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Abstract

This thesis investigates the emergence of ferromagnetism in two-dimensional Hub-
bard models on geometrically frustrated lattices, focusing on the continuous tran-
sition from square to triangular geometries. The motivation comes from recent
progress in ultracold atom experiments, where lattice geometry can be tuned with
high precision, opening new possibilities to study frustration-driven quantum mag-
netism. We employ the T-matrix approximation to analyze the competition be-
tween kinetic energy, interaction strength, and lattice frustration at low particle
densities. By extending the T-matrix framework to both finite lattices and the
thermodynamic limit, we perform accurate energy comparisons between paramag-
netic and ferromagnetic states. Our results yield phase diagrams that map out the
conditions for the stabilization of ferromagnetism as frustration is varied, provid-
ing theoretical guidance for experiments with ultracold optical lattices and offering
new insights into the microscopic mechanisms of itinerant ferromagnetism.




Introduction

Magnetism in strongly correlated systems has been a central theme of condensed
matter physics for decades. Ferromagnetism, characterized by the spontaneous
alignment of electron spins, is one of the most fundamental yet least understood
phenomena in itinerant systems. The Hubbard model, which captures the com-
petition between kinetic energy and on-site repulsion, offers a minimal framework
for addressing this issue. However, despite decades of study, consensus on the
microscopic origin and stability of ferromagnetism in the Hubbard model remains
elusive [I, 2] 3.

Frustrated lattice geometries play a decisive role in this problem. While bi-
partite lattices such as the square lattice favor antiferromagnetic correlations near
half filling, triangular lattices suppress them and may enhance ferromagnetic ten-
dencies. Recent progress in ultracold atom experiments has made it possible to
continuously tune the lattice from square to triangular geometry[4], providing an
ideal setting for exploring frustration-driven magnetism at low densities.

Theoretical studies of ferromagnetism in the Hubbard model have employed di-
verse approaches, including quantum Monte Carlo simulations [5, 6] [7, 8], dynam-
ical mean-field theory [9, 10, [I1], and diagrammatic Monte Carlo [12, [13]. These
methods provide valuable insights but face challenges such as finite-size effects, the
fermionic sign problem, or overestimation of ferromagnetic regions. Experimen-
tally, ultracold atomic gases in optical lattices [14] offer unprecedented control of
density, interactions, and geometry, yet clear evidence of itinerant ferromagnetism
remains lacking due to competing phases and finite-temperature effects.

The goal of this thesis is to investigate ferromagnetism in the two-dimensional
Hubbard model at low densities, focusing on the square-to-triangular lattice transi-
tion. We employ the T-matrix approximation to compute the ground-state energy
of paramagnetic and ferromagnetic states. Numerical algorithms are developed
and optimized for parallel computation, enabling detailed analysis of the interplay
between density, interaction strength, and frustration.

The remainder of the thesis is organized as follows. Chapter 1 introduces the
Hubbard model, the physics of itinerant ferromagnetism, and the motivation for
studying tunable frustrated lattices. Chapter 2 presents the T-matrix formalism

i



and its application to both finite and infinite systems. Chapter 3 describes the
numerical implementation. Chapter 4 discusses the results and phase diagrams.
Chapter 5 summarizes the conclusions and provides an outlook for future work.In
the appendix, we provide a detailed description of several numerical methods em-
ployed in this study.
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Chapter 1

Ferromagnetism in the lattice

model

This chapter introduces the theoretical and experimental background of ferro-
magnetism in lattice models. We begin with the Hubbard model as the minimal
framework for describing correlated electrons, followed by an explanation of the
microscopic mechanism that stabilizes ferromagnetic order. We then discuss recent
experimental advances in tuning lattice geometry from square to triangular con-
figurations, which provide a versatile platform for investigating frustration effects.
Finally, we review recent progress in the field, with a focus on emergent ferromag-

netic phases in frustrated lattices and their implications for future studies.

1.1 General properties of the Hubbard Model

Ferromagnetism is one of the most important and complex collective phenomena
in strongly correlated systems, and its origin has long attracted extensive atten-
tion in condensed matter physics and many-body theoretical research[2] 15, [3].
The Hubbard model, as the theoretical framework for describing strongly corre-
lated systems, has played a central role in exploring the microscopic mechanisms
of itinerant ferromagnetism.The Hubbard model was first proposed by Hubbard,
Kanamori, and Gutzwiller in 1963[16, (17, 18], to describe interacting electrons in

transition metals and their oxides, and to understand the magnetic properties and
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1.1. GENERAL PROPERTIES OF THE HUBBARD MODEL

metal-insulator transitions in such systems.

The general form of the Hubbard Hamiltonian on a lattice can be written as

H=— Ztijcl’acj,g + UZ it (1.1)

1,5,0 )

where ¢ and j are lattice indices, and o denotes the spin index. The hopping term
includes contributions from nearest-neighbor (generally denoted as t) and next-
nearest-neighbor(generally denoted as t')interactions as shown in Figure , while

U represents the on-site Coulomb interaction.

Figure 1.1. The nearest hopping parameter t in Hubbard model.

The kinetic energy term (hopping term), characterized by the hopping ampli-
tude ¢;;. It allows fermions to move between lattice sites ¢ and j, and encodes the
geometry and dimensionality of the underlying lattice. In most cases, one consid-
ers nearest-neighbor hopping ¢, and sometimes next-nearest-neighbor hopping '
in order to account for frustration and more realistic band structures.The on-site
interaction term U ), n;+7;), which penalizes double occupation of the same lat-
tice site. This term captures the essence of electronic correlations arising from the
Coulomb repulsion in real materials.

The competition between kinetic energy (favoring delocalization) and interac-

tion energy (favoring localization) lies at the heart of the Hubbard model. In the
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1.1. GENERAL PROPERTIES OF THE HUBBARD MODEL

weak-coupling limit U/t < 1, the system behaves similarly to a Fermi liquid, where
electrons are itinerant and weakly correlated. In contrast, in the strong-coupling
limit U/t > 1, double occupation is strongly suppressed, and at half-filling the
system becomes a Mott insulator. In this limit, an effective low-energy description
is given by the antiferromagnetic Heisenberg spin Hamiltonian

X A 4t
Hg=J) S;:-S;, J =7 (1.2)

where S; is the spin operator at site ¢. This mapping reveals the deep connection

between the Hubbard model and quantum magnetism.
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Figure 1.2. [llustration of the ultracold atom simulation for the Fermi-Hubbard model,
ultracold atoms serve as analogues of electrons in condensed matter systems, with optical
standing waves forming lattice structures.

From a modern perspective, the Hubbard model is not only a paradigm for
strongly correlated electrons in solids, but also serves as the central theoretical
framework for quantum simulations with ultracold atoms in optical lattices.In
1995, Bose-Einstein condensation of alkali-metal atoms was experimentally achieved
[19], marking the beginning of a new era in the field of ultracold atomic physics.

Soon after, the realization of the Hubbard model with ultracold atoms was pro-
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1.2. FERROMAGNETISM IN THE HUBBARD MODEL

posed [20].

As shown in Figure this theoretical scheme ingeniously maps atoms to the
role of electrons in condensed matter systems and employs standing-wave laser
fields to construct an “optical lattice,” thereby laying the foundation for quantum
simulation of strongly correlated models.In 1999, a degenerate Fermi gas was ex-
perimentally realized for the first time [21], which made the quantum simulation
of the Fermi-Hubbard model feasible. In such setups, the hopping amplitude ¢,
interaction strength U, and even the lattice geometry can be tuned almost arbi-
trarily, providing unprecedented control to test theoretical predictions and probe
regimes that are challenging for numerical or analytical methods.

The Hubbard model provides a minimal yet powerful description of interacting
fermions on a lattice. Its Hamiltonian encodes the competition between itinerancy
and interactions, and gives rise to a variety of emergent phases, including Mott
insulators, magnetically ordered states, and possible ferromagnetic phases at low
densities. This makes it the natural starting point for investigating the problem

of low-density ferromagnetism in two-dimensional lattices.

1.2 Ferromagnetism in the Hubbard Model

To better understand the ferromagnetism,mean-field approximation is a good ap-
proach.The key idea is that the Hubbard repulsion U may favor a ferromagnetic
order, as this configuration minimizes the Coulomb repulsion between electrons.To
implement the mean-field approximation, we decompose each spin density operator

into its average value and a fluctuating component. Specifically, we set
iy = Tig + (Mg — Tip) = g + 0Ny (1.3)

where n;4 represents the average (mean-field) value of the spin-up density, and 07,4 ac-
counts for deviations from this average. We perform the same decomposition for
the spin-down density 7;;. With these decompositions, we can approximate the in-
teraction term in the Hamiltonian by neglecting higher-order fluctuation terms.
In particular, we discard the product of fluctuations dn;0n,, (referred to as the

”square of deviation from average”) under the mean-field assumption that fluctu-
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1.2. FERROMAGNETISM IN THE HUBBARD MODEL

ations are small compared to the average values. This leads to the approximation:

Ritfliy 2 Wity + (Rir — i )Ty, + (Riy, — Ty )Tig (1.4)
= NipTiy + N Ny — NigTlyy
Next, we parameterize the average spin densities to explicitly account for possible

ferromagnetic order. We define:

ﬁing—i—mZ (1.5)
m:g—mz (1.6)

where n represents the total particle density (n = n; + n;)) and m, denotes the
magnetization (net spin density). Importantly, a non-zero value of m, indicates
that the system is in a ferromagnetic state, as it signifies a imbalance between
spin-up and spin-down populations.Substituting these parameterizations into the

Hamiltonian and rearranging terms, we obtain:

A n . n
i S0 S G o Gen)]

v (am) ()

Here, the last term is a constant (independent of operators) that we denote as —C'(n, m.)
We define:

C(n,m.) = —~UN {(g)Q - mﬂ (1.8)

To simplify further, we transform the Hamiltonian into momentum (l%) space,

where the kinetic energy term diagonalizes. This leads to:

T t n t n t
H= Z €5Cr Cio U (5 — mz) Z SRt + U <§ + mz> Z Cr, Gy
io i i (1.9)
— C(n,m,)

We can now combine the kinetic and interaction terms by defining a renormal-
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1.2. FERROMAGNETISM IN THE HUBBARD MODEL

ized dispersion relation for each spin species:

We define

U
:5,;+—n—§aUmz with §& = +1,§, = —1 (1.10)

EE 5

(e

This allows us to rewrite the Hamiltonian in the compact form:

H = ZEEUCTEJCEU —C(n,m,) (1.11)
k.o

At zero temperature (7' = 0), the occupation of each momentum state is deter-
mined by the Fermi-Dirac distribution, which reduces to a step function ©(z) (1

for x > 0, 0 otherwise). The average spin densities are then given by:

Un

N, 1 -
My = W = NZ@(M — 6,‘6‘0) = /dEN(E)@ (:U“ — &= 7 +€UUmz) (112)
k

where ©(z) is the step function, p is the chemical potential, and N(¢) = a®N(¢) de-
notes the density of states per spin per site. The magnetization m, is the difference

between the spin-up and spin-down densities, divided by 2:

2 2 2

(1.13)

To determine when a ferromagnetic solution (m, # 0) is possible, we consider the
case of small m, and linearize the step functions around their arguments. This
linearization uses the property that the derivative of the step function is a delta

function, ©'(z) = §(z), leading to:
1 .
m, = é/de./\f(e)@’ (u —€— %) -2Um,, (1.14)

Substituting ©'(z) = §(z) and evaluating the integral, we find:

m, =N (u —~ %) Um. (1.15)

CHAPTER 1. FERROMAGNETISM IN THE LATTICE MODEL 6
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1.2. FERROMAGNETISM IN THE HUBBARD MODEL

where e (the Fermi energy of the non-interacting system) is identified with p —
Y% in this context.For a non-trivial solution (m. # 0) to exist, we must have:

1=N(ep)U (1.16)

This condition defines the critical value of U above which ferromagnetic order
emerges. Known as the ”Stoner criterion,”[22] it highlights that ferromagnetism
arises when the product of the Hubbard repulsion and the density of states at the
Fermi level exceeds unity.

