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Abstract
This thesis investigates the non-linear relationship between extreme climate events,

measured by the European Extreme Events Climate Index (E3CI), and unprocessed
food prices, captured by the Harmonised Index of Consumer Prices (HICP). The
motivation for this research consists in two main considerations: climate change is
intensifying extreme events, and fresh food prices are highly exposed due to their
reliance on agricultural supply.

The analysis proceeds in three main steps. First, a Smooth Transition Autore-
gressive model is applied to Slovenia, replicating the Bank of Slovenia’s study, and
then extended to Italy to test robustness across countries. Second, the forecastabil-
ity of the E3CI is investigated with a variety of machine learning and deep learning
models in order to evaluate the predictive potential of climate indicators. Third,
given the challenges in accurately forecasting the index itself, the observed E3CI
is incorporated into inflation models together with farm-gate prices and macroeco-
nomic drivers, using both econometric and machine-learning approaches.

Overall, the forecasting analysis revealed significant limitations. The E3CI tracks
extreme and rare events, whose intrinsic unpredictability makes accurate prediction
extremely challenging, underscoring the persistent difficulty of forecasting extremes.
At the same time, food price inflation reflects multiple supply and demand shocks,
rigidities, and external drivers, adding further complexity. Within this framework,
forecasting serves to test the central non-linear hypothesis: to what extent climate-
induced price dynamics — state-dependent, varying across regimes, and potentially
disproportionate — can be captured by econometric and machine-learning models.

The findings from both forecasting exercises indicate that even advanced models
capture these dynamics only partially, and sometimes fail to capture them at all.
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CHAPTER 1

Introduction

1.1 Monitoring Extreme Climate Events in
a Changing Climate

Climate change refers to a long-term alteration in the state of the climate, identi-
fied by changes in the mean or variability of its properties, and persisting for decades
or longer (64). It may result from natural processes or from persistent human-driven
factors, such as increased greenhouse gas concentrations (1). In recent decades, the
influence of human actions on the climate system has become increasingly clear. The
year 2024 was the warmest ever recorded worldwide, and the first to pass 1.5°C above
pre-industrial levels (14)—a level identified in the Paris Agreement as a critical limit
to avoid the most serious effects of climate change.

According to the latest IPCC Synthesis Report (34), human activities—primarily
the emission of greenhouse gases—have unequivocally caused global warming. Green-
house gas emissions have continued to rise, driven by unsustainable energy use,
land-use change, and consumption patterns, with unequal historical and ongoing
contributions across regions and socio-economic groups. These changes have already
produced widespread and rapid alterations in the atmosphere, ocean, cryosphere,
and biosphere. Human-induced climate change is affecting weather and climate ex-
tremes in every region, leading to adverse impacts and damages for ecosystems and
communities (See Figure1.1).
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Figure 1.1: Projected changes in extremes at different levels of global warming rela-
tive to 1850–1900: (a) annual hottest-day temperature, (b) annual mean soil mois-
ture, and (c) annual wettest-day precipitation. Results from CMIP6 multi-model
simulations highlight how rising warming levels (+1.5°C to +4°C) are associated
with more frequent heatwaves, intensified drought risk, and stronger precipitation
extremes, illustrating the increasing severity of climate-related hazards. Source: Cli-
mate Change 2023, Synthesis Report. Summary for Policymakers (34)

Extreme weather and climate events represent one of the most visible and dis-
ruptive manifestations of this process. They can be described as rare phenomena
that deviate significantly from the usual conditions of a given place and time of
year, in terms of magnitude, duration, timing or spatial extent. Examples include
heatwaves, cold waves, heavy precipitation, floods, droughts, and tropical cyclones.
These extremes are not only rare meteorological anomalies but also key indicators
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of how the climate system is evolving, making their monitoring and characterization
essential for understanding climate risks.

According to the U.S. Department of Agriculture (USDA), “Extreme events are
occurrences of unusually severe weather or climate conditions that can cause devas-
tating impacts on communities and agricultural and natural ecosystems. Weather-
related extreme events are often short-lived and include heat waves, freezes, heavy
downpours, tornadoes, tropical cyclones and floods. Climate-related extreme events
either persist longer than weather events or emerge from the accumulation of weather
or climate events that persist over a longer period of time. Examples include drought
resulting from long periods of below-normal precipitation or wildfire outbreaks when
a prolonged dry, warm period follows an abnormally wet and productive growing
season” (65).

Beyond this definition, the scientific literature usually distinguishes two comple-
mentary approaches. A first, probabilistic approach evaluates the likelihood of an
event of given magnitude within a specified reference period (e.g., 1961–1990), typi-
cally classifying as extreme those occurrences with very low probability (below 10%)
and unusually high intensity. This probabilistic criterion is particularly relevant in
attribution studies, where the aim is to assess whether climate change has altered
the frequency or severity of such events. A second, impact-oriented approach, more
common in climate adaptation research, relies on thresholds that reflect local vul-
nerabilities. For instance, heat waves may be defined as a sequence of days with
maximum temperature above a given threshold (e.g., 38◦C), but what constitutes
an “extreme” threshold may vary across locations: values considered anomalous in
a temperate region can be within the expected range in a hotter climate. These
threshold-based definitions thus emphasize the contextual and location-specific na-
ture of extreme events. (65).

Moreover, it is important to highlight that the thresholds defining what is consid-
ered “extreme” are not universal. They vary across regions and climates, reflecting
local conditions and the specific variables used to describe them. This relativity im-
plies that an event classified as extreme in one context may be regarded as ordinary
in another, reinforcing the need for context-specific definitions.

Looking to the future, climate projections (See Figure 1.2) show that tempera-
tures will keep rising throughout this century. How much they increase will depend
largely on how quickly and effectively emissions are reduced. Possible futures range
from high-emission paths, where temperatures climb steeply with severe impacts
across natural and human systems, to low-emission paths, where strong and sus-
tained mitigation slows warming and limits risks for ecosystems, economies, and
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societies.
Each of these pathways carries very different consequences for the frequency and

severity of climate-related hazards. Under high-emission scenarios, events such as
heatwaves, prolonged droughts, intense rainfall, and tropical cyclones are expected
to become increasingly common and intense. These hazards often interact with
other pressures—such as ecosystem degradation, pollution, unsustainable agricul-
tural practices, and social inequalities—amplifying vulnerabilities and producing
cascading impacts that cross sectors and regions (34).

Figure 1.2: Global average near-surface temperature (1850–2100) based on CMIP6
simulations1. The grey band shows the range of historical reconstructions, while the
coloured areas depict future projections under alternative greenhouse gas emission
scenarios: SSP5-8.5 (red, high-emission), SSP2-4.5 (blue, intermediate), and SSP1-
2.6 (green, low-emission). Source: AR6 Synthesis Report: Climate Change 2023
(34).

Climate risks are inherently interconnected, with impacts in one sector often
propagating into others. Such cascading dynamics mean that a single event can
trigger complex chains of consequences across multiple systems. The European Cli-
mate Risk Assessment (21) identifies a set of priority risks associated with climate
change, emphasising their potential to affect diverse sectors and regions simultane-
ously 1.3:

• Food: Climate shocks to agricultural production—particularly in southern
Europe—can severely reduce yields of crops and fresh produce. This not only

1The sixth phase of the Coupled Model Intercomparison Project (CMIP6) is an international
collaboration involving over 50 modelling centres. Its purpose is to generate standardised climate
projections that inform both scientific research and policy decisions (44).
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threatens rural and coastal livelihoods but also alters land use, undermines
food availability, and increases price volatility. For unprocessed food, which
is highly sensitive to short-term supply disruptions, such shocks can rapidly
translate into significant spikes in consumer prices, with broader implications
for food inflation and economic stability.

• Health: Extreme heat, poor air quality, and other climate-related hazards af-
fect human health and well-being, reducing labour productivity, increasing the
incidence of heat-related illnesses, and placing additional strain on healthcare
systems already managing other public health challenges.

• Ecosystems: Damage to terrestrial, freshwater, and marine ecosystems can
disrupt biodiversity and ecosystem services, reduce the resilience of food pro-
duction systems, and impair human and animal health, with downstream ef-
fects on infrastructure, land use, and the wider economy.

• Infrastructures: Climatic extremes can compromise critical infrastructures
—such as energy, water supply, and transport networks—interrupting essen-
tial services, hindering economic activity, and potentially triggering cascading
failures across interconnected systems and regions.

• Economy and finance: The economic repercussions of climate impacts ex-
tend from local communities to global markets. Financial systems can be
destabilised by physical damage, supply chain disruptions, and increased mar-
ket uncertainty, influencing investment flows and policy priorities.

6



Figure 1.3: Schematic representation of cascading climate risks. Climate-related
hazards and non-climatic risk drivers generate direct and indirect impacts that
propagate across interconnected systems — from ecosystems and water to food,
infrastructure, health, and the broader economy. The diagram highlights how vul-
nerabilities in one sector can amplify risks in others, creating cross-sectoral feedback
loops. Source: (21).

7



Since these risks are interconnected and frequently go beyond national borders, influ-
encing global socio-economic and environmental dynamics, addressing them require
more than awareness. It requires the establishment of systematic climate data moni-
toring systems and the development of robust forecasting capabilities. These instru-
ments enable governments, businesses, and communities to design and implement
adaptation and mitigation strategies aimed at safeguarding populations, livelihoods,
and ecosystems. Furthermore, they play a critical role in economic policymaking,
allowing decision-makers to anticipate sector-specific impacts—such as those affect-
ing agricultural production and food prices—and to enhance resilience across both
environmental and economic systems. In response to the need for systematic cli-
mate monitoring, a range of robust and standardised indicators have been developed
to transform complex climate datasets into concise and policy-relevant metrics (60).
These indicators enable consistent tracking of changes in the climate system, support
the evaluation of progress towards agreed objectives, and facilitate communication
between the scientific community, policymakers, and the public. They provide ob-
jective measures of the frequency and severity of climate-related hazards, allow for
continuous observation through regular updates, and translate detailed climate in-
formation into accessible formats that can be applied across multiple sectors, from
public policy to insurance, finance, and food security (32; 33).
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1.2 European Extreme Events Climate
Index (E3CI)

The European Extreme Events Climate Index (E3CI) (22) is a synthetic indicator
developed to monitor, on a monthly basis, the frequency and severity of meteoro-
logical extremes in Europe. It results from a joint initiative of the Foundation for
Big Data and Artificial Intelligence for Human Development (IFAB)2, the Euro-
Mediterranean Center on Climate Change (CMCC)3, and Leithà (Unipol Group)4,
and is distributed through Radarmeteo5 and Hypermeteo6. The index is designed to
support climatological analysis, financial risk assessment, and insurance modelling
at continental, national, and sub-national levels. Inspired by the North American
Actuaries Climate Index (ACI)7, it quantifies seven hazard categories:

• extreme minimum temperature

• extreme maximum temperature

• drought

• extreme precipitation

• hail potential

• extreme wind

• forest-fire risk

each proxied by a dedicated indicator .

All the indicators are computed from hourly ERA5 reanalysis by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)—the fifth-generation
global reanalysis that combines a numerical weather prediction model with diverse
observations via data assimilation to provide a consistent global record (28). Cover-
ing the period from 1950 to the present, ERA5 has a spatial resolution of 0.25° and
daily temporal resolution. For each component, values are expressed as standard-
ized anomalies relative to the 1981–2010 climatological baseline (computed month by

2IFAB: https://www.ifabfoundation.org/it/
3CMCC: https://www.cmcc.it
4Leithà: https://leitha.eu
5Radarmeteo: https://www.radarmeteo.com
6Hypermeteo: https://hypermeteo.com
7ACI: https://actuariesclimateindex.org/home/
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month), and the seven components are then averaged into a single E3CI value that
reflects overall extreme-event intensity. Currently, national-level data are publicly
available, while regional and provincial datasets will be released soon.

By delivering timely and standardised information, the E3CI provides a monthly
snapshot of extreme climate conditions, enabling the analysis of long-term patterns,
the detection of anomalies, and the identification of the areas most exposed to cli-
mate stress. It thus represents a simple and transparent tool that supports climate
risk assessments, financial modelling, and public awareness initiatives, while fos-
tering informed decisions to protect territories, ecosystems, and future generations
(22). A comprehensive description of the computation procedures for each of the
seven components of the E3CI will be presented in Section 4.1.
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1.3 Unprocessed food prices

One of the key variables considered in this thesis, alongside the E3CI, is the un-
processed food component of the Harmonised Index of Consumer Prices (HICP),
using monthly year-on-year (yoy) data (18). The HICP is a harmonised economic
indicator that measures the change over time in the prices of consumer goods and
services acquired, used, or paid for by households, following a standardised method-
ology across all EU Member States to ensure comparability. It is compiled and
published by the European Commission (Eurostat) and is available for the euro
area from 1996 onwards, with aggregate results obtained by combining the indices
of individual countries. The index follows the European Classification of Individual
Consumption According to Purpose (ECOICOP)8, which organises household ex-
penditures into harmonised categories. For economic analysis purposes, more than
30 special aggregates have been defined, including indices for goods, services, energy,
and those excluding specific components such as energy or unprocessed food.(19)

Formally, Eurostat (16) defines HICP as a Laspeyres-type index:

p0,t =
∑
i

pti
p0i

· w0,b
i (1.1)

where pti denotes the price of product i in the comparison period t, p0i is the price in
the price reference period 0, and w0,b

i are the expenditure weights from the weight
reference period b (the previous calendar year), adjusted to reflect the prices of the
price reference period 0.

Within the HICP, unprocessed food refers to fresh products with minimal or no
transformation, covering mainly meat, eggs, fish, fruit, and vegetables (19),whose
price dynamics in the euro area are shown in Figure 1.4.. This category is charac-
terised by high price volatility and strong exposure to weather-related supply shocks.
As noted by De Sloover and Jacobs (10), unprocessed food prices are the HICP sub-
index most directly influenced by meteorological conditions, making them a primary
channel through which climate shocks affect inflation. Prices of processed foods can
also be influenced, though typically with a time lag and, in some cases, through a
sequence of shocks—such as a prolonged drought followed by a heatwave—reflecting
their transmission along supply chains. Furthermore, volatility in unprocessed food

8The 12 main ECOICOP divisions are: 01 Food and non-alcoholic beverages; 02 Alcoholic
beverages and tobacco; 03 Clothing and footwear; 04 Housing, water, electricity, gas and other
fuels; 05 Furnishings, household equipment and routine household maintenance; 06 Health; 07
Transport; 08 Communications; 09 Recreation and culture; 10 Education; 11 Restaurants and
hotels; 12 Miscellaneous goods and services.(15)
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prices can have repercussions on the wider economy, both directly through consumer
prices and indirectly via inflation expectations and wage-setting dynamics (10).

These properties motivate the focus on unprocessed food prices in this thesis
as a timely proxy for the transmission of extreme-weather shocks to inflation. The
mechanisms behind this transmission and the econometric framework used to study
it are discussed in the next section.

Figure 1.4: HICP Unprocessed Food, Euro Area — monthly year-on-year percentage
change. Values indicate growth relative to the same month a year earlier. The figure
shows EU aggregated data compiled on a changing-composition basis, meaning that
historical series are recalculated to incorporate new EU Member States as they join.
Source: ECB Data Portal; Eurostat (18).

Recent ECB analyses (7) acknowledge that, since 2020, forecasting inflation in
the euro area has become exceptionally difficult. The extraordinary sequence of
shocks triggered by the pandemic and the war in Ukraine has pushed inflation dy-
namics far outside historical regularities, undermining the reliability of standard
models and making extrapolation from past patterns highly uncertain. Schnabel9

(51), a member of the Executive Board of the ECB, further stresses that these errors
were not unique to central banks but common across forecasters and international
institutions, reflecting the unprecedented magnitude of the shocks and the structural
changes they triggered.

