmentation, we add two
more goals. The objectives are as follows:

1. Phase: find the objects with significant sizes. We prefer not to have small partitions
of the image, but want to identify relatively big objects which can be understood
as a feature of the image.

2. Balance: we assume each identified phases are all equally important, i.e. no a priory
information is given on which phase is more important than the other. Therefore,
this functional should partition the image uniformly among different phases

A. Phase
We focus on the scale term defined by the formula scale := area

length
. A larger object

results in a greater scale value, whereas a smaller object results in a lower scale value.
This concept is examined in relation to total variation (TV) denoising. To achieve our
goal of detecting significant sized objects while reducing a functional, we utilize the
inverse of that quantity, that is the inverse scale term,

Si :=
P (χi)

|χi|
(3.106)

where P (χi) denotes the perimeter of a phase χi and |χi| denotes the 2-dimensional area
of a phase χi, i.e. the number of pixels in the discrete implementation. If an object is
large, its area increases faster than its perimeter: when scaling linearly by a factor t, the
area grows proportionally to t2, while the perimeter grows only proportionally to t. As
a result, for larger objects the ratio P (χi)

|χi| tends to decrease. On the other hand, if an
object is small or very irregular or thin, the value of P (χi)

|χi| is relatively high. Therefore,
minimizing the term (3.106) naturally favors phases with a low perimeter-to-area ratio,
that is, objects that are larger and more compact. This directly addresses the stated
objective of the model: to prioritize the identification of meaningful, significant-size
objects while discouraging excessively small partitions of the image, thus reducing the
risk of over-segmentation.

INDEX 69

We can remark that the inverse scale Si is defined on each phase χi, thus it is feasible
to have disconnected regions within a phase. Regardless of the number of connected
components in this phase χi, we calculate the total length of the edges in the phase
and divide it by the total area of objects in the phase χi. A number of objects with
comparable intensities, for instance, will be in the same phase χi and contribute to Si
collectively.

We can also state two properties: the first one is that for a phase χi with a single
object, if the perimeter is fixed, convex object have smaller Si compared to the concave
objects. Therefore, by minimizing Si the shape of object prefers to be closer to a circle
rather than an ellipse.

The second one is that objects with different shape can have the same inverse scale
value. For example, any regular (equilateral) convex polygon, B, which incircles a circle
with radius r has P (B)

|B| = 2
r
, which is the same as the inverse scale value of a circle with

radius r.

B. Balance

To maintain equilibrium between the phases, we do not assign any specific weight to
any phase and we do not consider the summation with any particular weight,

K∑
i=1

Si =
K∑
i=1

P (χi)

|χi|
(3.107)

so the functional considers every phase in the same way.
Then, for a given discrete bounded image with |Ω| < ∞ and

∑K
i=1 P (χi) < ∞, for

a fixed number of phases K, the minimum of the summation is achieved when Si are
all equal across phases, for ∀i = 1, . . . , K, i.e. S1 = S2 = . . . = SK . This is basically a
“balancing” condition: the functional pushes the values of each phase’s scale ratio toward
equality.

Therefore, by minimizing this term, the objects of various sizes in the image will
uniformly be distributed among all different phases and Si value will be similar to each
other. That means no single phase will dominate while others collapse into negligible
regions. We refer to this term as the phase balancing term, since it prefers to find balance
among the scales of each phases.

Proposition 3.13. For a fixed K, given a piecewise constant image with multiple objects
Bj with the same ratio, P (Bj)

|Bj | := p1 (except for the background), any distribution of these
objects Bj to different phases χi (no empty phases, no partial objects) gives minimum of
the phase balancing term, and

K∑
i=1

P (χi)

|χi|
= (K − 1)p1 +

P (χb)

|χb|
(3.108)

70 3. Variational model for 2D segmentation

where χp represents the background.

It implies that if an image contains only one type of object (that is, all objects
share the same ratio P (B)/|B|), then the segmentation may distribute them across the
different clusters χi in very different ways. For instance, one phase might contain many
objects, another only a single one, and yet another just a few. Nevertheless, the value of
the balancing term would still remain minimal. In contrast to the balancing effect, the
Proposition 3.13 states that if an image contains only one type of item, the quantity of
objects in each phase may differ significantly. This is because of how we calculate the
Si, since it depends only on the ratio P/|χ|. As a consequence, the balancing mechanism
fails to distinguish between more balanced and less balanced distributions whenever the
geometries are homogeneous.

C. The proposed model

By taking these extra goals into consideration, we propose the following functional
for automatic multiphase segmentation, a phase balancing model,

E[K,χi, ci|u0] = µ̂

(
K∑
i=1

Si

)
H1(Γ) +

K∑
i=1

∫
χi

|u0 − ci|2, (3.109)

where Γ is set of all the boundaries of χi for i = 1, . . . , K, i.e. Γ =
⋃K

i=1{∂χi
}, H1

represents the 1-dimensional Hausdorff measure. that is the 1-dimensional measure of
the boundaries, as in (3.103) and (3.104) and the average value cis are defined as in
(3.104), ci =

∫
χi

u0(x)dx∫
χi

1dx
. Notice that K,χis and cis in E[K,χi, ci|u0] are unknown variables

while only the original image u0 is given. Compared to other multiphase models, which
do not minimize the functional with regard to the number of phases K, this is one of
the primary differences. The suggested functional can also be expressed as follows, using
P (A) to represent the finite perimeter of the set A:

E[K,χi, ci|u0] = µ

(
K∑
i=1

P (χi)

|χi|

)
K∑
i=1

P (χi) +
K∑
i=1

|u0 − ci|2χi. (3.110)

Here µ = µ̂/2 from µ̂ in (3.109), since When summing the perimeters of all the phases,
each internal boundary between two adjacent phases is counted twice, once for each region
sharing that boundary, whereas H1(Γ) counts each boundary segment only once. There-
fore, in the absence of image-domain boundaries, we approximately have

∑K
i=1 P (χi) =

2H1(Γ).

The only free parameter in this functional is µ. Its role is to balance the relative
importance of the scale regularization term (the first term) against the data fitting term
(the second term). This µ is a parameter that represents the area of the segmentation

INDEX 71

because the first term of (3.110) is virtually unit-free, while the second term
∑K

i=1 |u0 −
ci|2χi corresponds to the area of the phase. When µ is large, the model gives more
weight to regularization and phase balancing, thus the segmentation favors phases with
larger regions; when µ is small, more emphasis is placed on data fitting. This allows the
model to create smaller phases in order to capture finer intensity variations, but at the
cost of a higher risk of over-segmentation. We maintained this µ = 1 for unsupervised
segmentation, and the implications of these variations of µ are examined in the next
section.

The energy functional is highly non-convex, particularly because both the number
of phases K and the topology of the regions χi are free variables. This non-convexity
implies the presence of many local minima, a strong dependence on the initialization, and
the necessity of using greedy or heuristic algorithms in order to obtain a good solution.
We remark that the perimeter P (χi) appears twice in the model (3.110): once in the
total length term and once in the phase balancing term. Since a convex polygon and a
circle can have the same inverse scale value, the smoothness of the border is independent
of minimizing Si. For its smoothness quality (and well-fitted borders), the total length
term H1(Γ) is therefore required.

A second observation is that intensity is the primary factor driving segmentation.
Although the bigger continuous zone is preferred by the model, smaller sections of com-
parable intensity will also enter the same phase. Small items with a large inverse scale
value, like noise or tiny stars, will be recognized as features in the image rather than be-
ing totally obscured. Denoising happens within a specific intensity range. The intensity
will be included in the phase that is closest to it.

Finally we can notice that after proposing to add two additional objectives in the
form of the phase balancing term,

∑K
i=1 Si, we had different options to modify the new

functional. For example, Case I, adding (not multiplying) the phase balancing term
to CV model (3.104): this looses the unsupervised properties and the results become
heavily depended on the choice of two parameters, β and µ. This inherits limitations of
CV model with additional parameter to choose. Case II, multiplying

∑
1
Si

to the total
length term, i.e. two terms in the segmentation function both represents the area, and
Case III, multiplying the phase term to the fitting term, i.e. both terms represents length
of the segmentation. In both Case II and Case III, we found that the number of phases
K grows to reduce energy, in addition to being sensitive to the parameter selection. Both
situations usually result in a large number of phases since the fitting term might become
zero by continuously increasing the number of phases, but the total length term is never
zero.

72 3. Variational model for 2D segmentation

3.2.2 Fast algorithm for Multiphase Segmentation

The proposed segmentation method is based on representing each phase of the image
by a characteristic function χi, where χi(x, y) = 1 if pixel (x, y) belongs to phase i and
χi(x, y) = 0 otherwise. The segmented image is then expressed as

u =
K∑
i=1

ciχi (3.111)

where ci denotes the average intensity value of phase i, and K is the current number
of phases. This representation has two advantages: it simplifies the addition of new
phases and avoids bias in the transition between phases since each phase is independent.

The energy functional to be minimized consists of two main components:

1. A regularization term, weighted by µ, which combines a phase balancing measure
(perimeter-to-area ratio of each phase) and the total length of the interfaces. This
favors larger and more coherent regions.