Ferromagnetism in the Hubbard model primarily arises from the delicate bal-
ance between interaction energy and kinetic energy induced by spin polarization.
At low densities, the average spatial separation between electrons is relatively large,
and thus the energetic cost associated with double occupancy becomes compara-
tively small. In this regime, the ground-state energy of the system consists of two
competing contributions: on the one hand, the kinetic energy tends to minimize
the Fermi surface volume, favoring an unpolarized state; on the other hand, spin
polarization can strongly suppress the probability of double occupancy, thereby
reducing the interaction energy. When the energy gain from the latter mechanism
outweighs the kinetic cost of polarization, the system undergoes a transition to a
spontaneously ferromagnetic state.

Rigorous results can only be obtained for exceptional cases such as Nagaoka
ferromagnetism [23, 24 25]. and flat-band ferromagnetism [26]. Nagaoka ferromag-
netism considers a single-hole doping away from half filling in the limit of infinite
repulsion, and flatband ferromagnetism requires fine tuning of particle hopping to
reach a flat-band dispersion. Moreover, the single-band Hubbard model is usually
oversimplified to directly compare with experiments on real materials.

The study of ferromagnetism in the low-density regime of the Hubbard model is
of particular significance. In this limit, the competition between electron—electron
correlations and kinetic energy becomes extremely delicate, rendering the stabi-
lization of ferromagnetic order highly sensitive and confined to narrow regions of
parameter space. An alternative route to ferromagnetism was proposed by Miiller-
Hartmann [27], who investigated the one-dimensional (1D) Hubbard model with
both nearest- and next-nearest-neighbor hopping (the t;—t2 Hubbard model). For

CHAPTER 1. FERROMAGNETISM IN THE LATTICE MODEL 7



1.2. FERROMAGNETISM IN THE HUBBARD MODEL

infinite U and a band dispersion characterized by two degenerate minima, he found
that saturated ferromagnetism can be stabilized at low electron densities. The un-
derlying mechanism is that the Pauli exclusion principle strongly suppresses the
probability of double occupancy in a fully spin-polarized state, thereby minimizing
the cost of the on-site repulsion U. In this regime, the kinetic energy penalty of po-
larization remains comparatively small, such that the ferromagnetic configuration

can become energetically favorable over the paramagnetic one.

1.0 -

0.8-

0.6+
c

0.4+

0.2

0.0', T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1,/ t,

Figure 1.3. Phase diagram of the t1-to Hubbard chain in the ta-n plane for U — oo, as
obtained by exact diagonalization for finite lengths L. Clircles: L = 10, squares: L = 12,
triangles: L = 14, diamonds: L = 16. Open symbols: paramagnetic ground state, full
symbols: ferromagnetic ground state. The full line shows the density where the fully
polarized Fermi sea splits into two pockets.

Subsequent numerical studies have further analyzed this ferromagnetism [28].
Exact diagonalization of finite-size 1D chains (L < 18) with periodic boundary
conditions shows that at the lowest accessible density, n = 2/L (two electrons in
the chain), the ground state is strictly a triplet, consistent with saturated ferro-
magnetism. When the Coulomb interaction strength U is sufficiently large, this
ferromagnetic state is not confined to the very dilute limit but persists up to a
finite critical density n..They found that the critical density n. is directly related
to the topological structure of the Fermi surface of the fully polarized state.They
get the variation curve of n. with t5/t; (Figure is in good agreement with

CHAPTER 1. FERROMAGNETISM IN THE LATTICE MODEL 8



1.2. FERROMAGNETISM IN THE HUBBARD MODEL

the numerical data, confirming the role of Fermi surface topology in 1D ferromag-
netism.

To characterize this behavior, a single-spin-flip variational approach was em-
ployed to construct trial states |i.) and evaluate the change of their total energies
AE. Based on this expansion AE = —2ney — A + O(n'+%/9) it was shown that in
dimensions d > 3, the destabilizing term A dominates at low densities, rendering
ferromagnetism unstable. In one dimension the stabilizing term 2ne, prevails while
A contributes only at order O(n?), which is negligible in the dilute limit.

For d = 2, A and the stabilizing contribution 2ne, are of the same order. So in
this case, in order to examine the viability of the low-density route, they inserting
this expression into AE = —2ney—A+O(n'*t?/4) where the A = n/p(e) and p(e)
is the density of states at the bottom of the band. Using the stability criterion
AFE > 0, they obtain the following necessary condition for the stability of the fully
polarized state,

2p(eo)|eo| > 1. (1.17)

To be specific, they consider the t;-t5 Hubbard model on a square lattice. When
to < —t1/2 the band has degenerate minima at the Brillouin zone boundary. It
follows from EqI.17] that the polarized state cannot be the ground state outside
the region —0.20t; > to > —0.65t;. Hence for t5 < —0.65¢; the polarized state is
unstable even though there are two minima.

As a result, they conclude that ferromagnetism is naturally favored in 1D,
whereas the same mechanism is not allowed in generic three-dimensional systems
and is severely restricted in two dimensions.

Recent advances in ultracold atom experiments have also provided a control-
lable platform to probe strongly correlated systems at low densities[14] 29]. By
tuning the filling and interaction strength of fermionic atoms loaded into opti-
cal lattices, one can directly simulate low-density ferromagnetism in the Hubbard
model under nearly ideal and disorder-free conditions. This not only offers a
unique opportunity to benchmark theoretical predictions, but also provides valu-
able insight into dilute-carrier ferromagnetism in solid-state systems, such as di-
luted magnetic semiconductors and low-density transition-metal compounds.

In summary,the Hubbard model reveals two essential ingredients for the stabi-

CHAPTER 1. FERROMAGNETISM IN THE LATTICE MODEL 9



1.3. FROM SQUARE TO TRIANGULAR LATTICE

lization of low-density ferromagnetism: the reduction of interaction energy through
suppressed double occupancy, and the peculiarities of the band structure that en-
hance the density of states. In square lattices, triangular lattices, and their in-
terpolating geometries, features such as flat bands, van Hove singularities, and
geometric frustration jointly determine the stability region of ferromagnetic order.
Research along this line not only deepens our understanding of the microscopic
origin of ferromagnetism in strongly correlated systems, but also establishes a the-
oretical foundation for exploring novel magnetic phases via quantum simulation

with ultracold atoms.

Figure 1.4. The lattice formed by the interference of two orthogonal retro-reflected laser
beams whose relative phase is actively stabilized.

1.3 From Square to triangular lattice

A novel experimental technique enables the continuous tuning of lattice geometry
from a square to a frustrated triangular configuration[d]. The system is realized
by the interference of two orthogonal retro-reflected laser beams, whose relative
phase is actively stabilized[30} B1]. With equal beam intensities, this interference

produces a non-separable square lattice rotated by 45°.

CHAPTER 1. FERROMAGNETISM IN THE LATTICE MODEL 10



1.3. FROM SQUARE TO TRIANGULAR LATTICE

Square Anisotropic Triangular

Antiferromagnetic Méel order Partial frustration 120° spiral order
| | | = P/
0 1 Increasing
frustration

Figure 1.5. A square lattice with coupling t can be continuously transformed into a
triangular lattice with an extra tunable coupling t' along one diagona.

Frustration is introduced through an additional tunnelling term ¢’ along one
diagonal of the square lattice. By adjusting the intensity balance between the
two lattice beams, the potential barrier between diagonal neighbours is reduced,
thereby enhancing the diagonal tunnelling as shown in Figure [1.4, This imple-
mentation differs from previous schemes based on three laser beams with 120°
rotational symmetry[32, [33] 34}, 35, [36].

The degree of frustration is parameterized by the anisotropy ratio ¢’/t. As this
ratio is tuned, the lattice smoothly evolves from a square geometry at ¢/t = 0 to
an triangular lattice at ¢/t = 1. In both the classical and quantum Heisenberg
limits, this tuning drives a change in the magnetic ground state from collinear
Néel order on the square lattice to a 120° spiral order on the triangular lattice
as shown in Figure In the extreme limit ¢/t > 1, the system undergoes
a dimensional crossover towards weakly coupled one-dimensional chains. This
experiment finds ferromagnetic correlation whent’/t > 0.5 and when total fermion
density n exceeds half filling n = 1 and is somewhat close to n = 1.5.The regime
where ferromagnetism is observed is marked by the shaded yellow area in Figure
1.6/ This experiment has only explored the density regime 0.5 < n < 1.5 and it
is not clear whether the ferromagnetic correlation can also exist when n exceeds
1.5.The physical origin of this observed ferromagnetism is also not clear yet.

The other article provides a further numerical analysis of this experiment[37].For
the benefit of later discussion, they make a particle-hole transformation ¢;, —

(—1)=*ivel  where i = (iy,1,) is the site label.Like we discusses before the ¢’ term

CHAPTER 1. FERROMAGNETISM IN THE LATTICE MODEL 11



1.3. FROM SQUARE TO TRIANGULAR LATTICE
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Figure 1.6. The ferromagnetic correlation found in the experiment is marked by the
shaded yellow regime in the n — t' phase diagram, which is mapped to the shaded blue
area under the particle-hole transformation.

is what causes frustration in this lattice, and thus, the ¢’ term is not invariant
under the particle-hole transformation.Under this transformation, n = ny + n,
becomes 2 — n, that is, the particle doping is mapped to hole doping. Thus, the
particle-hole transformation maps (', n) to (—t,2—n) in the phase diagram shown
in Figure[L.6[b). Therefore, they can focus solely on the density regime 0 < n < 1
but include both positive and negative ¢'. With this mapping, the regime where
ferromagnetism is observed is mapped to the low-density regime with ¢ < —0.5,
as marked as the shaded blue area in Figure (1.6 In their calculation they set
interaction strength U is infinite. They use density-matrix renormalization group
(DMRG) calculation with a finite number of fermions on a different strip geometry.
They can calculate <5’t20t> with Sio = > S, for the ground state, and Siy; is given
by (S2,) = Siot(Siot + 1)

In the calculations they fix SZ, = 0, in which sector one expects the Sior = N/2
and Si,; = 0 to have a similar level of entanglement, a key to guaranteeing that the
DMRG routine is unbiased and amenable to a reasonable bond dimension. They
find a transition from Sy = N/2 to Syt = Oaround t' = t., as shown in Figure
L7

They also calculate the nearest-neighbor correlation function (S - S), ., aver-

CHAPTER 1. FERROMAGNETISM IN THE LATTICE MODEL 12



1.3. FROM SQUARE TO TRIANGULAR LATTICE
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Figure 1.7. The total spin S, and nearest-neighbor correlation function (S - S),.n. of
the ground state calculated by the DMRG method for N = 30 particles in a 4 X 20 strip.
Here, Stot maz = N/2 = 15.

aged over all bonds of the square lattice. They find clear evidence of ferromagnetic
to antiferromagnetic correlations, as shown in Figure [1.8(b). The same calcula-
tion is carried out for a wide range of n and ', and the results are collected in
Figure [1.§](c)-2(f). Here, for better comparison and visualization the results are
normalized by Siotmax = N/2 and N for Figure [L.§(c)-(f), respectively.

A notable feature in Figure[L.8[c)—(f) is that for all calculations, t, approaches
—0.5 at the low-density limit when n — 0. They call the ferromagnetism emerged
in this regime as the Miiller-Hartmann mechanism. In this regime, the general
trend is that ¢/, decreases as n increases.