These forecasting challenges are closely linked to the exceptional events that
9Isabel Schnabel, The future of inflation (forecast) targeting, Keynote speech at the Interna-

tional Research Forum on Monetary Policy, Federal Reserve Board, Washington, D.C., 17 April
2024.
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reshaped the global and European economy. The COVID-19 pandemic disrupted
supply chains while unprecedented fiscal and monetary support fuelled demand at
a time of constrained production. As the recovery was gaining momentum, Rus-
sia’s invasion of Ukraine in early 2022 brought new turmoil, driving up energy and
fertilizer prices, interrupting grain exports, and exposing the fragility of global sup-
ply routes. The subsequent energy crisis in Europe further amplified production
costs, feeding through to consumer prices. Added to this were broader geopolitical
tensions, exchange rate fluctuations, and the growing incidence of climate-related
events, all of which combined to make inflation dynamics unusually unstable and
difficult to predict.

Food price inflation in particular has displayed unique vulnerabilities compared
to headline inflation. As noted by the Food and Agriculture Organization of the
United Nations (FAO) (24), unprocessed and processed food prices have been es-
pecially exposed to the combined impact of demand- and supply-side shocks since
2020 . During the pandemic, supply chains were disrupted while expansive fiscal
and monetary policies stimulated demand, creating initial demand-side pressures on
food markets. This first wave was soon followed by severe supply-side shocks, most
prominently the war in Ukraine, which disrupted global grain exports, reduced fer-
tilizer availability, and amplified energy price volatility. These developments directly
raised agricultural input costs and indirectly propagated through higher producer
prices, especially in food-processing sectors.

The persistence of food price inflation also reflects structural features of these
markets. Unlike demand-driven inflation, which may ease as consumption normal-
izes, supply-driven shocks tend to generate more lasting pressures, since rebuilding
production capacity or re-establishing trade flows takes time. Moreover, food price
inflation is more sensitive to seasonal and weather-related disruptions, making it
intrinsically more volatile than other CPI components. This helps to explain why
food inflation in the euro area rose more strongly and remained more persistent than
headline inflation in the post-pandemic period as shown in Figure 1.5.
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Figure 1.5: Monthly historical series of the HICP for unprocessed food (percentage
change) for the EU changing composition (purple), Italy (red) and Slovenia (light
blu), 1996–2025. Source: ECB Data Portal (EUROSTAT) (18).
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1.4 Correlation between inflation and ex-
treme weather events

The reasons underlying this analysis of the correlation between extreme climate
events and unprocessed food inflation are twofold. First, across Europe, especially
over the last two decades, there has been a marked rise in both the frequency and
the intensity of extreme weather events (for Italy, see Figure 1.6 as an illustrative
example). Second, fresh food prices are particularly exposed to such shocks because
they are closely tied to agricultural supply: when availability is constrained and de-
mand does not adjust, the imbalance is quickly transmitted into upward pressure on
prices. At the same time, the magnitude and persistence of these effects are far from
homogeneous across countries. Exposure to extreme events, the extent of mitigation
and adaptation measures, differences in supply-chain structures, agricultural sup-
port policies, and national price-regulation mechanisms can all amplify or dampen
the transmission of climate shocks to inflation. This heterogeneity explains why
recent contributions emphasise the need for non-linear and state-dependent models,
which can account for asymmetries across shocks, sectors, and economies.

An outstanding example is the framework developed by the Bank of Slovenia
(Banka Slovenjie) (37), which examines the link between extreme weather shocks
and movements in Slovenia’s unprocessed food prices through a smooth-transition
autoregressive (STAR) model. Using monthly data from 2000 to 2023 and consid-
ering the European Extreme Events Climate Index (E3CI) as the transition vari-
able, the model allows inflation dynamics to shift between “normal” and “extreme”
regimes. In this way, it highlights non-linear effects that cannot be captured by
standard linear specifications. The study shows that significant price changes occur
mainly when the climate indicator reaches extreme values, suggesting a non-linear
relationship between climate shocks and inflation and illustrating why STAR models
are particularly relevant for this type of analysis.
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Figure 1.6: Extreme climate events recorded in Italy between 1981 and 2023, based
on the European Extreme Events Climate Index (E3CI). The beeswarm plot displays
only extreme values (>1), with larger dots indicating higher intensity. A clear
increase in the frequency and severity of events is visible, especially in the last two
decades. Source: (22) (credits to Cinzia Bongino).

An outstanding example is the framework developed by the Bank of Slovenia
(Banka Slovenjie) (37), which examines the link between extreme weather shocks
and movements in Slovenia’s unprocessed food prices through a smooth-transition
autoregressive (STAR) model. Using monthly data from 2000 to 2023 and consid-
ering the European Extreme Events Climate Index (E3CI) as the transition vari-
able, the model allows inflation dynamics to shift between “normal” and “extreme”
regimes. In this way, it highlights non-linear effects that cannot be captured by
standard linear specifications. The study shows that significant price changes occur
mainly when the climate indicator reaches extreme values, suggesting a non-linear
relationship between climate shocks and inflation and illustrating why STAR models
are particularly relevant for this type of analysis.

Further evidence of non-linearities in the climate–inflation relationship is offered
by others recent contributions, which analyse this link through different empiri-
cal approaches beyond STAR model. One example is the work of Ciccarelli, Kuik
and Martínez Hernández (6), who analyse Germany, France, Italy and Spain be-
tween 1997 and 2023 by combining monthly macroeconomic indicators with high-
frequency ERA5 temperature data. Their analysis is based on a seasonally depen-
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dent Bayesian Vector Autoregressions (BVARs), which is designed to capture how
the impact of temperature shocks changes across the seasons. The model includes a
country block, which captures disaggregated HICP components together with pro-
ducer and farm-gate food prices, and a euro area block, which reflects spillovers
and common shocks across countries. The results show clear asymmetries: in the
hotter southern economies, summer heat tends to raise inflation, whereas in other
periods the effects are weaker or even negative. Among the different price cate-
gories, food inflation plays the central role in transmitting shocks, often reinforced
by movements in energy costs and by services connected to food and tourism. The
authors note that their seasonal BVAR captures only part of the non-linearities in
the climate–inflation relationship. Larger shocks and future climate conditions are
expected to generate additional, stronger non-linear effects, reinforcing the idea that
linear models are not sufficient to describe these dynamics, even when allowing for
seasonal state-dependence.

Škrinjarić (53) investigates Croatia using a set of monthly Vector Autoregressions
(VAR) covering 1999–2022. The models include inflation, energy inflation, industrial
production and unemployment, together with weather shocks drawn from the E3CI
and its components (drought, precipitation, wind, heat and cold stress). The find-
ings indicate that inflation is the variable most affected, with drought emerging as
the dominant driver. The effects extend into the medium term and appear especially
relevant for small open economies such as Croatia, where limited diversification and
high import dependence make food prices particularly vulnerable. One limitation
of this approach is that the use of linear VAR models may not capture potential
non-linearities in the relationship between weather shocks and macroeconomic vari-
ables, an aspect highlighted by more recent contributions that employ non-linear
specifications, suggesting that other models, like STAR, can be more suitable in
capturing these non-linear dynamics.

As highlighted in the previous section, unprocessed food prices represent the
HICP sub-index most sensitive to weather variability. De Sloover and Jacobs (10)
show that shocks to this category feed rapidly into consumer prices, adding volatility
and influencing inflation expectations.

At the global level, IMF research (35) shows that higher temperatures and ex-
treme events create persistent and non-linear pressures on inflation, particularly in
emerging and developing economies. In these countries, food represents a larger
share of household spending, which makes inflation more vulnerable to climate con-
ditions.
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Overall, the reviewed literature ((6) and (53)) suggests that climate shocks affect
inflation in uneven ways: their impact varies with the intensity and type of the
shock, the season in which it occurs, and the structural features of the economy.
Such state-dependent dynamics reveal the limitations of linear models, which can
not complitely capture these differences. and underscore the value of non-linear
frameworks.
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1.5 Objectives of the Thesis

The objective of this thesis is to investigate how extreme climate events influence
unprocessed food inflation and to evaluate the potential of climate information as a
predictive input for forecasting models. Having introduced the European Extreme
Events Climate Index (E3CI), its seven components, and the HICP series for unpro-
cessed food, Chapter 2 reviews the methodological background of the econometric
and machine-learning models that constitute the analytical toolbox of the study,
ranging from Smooth Transition Autoregressive (STAR), Autoregressive Integrated
Moving Average with Exogenous Regressors (ARIMAX) and its seasonal extension
(SARIMAX), as well as modern forecasting architectures including Extreme Gradi-
ent Boosting (XGBoost), Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), Prophet and TimeGPT.

Chapter 3 replicates and extends the framework developed by the Bank of Slove-
nia, which analyses the non-linear transmission of climate shocks to food prices.
The central assumption is that shocks do not exert homogeneous effects: moderate
disturbances are often absorbed along the supply chain, while extreme events may
generate disproportionate price responses. To identify and quantify this behavior,
the analysis employs a STAR model with two regimes: a normal regime, prevailing
when climate stress is limited, and an extreme-shock regime, characterising periods
of pronounced climate pressure. The model is first replicated for Slovenia to verify
its robustness and then applied to Italy to test its external validity and demonstrate
replicability on a different country.

Once established the non-linear relationship, the thesis next asks whether such
information has predictive content, first by testing the forecastability of the E3CI and
then by evaluating its role as an explanatory input within food-inflation forecasting
models.

Chapter 4 addresses the forecastability of the E3CI itself by applying a range
of time-series and machine-learning methods. This part of the analysis not only
compares predictive performance across models but also discusses the intrinsic un-
certainty arising from the rare-event nature of the index, which fundamentally limits
forecastability.

Chapter 5 turns to inflation forecasting, modelling unprocessed food prices with
the observed E3CI as a key explanatory variable. Climate indicators are comple-
mented with macroeconomic drivers such as farm-gate prices and headline inflation
in order to assess the explanatory and predictive role of climate information.

Finally, Chapter 6 concludes by summarizing the results, highlighting the main
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contributions and limitations of the analysis, and reflecting on the challenges faced.
It also outlines possible directions for future research, both in terms of methodolog-
ical improvements and broader applications of climate–finance integration explored
throughout the study.
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CHAPTER 2

Theoretical Background of the

models

2.1 Statistical Models

2.1.1 Smooth Transition Autoregressive Model (STAR)

A critical aspect of time-series econometrics is dealing with nonlinear patterns in
the data, such as those exhibited by the E3CI and unprocessed food-price series an-
alyzed in Kovač’s study. Traditional linear specifications—most notably the autore-
gressive family AR (p)—assume that a single set of coefficients governs the dynamics
at every point in time:

yt = ϕ0 +

p∑
i=1

ϕi yt−i + εt, εt
i.i.d.∼ (0, σ2), (2.1)

but this premise often fails whenever the data display asymmetric cycles, state-
dependent persistence or threshold behavior. To address this, Teräsvirta (57) pro-
posed the smooth transition autoregressive (STAR) model, which extends the lin-
ear AR structure by allowing the coefficients to change smoothly between different
regimes. In its general form, the STAR (p) model can be written as

yt = ϕ′wt + θ′wt G(yt−d; γ, c) + εt, εt
i.i.d.∼ (0, σ2), (2.2)

where wt = (1, yt−1, . . . , yt−p)
′, ϕ = (ϕ0, . . . , ϕp)

′, θ = (θ0, . . . , θp)
′, G(·) is the transi-

tion function that will be discussed later and εt is an error term. This formulation,
standard in the STAR literature (57; 58; 61) represents a linear AR model with
coefficients that vary smoothly depending on the transition variable yt−d.

This specification preserves the autoregressive structure of equation (2.1), but
allows its coefficients to vary with the state of the system. The vector ϕ represents
the baseline dynamics, while θ captures the additional effect that becomes active
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as the transition function G(·) departs from zero. Since G(·) is continuous and
bounded between 0 and 1, the change from one regime to another is smooth rather
than discrete.

The slope parameter γ regulates how sharp this adjustment is—small values
imply a very smooth transition, while large values approximate a threshold-like be-
havior—whereas c sets the location of the switch. In most applications the transition
variable yt−d is chosen as a lagged value of the dependent variable, though exogenous
drivers can also be employed (61; 58).

Two standard choices for the transition function G(·) are

GLSTAR(z; γ, c) =
[
1 + exp{−γ(z − c)}

]−1
, (logistic), (2.3)

GESTAR(z; γ, c) = 1− exp
{
−γ(z − c)2

}
, (exponential). (2.4)

The logistic specification (LSTAR) produces an asymmetric switch between
regimes: as γ → 0, the logistic function flattens and the model reduces to a lin-
ear AR; as γ → ∞, it approximates a step function and the model converges to a
threshold autoregressive (TAR) process. By contrast, the exponential specification
(ESTAR) implies symmetric dynamics around a central state c, and reduces to a
linear AR model both when γ → 0 and when γ → ∞.

Figure 2.1 illustrates the shape of the logistic and exponential transition functions
for different values of γ. In line with this interpretation, (37) adopts the logistic form,
reflecting the idea that only very large positive values of the E3CI are sufficient to
push unprocessed food inflation into an alternative regime.

Figure 2.1: Shape of logistic (LSTAR) and exponential (ESTAR) transition func-
tions under different values of γ (63).
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Beyond the standard two-regime specification, further extensions of the STAR
framework have been developed. These include models with more than two regimes
(multi-regime STAR, MRSTAR), time-varying smooth transition autoregressions
(TVSTAR), and multivariate generalizations such as the vector STAR (VSTAR).
Such extensions broaden the flexibility of the approach, allowing the model to cap-
ture richer nonlinear dynamics than those implied by a single logistic or exponential
switching function (61).

Having defined the transition functions, we now turn to the assumptions on the
disturbance term. The error εt is commonly assumed to follow an i.i.d. white noise
process, that is, a sequence of independent and identically distributed shocks with
zero expected value, constant variance, and no serial correlation. More recent con-
tributions, however, adopt the weaker assumption that εt is a martingale difference
sequence, meaning that E[εt | Ft−1] = 0 with respect to the past information set
Ft−1 (58).

For consistency with the notation used in (37), in the empirical application we
rewrite (2.2) as

yt =
(
α0+

p∑
i=1

αi yt−i

)
+
(
β0+

p∑
i=1

βi yt−i

)
G(yt−d; γ, c)+εt, εt

i.i.d.∼ (0, σ2), (2.5)

where the parameters α = (α0, . . . , αp)
′ correspond to ϕ in (2.2), capturing the

baseline autoregressive dynamics, and the parameters β = (β0, . . . , βp)
′ correspond

to θ, measuring the additional effect activated by the transition function.

23



2.1.2 Autoregressive models with exogenous regres-

sor (ARX).
The Autoregressive model with exogenous variables, denoted ARX(p), extends the
classical AR(p) process (47) by including external regressors xi

t that may influence
the dependent variable. Its general form is

yt = β +

p∑
i=1

θiyt−i +
n∑

j=1

γjx
j
t + εt,

where yt is the target variable, θi are the autoregressive coefficients, xj
t are the n

exogenous variables with coefficients γj, and εt is a white-noise error term.
Using the lag operator L, the ARX(p) specification can be written more com-

pactly as

yt = Θ(L)yt +
n∑

j=1

γjx
j
t + εt,

where Θ(L) is a polynomial of order p in the lag operator. This framework captures
both persistence in the dependent series and the contemporaneous or lagged effects
of external drivers, providing a flexible baseline for forecasting and causal analysis.

2.1.3 Autoregressive Integrated Moving Average with

Exogenous regressors (ARIMAX)

The Autoregressive Integrated Moving Average with Exogenous regressors (ARI-
MAX) (48)(47) model extends the classical ARIMA framework by allowing the
inclusion of external variables that may influence the target series. The three com-
ponents of ARIMA capture different aspects of the data: the autoregressive (AR)
term models the current value of the series as a function of its past observations, the
moving average (MA) term expresses the error as a weighted sum of past forecast
errors, and the integrated (I) term accounts for non-stationarity by differencing the
series.

