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Abstract

Quantum computing promises significant advantages over classical computing for specific

problems, yet current quantum devices remain highly resource-constrained, limiting the size

and complexity of executable programs. Accurate estimation of quantum resources, such

as qubit count, circuit depth, and gate usage, is therefore essential for program feasibility

analysis and optimization.

This thesis extends the QuRA tool, which builds on Proto-Quipper, a functional quantum

programming language with a strong type system for static resource analysis. Beyond type-

checking and symbolic estimation of circuit size, we formalize an evaluation semantics that

translates well-typed Proto-Quipper programs into a Circuit Representation Language (CRL),

enabling explicit circuit construction and validation of inferred resource bounds.

Finally, we develop a translation pipeline from CRL to OpenQASM 3.0, bridging high-level

program analysis with hardware-executable code. The resulting framework provides both

formal guarantees of correctness and practical outputs, supporting early feasibility analysis,

validation of parametric bounds, and integration with existing compilation toolchains. This

work lays the foundation for further extensions, including tighter resource estimates, dynamic

analysis, and broader backend compatibility.
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Chapter 1

Introduction

1.1 Quantum Computing; an Overview

Quantum computing is an emerging paradigm of computation that takes advantage of the

principles of quantum mechanics to process information in fundamentally novel ways. While

classical computers represent and manipulate information using bits, which can take values

of either 0 or 1, quantum computers operate on qubits. Unlike classical bits, qubits can

exist in superpositions of states, allowing them to represent and process multiple possibilities

simultaneously [29].

Beyond superposition, two additional quantum phenomena are central to quantum com-

putation. The first is entanglement, a uniquely quantum correlation between qubits in which

the state of one qubit cannot be described independently of the other, even when they are

spatially separated [29, 5]. Entanglement enables powerful forms of information processing

and communication that do not have a classical analog. The second is interference, which

allows quantum amplitudes to combine constructively or destructively. Quantum algorithms

exploit this effect to amplify desirable computational paths while canceling out incorrect ones,

thereby enabling certain problems to be solved more efficiently than in classical settings [19].

The conceptual foundations of quantum computing have evolved over several decades. As

early as 1976, Roman Ingarden [26] extended Shannon’s classical information theory [37] into

the quantum domain, laying the groundwork for quantum information science. In 1980, Paul

Benioff [4] demonstrated how a Turing machine [44] could be modeled within the framework

of quantum mechanics, thereby proving that computation could be performed reversibly

on quantum systems. Two years later, Richard Feynman [19] highlighted the fundamental
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limitations of classical computers in simulating quantum systems and proposed the idea of

using quantum computers to overcome these challenges. Building on these insights, David

Deutsch formalized the notion of a universal quantum computer [17] in 1985, generalizing

the classical Turing machine model and showing that a single quantum device could simulate

any physical process. These foundational contributions set the stage for the development

of quantum algorithms and error-correction techniques, ultimately transforming quantum

computing from a theoretical curiosity into a rapidly advancing field of research.

1.2 Motivation

Quantum computing holds the promise of achieving a form of computational power that

surpasses the capabilities of classical systems. By exploiting superposition, entanglement,

and interference, quantum computers can, in principle, tackle problems that are currently

intractable. This potential is often referred to as quantum advantage, the point at which a

quantum algorithm outperforms the best known classical alternative for a specific task.

One of the earliest demonstrations of this potential came with Shor’s algorithm [38],

introduced in 1994, which provides an exponential speedup for factoring large integers. This

result has profound implications for modern cryptography, as many widely used encryption

schemes, such as RSA [35], rely on the hardness of integer factorization. Another landmark

result is Grover’s algorithm [23], which achieves a quadratic speedup for unstructured search

problems. In addition, quantum simulation, originally proposed by Feynman [19], stands

out as one of the most promising applications: simulating quantum systems efficiently on

classical hardware is prohibitively expensive, but quantum computers are naturally suited for

this task.

Despite this profound potential, the current state of quantum hardware presents significant

limitations. Today’s devices face challenges such as high error rates, short coherence times,

and a restricted number of logical qubits. These constraints make it crucial to accurately

estimate the resources (specifically, the number of qubits and operations) required by quan-

tum algorithms. Such estimates are essential to determine the feasibility of running these

algorithms on existing and near-future quantum hardware.

Historically, understanding the resource requirements of quantum algorithms has often

relied on manual estimations or classical simulations of the generated circuits [48, 24].
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However, these methods are slow, prone to errors, and difficult to scale for complex programs.

They also primarily focus on individual circuits after they have been generated, failing to

address the parametric nature of quantum algorithms, which produce families of circuits

whose size depends on classical input parameters. This gap highlights a critical need for

static analysis techniques [9] that can rigorously analyze resource consumption at the program

level, yielding parametric and concrete upper bounds.

1.3 Related Work

The growing interest in quantum computation has led to the development of several tools and

languages aimed at constructing, simulating, and optimizing quantum programs. Among the

earliest and most influential is Quipper [22], a scalable, functional programming language

for describing quantum circuits. Quipper provides powerful abstractions for circuit con-

struction and supports resource estimation through circuit generation and analysis. Similarly,

ProjectQ [42] offers a modular Python framework for quantum programming, featuring

compiler toolchains and backend integration.

More recently, t|ket⟩ [40], developed by Cambridge Quantum Computing, focuses

on circuit optimization and hardware-aware compilation, while Microsoft’s Q# [43] inte-

grates resource estimation libraries directly into its ecosystem. IBM’s Qiskit [32] provides

one of the most widely used imperative frameworks for quantum programming, supporting

simulation, compilation, and execution on real devices. Google’s Cirq [18] emphasizes

low-level, hardware-oriented circuit construction, targeting near-term quantum processors.

Finally, PennyLane [6] introduces a differentiable programming approach, bridging quantum

computation with machine learning frameworks such as TensorFlow and PyTorch.

Most existing toolchains still adopt a common design philosophy: they prioritize qubits

and quantum states as the primary objects of computation, while circuit structure itself only

emerges as a byproduct after program execution or compilation. This makes it difficult to

reason about circuit properties a priori, especially in the case of parametric programs that

generate entire families of circuits depending on the input size.

To compute resource metrics, many existing tools rely on dynamic resource analysis,

where circuits are explicitly generated and subsequently analyzed. Although effective for

small-scale or fixed-size circuits, this methodology becomes prohibitively expensive for
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parametric algorithms, as a new circuit must be constructed and analyzed for each possible

input size. By contrast, state-of-the-art static resource analysis tools operate directly on

the program’s source code, deriving symbolic expressions for resource usage that are valid

across all input sizes. Static analysis thus offers an attractive alternative for large-scale or

parameterized quantum algorithms.

Within this landscape, QuRA represents the state of the art in type-based static resource

analysis. It extends the functional quantum programming language Proto-Quipper with

refinement types and effect annotations, enabling the derivation of parametric and sound

upper bounds on resources such as width, depth, and gate count, without ever generating a

concrete circuit.

Our contribution builds directly on QuRA: we extend the framework with an operational

semantics that evaluates well-typed programs into explicit circuit representations, formalized

in the Circuit Representation Language (CRL). This extension allows circuits to be treated

as first-class entities, enabling not only static resource estimation but also circuit validation,

visualization, and translation into hardware-agnostic formats such as OpenQASM 3.0. In this

way, our work bridges the gap between symbolic type-driven analysis and backend execution.

1.4 Contributions of this Thesis

This thesis contributes to the state of the art in three ways:

1. Formal Evaluation Engine for Proto-Quipper Programs. We formalize the trans-

lation of programs written in Proto-Quipper, QuRA’s programming language, into a

structured intermediate representation, the Circuit Representation Language (CRL).

We design and implement an interpreter for CRL expressions that reduces programs

to an operations buffer, a sequential, low-level description of the quantum operations

performed. This extension transforms QuRA from a purely static analysis tool into

a system capable of explicit circuit construction, enabling big-step evaluation that

simultaneously builds circuits while executing programs.

2. Validation of Resource Estimates. We rigorously validate QuRA’s inferred resource

bounds by comparing them with the concrete resource metrics on generated circuits.

This evaluation spans both non-parametric circuits, such as teleportation, and paramet-

ric families, such as the quantum Fourier transform, Grover’s algorithm, and Shor’s
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algorithm. The analysis highlights both the correctness and the tightness of QuRA’s

estimates, demonstrating their reliability across a diverse range of algorithms.

3. Conversion to Executable OpenQASM 3.0. We construct a translation pipeline from

QuRA’s circuit representation into OpenQASM 3.0, a widely adopted, hardware-agnostic

standard for quantum circuits. This step enables circuit visualization with Qiskit,

structural correctness checks, and preparation for execution on simulators or hardware

backends. In the process, we introduce QASM-specific resource metrics to better capture

QASM’s semantics regarding initialization and measurement.

The interpreter is implemented in Haskell as an open-source project, currently available

at davidesonno/qura on GitHub, pending integration into the official QuRA repository.

1.5 Thesis Structure

Chapter 2 reviews the fundamental concepts of quantum computing and quantum program-

ming languages, as well as a brief overview of the 𝜆-calculus and Haskell.

The remainder of the thesis is structured into two parts:

Part I: Evaluation and Validation of PQ Programs

• Chapter 3 introduces Quipper and the Proto-Quipper family of languages, motivating

the choice of Proto-Quipper-RA as the basis for the QuRA tool.

• Chapter 4 extends Proto-Quipper-RA with an evaluation process that produces configu-

rations, each pairing a program expression with its corresponding circuit. This enables

programs to be reduced with a big-step semantics while simultaneously constructing

their circuit representation.

• Chapter 5 validates QuRA’s inferred resource bounds against the measured metrics

of generated circuits, assessing both correctness and precision across a range of case

studies.

Part II: Conversion of Produced Circuits to QASM

• Chapter 6 presents the translation of QuRA circuits into OpenQASM 3.0, introducing

QASM-specific metrics to account for initialization and measurement costs.

https://github.com/davidesonno/qura
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• The resulting circuits are visualized and verified using Qiskit, with representative

examples such as the quantum Fourier transform and Grover’s algorithm.

• Chapter 7 concludes the thesis, summarizing contributions and outlining possible

directions for future work.



Chapter 2

Preliminaries

Quantum computing promises computational advantages over classical approaches by exploit-

ing quantum-mechanical phenomena such as superposition and entanglement. To analyze

the cost and efficiency of quantum algorithms, it is crucial to understand the mathematical

model of quantum computation, how quantum states are manipulated via circuits, and how

resource metrics such as qubit usage, circuit depth, and gate counts are derived. This chapter

introduces the foundational concepts underpinning both quantum computation and the formal

tools used in this thesis.

2.1 Basics of Quantum Computing

Unlike classical computation, which operates on deterministic binary states, quantum compu-

tation is fundamentally probabilistic and uses qubits as its basic units of information. Quan-

tum programs are described using sequences of unitary transformations (quantum gates) and

measurements, which form quantum circuits [29].

2.1.1 Qubits

A qubit is the quantum analogue of a classical bit, but unlike a bit, it can exist in a superposition

of states:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, 𝛼, 𝛽 ∈ C, |𝛼 |2 + |𝛽 |2 = 1.

The coefficients 𝛼 and 𝛽 are called probability amplitudes. Upon measurement in the

computational basis, the state collapses probabilistically to |0⟩ with probability |𝛼 |2 or to |1⟩
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with probability |𝛽 |2.

A useful geometric representation of a qubit is the Bloch sphere [7] (see Fig. 2.1). Any

pure qubit state can be parametrized as:

|𝜓⟩ = cos
(
𝜃
2
)
|0⟩ + 𝑒𝑖𝜙 sin

(
𝜃
2
)
|1⟩,

where 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋) define polar and azimuthal angles.

Figure 2.1: Representation of a qubit on the Bloch sphere. Source: Wikimedia Com-
mons [41].

2.1.2 Measurement and No-Cloning

Measurement in quantum mechanics is inherently destructive: once a qubit is measured, it

collapses to a classical bit and loses its superposition. This has two key implications for

quantum programming:

1. Intermediate measurements must be carefully planned as they irreversibly affect the

computation.

2. Quantum data cannot generally be reused once measured.

Another central result is the no-cloning theorem [47]: there exists no unitary trans-

formation that can perfectly duplicate an unknown quantum state. This property sharply
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distinguishes quantum data from classical information and motivates the linearity constraints

in quantum programming languages.