2. An intensity fitting term, which measures the squared difference between the ob-
served image u0 and the mean intensity ci within each phase:

K∑
i=1

∑
(x,y)

|u0(x, y)− ci|2χi(x, y).

The regularization term mixes a measure of the phase’s scale (such as the perimeter-
to-area ratio, P (χi)

ni
) with the total boundary length (the sum of all perimeters). This in-

terplay causes the model to favor larger objects, since small regions have a high perimeter-
to-area ratio and are consequently penalized.

The proposed model (3.110)

E[K,χi, ci|u0] = µ

(
K∑
i=1

P (χi)

|χi|

)
K∑
i=1

P (χi) +
K∑
i=1

|u0 − ci|2χi. (3.112)

had some analytical difficulties: it is non linear with 3 different unknown, K,χi and ci

and deriving the Euler-Lagrange equations (analytical solutions) is complicated. For this
reason, we adopt a direct and efficient minimization strategy based on a greedy algo-
rithm. At each iteration, the algorithm evaluates, for every pixel, the change in energy
that would occur if the pixel were reassigned from its current phase to another. The
pixel is then moved to the phase that produces the largest energy decrease. The greedy
algorithm operates by evaluating the energy change (∆E) for each possible assignment
of a pixel to a phase. The pixel is then assigned to the phase that results in the greatest
reduction in energy. This process is repeated for all pixels, leading to an efficient and

INDEX 73

effective segmentation. This idea follows the approach of monitoring the variation of the
functional when a pixel changes its membership (inside/outside) and applying a greedy
decision rule. While such methods have been successfully used in two-phase segmenta-
tion, here we extend them to the multiphase setting. In our case, the algorithm not only
considers moving a pixel among all existing phases but also includes the possibility of
creating a new phase whenever this further reduces the energy.

For (x, y) ∈ Ω the change in energy when (x, y) moves from one phase l to another
phase j is computed by,

∆Elj = µ∆ST + (u− cj)2
nj

nj + 1
− (u− cl)2

nl

nl − 1
(3.113)

where u = u(x, y) is the intensity value at the pixel (x, y), ci is the average of each phase
i, and ni is the number of pixels in phase i, i.e. area |χi| = ni. The first term ∆ST is
the change of the phase balancing and total length term in (3.110), and other two terms
are the change of the intensity fitting term.

The expression above can be interpreted term by term.

• The first term, µ∆ST, reflects the effect of the regularization. This includes both
the phase-balancing contribution and the change in the total perimeter of the
segmentation. In other words, it measures how the smoothness and balance of the
partition are affected when the pixel moves from phase l to phase j.

• The second term, (u− cj)2 nj

nj+1
, represents the increase in the squared error when

the intensity value u is added to phase j. This comes from the fact that, when a
point is included in a cluster with mean cj, the sum of squared errors increases by
exactly this amount.

• The third term, −(u − cl)2 nl

nl−1
, accounts for the decrease in the squared error of

phase l when the pixel u is removed from it. The derivation is symmetric to the
previous case, but now the removal reduces the total fitting error for phase l.

Taken together, ∆Elj expresses the total change in energy resulting from moving the
pixel from phase l to phase j. It combines the effect on the regularization term with the
variation in data-fitting error, providing the greedy criterion that guides the algorithm’s
decision at each pixel.

Then, this ∆ST is

∆ST = SjTj−SlTl = Sj(Tl+∆T)−SlTl = (Sj−Sl)Tl+Sj∆T = Tl∆S+Sj∆T (3.114)

where Sl presents the phase balancing energy (
∑
Si) and Tl the total length energy

(
∑
P (χi)) when (x, y) is in phase l. So the effect of regularization can be assessed if we

74 3. Variational model for 2D segmentation

know how the perimeters of the two phases change and their corresponding perimeter-
to-area ratios. To compute the total length Tl, since each phase is represented by a
characteristic function χi, we simply add all the edges in the phase to get the length,

P (χi) =
∑

(x,y)∈Ω

{|χi(x+ 1, y)− χi(x, y)|+ |χi(x, y + 1)− χi(x, y)|} (3.115)

then, when the pixel is in phase l, Tl =
∑K

i=1 P (χi) and Sl =
∑K

i=1
P (χi)
ni

.

The difference in total length energy, ∆T becomes an addition of the change of
perimeter in phase j and the change in phase l, ∆T = ∆P (χj) + ∆P (χl). In phase j,
if pixel (x, y) changes from 0 to 1, the change in the length can be computed from the
values of the neighboring points, i.e. ∆P (χj) = 4 − 2

∑
(a,b)∈N χj(a, b), where N refers

to four neighboring points (N,S,E,W of (x, y)). When there were no edges (∀(a, b) ∈
N , χj(a, b) = 0), by changing this pixel from 0 to 1, it creates four new edges. If there
is one edge, by flipping χj(x, y) = 0 → 1, it creates two additional edges. If there
were two edges, the change creates no new edges, but if there were four edges, it will
remove those four edges (−4). Similarly, change in the perimeter of phase l becomes
∆P (χl) = −4 + 2

∑
(i,j)∈N χl(i, j). Then, the difference in the total length becomes

∆T = −2

 ∑
(i,j)∈N

χj(i, j)−
∑

(i,j)∈N

χl(i, j)

 (3.116)

The difference ∆Elj in (3.113) can be computed by gathering all these terms,

∆El,j = µ(Tl∆S + Sj∆T) + (u− cj)2
nj

nj + 1
− (u− cl)2

nl

nl − 1
. (3.117)

This is an explicit difference of the energy when the pixel changes from one phase l to
another phase j, which is used in the algorithm, Table 3.1.

If ∆Elj > 0, the pixel will not change to phase j since that will increase the energy.
While, if this value ∆Elj is negative, it is better to move (x, y) to phase j. By iterating
this process over the entire image domain, the segmentation gradually converges to a
configuration that minimizes the functional.

At the beginning of the computation, the whole image is assigned to a single phase
(K = 1). During the iterations, if moving a pixel into a newly created phase decreases
the energy, then a new phase is introduced automatically. This new phase is represented
as phase k + 1 and the difference in the energy in the algorithm 3.1 is calculated using
nk+1 = 0. This mechanism allows the algorithm to estimate the number of phases directly
from the data, without requiring prior specification.

The computational complexity of the algorithm is relatively simple to analyze. Let
m denote the total number of pixels in the image. At the very first pixel, there are only

INDEX 75

Algorithm

• Set an initial phase: |χ1| = |Ω| with ko = 1, where ko is the number of phase.

• Iterate

1. At each pixel (x, y) ∈ Ω which belongs to phase l (χl(x, y) = 1 and
χi(x, y) = 0 ∀i ̸= l), compute

value = min
j
{∆Elj | j ̸= l, j = 1, . . . , k + 1},

and let h = argminj{∆Elj | j ̸= l, j = 1, . . . , k+1}. Here k+1 refers to
the new empty phase. Then,if value < 0, χh(x, y) = 1 and χl(x, y) = 0,

if value > 0, do nothing.

2. Update k = h, calculate ni = |χi| and ci for each phase i = 1, . . . , k.

Table 3.1: A Pixelwise Brute-force Algorithm

two possible choices: remaining in the current phase χ1 or creating a new phase χ2. As
the algorithm proceeds through the domain, each pixel has k + 1 possible assignments,
where k is the current number of phases and the additional option corresponds to the
creation of a new phase. For a brute-force approach, if the number of phases is fixed to
r, the complexity is O(rm) When the number of phases grows with each iteration, the
complexity becomes O(m + 2m + . . . + sm) where s is the maximum number of phases
considered, which leads to an overall complexity of O(s2m). In contrast, the proposed
algorithm typically identifies the correct number of phases after only one sweep over the
image. As a result, its complexity reduces to O(km) = O(m), where k is the number
of phases found. This matches the performance of the fast algorithm in [24], which also
achieves linear complexity O(m).

3.2.3 Results

Now we will analyze the code used for the segmentation of the ultrasound data.
The code implements a greedy, discrete, pixel-wise algorithm to minimize the func-

tional of a model of unsupervised multiphase segmentation with phase balancing. The
objective is to assign each pixel an Index(x, y) = i phase label so as to reduce energy

E = µ
(∑

i

P (χi)

|χi|

)(∑
i

P (χi)
)
+
∑
i

∑
x∈χi

(u(x)− ci)2

76 3. Variational model for 2D segmentation

where P (χi) defines the perimeter of the phase i, |χi| = ni is the number of pixels in the
phase i and µ is the parameter that balances regularization and fitting: it can be seen as
the weight that decides how important geometric regularization (edge/perimeter, phase
balancing) is compared to data fitting. If µ is large the algorithm favors solutions with
short edges and regular and compact regions, even at the cost of getting it a little wrong
the intensity. Regions become more compact, smooth and less fragmented, but you risk
losing fine details. On the other hand if µ is small data fitting dominates. Pixels are
labeled almost only by looking at the similarity of intensity to phase averages in fact each
pixel looks for the phase with average closest to its intensity. Very precise segmentation
on the value plane is achieved, but often with jagged edges and scattered tiny phases.

The code updates label by label deciding whether to move the pixel to another phase,
even creating k + 1 new phase, only if the move decreases energy (∆E < 0).