For n exogenous variables xi
t with coefficients βi, the ARIMAX(p, d, q) model

can be written as

Θ(L)∆dyt = Φ(L)∆dεt +
n∑

i=1

βix
i
t,

where Θ(L) and Φ(L) are the lag polynomials of order p and q, ∆d denotes differ-
encing, and εt is a white noise error term. By integrating external factors, ARIMAX
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models can improve forecasting accuracy and also support causal analysis, making
it possible to evaluate how specific drivers affect the series of interest.

2.1.4 Seasonal Autoregressive Integrated Moving Av-

erage with Exogenous regressors (SARIMAX)
The Seasonal ARIMAX (SARIMAX) (47) model generalises the ARIMA’s struc-
ture previously mentioned by incorporating seasonal components, thus capturing
both short-term and recurring cyclical dynamics. SARIMAX(p, d, q)(P,D,Q, s) is
expressed as

Θ(L) θ(Ls)∆d∆D
s yt = Φ(L)ϕ(Ls)∆d∆D

s εt +
n∑

i=1

βix
i
t,

where (P,D,Q, s) denote the seasonal autoregressive order, seasonal differencing,
seasonal moving average order, and the length of the seasonal cycle, respectively.
This specification makes SARIMAX a versatile and widely used tool for forecasting
time series subject to both structural dynamics and external shocks (55).
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2.2 Machine Learning models

2.2.1 Extreme Gradient Boosting (XGBoost)
Xtreme Gradient Boosting (XGBoost) is a scalable and efficient implementation of
gradient boosting methods, designed to handle large datasets with strong predictive
performance. It is widely applied to supervised learning problems, where the objec-
tive is to predict a target variable yi from a set of input features xi. The algorithm
was originally developed as a research project by Tianqi Chen at the University of
Washington within the Distributed (Deep) Machine Learning Community (DMLC)
(8). The graphical representation of its architecture is illustrated by Figure 2.2.

Decision tree ensembles form the basis of gradient boosting methods (68). A
single decision tree splits the input space into regions by asking a sequence of bi-
nary questions on the features, and each observation is assigned to a leaf with an
associated prediction score. In the case of CART models, these scores are continu-
ous values, allowing for richer interpretations that go beyond simple classification.
However, a single tree is rarely sufficient to capture complex relationships in the
data. For this reason, ensemble methods are employed, where the predictions of
many trees are combined.

Boosting represents a specific ensemble strategy in which trees are built sequen-
tially: each new tree is trained to reduce the errors left by the previous ones. This
additive process gradually refines the model’s predictions. To guide the training, an
objective function is defined, composed of two terms: a loss function that measures
how well predictions match observed values, and a regularization component that
controls the complexity of the trees to avoid overfitting. Formally, the objective
function can be written as

obj(θ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk), (2.6)

where l(yi, ŷi) denotes the training loss (e.g., mean squared error in regression),
Ω(fk) is the regularization term that penalizes overly complex trees, and K is the
number of trees in the ensemble. This framework ensures that each tree contributes
incrementally while maintaining balance between accuracy and generalization.

The training process in gradient boosting follows an additive strategy: instead
of fitting all trees simultaneously, the model is built sequentially by adding one new

26



tree at a time. The prediction at iteration t can thus be expressed as

ŷ
(0)
i = 0 (2.7)

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi) (2.8)

ŷ
(2)
i = ŷ

(1)
i + f2(xi) (2.9)

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi) (2.10)

where each fk represents a decision tree to be learned.
To optimize the ensemble, XGBoost defines an objective function that combines

the training loss with a regularization term:

obj(t) =
n∑

i=1

l
(
yi, ŷi

(t)
)
+

∑
k = 1tΩ(fk). (2.11)

Since directly optimizing this expression is computationally intractable, the loss is
approximated using a second-order Taylor expansion around the current predictions
ŷ
(t−1)
i :

obj(t) ≈
n∑

i=1

[
l(yi, ŷ

(t−1)
i ) + gift(xi) +

1
2
hif

2
t (xi)

]
+ Ω(ft) + constant, (2.12)

where gi and hi are the first and second derivatives (gradient and hessian) of the
loss with respect to the predictions.

After removing constant terms, the simplified optimization target at step t be-
comes

obj(t) =
n∑

i=1

[
gift(xi) +

1
2
hif

2
t (xi)

]
+ Ω(ft). (2.13)

This formulation highlights one of the main advantages of XGBoost: the ability
to incorporate both first- and second-order information, which enables more precise
updates compared to traditional gradient boosting. For a full derivation of the
intermediate steps, see Chen and Guestrin (2016) (8) and the official XGBoost
documentation (68).

After defining the general objective, XGBoost introduces a formal notion of
model complexity, which penalizes overly deep or irregular trees. Starting from the
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definition of tree

f(x) = wq(x), w ∈ RT , q : Rd → {1, 2, . . . , T}, (2.14)

where w is the vector of leaf scores, q(x) is the function that assigns each obser-
vation to a leaf, and T is the number of leaves. The complexity term is then defined
as

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j , (2.15)

where γ penalizes the number of leaves and λ regularizes the magnitude of the
leaf weights.

Substituting this expression into the objective yields the following reformulation:

obj(t) ≈
T∑

j=1

[
Gj wj +

1

2
(Hj + λ)w2

j

]
+ γT, (2.16)

where

Gj =
∑
i∈Ij

gi, Hj =
∑
i∈Ij

hi, (2.17)

are, respectively, the sum of gradients and Hessians of all observations assigned
to leaf j.

The optimal weight for each leaf can be derived as

w∗
j = − Gj

Hj + λ
, (2.18)

and the corresponding optimal objective for a given tree structure q(x) is

obj∗ = − 1

2

T∑
j=1

G2
j

Hj + λ
+ γT. (2.19)

Finally, the quality of a potential split is assessed through the gain function,
which measures the improvement in the objective after partitioning a node:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ. (2.20)

If the gain is positive and exceeds the regularization threshold γ, the split is kept;
otherwise, the branch is pruned. This mechanism allows XGBoost to balance pre-
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dictive accuracy with model simplicity, ensuring better generalization.
Chen and Guestrin (8) highlight several advantages that distinguish XGBoost

from earlier gradient boosting implementations. First, the algorithm incorporates
a regularized objective, penalizing both the number of leaves and the magnitude of
leaf weights, which enhances generalization and mitigates overfitting. In addition,
it introduces shrinkage (learning rate) to moderate the impact of each new tree, and
column subsampling to promote diversity and computational efficiency. XGBoost
also implements optimized split-finding methods and a sparsity-aware mechanism
capable of handling missing values and high-dimensional data with efficiency. From
a system perspective, it benefits from cache-aware structures, out-of-core compu-
tation, and distributed learning, which collectively ensure scalability to very large
datasets. Finally, the framework is flexible, as it accommodates regression, clas-
sification, ranking, and custom objectives. These innovations explain the model’s
predictive accuracy and its broad adoption in applied machine learning.

The adaptability of XGBoost lies in its hyperparameters: by tuning tree depth,
learning rate, subsampling ratios, and regularization terms, the model can be ad-
justed to capture complex patterns while mitigating overfitting (69):

• Maximum depth (max_depth): sets how deep each tree can grow. Higher
values allow the model to capture more complex relationships, but also increase
the risk of overfitting.

• Learning rate (eta): Adjusts how much each tree influences the final pre-
diction by applying a shrinkage factor. Typical values lie between 0.01 and
0.3. Lower settings yield steadier models but demand more iterations, whereas
higher settings shorten training time but may increase overfitting.

• Subsampling ratios: subsample defines the fraction of observations used
for each tree, colsample_bytree defines the fraction of features used per tree,
and colsample_bynode the fraction of features considered at each split. These
parameters add randomness and help prevent overfitting.

• Minimum child weight (min_child_weight): sets the minimum sum of
instance weights in a leaf. Higher values make the model more conservative
by avoiding splits that are supported by only a few data points.

• Regularization terms: gamma requires a minimum loss reduction for a split
to occur, while lambda (L2 penalty) and alpha (L1 penalty) constrain the size
of leaf weights, controlling model complexity and improving generalization.
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Figure 2.2: Schematic representation of the XGBoost training process. The model
sequentially builds CART trees, where each new tree corrects the residual errors
of the previous ones. Instance weights are updated after each iteration to focus
on harder-to-predict cases, and the final prediction is obtained by aggregating the
weighted outputs of all trees. Source: (2)
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2.2.2 Recurrent Neural Networks
In recent years, neural networks have emerged as powerful tools for time series fore-
casting, offering a flexible, data-driven alternative to traditional statistical models.
While models such as ARIMA and exponential smoothing (ETS) have long been reli-
able tools, they often rely on strong assumptions like linearity and stationarity (29).
These assumptions can be too restrictive when dealing with complex, real-world
data. Neural networks, on the other hand, are capable of learning rich temporal
patterns directly from the data, without requiring a predefined model structure (3).

Another important advantage of neural networks is their ability to generalize
across multiple related time series. When trained on large databases of similar
sequences, these models can leverage shared dynamics that would be hard to capture
using traditional, series-specific approaches. This idea of global modeling — or
modeling by cluster — has been shown to improve forecasting accuracy in many
real-world applications, particularly when working with high-volume, heterogeneous
data (3). For these reasons, neural networks, and RNNs in particular, have become
an essential part of modern forecasting pipelines.

Several neural network architectures have been developed to address the chal-
lenges of modeling sequential data, particularly in the context of forecasting. Re-
current architectures, such as Recurrent Neural Networks and their more advanced
variants like Long short-term memory (LSTM) and Gated Recurrent Unit (GRUs),
are specifically designed to process temporal dependencies by retaining memory of
past inputs over time. These models are able to learn both short-term patterns and
long-range structures directly from data, without requiring explicit feature engineer-
ing (29).

2.2.2.1 Long short-term memory (LSTM)

LSTM are a class of Recurrent Neural Networks (RNNs) specifically designed to
address the limitations of standard RNNs in capturing long-range dependencies in
sequential data. Each LSTM cell maintains a memory state across time steps and
regulates information flow using a set of gating mechanisms (30).

At each time step t, the LSTM cell does the following computations: ((38)(50)):

Forget Gate
The forget gate regulates which parts of the previous cell state ct−1 are retained. It
combines the current input xt and the previous hidden state ht−1, applies a sigmoid
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transformation, and produces a vector of weights between 0 and 1. Values close to
0 imply forgetting, while values close to 1 imply retaining information:

ft = σ(Wifxt + bif +Whfht−1 + bhf )

Input Gate and Candidate State
The input gate it determines how much new information enters the memory, while gt
(also referred to as the candidate state) represents the potential update, generated
through a tanh activation. The two interact multiplicatively, so that only relevant
parts of the candidate are added to the memory:

it = σ(Wiixt + bii +Whiht−1 + bhi), gt = tanh(Wigxt + big +Whght−1 + bhg).

Cell State Update
The new cell state ct results from merging the past memory and the new candidate
information. The forget gate scales the contribution of ct−1, while the input gate
controls how much of gt (the candidate state) is incorporated:

ct = ft ⊙ ct−1 + it ⊙ gt

Output Gate
The output gate controls what part of the updated memory is exposed to the

next layer or time step. It filters the cell state through a sigmoid and multiplies it
with the tanh of ct to produce the hidden state:

ot = σ(Wioxt + bio +Whoht−1 + bho)

Hidden State
The hidden state ht represents the output of the LSTM cell at time t. It is ob-

tained by filtering the updated cell state ct through the output gate ot and applying
a tanh nonlinearity. This mechanism ensures that the information released by the
memory is selectively controlled: when ot is close to one, most of the memory con-
tent is exposed, whereas values close to zero keep the information stored internally.
Formally, the hidden state is given by

ht = ot ⊙ tanh(ct).

The hidden state thus acts as the short-term representation of the sequence, passed
either to the next time step in the recurrent structure or to higher layers in a deep
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LSTM network.
Here, xt denotes the input vector at time t, ht−1 the previous hidden state, and

ct−1 the previous cell state. The sigmoid function σ produces values between 0 and
1, the hyperbolic tangent tanh squashes values between −1 and 1, and the element-
wise product ⊙ ensures selective gating of information. A graphical illustration of
these interactions is provided in Figure 2.3.

This architecture allows the LSTM to retain relevant patterns across long se-
quences by dynamically updating the internal memory state ct, which acts as a
persistent context vector. The gating mechanism ensures that essential information
is preserved while irrelevant content is discarded. As a result, LSTMs are well-suited
for tasks involving non-linear, temporally correlated data — such as language mod-
eling, speech recognition, and, notably, time series forecasting.

In deeper LSTM networks, multiple layers can be stacked so that the hidden state
of layer l − 1 serves as the input to layer l. Dropout regularization is commonly
applied between layers to mitigate overfitting. Furthermore, when a projection size
is specified (proj_size in PyTorch), a learnable linear transformation is applied to
the hidden state before passing it forward, allowing for dimensionality reduction and
improved computational efficiency.
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Figure 2.3: Structure of an LSTM cell, with the three gating mechanisms (forget,
input, and output gates) regulating information flow and memory updates. Source:
(52).

2.2.2.2 Gated recurrent unit (GRU)

Gated Recurrent Units (GRUs) are a type of recurrent neural network architecture
introduced by Cho et al. (4) as a simplified alternative to Long Short-Term Memory
(LSTM) networks. Like LSTMs, GRUs aim to solve the vanishing gradient problem
and to model long-term dependencies in sequential data. However, GRUs achieve
this with a more compact structure by merging the functionalities of the input and
forget gates into a single update gate, and by eliminating the separate memory cell
found in LSTMs (5).

At each time step t, the GRU updates its hidden state ht through a combination
of two gating mechanisms: the update gate zt and the reset gate rt. The update
gate controls how much of the past information is carried forward, while the reset
gate determines how much of the past state to forget when computing the candidate
activation h̃t. The update equations are as follows (4; 49):
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zt = σ(Wzxt + Uzht−1) (2.21)

rt = σ(Wrxt + Urht−1) (2.22)

h̃t = tanh(Wxt + U(rt ⊙ ht−1)) (2.23)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (2.24)

Here, σ denotes the sigmoid activation function, and ⊙ is the element-wise prod-
uct. xt is the input vector at time t, ht−1 is the hidden state from the previous step,
and W· and U· are learned weight matrices.

GRUs have been shown to offer performance comparable to LSTMs across a range
of sequence modeling tasks, such as language modeling, speech recognition, and time
series forecasting (5; 25). Their simpler architecture results in faster training and
fewer parameters, which is especially beneficial when computational efficiency is a
concern. However, the optimal choice between GRUs and LSTMs often depends on
the specific dataset and application at hand, as highlighted in empirical evaluations.

Figure 2.4: Structure of a GRU cell with reset and update gates. Source: Mohsen
(2023) (45).
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2.2.3 Prophet
Prophet is a forecasting tool developed by Meta (23) to address the common

challenges faced in applied time series analysis, particularly when models need to
be deployed at scale by users who may not have specialized expertise in statistics.
Unlike traditional methods that require strong assumptions or extensive tuning,
Prophet uses a flexible structure that allows trend, seasonality, and holiday effects to
be modeled separately and intuitively. This makes the framework especially suitable
for real-world business data, where multiple seasonalities, abrupt trend changes, and
irregular events are frequently observed (59).

In Prophet, the time series can be modeled either through an additive or a
multiplicative specification.

y(t) = g(t) + s(t) + h(t) + εt (2.25)

y(t) = g(t) · (1 + s(t) + h(t)) + εt (2.26)

where:

• g(t) captures the non-periodic trend (either linear or logistic with change-
points),

• s(t) models periodic seasonal effects using Fourier series,

• h(t) incorporates the influence of holidays or special events

• εt is the idiosyncratic component, assumed to be normally distributed.

Each component can be independently configured or extended, allowing analysts to
inject domain knowledge directly into the forecasting process without requiring deep
statistical modeling skills.