Nearby half filling with n = 1, it is known that hole doping can result in
Nagaoka ferromagnetism at infinite U. Strictly speaking, Nagaoka ferromagnetism
can only be proved for single-hole doping with ¢ < 0. But their numerical results
show that when ¢’ = 0, the Nagaoka ferromagnetism can exist up to ~ 20% of
hole doping, that is, for 0.8 < n < 1.They say this is consistent with previous

numerical results[38]. Hence, they attribute the ferromagnetism nearby half filling

as the Nagaoka mechanism.
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Figure 1.8. (¢), (d) The total spin Syt as a function of n and t', normalized by the
mazimum total spin of the filling Stot maz = N/2, for (¢) 2 x 20 and (d) 4 x 20 strips,
respectively. (e), (f) The nearest-neighbor correlation function (S-S),.,. as a function of
n and t', normalized by the particle number N, for 2 x 20 and 4 x 20 strips, respectively.
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1.4 Further recent experimental works

Recent advancements in ferromagnetism research, particularly within frustrated
lattice systems, have unveiled novel magnetic behaviors and promising applica-
tions, paving the way for innovations in spintronics, quantum computing, and
next-generation storage technologies. This summary outlines the progress in gen-
eral ferromagnetism studies and specific experimental developments in frustrated
lattices.

In the realm of ferromagnetism, significant breakthroughs have been reported
in 2024-2025. The discovery of ”altermagnetism,” a third class of magnetism, has
been experimentally imaged for the first time, demonstrating its potential to bridge
conventional ferromagnetic and antiferromagnetic properties, which could revolu-
tionize digital memory technologies [39]. Researchers at MIT have demonstrated
a novel form of ferromagnetism enabling low-power spintronic memory, highlight-
ing its efficiency for future applications[7]. Additionally, two-dimensional metal-
organic ferromagnets, such as Ni-TCNE, exhibit ordered ferromagnetic behavior,
offering new avenues for designing 2D magnetic materials[40]. High-magnetic-field
studies have further underscored the critical role of ferromagnetic materials in
medical and energy applications[41]. These findings indicate a rapid transition
from fundamental exploration to practical technological advancements in ferro-
magnetism research.

In frustrated lattice systems, geometric frustration—arising from competing
magnetic interactions in structures like kagome, triangular, or honeycomb lat-
tices—has led to emergent phenomena, including spin liquids and unexpected fer-
romagnetic order. Experimental efforts have focused on tuning frustration and
observing novel magnetic phases. In kagome lattices, studies on monolayer Mn
breathing kagome lattices revealed triple-QQ magnetic states and flat-band-induced
ferromagnetic instabilities, underscoring the pivotal role of orbital selectivity in
magnetic control[42]. By applying anisotropic strain, researchers finely tuned
frustration in organic quantum kagome lattices, successfully inducing ferromag-
netic phases [43]. Moreover, kagome ferromagnets exhibited pronounced room-
temperature anomalous Hall and Nernst effects, expanding the family of topo-

logical magnetic materials [44]. Other experiments confirmed field-induced ferro-
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magnetism through isothermal magnetization measurements, with non-saturated
characteristics attributed to residual frustration. Compounds with Archimedean
lattices displayed exotic frustrated magnetism, providing a new platform for quan-
tum magnetism studies.

In itinerant fermion systems, local frustration shaped magnetic order, with
odd-numbered rings suppressing ferromagnetism[45]. Furthermore, stress experi-
ments demonstrated that applied pressure can alleviate frustration, driving a phase
transition from antiferromagnetic to ferromagnetic states. In three-dimensional
frustrated systems, magnetic nanowire lattices, fabricated via nanoprinting and
characterized through magnetic imaging, revealed spin textures and domain wall
propagation, establishing a new paradigm for artificial frustrated systems[46].

These experimental studies extensively employed techniques such as powder
neutron diffraction, and magnetization measurements, confirming that emergent
ferromagnetism in frustrated lattices stems from competing interactions and exter-
nal tuning (e.g., strain or pressure). Looking forward, integrating altermagnetism
with frustrated systems holds promise for further advancing quantum magnetism
and topological magnetic materials, providing both theoretical and experimental

foundations for the design of next-generation magnetic devices.
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Chapter 2

Theoretical approach to
ferromagnetism in frustrated

lattice

This chapter establishes the theoretical framework for studying magnetic prop-
erties in frustrated lattice systems using the T-matrix approximation. First we
introduce T-matrix approximation[I8] [47, 48], which captures correlation effects
through the resummation of repeated scattering processes between electrons and
applies this theoretical framework to finite-size clusters, providing the compu-
tational scheme for calculating ground-state energies and determining magnetic
phase boundaries.And we also introduce using T-matrix approximation to anal-
ysis the ferromagnetism in iron-series metals[49]. Then we extends the formula-
tion to the thermodynamic limit, where discrete momentum sums are replaced
by Brillouin zone integrations, enabling the study of bulk properties and phase
transitions.Fially,we introduces two specific lattice models with different hopping

directions that will be analyzed using the developed T-matrix methodology.

2.1 T-matrix approximation

This section develops the theoretical framework to calculate the paramagnetic

energy in the Hubbard model. In Sec. 2.1, we introduce the two-electron Hamilto-
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nian and evaluate the interaction energy at the Hartree—Fock level as a baseline. In
Sec. 2.2, we go beyond mean-field by applying the T-matrix approximation, which

resums repeated scattering processes to capture correlation effects more accurately.

2.1.1 Two-electron Hamiltonian and Hartree—Fock approx-

imation

In this section, we set up the two-electron problem that forms the basis of our dis-
cussion. Starting from the Hubbard Hamiltonian, we restrict ourselves to the case
of two electrons interacting via an on-site Coulomb repulsion. The corresponding
wave functions are expressed in terms of Bloch states, which are connected to the
localized Wannier basis through standard Fourier relations. Within this frame-
work, the interaction matrix elements reduce to the local term U, identified with
the Coulomb self-energy of an atomic orbital. As a first step, we evaluate the
interaction energy in the Hartree-Fock approximation, which provides a simple
reference point by accounting only for single scattering processes between elec-
trons. This yields the well-known expression for the energy shift depending on the
relative spin orientation of the particles.

To set up the formalism, we first discuss the multiple scattering between two
electrons in the absence of other electrons. The Hamiltonian governing the motion

of two electrons is represented by
H = Hy(1) + Ho(2) + V(1,2), (2.1)

where 1 and 2 denote the coordinates of electrons 1 and 2, respectively, Hy is the
one electron energy, V/(1,2) the interaction between two electrons. The eigenvalue
of Hy associated with a given wave vector k is denoted by (k). The correspond-
ing wave function ¢(z, k) with = 1 or 2 is connected to the Wannier function

associated with a given lattice site R, W (z, R), by the well-known relations,

p(r, k) = (/)Y " W(x, R) exp(ik - R) (2.2)
R
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and

W(z, R) = (1/)"*> (x, k) exp(—ik - R), (2.3)

where €2 is the number of the lattice sites in a given volume. The matrix elements

of V(1,2) referred to the Wannier functions are assumed to be

/W*<17 Ri)W™(2, Ro)V (1,2)W (1, R3)W (2, Ra)dvidvs = Udr,,Ry0R,,ry0Rs, Ry »
(2.4)
where U is non-zero only when all four coordinates refer to the same lattice site,
i.e., Ry = Ry = R3 = Ry. The parameter U defined by Eq[2.4]is identified with the

Coulomb self-energy of the atomic orbital. The matrix elements of V' (1, 2) referred

to ¢’s are easily calculated by the use of Eqf2.2] and [2.4] to be

/90*(17kl)gp*(zk?)v(1>2)‘p(1ak3)(p(2ak4)d’/1d7/2 = (U/Q)0(k1, k2; ks, ka) (2.5)

with

1 if kg + Ky = ky + ky + K,
5(’431,’(72; k37k4) = ! 2 ’ : (26)

0 otherwise,
where K represents a reciprocal lattice vector. Let |kioq, koos) be the antisym-
metrized wave function of the state where the one electron states specified by k;
with the spin coordinate oy and ko with o5 are occupied. In the Hartree-Fock

approximation, the interaction energy of two electrons in this state is given by
AEHF(klUl, kQUQ) == (U/Q)(l — 50102), (27)

where d,,,, = 1 for parallel spins (07 = 02), and d,,,, = 0 for antiparallel spins
(01 # 03). This result embodies the effect of the Pauli exclusion principle: parallel
spins experience no interaction energy due to exchange effects, while antiparallel
spins can occupy the same orbital state and thus experience the full Coulomb

repulsion energy U /€.
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2.1.2 T-matrix approximation for the paramagnetic en-

ergy

The Hartree—Fock result represents only a first-order treatment of the interac-
tion, since it neglects the possibility of repeated scattering between electrons. To
obtain a more accurate description of the paramagnetic state, we now employ
the T-matrix approximation (TMA). This approach resums the particle-particle
ladder series, which collect all possible repeated scattering processes on two elec-
trons, and can therefore be interpreted as a generalized scattering amplitude in
the medium. Physically, the T-matrix describes repeated scattering on two elec-
trons, while incorporating the effect of the surrounding Fermi sea by restricting
intermediate states to those above the Fermi level, while the presence of other elec-
trons enters self-consistently through the renormalized one-particle spectrum. As
a result, the T-matrix provides an effective interaction on two electrons that inter-
polates smoothly between weak and strong coupling and serves as the foundation
for computing the paramagnetic energy.

For parallel spins, the Pauli exclusion principle prevents the electrons from
scattering into occupied states, so the Hartree-Fock result remains exact: AE =
0. The interesting physics arises for antiparallel spins, where repeated scattering

processes can occur. In this case, the eigenfunction of H takes the form

U(ky, k) = |k, ko) + (1/Q) Z Chaky | ks, ka)0 (K, ks ks, ky), (2.8)
k3.kq

where the spin indices are omitted for simplicity since we consider only antiparal-
lel spin pairs. Inserting this expression into the Schrodinger equation HV = EV
[18].Here H = Hy + V, where Hy denotes the single-particle part acting on
two-particle basis states as Holk;, k;) = (e(k;) + e(k;))|k;, k;).The contact in-
teraction contributes only for opposite-spin pairs, with matrix elements given by
(ko, kp|V]ke, kg) = %5(ka, ky; k., kg). After inserting and projecting onto (ks, ky|
yields

U
(53 +E4 — E) Fk3k4 + U(S(kl, kg, kg, k4) + ﬁ Z stke (5(k57 k6, k3, k4) =0. (29)
ks ke
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For convenience we introduce the quantity

1
S = 1—|— 5 Z Fk5k6 5(k1,k2;k5,k6), (210)

ks.ke

which depends only on the initial state (ki, ky) and not on the specific intermediate

states. The equation above then becomes

(83 + &4 — E) Fk3k4 +US=0, (2.11)
leading to
US
ey, = ——— 2.12
kska cg 1t 4 — IOk ( )
substituting this result back into the definition of S gives the self-consistency
condition Us S o ke k
g—1— 3 ( 1,82, 57E6). (213)
o €5+ €6 —
We thus introduce
]- 5(k17k2;k57k6)
G(E: k1, ko) = — 2.14
(Eiks k) QZ es+e— E (2.14)
ks ke
so that .
S = 2.15
1+UG(E,k1,k2)7 ( )
the explicit form of I' is then
U 1
lyok, = (2.16)

_1 + UG(E;kl,kg) . €(k3) +€(k4) — E

Projecting the Schrédinger equation onto the bare state (ki, ks| yields the

energy eigenvalue

so that the interaction-induced energy shift is

B U/
1+ UG(E; Kk, k)

AE(ky, k) = E — (e(ky) + e(ks)) . (2.18)
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In Eq2.14] and 2.16 the energy shift AE in the denominator is neglected

because it is of order 1/€2 and much smaller than the band energies.Finally,we can

determine I

U 1

14+ UG (ky, ko) . (k) + e(ky) — e(ky) — e(ks) (2.19)

Disk, =

Here, G(kq, ky) represents the density of intermediate scattering states and
characterizes the strength of correlation effects. The factor 1/(1+ UG) shows how
repeated scattering reduces the effective interaction strength compared to the bare
Hartree-Fock result.