2.1.3 Quantum Registers and Entanglement

For an 𝑛-qubit system, the overall state lives in a 2𝑛-dimensional Hilbert space [29]. Superpo-

sition naturally generalizes to registers, allowing a single 𝑛-qubit state to encode 2𝑛 classical

configurations simultaneously.

A distinctive quantum phenomenon is entanglement, in which the joint state of multiple

qubits cannot be expressed as a tensor product of individual single-qubit states. For example,

consider the Bell state:

|Φ+⟩ = 1√
2

(
|00⟩ + |11⟩

)
.

This state cannot be factored into |𝜓1⟩⊗ |𝜓2⟩, which means that the qubits do not possess well-

defined independent states of their own. Measurement outcomes on one qubit are perfectly

correlated with those of the other: if the first qubit is measured as |0⟩, the second is guaranteed

to also be |0⟩, and also for |1⟩. Entanglement thus encodes non-classical correlations that

have no analogue in classical probability theory, and it is a fundamental resource exploited

by quantum algorithms and communication protocols such as teleportation and quantum key

distribution.

2.1.4 Quantum Gates and Circuits

Quantum computations are performed by applying quantum gates, which are represented by

unitary matrices acting on qubit states [29]. Since unitary transformations preserve norms,

they ensure that probabilities remain valid throughout the computation. Gates are usually

categorized into single-qubit and multi-qubit operations.

Single-Qubit Gates

Single-qubit gates act on states of the form 𝛼 |0⟩ + 𝛽 |1⟩ and can create superpositions,

introduce phase shifts, or flip states. Common examples include:

• Pauli Gates (𝑋 , 𝑌 , 𝑍): These gates correspond to rotations by 𝜋 around the 𝑥, 𝑦, and

𝑧 axes of the Bloch sphere.
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– Pauli-𝑋 (bit flip):

𝑋 =
©­«
0 1

1 0
ª®¬ , 𝑋 |0⟩ = |1⟩ , 𝑋 |1⟩ = |0⟩ .

– Pauli-𝑍 (phase flip):

𝑍 =
©­«
1 0

0 −1
ª®¬ , 𝑍 |0⟩ = |0⟩ , 𝑍 |1⟩ = − |1⟩ .

– Pauli-𝑌 (bit and phase flip):

𝑌 =
©­«
0 −𝑖

𝑖 0
ª®¬ , 𝑌 |0⟩ = 𝑖 |1⟩ , 𝑌 |1⟩ = −𝑖 |0⟩ .

• Hadamard Gate (𝐻): Creates uniform superpositions by mapping basis states as:

𝐻 =
1
√

2
©­«
1 1

1 −1
ª®¬ , 𝐻 |0⟩ = 1√

2
( |0⟩ + |1⟩) = |+⟩ , 𝐻 |1⟩ = 1√

2
( |0⟩ − |1⟩) = |−⟩ .

Thus, applying 𝐻 to |0⟩ produces |+⟩, an equal superposition of |0⟩ and |1⟩.

• Phase Gates (𝑆 and 𝑇): These gates apply controlled phase shifts without altering the

amplitude of |0⟩.

𝑆 =
©­«
1 0

0 𝑖

ª®¬ , 𝑆 |1⟩ = 𝑖 |1⟩ ,

𝑇 =
©­«
1 0

0 𝑒𝑖𝜋/4

ª®¬ , 𝑇 |1⟩ = 𝑒𝑖𝜋/4 |1⟩ .

The 𝑇 gate, also called the 𝜋/8 gate, is crucial for achieving universal quantum com-

putation when combined with Clifford gates.

Multi-Qubit Gates

Multi-qubit gates operate on two or more qubits, introducing entanglement or conditional

behavior:
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• Controlled-NOT (CNot): Flips the target qubit if the control qubit is |1⟩:

CNot =

©­­­­­­­«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®®®®®¬
,

so that |10⟩ ↦→ |11⟩ and |11⟩ ↦→ |10⟩, while states with control |0⟩ remain unchanged.

• Toffoli Gate (CCNot): A controlled-controlled-NOT gate: the target qubit flips only

if both control qubits are |1⟩. This gate is universal for classical reversible logic.

• Controlled Phase Gates (𝐶𝑍 , 𝐶𝑅𝑘 ): These gates introduce conditional phase shifts.

For example, the controlled-𝑍 gate applies a 𝑍 gate to the target if the control is |1⟩:

𝐶𝑍 |11⟩ = − |11⟩ , 𝐶𝑍 |10⟩ = |10⟩ .

Such gates are essential for creating entanglement.

2.1.5 Universality and Gate Decomposition

Quantum circuits are built by composing quantum gates, which correspond to unitary trans-

formations. Composition operates in two ways:

• Sequential composition corresponds to matrix multiplication: applying gate 𝑈 fol-

lowed by 𝑉 results in the unitary 𝑉𝑈.

• Parallel composition corresponds to the tensor product: applying 𝑈 to one qubit and

𝑉 to another yields the combined transformation 𝑈 ⊗ 𝑉 .

A finite set of gates is said to be universal if any 𝑛-qubit unitary operation can be

approximated to arbitrary precision using only gates from that set. One widely used universal

set is:

{𝐻, 𝑇, CNot},

where:

• 𝐻 creates superpositions,
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• 𝑇 introduces a non-Clifford phase shift,

• CNot entangles qubits.

In practice, quantum algorithms are first expressed in terms of high-level operations

(e.g., the Quantum Fourier Transform [29]) but must eventually be decomposed into gates

supported by the target hardware. For example, many fault-tolerant architectures natively

support only the so-called Clifford+T gate set. A Toffoli gate, which acts on three qubits, is

not native in this set but can be decomposed into a sequence of Clifford and 𝑇 gates:

Toffoli = . . . (7 𝑇 gates + 8 CNots + 6 𝐻 gates)

This decomposition is not unique: different compiler strategies can produce circuits with

lower 𝑇-depth, fewer qubits, or reduced overall gate counts.

The choice of decomposition has a direct impact on resource metrics:

• Circuit depth: the number of sequential layers of gates.

• Gate count: especially 𝑇-count, which dominates cost in fault-tolerant settings.

• Qubit usage: some decompositions introduce ancillary qubits to reduce depth.

Thus, understanding universality and decomposition is essential not only for compila-

tion but also for resource analysis, as different decompositions can lead to vastly different

performance and hardware requirements.

2.2 The Quantum Circuit Model

Quantum circuits provide both a visual and an algebraic framework for modeling quantum

computations. In this model, a computation is represented by a set of wires, one for each

bit or qubit, that runs from left to right, where the horizontal position corresponds to the

temporal order of operations. Quantum gates are represented as boxes placed on the wires:

single-qubit gates act on a single wire, while multi-qubit gates (such as controlled-NOT)

connect multiple wires. Measurement operations are typically depicted as meter symbols

and collapse the quantum state onto a classical outcome. As a first example, consider the

following circuit that implements the quantum teleportation protocol [5] :
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𝑞 𝐻

|0⟩

|0⟩ 𝐻 𝑍

Figure 2.2: The Quantum teleportation circuit. The value of the first wire |𝑞⟩ is teleport to
the last wire.

Unlike classical circuits, quantum circuits are inherently probabilistic due to the role

of measurements. The evolution of the quantum state up to measurement is unitary and

reversible, but the act of measuring introduces randomness, returning classical bits sampled

from the underlying quantum state. Importantly, this allows quantum circuits to combine

quantum and classical information flow in a single computational model.

It is also important to distinguish between quantum algorithm and quantum circuit. A

quantum circuit represents a fixed, concrete computation for a given input size, while a

quantum algorithm describes a family of circuits parameterized by the size of the input or

other problem-specific parameters. For example, Grover’s search algorithm can be seen as

a collection of circuits whose depth and gate count scale with the size of the search space.

This distinction becomes particularly relevant when analyzing resource requirements, since

algorithms often produce symbolic expressions for qubit counts, gate counts, and depth as

functions of problem size, while concrete circuits give numerical resource counts for fixed

inputs.

Quantum circuits often incorporate elements of classical control flow. After certain

measurement operations, the resulting classical bits can influence which subsequent gates are

applied. This hybrid model—where classical and quantum instructions are interleaved—is

essential for a number of practical protocols and algorithms. Examples include:

• Quantum Teleportation: measurement outcomes determine classically controlled

Pauli corrections.

• Quantum Error Correction: errors on qubits are detected via syndrome measure-

ments, which indicate the type of error and guide the appropriate recovery operations

to restore the quantum state.

• Variational Quantum Algorithms (VQAs): classical optimizers iteratively update

the parameters of quantum subroutines [30].
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2.3 Quantum Programming Languages

Quantum programming languages provide high-level abstractions for specifying quantum

computations, effectively bridging the gap between theoretical models and executable circuits

on real hardware. Due to significant differences in their design principles, abstraction

mechanisms, and underlying programming paradigms, these languages can be systematically

classified into distinct categories.

High-level, functional, or circuit-description languages These languages emphasize

symbolic circuit construction rather than runtime qubit manipulation. Programs describe

entire families of circuits parametrically, which is especially useful for static analysis and

resource estimation. Examples include Quipper [21] and Proto-Quipper [36]: they embed

a functional programming paradigm into quantum computation, enabling recursion, higher-

order functions, and parametric circuit definitions.

Low-level, hardware-agnostic languages These languages act as intermediate represen-

tations, focusing on explicit gate sequences rather than high-level abstractions.

OpenQASM 3.0 [14] is a prime example: it provides a textual format with qubit and classical

register declarations, sequential gate application, and explicit classical control flow. Such

languages serve as the common denominator for compilation, transpilation, and execution on

hardware backends.

Imperative or hardware-oriented frameworks Languages in this category, such as

Qiskit [32], embed an imperative programming model within a host language (e.g.,

Python [45]). They allow developers to build circuits programmatically, execute or simulate

them, and leverage backend-specific optimizations. They are particularly convenient for

prototyping and experimenting, but generally do not support symbolic parametric circuit

generation for static analysis.

2.4 Resource Analysis of Quantum Circuit Families

Resource analysis provides a framework for quantifying the cost of quantum computations.

Since current and near-term quantum devices are resource-constrained, efficient use of qubits

and gates is critical. The most common metrics include:
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• Width: The number of qubits (wires) required by the circuit. This corresponds to the

memory footprint of the quantum computation.

• Depth: The length of the longest path of dependent gates, that is, the minimum number

of time steps required under parallel execution. Variants such as 𝑇-depth are also used,

focusing on costly non-Clifford gates.

• Gate Count: The total number of gates in the circuit. Particular emphasis is placed

on the 𝑇-count, as 𝑇 gates are resource-intensive in fault-tolerant computation.

Resource metrics can be categorized into two types:

• Local metrics: These metrics are defined with respect to individual wires. They

describe properties such as the depth of a specific wire, which is determined by the

number of operation that the wire itself depends on.

• Global metrics: These metrics quantify the properties of the circuit as a whole. They

aggregate information across all wires and gates, for example, the overall gate count,

the total width (number of qubits or wires used), or the global circuit depth.

The distinction between local and global metrics is essential: local metrics enable rea-

soning about the placement and ordering of operations along specific wires, whereas global

metrics provide a comprehensive assessment of the circuit’s structural complexity. Together,

these metrics support both the theoretical analysis and the practical optimization of quantum

circuits.

Example (Quantum Teleportation). To illustrate the resource analysis of a circuit, con-

sider again the quantum teleportation protocol from Figure 2.2. Given the circuit representa-

tion of the program, the teleportation protocol can be quickly analyzed: it uses three qubits,

two Hadamard gates, two two-qubit gates (CNots), two measurements, two classically con-

trolled gates (a NOT and a Pauli-Z) and has a depth of six. Although the maximum number

of subsequent operations that act on a wire is four, some of them are applied between wires

at different depth. If that is the case, both outputs will be at the depth of the deeper wire plus

the depth of the gate, usually one. For example, the last operation, the CZ gate, can only be

applied after the last CNot; therefore, the wire q increases its depth by 2 when applying the

controlled Z gate.
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2.4.1 The Resource Estimation Problem

The current state of quantum hardware, often referred to as the NISQ (Noisy Intermediate-

Scale Quantum) era, means that devices struggle with high error rates, short coherence times,

and a limited number of logical qubits. These constraints make accurate resource estimation

critical for determining the feasibility and practical requirements of quantum algorithms on

current and near-future hardware.

Traditional approaches to resource estimation, such as manual calculations or classical

simulations, are often slow, error-prone and do not scale well for complex quantum programs.