By default, Prophet uses this additive structure. However, multiplicative sea-
sonality can also be specified: in this case the seasonal effect acts as a factor that
multiplies the trend g(t), rather than being added to it, as shown in equation 2.26.
Such behavior can be obtained by applying a logarithmic transformation to the se-
ries, which makes it possible to capture situations where the magnitude of seasonal
fluctuations grows proportionally with the level of the trend.
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Taylor and Letham(59) highligt the advantages of Prophet, compared to other
models, such as ARIMA:

• Flexibility: the model can handle multiple seasonal pattern allowing to add
different assumptions about the underlying trend (e.g., daily, weekly, monthly,
or yearly seasonality);

• the data do not need to be evenly spaced and missing values do not require
interpolation;

• Speed: the fitting of the model is fast , enabling rapid testing and comparison
between different specifications;

• Interpretability. Prophet’s parameters are intuitive and can be easily modified
to impose assumptions on the forecast.

Prophet was developed as a simple yet modular model that performs well with
default parameters while allowing the inclusion of trend, seasonality, holidays, and
external regressors. It also integrates performance monitoring tools to indicate when
adjustments or alternative approaches are needed. This combination of simplicity,
flexibility, and scalable evaluation is what the authors call forecasting at scale.
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2.2.4 TimeGPT

TimeGPT is built upon the transformer architecture (25), a framework introduced
in 2017 that revolutionized sequence modelling by replacing recurrence with self-
attention, enabling full parallelization during training and more efficient handling
of long-range dependencies. In this setting, the encoder transforms the input se-
quence into a compact latent representation, while the decoder generates the output
sequence from that representation (31). It incorporates key components such as
positional encoding, multi-head self-attention, convolutional layers, residual connec-
tions, and layer normalization (27; 39).

Positional encodings are introduced to retain the sequential structure of time
series by mapping each time step to a deterministic function of sine and cosine
values, thus allowing the model to distinguish temporal positions and capture order-
dependent information. The self-attention mechanism extends this capability by
enabling the model to focus on different segments of the sequence simultaneously,
thereby capturing both short- and long-term dependencies. Multi-head attention
further enhances this by learning multiple sets of attention weights in parallel, whose
outputs are concatenated and projected into the latent representation space.

Within both encoder and decoder blocks, convolutional layers act as position-wise
feed-forward networks to extract latent local features, while residual connections
and layer normalization stabilize training by mitigating vanishing gradients and
accelerating convergence. The autoregressive property of the decoder is preserved
by shifting the input sequence one step to the right, ensuring that each prediction
only depends on past observations.

From a data-processing perspective, continuous time series must be normalized
and discretized before being ingested by the large-scale transformer (39). Normaliza-
tion (commonly min–max scaling) maps raw values into a bounded range, improving
optimization efficiency. Quantization then discretizes the normalized series into bins,
which allows the model to process time series data as categorical inputs, consistent
with the transformer framework. The outputs are subsequently de-quantized back
into continuous values, providing meaningful forecasts.

Training is performed on massive collections of time series (over 100 billion
points) across heterogeneous domains, which ensures robustness to diverse sampling
frequencies, seasonality structures, and noise levels. During inference, TimeGPT
can operate in zero-shot mode, producing forecasts without additional parameter
updates, or in few-shot mode, where scarce historical data is used for fine-tuning.
Fine-tuning proceeds by updating the pre-trained weights with a smaller learning
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rate on the task-specific dataset, typically using Adam optimization and early stop-
ping to avoid overfitting. This process significantly improves adaptation to domain-
specific distributions, especially when data scarcity prevents traditional models from
learning complex patterns.

Overall, the design of TimeGPT integrates architectural advances from trans-
formers with a training paradigm grounded in transfer learning, making it suitable
for a wide range of forecasting applications under both data-rich and data-scarce
conditions.

Figure 2.5: Architecture of TimeGPT. The model is based on a transformer encoder–
decoder structure with positional encoding, multi-head attention, convolutional lay-
ers, residual connections, and normalization. The autoregressive decoder generates
forecasts by shifting the output sequence to the right. Source: (39)
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Figure 2.6: Schematic overview of TimeGPT. A transformer-based architecture
trained on a diverse collection of time series is used to produce forecasts for new
data without re-training. Source (27)

2.3 Evaluation metrics

In order to evaluate model performance, it is necessary to measure how closely
the predicted values match the observed data.

Among the most widely used measures of predictive accuracy in regression and
forecasting is the Mean Squared Error (MSE). This metric evaluates the average
squared difference between the observed values (yi) and the corresponding model
predictions (ŷi):

MSE =
1

n

n∑
i=1

(
yi − ŷi

)2 (2.27)

The MSE can be interpreted as a measure of the overall quality of an estimator.
Since it is based on the squared Euclidean distance between actual and predicted
values, it is always non–negative and approaches zero as predictions get closer to
the true outcomes. By construction, larger discrepancies are penalized more heavily
than smaller ones, making the MSE a useful criterion for comparing alternative
forecasting models.

A closely related metric is the Root Mean Squared Error (RMSE), which is simply
the square root of the MSE:

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2
. (2.28)
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Taking the square root brings the error back to the original scale of the target
variable y, which makes the metric easier to interpret and directly comparable across
models.

In addition, model accuracy can also be assessed using the Mean Absolute Error
(MAE). This metric is based on absolute rather than squared differences, and there-
fore provides a complementary perspective on prediction errors. The MAE measures
the average magnitude of the deviations between predictions and actual values, and
is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (2.29)

Unlike the MSE, this measure does not disproportionately penalize larger errors,
making it more robust to the presence of outliers. Because it is expressed in the
same units as the variable of interest, the MAE offers an intuitive scale-dependent
measure of accuracy, although it cannot be directly compared across series measured
on different scales.

Another classical measure of model accuracy is the coefficient of determination,
usually denoted as R2. This statistic quantifies the proportion of the variance of
the dependent variable that can be explained by the model, and is therefore often
interpreted as an overall indicator of goodness of fit. Intuitively, higher values of
R2 suggest that the model is able to capture a larger share of the variability in
the data, while lower values indicate poorer explanatory power. A value of R2 = 1

corresponds to a perfect fit, whereas R2 = 0 implies that the model performs no
better than a simple mean predictor. In some cases, R2 can also be negative, which
occurs when the model fits the data worse than this naive benchmark.

Formally, if ŷi denotes the predicted value for the i-th observation, yi the corre-
sponding true value, and ȳ the sample mean of y, the R2 statistic is defined as:

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
. (2.30)
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CHAPTER 3

Empirical application of the STAR

model
After presenting the theoretical foundations in Section 2.1.1, this chapter focuses
on the empirical validation of the STAR framework. The first step, descrived in
Section 3.1 is the replication of the results obtained by the Bank of Slovenia (Banka
Slovenije) (37) for Slovenia, which serves as a robustness check of the methodology
and ensures comparability with the original study. In Section3.2 the analysis is then
extended to Italy in order to assess the model’s external validity and to evaluate
its replicability across different contexts. Establishing this consistent non-linear
relationship provides the basis for the subsequent forecasting work (Chapter 4 and
Chapter 5), which asks whether such state-dependent dynamics carry predictive
content that can be exploited in practice.

3.1 Replication of STAR model for Slovenia

The replication of Kovač’s study (37) was the first step of this thesis, as it provided
a validation of the empirical framework on which the analysis is built. The results
confirm that the original findings can be reproduced with an independent method-
ology, demonstrating that the framework is robust and can be readily applied to
other countries. This provides a solid benchmark for the subsequent extensions
and forecasting analysis. While the original study relied on EViews’ built-in STAR
function with additional processing in Excel, the present replication was entirely re-
implemented in Python, ensuring full transparency and flexibility in the estimation
process.

Ultimately, the original analysis should be seen as a qualitative demonstration
of how extreme climate shocks affect food inflation, rather than as a benchmark for
precise quantitative estimates. The main finding is that only exceptionally severe
events generate tangible effects, while moderate fluctuations are largely absorbed
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without leaving a lasting impact.
Since the E3CI is based on ERA5 reanalysis data, which are periodically revised

as new information becomes available, some descriptive statistics in this thesis may
differ slightly from those reported in Kovač’s paper (37). These differences reflect
normal data updates rather than methodological inconsistencies.

Taking these considerations into account, both this analysis and the original one
make use of monthly data spanning the period January 2000 to December 2023.
The dependent variable is unprocessed food inflation, measured as the year-on-year
growth rate of the corresponding HICP component. The transition variable is the
European Extreme Events Climate Index (E3CI), which captures the frequency and
severity of weather-related hazards. To control for external cost–push pressures,
the model also includes international wholesale food commodity prices from the
ECB(17), based on farm-gate and wholesale price indicators for key agricultural
commodities (cereals, oils and fats, meat, and dairy) compiled by the European
Commission’s DG Agriculture and Rural Development and harmonised across EU
Member States.

To limit the influence of outliers, the E3CI series was trimmed at the 99.7th
percentile. Observations above this threshold were excluded from the estimation
sample, so that the results reflect the main body of the distribution rather than
being driven by a few exceptional events. The resulting distribution of the E3CI for
Slovenia is shown in Figure 3.5, while Figure 3.6 illustrates the evolution of processed
and unprocessed food inflation in Slovenia together with periods of extreme climate
shocks identified by the E3CI. Overall, unprocessed food inflation appears to react
more strongly to climatic shocks, whereas processed food prices display a more muted
response, except in the period 2022–2024 when both series accelerated markedly in
association with extreme events.
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Figure 3.1: Distribution of the E3CI index in Slovenia, 2000–2023, with reference
lines at one, two, and three standard deviations from the mean. SOURCE: E3CI
(26)

Figure 3.2: Processed and unprocessed food inflation in Slovenia (y-o-y %) with
E3CI shocks, defined as values of the index exceeding two and three standard devi-
ations.

The STAR specification estimated in this thesis follows the structure of Kovač
(2024), with unprocessed food inflation as the dependent variable, the European
Extreme Events Climate Index (E3CI) as the transition variable, and lagged inflation
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and food commodity prices as controls:

yt =
(
α0 + α1yt−1 + α2xt−1 + α3zt−2

)
+
(
β0 + β1zt−2

)
G(zt; γ, c) + εt, (3.1)

G(zt; γ, c) =
1

1 + e−γ(zt−c)
, εt ∼ N (0, σ2). (3.2)

where:

• yt: unprocessed food inflation (year-on-year, HICP component);

• yt−1: one-period lag of unprocessed food inflation;

• xt−1: one-period lag of international food commodity prices (ECB);

• zt: European Extreme Events Climate Index (E3CI);

• zt−2: two-period lag of the E3CI.

Note that in both Equations 3.1 and 3.2 the transition function is specified with
d = 0, consistently with Kovač (2024), who assumes contemporaneity between the
climate indicator and inflation in the estimation stage. For the impulse–response
analysis discussed later, however, the transition variable is introduced with a lag
(d = 2), so that simulated shocks affect inflation with a delay, thereby ensuring
temporal causality in the responses.

In implementing the STAR framework in Python, the sample mean of the E3CI

distribution was used as the initial guess for the threshold parameter c, ensuring that
the transition function is centred in a realistic region of the data. The smoothness
parameter γ was initialized at 4.5, providing a balanced starting point between
gradual and abrupt regime shifts. The remaining coefficients (αi, βi) were set to
zero, as the literature does not provide clear guidance on their initialization or
interpretation. In this way, the estimation begins from a linear specification and
allows the model to introduce non-linear features only when they are justified by
the data.

The dynamic structure of the model was then constructed by including lagged
regressors: yt−1 (unprocessed food inflation), xt−1 (processed food inflation), and
zt−2 (lagged E3CI). The logistic transition function was explicitly implemented
using scipy.special.expit, and the objective function was defined as the mean
squared error between observed and fitted values.

Parameter estimation is performed using the L-BFGS-B algorithm, with bounds
imposed to ensure γ > 0 and to restrict c within the observed range of zt. L-BFGS-B
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(40) is a limited-memory quasi-Newton optimization method designed for smooth
objective functions, making it a suitable choice for the non-linear STAR specification.
The results obtained by the optimizations are reported in Table 3.2 in comparison
with Kovač’s results

Coefficient Kovač Replication (Python)

α0 0.32∗ 0.3250
α1 0.89∗∗∗ 0.8883
α2 -0.53∗ -0.4221
α3 0.04∗∗∗ 0.0359
β0 -2.10 -2.2040
β1 6.12∗ 6.1473
γ n.a. 3.1064
c 1.81∗∗∗ 1.8399

Table 3.1: Comparison of STAR model estimates: Kovač (2024) vs. repli-
cation
Notes: Coefficients are depicted in percentage points. Asterisks indicate the level of
statistical significance: ∗ p < 0.10; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

The slight differences between Kovač’s estimates and the replication are likely
to reflect practical aspects of the empirical implementation. They may arise from
the use of different software (EViews and Python), from alternative data cleaning
choices, or from the way initial parameters were set in the optimization routine,
an aspect for which no fixed rules are available. Despite these minor discrepancies,
the results are overall very consistent and point in the same direction. Finally,
impulse–response functions are obtained by simulating the model under hypothetical
E3CI shocks of one, two, and three standard deviations. For each case, the shocked
trajectory of inflation is compared against a baseline path, and the difference is
plotted over a 13-month horizon (Figure 3.3). The dashed horizontal lines indicate
the average effect from t+2 to t+13. The estimated average IRFs are equal to 0.14

for a one–standard deviation shock, 0.46 for a two–standard deviation shock, and
2.97 for a three–standard deviation shock, confirming that small fluctuations have
negligible effects, whereas extreme shocks induce persistent and sizeable deviations
from the baseline path. For completeness, Figure 3.4 reports the impulse–response
functions presented in Kovač (2024), allowing a direct visual comparison with the
results of the replication.
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Figure 3.3: Impulse–response functions of unprocessed food inflation to E3CI shocks
in Slovenia (2000–2023). The solid lines represent the estimated responses to one-
, two-, and three-standard-deviation shocks, while the dashed lines indicate the
corresponding average effects over the horizon.

Figure 3.4: Impulse–response functions of unprocessed food inflation to E3CI shocks
(Slovenia, 2000–2023). Source: (37)

The next section, 3.2, reports the replication of the STAR model for Italy, which
illustrates that the code developed in this thesis can be applied to a different dataset
without producing contradictory or inconsistently outcomes.

47



3.2 Extension of STAR model for Italy

The results shown in this section are derived from the application of Kovač’s
methodology, as detailed in Section 3.1. The exact same code used for the replication
of the Slovenian case was applied to the Italian dataset,whose graphical represent is
illustrated in Figures 3.5 and 3.6 . The only difference is that, in this case, it was
not necessary to apply the 99.7th percentile trimming.

For Italy, the E3CI exhibits a sample mean µ = 0.08;the thresholds corresponding
to one, two, and three standard deviations are 0.50, 0.93, and 1.35, respectively. The
STAR estimates are summarised in Table 3.2.

Kovač (Slovenia) Slovenia (Replication) Italy (Estimation)

α0 0.32∗ 0.3250 0.1748
α1 0.89∗∗∗ 0.8883 0.9052
α2 -0.53∗ -0.4221 -0.4767
α3 0.04∗∗∗ 0.0359 0.0145
β0 -2.10 -2.2040 -0.1441
β1 6.12∗ 6.1473 1.7849
γ n.a. 3.1064 7.0000
c 1.81∗∗∗ 1.8399 0.3998

Table 3.2: Estimated parameters of the STAR model: comparison between Slovenia
(Kovač and replication) and Italy.