Comparing AF given by Eq2.1§ with AEyr of Eq[2.7, we can see that the
reduction of the interaction energy due to electron correlation is indicated by the
factor 1/(1 + UG(ky, k2)).

To account for the presence of other electrons in the system, we make the
following modifications to the above calculation. First, we restrict the states ks
and k4 in the sum of Egs. (2.8) and (2.11) to the unoccupied states above the Fermi
level, since the occupied states below the Fermi level are not available for scattering
due to the Pauli exclusion principle. Second, we assume that other electrons affect
the motion of the interacting pair only through a self-consistently defined potential
energy. This potential energy is understood to be included already in the one-
electron energy Hy of Eq[2.1]

We define the self-consistent one-electron energy (k) by

e(k) =eo(k)+ Y _AE(k,K), (2.20)

k/

where g¢(k) is the one-electron energy in the absence of interactions, and the sum
in the second term is taken over all occupied states below the Fermi level. It is (k),
not £o(k), that enters into the expressions for AE and G(ky, k2) in Egs. (2.10) and
(2.11). Equation (2.12) represents the self-consistency condition that determines
the renormalized single-particle spectrum.

With these modifications, we can define an effective interaction strength in the
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paramagnetic state as

U
Uei(k1, ko) = X UGk k)’ (2.21)

where the sum in Eqf2.14] that defines G(k1, k2) is understood to be taken over
unoccupied states only. This quantity Ueg(k1, k2) is the T-matrix element in the
particle-particle channel, which represents the exact scattering amplitude between

two electrons in the presence of the filled Fermi sea. Since G(k1, k2) is generally
of the order of 1/W, where W is the bandwidth, Eq yields

Ug~W if U>W, (2.22)

which shows that the effective interaction is limited by the bandwidth in the strong
coupling regime, as discussed in the introduction.

For pairs of electrons both occupying states near the bottom of the band (cor-
responding to points of high symmetry such as k = 0 or k = K /2), the function

(G can be written as

G(0,0) = % / " @dg, (2.23)

where 7(g) is the density of states per unit energy per atom per spin, and e is
the Fermi energy. The factor of 1/2 accounts for the fact that we sum over pairs
of electrons.

For most electron pairs, G(ki,k2) does not differ significantly from G(0,0).
This is because the scattering process corresponds to s-wave scattering that does
not depend strongly on the relative momentum of the interacting pair, and also
because the crystal momentum conservation condition in Eq[2.6|typically separates
the energies of low-lying excited states from the unperturbed energy by an amount

of order er. Thus we obtain an approximate estimate of Ug:

U

U= ————.
T 14+ UG(0,0)

(2.24)

The difference between Eq[2.24] and the average of Eq2.21] over k; and k-

below the Fermi level is estimated by numerical calculation to be within 5 percent
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for the case of constant density of states n = constant.

2.2 T-matrix Approach to Ferromagnetism in Iron-

Series Metals

To analyze ferromagnetism in the iron-series metals, we employ the t-matrix ap-
proach. We focus on the case of two degenerate degenerate d-like bands a and b,
where both intra- and inter-orbital Coulomb interactions are relevant. Within this
framework, the ground-state singlet and ferromagnetic energies can be expressed
as follows [49]:

By = Np™/* {?W T 20 3E0(p) + Fanlp) + t;b<p)]} . (2.25)

It is to be compared to the ferromagnetic state, with half the particles in band «a

and half in band b but all with spin "up,” which has energy
1 .
Ef = Np°/® {22/338%/ + 4p1/3tab(2p)] : (2.26)

and with the ferromagnetic state in which all the particles, of spin up, are also in
a single band, say a (this represents spin and orbital magnetism, and should occur
when the perturbations of the solid are too weak to quench the orbital moments

of the individual atoms, as in f shells of the rare earths). This state has energy
53 (9 4573
E;o=Np 54 W. (2.27)

The case of maximal interband exchange 7 = 1 is special, The parameter j is
thus the fractional inter-band exchange parameter, 0 < 7 < 1. We compare the
three energies and conclude that Eq[2.27, representing spin + orbital magnetism,
can never lie lowest. The phase diagram showing the region where the spin-only
magnetic moments form is remarkably similar to Figure 2.1} with only the numer-
ical value of parameters p. = 0.04 and Uy, /W = 1 being different. Doubling the

number of bands allows magnetic moment formation at much lower densities and
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interaction parameter U than previously.

Magnetic
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Figure 2.1. Phase diagram of 1-band Hubbard model at T = 0, based on low-density
theory. Region (a) is low density for electrons and (b) for holes. The high density results
near 0.5 are unreliable, due to limitations of the theory. Potentially magnetic region is
shaded, and p. = 0.136 in 3D.

Effects of temperature on the phase diagram of the one-band Hubbard model
have been examined by N. Berker, in several publications based on quantum Monte
Carlo numerical calculations.[50, 51], 52] Figure is representative of the results.
At various values of U (note that U/t = 6 is small, equivalent to U/W = 0.5 on the
sc lattice) the AF phase that is stable at half-occupancy gives way to a disordered
phase at higher temperatures. But most remarkably, new phases, shared here
and called the 7-phases, appear in the diagram. There is no other theoretical
justification for, or description of, the 7-phases. These are possibly artifacts of
the method. However, the very existence of high-temperature superconductivity
should make one reluctant to dismiss these so-far unidentified states.

The physically plausible cases of partial Hund’s rule exchange j = Ju,/Uyp < 1
may be of interest. They compared Eq - by numerical calculation,[49]
assuming Uy, = %Uaa = U, and found: spin + orbital magnetism never occurs for
U/W < 20 nor for densities far from 1/2, so this case may be eliminated from

practical considerations even though it is good to know it exists (in principle) in
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u'w
Nonmagnetic Metal

0" pe 05 1-68¢ 1.0

Figure 2.2. Same as preceding, with magnetic ordering taken into account. The half-
filled band is most easily susceptible to AF ordering (Examples: NiO, and also 1D Hub-
bard model [53] but at strong enough coupling in 2D or 3D (not 1D) gives way to the
ferromagnetic phase (cross-hatching).

the atomic limit W — 0. Spin magnetism has itself a restricted range of stability,
which depends strongly on j. For j = 0.5 or greater, the situation is qualitatively
similar to j = 1, whereas for smaller values of j (0.2 or 0.1) the regions of stability
shrink rapidly and become nonexistent at j = 0. Thus, regardless of the strength
of the interaction parameter U, the existence of a magnetic moment ultimately
depends on the Hund’s rule exchange parameter, as a stabilizing factor.

The spatial ordering of the moments, once they are created, is a delicate compe-
tition between several mechanisms, principally, the indirect exchange and Nagaoka
mechanisms. But before proceeding, it is prudent to consider to what extent elec-
trons in real materials satisfy the various simplifying assumptions, for example, the
effective-mass approximation E(k) = h?k%/2m with m = m* the band structure
effective mass before interactions and = m the total mass after the interactions
(which are necessarily strong and thus nontrivial) have been incorporated.

The hypothesis of two kinds of d electrons, has been given added credence
lately by Stearns. Her “95% local” and “5%” itinerant model counters the pure
itinerant or pure Heisenberg models, against which substantial evidence has been

accumulating. In her view, [55] most (95%) of the d electrons lie in the relatively
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Figure 2.3. Phase diagram at finite T in 3D Hubbard model, near half-filling, for two
values of U in weak coupling. Shaded areas represent Berker’s T-phase.

MAJORITY SPINS MINORITY SPINS

Figure 2.4. Fermi surface of iron, as given in Gold et al.[5])], here adapted from
Stearns[53].
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flat portions of the band structure, where the high density of states (or small
W, large U/W) promotes magnetic moment formation, with the small residual
fraction occupying states well described in the effective mass approximation, with
effective masses ~ mg. To see this, let us examine the Hartree-Fock band structure
of iron, as shown in Figure [2.4hnd reproduced from her article, ”Why is iron
magnetic?” [55] There are shown the flat parts of the d bands and the itinerant
parts, drawn in heavy lines. The latter have a curvature corresponding to approx-
imately the electron free mass mg, Fermi wave vectors and occupation numbers
n4+ that have been given as[50], [57]

akpy /27 n+ akp_/2m n—
Fe 0.50 4.4 0.19 2.2
Ni 0.65 4.6 0.53 4.0

in agreement with tunneling experiments.

MAJORITY SPIN

> L J
9 F r P N r H
% 02r MINORITY SPIN

o.of AN

Figure 2.5. Band structure of iron, for majority and minority electrons as calculated
in Duff and Das[58] and reproduced in Stearns[55)].

A plausible explanation combines several effects. The low density of itinerant d
electrons together with strong interactions places the system in the ferromagnetic

regime of the phase diagram. Moreover, local moments are spatially extended
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rather than point-like, so the indirect exchange is better described by a jellium
picture, which ensures ferromagnetism. The only practical procedure is to calculate
the Hartree—Fock energy first, as deduced from the band structure (Figure, and
then add the interaction energies as computed from the ¢’s, as in the two-band case
analyzed above. In practice, this amounts to evaluating the Hartree-Fock band
energy and then adding the interaction corrections from the T-matrix, comparing
the total energy of different magnetic states. These arguments suggest that iron

is indeed stabilized in the ferromagnetic state.

2.3 TMA calculation for Lattices

2.3.1 Finite case

To apply the T-matrix approximation to concrete lattice magnetism calculations,
we consider finite clusters with 2 = L x L sites under periodic boundary condi-
tions. We restrict our analysis to electron fillings N = N4 + N where both spin
components N, (with o =7,]) correspond to closed energy shells, ensuring that
finite-size effects are minimized and the results are representative of the thermo-
dynamic limit.

For given values of N; and N}, we calculate the ground-state energy using
the T-matrix expression. The total energy consists of the kinetic energy and the

T-matrix contribution from all antiparallel spin pairs:

E = Zfa Jex + QZ LIALY , (2.28)

Y 1—|—Upr k+k EkT+5k’ )

where f,(k) are the occupation numbers for spin-o electrons, ¢y is the bare single-
particle dispersion, and g, represents the self-consistently renormalized single-
particle energies. The second term directly implements the T-matrix result from
EqR2.21} the denominator 1 4+ Uy, corresponds to our earlier expression 1 +
UG(ky, k2), while the factors fy(k)f (k") ensure that we only sum over occupied

pair states.
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The particle-particle susceptibility x,, in the denominator is given by:

[1— 1= fi(—p+
QZ fT fi( p Q)]

, (2.29)
Ept + Eptal —

Xpp(Qy w

which is precisely the finite-temperature generalization of the two-particle Green’s
function G(k1, k2) defined in Eq[2.14] The key correspondence is that x,,(q,w)
represents the same physical quantity—the density of available intermediate scat-
tering states—but now formulated for finite systems with discrete momentum
states and explicit Fermi-Dirac occupation factors. The factors [1 — f,(k)] en-
sure that only unoccupied states contribute to the scattering processes, consistent
with the Pauli exclusion principle that was incorporated into our derivation of the
T-matrix.