Furthermore, they typically analyze circuits after they have been generated (recall the previous

example from Figure 2.2), meaning they inspect a concrete instance rather than providing

parametric guarantees that hold for an entire family of circuits. This makes it difficult to

assess how resource requirements scale with the size of the problem.

This challenge highlights the need for static analysis techniques, particularly type infer-

ence, to verify resource requirements at the program level. By integrating resource analysis

directly into the type system of a programming language, it becomes possible to infer para-

metric upper bounds on circuit size measures (width, depth, gate count) directly from the

program’s source code, ensuring that these bounds are mathematically guaranteed correct.

This shifts the focus from costly post-generation testing and optimization to correct by design

program development.

2.5 The Lambda Calculus

The lambda calculus is a formal system for defining and applying functions [31]. It forms

the theoretical foundation of functional programming languages, including Haskell [13], and

is therefore central to understanding the semantics of the code and analyses presented in this

work.

2.5.1 Syntax and Semantics

The syntax of the untyped lambda calculus consists of:

• Variables 𝑥, 𝑦, 𝑧, . . .

• Abstractions 𝜆𝑥. 𝑡 (functions with parameter 𝑥 and body 𝑡)
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• Applications 𝑡 𝑢 (applying a function 𝑡 to an argument 𝑢)

For example, the term:

(𝜆𝑥. 𝑥 + 1) 2

represents a function that increments its argument by 1, applied to the value 2.

2.5.2 Free occurrences and free variables

An occurrence of a variable 𝑥 in a term 𝑡 is said to be bound if it lies within the scope of a 𝜆𝑥

abstraction; otherwise, it is free. For example, in the term 𝜆𝑥. (𝑥 𝑦), the first occurrence of 𝑥

is bound, whereas the occurrence of 𝑦 is free.

The set of free variables of a term 𝑡, written FV(𝑡), is defined inductively as follows:

FV(𝑥) = {𝑥}

FV(𝜆𝑥. 𝑡) = FV(𝑡) \ {𝑥}

FV(𝑡1 𝑡2) = FV(𝑡1) ∪ FV(𝑡2)

A term is called closed if it has no free variables, i.e., if FV(𝑡) = ∅.

2.5.3 Substitution

A key operation in lambda calculus is substitution, denoted 𝑡 [𝑥/𝑢], meaning “the term

obtained by replacing all free occurrences of 𝑥 in 𝑡 with 𝑢”.

Formally:

(𝑥) [𝑥/𝑢] = 𝑢

(𝑦) [𝑥/𝑢] = 𝑦 if 𝑦 ≠ 𝑥

(𝜆𝑦. 𝑡) [𝑥/𝑢] =

𝜆𝑦. 𝑡 if 𝑦 = 𝑥

𝜆𝑦. 𝑡 [𝑥/𝑢] if 𝑦 ≠ 𝑥 and 𝑦 ∉ FV(𝑢)

Care must be taken to avoid variable capture, typically resolved by renaming bound variables

as needed.



18 2.6 Haskell

2.5.4 Operational Semantics and Inference Rules

Reduction rules describe how terms are evaluated. The central rule is beta-reduction:

(𝜆𝑥. 𝑡) 𝑢 −→ 𝑡 [𝑥/𝑢]

This models the application of a function to an argument by substituting the argument into

the body.

We distinguish between:

• Small-step semantics: evaluation proceeds by repeatedly applying a single reduction

rule until no further rules apply.

• Big-step semantics: evaluation directly relates a term to its final result.

Example: Addition For example, suppose we extend lambda calculus with integer literals

and an addition operator +. We might define an inference rule for addition in big-step

semantics as:
𝑡1 ⇓ 𝑛1 𝑡2 ⇓ 𝑛2

𝑡1 + 𝑡2 ⇓ 𝑛1 + 𝑛2

where 𝑡 ⇓ 𝑛 denotes that term 𝑡 evaluates to the integer 𝑛. The evaluation of 𝑡1+𝑡2 corresponds

to evaluating the single terms and obtaining two integers, and the result of the expression is

given by the sum of these two integers.

These inference rules will be particularly relevant in later chapters when we define

operational semantics for resource-aware quantum languages.

2.6 Haskell

Haskell is a purely functional programming language [13] widely used in research for

implementing interpreters, type systems, and domain-specific languages. Its strong type

system, concise syntax, and emphasis on immutability make it well-suited for modeling and

reasoning about quantum programming languages.
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2.6.1 Functional Paradigm

In Haskell, functions are first-class citizens: they can be passed as arguments, returned

from other functions, and composed. Unlike imperative languages, Haskell avoids mutable

state and side effects by default, which aligns well with the mathematical nature of lambda

calculus.

2.6.2 Folds

A fold is a higher-order function that processes data structures recursively and accumulates a

result. For lists, there are two main folds:

Definition 2.1 (Right fold). Let 𝑓 : 𝐴 × 𝐵 → 𝐵 be a binary function and 𝑧 ∈ 𝐵. For a list

[𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ 𝐴𝑛, the right fold is defined as:

foldr 𝑓 𝑧 [ ] = 𝑧, foldr 𝑓 𝑧 [𝑥1, 𝑥2, . . . , 𝑥𝑛] = 𝑓 (𝑥1, 𝑓 (𝑥2, . . . 𝑓 (𝑥𝑛, 𝑧) . . . )).

Equivalently, recursively:

foldr 𝑓 𝑧 (𝑥 : 𝑥𝑠) = 𝑓 (𝑥, foldr 𝑓 𝑧 𝑥𝑠).

where the notation 𝑥 : 𝑥𝑠 denotes a list with head 𝑥 and tail 𝑥𝑠. For example, [𝑥1, 𝑥2, . . . , 𝑥𝑛]

could be written as 𝑥1 : [𝑥2, . . . , 𝑥𝑛].

Definition 2.2 (Left fold). Let 𝑓 : 𝐵 × 𝐴 → 𝐵 be a binary function and 𝑧 ∈ 𝐵. For a list

[𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ 𝐴𝑛, the left fold is defined as:

foldl 𝑓 𝑧 [ ] = 𝑧, foldl 𝑓 𝑧 [𝑥1, 𝑥2, . . . , 𝑥𝑛] = 𝑓 (. . . 𝑓 ( 𝑓 (𝑧, 𝑥1), 𝑥2) . . . , 𝑥𝑛).

Equivalently, recursively:

foldl 𝑓 𝑧 (𝑥 : 𝑥𝑠) = foldl 𝑓 ( 𝑓 (𝑧, 𝑥)) 𝑥𝑠.

Folds are fundamental in Haskell because they encapsulate recursion patterns over lists,

simplify code, and allow reasoning about program behavior in a compositional way. They

will also become relevant when analyzing circuit generation in later chapters, in which right

folds are used to traverse and combine structures.



Part I

Evaluation and Validation of PQ

Programs
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In this part, we develop the foundations for the execution and analysis of PQ programs. We

begin by extending the theoretical framework of Proto-Quipper-RA with an evaluation process

that produces configurations, each consisting of a program expression and its corresponding

circuit. This allows us to reduce the expression of PQ programs with a big-step semantics

while simultaneously constructing its circuit representation.

Once the evaluation step has constructed the circuit, we demonstrate how its metrics can

be computed, such as gate counts, depth, and width. These concrete metrics, are compared

against the static upper bounds inferred by QuRA on the circuit-generating functions. Although

soundness guarantees that the inferred bounds are never violated, our analysis investigates

how tight these bounds are in practice. This provides insight into both the correctness and

the practical precision of QuRA’s resource analysis.

Through a series of case studies, from small, non-parametric circuits such as teleportation

to scalable parametric families like the quantum Fourier transform and Grover’s algorithm,

we validate the evaluation mechanism and quantify the accuracy of resource estimates.



Chapter 3

QuRA: A Tool for Resource Analysis of

Quantum Programs

Quantum programming languages are essential for expressing algorithms that operate on

qubits, but reasoning about their resource requirements, such as qubit usage, gate counts,

or circuit depth, is often challenging. This chapter introduces QuRA [9] and the underlying

theoretical environment, a state-of-the-art framework designed to facilitate the analysis of

quantum programs with a focus on resource estimation and correctness.

To better understand QuRA’s foundations, we begin by reviewing the Quipper lan-

guage [21], highlighting its capabilities to describe quantum circuits and how it serves

as the foundation for Proto-Quipper [36, 12, 11] languages. We then introduce the Proto-

Quipper family of languages and a concrete circuit model, which provides the basis for formal

reasoning about programs and their resource consumption.

Building on this concepts, we present Proto-Quipper-RA [9], a theoreticla programming

language for resource-aware quantum programming. We describe its syntax, tpe-and-effect

system, and operational semantics, which allow precise modeling of program behavior and

enable tracking of global and local resource metrics throughout circuit construction.

The second part of the chapter focuses on QuRA [9] itself. We describe the role and

functionalities of the tool, emphasizing its key differences with Proto-Quipper-RA, including

the way it integrates type checking, symbolic indices, and resource analysis into a unified

workflow. We then detail the inference algorithm that underpins resource estimation and

illustrate its use with a concrete example, showing how QuRA can automatically compute

metrics such as qubit counts, gate counts, and other circuit characteristics for a given quantum
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program.

3.1 The Quipper Language

Quipper [21] is a functional programming language designed for quantum computing that

serves as a circuit description language. This means that it can be used to construct quantum

circuits in a structured manner, applying gates one at a time. A distinguishing feature is its

ability to treat completed circuits as data, allowing them to be stored in variables, passed to

subroutines, and subjected to meta-operations like transformations, gate counts, inversion,

and error correction. This mechanism is known as boxing: subcircuits can be encapsulated

into reusable modules (or "boxes") and subsequently invoked as single gates within larger

circuits. This two-level description (gate operations and meta-operations on entire circuits)

aligns well with how quantum algorithms are often specified in the literature, providing

a useful high-level programming paradigm. Quipper is practical and has been used to

implement large-scale quantum algorithms, generating circuits with trillions of gates. It is

particularly adept at describing parameterized families of quantum circuits, such as a different

circuit for each integer to be factored in Shor’s algorithm [38].

Quipper’s implementation as an embedded domain-specific language within

Haskell [13], allowing it to inherit its advanced features, including a strong type system and

higher-order functional programming capabilities, which are valuable for expressing abstract

circuit construction. It provides a rich set of primitives for manipulating qubits, gates, and

circuits, supporting common quantum gates, controlled operations, ancilla management, and

measurement. Higher-level features such as boxed subcircuits (which promote modularity and

scalability) and functions to estimate circuit resources (like gate count, qubit usage, and circuit

depth) are also included. The language maintains a crucial conceptual distinction between

circuit generation time (when classical parameters define the circuit’s shape and structure)

and circuit execution time (when quantum states are instantiated on a quantum device). This

separation allows Quipper to define general circuit families that are parameterized by input

size or structure. Quipper programs appear to imperatively manipulate qubits, but they

actually describe circuits behind the scenes.
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3.2 From Quipper to a Proto-Quipper Family of Languages

Despite its strengths, Quipper has several drawbacks. Due to mismatches between its type

system and Haskell’s, the original Quipper language is not type-safe, meaning that some

well-typed programs can lead to run-time errors. A critical issue is Haskell’s inability to

enforce linear quantum types, which is the fundamental requirement that a quantum state

(qubit) cannot be used more than once, consistent with the no-cloning property of quantum

information. Furthermore, as an embedded language, Quipper lacks formal semantics and

dependent types [31], which could improve correctness guarantees by allowing types to

depend on values, such as encoding circuit sizes directly into the type system.

These shortcomings motivated the development of Proto-Quipper, a family of research-

oriented, formal calculi that serve as stand-alone programming languages with their own

custom type systems and semantics. Each Proto-Quipper variant is designed to address

specific aspects and problems of the original Quipper language, such as type safety, linearity,

and formal semantics.

Essentially, the Proto-Quipper languages amount to effectful linear lambda calculi specifi-

cally crafted for constructing and handling circuits [36]. Some of them introduce a categorical

model for circuits and programs, such as Proto-Quipper-M [34], Proto-Quipper-D [20], and

Proto-Quipper-L [20]. Some other languages, among them Proto-Quipper-RA [10], instead

introduce a concrete categorical model of parameters and states and use label contexts and

wire bundles to define the Circuit Representation Language (CRL).