Now we report the nomenclature of the variables used in the code:

• Im0 is the image;

• Index is the map of labels (phase index) for each pixel;

• n(i) is the number of pixels in the phase i, (|χi|);

• c(i) is the phase intensity average i;

• length(i) is the perimeter (P (χi));

• T is the total sum of perimeters (
∑

i P (χi));

• F is the sum of Si (
∑

i
P (χi)
ni

);

• µ is a balancing parameter;

• k is the current number of actual phases (initializes to 1 and can increase to the
allocated maximum).

The “local” energy that the code evaluates when it tries to move the pixel (x, y) from
phase l to phase j is:

∆Elj = µ((F + dF)(T + dT)− FT) + ∆(fitting)

that in the code is:

µ(dF · T + F · dT + dF · dT) + (u− cj)2nj

nj + 1
− (u− cl)2nl

nl − 1
,

where the last two terms are the variation of the fitting term (pixels to j are added,
pixels to l are removed) and dF, dT are the local variations of F and T.

INDEX 77

The decision to move the pixel from phase l to phase j combines several criterion:
fitting, pixel prefers the phase with average c(j) similar to its intensity; perimeters,
pixel prefers moves that shorten total contours; scale balancing, it penalizes small and
jagged phases and favors larger/compact regions.

Below I will analyze the code block by block.

1. The image is loaded and normalized, µ is set, space is pre-allocated for up to 20

phases (they could be also 10, the number of phases depends on the parameter µ).
Index assigns all pixels to stage 1 initially; n(1) is given by Nx ×Ny and c(1) is
given by the global average. T and F are initialized to 0.

Figure 3.13

2. For every pixel the best energy decrease found is initialized (dE= 0), note that 0

means “no improvement” and it will only move the pixel if it finds dE_temp < 0.
l is given as the current phase of the pixel (x, y). We consider all stages 1, . . . , k and
also k + 1 (create a new stage) as possible destinations, skipping the case j = l.
tj,tl are initialized to 0 and then they will accumulate the perimeter variation of
the target phase j and the source phase l. For each neighbor, add a contribution: for
j, tj+ = 1 if the neighbor is not j, = −1 if it is j but it is scaled as −2∗(== j)+1.
At the end tj= 4−2∗sj with sj is the number of neighbors in j. For l, tl= 2∗sl−4
with sl the number of neighbors in l. If many neighbors are already j, adding the
pixel to j reduces the perimeter by j, so tj becomes negative. If many neighbors
are l, removing the pixel from l increases the perimeter by l, so tl grows.
The change in the sum of the perimeters, dT is then calculated dT=tj+tl. If the
pixel is more surrounded by j than by l, dT is negative, thus the total contours are
shortened. It is also computed the variation of the balancing term, dF: only phases j
and l change, Pj → Pj+tj, nj → nj+1, Pl → Pl+tl, nl → nl−1. The code expands
algebraically ∆(P

n
) for the two phases. Then, local variation in energy, dE_temp is

computed. The term µ(F · T) is derived as ∆(FT) ∼ dF cotT + F · dT + dF · dT.
The last two terms are fitting: cost of adding the pixel to j (with average c(j) and
new area n(j)+1) minus the cost of leaving it in l (but recalculated after removal:

78 3. Variational model for 2D segmentation

n(l)−1). The fractions with n(j)/(n(j)+1) and n(l)/(n(l)−1) derive from the
incremental calculation of the sum of the quadratic deviations with respect to the
average.
If the move is the best yet and improves energy, so if dE_temp is less than dE,
dE is replaced with dE_temp, and a record is kept of the destination h = j and
what variations to apply if you then decide to move. So if we have achieved a real
improvement, that is, if dE< 0, the value h is assigned to Index(x, y), i.e. the pixel
is moved to phase h. Furthermore, if h is the new phase (k + 1), it increases the
number of phases k. At last the averages, areas and geometric terms are updated
incrementally.

Figure 3.14: Main sequence

The algorithm was applied to three transesophageal ultrasound images, each corre-
sponding to a different individual with atrial fibrillation. For each image, a region of
interest (ROI) focusing on the left atrial appendage was selected, and the parameter
µ was set accordingly. After running the algorithm, the resulting segmentations were
visualized for iterations 1 to 5 and for phases 1 to 20, depending on the selected µ

value. This visualization allowed the identification of the most suitable segmentation
by selecting the corresponding iteration and phase. Once the optimal segmentation was
chosen, the largest connected component was extracted, and, where necessary, a manual
cropping was performed to isolate the left atrial appendage.

1. Patient 1: µ = 0.7

INDEX 79

Figure 3.15: Final segmentation

2. Patient 2: µ = 4

Figure 3.16: Final segmentation

3. Patient 3: µ = 0.7

80 3. Variational model for 2D segmentation

Figure 3.17: Final segmentation

3.3 Frame based segmentation for medical images

Starting from the paper “Frame based segmentation for medical images”, [13] we
present a model that combines ideas of the frame based image restoration model with
ideas of the total variation based segmentation model.

A frame-based model is a mathematical approach used to restore degraded images
by leveraging concepts from frame theory. In mathematics and signal processing, a
frame can be seen as a redundant but flexible representation, similar to a basis. Unlike
orthogonal bases, such as Fourier coefficients, frames are not required to be independent
of each other, and they may even overlap. This redundancy makes them more robust
against noise and information loss, which is particularly useful in image restoration tasks.
The process of frame-based image restoration generally involves three main steps:

• Analysis: The degraded image is transformed into a frame domain (for example,
using wavelet frames, curvelet frames, or other types of redundant representations).
In this domain, structural features such as edges and textures become easier to
analyze.

• Thresholding / Denoising: The coefficients obtained from the frame transfor-
mation are filtered. This step removes noise, blur, or other artifacts while preserv-
ing important image details.

INDEX 81

• Synthesis: Finally, the filtered coefficients are transformed back into the original
image domain, reconstructing a clean and restored version of the image.

In practice, frame-based models are powerful because they combine mathematical
rigor with practical robustness. By working in a redundant representation, these mod-
els can effectively separate meaningful image structures from unwanted degradations,
making them a cornerstone in modern image processing and restoration.

Within this framework, we propose a segmentation model based on tight frames.
Tight frames are a special class of mathematical frames, conceptually similar to wavelets,
that provide a redundant yet stable representation of signals and images. Unlike orthogo-
nal bases, they do not require independence among components, allowing for overlap and
redundancy. This property enables simple and accurate reconstruction while maintaining
robustness to noise and data loss.

A key advantage of tight frames is that their redundancy typically leads to sparse
approximations of images: most of the image information can be captured by only a few
significant coefficients. This sparsity is highly desirable in many restoration problems,
such as denoising, inpainting, and deblurring, since it makes it easier to separate essential
image structures from noise or artifacts.

Moreover, tight frames are particularly effective because real-world images are often
piecewise smooth: they consist of large homogeneous regions, like the sky, interspersed
with sharp transitions, such as object edges. Tight frames can efficiently represent both
aspects capturing smooth regions compactly while preserving edges with high precision.
This dual ability to encode uniform areas and sharp discontinuities makes them especially
suitable for segmentation tasks, where distinguishing between homogeneous regions and
boundaries is crucial for accuracy.

3.3.1 Frames and Framelets

In this subsection, we briefly introduce the concept of tight frames and framelets.
A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
h∈X

⟨f, h⟩h ∀f ∈ L2(R), (3.118)

where ⟨·, ·⟩ is the inner product of L2(R). For given Ψ := {ψ1, . . . , ψr} ⊂ L2(R), the
affine (or wavelet) system is defined by the collection of dilations and the shifts of Ψ as

X(Ψ) := {ψl,j,k : 1 ≤ l ≤ r; j, k ∈ Z} with ψl,j,k := 2j/2ψl(2
j · −k). (3.119)

When X(Ψ) forms a tight frame of L2(R), it is called a tight wavelet frame, and ψl, l =

1, . . . , r are called the (tight) framelets.

82 3. Variational model for 2D segmentation

To construct a set of framelets, usually, one starts from a compactly supported refin-
able function ϕ ∈ L2(R) (a scaling function) with a refinement mask h0 satisfying

ϕ̂(2·) = ĥ0ϕ̂. (3.120)

Here ϕ̂ is the Fourier transform of ϕ, and ĥ0 is the Fourier series of h0 with h0(0) = 1

which means that a refinement mask of a refinable function must be a lowpass filter.
A lowpass filter allows low frequencies to pass through while attenuating or eliminating
high frequencies. The purpose of a lowpass filter is to smooth or blur the image by
removing high-frequency details such as edges and textures. In doing so, it suppresses
the fine variations in the signal and emphasizes its broader components. In the context
of signal processing, this means that the lowpass filter is designed to capture the coarse
structure or the global shape of the signal, providing a simplified representation that
retains the essential large-scale features while discarding the small-scale details. On the
other hand, a highpass filter does the opposite: it allows high frequencies to pass through
while attenuating or eliminating low frequencies. This makes it particularly effective at
highlighting edges and fine details, which are represented by high-frequency components.
In signal processing, the highpass filter is therefore used to capture local details and rapid
changes in the signal, such as edges or textures, complementing the coarse representation
obtained with the lowpass filter.