To determine the magnetic ground state, we systematically calculate the ground-
state energy F for all possible closed-shell partitions of the total electron number
N into spin-up and spin-down components. The paramagnetic state is identified
as the configuration that minimizes F with the smallest possible spin polarization
|Ny — Ny|. If this minimum occurs for Ny = N, the system is paramagnetic;
otherwise, it exhibits spontaneous magnetization and is ferromagnetic.

This approach allows us to capture the competition between kinetic energy
(favoring delocalization) and interaction energy (potentially favoring localization
and magnetic order) within the T-matrix framework, providing a systematic way

to study the magnetic phase diagram of correlated electron systems.

2.3.2 Thermodynamic limit case

The finite-size cluster approach described in the previous section provides results
for small systems, but to understand the bulk properties and thermodynamic be-
havior, we extend our T-matrix formulation to the thermodynamic limit. In this
limit, the discrete momentum sums are replaced by integrals over the Brillouin
zone, and the finite-size constraints on closed energy shells are removed.

The transition from finite clusters to the thermodynamic limit involves the
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standard replacement:
L / k- (2.30)
Q " Bz (2m)? .

where the integration extends over the entire Brillouin zone. This transforma-
tion reflects the fact that in an infinite system, momentum becomes a continuous
variable, and the density of states in k-space is (2)~2 per unit area.

Under this transformation, the particle-particle susceptibility becomes:

) = [ L2 LML= L) 231

z (2m)? Ept tEptql — W

where the discrete sum over intermediate states has been replaced by a momentum
integral. The occupation factors f,(k) now represent the smooth Fermi-Dirac
distribution in the thermodynamic limit, and the energy denominators involve the
self-consistently determined quasiparticle energies gy .

Similarly, the total energy per site in the thermodynamic limit takes the form:

4’k de’ fr(k) f1(K)
/ Zfa 8k_}—U//BZ 1+Upr(k+k €kt T €Kk, )

(2.32)

The first term represents the kinetic energy contribution, integrated over all

occupied states in the Brillouin zone. The second term captures the T-matrix
correction to the interaction energy, now expressed as a double integral over all
momentum pairs. This formulation preserves the essential physics of the T-matrix
approximation while allowing for the study of bulk properties, phase transitions,
and critical phenomena.

The advantage of this continuum formulation is that it enables analytical
progress in certain limits and provides a natural framework for studying system
properties through the Fermi-Dirac occupation factors. Moreover, it allows for the
investigation of instabilities toward various ordered phases by examining the be-
havior of x,, and the corresponding T-matrix elements as functions of momentum

and frequency.
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2.4 Lattice models and dispersion relations

To investigate the magnetic properties of frustrated lattice systems, we consider
two representative tight-binding models on a two-dimensional square lattice. Both
models include hopping parameters that introduce geometric frustration and com-

pete with the on-site Coulomb interaction.

2.4.1 Two Diagonal Hopping case

First,we consider a tight-binding model on a two-dimensional square lattice that
incorporates both nearest-neighbor and next-nearest-neighbor hopping processes.

The Hamiltonian for this model is expressed as:

Hy= —t Z c;acjvg +t Z C;O.Cj’o-, (2.33)
(

4.3),0 ((&.3)).0

f

1,0

spin o at site 4, t and ¢’ represent the nearest-neighbor and next-nearest-neighbor

where ¢, (¢;,) denotes the creation (annihilation) operator for an electron with
hopping integrals, respectively. The notation (i, j) indicates nearest-neighbor site
pairs, while ({7, 7)) denotes next-nearest-neighbor site pairs.

To derive the dispersion relation for this model, we employ the standard Fourier
transformation method. For a two-dimensional square lattice containing NN sites,

the Fourier transformation is defined as:

1 iker;
Cio = —F7 = e "Cko,
’ \/NZ .
(2.34)

where k = (k,, k,) is the wave vector and r; represents the position vector of site
i.

For the nearest-neighbor term in a two-dimensional square lattice, each site
possesses four nearest neighbors located at r; + x, r; — X, r; +y, and r; — y.Here

we set the lattice spacing a=1 here and later in this thesis. The nearest-neighbor
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hopping term can be written as:

—t Z CI’ch,U = —t Z [czacpﬂgp - claci,ﬁ,g + C;gCier,g + clgci,y,a . (2.35)
(6.3),0

1,0

Substituting the Fourier transformation and utilizing the relations k- (r; £x) =
k-r,£k,and k- (r; £y) =k-r; £ k,, we obtain:

(4,4),0 k,o

(2.36)
= -2t Z chck(7 [cos k, + cos k] .
k,o

The next-nearest-neighbor sites are positioned at r;+x+y, r;+X—y, r;,—X+Yy,

and r; — x —y. The next-nearest-neighbor hopping term is expressed as:
t Z c;gcj#7
((i.9)).0

_ 4 T T T T
=t E [Ci,aci-i'fﬁ‘yﬁ t CioCitk—g,0 T CioCi-sty,o T CioCi-n-3,0| -

1,0

(2.37)

Performing the Fourier transformation, and noting that k - (r; £ x +y) =
k-1 + ky + by

t Z C;UC]',U = tlz CLaCk,o [eikz + eﬂ'kz] [eiky n e*iky]
((i,9)) 0 ko

(2.38)
= 4¢' Z CLng,U cos k. cos k.
k,o
Finally,we can get the dispersion for this model:
e1(k) = —2t (cos k, + cos k) + 4t' cos k,, cos k. (2.39)
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Figure 2.6. Two hopping case:Heat map of dispersion within the 1st BZ for three
different values of t'/t.t'/t = —0.25,¢'/t = —0.5,t'/t = —0.75

As shown in Figure when t'/t > —0.5, the band dispersion has a unique
minimum at kx,ky = 0. However, when t'/t < —0.5, the band dispersion displays

several degenerate minima along kx ky axes.

2.4.2 One Diagonal Hopping case

The second model incorporates nearest-neighbor hopping along with diagonal hop-
ping in a specific direction as shown in Figure[2.7, The corresponding Hamiltonian
reads:
Hy=—tY élejo—t Y el (2.40)
(ij)o (ig 7))o
The hopping between the nearest neighbor < 75 > is denoted by ¢, and between
the next-nearest neighbor along the dashed line direction {(ij /")) is denoted by
t'. Both t and ¢’ are positive. The next-nearest hopping along another diagonal
direction is negligible.

The treatment of the nearest-neighbor term remains identical to that in the
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Figure 2.7. The lattice with next-nearest hopping along a specific diagonal direction.
first model, yielding;:

—t Z c;chﬂ = —2t Z CLUCIW [cos k, + cos k] . (2.41)
(3,3),0 k,o

In this case,the next-nearest-neighbor sites are positioned at r; + X+ y, r; —

X — y.So the diagonal hopping term can write as:
t Z (CI’UCPF;(JF};,J + h.c.) =t Z <c£ac¢+,;+y7g + CLM};’UQ’U) ) (2.42)
Upon applying the Fourier transformation:
t Z (cI’UCH,HyJ + C;‘r+)z+y7aci,a> =t Z CI{,JCk,J [ei(kz—&-k‘y) + e_i(kz-&-k:y)}
io k.o

=2t Z chck,(7 cos(ky + ky).

k,o

(2.43)
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The dispersion relation for this model is given by:

ea(k) = —2t(cos k; + cos k) + 2t cos(k, + k)

(2.44)
= —4tcos(ky) cos(k_) — 2t' cos(2k ),

where ky = (k; £ k,)/2. It is easy to see that the dispersion minimum occurs at

Figure 2.8. One hopping case:Heat map of dispersion within the 1st BZ for three
different values of t'/t.t'/t = —0.25,t'/t = —0.5,t'/t = —0.75

As shown in Figure when t'/t > —0.5, the band dispersion has a unique
minimum at k; = 0. However, when #'/t < —0.5, the band dispersion displays two
degenerate minima along k., axes.

Both models exhibit different degrees of geometric frustration depending on the
ratio t'/t. The next-nearest-neighbor hopping in the first model creates frustration
by competing with the nearest-neighbor terms, while the diagonal hopping in the
second model introduces anisotropic frustration effects. These different geometries
allow us to explore how lattice structure affects the competition between kinetic
energy and magnetic correlations within the T-matrix framework.

For our numerical calculations, we will examine the magnetic phase diagrams

of these models as functions of the interaction strength U/t and the frustration
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parameter t'/t.
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Chapter 3

Numerical Methods

This chapter presents the numerical study of low-density ferromagnetism in the
square-to-triangular lattice, based on the energy comparison method [59, 60, [61]
applied to the Hubbard model, together with Python-based computations [62, [63)
64, 65] of two-dimensional ferromagnetic phase diagrams. Initially, we calculate
the total energy of the system and determine phase diagrams through numerical
integration over finite lattices within a discretized momentum space framework.
The approach is then extended to continuous momentum integration in the ther-
modynamic limit, to better understand the properties of different lattices. These
two methodologies complement each other: the former facilitates intuitive verifi-
cation and cross-validation, while the latter provides a closer approximation to the

continuous limit relevant to experimental conditions.

3.1 Structure and parameter

3.1.1 Computational Framework and Parameter Settings

We employ two distinct computational frameworks to investigate the phase di-
agram of the two-dimensional Hubbard model: the finite lattice discretization
method and the continuous limit method. These two approaches exhibit different
characteristics in handling momentum integrals and finite-size effects, providing

mutual validation.
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In finite lattice calculations, we adopt a discretization scheme with L x L two-
dimensional square lattice points, where the total number of lattice sites is 2 = L2.
For lattice size L we choose a favorable balance between computational accuracy
and efficiency. The fundamental physical parameters of the system include the
hopping energy ¢, set as the energy unit (¢ = 1.0), the next-nearest-neighbor
hopping parameter ', and the interaction strength U. The interaction strength
ranges cover different physical regimes from weak to strong coupling.

In thermodynamic limit calculations, the system is freed from finite-size effects
and no longer explicitly depends on the lattice number L. Instead, we directly
sample within the continuous first Brillouin zone [0, 27] x [0, 27]. This approach
can more accurately describe the physical properties of truly infinite systems but
requires integration methods to handle continuous integrals. Here we employ the
Monte Carlo method and this method is discussed in Appendix I.

In the finite lattice case, we construct a uniform grid discretization of momen-
tum space. We generate equally spaced momentum points by defining k.5 =
linspace(0, 27, L) and then use a meshgrid procedure to build the complete two-
dimensional k-point grid. All k-point information is pre-calculated and stored in
array format, which significantly enhances the efficiency of subsequent calculations.
To ensure momentum conservation during pair function evaluations, we establish
a lookup table mechanism that rapidly identifies k-point pairs.

In the continuous limit method, the momentum space treatment covers the
entire first Brillouin zone. The advantage of this method lies in its freedom from

discrete grid constraints, enabling a more precise representation of integrals.

3.2 Energy Spectrum and Fermi Distribution

3.2.1 Dispersion Relations

The system employs a tight-binding model to describe the kinetic energy part of
electrons, with the dispersion relations already discussed in Section 2.3 EqJ2.39/and
Eq.. These two expressions include the nearest-neighbor hopping term (first
term) and the next-nearest-neighbor hopping term (second term), where ¢’ controls

the degree of anisotropy in the band structure. When ¢’ = 0, the system reduces
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to a simple square lattice tight-binding model; when t' # 0, next-nearest-neighbor
hopping introduces complex structural changes in the Fermi surface.

In the finite lattice method, we compute dispersion relations simultaneously for
all k-points using optimized vectorized routines, which avoids the inefficiency of
explicit loop evaluations. To improve performance, we rely on just-in-time compi-
lation techniques that achieve speeds comparable to C language implementations.
Since the band structure remains unchanged for fixed ¢’ parameters, we store the
calculated dispersion relations for reuse.