3.2.1 Circuit Representation Language

The CRL allows for a low-level description of circuits, which are represented by a chain

of operations, applied to a bundle of named wires, which are called labels. Each wire is

designated by a label ℓ, and collections of multiple qubits are denoted as 𝑘̄ . Wire bundles

serve to determine the input and output parameters in the quantum operations that characterize

the circuit. The empty circuit is represented with the identity notion, written as 𝑖𝑑𝑄 . Together

with the circuits, a label context is paired, a mapping that links wire names to their respective

types, which may be Qubit or Bit, to facilitate identification of circuit components. An empty

label context is denoted by the symbol •.
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The CRL grammar is described formally as follows:

CRL C,D ::= 𝑖𝑑𝑄 | C; 𝑔(ℓ̄) → 𝑘̄ , (3.1)

where𝑄 is the label context and 𝑔 represents a quantum operation, such as qubit initializations,

single-qubit gates, and multiple-qubit gates, coming from a fixed set G .

CRL expressions serve as the target model for circuit building in Proto-Quipper. For

instance, the teleportation circuit [5] can be represented in CRL as:

𝑖𝑑𝑞:Qubit; qinit0(∗) → 𝑑; qinit0(∗) → 𝑎; hadamard(𝑑) → 𝑑′ (3.2)

CNot(⟨𝑑′, 𝑎⟩) → ⟨𝑑′′, 𝑎′⟩; CNot(⟨𝑞, 𝑎′⟩) → ⟨𝑞′, 𝑎′′⟩; (3.3)

hadamard(𝑞′) → 𝑞′′; measure(𝑎′′) → 𝑥; measure(𝑞′′) → 𝑦; (3.4)

cCNot(⟨𝑥, 𝑑′′⟩) → ⟨𝑥′, 𝑑′′′⟩; ccz(⟨𝑦, 𝑑′′′⟩) → ⟨𝑦′, 𝑑′′′′⟩; (3.5)

cdiscard(𝑥) → ∗; cdiscard(𝑦) → ∗. (3.6)

where qinit0, hadamard,CNot,measure, cCNot, ccz, cdiscard ∈ G .

Circuits described in this way present a structure composed of sequential operations, and

therefore it is useful to be able to describe the concatenation of them as follows:

Definition 3.1 (concatenation).

C :: 𝑖𝑑𝑄 = C, (3.7)

C :: (D; 𝑔(ℓ̄) → 𝑘̄) = (C :: D); 𝑔(ℓ̄) → 𝑘̄ . (3.8)

A key aspect of these languages is their effectful nature, which captures the fact that

evaluating a program has a direct impact on the underlying circuit structure. Instead of

producing only a pure value, the programs extend the current circuit by appending new gates

and operations as a side effect. We can notice in the previous example that a label does

not exist until a gate produces it as an output and extends the label context; circuit-building

effects are explicitly tracked and encapsulated by the type system.

For example, consider the Bell circuit from earlier, shown again in Figure 3.1, which

applies a Hadamard gate to the first wire and then performs a Controlled-NOT using the

other wire as the control. Although the function can be written in a purely functional style,
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evaluating it implicitly modifies the global circuit by inserting these two gates in sequence.

The program’s return value consists of updated references to the affected qubits in the form

of labels, while the accumulated gates are recorded in the circuit representation. This tight

integration between program evaluation and circuit generation plays a central role in analyzing

quantum programs symbolically.

bell :: Qubit ->
Qubit ->
Circ (Qubit, Qubit)

bell q p = do
q <- hadamard q
p <- qnot p `controlled` q
return (q, p)

(a) Quipper code of the Bell circuit

𝑞 𝐻

𝑝

𝑖𝑑•; qinit0(∗) → 𝑞; (3.9)
qinit0(∗) → 𝑝; (3.10)
hadamard(𝑞) → 𝑞′ (3.11)
CNot(⟨𝑞′, 𝑝⟩) → ⟨𝑞′′, 𝑝′⟩. (3.12)

(b) Bell circuit representation and its CRL notation

Figure 3.1: Bell state preparation in Quipper: the code on the left, the circuit representation
on the top right, and its CRL notation below.

3.3 Proto-Quipper-RA: a Framework for Resource Analysis

Proto-Quipper-RA [10] (PQRA for short) is an extension of the Proto-Quipper family, a type-

safe, functional quantum programming language specifically designed to support flexible and

compositional resource estimation of quantum programs. It addresses the need to accurately

track resource consumption, such as gate count, qubit usage (width), and circuit depth, which

are critical to determining the feasibility of quantum algorithms on current hardware.

The power of Proto-Quipper-RA lies in its type system, which integrates refinement

types, effects, and closures into a unified framework for reasoning about quantum resources.

Resource bounds are embedded directly into types using index terms (𝐼, 𝐽), arithmetic

expressions over natural numbers, and symbolic parameters. Depending on the construct,

these annotations represent upper bounds on different aspects of the circuit.

• Refinement types: These types enrich the type system by attaching quantitative in-

formation directly to types, enabling precise specification of constraints on quantum

resources, such as the number of operations carried by a wire or the expected size of
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a subcircuit. The associated indices can be parametric, depending on classical input

parameters, which allows for accurate and scalable analysis across entire families of

circuits.

• Effect typing: This enhancement of the type system enables tracking the global

resource consumption of functions that generate circuits. Each function is annotated

with symbolic expressions that summarize its side effects—such as the number of

gates introduced or the amount of qubits allocated, which are combined according to

the program’s structure to approximate the overall cost of the circuit.

• Closure types: To maintain soundness under abstraction, closure types track the

resources captured by higher-order functions that generate subcircuits. They ensure

that the size of these captured wires is accurately represented in the analysis, allowing

safe handling of such functions.

3.3.1 The Syntax of Proto-Quipper-RA

Figure 3.2 illustrates the formal grammar that defines the core components of Proto-Quipper-

RA.

Types TYPE 𝐴, 𝐵 ::= 1 | 𝑤 𝐼 | !𝐼𝐴 | 𝐴 ⊗ 𝐵 | 𝐴 ⊸𝐼
𝑇
𝐵

| List𝑖<𝐼 𝐴 | Circ𝐼Θ(𝑇,𝑈)
Param. types PTYPE 𝑃, 𝑅 ::= 1 | !𝐼𝐴 | 𝑃 ⊗ 𝑅 | List𝑖<𝐼 𝑃 | Circ𝐼Θ(𝑇,𝑈)
Bundle types BTYPE 𝑇,𝑈 ::= 1 | 𝑤 𝐼 | 𝑇 ⊗ 𝑈 | List𝑖<𝐼 𝑇

Terms TERM 𝑀, 𝑁 ::= 𝑉 𝑊 | let ⟨𝑥, 𝑦⟩ = 𝑉 in 𝑀 | force𝑉
| boxΘ,𝑇 𝑉 | apply(𝑉,𝑊) | return 𝑉

| let 𝑥 = 𝑀 in 𝑁 | fold𝑖 𝑉 𝑊 𝑋

Values VAL 𝑉,𝑊 ::= ∗ | 𝑥 | ℓ | 𝜆𝑥𝐴.𝑀 | lift 𝑀 | (ℓ̄, C, 𝑘̄)
| ⟨𝑉,𝑊⟩ | nil | rcons 𝑉 𝑊

Wire bundles BVAL ℓ̄, 𝑘̄ ::= ∗ | ℓ | ⟨ℓ̄, 𝑘̄⟩ | nil | rcons ℓ̄ 𝑘̄

Indices INDEX 𝐼, 𝐽 ::= 𝑛 | 𝑖 | 𝐼 + 𝐽 | 𝐼 − 𝐽 | 𝐼 · 𝐽 | max (𝐼, 𝐽)
| size𝑊 | append𝑔 (𝐼, 𝐽, 𝐸, 𝐹) | out𝑔,𝑛 (𝐼1, . . . , 𝐼𝑚)
| e | wire𝑤 | 𝐼 � 𝐽 | 𝐼 � 𝐽 | �𝑖<𝐼𝐽 | �𝑖<𝐼𝐽

Figure 3.2: The syntax and types of Proto-Quipper-RA.
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Types

Types in Proto-Quipper-RA classify both data and computations, incorporating resource

information directly into their structure. The unit type (1) represents a trivial value, while

wire types (𝑤 𝐼), such as Qubit, or Bit, represent individual wires in the circuit of size 𝐼;

for example, Qubit0 could represent a qubit at depth zero, if depth is the tracked metric. The

bang type !𝐼𝐴 denotes a suspended computation of type 𝐴, with the index 𝐼 tracking the

resources required by the computation. Linear combinations of types are expressed using the

tensor type (𝐴 ⊗ 𝐵), whereas the arrow type (𝐴 −◦𝐼
𝑇
𝐵) is annotated with two indices to

capture both effect 𝐼 and closure information 𝑇 . The arrow type is a function from 𝐴 to 𝐵 that

produces a circuit of size at most 𝐼: this allows for a static verification of the resource needed

by the function. The list type (List𝑖<𝐼𝐴) is refined with an annotation indicating that the list

contains exactly 𝐼 elements, where the type of the 𝑖-th element may depend on its position 𝑖.

Finally, the circuit type (Circ𝐼
Θ
(𝑇,𝑈)) is quite useful, as it represents boxed circuits in which

𝐼 provides an upper bound on the circuit size, and Θ is a set of index variables encoding local

metrics within the input (𝑇) and output (𝑈) types of the circuit.

To give some context, if we were to track the width resource metric, a function whose

type signature is Qubit ⊸3
0 Qubit takes as input a qubit and returns a qubit in output, while

producing a circuit of width three.

Parameter Types

Parameter Types are a subset of Types specifically denoting classical parameters. Values of

these types can be freely copied or ignored, which is a key distinction from linear quantum

types, adhering to the linear-nonlinear typing discipline of Proto-Quipper-RA. This category

includes unit types, bang types, tensor types of parameters, dependent lists of parameters,

and boxed circuit types, already detailed in the previous paragraph.

Bundle Types

Bundle types are another subset of Types, used to denote collections of wires. They are

useful for inferring the input and output type of quantum operations and boxed circuits, and

for formalizing the structure of the wire bundles.
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Terms

Terms are the basic building blocks of the program expression and represent most of the

elements of the language, as in the usual lambda calculus. Terms can be evaluated by

applying certain evaluation rules and reduced to other terms or wire bundles, to represent

that a quantum operation occurred and produced a certain set of labels, or other side effects.

Terms vary a lot in their syntax, allowing for many different operations. function

application (𝑉 𝑊) applies the term 𝑊 to𝑉 , where the term 𝑊 is usually an abstraction (see

3.3.1). The let expression (let 𝑥 = 𝑀 in 𝑁) binds one or more variables 𝑥 to an expression

𝑀 of compatible shape and substitutes it within the term 𝑁 . The force 𝑉 operator executes

a suspended computation of bang type !𝐼𝐴, yielding the results and circuit it generates. The

boxing construct (boxΘ,𝑇𝑉) is a powerful element of the language, enabling the creation of

boxed circuits that can be freely duplicated and reused, just like regular data; similarly to the

circ type, Θ tracks index variables for local metrics, and 𝑇 is the input type of the circuit.

apply(𝑉,𝑊) is used to apply a boxed circuit 𝑉 to a wire bundle 𝑊 , effectively appending

the results of the application of the boxed circuit to the underlying circuit. return is used

to create a trivial computation from a value 𝑉 that does not explicitly modify the underlying

circuit.

The last and perhaps most complex term used to provide a simple, yet powerful form of

recursion on lists is the fold construct. fold𝑖 𝑉 𝑊 𝑋 is annotated with an iteration variable that

enables different behaviors based on the current step of the fold evaluation. The fold syntax

is almost identical to the Haskell implementations, in which the step function 𝑉 is applied to

the term 𝑋 , using 𝑊 as the accumulator. Note that this operator corresponds to a right-fold,

since that PQRA lists grows from left to right, as we will detail in a moment.

Values

Values are defined as terms that cannot be reduced any further, possibly because they are

variables/labels or expressions that cannot be reduced by themselves.

Proto-Quipper-RA defines the following terms as irreducible:

• Unit value (∗): utilized as a undefined value or as an empty wire. It can be used applied

to operations that do not need any input or output label, for example to initialize or

discard a qubit or a bit.
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• Variables (𝑥, 𝑦): the atomic symbols used to represent placeholders or unevaluated

terms within expressions. They are the simplest kind of terms and form the foundation

upon which abstractions and applications are built, employing them to substitute and

assign terms.