The average impulse response functions (IRFs), illustrated in Figure 3.7 and
computed over the horizon t + 2 to t + 13, show an increase of 0.18 percentage
points following a one-standard-deviation shock, 0.62 for a two-standard-deviation
shock, and 0.98 for a three-standard-deviation shock. As illustrated in Figure 3.7, the
magnitude of the Italian responses is substantially smaller than in the Slovenian case,
where shocks of comparable size generated price increases of up to five percentage
points. Nevertheless, the Italian estimates still reveal clear non-linearities: if the
effects scaled linearly from the 1-SD case (0.18 p.p.), the 2-SD and 3-SD shocks
would amount to about 0.36 and 0.54 p.p., whereas the observed responses are 0.62
and 0.98 p.p., respectively. The non-linear pattern is therefore less pronounced than
in Slovenia, but remains evident.

To conclude, this stronger non-linear dynamics observed in Slovenia may be due
to several factors. The country’s smaller and more concentrated agricultural market
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structure makes local supply more exposed to extreme weather shocks, while Italy
benefits from a more diversified production base and distribution system that can
buffer such events. Differences in the weighting of unprocessed food within the
HICP basket and in the estimated threshold parameter may also contribute to the
more pronounced regime-switching behaviour in the Slovenian case. These could
be among the reasons why the STAR model captures stronger non-linearities for
Slovenia than for Italy.

Figure 3.5: Distribution of the E3CI index in Italy, 2000–2023, with reference lines
at one, two, and three standard deviations from the mean. Source: E3CI (26).

Figure 3.6: Processed and unprocessed food inflation in Italy (y-o-y %) with E3CI
shocks, defined as values of the index exceeding two and three standard deviations.
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Figure 3.7: Impulse–response functions of unprocessed food inflation to E3CI shocks
in Italy (2000–2023). The solid lines represent the estimated responses to
one-, two-, and three-standard-deviation shocks, while the dashed lines indicate the
corresponding average effects over the horizon.
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CHAPTER 4

E3CI forecasting
This chapter aims to evaluate whether the European Extreme Events Climate

Index (E3CI) can be forecasted with sufficient accuracy using standard time series
models and modern machine learning techniques. The index condenses the frequency
and intensity of climate-related shocks, and its predictability is a crucial step before
employing it as an explanatory variable for food inflation models. The purpose
of forecasting the E3CI is not an end in itself, but to assess whether the index can
effectively serve as a predictive input; if the index cannot be forecasted with sufficient
accuracy, it may still prove valuable as a monitoring tool, helping to quantify the
link between climate shocks and inflation dynamics and to provide insights for policy
assessment and risk management.

This chapter opens with a detailed description of the dataset, introducing the
seven components of the E3CI and their role in capturing different types of climate
extremes. It then discusses the preprocessing steps applied to prepare the data
for forecasting, before moving on to the empirical analysis. Several forecasting
approaches are compared, including tree-based methods such as Extreme Gradient
Boosting (XGBoost), recurrent neural networks (LSTM and GRU), Prophet, and
TimeGPT. The goal is to identify which methodology, if any, is able to capture the
complex dynamics of the E3CI and provide reliable out-of-sample forecasts.
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4.1 E3CI Components

4.1.1 Extreme Minimum temperature (Cold Stress)

Cold stress component measures how much monthly minimum temperatures fall
below a low-temperature threshold derived from historical variability. For each
calendar day of the 1981–2010 reference period, the minimum temperature over a
centered five-day window is recorded, yielding 150 values per date. The 5th per-
centile of these 150 values for month j, denoted Tmin,5%,j, serves as the baseline cold
threshold. The monthly cold-stress total for month j in year k is then computed as

CSj,k =

nj∑
i=1

max
(
0, Tmin,5%,j − Tmin,i,j,k

)
, (4.1)

where Tmin,i,j,k is the daily minimum temperature on day i of month j in year k,
and nj is the number of days in month j. Over the baseline period the climato-
logical monthly mean µj and standard deviation σj of CSj,k is computed and the
standardized cold-stress anomaly is:

CS∗
j,k =

CSj,k − µj

σj

, (4.2)

so that CS∗
j,k expresses each month’s cold stress in units of its historical variability.

4.1.2 Extreme Maximum temperature (Heat Stress)

To quantify extreme heat stress, the daily maximum temperature, denoted Tmax,i,j,k

for day i of month j in year k has to be examined. Over the 30-year reference period
(1981–2010), temperatures from a 5-days moving window around each calendar day
are aggregated, yielding 5×30 = 150 observations per month. From this distribution
the 95th percentile is extracted, T 95%

max,j, resulting in the threshold for what constitutes
an extreme maximum temperature in month j.

For each month j and year k, all daily exceedances are summed above this
threshold:

HSj,k =

nj∑
i=1

max
(
0, Tmax,i,j,k − T 95%

max,j

)
, (4.3)

where nj is the number of days in month j. This cumulative exceedance, HSj,k,
captures the total “heat load” beyond the typical extreme threshold.
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To place these monthly values on a common scale, HSj,k is standardized by sub-
tracting its long-term climatological mean µj and dividing by its standard deviation
σj, both computed over 1981–2010. The resulting standardized anomaly,

HS∗
j,k =

HSj,k − µj

σj

, (4.4)

indicates how unusually severe the month’s heat stress is relative to historical vari-
ability.

4.1.3 Drought

The drought component of the E³CI relies on the Standardized Precipitation Index
computed over a three-month accumulation period (SPI-3). Following McKee et
al.(43) and Edwards & McKee(13), for each calendar month j in the 1981–2010
reference period the cumulative precipitation

Pj,k =

j∑
m=j−2

Dm∑
d=1

pd,m,k, (4.5)

yields 30 values {Pj,1981, . . . , Pj,2010}. Excluding zero-precipitation months, these
totals are fitted to a Gamma distribution

g(x;αj, βj) =
1

β
αj

j Γ(αj)
xαj−1 e−x/βj , x > 0, (4.6)

where the shape αj and scale βj parameters are estimated by the maximum-likelihood
method of Thom (1966) as detailed in Edwards & McKee (1997, pp. 18–19):

α̂j =
1

4Aj

(
1 +

√
1 +

4Aj

3

)
, β̂j =

x̄j

α̂j

, Aj = ln(x̄j)−
1

n

n∑
i=1

ln(xi). (4.7)

To account for months with zero precipitation, let q = m/n be the fraction of zeros
in the 30-year sample; the mixed cumulative probability of an observed total Pj,k is
then

Hj,k = q + (1− q)G
(
Pj,k; α̂j, β̂j

)
, (4.8)

where G denotes the lower-incomplete Gamma CDF. Finally, this probability is
converted into a standard-normal variate,

SPI-3j,k = Φ−1
(
Hj,k

)
, (4.9)
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with Φ−1 the inverse CDF of a standard normal distribution. By construction,
SPI-3j,k has zero mean and unit variance over the baseline and positive values denote
wetter-than-median conditions. To align with the E³CI convention that larger values
indicate more severe hazard, the drought component is defined as

Drought∗j,k = − SPI-3j,k. (4.10)

4.1.4 Extreme precipitation

Extreme precipitation is quantified by summing daily rainfall amounts that exceed
a high-precipitation threshold. Over the 1981–2010 reference period, for each calen-
dar month j the 95th percentile of all daily precipitation values , denoted P95,j, is
determined. Then, for month j in year k, the monthly exceedance sum is computed
as

EPj,k =

nj∑
i=1

max
(
0, Pi,j,k − P95,j

)
, (4.11)

where Pi,j,k is the precipitation on day i of month j, and nj is the number of days in
that month. We next calculate the climatological mean µEP,j and standard deviation
σEP,j of the series {EPj,1981, . . . , EPj,2010}. The standardized extreme-precipitation
anomaly is then

EP ∗
j,k =

EPj,k − µEP,j

σEP,j

, (4.12)

so that positive values reflect months with unusually intense precipitation relative
to historical variability.

4.1.5 Hail potential

To quantify environments favourable to large hail, the Significant Hail Parameter
(SHIP), originally developed by the NOAA Storm Prediction Center (56) is used.
For each calendar month j of year k in the 1981–2010 reference period, daily SHIP
values Si,j,k are computed at each grid point. A baseline threshold of SHIP = 1 (per
SPC guidelines) is defined and only those daily exceedances above this threshold are
aggregated:

ESj,k =

nj∑
i=1

max
(
0, Si,j,k − 1

)
, (4.13)

where nj is the number of days in month j. Over the full 30-year baseline the clima-
tological mean µ(ESj) is computed and standard deviation σ(ESj), and standardized
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monthly series is

ES∗
j,k =

ESj,k − µ(ESj)

σ(ESj)
. (4.14)

By construction, ES∗
j,k has zero mean and unit variance, and positive values denote

more extreme hail-favorable conditions than the long-term median. This procedure
follows the implementation of SHIP in machine-learning–based hail forecasting by
Czernecki et al. (9), and is consistent with the operational description given by the
Storm Prediction Center (56).

4.1.6 Extreme wind

The extreme-wind component of the E³CI is based on the Local Loss Index (LLI)
of Donat et al.(12), which non-linearly weights exceedances of daily maximum wind
speed. For each day i of month j in year k, let wmax,i,j,k be the 10 m wind speed
maximum (from hourly data). Over the 1981–2010 baseline the 95th percentile of
these daily maxima for each month j, denoted w95,j are computed. The monthly
exceedance sum is then

LLIj,k =

nj∑
i=1

max
{
0,

(wmax,i,j,k

w95,j

− 1
)3}

, (4.15)

where nj is the number of days in month j. The cubic exponent reflects the em-
pirical relationship between wind-speed exceedance and damage potential. We next
derive the monthly mean µj and standard deviation σj of LLIj,k over 1981–2010 is
computed, and the standardized anomaly

LLI∗j,k =
LLIj,k − µj

σj

, (4.16)

so that LLI∗j,k expresses each month’s extreme-wind severity in units of its historical
variability.

4.1.7 Forest-fire risk

Forest-fire risk is quantified using the Forest Fire Weather Index (FWI),originally
developed within the Canadian Forest Fire Weather Index System (62). For each
calendar month j and year k within the 1981–2010 reference period, we record the
daily FWI values Fi,j,k and evaluate their exceedances above the “High Danger”

55



threshold of 21.31(Climate-ADAPT(20)). The monthly exceedance is defined as the
sum of these daily exceedances.

EFj,k =

nj∑
i=1

max
(
0, Fi,j,k − 21.3

)
(4.17)

where nj is the number of days in month j. The monthly mean µ(EFj) and stan-
dard deviation σ(EFj) from the series {EFj,1981, . . . , EFj,2010} are computed. The
standardized forest-fire anomaly is defined as

EF ∗
j,k =

EFj,k − µ(EFj)

σ(EFj)
(4.18)

so that positive values indicate months with unusually high fire-weather risk relative
to historical variability.

4.1.8 E3CI

In the end, for each month j and year k, the value of the European Extreme Events
Climate Index (E3CI) is computed as the arithmetic mean of its individual compo-
nents (33).

E3CIj,k =
1

7

(
HSstd

j,k +CSstd
j,k +DROstd

j,k +EP std
j,k +LLIstdj,k +ESstd

j,k +EF std
j,k

)
(4.19)

The index and its components are currently available on the official platform (22),
which covers all EU countries as well as several non-EU states, including including
the United Kingdom, Iceland, Norway, Switzerland, Andorra, Monaco, Liechten-
stein, San Marino, Guernsey, Jersey, and the Isle of Man. For Italy, the database
also provides regional data and, in the case of Emilia-Romagna, information at the
provincial level, thus enabling more detailed spatial analyses.

1The Fire Weather Index (FWI) is categorised into six standard danger classes: Very low (FWI
< 5.2); Low (5.2–11.2); Moderate (11.2–21.3); High (21.3–38.0); Very high (38.0–50); Extreme
(FWI > 50).
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4.2 Data description and preprocessing
Before implementing the forecasting models presented in the following sections, the
dataset was first cleaned and explored. This preliminary step helps to visualise the
dynamics of the seven E3CI components and to verify that the series are suitable
for subsequent analysis.

Figure 4.1: Drought component (1981–2024).
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Figure 4.2: Extreme maximum temperature component (1981–2024).

Figure 4.3: Extreme minimum temperature component (1981–2024).
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Figure 4.4: Extreme precipitation component (1981–2024).

Figure 4.5: Extreme wind component(1981–2024).
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Figure 4.6: Forest fire component (1981–2024).

Figure 4.7: Hail component(1981–2024).
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Figure 4.8: Aggregated E3CI (Slovenia, 1981–2024).

Looking at the dynamics of the forest fire component (Figure 4.6), and basing
on the original preprocessing of the data (37), a few extremely high values emerge in
2020–2021, well above the 99.5th percentile of the distribution (64.3 in April 2020,
28.0 in May 2020, and 15.7 in June 2021). These spikes appeared excessively noisy
and not representative of the underlying dynamics, and they could have distorted
the behaviour of the forecasting models. For this reason, the outliers were replaced
with the series mean, after which the aggregated E3CI index was recomputed using
the cleaned forest fire component as is shown by Figure 2.9.(4.9).
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Figure 4.9: Original and corrected series after removing extreme outliers. The
top panel illustrates the forest fire component with smoothed anomalies, while the
bottom panel shows the aggregated E3CI before and after correction.
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4.3 Extreme Gradient Boosting (XGBoost)
forecast on E3CI

The empirical evaluation of XGBoost for forecasting the monthly E3CI in Slovenia
adopts a strict time-based split. Observations from 1981 to 2020 are used for model
training and cross-validation, while 2021–2023 constitute a genuine out-of-sample
test set. The year 2024 is excluded from model selection and employed only for
ex-post, recursive forecasting.

The autoregressive structure is introduced by lagged features of the E3CI at
1, 2, 3, 4, 6, and 12 months, capturing short-run dynamics and annual recurrence.
Seasonality is further modelled through two cyclical regressors, obtained by applying
sine and cosine transformations to the month index. These trigonometric terms place
December and January close to each other on the unit circle, ensuring continuity
across year-ends and helping the model learn smooth annual cycles.

Hyperparameter tuning is performed via a manual grid search combined with
time-series cross-validation based on an expanding-window scheme (TimeSeriesSplit).
Within each fold, the last 12 months of the training window are reserved for internal
validation and early stopping. The grid spans:

• Tree depth: max_depth ∈ {4, 5, 6}

• Learning rate: eta ∈ {0.01, 0.02, 0.03, 0.05}

• Subsampling ratios: subsample ∈ {0.6, 0.75, 0.9}, colsample_bytree ∈ {0.6, 0.75, 0.9},
colsample_bynode = 0.8

• Minimum child weight: min_child_weight ∈ {3, 6, 9}

• Regularization terms: gamma ∈ {0.0, 0.5, 1.0}, lambda ∈ {1.0, 2.0, 3.0}, alpha
∈ {0.0, 0.1, 0.3}

The primary selection metric is the root mean squared error (RMSE) averaged across
folds. The optimal configuration selected by cross-validation was:

• max_depth = 5

• eta = 0.03

• subsample = 0.6

• colsample_bytree = 0.9
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• colsample_bynode = 0.8

• min_child_weight = 9

• gamma = 0.5

• lambda = 3.0

• alpha = 0.3

This configuration achieved an average RMSE of 0.4642 across folds. The final
model, retrained on the entire training sample (1981–2020), reached its best iteration
at round 180. When tested on the 2021–2023 period, it obtained an RMSE of 0.589,
a MAE of 0.442, and an R2 of 0.071. Finally, the model was applied recursively to
generate monthly forecasts for 2024.

Figure 4.10: Comparison of observed E3CI (orange), XGBoost forecasts (blue), and
historical monthly averages (green) for Slovenia in 2024.

Table 4.1: Performance on E3CI (2024)

Model MSE RMSE MAE R2

XGBoost 0.4832 0.6951 0.4566 0.0146
Historical Monthly Avg 0.4254 0.6523 0.4136 0.1324
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Compared to the simple historical monthly average, the XGBoost model did
not yield superior predictive accuracy in 2024. While cross-validation indicated
a reasonably good in-sample fit, the out-of-sample performance suggests that the
model struggled to reproduce the pronounced peaks of the observed E3CI. As shown
in Figure 4.10, the forecasts tend to remain close to zero and fail to capture extreme
fluctuations, resulting in higher forecast errors and a lower R2 than the baseline.