For a given compactly supported refinable function, the construction of a tight
framelet system is to find a finite set Ψ that can be represented in the Fourier domain
as

ψ̂l(2·) = ĥlϕ̂ (3.121)

for some 2π-periodic ĥl. The unitary extension principle (UEP) of [19] says that X(Ψ)

in (3.119) generated by Ψ forms a tight frame in L2(R) provided that the masks ĥl for
l = 0, 1, . . . , r satisfy

r∑
l=0

ĥl(ξ)ĥl(ξ + γπ) = δγ,0, γ = 0, 1 (3.122)

for almost all ξ in R. While h0 corresponds to a lowpass filter, {hl; l = 1, 2, . . . , r} must
correspond to highpass filters by the UEP. The sequences of Fourier coefficients {hl; l =
1, 2, . . . , r} are called framelet masks. In our implementation, we adopt the piecewise
linear B-spline framelet. The refinement mask is ĥ0(ξ) = cos2(ξ

2
), whose corresponding

lowpass filter is h0 = 1
4
[1, 2, 1]. Two framelets are ĥ1 = −

√
2i
2

sin(ξ) and ĥ2 = sin2(ξ
2
),

whose corresponding highpass filters are

h1 =

√
2

4
[1, 0,−1], h2 =

1

4
[−1, 2,−1]

The associated refinable function and framelets are given in Figure 3.18.

INDEX 83

Figure 3.18: Piecewise linear refinable spline and framelets

With a one-dimensional framelet system for L2(R), the s-dimensional framelet system
for L2(Rs) can be easily constructed by tensor products of one-dimensional framelets. If
we have one scaling function and r tight framelets in 1D, then after tensor product, we
obtain a tight frame system generated by one scaling function and (r + 1)s − 1 tight
framelets. In the discrete setting, a discrete image f is considered as the coefficients
{fi = ⟨fc, ϕ(· − i)⟩} up to a dilation, where fc is the continuous version of f, ϕ is the
refinable function associated with the framelet system, and ⟨·, ·⟩ is the inner product
in L2(Rs). The L-level discrete framelet decomposition of f is then the coefficients
{⟨f, 2−L/2ϕ(2−L · −j)⟩} at a prescribed coarsest level L, and the framelet coefficients

{⟨f, 2−l/2ψi(2
−l · −j)⟩}, 1 ≤ i ≤ (r + 1)s − 1 (3.123)

for 0 ≤ l ≤ L.

A discrete s-dimensional image, which is an s-dimensional array, can be un derstood
as a vector living in Rn, with n the total number of pixels in the image. For simplic-
ity of notations, we represent the framelet decomposition and reconstruction as matrix
multiplications Wu and W Tv respectively. Here W ∈ Rk×n satisfies W TW = I, i.e.
u = W TWu, ∀u ∈ Rn, by the unitary extension principle.

Now we introduce some notations: let W0 be the submatrix of W that corresponds to
the decomposition with respect to the refinable function; and denote Wl,i with 1 ≤ l ≤ L

and 1 ≤ i ≤ (r + 1)s − 1, the submatrix of W that corresponds to the decomposition at
the l-th level with respect to the i-th framelet. Under this notation, W can be written
as

W =

(
W0

Wl,i

)
=



W0

W1,1

W1,2

...
WL,(r+1)s−1


.

All Wl,i and W0 have the same number of rows, and we denote that number as m.

84 3. Variational model for 2D segmentation

3.3.2 Segmentation model

The model is inspired by TV-based methods (such as Mumford-Shah or Chan-Vese),
but instead of using total variation regularization, it penalizes the l1-norm of tight
frame coefficients Wu instead of the l1-norm of the gradient (|∇u|). This has two main
advantages:

• Sparsity and Smoothness: Using tight frames allows for a sparser representa-
tion of not only piecewise constant functions (like standard TV) but also piecewise
smooth functions. This leads to better results in image restoration and segmenta-
tion, especially for images that aren’t perfectly piecewise constant.

• Richer Geometric Information: The framelet transform contains more detailed
geometric information. Specifically, for a certain choice of parameters (s = 2), the
model uses not only first-order difference operators (like gradients) but also second
and even fourth-order difference operators. This provides a much richer description
of the image geometry.

For an observed image f ∈ Rn the goal is to find u ∈ [0, 1]n, a “soft” indicator of the
segmented region, and two intensity values c1, c2, minimizing:

min
0≤u≤1,c1,c2

||gW ·Wu||1 + µr(c1, c2)
Tu, (3.124)

where || · ||1 denotes the l1-norm, W a framelet transform, µ a parameter that balances
the two terms of the equation and r(c1, c2) = (c1 − f)2 − (c2 − f)2 where c1 and c2

are real constants and they represent the average intensity values inside and outside the
segmented region. Here, gW is a diagonal weight matrix depending on the image and it
is defined as,

gW = diag{0T , vT1,1, vT1,2, . . . , vT1,(r+1)s−1, . . . , vL,(r+1)s−1}

where vl,i ∈ Rm and 0 ∈ Rm. Then

gW ·Wu =
∑
l,i

vl,i(Wl,iu).

It acts as an edge indicator, designed to stop the evolution of the segmentation at the
boundaries of objects. Its weights are calculated based on the gradient of the image
under the framelet transform: near edges (large values of Wf), the weights are smaller,
so the penalty is weaker, preventing oversmoothing at discontinuities; in flat regions, the
penalty is stronger. A simple choice is to use the same weighting function across scales
and directions. The weight function vl,i can be defined in several different ways. In this

INDEX 85

work, however, we set it to be the same function v for every l and i, where

v(j) =
1

1 + σ
∑(r+1)s−1

i=1 |(W1,if)(j)|2
for j = 1, 2, . . . ,m.

To solve this complex problem,it is used an iterative optimization technique called
the split Bregman iteration. This method breaks the main problem down into a series
of simpler sub-problems that can be solved more easily. Following a similar derivation
and using the fact that W TW = I, we obtain the following algorithm for (3.124):

uk+
1
2 = W T (dk − bk)− µ

λ
r(ck1, c

k
2)

uk+1 = max{min{uk+
1
2 , 1}, 0}

dk+1 = TgW /λ(Wuk+1 + bk)

bk+1 = bk + (Wuk+1 − dk+1)

ck+1
1 =M(f,Ωk+1), ck+1

2 =M(f, (Ωk+1)c), Ω(k+1) = {u(k+1) > α}.

(3.125)

where µ is a parameter from equation (3.124) that controls the trade-off between the
regularization term and the data fidelity term; λ is another parameter that comes from
Bregman iteration; α ∈ [0, 1] is a parameter used to define the level set of the solution u∗,
which determines the final segmentation boundary; Tδ is a soft-thresholding operator, a
key component in l1-minimization algorithms like the one used here, defined as

(Tδ(x))(j) :=


x(j)− δ(j) if x(j) > δ(j)

0 if −δ(j) ≤ x(j) ≤ δ(j)

x(j) + δ(j) if x(j) < −δ(j)

(3.126)

and M(f,Ω) returns the mean value of f within domain Ω.

After we obtain a solution u∗ from the algorithm (3.125), the segmentation of image
f is given by the α level set of u∗ . It is proven for TV-based model that any α level set
of u∗ , for almost all α ∈ [0, 1], gives a meaningful segmentation of image f .

We can note that (3.125) is a very efficient algorithm. For each iteration k, the most
time consuming operation is performing fast framelet decomposition and reconstruction,
i.e. W and W T , which are of the same complexity as fast Fourier transform. In practice,
the method remains efficient and converges within a few hundred iterations.

3.3.3 Results

Let’s analyze the code block by block.

86 3. Variational model for 2D segmentation

1. First, the ultrasound image is loaded and converted from integer pixel matrix to
double type: this is important to avoid truncations in numerical operations. A
copy of the original image is created to display it and normalized to the range
[0, 1]. A control variable, used later to handle the order of c1/c2 averages or other
modes internal to the algorithm, Switch is set to 1.

Figure 3.19

2. The main parameters are set: tol is the convergence tolerance for the stopping
criterion; mu is the weight of the data term, a term that links u to the averages c1 and
c2 in the Chan-Relaxed Vessel model and higher values imply greater attachment
to data and so less smoothing; lambda is the splitting parameter, used in the
Split-Bregman scheme. Its choice balances the convergence speed and shrinkage
threshold.

Figure 3.20

3. Preparation begins for calculating the edge indicator function g(x).

frame and frame_edge choose the type of framelet (0 → Haar, 1 →piecewise
linear, 3 →piecewise cubic). They are used to regularization in segmentation and
to estimate edges, respectively.

Level and Level_edge specify the number of multiscale decomposition levels.

GenerateFrameletFilter(frame_edge) returns the 1D filters for analysis (De)
and synthesis (R) associated with the chosen framelet. Then, by applying a 2D
Gaussian mask, a smoothed version of the image is obtained, where noise and fine
details are attenuated. The blurring is used to reduce noise and to compute more
reliable gradients, and therefore stronger edges in the image, which will later be
used to guide the segmentation.

INDEX 87

Figure 3.21

4. A multiscale framelet decomposition and detail energy calculation occurs. Function
FraDecMultilevel is called to decompose the smoothed image fs into multi-level
framelet coefficients.