• Labels (ℓ, 𝑘): used to represent the wires of the underlying circuit.

• Abstractions (𝜆𝑥𝐴.𝑀): a function that is waiting for an argument 𝑥 of type 𝐴 to

perform the evaluation of 𝑀 . It cannot be reduced because it needs an argument passed

through an application.

• Lifted expressions (lift 𝑀): suspends the evaluation of the term, lifting it to a value

that can be easily passed around the expression, copied, or discarded.

• Boxed Circuits (ℓ̄, C, 𝑘̄): explicitly represents a concrete quantum circuit 𝐶 as data

within the language, along with its input (ℓ̄) and output ( 𝑘̄) interfaces, expressed as

wire bundles.

• Tensor (⟨𝑉,𝑊⟩): a pair of values 𝑉 and 𝑊 .

• Empty list (nil).

• Lists (rcons 𝑉 𝑊): A list 𝑉 with element 𝑊 appended to it. Lists grow to the right

with the right-cons operator and represent ordered collections of terms.

Wire Bundles

Wire Bundles’ grammar is used to reason over structured collections of labels, matching the

shape of the input and output types of circuit-building functions. Empty (non existing) wires

can be represented using the unit value ∗, while single wires are named after their label.

Wire bundles can be composed of multiple labels, grouped using tuples or lists, built using

the nil and rcons operators. Such constructors can be used to create lists of lists, tuples of

empty wires, or more complex structures.

Indices

Indices are arithmetic expressions that play a crucial role in describing resource dependencies

and quantifying various properties of quantum circuits within the language’s type-and-effect
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system. Indices are built from natural numbers (𝑛), index variables (𝑖, 𝑗 , 𝑒), and natural

arithmetic operations such as addition, natural subtraction, multiplication and maximum. A

key feature of Proto-Quipper-RA is the inclusion of abstract resource operators within the

indices. These operators do not have a standard arithmetic interpretation by themselves but

act as placeholders that are interpreted differently depending on the specific resource metric

being analyzed. These include: the null size e, the size of a single wire of type 𝑤 wire𝑤,

the size of sequential and parallel circuit composition, 𝐼 � 𝐽 and 𝐼 � 𝐽, along with their

generalization to bounded compositions, �𝑖<𝐼𝐽 and �𝑖<𝐼𝐽.

3.3.2 The Operational Semantics of Proto-Quipper-RA

Up to this point, we managed to introduce the potentialities of the language and its grammar,

as we should now be able to represent a quantum program using the constructs of Proto-

Quipper-RA. What we are missing are the inference rules according to which we will be able

to reduce the terms and store their effects, building up the CRL expression of the circuit. The

symbol ⇓ represents the evaluation relation of a configuration (C, 𝑀) of a circuit and a term,

and is used in (C, 𝑀) ⇓ (D, 𝑉) to signify that the term 𝑀 is evaluated to 𝑉 and, in doing

so, modifies the circuit C to D. Recall the substitution syntax 𝑀 [𝑉/𝑥] from Section 2.5.3

to represent the capture-avoiding substitution of 𝑥 with 𝑉 in 𝑀 . Note that such substitution

is not an operation with side-effects, and the circuit will not be affected by it.

app
(C, 𝑀 [𝑉/𝑥]) ⇓ (D,𝑊)

(C, (𝜆𝑥𝐴.𝑀)𝑉) ⇓ (D,𝑊)

The app rule specifies that to evaluate the application of a term 𝑉 to an abstraction, we

substitute the parameter of the abstraction with the argument of the application and then

evaluate the resulting term.

let-pair
(C, 𝑀 [𝑉/𝑥] [𝑊/𝑦]) ⇓ (D, 𝑋)

(C, let ⟨𝑥, 𝑦⟩ = ⟨𝑉,𝑊⟩ in 𝑀) ⇓ (D, 𝑋)

let
(C, 𝑀) ⇓ (D, 𝑉) (D, 𝑁 [𝑉/𝑥]) ⇓ (E,𝑊)

(C, let 𝑥 = 𝑀 in 𝑁) ⇓ (E,𝑊)

The evaluation of a let expression depends on the structure of the variables that are being



32 3.3 Proto-Quipper-RA: a Framework for Resource Analysis

defined. If the bound variable is a tuple, its elements are substituted individually and the

resulting term is then evaluated. Otherwise, the term (C, 𝑀) is evaluated first, producing

a new configuration (D, 𝑁); the substitution is then performed, and the resulting term is

evaluated. This rule provides the first example of an evaluation that requires multiple “steps”:

a term is evaluated in the context of an initial circuit, producing an updated circuit-term

configuration, which is subsequently used in further evaluations.

return

(C, return 𝑉) ⇓ (C, 𝑉)

force
(C, 𝑀) ⇓ (D, 𝑉)

(C, force(lift 𝑀)) ⇓ (D, 𝑉)

The rules for return and force are quite simple. Whenever we encounter a term that has

to be returned, we simply obtain the configuration described by the starting circuit and the

returned term. Instead, we evaluate a forced lifted term 𝑀 by only evaluating the term itself

in the context of the circuit.

apply
(E, 𝑞) = append(C, 𝑡, (ℓ̄,D, 𝑘̄))

(C, apply((ℓ̄,D, 𝑘̄), 𝑡)) ⇓ (E, 𝑞)

In order to apply a boxed circuit to a wire bundle and evaluate the obtained configuration,

the append function is used to match the input labels of the boxed operation and the actual

labels appearing in the circuit and in the input labels. In particular, the append function is

defined as follows:

Definition 3.2 (append). We define appending (ℓ̄,D, 𝑘̄) to C on 𝑡, which we write

append(C, 𝑡, (ℓ̄,D, 𝑘̄)), as the pair of a circuit and a wire bundle computed as follows:

1. Find (𝑡,D′, 𝑞) � (ℓ̄,D, 𝑘̄) such that the labels shared by C and D′ are exactly those

in 𝑡, where the � symbol represents equivalence, meaning that two circuits exhibit the

same structure and only differ by a renaming of labels.

2. Compute circuit concatenation E = C :: D′.

3. Finally, return (E, 𝑞).
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The evaluation of a boxed circuit box𝑇 (lift 𝑀) produces a circuit E and its output labels

𝑘̄ applying the following box rule:

box
(𝑄, ℓ̄) = freshlabels(Θ, 𝑇) (𝑖𝑑𝑄 , 𝑀) ⇓ (D, 𝑉) (D, 𝑉 ℓ̄) ⇓ (E, 𝑘̄)

(C, boxΘ,𝑇 (lift 𝑀)) ⇓ (C, (ℓ̄, E, 𝑘̄))

The rule tells us that we first evaluate the term of the boxed circuit using a blank configuration

with the identity circuit. With the term obtained, we evaluate its application with a bundle ℓ̄,

generated with the freshlabels function. This function is used to create a fresh label context

𝑄 and a wire bundle, given the input type and the index variables context of the box. We

can treat this whole operation as the independent evaluation of the boxed term, reducing the

evaluation of the configuration to the initial circuit and the evaluated circuit E along with its

input and output bundles.

We conclude this exposition with the rules to evaluate folds, namely fold-end and

fold-step:

fold-end

(C, fold 𝑉 𝑊 nil) ⇓ (C,𝑊)

fold-step
(C, 𝑀{0/𝑖}) ⇓ (D, 𝑌 ) (D, 𝑌 ⟨𝑉,𝑊⟩) ⇓ (E, 𝑍)

(E, fold𝑖 (lift 𝑀{𝑖 + 1/𝑖}) 𝑍 𝑊′) ⇓ (F , 𝑋)

(C, fold𝑖 (lift 𝑀) 𝑉 (rcons 𝑊′ 𝑊)) ⇓ (F , 𝑋)

The first rule is straightforward, telling us that the evaluation of a fold with nil input results

is the accumulator term, without further evaluations, defining the base case of the fold

evaluation. The step rule to evaluate a lifted expression 𝑀 on a list rcons 𝑊′ 𝑊 , using 𝑉 as

accumulator, can be described as follows:

1. Instantiate 𝑖 with 0, through the capture-avoiding index substitution 𝑀{0/𝑖}, in 𝑀 and

evaluate it. The resulting step function 𝑌 is specialized for the first iteration.

2. Apply 𝑌 to the tuple ⟨𝑉,𝑊⟩ and evaluate the term to obtain the new accumulator 𝑍 .

3. Recur the fold by incrementing the index 𝑖 by 1, then evaluate the term to obtain the

final configuration.
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3.3.3 Soundness of Proto-Quipper-RA

The type-and-effect system underlying Proto-Quipper-RA is proven to be sound [10] in the

sense that, under reasonable assumptions about how abstract resource indices are interpreted,

the inferred resource bounds (on width, depth, gate count, etc.) never underestimate the true

consumption of well-typed programs.

The soundness proof hinges on coherence constraints, which are mild algebraic conditions

placed on how index terms and resource metrics behave. These include, for example:

• The index assigned to the “empty” circuit (“e”) must over-approximate its actual size.

• The parallel composition operator (�) must be associative and commutative (since the

relative ordering of wires does not influence size).

• The parallel composition operator must satisfy a lax distributivity property with respect

to sequential composition operator (�): loosely, size estimates become more accurate

when parallel circuit composition distributes over sequential composition.

Because these coherence rules are quite reasonable, the system can support a variety

of resource metrics (width, depth, gate count, or restricted versions thereof) while placing

minimal burden on the user to satisfy complicated invariants.

In concrete terms, if a program 𝑀 is assigned a resource bound 𝐼 by Proto-Quipper-RA,

then for any circuit 𝐶 compatible with 𝑀 , we have that (𝐶, 𝑀) ⇓ (𝐶 :: 𝐷,𝑉) and that the

actual size of the generated circuit 𝐷 is guaranteed to be at most 𝐼. This result establishes

that the symbolic, compile-time resource bounds enforce an upper bound on the real, runtime

consumption of circuits.

This soundness guarantee justifies the use of QuRA (based on Proto-Quipper-RA) for

static resource estimation: one can trust that the inferred bounds are valid. At the same time,

because the required coherence conditions are weak, the system remains expressive enough

to capture varied metrics, without imposing heavy constraints on program structure.

3.4 The QuRA Tool

We now transition from the theoretical framework of Proto-Quipper-RA to its practical

realization, introducing QuRA (Quipper Resource Analysis), an open-source static analysis
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tool. QuRA is implemented in Haskell and its source code is publicly available1 .

3.4.1 Role and Functionality of QuRA

QuRA’s primary role is to automate the estimation and verification of resource consumption for

quantum programs described in Quipper-like languages. It takes programs written in PQ, a

concrete variant of Proto-Quipper-RA, and outputs their inferred types along with parametric

upper bounds on the size of the circuits they construct.

The tool is capable of analyzing a diverse set of resource metrics, encompassing both

global circuit metrics (e.g., gate count and width) and local wire metrics (e.g., depth). This

comprehensive analysis allows QuRA to automatically derive concrete, parametric upper

bounds for real-world quantum algorithms, such as the quantum teleportation algorithm, the

quantum Fourier transform (QFT), and Grover’s algorithm [23], demonstrating its applica-

bility in practical scenarios.

3.4.2 Key Differences and Architectural Changes from Proto-Quipper-RA

The shift from a minimalistic theoretical calculus such as Proto-Quipper-RA to an usable and

practical language, PQ, necessitates several significant architectural and linguistic transfor-

mations, which are crucial to understanding QuRA’s design and operation.

In Proto-Quipper-RA, indices (representing classical parameters) are treated as global,

undeclared parameters, with their instantiation being a meta-theoretical property [10]. This

approach, while convenient for formal proofs, is impractical for programming. To enhance

usability and clarity, PQ introduces explicit index abstraction (Λ𝐼 .𝑀) and application (𝑀 @ 𝐼)

constructs directly into the language. This change clarifies the scope of index variables and

makes writing functions more intuitive. Consequently, operators such as fold and box are

relieved of the responsibility of explicit index binding, and the Circ type no longer requires

an explicit index context (Θ) annotation.

The theoretical Proto-Quipper-RA calculus maintains a syntactic distinction between

terms and values. PQ, however, merges these categories by treating all expressions as effectful

terms as in any regular language. Furthermore, when a constructor expecting values is applied

to terms, QuRA interprets this as the sequential evaluation of the subterms, followed by the

application of the constructor to their resulting values.
1Available on GitHub at andreacolledan/qura.

https://github.com/andreacolledan/qura
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Proto-Quipper-RA relies on the explicit notion of boxed circuits of the form (ℓ̄, C, 𝑘̄)

to allow circuit objects (C) to enter the higher-level language. While useful for defining

operational semantics, these explicit circuit objects are not typically written by programmers.