65



4.4 LSTM forecast on E3CI

The univariate LSTM model was applied to the E3CI series, enriched with two
sinusoidal calendar features designed to capture seasonality effects: a sin and cos

transformation of the month index. These transformations ensure smooth continuity
across years, avoiding discontinuities between December and January, and allow the
network to better internalize the cyclical nature of the data.

The architecture adopted was a single-layer LSTM with 32 hidden units, followed
by a dense output layer. The network was trained with a learning rate of 10−4, batch
size of 16, and a maximum of 70 epochs, while early stopping with a patience of 20
epochs was applied to prevent overfitting. The input window was defined using 12
monthly lags, providing the model with one year of historical observations to predict
the subsequent monthly value of the index.

Training was performed using the AdamW 2 optimizer with gradient clipping to
stabilize updates, while a dropout rate of 0.1 was applied within the recurrent layer
to improve generalization.

Model selection was carried out through rolling-origin cross-validation, restricted
to the 2011–2021 period. At each fold, the training sample was progressively ex-
panded, and the following 24 months were reserved for validation. This procedure
identified the optimal number of epochs by minimizing the average validation MSE
across folds. Once the optimal epoch was selected, the model was retrained on the
entire 1981–2021 sample and then evaluated on the out-of-sample period 2022–2023.

Performance (See Table 4.2) was assessed using mean squared error (MSE), root
mean squared error (RMSE), mean absolute error (MAE), and the coefficient of
determination (R2). The graphical representation is reported in Figure 4.11, where
observed and predicted values of the E3CI are shown together with the historical
monthly average benchmark. The figure shows that the LSTM model struggles
to capture the magnitude of the observed peaks, resulting in limited forecasting
accuracy.

2The AdamW optimizer (Adaptive Moment Estimation with decoupled Weight decay) is an
improved variant of Adam that separates weight decay from the gradient update step. Rather
than incorporating weight decay into the loss function, it applies it directly during the parameter
update, which provides more consistent regularization and often results in better generalization.(70)
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Figure 4.11: LSTM-based forecast of the aggregated E3CI index for Slovenia in 2024.
The figure compares the observed monthly values (orange) with the out-of-sample
predictions (blue) obtained from the LSTM model

Model MSE RMSE MAE R2

LSTM Univariate 0.4561 0.6754 0.5214 0.0698
Monthly Average 0.4254 0.6523 0.4136 0.1324

Table 4.2: Performance comparison for the forecast of aggregated E3CI in 2024
(Slovenia).
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4.5 LSTM forecast on E3CI’s components

Given the unsatisfactory results obtained with the direct prediction of the aggre-
gated E3CI, an additional attempt was made by forecasting each of its underlying
components separately. The features considered were drought, extreme maximum
temperature, extreme minimum temperature, extreme precipitation, extreme wind,
forest fire (cleaned), and hail. The LSTM model was implemented with the same
general structure and calendar encodings as before, including the sine and cosine
transformations of the monthly variable to preserve seasonality.

The hyperparameters tested for this specification were: number of lags equal
to 12, hidden size set to 32, two layers, learning rate of 0.0001, batch size of 32,
maximum of 400 epochs, patience of 30, and dropout of 0.25. The cross-validation
design followed the same rolling-expanding approach over 2011–2021, with a mini-
mum training window of six years, a validation horizon of 24 months, and a stride
of 12 months.

The forecasts for the individual features are displayed in Figure 4.13, where it
is already clear that predictive accuracy is limited. Then, these component-level
predictions were then aggregated by taking their average, thus reconstructing the
dynamics of the overall index. The final result of this procedure is reported in
Figure 4.12 together with the performance metrics (Table 4.3).

68



Figure 4.12: Forecast of the aggregated E3CI for Slovenia in 2024 using the multivari-
ate LSTM model. The chart compares observed monthly values (orange), LSTM
predictions (blue), and the historical monthly average benchmark computed over
1981–2023 (green).

Model MSE RMSE MAE R2

LSTM Multivariate 0.4287 0.6547 0.4314 0.1258
Monthly Average 0.4254 0.6523 0.4136 0.1324

Table 4.3: Performance comparison for the forecast of aggregated E3CI in 2024
(Slovenia).
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Figure 4.13: Forecast of the seven components of E3CI for Slovenia in 2024 using the
multivariate LSTM model. The charts compare observed monthly values (orange),
LSTM predictions (blue)

Looking at the metrics reported in Tables 4.2 and 4.3, it is clear that neither
the univariate nor the multivariate LSTM model outperforms the historical monthly
average benchmark: the latter achieves slightly better values in terms of error mea-
sures (MSE, RMSE, MAE) and R2, confirming that the predictive power of the
tested LSTM architectures remains limited when compared to a simple seasonal
baseline.
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4.6 GRU forecast on E3CI
Maintaining the same approach described in the previous sectin about LSTM 4.4,
a univariate GRU was applied to the aggregated E3CI with two sinusoidal calen-
dar features (monthly sin and cos) to encode annual seasonality while preserving
continuity between December and January.

Model selection follows the same rolling expanding cross-validation design re-
stricted to 2011–2021, with a minimum training window of 72 months, a 24-month
validation horizon, and a 12-month stride. After identifying the optimal epoch by
minimizing the average validation MSE across folds, the model is refitted on the
entire 1981–2021 training set and then evaluated out-of-sample on 2024 against the
historical monthly average benchmark (computed over 1981–2023).

The network is specified as a single-layer GRU with 32 hidden units and dropout
0.1, trained with learning rate 0.0003, batch size 12, a budget of 150 epochs, and
patience 20. Results (See Figure 4.15) show that the GRU predictions are very close
to the historical monthly average and fail to capture the seasonal dynamics of the
index, thus performing poorly overall, as Table 4.4 shows.
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Figure 4.14: GRU forecast of the aggregated E3CI for Slovenia in 2024. The blue
line represents the predicted values obtained by GRU. Observed monthly values
(orange) and the historical monthly average benchmark computed over 1981–2023
(green) are shown for comparison.

Model MSE RMSE MAE R2

GRU 0.4290 0.6550 0.4354 0.1252
Monthly Average 0.4254 0.6523 0.4136 0.1324

Table 4.4: Performance comparison for the forecast of aggregated E3CI in 2024
(Slovenia).

4.7 GRU forecast on E3CI’s components

Maintaining the same setup used for the multivariate LSTM in Section 4.5,multi-
variate GRU that forecasts the seven E3CI components (drought, extreme maximum
temperature, extreme minimum temperature, extreme precipitation, extreme wind,
forest fire (cleaned), hail) is tested. As before, calendar seasonality is encoded with
monthly sin and cos. The chosen hyperparameters are: n_lags = 12, hidden size
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64, n_layers = 2, learning rate 0.0001, batch size 32, maximum 150 epochs with
patience 20, and dropout 0.25. Model selection follows the same rolling expanding
cross-validation on 2011–2021 (72 months minimum training, 24-month validation
horizon, 12-month stride). The aggregated index is then reconstructed as the simple
average of the seven predicted components (Figure 4.15), while the component-level
fits are shown in Figure 4.16.

Results indicate that the multivariate GRU does not outperform the historical
monthly average benchmark: errors remain comparable and the reconstruction stays
close to the seasonal baseline, with limited ability to capture deviations and peaks
(Table 4.5). This confirms the difficulty of achieving meaningful gains over a strong
seasonal benchmark in this setting.

Figure 4.15: GRU forecast of the aggregated E3CI for Slovenia in 2024. The blue
line represents the reconstructed index obtained as the average of the seven climate
features predicted by the GRU model. Observed monthly values (orange) and the
historical monthly average benchmark computed over 1981–2023 (green) are shown
for comparison.
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Model MSE RMSE MAE R2

GRU 0.4421 0.6649 0.5232 0.0983
Monthly Average 0.4254 0.6523 0.4136 0.1324

Table 4.5: Performance comparison for the forecast of aggregated E3CI in 2024
(Slovenia).

Figure 4.16: GRU multivariate model: forecasts for each E3CI component in 2024
(Slovenia). Each panel shows observed (orange) and predicted (blue) monthly values
for each feature.
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The comparison of the two GRU specifications confirms that the forecasting
performance remains modest, as it was for the two implementation of LSTM in
Sections 4.4 and 4.5 . In the multivariate setting (Table 4.5), the GRU achieves an
R2 of 0.0983, which is lower than the baseline monthly average (0.1324), while error
metrics (MSE, RMSE, MAE) also indicate no clear improvement. The univariate
specification (Table 4.4) performs slightly better, with an R2 of 0.1252, yet still
fails to outperform the baseline. Overall, both versions of the GRU struggle to
capture the volatility of the E3CI, and the simple monthly average remains at least
as effective, underscoring the intrinsic difficulty of forecasting extreme-event indices.
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4.8 Prophet forecast on E3CI

In order to calibrate the Prophet model, a grid search over a set of hyperparam-
eters was combined with a rolling-origin cross-validation procedure, following the
reference code provided in Prophet’s website (23). The training sample was de-
fined from the beginning of the series until December 2021, corresponding to the
initial window. The forecast horizon was set to 24 months (730 days), with cutoffs
spaced every 12 months (365 days). At each cutoff the model was refitted using data
available up to that date, and forecasts were generated for the subsequent horizon.
The resulting predictions were then compared with the realized values to compute
out-of-sample error measures.

The hyperparameters tested in the grid were:

• changepoint_prior_scale in {0.001, 0.01, 0.05, 0.1, 0.25, 0.5},

• seasonality_prior_scale in {0.1, 1.0, 5.0, 7.5, 10.0},

• fourier_order in {6, 8, 10, 12, 15},

• changepoint_range in {0.7, 0.8, 0.9, 1.0},

• seasonality_mode in {additive, multiplicative}.

Concerning seasonalities, the default ones are yearly, weekly, and daily. In this case,
only the yearly seasonality was kept active, while the weekly and daily ones were
disabled, since the data have a monthly frequency and do not show such patterns. In
addition to the yearly component, we manually introduced two extra seasonalities:
a monthly seasonality with a period of approximately 30.5 days, and a quarterly
seasonality with a period of 91.25 days that aims to capture patterns related to
the 4 seasons. These components were added to capture recurring intra-annual
dynamics that are not fully explained by the yearly cycle alone. Each seasonal
effect was modeled using Fourier series with an order set according to the values
specified in the hyperparameter grid.

The average RMSE across cross-validation folds was adopted as the selection
criterion for hyperparameters. All results were stored in a pandas DataFrame and
ranked, retaining the configuration with the lowest RMSE. The best hyperparame-
ters obtained from the grid search are:

• Multiplicative seasonality: changepoint_prior_scale = 0.05, seasonality_prior_scale
= 10.0, fourier_order = 8, changepoint_range = 1.0
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• Additive seasonality: changepoint_prior_scale = 0.001, seasonality_prior_scale
= 1.0, fourier_order = 8, changepoint_range = 0.9

After identifying the two optimal sets of hyperparameters, the same configuration
was applied to fit both an additive and a multiplicative Prophet model in order to
generate forecasts of the E3CI for 2024. Interestingly, Prophet’s predictions turned
out to be quite solid when compared with the other approaches considered in the
study. To provide a straightforward point of reference, a baseline forecast was also
constructed using the historical monthly average. This step makes it possible to
understand whether Prophet is truly adding value beyond this simple benchmark
and, at the same time, to measure how much the forecasts diverge—positively or
negatively—from the simple average.

Figure 4.17: Comparison between observed and predicted values of the E3CI for
Slovenia in 2024. The figure reports the observed series (orange), the additive spec-
ification (blue), the multiplicative specification (purple), and the historical monthly
average baseline (green).

Model MSE RMSE MAE R2

Additive Model 0.3368 0.5804 0.5107 0.3131
Multiplicative Model 0.3125 0.5590 0.4535 0.3627
Historical Average 0.4254 0.6523 0.4136 0.1324

Table 4.6: Comparison of forecast accuracy metrics across additive, multiplicative,
and historical average approaches (Slovenia, 2024).
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4.9 TimeGPT forecast on E3CI

TimeGPT was used as an out-of-the-box forecaster, with the implementation
adapted from the official Nixtla user guide (46). The monthly series was divided
into two parts: a training set (January 1981–December 2023) to fit the model and a
test set (January–December 2024). A rolling-origin cross-validation with a one-year
horizon and eight evaluation windows was also performed on the training sample, in
order to replicate repeated forecasting exercises over the historical period. Finally,
the twelve-month-ahead forecast for 2024 was compared with the observed values,
together with a seasonal benchmark given by the historical monthly average, to
verify whether TimeGPT provided more accurate predictions (Figure 4.18).

The metrics obtained by cross-validation already highlight the weaknesses of
TimeGPT: although absolute errors were moderate (average MAE around 0.5), the
R2 values were consistently negative, pointing to limited ability in reproducing the
variance of the series. This pattern was confirmed in the out-of-sample evaluation for
2024, where the model produced higher errors than the seasonal benchmark based
on the historical monthly average. As shown in Figure 4.18, TimeGPT forecasts
display a smoothed profile that fails to capture the sharp peaks observed during the
year, while the simple monthly average often provided values closer to the actual
outcomes.

Figure 4.18: Comparison between TimeGPT forecast of the E3CI for Slovenia in 2024
(blue), the observed values (orange), and the baseline monthly average (green).
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Model MSE RMSE MAE R2

TimeGPT Forecast 0.5164 0.7186 0.6679 -0.0531
Historical Average 0.4254 0.6523 0.4136 0.1324

Table 4.7: Comparison of forecast accuracy metrics between TimeGPT forecast and
historical average baseline (Slovenia, 2024).
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4.10 TimeGPT forecast on components
Since the result Since the results previously obtained with TimeGPT were not

satisfactory, another attempt was made. Instead of forecasting the E3CI directly,
the model was applied separately to each of its components, and the index was then
reconstructed as the average of the individual forecasts. All other specifications
remained unchanged with respect to the previous exercise, including the train–test
split and the rolling-origin cross-validation procedure. This approach allowed us
to assess whether a disaggregated modelling of the components could improve the
overall predictive performance of the reconstructed index.

In this alternative specification, a separate forecasting model was estimated for
each component of the E3CI (drought, extreme temperatures, precipitation, wind,
hail, and forest fire). Each feature was treated as a univariate time series and pre-
dicted over the same horizon, using the identical train–test split and cross-validation
settings as in the direct approach. The overall index was then reconstructed by tak-
ing the average of the individual forecasts, in line with its original definition as the
mean of the component indicators.

Figure 4.19: Comparison between TimeGPT forecast of the reconstructed E3CI for
Slovenia in 2024 (blue), the observed values (orange), and the baseline monthly
average (green).
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Figure 4.20: TimeGPT forecasts for each E3CI component in 2024 (Slovenia). Each
panel shows observed (orange) and predicted (blue) monthly values for each feature.
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Model MAE MSE RMSE R2

Reconstructed E3CI 0.4677 0.4149 0.6442 -0.1704
Baseline (Monthly Avg) 0.4136 0.4254 0.6523 0.1324

Table 4.8: Forecast performance on the 2024 : reconstructed E3CI compared to
baseline (monthly average).

The comparison between the two forecasting strategies highlights notable differ-
ences. When the E3CI was reconstructed by averaging the forecasts of its individual
components (Table 4.8), the accuracy deteriorated: the reconstructed index dis-
played higher MAE and a negative R2, indicating worse performance than the simple
monthly average. This result suggests that forecasting the composite index directly
is more effective than relying on separate forecasts of its components. However, nei-
ther approach ultimately provided satisfactory predictive accuracy, confirming the
difficulty of capturing the volatility of extreme climate events with these models.
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CHAPTER 5

Inflation forecasting

The focus of this chapter shifts from climate forecasting to the analysis of food
inflation dynamics and forecasting. While the preceding section examined the pos-
sibility of predicting the E3CI, the limited forecasting accuracy suggests that using
predicted values as regressors would add instability rather than information. For
this reason, the empirical investigation relies on the observed E3CI, in combination
with traditional economic drivers such as farm-gate prices and general inflation.