C_data{ki}{ji, jj} is the coefficient matrix at the level ki and for the horizon/
vertical filter combination indicated by (ji, jj). NormGrad is constructed by adding
the squares of the coefficients of the detail bands, excluding the ji = 1 and jj = 1

band which is the low-low component, i.e. the low frequency approximation. The
sum of the squares is a measure of high-frequency energy: points with high values
in NormGrad correspond to strong edges or details. The equation

NormGrad(x) =
L∑

k=1

∑
(i,j) ̸=(1,1)

Ck,i,j(x)
2

provides a spatial map of the “edge strength” that will be used to construct an edge
indicator.

Figure 3.22

5. The edge indicator, d_data_s is constructed there. It is initialized with all 1s; then
in the internal positions (excluding the edges of the image with 3 : end − 2) it is
defined as

d(x) =
1

1 + β NormGrad(x)
.

When NormGrad is large (i.e. strong edge) then d(x) it is small (near 0). When
NormGrad is small (i.e. flat area) then d(x) it is close to 1. This function is used

88 3. Variational model for 2D segmentation

as an edge indicator: regularization must be weaker and allow variations near the
edges and stronger in flat regions.

The use of 3 : end−2 serves to avoid edge problems due to convolutions with filters
(border zoning). In practice, we avoid applying the formula to the few marginal
pixels where the convolutions can be less reliable.

Figure 3.23

6. GenerateFrameletFilter(frame) calls the function that constructs the analy-
sis filters D and synthesis R corresponding to the chosen type of framelet (frame=
0:Haar, = 1:piecewise linear, = 3:cubic). These filters will be used by FraDecMultiLevel

and FraRecMultiLevel inside the function SplitBregFrameSeg. The three loops
for ki, ji and jj construct the d_data structure with the same organization used for
multiscale framelet coefficients: ki is the decomposition level (1, . . . ,Level); (ji, jj)
is the horizontal and vertical filter index (1, . . . , nD− 1) and d_data{ki}{ji, jj} is
assigned equal to d_data_s, the map of the edge indicator calculated before. The
reason for this assignment is that d_data must have the form d_data{ki}{ji, jj}
because later, in SplitBregFrameSeg, we will call a function that builds thresholds/
shrink spaces for each layer and each band. Having d_data{ki}{ji, jj} defined,
the regularization (or thresholds) can vary in scale and direction.

Figure 3.24

7. SplitBregFrameSeg is the main routine that implements the Split-Bregman scheme
to solve the segmentation model with regularization in the framelet domain. The
main inputs are the normalized image f, the edge-indicator weight maps for each
layer/band d_data, the numerical parameters (data term weight, split parameter,
tolerance) µ, λ and tol, frame and Level that specify the framelet filters and how
many layers to use, the maximum iterations maxit, the flag to handle the order of
c1/c2 Switch and the type of shrink ’s’ .

INDEX 89

The algorithm uses thresholds to carry out a thresholding weighted on the framelet
coefficients, alternating the updates of u (WT reconstruction), d (shrinkage) and b
(Bregman). The output u is a continuous map to which it belongs; the final mask is
obtained by binarizing u (typically with threshold 0.5) and applying morphological
operations for finishing.

Figure 3.25

Let’s now focus on functions called within the main code.

• The function GenerateFrameletFilter constructs the analysis filters D and syn-
thesis filters R needed for the framelet transform. D filters are used to decompose

Figure 3.26: GenerateFrameletFilter

the image into different components (lowpass and highpass) during the analysis
phase; while filters R are used to reconstruct the image (or segmentation function
u) from the calculated coefficients. These filters depend on the choice of the type
of framelet: Haar, piecewise linear, piecewise cubic. In the Haar wavelet, D{1} is
the lowpass filter (calculate average), D{2} is the highpass filter (calculate differ-
ence so the edges) and D{3} represents a string specifying symmetry conditions.
R{1}, R{2} are the corresponding reconstruction filters. In the Piecewise Linear
wavelet filters are derived from the linear B-spline (a linear piecewise function).
D{1} is always a lowpass filter, but we have multiple highpass filters that capture
different details: D{2} is used for the detection of horizontal/vertical variations,
D{3} for secondary finer variations. D{4} indicates that all filters are symmetrical

90 3. Variational model for 2D segmentation

and the R filters correspond to those of D but for reconstruction. Lastly, in the
Piecewise Cubic framelet filters are derived from the cubic B-spline (more regular
and smoother). There are multiple highpass filters (D{2},...,D{5}), each capturing
different details (first, second,... derivatives) with sensitivity to edges, curvatures,
and complex transitions. D{6} specifies that the 5 filters are symmetrical and R are
the corresponding reconstruction filters.

This function is called twice in the main script: for edges (frame_edge), since it
builds filters used in FraDecMultiLevel to calculate the edge map, NormGrad; for
segmentation (frame), since it builds filters that are used within SplitBregFrameSeg

to decompose and regularize the u segmentation function.

• Functions FraDecMultiLevel and FraDec implement the multiscale 2-D framelet
decomposition (analysis) used by your segmentation algorithm. FraDec calculates
the 2-D decomposition of a single layer by applying 1-D D{i} filters separably
on rows and columns using tensor product; FraDecMultilevel applies FraDec

recursively to obtain a decomposition on L levels: at each step it takes the low-low
component (approximation) and uses it as input to the next level.

Figure 3.27: FraDecMultilevel, FraDec

Regarding the first function, we define kDec as the variable that contains the signal
to decompose for the current layer, initially it is the original image. Then a cycle is
done on all levels 1 to L: Dec{k} =FraDec(kDec,D,k) computes the decomposition
of a single level of the kDec image. The output is a 2-D cell (size (nD−1)×(nD−1))
containing the coefficient matrices for all horizontal/vertical filter combinations.
In particular Dec{k}{1, 1} is the low-low coefficient (approximation) of that level.

INDEX 91

kDec = Dec{k}{1, 1} takes the low-low component and uses it as the input image
for the next layer. Since no downsampling occurs, Dec{k}{1, 1} has the same
spatial dimension as te original image and so the process is multilevel redundant
(each level has coefficient matrices of the same dimensions).

In the second function, FraDec, a loop is made on the horizontal filters where M1 =

D{i}, 1-d filter for horizontal direction (rows),is used in tempi=ConvSymAsym in the
convolution of the original image line by line with M1. The auxiliary function Con-
vSymAsym performs convolution taking into account the condition at the edges
and probably using the correct orientation. The use of ConvSymAsym, rather than
conv2, to perform convolution allows edges (symmetric or antisymmetric padding)
and filter alignment (filter center) to be managed in a controlled manner. Conse-
quently a loop is performed on the vertical filters where M2 = D{j}, 1-d filter for
vertical direction (columns), is used in tempj=ConvSymAsym with tempi’ as argu-
ment. This means that the convolution with M2 is carried out on the rows of the
transposed matrix, equivalent to the convolution on the columns of the original.
Then, it re-transposes to put the matrix back in the original direction: the result
corresponds to the separable 2-D convolution of the original image with the 2-D
filter = M1 ⊗ M2 (tensor product).

• Function SplitBregFrame implements a Split-Bregman version of an Active Con-
tours Without Edges (Chan-Vese) type energy in which spatial regularization is
carried out in the framelet domain with penalties l1. Optimization is accomplished
by alternating closed (or semi-explicit) updates: updating u (relaxed membership
function, values in [0, 1]), updating d (auxiliary variables = framelet coefficients
subject to shrink/threshold) and updating the term Bregman b. Regularization is
edge-aware because shrink thresholds depend on d_data, that is a map inversely
proportional to edge strength.

Figure 3.28: SplitBregFrame

First of all, framelet operators (W , WT) are constructed using

92 3. Variational model for 2D segmentation

GenerateFrameletFilter, FraDecMultiLevel and FraRecMultiLevel. This func-
tion performs the inverse framelet transform (reconstruction) of an image (or signal)
from its multi-level framelet coefficients. Starting from the deepest decomposition
level, it iteratively applies the reconstruction filters to combine the approxima-
tion and detail coefficients until the original image is recovered at level 1. FraRec
(single-level) reconstructs an image from its C{k} bands using R synthesis filters
(generally via separable convolutions and component summation). Apply R{i} syn-
thesis filters to rows and columns (separable) and add the contributions to get the
reconstruction for that layer. It has the reverse behavior of FraDec.

Figure 3.29: FraRecMultileve,FraRec

Then the weighted thresholds for the shrink are calculated utilizing getwThresh

where for each ki-level and each band (ji, jj) builds muLevel{ki}{ji, jj}: if ji ==

1 and jj == 1 (low-low band) then there is no thresholding and it is equal to
0; otherwise muLevel{ki}{ji, jj}=d_data {ki}{ji, jj}/λ. This means that shrink
thresholds are proportional to the d_data map (edge indicator) and scaled from
1/λ. Where d_data large (flat zone) the threshold is large and so we have plus
suppression of details; where d_data is small (edge) the threshold is small and so
the details are retained.

u is initialized with 0, b (Bregman terml) is initialized as W (u) (initial coefficients)
and d is initially equal to b, so the constraint d = Wu starts satisfied; c1 is initialized
with 0 and c2 as the maximum of the values of the image and r(x) = (c1−f(x))2−
(c2 − f(x))2 is the data field.