QuRA takes a more abstract approach by completely removing the underlying circuit model

from the surface language. Instead, basic circuit operations (e.g., the Hadamard gate) are

introduced as atomic primitives (e.g., a Hadamard constant) and are given appropriate circuit

types. This abstraction simplifies the language’s surface syntax and provides flexibility, as it

defers the commitment to a specific circuit implementation. These QuRA primitives are called

constants and are shown in Figure 3.3.

Quantum Op. QOP 𝑜𝑝 ::= QInit{0,1} | QDiscard𝐼 | Meas𝐼
| CInit{0,1} | CDiscard𝐼 | H𝐼 | X𝐼

| Y𝐼 | Z𝐼 | T𝐼 | R𝐼 𝑛 | Rinv𝐼 𝑛
| CNot𝐼,𝐽 | CZ𝐼,𝐽

| CR𝐼,𝐽 𝑛 | CRinv𝐼,𝐽 𝑛
| CCNot𝐼,𝐽 | CCZ𝐼,𝐽

| Toffoli𝐼,𝐽,𝐸
Constants CONST 𝑐 ::= Boxed 𝑜𝑝 | MakeRGate𝑛,𝐼

| MakeRinvGate𝑛,𝐼

| MakeCRGate𝑛,𝐼,𝐽

| MakeCRinvGate𝑛,𝐼,𝐽

| MakeUnitList 𝑛

Figure 3.3: The QuRA constants.

When typing constants and quantum operations, indexes such as 𝐼 and 𝐽 are used to

describe information about the indexes and parameters such as H3 may denote that the

Hadamard gate is applied on a wire at depth 3. The natural numbers 𝑛 are used as arguments

for parametric constants. As an example, MakeRGate3,0 would create the quantum operation

R0 3: a gate that performs rotations of 𝜋/23−1 degrees around the Z axis on a wire at depth 0.

Although cumbersome at first, constants are really important as they allow us to generate

the correct quantum operations according to specific indexes, which can depend on the

iteration number or the size of the registers. The reader should also notice that the parameters

on constants are indexes, but whenever they represent a parameter of the gate, as in the rotation

gate 𝑅, and not their size, they are not indexes anymore, but simple integer parameters.

In the Table 3.1, the syntactic translations between PQ and Proto-Quipper-RA are shown.

A new type introduced during the construction of the PQ language, is the dependent function

type. They represent a function from a natural number 𝑖 to a type 𝐴 which can depend on
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𝑖. Similar to the arrow type, 𝐴 is the size of the constructed circuit, and 𝐵 is the size of the

captured wires.

Language Construct PQ Proto-Quipper-RA
Wire type Qubit{I} Qubit𝐼

Tensor type (A, B) 𝐴 ⊗ 𝐵

Dependent list type List[i<I] A List𝑖<𝐼 𝐴
Circuit type Circ[I](T,U) Circ𝐼 (𝑇,𝑈)
Arrow type A -o[I,J] B 𝐴 ⊸𝐼

𝐽
𝐵

Dependent function type forall[I,J] i. A Π𝐼
𝐽
𝑖.𝐴

Empty list [] nil
Right-cons M : N rcons 𝑀 𝑁

Abstraction \x :: A . M 𝜆𝑥𝐴.𝑀

Index abstraction forall i. M Λ𝑖.𝑀

Index application M @ I 𝑀 @ 𝐼

Table 3.1: Translation table between PQ and Proto-Quipper-RA

3.4.3 Inference Algorithm and Semantic Judgments

QuRA’s inference algorithm operates in two main passes over the program’s Abstract Syntax

Tree (AST):

1. The first pass performs a Hindley-Milner style inference [25, 28], focusing on basic type

checking while ignoring refinements and effects. Its purpose is to identify fundamental

type errors and annotate the AST with base type information to facilitate the subsequent

pass.

2. The second pass focuses on resource estimation. With base types already established,

this pass synthesizes and checks refinements and effects, computing parametric size

upper bounds based on the program’s structure.

The tool relies on SMT [3] solvers like CVC5 [2] to check the validity of inequalities

between index terms by formulating them as satisfiability problems, thereby automating the

verification of non-trivial parametric bounds.



38 3.4 The QuRA Tool

3.4.4 Resource Estimation Example

The Quantum Fourier Transform (QFT) is a fundamental quantum algorithm, conceptually

serving as the quantum analogue of the Discrete Fourier Transform (DFT) [29]. It is a key

subroutine in many other quantum algorithms that depend on analyzing the periodicity of a

state, including Shor’s algorithm [38].

When implemented on a register of 𝑛 qubits, the QFT circuit follows a distinct structure.

Each iteration of the QFT typically involves performing a sequence of controlled rotation

gates on a target qubit, with each rotation controlled by other qubits in the input register. Last,

applying a Hadamard gate to the target qubit. The overall QFT circuit on an 𝑛-qubit register

is schematically represented in Figure 3.4.

. . . . . .

. . . . . .

. . . . . .

𝑞𝑛−1 𝑅𝑛+1 𝑅𝑛 𝑅2 𝐻

width 𝑛𝑞1 𝑅2 𝐻

𝑞0 𝐻

Figure 3.4: The generic QFT circuit on an 𝑛-qubit register.

Inspecting the circuit in the previous figure, we can intuitively estimate the resource

requirements for a QFT circuit on 𝑛 qubits as follows:

• Width: For an input list of length 𝑛 qubits, the width of the QFT circuit is equal to 𝑛.

• Gate Count: The total gate count for an 𝑛-qubit QFT circuit, where the 𝑖-th iteration

(starting from 𝑖 = 0) consists of 𝑖 + 1 gates, is given by the sum:

𝑛−1∑︁
𝑖=0

(𝑖 + 1) =
𝑛∑︁
𝑖=1

𝑖 =
𝑛(𝑛 + 1)

2

• Depth: The depth of the QFT circuit is a local metric, meaning it varies per wire. If

all 𝑛 input qubits begin at an initial depth 𝑑, the 𝑖-th output qubit is expected to have a

depth of 𝑑 + 𝑛 + 𝑖.

The quantum Fourier program can be found in Program 3.1.

1 -- qft.pq annotated with width and depth analysis

2 --- HELPER FUNCTIONS ---

3 -- invert the list of intermediate qubits at iteration iter
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4 qrev = forall iter. forall d.

5 \reg :: List[i<iter] Qubit{d+iter+i}.

6 let revStep = lift forall step.

7 \(rev, q) :: (List[i<step] Qubit{d+2*iter-(i+1)}, Qubit{d+2*iter-(step+1)}).

8 rev:q in

9 fold(revStep, [], reg)

10 -- apply the controlled rotation gate to the target qubit trg at iteration iter

11 rotate = forall d. forall iter. lift forall step.

12 \((ctrls, trg), ctrl)::((List[i<step] Qubit{d+iter+i+1}, Qubit{d+iter+step}), Qubit{d+

iter+step}).

13 let (ctrl, trg) = (force cr @((iter+1)-step) @(d+iter+step) @(d+iter+step)) ctrl trg in

14 (ctrls:ctrl, trg) -- :: (List[i<step+1] Qubit{d+iter+i+1}, Qubit{d+iter+step+1})

15 --- QUANTUM FOURIER TRANSFORM ---

16 --- Parameters:

17 --- n : size of the input to the QFT

18 --- d : initial depth of the input qubits

19 --- iter : current iteration of the QFT

20 -- apply the Quantum Fourier Transform to n qubits at depth d

21 qft :: ![0](forall[0,0] n. forall[0,0] d. List[i<n] Qubit{d} -o[n,0] List[i<n] Qubit{d+n+i

})

22 qft n d reg =

23 let qftIter = lift forall iter. -- define the iteration of the QFT

24 \(ctrls, trg)::(List[i<iter] Qubit{d+iter+i}, Qubit{d}).

25 let revctrls = (force qrev @iter @d) ctrls in -- List[i<iter] Qubit{d+2*iter-(i+1)}

26 let (ctrls, trg) = fold(force rotate @d @iter, ([], trg), revctrls) in

27 -- note (ctrls, trg) :: (List[i<iter] Qubit{d+iter+i+1}, Qubit{d+2*iter})

28 let trg = (force hadamard @(d+2*iter)) trg in

29 ctrls:trg -- List[i<iter+1] Qubit{d+iter+1+i}

30 in fold(qftIter, [], reg) -- List[i<n] Qubit{d+n+i}

Program 3.1: PQ implementation of the Quantum Fourier Transform, annotated with width

and depth signatures.

We can analyze the width and depth of the program by running QuRA on it:

$ qura qft.pq -g width -l depth

and obtain:

Analyzed file 'qft.pq'.

Checked type, width, depth.

qrev :: ![0](forall[0, 0] iter. forall[0, 0] d. List[i < iter] Qubit{d + iter

+ i} -o[iter, 0] List[i0 < iter] Qubit{d + 2 * iter - (i0 +

rotate :: ![0](forall[0, 0] d. forall[0, 0] iter. ![0](forall[0, 0] step.

((List[i < step] Qubit{d + iter + i + 1}, Qubit{d + iter + stepit{1 + d +

iter + step})))
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qft :: ![0](forall[0, 0] n. forall[0, 0] d. List[i < n] Qubit{d} -o[n, 0]

List[i < n] Qubit{d + n + i})

Inspecting the signature of the qft confirms the quantities of the metrics that we postulated

earlier by inspecting the circuit:

• ![0]: the function is duplicable and does not build any circuit, so the width of the

generated circuit is zero.

• forall[0, 0] n. forall[0, 0] d.: are the index abstractions of the function,

acting as generic parameters. 𝑛 is the size of the input register, 𝑑 is the initial depth of

the input qubits. They will be used to infer the values of the metrics of the circuit.

• List[i < n] Qubit{d} -o[n, 0] List[i < n] Qubit{d + n + i}: this ex-

pression represents the input and output type of the qft, and can be split in three

parts:

– List[i < n] Qubit{d}: the input is a list of 𝑛 qubits at depth 𝑑.

– -o[n, 0]: the function produces a circuit of width 𝑛 as a side effect.

– List[i < n] Qubit{d + n + i}: the output is a list of 𝑛 qubits, where the

𝑖-th qubit sits at depth 𝑑 + 𝑛 + 1.

If we were to execute the program with the -g gatecount flag to compute the gatecount,

we would end up with the following output:

* Expected expression 'qft'

to have type

'![0](forall[0, 0] n. forall[0, 0] d. List[i < n] Qubit -o[n, 0] List[i <

n] Qubit)',

got

'![0](forall[0, 0] n. forall[0, 0] d. List[i < n] Qubit -o[sum[iter <

n]iter + 1, 0] List[i < n] Qubit)'

instead

QuRA is telling us that the inferred gatecount it expects is
∑𝑛−1

𝑖=0 (𝑖 + 1), and since the current

program is annotated for another global metric, width, there is a discrepancy. We could

proceed by changing the annotations inside the program, but the error confirms that the

inferred gatecounts are, in fact, what we were expecting.



Chapter 4

Enabling Compilation and Interpretation

Capabilities in QuRA

In the previous chapters, we introduced the syntax, type system, and operational semantics of

Proto-Quipper-RA, together with the QuRA tool that builds upon this formal foundation [9]. At

its core, QuRA is a framework designed for the static resource analysis of quantum programs:

given a well-typed PQ program, it can estimate resource metrics such as circuit size, depth,

and gate counts without ever generating the corresponding circuits.

This approach is representative of the current state-of-the-art in resource-aware quantum

programming. By symbolically reasoning over program structure rather than manipulating

explicit qubits and gates, QuRA achieves several important goals:

• It guarantees strong type safety, ensuring that well-typed programs are free from a wide

class of runtime errors.

• It enables parametric reasoning on entire families of circuits: instead of compiling a

single instance, the tool can derive expressions for resource usage as functions of input

parameters.

• It supports quantitative analyses without requiring access to specific quantum hardware

backends, making it suitable for both theoretical studies and early-stage algorithm

design.

However, QuRA is just an analyzer: it does not execute programs and therefore does

produce concrete circuits. In other words, PQ lacks an interpreter. While this state of affair

suffices for algorithm analysis, it is unsatisfactory as soon as we plan to:
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1. compute and export export the verified circuits to standardized formats such as QASM

for execution on real quantum hardware, and

2. verify that the size of computed circuit does not exceed the predicted resource usage,

3. inspect intermediate configurations to better understand how program semantics trans-

late into concrete gate sequences.