In the continuous limit method, we evaluate dispersion relations for each sam-
pled k-point. Vectorized operations ensure high computational efficiency even
when a large number of points are used. To guarantee reproducibility of results,
especially important for debugging and validation, we fix random seeds in the

sampling process.

3.2.2 Energy Sorting and Lookup Tables

An important feature of the finite lattice method is the sorting of eigenvalues. We
determine the sorting indices from low to high energy, which then serve as the basis
for subsequent Fermi distribution calculations. At the same time, we establish
a lookup table mapping k-space coordinates to their sorted indices, which allows
rapid access to the energy ordering of any k-point during pair function evaluations.
To properly account for periodic boundary conditions in the Brillouin zone, we
implement modular arithmetic in the lookup table construction.

The use of lookup tables significantly improves computational efficiency, par-
ticularly in interaction energy calculations requiring frequent searches for k-point
correspondences. By relying on pre-computation and caching mechanisms [66],
we avoid repetitive searches.The cache mechanism is a method that accelerates
program execution by temporarily storing calculation results. In computing, when
encountering parts that require repeated calculations, the cache mechanism can
avoid re-executing these calculations and directly return the previously stored re-
sults, thereby improving efficiency. We further employ LRU caching strategies[66]
to optimize memory usage, which allows us to directly reuse sorting results and

lookup tables for identical ¢’ parameters.
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In contrast, the Monte Carlo method does not require explicit energy sorting
and lookup tables, since each calculation is based on a fresh set of random sampling
points. This makes the Monte Carlo approach better suited for continuous space
integrals. Although it forgoes the efficiency of pre-sorting, it gains scalability and

provides a closer approximation to the thermodynamic limit.

3.2.3 Zero-Temperature Fermi Distribution

The determination of the Fermi distribution in the zero-temperature limit is a
core component of the computational framework. Given electron density n, we
determine the corresponding chemical potential p numerically so that the total
particle number constraint of the system is satisfied.

In the finite lattice method, we exploit the advantage of energy sorting to
determine the chemical potential directly from the number of occupied energy
levels. For a target density n, the number of electrons to be filled is round(n x ),
and the corresponding chemical potential is located between the N-th and (N +1)-
th energy levels. We take the average of these two levels to ensure numerical
stability. This strategy provides both precision and efficiency, while avoiding the
complexity of iterative solutions.

At zero temperature, the Fermi distribution function f(k) reduces to a step
function: f(k) = 1 when e(k) < u, and f(k) = 0 otherwise. In the finite lattice
approach, we explicitly construct occupied state lists based on energy ordering.
This allows us to sum only over occupied states in subsequent interaction energy
calculations, which significantly reduces computational load.

In the continuous method, we determine the chemical potential u, by solving

the integral equation

(f (ex = pio))x = 1o, (3.1)

where the brackets denote averaging over the Brillouin zone. To solve this equation,
we employ Brent’s method as shown in Appendix II, which combines the robustness
of bisection with the rapid convergence of the secant method. The search interval
[fmin, max] 18 chosen based on the minimum and maximum values of the band,
with an appropriate tolerance to ensure reliable convergence.

Both methods require careful treatment of boundary cases. When density ap-
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proaches 0, the chemical potential must lie below the band bottom, while for den-
sities near 1, it should lie above the band top. Proper handling of these conditions

guarantees numerical stability and physical consistency.

3.3 Enmnergy Calculation Methods

The total energy of the system consists of two contributions: the free electron

energy and the interaction energy,
Etotal = Efree + Eint» (32)

where the free energy term describes the kinetic contribution of non-interacting

electrons, and the interaction term accounts for the effects of Coulomb repulsion.

3.3.1 Free Energy Term

The free electron energy is obtained from the summation over single-particle states:
Efree = Z f(k)(f(k), (33)
Kk

where f(k) is the Fermi distribution function and e(k) is the dispersion relation.
The way this summation is evaluated differs between the two computational meth-
ods.

In the finite lattice method, we perform exact summation over discrete k-points
on the grid. The pre-computed energy values and occupation numbers allow us
to evaluate the sum efficiently in a vectorized manner, avoiding explicit loops.
Contributions from spin-up and spin-down states are calculated separately and
then added together, making it possible to capture spin polarization effects when
present.

To further reduce computational cost, we restrict the summation to occupied
states only. By directly extracting the energy values of occupied k-points, we avoid
redundant evaluations for unoccupied states. This strategy is particularly effective

at low densities, where most states above the Fermi surface remain empty.
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In the continuous approach, we estimate the free energy by Monte Carlo in-
tegration. We sample random k-points uniformly within the Brillouin zone and
compute the average of the product €(k)f(k) over these points. The free energy

is then approximated as

Efree ~ <€(k>f<k)>MC (34)

This method provides a natural treatment of the thermodynamic limit and avoids

discretization artifacts.

3.3.2 Interaction Energy Term

The calculation of the interaction energy term is the most complex part of the
framework, as it involves quadruple summations and the evaluation of the pair
susceptibility function x,,. According to the T-matrix approximation of the Hub-

bard model, the interaction energy discussed in Section 2.2 can be written as:

(k')
FEiyy =U 3.9
o §1+Uprk+k/) (3:5)

where x,, is the pair susceptibility function.

The pair susceptibility function x,,(q) is defined as:

Xpp(a) = (3.6)

1— 1— f(q—
Z[ f@)I[L ~ fla—p)]

€(p) +e(qa—p) —2p

This function is a key physical quantity describing the system’s response to
pairing fluctuations. The numerator [1 — f(p)][1 — f(q — p)] represents the prob-
ability that both electrons occupy states above the Fermi surface, while the de-
nominator gives the energy cost of creating such two-particle excitations.

In the finite lattice method, we evaluate x,,(q) by summing over all momentum
states p in the Brillouin zone. The application of periodic boundary conditions
ensures the conservation of momentum. Under such conditions, particles or ex-
citations can cross the boundaries of the lattice, thereby enabling the transfer of
momentum in calculations. To avoid divergences we exclude contributions when

the denominator becomes smaller than a chosen numerical threshold. The results
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are normalized by dividing by the total number of lattice sites (2.

To compute the interaction energy, we sum over all pairs of occupied states
(k,k’). For each pair, we determine the corresponding momentum transfer q = k+
k', evaluate x,,(q), and then accumulate the interaction contribution according to
the formula above. This procedure ensures that only physically relevant occupied
states contribute to the interaction energy.

In the continuous approach, we adopt Monte Carlo importance sampling to re-
duce computational complexity. We randomly generate pairs of momentum points
(ki, ko) and retain only those that are occupied according to the Fermi distribu-
tion. This selective sampling avoids ineffective evaluations for unoccupied states
and is particularly efficient in the low-density regime.

For each valid pair, we compute the momentum transfer q = k; + ko and
estimate X,,(q) using independent Monte Carlo sampling over intermediate mo-

mentum states p. Each sampled p contributes a term of the form

(1-f(p)(1—fla—p))
e(p) +e(q—p) —2u

Y

and the susceptibility is obtained as the average over all sampled p. This nested
Monte Carlo strategy increases the numerical cost, but it provides a natural and

scalable way to evaluate interaction energies in the thermodynamic limit.

3.3.3 Numerical Optimizations

To improve computational efficiency and handle large-scale systems, we adopt
multi-level numerical optimization strategies for both methods.

For the finite lattice method, the optimization mainly focuses on memory effi-
ciency and vectorized calculations. We use the float32 data type instead of the
default £loat64, reducing memory occupancy by half while maintaining numerical
precision. This strategy is particularly important when handling large-size systems
(such as 40 x 40 lattices). We further accelerate all key numerical calculations, in-
cluding dispersion relation evaluations and pair susceptibility function evaluations,
through Numba’s just-in-time compilation, achieving performance comparable to

native C implementations.
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We also employ caching mechanisms to reduce redundant computations. Specif-
ically, for identical ¢’ parameters, we compute energy sorting results and lookup
tables only once and cache them for reuse. With a cache size of 32, this mecha-
nism accommodates all ¢’ values in typical parameter sweeps and effectively avoids
repeated calculations.

When the density n > 0.6, we adopt a sampling strategy to control the compu-
tational complexity. When the number of occupied state pairs nup X ngewn exceeds
a threshold (i.e., Nup X Ndown > max_pairs), we randomly select a subset of occupied
states for calculation and compensate using a scaling factor. This approximation
method significantly reduces the computation time while maintaining physical ac-
curacy, making calculations in the high-density region feasible.

For example, suppose there are 5000 spin-up occupied states and 3000 spin-
down occupied states in the system. Directly calculating all possible occupied state
pairs would result in 5000 x 3000 = 15,000, 000 pairs, which involves an enormous
computational load. To reduce the computation, we set the maximum number
of pairs to 1000 (i.e., max_pairs = 1000), then randomly select 31 states from
the 5000 spin-up occupied states and 32 states from the 3000 spin-down occupied
states. The total number of occupied state pairs is 31 x 32 = 992, which is much
smaller than 15,000,000.

To compensate for the error caused by sampling, we calculate a scaling factor:

5000 x 3000

le_factor = —————— ~ 4812.9
scale_factor 51 % 32

This factor is used to adjust the sampling results, making them close to the
calculation results obtained when all occupied states are used. In this way, we
greatly improve the computational efficiency in high-density scenarios while en-

suring computational accuracy.

3.4 Determination of lowest energy phase and

Parallel Computing

Phase diagram construction requires systematic determination of magnetic phases

at each parameter point in the two-dimensional parameter space (#'/t,n). This
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process involves extensive repetitive calculations and careful determination of the
phase of lowest energy logic. To ensure computational efficiency and reliable re-
sults, we employ dedicated phase determination strategies and parallel computing
frameworks in both methods.

It is worth mentioning that for the energy calculation of the ferromagnetic state,
we only consider the free energy term. This is because, in the context of low-density
ferromagnetism, the electron density never exceeds half-filling. Consequently, one
term in the interaction energy expression vanishes due to the structure of the Fermi

distribution.

3.4.1 Energy Comparison Between Ferromagnetic and Para-

magnetic States

The core idea of phase determination is to compare total energies of different spin
configurations at the same parameter point. The system can exist in two basic
magnetic states: ferromagnetic and paramagnetic. In the ferromagnetic state,
all electrons align with the same spin direction, i.e., spin-up electron density is
n and spin-down electron density is 0, expressed as (n4,ny) = (n,0). In the
paramagnetic state, spin-up and spin-down electrons are equally populated, i.e.,
(ne,my) = (n/2,n/2).

We determine the stable phase by the principle of energy minimization. For
given parameters (t'/t, n), we calculate the total energies under the two spin config-
urations, Eyerro and Epars. When Fpara > Eferro, the system favors the ferromagnetic
state, which we mark as 1 in the phase diagram; conversely, when Fpara < Eferro, the
system favors the paramagnetic state, marked as 0. This binary marking scheme
simplifies visualization of the phase diagram while preserving essential information
about phase transition boundaries.

In practice, we first calculate the energy of the ferromagnetic state and then

evaluate the paramagnetic state energy for comparison.

3.4.2 Phase Determination Strategies

In our calculations we consider the density region 0.01 j n j 0.75. This regime

is physically the most interesting, as it contains the ferromagnetic-paramagnetic
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transition boundary. By carrying out complete two-state energy comparisons here,
we ensure accurate phase determination.

For the Monte Carlo method, we rely on simplified strategies. In particular,
we handle boundary cases through exception handling: when numerical instabil-
ities occur, we assign the paramagnetic state as the default. While this strategy
is coarse, it provides the necessary numerical stability for large-scale parameter
sweeps.

Near phase transition boundaries, the energy difference between the two states
becomes very small, and numerical errors may destabilize phase determination.
To address this issue, we increase calculation precision (for instance, by enlarging

Monte Carlo sample sizes) and adopt numerically stable algorithms.