INDEX 93

Figure 3.30: getwThresh

Then the main loop starts by updating u. The subproblem for u after split is

min
u∈[0,1]

λ

2
||Wu− (d− b)||22 + µ⟨r, u⟩

First order condition (derivative = 0) gives:

λW T (Wu− (d− b)) + µr = 0.

If W is a tight frame, or we assume W TW = I,:

λ(u−W T (d− b)) + µr = 0⇒ u = W T (d− b)− µ

λ
r

. Next d is updated by solving the subproblem

min
d

λ

2
||d− (Wu+ b)||22 +

∑
k,i,j

wkij(x)|dkij(x)|,

where wkij are the weights derived from d_data (hence muLevel). The solution is
weighted soft-thresholding:

dkij(x) = shrink((Wu+ b)kij(x), wkij(x)/λ).

Function CoeffOper applies the specified shrink type. The internal/external aver-
ages are recalculated using the threshold of u at alpha = 0.5. This is analogous to
the Chan-Vese algorithm which alternates between updating the curve and updat-
ing the inner/outer means. r is updated with new averages. Finally Bregman b is
updated.

The algorithm was applied to three transesophageal ultrasound images, each corre-
sponding to a patient with atrial fibrillation. For each case, a region of interest (ROI)
was selected, and after the segmentation was completed, cropping and additional pro-
cessing were performed on the mask to better isolate the left atrial appendage. For this
second processing, a different ROI was chosen compared to the one used previously, as

94 3. Variational model for 2D segmentation

the algorithm requires higher contrast and sharper edges to achieve effective segmen-
tation. The parameters were set as follows: µ and λ = µ × 0.05, in order to produce
sufficiently accurate contours, avoiding both excessive sensitivity to noise and overly
smoothed segmentations. Additionally, the following settings were used: frame = 3,
Level= 2, frame_edge = 3, and Level_edge = 2.

After running the algorithm, as in the previous cases, the largest connected compo-
nent was extracted and cropped to isolate the left atrial appendage.

1. Patient 1: µ = 5, λ = µ ∗ 0.05.

Figure 3.31: Final segmentation

INDEX 95

2. Patient 2: µ = 100, λ = µ ∗ 0.05.

Figure 3.32: Final segmentation

3. Patient 3: µ = 100, λ = µ ∗ 0.05.

Figure 3.33: Final segmentation

96 3. Variational model for 2D segmentation

3.4 Comparative Evaluation of Different Methods

In this section, a comparative analysis of the previously described methods is pre-
sented. The goal is to highlight the main strengths and limitations of each approach,
focusing in particular on their practical applicability. Moreover, computational costs
and processing times are evaluated to provide a clear overview of the efficiency of the
different techniques.

3.4.1 Analysis of the computational costs

Let us conduct an analysis of the computational costs of the three codes.

Convex non-convex image segmentation

The total computational cost of convex non convex algorithm is given by the sum
of the costs of data loading, stage-one (OUR_Seg_SPL), stage-two (ThdKmeans), and the
visualization of results (SegResultShow). We first introduce the notation that will be
used:

• N : number of pixels, given by xLen× yLen;

• I: number of ADMM iterations executed by OUR_Seg_SPL;

• Ik: number of iterations of the internal K-means algorithm;

• k: number of phases (clusters), usually small (2− 7).

We also note that elementwise operations on matrices with N elements cost O(N),
while the 2D Fast Fourier Transform (FFT2) on a matrix with N elements costs O(N ·
logN).

We now proceed with a detailed cost analysis. First, the image loading and the
initialization of the values T and k have a cost of O(N). The dominant cost comes from
stage-one, which corresponds to the execution of OUR_Seg_SPL. For each ADMM iteration
(i = 1 : its_max), the following contributions must be considered: O(N) for building rhs

using Dx, Dy, Dxt, Dyt, which are discrete difference operators implemented through
elementwise operations and shifts; O(N · logN) for solving the linear system for u using
the Fast Fourier Transform; O(N) for the computation of the error; O(N) for calculating
rx, ry and the norm r_norm; O(N) for calculating tx, ty; and O(N) for updating the

INDEX 97

multipliers rhox, rhoy. Summing these terms yields

Titer = O(N · logN) +O(N) = O(N · logN),

and therefore, considering I iterations, we obtain

Tstage1 = O(I ·N · logN).

As for stage-two, which consists of the execution of ThdKmeans, the costs are as
follows. The K-means procedure has complexity O(Ik ·k ·N), which can be approximated
as O(Ik ·N) since k is small. In addition, there is a cost of O(k ·N) for computing the
means and O(k) for computing the thresholds. Therefore, the total complexity of the
second stage is

Tstage2 = O(Ik ·N),

which is significantly lower than stage-one.

Finally, we analyze the cost of SegResultShow. Constructing the masks temp costs
O(k·N), the contour function has cost O(N), and the construction of the final segmented
image seg costs O(k ·N). Thus, we have

TSegResultShow = O(k ·N).

In conclusion, the total cost of the CNC algorithm is

Ttot = Tstage1 + Tstage2 + TSegResultShow = O(I ·N · logN).

Unsupervised Multiphase Segmentation

We now introduce the notation used:

• Nx and Ny: the image dimensions, with N = Nx ·Ny;

• I: the number of outer iterations (loop iter= 1 : 5), in our case I = 5;

• K: the average number of active phases (variable k), and Kmax the maximum
allowed value (set to 20 in the code).

The dominant contribution comes from the triple loop for x, y, j = 1 : k + 1, which
leads to an asymptotic complexity of O(I · N ·K). Since in the code K is bounded by
20, in practice this reduces to O(I ·N).

98 3. Variational model for 2D segmentation

For each pair (x, y) and each j, up to four comparisons with the neighboring pixels are
performed, together with about eight arithmetic operations for tj/tl, some calculations
for dF, the evaluation of dE_temp (a few multiplications and subtractions), and finally
one comparison dE_temp < dE. Thus, each evaluation in j requires only a small constant
number of arithmetic operations (on the order of a few dozen FLOPs). Therefore, the
computational work per pixel is O(K) FLOPs.

In conclusion, the overall computational cost is

Ttot = O(I ·K ·N).

Frame based segmentation for medical images

We begin by introducing the notation:

• N : number of pixels in the image, given by xLen× yLen;

• nD: number of filters in the decomposition filter D;

• nR: number of filters in the reconstruction filter R;

• L: number of levels in the framelet decomposition;

• Ledge: number of decomposition levels used exclusively in the preprocessing stage
to compute the edge indicator d_data.

The image loading and normalization steps have a cost of O(N). We now analyze the
functions used within the code. The function GenerateFrameletFilter has complexity
O(1), as it only returns fixed coefficients and does not depend on the image size.

The functions FraDecMultiLevel and FraDec have a complexity of O(L ·N · (nD−
1)2). Indeed, each level L applies 2D convolutions via ConvSymAsym on progressively
smaller images. A 2D convolution has cost O(N · k2) (with k the filter size). Each
decomposition level performs approximately (nD−1)2 convolutions, where nD typically
ranges from 3 to 6 depending on the framelet.

An analogous reasoning applies to FraRecMultiLevel and FraRec, which yield a
complexity of O(L ·N · (nR− 1)2). The function CoeffOper has complexity O(L ·N).

The segmentation algorithm SplitBregFrame, which represents the core of the method,
has complexity O(L · N · (nD − 1)2) per iteration and thus O(I · L · N · (nD − 1)2) in

INDEX 99

total. Finally, the computation of the edge indicator functions NormGrad and d_data_s

costs O(Ledge ·N · (nD − 1)2).

Therefore, the overall complexity of the algorithm is dominated by the segmentation
iterations:

Ttot = O(I · L ·N · (nD − 1)2).

In terms of computational complexity, the three segmentation algorithms under con-
sideration exhibit distinct behaviors. The unsupervised multi-segmentation model has a
complexity of O(I ·K ·N), where N is the number of pixels, I is the number of iterations,
and K is the number of clusters or regions. Since K is typically small, this method scales
linearly with image size, making it the most computationally efficient among the three.
The convex/non-convex segmentation algorithm has a complexity of O(I · N · logN).
Although the logarithmic factor introduces a slight overhead compared to purely linear
scaling, the method remains relatively efficient for moderate image sizes. In contrast,
the frame-based segmentation method has a complexity of O(I ·L ·N · (nD− 1)2), where
I is the maximum number of iterations, L is the framelet decomposition level, and nD

is the number of framelet filters. Even for moderate values of these parameters, the
multiplicative effect makes this approach computationally more expensive. In practice,
therefore, the unsupervised multi-segmentation model is the least demanding in terms
of computation, infact we measured 0.39 seconds, the convex/non-convex segmentation
algorithm is intermediate, with 4.88 seconds, and the frame-based segmentation is the
most computationally intensive, with 8.86 seconds.

3.4.2 Limitations of the three Segmentation Algorithms

In order to assess the strengths and weaknesses of the three proposed segmentation
algorithms, it is essential to identify their limitations. Understanding these constraints
helps both in selecting the appropriate method for a given dataset and in guiding future
improvements. Below, I discuss for each algorithm its main limitations.