In this chapter, we present the first main contribution of this thesis: an extension of

QuRA with a complete interpreter1 implemented in Haskellthat enables the tool to interpret

well-typed PQ programs. Concretely, our implementation introduces an operational layer

that reduces expressions using the big-step semantics detailed in Section 4.1, following very

closely the previously presented Proto-Quipper-RA operational semantics from Section 3.3.2.

By doing so, configurations are produced, consisting of:

1. a residual program expression, and

2. the quantum circuit constructed so far.

This bridges the gap between symbolic analysis and runtime: instead of reasoning only about

abstract resource formulas, we can now recover the exact circuit generated by evaluating a

program.

To support this, we extend the operational semantics of Proto-Quipper-RA with additional

reduction rules and error cases tailored to the implementation. These extensions ensure that

all language constructs can be evaluated systematically and that potential errors are handled

gracefully.

A central aspect of the evaluation process is the treatment of function calls. Each

call is replaced by the body of the corresponding definition, wrapped and abstracted over

its variables according to the typing information provided by QuRA. This ensures that the

evaluation respects the type system while faithfully representing the intended behavior of the

program.

The evaluation process begins with the construction of a complete program expression

starting from the required main function. The functions encountered are substituted in the

body where they appear, wrapped using the typing information provided by QuRA, after which

the initial configuration is created: an identity circuit with an empty label context paired with
1davidesonno/qura on GitHub

https://github.com/davidesonno/qura
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the constructed term. From there, evaluation proceeds according to the extended big-step

semantics: each quantum operation updates the circuit and the label context, progressively

building the final circuit until the expression is fully reduced.

To demonstrate the capabilities of our implementation, we revisit the quantum teleporta-

tion protocol introduced earlier in Figure 2.2 [5]. By examining the resulting configuration,

we verify that the generated circuit exactly matches the CRL representation defined previ-

ously, thereby validating the correctness and consistency of our evaluation strategy.

In the sections that follow, we describe the extended reduction rules, the substitution and

variable-wrapping mechanisms, and the evaluation procedure for configurations. Finally,

we present examples that demonstrate the evaluation of non-trivial expressions and the

resulting circuits, showing how QuRA will be able to compute concrete configurations from

PQ programs.

4.1 Extending Proto-Quipper-RA Evaluation Rules

When we first introduced the evaluation rules for the Proto-Quipper-RA language, we did

not have any strategy for the evaluation of the constructs introduced later by QuRA. To be

able to create circuit representations, we first have to extend the existing rules to also account

for new terms, namely the index abstraction and index application, to create error cases to

signal irreducible expressions, and to modify the existing rules to also consider the constants

representing the quantum operations (recall Figure 3.3).

The extended evaluation rules are shown in Figures 4.1 and 4.2. These are quite more

complex, so let us proceed by steps, inspecting the old rules that got changed first.

4.1.1 Updated Rules

The rule for evaluating an application is now composed of three steps; earlier, we only

evaluated this expression if the first term was an abstraction, whereas it is enough that the

first term evaluates to an abstraction. Once the first term is reduced to an abstraction and the

second term is reduced to a value, we can proceed with evaluating the result of the substitution

of the reduced value inside the abstraction. Here, the reduction would encounter an error in

the case of the first term not evaluating to an abstraction (rules app-abs and app-err).

Starting with Figure 4.1, the rule for evaluating force follows a similar scheme, as it
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app-abs
(C, 𝑀) ⇓ (D, 𝜆𝑥𝐴.𝑃)

(D, 𝑁) ⇓ (E, 𝑉) (E, 𝑃[𝑥/𝑉]) ⇓ (F ,𝑊)
(C, 𝑀 𝑁) ⇓ (F ,𝑊)

app-err
(C, 𝑀) ⇓ otherwise
(C, 𝑀 𝑁) ⇓ Error

let
(C, 𝑀) ⇓ (D, 𝑉) (D, 𝑁 [𝑥/𝑉]) ⇓ (E,𝑊)

(C, let 𝑥 = 𝑀 in 𝑁) ⇓ (E,𝑊)

force-lift
(C, 𝑀) ⇓ (D, lift 𝑁) (D, 𝑁) ⇓ (E, 𝑉)

(C, force 𝑀) ⇓ (E, 𝑉)

force-err
(C, 𝑀) ⇓ otherwise
(C, force 𝑀) ⇓ Error

box-lift
(C, 𝑀) ⇓ (D, lift 𝑁) (𝑄, ℓ̄) = freshlabels(𝑇) (𝑖𝑑𝑄 , 𝑁 ℓ̄) ⇓ (E, 𝑘̄)

(C, box𝑇 𝑀) ⇓ (D, (ℓ̄, E, 𝑘̄))

box-err1
(C, 𝑀) ⇓ (D, lift 𝑁) (𝑄, ℓ̄) = freshlabels(𝑇)

(𝑖𝑑𝑄 , 𝑁 ℓ̄) ⇓ otherwise
(C, box𝑇 𝑀) ⇓ Error

box-err2
(C, 𝑀) ⇓ otherwise
(C, box𝑇 𝑀) ⇓ Error

Figure 4.1: (i) The updated evaluation rules of QuRA expressions.

also evaluates the term in search of a lift, rule force-lift rather than requiring it directly

as its argument, an error is otherwise handled with the force-err rule. This is even more

clear in the box rule, where the reduction of the argument towards of a lifted term modifies

the underlying circuit, which will appear in the resulting configuration, rule box-lift. The

attentive reader might have noticed that the freshlabels function is missing a term. As we

mentioned in Section 3.4.2, the introduction of explicit terms to operate on indices has

simplified the box term by removing information about the index context which is no longer

required. Evaluation of a boxed term can fail whenever a lifted term is not found (rule

box-err2) or if the boxed expression 𝑁 , applied to fresh labels in the identity context, does

not output a wire bundle, rule box-err1. Boxed circuits are meant to represent independent

circuit expressions that can be fully evaluated by themselves, producing the updated labels as

a result of the computation.

Moving onto Figure 4.2, the apply rule has become more complex: we now allow terms

to be reducible to boxed circuits and quantum operations. The first scenario is exactly the

same of Proto-Quipper-RA, with the append function defined in the same way. In the case of

a quantum operation, however, applying a wire bundle is quite easier, since the behavior of

the operation is fixed by construction. The appendqop function simply creates a fresh set of
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apply-circ
(C, 𝑀) ⇓ (D, (ℓ̄, E, 𝑘̄)) (D, 𝑁) ⇓ (F , 𝑡) (C′, 𝑞) = append(F , 𝑡, (ℓ̄, E, 𝑘̄))

(C, apply(𝑀, 𝑁)) ⇓ (C′, 𝑞)

apply-qop
(C, 𝑀) ⇓ (D,Boxed 𝑜𝑝) (D, 𝑁) ⇓ (F , 𝑡) (C′, 𝑞) = appendqop(F , 𝑡, 𝑜𝑝)

(C, apply(𝑀, 𝑁)) ⇓ (C′, 𝑞)

apply-err1
(C, 𝑀) ⇓ (D, (ℓ̄, E, 𝑘̄)) (D, 𝑁) ⇓ otherwise

(C, apply(𝑀, 𝑁)) ⇓ Error

apply-err2
(C, 𝑀) ⇓ (D,Boxed 𝑜𝑝) (D, 𝑁) ⇓ otherwise

(C, apply(𝑀, 𝑁)) ⇓ Error

apply-err3
(C, 𝑀) ⇓ otherwise

(C, apply(𝑀, 𝑁)) ⇓ Error

fold-step
(C, 𝑀) ⇓ (D, lift𝑂) (D, 𝑃) ⇓ (E,𝑊)

(F , 𝑋) = evalfold(0, E, 𝑂, 𝑁,𝑊)
(C, fold 𝑀 𝑁 𝑃) ⇓ (F , 𝑋)

fold-err1
(C, 𝑀) ⇓ (D, lift𝑂) (D, 𝑃) ⇓ otherwise

(C, fold 𝑀 𝑁 𝑃) ⇓ Error

fold-err2
(C, 𝑀) ⇓ otherwise

(C, fold 𝑀 𝑁 𝑃) ⇓ Error

iapp-iabs
(C, 𝑀) ⇓ (D,Λ𝑖.𝑁) 𝑛 = J⊢ 𝐼K (D, 𝑁{𝑛/𝑖}) ⇓ (E, 𝑉)

(C, 𝑀 @ 𝐼) ⇓ (E, 𝑉)

iapp-const
(C, 𝑀) ⇓ (D, 𝑐) 𝑛 = J⊢ 𝐼K 𝑉 = ℎ𝑎𝑛𝑑𝑙𝑒𝑐𝑜𝑛𝑠𝑡 (𝑐, 𝑛)

(C, 𝑀 @ 𝐼) ⇓ (D, 𝑉)

iapp-err1
∄ 𝑛 . 𝑛 = J⊢ 𝐼K

(C, 𝑀 @ 𝐼) ⇓ Error

iapp-err2
(C, 𝑀) ⇓ otherwise
(C, 𝑀 @ 𝐼) ⇓ Error

var
(C, 𝑥) ⇓ Error

tuple
(C, 𝑀) ⇓ (D, 𝑉)
(D, 𝑁) ⇓ (E,𝑊)

(C, ⟨𝑀, 𝑁⟩) ⇓ (E, ⟨𝑉,𝑊⟩)

cons
(C, 𝑀) ⇓ (D, 𝑉)
(D, 𝑁) ⇓ (E,𝑊)

(C, rcons 𝑀 𝑁) ⇓ (E, rcons 𝑉 𝑊)

values
(C, 𝑣) ⇓ (C, 𝑣)

Figure 4.2: (ii) The updated evaluation rules of QuRA expressions.
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output labels using the current label context of the configuration, also providing an updated

version of it with the new labels such that there are no duplicates. The quantum operation

is then appended to the CRL of the circuit using the result of the evaluation of the second

argument of apply as input labels, and the fresh labels as outputs.

Definition 4.1 (appendqop). We define appending a quantum operation 𝑜𝑝 to C on ℓ̄, which

we write appendqop(C, ℓ̄, 𝑜𝑝), as the pair of a circuit and a wire bundle computed as follows:

1. Retrieve the output type 𝑇 of the operation 𝑜𝑝.

2. Create fresh labels 𝑘̄ of type 𝑇 and different from those in the label context 𝑄 of C.

3. Define the new circuit E = C; 𝑜𝑝(ℓ̄) → 𝑘̄

4. Finally, return (E, 𝑘̄).

Similarly to previous rules, the evaluation of apply fails if the terms do not reduce correctly,

as shown in rules apply-err1, apply-err2, and apply-err3.

The evaluation of a fold changed since QuRA moved its explicit index towards the terms

types. The rule changes accordingly and now requires an auxiliary method evalfold, which

will be presented in a moment. Except for this change, the fold-nil rule remained the same,

and the function and input term of the fold do not need to be, respectively, a lifted term and

a value directly, but we take the time to evaluate them first.

Definition 4.2 (evalfold). We define the evaluation of a term fold lift 𝑃 𝑉 𝑊 in a circuit C at

iteration 𝑛, which we write evalfold(𝑛, C, 𝑃,𝑉,𝑊), as the configuration (C′, 𝑉 ′) obtained as

follows:

• If 𝑊 is the empty list nil, return 𝑉 .

• If 𝑊 = rcons 𝑋′ 𝑋:

– evaluate (C, 𝑃 @ 𝑛) and obtain (D, 𝑌 );

– evaluate (D, 𝑌 ⟨𝑉, 𝑋⟩) and obtain the configuration (E, 𝑉 ′) with the updated

accumulator;

– recur on evalfold(𝑛 + 1, E, fold 𝑀 𝑉 ′ 𝑋′).

• if at any step, any of the terms are not in the required form, return an error.
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4.1.2 Newly Added Rules

The new element of the language introduced by QuRA and presented in Section 3.4.2 is

the index application. An index application is structurally very similar to a standard term

application. It requires the first term to be reduced to an index abstraction 𝑖 @ 𝑁 , in order to

substitute its index variable with the index specified in the index application. Moreover, the

index has to be evaluated to a natural number before substituting, raising an error otherwise.