3.4.3 Parallelization Implementation

Phase diagram generation requires repeated calculations across a large number of
parameter points in two-dimensional parameter space, making it naturally suited
for parallelization. We fully exploit the parallel computing capabilities of modern
multi-core processors to accelerate this task.

We implement parallelization using Python’s standard multiprocessing library.
The framework first detects the available number of CPU cores and then creates
a corresponding worker pool. The process pool size is typically set to ensure that
the number of processes matches computational needs without overloading system
resources.

We distribute tasks using the pool.map function, which automatically segments
and assigns parameter lists to worker processes. Each worker process indepen-
dently evaluates the magnetic phase for a parameter couple (#'/t,n) and returns
the corresponding marker. This functional design avoids data-sharing issues and
guarantees reproducible results.

For the finite lattice method, we emphasize load balancing, since computational
complexity varies across parameter points, particularly when density-dependent
strategies are applied. The dynamic scheduling of pool.map ensures that worker
processes receive new tasks as soon as they finish current ones, thereby maintaining

balanced workload distribution.
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For the Monte Carlo method, computational cost is nearly uniform across pa-
rameter points, as each calculation involves the same number of random samples.
This uniformity ensures that parallelization efficiency approaches the theoretical
optimum.

We also carefully manage memory usage in the parallel framework. Each worker
requires independent memory to store intermediate results, and excessive processes
may strain memory resources. To mitigate this, we limit the process pool size and
adopt memory-efficient data structures, such as float32 arrays.

The main process collects and reconstructs the results after parallel compu-
tations. The pool.map function returns a list of results that we reshape into a
two-dimensional phase diagram array. This reconstruction step ensures correct
correspondence between parameter ordering and phase markers.

We evaluate parallelization performance by measuring total runtime and aver-
age computation time per point. Ideally, using N processes reduces computation
time to 1/N of the original. Although actual performance is influenced by process
creation overhead, memory bandwidth limits, and load imbalance, we still achieve
substantial acceleration.

The final phase diagram is visualized using the Matplotlib library, where black
markers indicate ferromagnetic states and white markers represent paramagnetic

states.
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Chapter 4
Numerical Results and Analysis

This chapter presents the numerical results obtained from the implementation of
the variational approach described in Chapter 3. We systematically investigate
ferromagnetic phase diagrams by examining two distinct lattice dispersions on
both finite lattices and in the thermodynamic limit. The analysis reveals the
interplay between interaction strength, lattice geometry, and electron density in

stabilizing ferromagnetic order.

4.1 Finite Lattice Calculations

4.1.1 Two-Diagonal Hopping Case

We first examine the model with the two-diagonal hopping dispersion given in
Eq.. This model does not interpolate between a square lattice and a tri-
angular one. We study it as abenchmark for our calculations against previous
calculations by by Hlubina et al. [67] using the same T-matrix approximation.
Calculations are performed on a finite lattice with linear size L = 40. The phase
diagrams are constructed by evaluating the energy difference between ferromag-

netic and paramagnetic states across the parameter space.
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Phase Diagram (U=4.0t L=40)
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Figure 4.1. Two-diagonal hopping case: phase diagram for lattice size L = 40 and
interaction strength U = 4t.

Figure and [4.2] display the ferromagnetic phase diagrams for interaction
strengths U = 4t and U = 8t, respectively. In these plots, the horizontal axis
represents the hopping ratio ¢'/t. The vertical axis indicates the electron filling
density n.

Figure [4.1| shows the ferromagnetic phase diagram at moderate interaction
strength U = 4t. The ferromagnetic region is relatively limited: it appears only at
densities n < 0.6, and requires t'/t values large than 0.43.

Figure[4d.2)reveals a dramatically expanded ferromagnetic region covering densi-
ties n < 0.95 and extending down to moderate frustration levels (#'/t 2 0.3). The
interaction energy now dominates over kinetic costs, stabilizing ferromagnetism

across most of the parameter space.
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Phase Diagram (U=8.0t L=40)
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Figure 4.2. Two-diagonal hopping case: phase diagram for lattice size L = 40 and
interaction strength U = 8t.

In Hlubina’s paper [67],they do the same calculation and get the results as
shown in Fig and [£.4] The fluctuations in my phase diagrams are probably
due to finite-size effects. The fact that Hlubina’s phase diagram is more regular is
probably due to the use of an interpolating curve when constructing the diagram.

Importantly, at low densities our findings, as well as those of Hlubina, are
consistent with the boundary reported in the paper published by Pieri in 1996
[28], which established that, in the limit n — 0, a fully polarized ferromagnetic
ground state can occur only for —0.20 > '/t > —0.65.
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Figure 4.3. Two-diagonal hopping case: phase diagram for lattice size L = 32 and
interaction strength U = 4t wn Hlubina ’s paper.
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Figure 4.4. Two-diagonal hopping case: phase diagram for lattice size L = 32 and
interaction strength U = 8t in Hlubina s paper.

The comparison between these two cases illustrates the cooperative effect of
interaction strength and lattice geometry. When U = 4¢, the kinetic energy cost

of spin polarization is comparable to the interaction-driven energy gain, making
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ferromagnetism fragile and dependent on both moderate density and strong frus-
tration. However, when U = 8t, the interaction energy dominates, suppressing
double occupancy and favoring spin-polarized configurations even without large
values of ¢'.

This behavior aligns with the theoretical understanding that large U enhances
ferromagnetic stability by penalizing double occupancy, while lattice frustration
weakens antiferromagnetic correlations that would otherwise compete with ferro-

magnetic order.

4.1.2 One-Diagonal Hopping Case

Zero-Temperature Phase Diagram (U=9.0t, L=40)
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Figure 4.5. One-diagonal hopping case: phase diagram for lattice size L=40 and in-
teraction strength U=9t.

Next, we investigate the model with the one-diagonal hopping dispersion described
in Eq2.44 We also perform calculations on a finite lattice with size L = 40. The
resulting phase diagrams are shown in Figure [4.5] and [4.0] for interaction strengths
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U = 9t and U = 13t, respectively. Note that in this case, the vertical axis
represents t'/t while the horizontal axis shows the filling density n.

Figure reveals a qualitatively different phase structure compared to the
two-diagonal case. The ferromagnetic region exhibits a wedge-shaped distribution,
primarily located at negative values of ¢/t (corresponding to configurations away
from the square lattice limit). An important observation is the density-dependent
behavior: higher densities require less severe lattice frustration to stabilize ferro-
magnetism, while lower densities demand stronger frustration.

A particularly notable feature is the emergence of a small ferromagnetic region
near t' &~ —0.5¢ in the low-density limit ( 7 — 0 ). This ferromagnetic phase is at-
tributed to the Miiller-Hartmann mechanism[37],which we have already discussed

in section 1.3.

0.0 Zero-Temperature Phase Diagram (U=13.0t, L=40)
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Figure 4.6. One-diagonal hopping case: phase diagram for lattice size L=40 and in-
teraction strength U=13t.
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When U increases to 13t in Figure the ferromagnetic region expands sig-

nificantly toward lower densities and less restrictive frustration requirements. The
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phase boundary becomes more regular and continuous, extending toward the lower-
left region of the parameter space.

Near half-filling ( n ~ 1 ), the results are consistent with Nagaoka ferromag-
netism, which is theoretically established for single-hole doping in the infinite-U
limit. Our numerical results demonstrate that Nagaoka-type ferromagnetism per-
sists even at finite U = 13t within the density range 0.8 < n < 1, consistent with
previous numerical studies. In this regime, the critical ¢, decreases as density re-
duces from half-filling, exhibiting opposite behavior compared to the low-density
regime.

Comparing the one-diagonal and two-diagonal cases reveals that the specific
form of the dispersion relation significantly influences both the density threshold
for ferromagnetism and the geometrical dependence on ¢'/t. This demonstrates
that band structure details, beyond simple frustration considerations, play a crucial

role in determining ferromagnetic stability.

0.40 Zero-Temperature Phase Diagram (U=4.0t)
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Figure 4.7. Two-diagonal hopping case: phase diagram in the thermodynamic limit for
interaction strength U = 4t.
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4.2 Thermodynamic Limit Analysis

To validate our finite-lattice results and obtain more accurate phase boundaries,
we extend the calculations to the thermodynamic limit by replacing discrete mo-

mentum summations with continuous integrals over the first Brillouin zone.

4.2.1 Two-Diagonal Hopping Case

Zero-Temperature Phase Diagram (U=8.0t)
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—-0.21

-0.81 :
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Figure 4.8. Two-diagonal hopping case: phase diagram in the thermodynamic limit for
interaction strength U = 8t.

Figure[d.7 and [4.8 present the ferromagnetic phase diagrams in the thermodynamic
limit for U = 4t and U = 8¢, respectively.

Comparing Figure [4.7] with [4.1] and [4.§ with [4.2] we can observe that systems
with the same U parameter exhibit a consistent density range within the ferromag-
netic region. However, the discrete system displays a rough, irregular boundary,

which is indicative of finite-size effects and statistical fluctuations arising from its
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limited system size. In contrast, the thermodynamic limit presents a smoother,
more regular ferromagnetic region, reflecting the continuous behavior of an infinite
system where such fluctuations are effectively averaged out. These findings under-
score the influence of finite-size effects on the ferromagnetic phase across different
scenarios.

Figure show the phase diagram for U = 60t and U = 200¢, we can
find that the ferromagnetism change very little so U = 200t can be considered
representative of the U = 400 limit. The figure indicates that under a strong
interaction potential, the interaction between particles in the system is enhanced,
and particles are more inclined to form ordered ferromagnetic arrangements. Thus,
the system is more likely to form a ferromagnetic ordered state within a wider range

of density and energy parameter intervals.
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Figure 4.9. Two-diagonal hopping case: phase diagram in the thermodynamic limit for
interaction strength U = 60t.
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4.2.2 One-Diagonal Hopping case

0.0 Zero-Temperature Phase Diagram (U=4.0t)

e Ferromagnetic
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—0.61
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Density

Figure 4.11. One-diagonal hopping case: phase diagram in the thermodynamic limit
for interaction strength U = 4t.

Figure through show the evolution of the ferromagnetic phase diagram
in the thermodynamic limit as the interaction strength increases from U = 4t to
U=1Tt.

By comparing the phase diagrams for the one-hopping case as shown in Fig-
ures[4.1 and the two-hopping case as shown in Figures [4.7][4.8, we can observe
distinct differences in the ferromagnetic phases induced by different band disper-
sion under the same interaction strength. For example, for the one-hopping case
(U = 4t), ferromagnetism only emerges in the density (n — 0) and only near a spe-
cific value of the hopping ratio (t'/t), this type of ferromagnetism is known as the
Miiller-Hartmann ferromagnetism.In contrast, for the two-hopping case (U = 4t),
a continuous ferromagnetic region is formed, spanning a relatively broad range of

both electron densities and #'/t values.From these observations, we conclude that
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0.0 Zero-Temperature Phase Diagram (U=8.0t)
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Figure 4.12. One-diagonal hopping case: phase diagram in the thermodynamic limit
for interaction strength U = 8t.

band dispersion exerts a significant influence on the stability of ferromagnetism.

By comparing the discrete system in U=9t as shown in Figures [4.5] and the
thermodynamics limit system as shown in Figures 4.13, we can observe that both
systems exhibit a consistent density range within the ferromagnetic region. As we
discussed previously, the discrete system has a rough boundary due to the finite
- size effects. Moreover, in both systems, we can observe the Miiller - Hartmann
ferromagnetism.

As U increases from 9¢ to 17t, the ferromagnetic region expands systematically,
covering progressively wider density intervals and becoming stable under less re-
strictive frustration conditions. This trend confirms that stronger on-site repulsion
enhances ferromagnetic stability by suppressing charge fluctuations and favoring
spin-polarized configurations.