• Convex Non-Convex image segmentation

The convex non-convex image segmentation method provides many benefits: strong
theoretical guarantees, well-posed energy minimization, and often sharp bound-
aries. However, it suffers from a significant sensitivity to parameter choice. Param-
eters such as weighting coefficients (e.g. balancing data fidelity vs regularization),
thresholds, or stopping tolerances dramatically affect outcome: small changes can

100 3. Variational model for 2D segmentation

lead to either over-segmentation (too many small regions) or under-segmentation
(missing structures). Furthermore, in certain imaging modalities (such as ultra-
sound), image noise or artifacts can amplify instabilities, because the model as-
sumes somewhat clean or strongly defined contrast at edges. Finally, convergence
speed may degrade if parameter values force the optimization to balance conflict-
ing terms (data vs regularity), making practical tuning both time-consuming and
dataset-specific.

• Frame Based Segmentation

Frame based segmentation, which leverages multiscale framelet decompositions,
excels in capturing image structure at multiple scales and enforcing regularization
in transform domains. Yet, it also has limitations. Firstly, it requires relatively
high contrast in the image, especially at the boundaries of the structures to be
segmented; if edges are weak or blurred, the framelet coefficients used to detect
boundaries may not be reliable. Secondly, it can be computationally heavy: the
multilevel decomposition and reconstruction over several scales for every iteration
make it less suitable for real-time processing or for devices with constrained com-
puting power. Thirdly, it typically has more internal parameters (number of filters,
decomposition levels, thresholds), which also require careful tuning. In addition,
noise in the image tends to produce spurious high-frequency components, which
may lead to false edges unless appropriately suppressed, potentially reducing seg-
mentation robustness.

• Unsupervised Multiphase Segmentation

Unsupervised multiphase segmentation algorithms have the advantage of not re-
quiring manual labels and being more flexible in adapting to different images.
However, they are not without their own limitations:

(i) Dependence on the number of phases (clusters): While being unsuper-
vised means fewer ground truth labels, the algorithm still typically requires
a parameter specifying how many phases/clusters to segment. If the num-
ber of clusters is chosen too high, many small spurious segments may appear
(over-segmentation); if too low, distinct structures may be merged (under-
segmentation).

(ii) Ambiguous intensity overlap and noise sensitivity: In many images,
different regions (phases) have overlapping intensity distributions, or inten-
sity transitions are gradual (rather than sharp). In such cases, clustering or

INDEX 101

threshold-based assignments struggle, since pixels in overlap zones may be
misclassified, and the algorithm can be sensitive to noise or outliers.

(iii) Lack of strong structural priors: Because unsupervised methods often
rely on low-level features (intensity, texture, simple statistics), they may fail to
capture more complex anatomical or contextual structure, such as shape con-
straints, spatial continuity, or known tissue boundaries, resulting in anatomi-
cally implausible segmentation.

(iv) Evaluation difficulties: Without labels, validating the correctness of seg-
mentation is harder. Metrics may be unreliable or based on proxies; and
applicability in clinical settings may be limited unless manual review is avail-
able.

To summarize, Convex Non-Convex Segmentation method is limited mainly by
parameter sensitivity and requirements for strong contrast; it can be less robust
in noisy images, especially ultrasound. Frame-Based Segmentation method needs
high boundary contrast, is computationally heavier, and has more internal param-
eters; it may perform poorly if edges are ill-defined or image noise is significant.
Unsupervised Multiphase Segmentation method, while more flexible, has limita-
tions tied to the choice of number of clusters, overlapping intensities, noise, lack of
strong priors, and difficulties in objective evaluation.

102 3. Variational model for 2D segmentation

Chapter 4

Comparison Between 3D

Segmentations: ITK-SNAP and

Variational Methods

In this chapter, a direct comparison is presented between the 3D segmentation ob-
tained using the variational methods described in the previous chapters and the 3D
segmentation obtained with the ITK-SNAP software, which performs automatic segmen-
tation based on intensity and region-growing techniques. The goal of this comparison
is to evaluate whether the algorithms implemented in MATLAB can serve as a valid
alternative to commercial or open-source software for left atrial appendage segmentation
from transesophageal echocardiographic images.

4.1 3D Reconstruction from Variational Segmentation

For the MATLAB-based segmentation, a single variational method was selected
to generate the three dimensional model. Specifically, the Frame based segmentation
method was chosen due to its flexibility and its ability to handle noisy ultrasound im-
ages. The starting point was a TEE image sequence that had been preprocessed with
suitable denoising filters to reduce speckle noise and to enhance the contrast between dark
and bright regions. From each filtered frame, a region of interest (ROI) was extracted,
focusing on the area containing the left atrial appendage.

The selected segmentation algorithm was applied slice by slice to the preprocessed
ROI. The resulting binary masks were then stacked to reconstruct the 3D volume of

103

104
4. Comparison Between 3D Segmentations: ITK-SNAP and Variational

Methods

the LAA. However, this raw 3D segmentation was not directly used as the final model.
Post-processing was required to improve its quality. To this end, external software tools
such as MeshLab and ParaView were employed to refine the geometry. In particular,
these tools were used to:

• Remove extraneous regions not belonging to the appendage;

• Fill potential holes in the segmentation;

• Apply smoothing filters to obtain a more regular and anatomically plausible sur-
face.

The resulting 3D model of the LAA, obtained entirely through MATLAB-based seg-
mentation followed by mesh post-processing, is shown in the figure below.

Figure 4.1: 3D segmentation with TV method

INDEX 105

4.2 3D Segmentation with ITK-SNAP

For comparison, the same TEE dataset was segmented using ITK-SNAP, an open-
source software widely used in medical image analysis. ITK-SNAP provides semi-automatic
and automatic segmentation tools, including active contour and region-growing methods
that rely on intensity thresholds. In this work, the automatic segmentation mode was
applied to the filtered TEE volumes to extract the LAA region.

As with the MATLAB-based approach, the ITK-SNAP segmentation was subse-
quently refined using MeshLab and ParaView to remove noise and apply light smoothing,
ensuring a fair comparison between the two methods.

Figure 4.2: 3D segmentation with ITK-SNAP

With a carefully executed post-processing workflow and the use of advanced visual-
ization tools such as MeshLab and ParaView, highly accurate and realistic 3D recon-
structions can be achieved. In the hands of skilled operators, this procedure allows for
the generation of smooth and well-defined anatomical boundaries that closely replicate
the patient’s actual anatomy, as we can see in the following figures.

Figure 4.3: 3D segmentation with post production

106
4. Comparison Between 3D Segmentations: ITK-SNAP and Variational

Methods

4.3 Qualitative Comparison and Discussion

Before comparing the 3D reconstructions, it is useful to first evaluate the segmentation
results on individual 2D slices. This step allows for a more direct and detailed comparison
between the MATLAB-based segmentation and the one obtained with ITK-SNAP. By
examining the two contours slice by slice, it is possible to assess how each method
responds to image noise and anatomical boundaries, and to identify local differences
that might not be immediately visible in the 3D models. This analysis provides valuable
insight into the behavior and sensitivity of the two algorithms at the slice level, serving
as a foundation for the subsequent 3D comparison.

Figure 4.4: 2D segmentation comparison

The visual comparison between the two 3D segmentations shows that the results
obtained with ITK-SNAP and the variational MATLAB methods are overall very similar
in terms of accuracy. Both approaches successfully capture the global structure of the left
atrial appendage, and the reconstructed volumes are largely consistent with each other.
The main differences between the two methods are not related to their accuracy but
rather to the level of detail and the way each algorithm interacts with the intrinsic noise
of the echocardiographic images. In other words, each segmentation method responds
differently to image features depending on its sensitivity, leading to slightly different
surface appearances.

The ITK-SNAP segmentation tends to produce smoother and more anatomically
detailed borders, which is partly a result of the algorithm’s sensitivity and partly due
to the ability to manually refine the segmentation slice by slice. This manual correction
allows experienced users to remove artifacts, adjust contours, and achieve a higher level
of precision, especially along complex anatomical structures such as the borders of the
appendage. This flexibility is one of the advantages of ITK-SNAP: after the automatic
segmentation, the user can directly modify the segmentation in 2D, leading to more
controlled and refined 3D results.

On the other hand, the MATLAB-based segmentation relies on variational models

INDEX 107

and is fully automated. Once the method, the echocardiographic dataset and the re-
gion of interest (ROI) are selected, the entire segmentation is performed automatically,
without the possibility to manually intervene on individual slices. As a result, the final
surface strictly reflects the behavior of the algorithm with respect to the image noise and
resolution, without any manual correction. Despite this limitation, the results obtained
with the variational MATLAB methods are remarkably good, showing a clear and ac-
curate representation of the appendage even without manual editing. This highlights
the robustness and potential of variational approaches for automated medical image
segmentation.

It is important to note that both methods share a common limitation related to
the quality of the TEE data. The presence of speckle noise, artifacts, and the rela-
tively low spatial resolution make it difficult to achieve a perfectly smooth and accurate
segmentation in a fully automatic way. These issues affect both ITK-SNAP and MAT-
LAB methods, although ITK-SNAP can mitigate them more effectively through manual
refinement.