The objective is to assess whether climate-related shocks, as summarized by
the E3CI, provide incremental explanatory power in forecasting unprocessed food
inflation. This approach remains consistent with the framework proposed by Banka
Slovenije, while the idea of a full concatenation pipeline — where climate forecasts
feed into inflation models — is discussed as a prospective extension in the concluding
chapter.

This chapter presents the empirical results obtained from a range of forecast-
ing models. On the one hand, traditional econometric specifications are consid-
ered, including linear models such as ARX (Section 5.1), ARIMAX and its sea-
sonal extension SARIMAX (Section 5.2), as well as non-linear alternatives like the
Smooth Transition Autoregressive (STAR) model. These frameworks allow us to
test whether climate shocks and standard macroeconomic drivers can be captured
within established time-series structures.

On the other hand, the analysis extends to machine-learning approaches, including
tree-based models such as XGBoost (Section 5.3), neural-network architectures, the
Prophet model TimeGPT (Section 5.4).
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5.1 STAR and ARX models

A first attempt to forecast unprocessed food inflation was carried out using the
STAR model described in Section 3.1. The approach builds directly on the frame-
work of Umer (63), who applied smooth transition autoregressive models to predict
the dynamics of the European travel and leisure stock index, using daily data from
January 2003 to December 2016. His results show that STAR models can capture
nonlinear regime-switching behavior and provide a modest improvement in forecast-
ing accuracy over linear AR benchmarks. Motivated by this evidence, the STAR
specification was adopted here as an initial forecasting tool. In contrast to Umer’s
purely autoregressive setup, the present application considers monthly data starting
in 2000 and explicitly includes exogenous regressors (E3CI and international food
prices), making the forecasting exercise for 2024 more challenging.

The parameter vector (α0, α1, α2, α3, β0, β1, γ, c) is kept fixed at the values ob-
tained in the replication of Kovač’s framework, since the training sample is restricted
to data up to December 2023, as in the original study.

The forecasts are generated recursively, using the last observed value of unpro-
cessed food inflation in December 2023 as the initial condition. The exogenous
drivers, the E³CI and from the ECB, are incorporated using their observed 2024
values. This setup highlights the model’s predictive ability. Using forecasted val-
ues of the drivers would only add more uncertainty and likely increase the overall
forecast error. Indeed, if the model cannot produce satisfactory results even when
conditioned on realized drivers, extending the framework with additional forecasts
would be unjustified.

As in Umer’s study, this thesis applies a comparison between STAR and AR
models. The main difference is that the case considered here is more complex. A
first limitation comes from the data: both HICP and its regressors are available only
at monthly frequency starting in 2000, whereas Umer’s analysis relies on daily data
for the travel and leisure stock index, resulting in a much larger sample size. A second
difference lies in the presence of exogenous regressors in this thesis, while Umer’s
models are purely autoregressive. This adds an additional layer of complexity, as
the models must also capture the dynamics of the external drivers in addition to the
autoregressive component.

84



Figure 5.1: Observed HICP YoY (orange), ARX forecast (green), and STAR forecast
(blue) for unprocessed food inflation in 2024.

Model MSE RMSE MAE R2

ARX 9.093 3.015 2.462 -1.429
STAR 153.452 12.388 11.837 -39.996

Table 5.1: Forecast accuracy metrics for unprocessed food inflation (2024).

The results highlight important limitations in both specifications. The ARX
model achieves relatively lower error metrics compared to the STAR, yet its fore-
casts are almost flat across the entire 2024 horizon. This suggests that the model
fails to capture the dynamics of inflation and instead produces a near-constant ex-
trapolation. Although the evaluation metrics are more favourable than those of the
STAR, the lack of responsiveness makes the ARX forecast of limited practical value.

By contrast, the STAR model delivers predictions that deviate substantially from
the observed path, producing systematically higher levels of inflation. The poor fit
is confirmed by the extremely large error measures and the strongly negative R2.
It is useful to recall that the STAR parameters were optimized using data only up
to 2023. Not incorporating any 2024 information in the estimation preserves out-
of-sample integrity but also implies that threshold and smoothness parameters were
calibrated without seeing a potentially atypical year. If 2024 features unusual or
extreme conditions, this mismatch can distort regime activation and amplify forecast
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errors, thereby contributing to the model’s overprediction even in the presence of
observed exogenous drivers.

While the ARX is too rigid to adapt to fluctuations, the STAR proves excessively
unstable, underscoring the difficulty of capturing the effects of climate shocks with
purely econometric specifications.
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5.2 ARIMAX and SARIMAX

For completeness, and acknowledging the limitations of the STAR and ARX specifi-
cations, the analysis also considers alternative linear models, namely the Autoregres-
sive Integrated Moving Average (ARIMA) and its seasonal extension, the Seasonal
Autoregressive Integrated Moving Average (SARIMA). Including these additional
specifications provides a broader comparison and helps assess whether more tradi-
tional time-series approaches can deliver more reliable forecasts of unprocessed food
inflation.

As in the previous exercises, and especially in light of the poor performance
discussed in Section 5.1, the models are estimated using the realized regressors for
2024. This choice isolates the intrinsic predictive ability of the specification: if
the model struggles to generate accurate forecasts even when conditioned on actual
regressors, then relying on predicted values of these variables would only amplify
the overall error and make the results less interpretable.

To identify the most suitable ARIMAX specification, a grid search was performed
over autoregressive, differencing, and moving-average orders, with

p ∈ {0, . . . , 4}, d ∈ {0, 1, 2}, q ∈ {0, . . . , 4}.

Models were estimated through the SARIMAX framework (without explicit seasonal
components), and the selection criterion was the minimization of the Akaike In-
formation Criterion (AIC). In this application, the selected specification was ARI-
MAX(2,0,4).

For the SARIMA extension, the seasonal structure was selected using auto_arima
with exogenous regressors (ECB food index and E3CI) and an annual seasonality
(m = 12). The search employed a limited grid:p

p, q ∈ {0, . . . , 5}, P,Q ∈ {0, . . . , 3}, d = D = 0.

with a stepwise procedure and the Akaike Information Criterion (AIC) as selection
criterion. Setting d = D = 0 is consistent with the target already expressed in year-
on-year terms; sensitivity checks allowing D ∈ {0, 1} did not systematically improve
the AIC. The best specification selected by auto_arima was SARIMAX(1, 0, 0) ×
(0, 0, 1)12. The model was then re-estimated in statsmodels using maximum like-
lihood and applied to generate forecasts for 2024 conditional on realized regressors.

Residual diagnostics were carried out using the Ljung–Box test at lag 12, consis-
tent with the monthly frequency of the data. The high p-value (p = 0.81) suggests
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no significant residual autocorrelation, meaning that the chosen dynamic specifica-
tion is statistically adequate. However, the negative R2 confirms that even with a
correct dynamic structure, a linear SARIMAX with constant coefficients struggles
to capture the magnitude of the price shocks.

Figure 5.2: Observed unprocessed food inflation in Slovenia during 2024 (orange)
compared with ARIMAX forecasts (blue) and SARIMAX forecasts (green).

Model MAE MSE RMSE R2

SARIMAX 2.330 7.334 2.708 -0.959
ARIMAX 1.468 3.294 1.815 0.120

Table 5.2: Forecast evaluation metrics for ARIMAX and SARIMAX models (2024).

The comparison shows that ARIMAX slightly outperforms SARIMAX, yet both
approaches remain inadequate to reproduce the amplitude of price shocks. This
suggests that, although linear time-series models can offer a useful benchmark, their
forecasting capacity is intrinsically limited in this context.
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5.3 Extreme Gradient Boosting (XGBoost)

The empirical evaluation of XGBoost for forecasting monthly unprocessed food
inflation in Slovenia follows a structure similar to that described in Section 2.2.1,
where the model was applied to the E3CI. In this case, however, some adjustments
are introduced, particularly regarding the treatment of exogenous variables. The
dataset is split into three blocks: 2000–2020 for training and hyperparameter tun-
ing, 2021–2023 for out-of-sample testing, and 2024 for ex-post recursive forecasting.
The feature design combines autoregressive dynamics with exogenous information.
Specifically, lags at 1, 2, 3, and 6 months are constructed both for the target vari-
able (hicp_yoy) and for the exogenous drivers, E3CI and farm-gate prices . These
lags capture short-run persistence as well as medium-term effects, while controlling
dimensionality. To account for recurring annual patterns, two additional cyclical
regressors are included, obtained by applying sine and cosine transformations to the
month index. These terms ensure continuity between December and January, en-
abling the model to learn smooth seasonal cycles. Hyperparameter tuning is carried
out through a manual grid search in combination with time-series cross-validation
under an expanding-window scheme (TimeSeriesSplit). In each fold, the last
twelve months of the training window are reserved for internal validation and early
stopping, which prevents overfitting and stabilizes the selection of the best iteration.
The grid explores the following hyperparameters, with the root mean squared error
(RMSE) averaged across folds as the selection criterion:

• Tree depth: max_depth ∈ {4, 5, 6}

• Learning rate: eta ∈ {0.01, 0.02, 0.05}

• Subsampling ratios: subsample ∈ {0.7, 0.9}, colsample_bytree ∈ {0.7, 0.9},
colsample_bynode = 0.8

• Minimum child weight: min_child_weight ∈ {3, 6, 8}

• Regularization parameters: gamma ∈ {0.0, 0.5, 1.0}, lambda ∈ {1.0, 2.0, 3.0},
alpha ∈ {0.0, 0.1, 0.3}

Cross-validation is performed with an expanding-window scheme (TimeSeriesSplit,
4 folds). In each fold, the last 12 months of the training window are set aside for
internal validation and early stopping, while the remaining observations are used for
model estimation. Each model is trained with a maximum of 2,000 boosting rounds,
and the best iteration is selected according to the lowest RMSE on the validation
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slice. The average RMSE across folds is used as the selection criterion. The optimal
configuration selected by cross-validation was:

max_depth = 4 eta =0.01 subsample =0.7

colsample_bytree =0.9 colsample_bynode = 0.8 min_child_weight = 8

gamma =0.5 lambda = 3.0 alpha =0.0

This configuration achieved an average RMSE of 2.265 across folds. The final model
reached its best iteration at round 361.

Figure 5.3: Forecast of unprocessed food inflation in 2024:comparison between ob-
served values (blue), XGBoost predictions (orange), and the historical monthly av-
erage (green).

Considering the results obtained in Figure 5.3, an additional attempt was made
while preserving the same modeling framework previously described. The aim was
to assess whether the inclusion of further information could enhance predictive per-
formance. In particular, the overall HICP index (general inflation), collected from
the ECB Statistical Data Warehouse1, was incorporated as an exogenous regressor

1https://data.ecb.europa.eu/data/datasets/ICP/ICP.M.SI.N.000000.4.ANR
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together with E3CI and ECB. The reason behind this choice is that unprocessed food
prices form part of the wider consumption basket and may share common trends
with general inflation. Including this aggregate measure allows us to test whether
broader macroeconomic conditions contribute additional explanatory power beyond
climate-related and sector-specific factors.

Figure 5.4: Forecast of unprocessed food inflation in 2024 with general HICP as re-
gressor: comparison between observed values (blue), XGBoost predictions (orange),
and the historical monthly average (green).

Model MSE RMSE MAE R2

Historical Monthly Average 10.3903 3.2234 2.8684 -1.7759
XGBoost 5.8572 2.4202 1.9094 -0.5648
XGBoost + Overall HICP 3.9780 1.9945 1.6953 -0.0628

Table 5.3: Performance comparison on unprocessed food inflation forecasts for 2024
(XGBoost vs monthly average).
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5.4 TimeGPT

TimeGPT was applied to forecast unprocessed food inflation in Slovenia, building on
a specification that included not only the target series itself but also a set of relevant
exogenous drivers. In particular, the ECB farm-gate price index, the overall HICP,
and the E3CI were incorporated, together with their lagged values (one and two) to
account for the delayed transmission of shocks to consumer prices. The model was
trained over the period 2000–2023, and its robustness was assessed through a rolling
cross-validation scheme with eight folds and a 12-month horizon. For evaluation,
the out-of-sample forecast for 2024 is compared against the seasonal benchmark
given by the historical monthly average of the target. The graphical comparison in

Figure 5.5 highlights that, although TimeGPT delivers slightly better quantitative
results than the historical monthly average (Table 5.4), the forecast itself remains
rather flat and fails to capture the dynamics observed in the actual series. This
suggests that, while the model improves marginally over the seasonal benchmark in
terms of error metrics, its predictive content is limited, as it does not reproduce the
underlying fluctuations of such a volatile index.

Figure 5.5: Forecast comparison for unprocessed food inflation in 2024: observed
YoY values (orange), TimeGPT out-of-sample forecast (blu), and the historical
monthly average benchmark (green).
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Table 5.4: Forecast performance for 2024: TimeGPT vs. historical monthly average.

Model MSE RMSE MAE R2

Historical Monthly Average 10.3903 3.2234 2.8684 -1.7759
TimeGPT 7.9051 2.8116 2.4176 -1.1119
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5.5 Prophet
In order to calibrate the Prophet model, a grid search over a set of hyperparameters
was combined with a rolling-origin cross-validation procedure, following the reference
code provided in Prophet’s documentation (23). The training sample was defined
from the beginning of the series until December 2021, corresponding to the initial
window. The forecast horizon was set to 24 months (730 days), with cutoffs spaced
every 12 months (365 days). At each cutoff, the model was refitted using data
available up to that date, and forecasts were generated for the subsequent horizon.
The resulting predictions were then compared with the obtained values to compute
out-of-sample error measures.

The feature set includes lagged regressors. Specifically, the exogenous variables
(E3CI, headline HICP and farm-gate food prices) enter with lags of one to three
months. To avoid look-ahead bias in cross-validation, only exogenous lags were
used during the CV step; after selection, the model was re-estimated on the full
training window (up to December 2023) including both the exogenous lags and the
lagged target terms (yt−1–yt−3). Forecasts for 2024 were then produced recursively,
updating the target lags with the model’s own predictions month by month.

The hyperparameters tested in the grid were:

• changepoint_prior_scale in {0.001, 0.01, 0.05, 0.1, 0.25, 0.5},

• seasonality_prior_scale in {0.1, 1.0, 5.0, 7.5, 10.0},

• fourier_order in {6, 8, 10, 12, 15},

• changepoint_range in {0.7, 0.8, 0.9, 1.0},

• seasonality_mode in {additive, multiplicative}.

Concerning seasonalities, the default ones are yearly, weekly, and daily. In this
case, only the yearly seasonality was kept active, while the weekly and daily ones
were disabled, since the data have a monthly frequency and do not show such pat-
terns. In addition to the yearly component, two extra seasonalities were manually
introduced: a monthly seasonality with a period of approximately 30.5 days, and
a quarterly seasonality with a period of 91.25 days that aims to capture patterns
related to the four seasons. These components were added to capture recurring
intra-annual dynamics that are not fully explained by the yearly cycle alone. Each
seasonal effect was modeled using Fourier series with an order set according to
the values specified in the hyperparameter grid. The average RMSE across cross-
validation folds was adopted as the selection criterion for hyperparameters. All
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results were stored in a pandas DataFrame and ranked, retaining the configuration
with the lowest RMSE.

The best hyperparameters obtained from the grid search are:
Additive:{changepoint_prior_scale: 0.01, changepoint_range: 0.8,
fourier_order: 15, seasonality_prior_scale: 1.0};
Multiplicative: {changepoint_prior_scale: 0.25, changepoint_range: 0.7,
fourier_order: 8, seasonality_prior_scale: 0.1}.