Figure show the phase diagram for U = 60t and U = 200¢, we can
find that the ferromagnetism change very little so U = 200¢ can be considered
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0.0 Zero-Temperature Phase Diagram (U=9.0t)
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Figure 4.13. One-diagonal hopping case: phase diagram in the thermodynamic limit
for interaction strength U = 9t.

representative of the U = +oo limit. The broad ferromagnetic region reflects
the effectiveness of both Nagaoka ferromagnetism (near half-filling) and Miiller-
Hartmann ferromagnetism (at low densities) when double occupancy is strongly
suppressed.

To summarize, we find interaction strength plays a critical role in stabilizing fer-
romagnetism: weak interactions (U < 4t) in density n = 0.4 require large geomet-
rical frustration to sustain ferromagnetic order, while strong interactions (U > 8t)
enable ferromagnetism across broad parameter ranges with a smaller degree of
frustration. Second, the phase structure exhibits distinct dispersion dependence:
two-diagonal hopping favors ferromagnetism near t'/t = —0.5, where the band dis-
persion develops two degenerate minima, whereas one-diagonal hopping supports
multiple ferromagnetic mechanisms across different density regimes.Third, lattice

size effects ferromagnetism.
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Zero-Temperature Phase Diagram (U=10.0t)
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Figure 4.14. One-diagonal hopping case: phase diagram in the thermodynamic limit
for interaction strength U = 10t.
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Zero-Temperature Phase Diagram (U=14.0t)
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Figure 4.15. One-diagonal hopping case: phase diagram in the thermodynamic limit
for interaction strength U = 14t.

CHAPTER 4. NUMERICAL RESULTS AND ANALYSIS 63



4.2. THERMODYNAMIC LIMIT ANALYSIS

Zero-Temperature Phase Diagram (U=15.0t)
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Figure 4.16. One-diagonal hopping case: phase diagram in the thermodynamic limit
for interaction strength U = 15t.
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Zero-Temperature Phase Diagram (U=17.0t)
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Figure 4.17. One-diagonal hopping case: phase diagram in the thermodynamic limit
for interaction strength U = 17Tt.
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Figure 4.18. One-diagonal hopping case: phase diagram in the thermodynamic limit
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Chapter 5

Conclusions and Outlooks

5.1 Conclusions

This thesis provides a numerical investigation of ferromagnetism in the Hubbard
model, revealing the complex interplay between interaction strength, lattice ge-
ometry, and electron density in determining magnetic phase boundaries. Our
systematic study of two distinct lattice dispersions demonstrates that ferromag-
netic order emerges through fundamentally different mechanisms depending on the
parameter regime.

The role of interaction strength proves to be paramount in stabilizing ferro-
magnetic phases. At moderate interactions (U = 4t to U = 9¢), ferromagnetism
appears only in restricted regions of the phase diagram, requiring specific com-
binations of electron density and lattice frustration. However, as the interaction
strength increases beyond U 2 8t, the ferromagnetic region expands dramati-
cally, eventually dominating most of the phase diagram in the strong-coupling
limit (U = 200¢). This behavior reflects the fundamental physics of the Hubbard
model, where strong on-site repulsion suppresses double occupancy and favors
spin-polarized configurations that minimize interaction energy at the expense of
kinetic energy.

Lattice geometry, controlled through the hopping ratio ¢'/t, provides a crucial
tuning parameter for ferromagnetic stability. The interpolation between square lat-

tice (t' = 0) and triangular lattice limits in the one-diagonal hopping case reveals
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that geometrical frustration suppresses antiferromagnetic correlations, thereby cre-
ating favorable conditions for ferromagnetic order. Notably, the two dispersion
types exhibit qualitatively different dependencies on lattice geometry, with the
one-diagonal hopping case showing ferromagnetism in extended regions of the
phase diagram, while the two-diagonal hopping case favors ferromagnetism close
to t'/t = —0.5, where the band develops tow degenerate minima.

The comparison between finite-lattice and thermodynamic-limit calculations
reveals important finite-size effects that must be considered when interpreting
numerical results.In particular, our results for the one-diagonal hopping case shows
quite a good agreement with the finding of the experimental work [4] for both
system size.

Our analysis identifies distinct physical mechanisms underlying ferromagnetism
in different parameter regimes. Near half-filling, the observed ferromagnetism can
be attributed to the Nagaoka mechanism, where hole doping into a strongly in-
teracting system leads to spin polarization. In contrast, at low electron densities,
we observe signatures of the Miiller-Hartmann mechanism, where ferromagnetism
emerges due to the specific interplay between band structure and correlation ef-
fects. The coexistence and competition between these mechanisms creates a rich
phase diagram with multiple ferromagnetic regions separated by paramagnetic
phases.

These results establish the T-matrix approach as a reliable and efficient ap-
proach for mapping magnetic phase diagrams in strongly correlated electron sys-
tems. The method successfully captures the essential physics of ferromagnetic tran-
sitions while remaining computationally tractable for systematic parameter stud-
ies. The comprehensive phase diagrams presented here provide valuable bench-
marks for future theoretical and experimental investigations of frustrated magnetic
systems, and demonstrate the rich physics that emerges from the seemingly sim-
ple Hubbard model when lattice geometry and strong correlations are considered

together.
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5.2 Outlooks

The present work opens several promising avenues for future research that could
significantly deepen our understanding of ferromagnetism in frustrated lattice sys-
tems. While our T-matrix approach has proven effective for identifying ferromag-
netic phase boundaries, extending this approach to include dynamical properties
would provide crucial insights into the nature of magnetic excitations and finite-
temperature behavior. Incorporating spin wave calculations and examining the
stability of ferromagnetic states against thermal fluctuations represents a natural
next step that would bridge the gap between our zero-temperature ground state
analysis and experimentally accessible temperature regimes.

The exploration of more complex lattice geometries presents another fertile
direction for future investigations. Our current study focused on interpolations
between square and triangular lattices, but real materials often exhibit more intri-
cate structural features such as kagome lattices, honeycomb structures, or three-
dimensional frustrated networks. Extending the present approach to these ge-
ometries could reveal new classes of ferromagnetic phases and provide theoretical
guidance for material design. Particularly intriguing is the possibility of engi-
neering artificial lattices through cold atom systems or photonic crystals, where
the hopping parameters and interaction strengths can be tuned independently to
explore parameter regimes inaccessible in conventional solid-state systems.

The inclusion of longer-range interactions represents a crucial extension that
would enhance the relevance of our model to real materials. While the on-site Hub-
bard interaction provides the essential physics of strong correlations, many transi-
tion metal compounds exhibit significant nearest-neighbor and even longer-range
Coulomb interactions. Incorporating these additional interaction terms could fun-
damentally alter the phase diagram and potentially stabilize novel magnetic phases
not captured by the purely on-site model. Moreover, the interplay between geomet-
ric frustration and extended interactions may give rise to exotic quantum phases
such as spin liquids or unconventional superconducting states.

From an experimental perspective, our theoretical predictions provide clear tar-
gets for verification in quantum simulator platforms. Cold atomic gases in optical

lattices offer unprecedented control over lattice geometry and interaction strength,
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making them ideal systems for testing our phase diagrams quantitatively. Recent
advances in quantum gas microscopy enable direct observation of magnetic cor-
relations with single-site resolution, potentially allowing for detailed comparison
with our theoretical results. Similarly, the rapidly developing field of moiré ma-
terials in twisted van der Waals heterostructures provides natural realizations of
frustrated lattices with tunable parameters, offering another promising platform
for experimental validation.

Finally, the rich phase diagrams uncovered in this study motivate deeper in-
vestigations into the quantum critical points separating different magnetic phases.
Understanding the universality classes of these transitions and their associated
critical exponents would provide fundamental insights into the nature of quantum
phase transitions in frustrated systems. Such knowledge could have far-reaching
implications for understanding quantum magnetism in real materials and poten-
tially guide the discovery of new quantum phases of matter with exotic properties

relevant for future technological applications.
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Appendix 1

Monte Carlo Integration

Background

Monte Carlo integration is a numerical integration technique based on random
sampling, particularly useful for evaluating integrals in high-dimensional or com-
plex domains. Its core idea leverages the Law of Large Numbers, approximating
the expected value of an integral by the average of random samples. The method
was developed in the 1940s by scientists such as Stanislaw Ulam and John von Neu-
mann, and its name pays homage to the Monte Carlo Casino in Monaco, reflecting

the inherent randomness of the technique.

Mathematical Foundation

Consider the integral of a function f(x) over a domain  C R%:

1= [ reix

If there exists a probability density function (PDF) p(x) defined on € such that

p(x) >0 and [, p(x)dx = 1, the integral can be expressed as an expectation:
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where X is a random variable distributed according to p(x). By the Law of

Large Numbers, drawing N independent and identically distributed (i.i.d.) sam-

ples {x1,x%a,...,xy} from p(x), the sample mean,
N
- 1 f(xi)
Iy =— :
MTON ZZ1 p(xi)

converges almost surely to I as N — oo.

Algorithmic Procedure

The standard Monte Carlo integration procedure consists of the following steps:

1. Select a probability density function (PDF) p(x): A common choice
for bounded domains €2 is the uniform distribution, i.e., p(x) = 1/|Q2|, where

|2 denotes the volume of the domain.

2. Generate random samples: Draw N independent samples {x1, Xa, ..., Xy}

from the distribution p(x).
3. Compute function values: For each sample, compute the value f(x;)/p(x;).
4. Estimate the integral: Calculate the estimate of the integral:

-1  f(x)
IN_N;p(Xi)'

5. Error analysis: The error of the Monte Carlo estimate typically scales as
O(1/+/'N), independent of the dimensionality of the integral. The standard

error can be estimated from the sample variance.

Example: One-Dimensional Integral
To compute the integral I = fab f(z)da:

e Choose the uniform distribution p(z) = .

CHAPTER 5. CONCLUSIONS AND OUTLOOKS 73



5.2. OUTLOOKS

e The estimator then becomes:

e Generate N uniform random numbers z; in [a, b], compute f(z;) for each,

and average them multiplied by (b — a).
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Brent’s Method for Root-Finding

Background

Brent’s method is a root-finding algorithm for solving nonlinear equations of the
form f(x) = 0. Developed by Richard P. Brent in 1971, the method combines the
robustness of the bisection method with the speed of interpolation-based methods
such as the secant method and inverse quadratic interpolation. It is widely used
because it guarantees convergence when the initial interval brackets a root, while

often achieving superlinear convergence in practice.

Mathematical Foundation

Given a continuous function f(z) on [a,b] with f(a)f(b) < 0, Brent’s method

adaptively selects one of three steps:

e Bisection: Halves the interval, ensuring the root remains bracketed.
e Secant method: Uses linear interpolation between two recent points.

e Inverse quadratic interpolation: Uses three points to approximate the

root more accurately.

The method dynamically chooses the most suitable step at each iteration, falling

back on bisection if necessary.

Algorithmic Procedure

A simplified version of the algorithm proceeds as follows:
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1. Start with [a, b] such that f(a)f(b) < 0.

2. Attempt interpolation (secant or quadratic) to estimate the root.
3. If the estimate is invalid or unstable, perform a bisection step.

4. Update the bracketing interval.

5. Repeat until convergence within a chosen tolerance.

Error and Convergence

The method is guaranteed to converge linearly in the worst case (as in the bisection
method) but usually achieves faster superlinear convergence, combining reliability

with efficiency.

Example

Consider the equation f(z) = cos(z) — x. Starting from the interval [0, 1], Brent’s

method converges rapidly to the solution
x =~ 0.739,

illustrating both stability and efficiency.
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