In summary, both ITK-SNAP and the variational MATLAB approach produce accu-
rate and anatomically meaningful segmentations of the left atrial appendage. The main
differences lie in the level of detail and the workflow: ITK-SNAP allows for slice-by-slice
manual refinement, resulting in potentially smoother and more detailed surfaces, while
MATLAB provides a fast and fully automatic segmentation pipeline that still achieves a
very good level of accuracy. These characteristics suggest that ITK-SNAP may be prefer-
able when manual editing is feasible and high anatomical detail is required, whereas the
MATLAB-based approach is well suited for automated processing, research pipelines, or
situations where manual intervention is not possible.

108
4. Comparison Between 3D Segmentations: ITK-SNAP and Variational

Methods

Figure 4.5: Direct comparison of the two methods

Bibliography

[1] A. Masci, M. Alessandrini, D. Forti, F. Menghini, L. Dedé, C. Tomasi, A. Quar-
teroni, C. Corsi: A Proof of Concept for Computational Fluid Dynamic Analysis of
the Left Atrium in Atrial Fibrillation on a Patient-Specific Basis, 2020.

[2] M. Falanga, C. Cortesi, A. Chiaravalloti, A. Dal Monte, C. Tomasi, C. Corsi: A
digital twin approach for stroke risk assessment in Atrial Fibrillation Patients, 2024.

[3] S.W. Smith, H.G. Pavy, O.T. von Ramm: High-speed Ultrasound Volumetric Imag-
ing System, Part I: Transducer Design and Beam Steering, “IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control” (Volume: 38, Number: 2, 1991),
1999, pp. 100-108.

[4] S.W. Smith, H.G. Pavy, O.T. von Ramm: High-speed Ultrasound Volumetric Imag-
ing System, Part II: Parallel Processing and Image Display , “IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control”, (Volume 38, Number 2, 1991),
1999, pp. 108-115.

[5] J. S. Mattoon, T. G. Nyland: Principi fondamentali di ecografia diagnostica, 2016,
pp. 1-26.

[6] R. Beigel, N. C. Wunderlich, S. Yen Ho, R. Arsanjani, R. J. Siegel: The Left Atrial
Appendage: Anatomy, Function, and Noninvasive Evaluation, “ JACC: Cardiovas-
cular Imaging” (Volume 7, Number 12, 2014), 2014.

[7] S. Klein, M. Staring: Elastix, The manual., 2024.

[8] M. Kass, A. Witkin, D. Terzopoulos: Snakes: Active contour models, “ INT Journal
of Computer Vision” (Volume 1, 1988), 1988, pp. 321-331.

[9] T. F. Chan, L. A. Vese: Active Contours Without Edges, “ IEEE Transactions on
Image Processing” (Volume 10, Number 2, 2001), 2001, pp. 266-277.

109

110 BIBLIOGRAPHY

[10] R. Malladi, J. A. Sethian, B. C. Vemuri: A fast level set based algorithm for topology-
independent shape modeling, “ Journal of Mathematical Imaging and Vision” (Vol-
ume 6, 1996), 1996, pp. 269-289.

[11] R. Chan, A. Lanza, S. Morigi, F. Sgallari: Convex Non-Convex Image Segmentation,
“ Numerische Mathematik” (Volume 138, 2018), 2017, pp. 635-680.

[12] B.Sandberg, S. Ha Kang, T. F. Chan: Unsupervised Multiphase Segmentation: a
phase balancing model, “IEEE Transactions on Image Processing”, (Volume 19, Num-
ber 1, 2010), 2009, pp. 119-130.

[13] B. Dong, A. Chien, Z. Shen, T. F. Chan: Frame based segmentation for medical
images, “Communications in Mathematical Sciences”, (Volume 9, Number 2, 2010),
2010, pp. 1724-1739.

[14] R. Beigel, N. C. Wunderlich, S. Yen Ho, R. Arsanjani, R. J. Siegel: The Left Atrial
Appendage: Anatomy, Function, and Noninvasive Evaluation, “JACC: Cardiovas-
cular Imaging”, (Volume 7, Number 12, 2014), 2014, pp. 1251 - 1265.

[15] A. Buades, B. Coll, J. -M. Morel: A non-local algorithm for image denoising, “JACC:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition”,
(Volume 2, 2005), 2005, pp. 60-65.

[16] J. Immerkær: Fast Noise Variance Estimation, “Computer Vision and Image Un-
derstanding”, (Volume 64, Number 2, 1996), 1996, pp. 300-302.

[17] P. Perona, J. Malik: Scale-Space and Edge Detection Using Anisotropic Diffusion,
“IEEE Transactions on Pattern Analysis and Machine Intelligence”, (Volume 12,
Number 7, 1990), 1990, pp. 629-639.

[18] C. A. Bouman: Foundations of Computational Imaging: A Model-Based Approach,
2022.

[19] S. Marchesini, A. Trivedi, P. Enfedaque, T. Perciano, D. Parkinson: Sparse Matrix-
Based HPC Tomography, “Computational Science-ICCS”, 2020.

[20] R. C. Gonzalez, R. E. Woods: Digital Image Processing, Pearson, 4th edition, 2018.

[21] T. F. Chan, J. Shen: Image Processing and Analysis: Variational, PDE, Wavelet,
and Stochastic Methods, “BioMed Eng OnLine”, (Volume 5, Number 38, 2006), 2006.

Web References

• Fibrillazione atriale, Policlinico Gemelli: https://privato.policlinicogemelli
.it/approfondimenti/fibrillazione-atriale/.

• Fibrillazione atriale, Humanitas: https://www.humanitas.it/malattie/fibril

lazione-atriale/

• Left atrial appendage, Cleveland clinic: https://my.clevelandclinic.org/hea

lth/body/left-atrial-appendage.

• SNR: https://wraycastle.com/it/blogs/knowledge-base/what-does-snr-s
tand-for?srsltid=AfmBOoqCvp1fqWonDC6yUTzeyINVEbv_h_BJmCSgKnSN9NHrAGh

8_BoW.

• Tomografia computerizzata, MSD manuale: https://www.msdmanuals.com/it/

casa/argomenti-speciali/esami-comuni-di-diagnostica-per-immagini/to

mografia-computerizzata-tc.

• Quantum noise, Radiopaedia: https://radiopaedia.org/articles/quantum-n

oise?lang=us&utm_source=chatgpt.com

111

https://privato.policlinicogemelli.it/approfondimenti/fibrillazione-atriale/
https://privato.policlinicogemelli.it/approfondimenti/fibrillazione-atriale/
https://www.humanitas.it/malattie/fibrillazione-atriale/
https://www.humanitas.it/malattie/fibrillazione-atriale/
https://my.clevelandclinic.org/health/body/left-atrial-appendage
https://my.clevelandclinic.org/health/body/left-atrial-appendage
https://wraycastle.com/it/blogs/knowledge-base/what-does-snr-stand-for?srsltid=AfmBOoqCvp1fqWonDC6yUTzeyINVEbv_h_BJmCSgKnSN9NHrAGh8_BoW
https://wraycastle.com/it/blogs/knowledge-base/what-does-snr-stand-for?srsltid=AfmBOoqCvp1fqWonDC6yUTzeyINVEbv_h_BJmCSgKnSN9NHrAGh8_BoW
https://wraycastle.com/it/blogs/knowledge-base/what-does-snr-stand-for?srsltid=AfmBOoqCvp1fqWonDC6yUTzeyINVEbv_h_BJmCSgKnSN9NHrAGh8_BoW
https://www.msdmanuals.com/it/casa/argomenti-speciali/esami-comuni-di-diagnostica-per-immagini/tomografia-computerizzata-tc
https://www.msdmanuals.com/it/casa/argomenti-speciali/esami-comuni-di-diagnostica-per-immagini/tomografia-computerizzata-tc
https://www.msdmanuals.com/it/casa/argomenti-speciali/esami-comuni-di-diagnostica-per-immagini/tomografia-computerizzata-tc
https://radiopaedia.org/articles/quantum-noise?lang=us&utm_source=chatgpt.com
https://radiopaedia.org/articles/quantum-noise?lang=us&utm_source=chatgpt.com

	Introduction
	Preliminaries
	Atrial fibrillation
	Structural and functional characterization of the LAA
	Data analysis
	Results and discussion

	Methods
	Internship

	CT vs Ultrasound Imaging: A Comparative Study
	CT vs Ultrasound Imaging
	Noise
	SNR
	CT imaging
	Eco imaging

	Denoising procedure
	Segmentation
	Post-segmentation processing
	Elastix and Transformix

	Variational model for 2D segmentation
	Convex non-convex image segmentation
	Construction of the penalty function
	Convexity analysis and ADMM algorithm
	Convergence analysis
	Results

	Unsupervised Multiphase Segmentation
	Description of the model
	Fast algorithm for Multiphase Segmentation
	Results

	Frame based segmentation for medical images
	Frames and Framelets
	Segmentation model
	Results

	Comparative Evaluation of Different Methods
	Analysis of the computational costs
	Limitations of the three Segmentation Algorithms

	Comparison Between 3D Segmentations: ITK-SNAP and Variational Methods
	3D Reconstruction from Variational Segmentation
	3D Segmentation with ITK-SNAP
	Qualitative Comparison and Discussion

	Bibliography
	Web References