After identifying the optimal set of hyperparameters, the same configuration
was applied to fit both an additive and a multipliclicative Prophet model in order to
generate forecasts of the target variable HICP for 2024. A baseline forecast was also
constructed using the historical monthly average, to assess whether Prophet adds
value beyond this simple benchmark and to quantify the divergence from the simple
average.

Figure 5.6: Forecast of unprocessed food inflation (HICP, year-on-year) in Slovenia
for 2024 using Prophet with lagged regressors. The orange line shows the observed
2024 series. The blue line is the Prophet forecast with additive seasonality using
lags of the target (unprocessed food HICP) and lagged exogenous variables (headline
HICP, farm-gate food prices, and the E3CI). The purple line is the same specification
with multiplicative seasonality. The green line is the historical monthly-average
benchmark.
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Model MSE MAE RMSE R2

Prophet (Additive, with lags) 15.0350 3.6219 3.8775 -3.0168
Prophet (Multiplicative, with lags) 18.0963 3.9670 4.2540 -3.8346
Monthly Average 10.3903 2.8684 3.2234 -1.7759

Table 5.5: Forecast performance for unprocessed food inflation in Slovenia (2024)
using Prophet with lagged regressors, under additive and multiplicative seasonal
specifications, compared with the monthly average benchmark.

Although lagged regressors are usually expected to improve forecast accuracy by
capturing persistence and delayed effects, in this application their inclusion did not
lead to better results: Prophet with lags performed worse than the monthly average
benchmark and the forecasts remained rather flat (Table 5.7). This motivated a
second specification estimated without lags, in order to test whether a simpler setup
could yield more stable forecasts

Maintaining the same setup described previously, the grid search returned the
following optimal parameters for the HICP specification without lags:
Additive: {changepoint_prior_scale: 0.01, changepoint_range: 0.7,
fourier_order: 15, seasonality_prior_scale: 7.5};
Multiplicative: {changepoint_prior_scale: 0.01, changepoint_range: 0.7,
fourier_order: 8, seasonality_prior_scale: 10.0}.

The optimal parameters reported above were then employed to generate the
final forecasts for 2024. Compared with the lagged specification, the no-lag version
produced slightly better results, both in terms of error metrics (Table5.6) and visual
fit (See Figure 5.7), expecially for the Additive specification.
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Figure 5.7: Forecast of unprocessed food inflation (HICP, year-on-year) in Slovenia
for 2024 using Prophet with lagged regressors. The orange line shows the observed
2024 series. The blue line is the Prophet forecast with additive seasonality without
lags on target and exogenous variables. The purple line is the same specification
with multiplicative seasonality. The green line is the historical monthly-average
benchmark.

Model MSE MAE RMSE R2

Prophet (Additive) 7.6700 2.0759 2.7695 -1.0491
Prophet (Multiplicative) 10.7257 2.6052 3.2750 -1.8655
Monthly Average 10.3903 2.8684 3.2234 -1.7759

Table 5.6: Forecast performance for unprocessed food inflation in Slovenia (2024)
using Prophet without lagg
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CHAPTER 6

Conclusions

This thesis explores how extreme climate events—measured by the European
Extreme Events Climate Index (E3CI)—relate to unprocessed food inflation and
whether climate information can enhance forecasting. The core idea is that extreme
climate events disrupt agricultural supply in ways that ordinary fluctuations do not.
Fresh and minimally processed food depends directly on seasonal harvests and local
production, leaving it especially exposed to droughts, floods, heatwaves, and other
extreme conditions.

Evidence from the STAR framework shows that the connection between climate
extremes and unprocessed food inflation is nonlinear. Under normal conditions the
impact is negligible, while periods of elevated E3CI are associated with meaning-
ful price increases. The logistic transition function points to a gradual rather than
abrupt shift, consistent with threshold-type and asymmetric dynamics. These find-
ings hold both in the replication for Slovenia and in the extension to Italy, reinforcing
the robustness of the approach.

However, the analysis of the E3CI, it emerges that forecasting extreme climate
events remains a highly demanding task. The empirical evaluation of multiple fore-
casting models has shown that predicting the European Extreme Events Climate
Index (E3CI) is particularly challenging. Across different approaches—including
tree-based algorithms (XGBoost), recurrent neural networks (LSTM and GRU), the
Prophet framework, and the foundation model TimeGPT—the results consistently
reveal the difficulty of capturing the volatility and sharp peaks that characterize
extreme climate events. In most cases, forecasts tended to smooth out fluctuations,
yielding only modest improvements over the historical monthly average benchmark.

Additional attempts (see Sections 4.5, 4.7, 4.10) were made to forecast the seven
components of the E3CI individually and then re-aggregate them into the composite
index. Yet the challenge persisted even at the disaggregated level: each climatic
dimension proved difficult to predict, with models generally underestimating peaks
and offering only limited gains over the baseline. This confirms that the lack of
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predictability is not due to aggregation but is intrinsic to the underlying processes.
Among the tested methods, Prophet displayed comparatively stronger perfor-

mance, producing forecasts closer to observed values and outperforming the bench-
mark in several metrics, even though the R2 remains relatively low.. By contrast,
recurrent networks such as LSTM and GRU often failed to reproduce the magnitude
of extreme variations, while XGBoost provided good in-sample fits but poor out-of-
sample generalization. TimeGPT, despite its innovative architecture, also struggled
to capture the irregularity of the series. These results highlight that model sophis-
tication does not automatically translate into superior predictive accuracy in this
context.

Forecasting the E3CI inevitably faces structural limits stemming from the very
nature of extreme events: they are rare, observed in limited numbers, and often
shaped by chaotic dynamics that defy precise prediction. Statistically, extremes lie
in the tails of probability distributions, where information is intrinsically scarce.
This motivates the use of Extreme Value Theory (EVT), which provides a for-
mal framework for modeling the distribution of rare events. According to the
Fisher–Tippett–Gnedenko theorem, block maxima converge to the Generalized Ex-
treme Value (GEV) family, whose parameters determine the heaviness of the tail
and thus the probability of unprecedented extremes. Concepts such as return peri-
ods and return levels are widely used in climatology, but their estimation remains
fragile because of the limited data available in the tails.

As Lorenz first demonstrated (41), even minimal differences in the initial state of
the atmosphere can amplify over time and lead to divergent outcomes, which means
that forecasts must be treated as probabilistic rather than deterministic (54). In ad-
dition to the sensitivity to initial conditions, structural model biases further increase
forecast uncertainty, as simplifications and parametrizations inevitably miss part of
the complexity of climate dynamics. These insights are highly relevant for the E3CI,
since the index is designed to capture extreme events that, by definition, lie in the
tails of probability distributions. The scarcity of information in the tails reinforces
the structural difficulty of forecasting: while machine learning may provide useful
improvements, it cannot eliminate the fundamental uncertainty that characterizes
extremes.

Forecasting unprocessed food inflation (HICP) proves particularly demanding, as
the series combines high volatility with a relatively short historical span. With just
over two decades of monthly observations (2000–2023), the data provide limited
information for model estimation and evaluation, especially when it comes to cap-
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turing the impact of rare and extreme shocks. This structural limitation emerges
consistently across all the models considered.

Among the linear approaches, ARIMAX delivered comparatively better results
than SARIMAX, yet both struggled to reproduce the magnitude of inflationary
shocks. Machine-learning methods such as XGBoost benefited from the inclusion
of broader regressors (general HICP, ECB food index, and E3CI), improving fit
relative to the baseline but still falling short of accurately capturing turning points.
Prophet produced more stable forecasts in its version without lagged regressors, but
overall did not outperform the monthly average in a systematic way. TimeGPT,
finally, generated slightly better error metrics than the historical benchmark, but
its forecasts remained excessively flat and failed to track the actual dynamics of the
2024 series.

Overall, the results indicate that forecasting unprocessed food inflation with
monthly data is structurally constrained by the short historical record and the in-
herent unpredictability of extreme shocks. Traditional time-series models, machine-
learning algorithms, and foundation models all provide complementary perspectives,
but none of them can fully overcome the limits imposed by data scarcity and the
volatility of the underlying process From a forecasting perspective, these dynamics
highlight the inherent difficulty of predicting unprocessed food inflation. Beyond
macroeconomic shocks, which already strain statistical models, food prices are in-
fluenced by highly volatile agricultural supply conditions and global trade depen-
dencies. Consequently, even advanced machine learning or econometric frameworks
face structural limits, as extreme events and supply disruptions cannot be reliably
anticipated ex-ante.

This broader context is crucial for interpreting the results of the present thesis,
as it highlights that the forecasting difficulties encountered are not specific to the
chosen models, but rather reflect also a systemic challenge faced by all forecasters.

6.1 Future developments
Looking forward, several avenues emerge for strengthening the analysis. A first
direction concerns the use of the E3CI itself. Not all of its components are equally
informative across countries and seasons, so a more selective and context-specific
treatment could help distinguish genuine signals from noise and improve robustness.

A second line of development involves broadening the set of predictors for HICP
models. Indicators such as trade flows, transportation costs, or inventory levels could
be incorporated, provided that their inclusion enhances out-of-sample accuracy and
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does not lead to overfitting.
Third, extending the study to other European countries and to longer historical

series would be valuable. Cross-country evidence and richer panels would make it
possible to validate findings in diverse contexts and to strengthen inference about
rare events that remain poorly identified in short national samples.

Another promising avenue lies in models explicitly designed for extremes. Here,
the combination of standard forecasting methods with Extreme Value Theory—through
concepts such as return levels, generalized Pareto threshold models, or probabilistic
prediction intervals—could yield forecasts better suited to capture the tails of the
distribution.

Finally, model refinement should continue on two complementary fronts. On
one side, by further optimizing the approaches that have already shown relative
promise, such as STAR, ARIMAX, gradient boosting, and Prophet; on the other,
by exploring hybrid and ensemble structures that can adapt to different regimes,
switching flexibly between normal and stress conditions.

In sum, while producing accurate year-ahead forecasts for both the climate index
and In conclusion, it should be acknowledged that producing accurate year-ahead
forecasts for both the climate index and inflation is a highly demanding objective.
Nonetheless, a more selective use of E3CI information, improved model calibration,
and richer data coverage can yield incremental gains, albeit within persistent struc-
tural constraints. Against the backdrop of climate change, refining the analytics that
link extreme weather to food prices is a strategic necessity: it improves early warn-
ing, enables meaningful stress testing, and informs policy design, thereby bolstering
resilience even when precise annual forecasts remain out of reach.
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Appendix A: Descriptive Statistics of

E3CI, Slovenia

DroughtMax
Temp

Min
Temp

Precipit.Wind Hail Forest
Fire

(Orig.)

Forest
Fire

(Cleaned)

E3CI E3CI
(New)

count 528.00 528.00 528.00 528.00 528.00 528.00 528.00 528.00 528.00 528.00

mean -0.03 0.57 -0.05 0.05 0.04 -0.05 -0.18 -0.39 0.05 0.02

std 0.98 1.94 0.88 0.80 0.86 1.06 3.41 1.31 0.70 0.49

min -2.07 -0.74 -0.78 -0.68 -0.74 -1.92 -1.00 -1.00 -0.81 -0.81

Q1 (25%) -0.78 -0.48 -0.54 -0.52 -0.46 -0.61 -0.95 -0.95 -0.29 -0.29

Median -0.06 -0.23 -0.39 -0.28 -0.27 -0.28 -0.52 -0.52 -0.10 -0.10

Q3 (75%) 0.61 0.79 0.02 0.34 0.16 0.32 -0.38 -0.38 0.20 0.20

max 3.08 15.42 5.76 5.14 6.23 9.45 64.30 12.42 10.15 3.55

Table 1: Descriptive statistics for E3CI components and corrected series (Slovenia).
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Appendix B: Forecast of E3CI, Italy
This appendix presents the historical series of the individual components of the
E3CI and of the aggregated index for Italy, complementing the analysis conducted
for Slovenia.

Subsequently, the application of the Prophet model to Italian data is reported.
The inclusion of this exercise is motivated by the fact that, among the different
approaches tested, Prophet proved to be the most effective in the Slovenian case
for the forecasting of E3CI. For a detailed discussion of the methodology and imple-
mentation see Section 4.8.

The accuracy metrics (see Table 2) show overall acceptable values, broadly con-
sistent with those obtained for Slovenia. The additive specification achieves a slightly
higher R2, while the multiplicative one records lower MAE, indicating comparable
but not conclusive improvements across metrics. However, neither approach was
able to capture the pronounced spike observed in April, driven by exceptionally
high values of the extreme temperature and forest fire components, as illustrated
in Figure 9. This highlights a structural limitation of the models in reproducing
sudden and intense variations, which are typical of extreme climate events.

Figure 1: Aggregated E3CI — Italy (1981–2024).
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Figure 2: Drought component — Italy (1981–2024).

Figure 3: Extreme maximum temperature component — Italy (1981–2024).

Figure 4: Extreme minimum temperature component — Italy (1981–2024).
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Figure 5: Extreme precipitation component — Italy (1981–2024).

Figure 6: Extreme wind component — Italy (1981–2024).

Figure 7: Forest fire component — Italy (1981–2024).
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Figure 8: Hail component — Italy (1981–2024).

Figure 9: Comparison between observed and predicted E3CI for Italy in 2024 using
the Prophet model. The figure shows observed monthly values (orange) with additive
(blu) and multiplicative (purple) forecasts, alongside the historical monthly average
as a benchmark (green).

Model MSE RMSE MAE R2

Additive Model 0.7791 0.8827 0.5383 0.0248
Multiplicative Model 0.8075 0.8986 0.4768 -0.0107
Historical Average 0.9345 0.9667 0.5349 -0.1697

Table 2: Comparison of forecast accuracy metrics across additive, multiplicative,
and historical average approaches (Italy, 2024).
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Appendix C: Forecast of HICP, Italy
This appendix applies the same XGBoost methodology described in Section 5.3 to
Italy’s unprocessed-food HICP (YoY). Models are estimated with and without the
overall HICP as an exogenous regressor, with hyperparameters selected via time-
series cross-validation to minimize RMSE. As in the Slovenian case, an additional
specification was tested by including the overall HICP as a regressor (see Figures 10
and 11). The results (Table 3) show that XGBoost substantially outperforms the
historical monthly average benchmark. The inclusion of overall HICP yields a slight
improvement in RMSE and R2, although the gain is modest, indicating that most
of the predictive power derives from autoregressive and climate-related features.
Selected hyperparameters (base):
max_depth=6, eta=0.05, subsample=0.9, colsample_bytree=0.9, colsample_bynode=0.8,

min_child_weight=3, gamma=0.0, lambda=1.0, alpha=0.1

Selected hyperparameters (with overall HICP):
max_depth=6, eta=0.05, subsample=0.9, colsample_bytree=0.9, colsample_bynode=0.8,

min_child_weight=3, gamma=0.0, lambda=2.0, alpha=0.0

Figure 10: Forecast with XGBoost of Italy’s unprocessed-food HICP (YoY) for 2024.
The figure shows observed monthly values (orange) with additive (blu) and multi-
plicative (purple) forecasts, alongside the historical monthly average as a benchmark
(green)
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Figure 11: Forecast with XGBoost of Italy’s unprocessed-food HICP (YoY) for
2024 with general HICP as additinal regressor. The figure shows observed monthly
values (orange) with additive (blu) and multiplicative (purple) forecasts, alongside
the historical monthly average as a benchmark (green)

Model MSE RMSE MAE R2

XGBoost 3.4814 1.8658 1.5150 0.3969
XGBoost (+ HICP overall) 3.2210 1.7947 1.5665 0.4420
Historical Monthly Average 5.9424 2.4377 1.8318 -0.0294

Table 3: Comparison of forecast accuracy metrics for Italy’s 2024 unprocessed-
food HICP (YoY): XGBoost, XGBoost with HICP overall as additional exogenous
regressor, and the historical monthly average baseline.
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