The value of a closed index is represented by the expression J⊢ 𝐼K. Expressions’ semantic is

trivial after the abstract indexes have been interpreted, which happens during type-checking.

The interested reader might refer to the appendix in [9]. During the circuit construction stage,

the value of an index is trivial, as it corresponds to the evaluation of common arithmetic

operations. Although the standard behavior of an application is to provide an argument to an

abstraction, this is not the only allowed case in QuRA. The first term of the application could

also evaluate to a constant, described by the iapp-const rule: this is quite useful when working

with parametric constants such as rotations or MakeUnitList 𝑛. The function handleconst is

used to generate an expression that pairs the constant with the index on a case-by-case basis:

if the constant is a boxed quantum operation the application does nothing, otherwise the

natural number is used to generate an element of the parametric constant family. As a simple

example of an index applied to a constant, consider how the QFT algorithm in Figure 3.4

applies controlled rotations 𝑅𝑛 using a parametric index. Once the index is evaluated to a

number 𝑛 and applied to MakeRGate𝑛,𝐼 , the quantum operation R𝐼 𝑛 is created.

4.1.3 Simplifications and Minor Rules

The return rule is removed, as return is no longer part of the language. The let rule handles

pattern matching, namely on variables, tuples, and lists. Variable substitution is handled with

the usual capture-avoiding substitution; tuple substitution can be decomposed into a chain

of single variable substitution, similar to the old let-pair rule and list substitution can be

done in the same way. Note that it is only possible to substitute a tuple of variables for a

tuple of expressions with the same shape. A list of variables can be substituted with a list of

expressions of equal or larger size; in the latter case, the final variable in the pattern will be

assigned to a list with the remaining elements.

We adjust the definitions of tuples and lists as they are considered to be values only if

their elements are also values. This is checked with the tuple and cons rules.
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As a final remark, in PQ the syntactic distinction between terms and values is no longer

present: all constructs are treated uniformly as expressions. Nevertheless, many constructs

that were formerly classified as values still behave as such, in the sense that their evaluation

terminates immediately and simply returns the construct itself (rule Values). A notable ex-

ception is the case of variables. According to the Var rule, evaluating a standalone variable

raises an error, since variables are not intended to appear in isolation during evaluation. In-

stead, they must always be bound within a let expression or an abstraction, where substitution

is handled by the corresponding evaluation rules.

4.2 Assembling the Circuit Configuration

Having defined the rules to evaluate an expression representing a Proto-Quipper-RA program,

we are left with the task of merging the top level definitions found in the program to assemble

the complete term. It is definitely not enough to simply substitute the body of a definition

whenever its name appears in another term. In order for the function to insert to be functional,

it would need the interfaces to apply arguments to its body. In practice, we are saying that

we need to wrap the body of the function with abstractions and index abstractions according

to the type of function parameters. For example, consider the function: add(𝑥, 𝑦) := 𝑥 + 𝑦,

where 𝑥, 𝑦 are the variables, in the body (add 1) 2. Naively replacing add would result in

the expression ((𝑥 + 𝑦) 1) 2, but, as we can notice, there is no way to apply the arguments to

the operation. What is required to do is wrap add with 𝜆𝑦.𝜆𝑥. and obtain the final expression

((𝜆𝑦.(𝜆𝑥.(𝑥 + 𝑦))) 1) 2.

Luckily, QuRA’s inference algorithm provides us with a collection of all definitions found

during the parsing and type-checking of the input file, together with their signatures and

parameters. We can use those to infer the required abstraction type and the names of the

variables they should bound. The procedure is fairly simple, as it requires one to scan the

signature of the definition while also sliding over the list of formal parameters.

Up to now, there was no need for a Proto-Quipper-RA program to have an entry point.

This was of course not needed at all, as QuRA intended use was to analyze quantum programs

without running them. Our extension to the tool aims to produce quantum circuits that can be

run on quantum devices; therefore, programs should h ave a main routine in which to prepare

all the input values needed for the functions.
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The last step in preparing the initial configuration is to pair an empty circuit with the

term obtained by substituting the definitions inside the main. The fresh circuit is going to be

represented by a 𝑖𝑑𝑄 in which 𝑄 = •, an initially empty set of labels with no operations at

all applied to it. During the evaluation of the program expression, quantum operations are

appended by concatenating the boxed circuit (ℓ̄, 𝑜𝑝, 𝑘̄) to C: C′ = C; 𝑜𝑝(ℓ̄) → 𝑘̄ , and then

new output wires are added to the context.

4.3 Program Execution and Command-Line Options

The introduced mechanism is implemented in the tools itself, as the evaluation of a pro-

gram now becomes QuRA default behavior, which tries to generate the corresponding circuit

whenever a main function is defined. Running the command

qura FILE [-g|--global-metric-analysis METRIC] [-l|--local-metric-analysis

METRIC]

QuRA type-checks the PQ program, infers the required metrics, and starts the circuit evaluation

process. However, the evaluation phase can be omitted using the --no-run flag.

Another important option is qubit recycling, which structurally changes the number of

wires of the generated circuits: --no-recycling forces the circuit to initialize new wires

at depth zero, which means that the discarded wires will never be used again and that we

always employ fresh bits or qubits. Whenever a program uses auxiliary qubits to perform

computation and discards them, the wires are idle, and it would be a great optimization to

be able to reuse them. The number of wires needed could explode if the circuit needs to

perform many iterations on fresh qubits. The introduced flag will not affect explicitly the

width of the circuit generated, as the CRL notation only represents the wires at a high level

of abstraction. Recycling only affects the circuit whenever it is required to convert it to some

specific language, as in Chapter 6 when we will convert the circuits to OpenQASM 3.0.

4.4 Inspecting the Evaluations of Simple Programs

Having defined how to assemble the initial circuit-term configuration to evaluate, we can

now explore how our extended tool behaves on concrete examples. This section presents a

series of small programs whose evaluation demonstrates the interaction between expressions

and quantum circuits, used to test QuRA builds. By observing the resulting configurations,
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we gain insight into how classical computations are reduced, how quantum operations are

introduced, and how the circuit structure evolves step by step. The outputs are obtained by

running the command qura without any additional flags.

4.4.1 Programs with No Side-Effects

We start by considering a simple program that does not introduce any quantum operations or

modify the circuit, behaving as a standard lambda-calculus expression. This example serves

as a baseline, showing that our evaluation strategy behaves as expected when no qubits are

allocated and no gates are applied. In such cases, the resulting circuit remains the empty

identity circuit, whereas the expression is fully reduced to a value. It is useful to test the

evaluation mechanism on programs that involve only abstractions, function application, and

basic constructs such as let and let-pair.

04.pq Consider the following program 04.pq, which combines all of these elements:

1 main :: !(Qubit -o Qubit)

2 main = let id = (lift $ \f :: (Qubit -o Qubit) . f)

3 in let (id1, id2) = (force id, force id)

4 in id1 (id2 (\q :: Qubit . q))

Program 4.1: The test program 04.pq

This program defines an identity function id, which takes as input a function from qubits

to qubits and returns it unchanged. It duplicates id into id1 and id2, then applies id2 to the

qubit identity function; id1 is then applied to the result of that.

From the grammar and rules presented earlier, we know that:

• Abstractions are values, they evaluate to themselves and are not reduced further.

• Applying an abstraction to an argument results in the substitution of the argument into

the abstraction’s body.

• The let construct behaves similarly, binding values to variables and substituting them

in the expression that follows.
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Applying these principles, we expect that the chain of identities in 04.pq ultimately

reduces to the qubit identity function:

𝜆𝑞 : Qubit.𝑞

Running QuRA on the program confirms this intuition:

File 'test/Interpreter/pos/04.pq', produced circuit:

> Label Context: [empty]

> Operations:

[no operations]

While evaluating to:

> (\q :: Qubit . q)

As expected, the final expression is the identity function on qubits, and the circuit remains

empty since no quantum operations are involved.

4.4.2 Programs Involving Quantum Operations

Next, we examine programs that introduce quantum operations, such as qubit allocations,

gate applications, and measurements. These examples showcase how the evaluation process

appends new quantum gates to the circuit and updates the label context as new qubits are

introduced or modified.

06.pq Among the simplest programs we could think of is one that simply initializes qubits

to 0 and 1. This program can be written in PQ in this way:

1 main :: ! (Qubit, Qubit)

2 main = let q = apply(QInit0, ()) in

3 let p = apply(QInit1, ()) in

4 (q, p)

Program 4.2: The test program 06.pq

Before going further, let us briefly analyze the program: the main is build of a chain of let

operations that assigns to qubits an apply, with arguments QInit0 and (), and store them

in a tuple. Here, QInit is the quantum operation that initializes a qubit, while the empty

parentheses represent the unit ∗. Recall from Section 4.1.1 that the second argument has to

be a wire bundle.
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Evaluating the program, we would expect that at least the qubit initialization operations

are added to the circuit operations, acting on an empty label and producing an output label

that should also be present in the label context. To verify this, we run QuRA and inspect the

outputs:

File 'test/Interpreter/pos/06.pq', produced circuit:

> Label Context: q0:Qubit, q1:Qubit

> Operations:

QInit0 (*) -> q0;

QInit1 (*) -> q1.

While evaluating to:

> (q0, q1)

It is worth noting that the label context now contains the qubits 𝑞0 and 𝑞1, resulting from

the application of QInit0∗ and QInit1∗. They correctly transform an empty wire into a qubit,

and the result of the operation is a label; labels are values, and therefore the expression is not

further reduced.

09.pq We will now present an example program that uses an user-defined bell function

as subroutine, boxed in the main function and used twice. In particular, the main initializes

two qubits in a really similar way to the program presented earlier, then applies them to the

boxed bell two times. Notice that in order to be able to use other functions in PQ, we have

to force them.

1 bell :: !((Qubit, Qubit) -o (Qubit, Qubit))

2 bell (q1, q2) =

3 let q1 = apply(Hadamard @0, q1) in

4 let (q1, q2) = apply(CNot @0 @0, (q1, q2)) in

5 (q1, q2)

6

7 main :: !(Qubit, Qubit)

8 main =

9 let q = apply(QInit0, ()) in

10 let p = apply(QInit1, ()) in

11 let boxedBell = box bell in

12 let (q, p) = apply(boxedBell , (q, p)) in

13 apply(boxedBell , (q, p))

Program 4.3: The test program 09.pq
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We used two new quantum operations: H and CNot and we can notice the presence of

index applications, for example, in the term H @ 0, which will then evaluate to the boxed

circuit (𝑞1,H0, 𝑞
′
1). Those are fundamental for QuRA to be able to infer resource usage. A PQ

program needs to be well-typed, and hence in the programs indices should be passed to the

index abstraction that require them using dummy values such as zeros is also a possibility.

In upcoming scenarios, the indexes willplay the role of parameters and will help us describe

whole circuit families.

The function bell is boxed and then used twice inside the main. Evaluating the program

correctly puts the qubits in the Bell state a first time and then a second:

File 'test/Interpreter/pos/09.pq', produced circuit:

> Label Context: q0:Qubit, q1:Qubit, q2:Qubit, q3:Qubit, q4:Qubit, q5:Qubit,

q6:Qubit, q7:Qubit

> Operations:

QInit0 (*) -> q0;

QInit1 (*) -> q1;

Hadamard (q0) -> q2;

CNot ((q2, q1)) -> (q3, q4);

Hadamard (q3) -> q5;

CNot ((q5, q4)) -> (q6, q7).

While evaluating to:

> (q6, q7)

We can observe that two Hadamard gates and two CNots are applied, and we can verify

the labeling with the following image:

𝑞0 𝑞2 𝑞3 𝑞5 𝑞6

𝑞1 𝑞4 𝑞7

|0⟩ 𝐻 𝐻

|1⟩

Figure 4.3: Label evolution of the doubly applied Bell state of program 09.pq.

Boxing is a really useful part of the language, as it allows us to define re-usable circuits,

so let us analyze it’s behavior by considering the expression of the boxed bell function:

1 box (

2 lift (\(q1, q2) :: (Qubit, Qubit) .

3 (let q1 = apply ((Hadamard @ 0), q1) in

4 (let (q1, q2) = apply (((CNot @ 0) @ 0), (q1, q2)) in

5 (q1, q2)

6 )))
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Following the box rule, we are required to reduce the expression to a lifted term first,

which is already the case, and then evaluate that with the identity circuit. The evaluation of

the lifted term inside the boxed function produces the following circuit:

Evaluating:

> Label Context: q0:Qubit, q1:Qubit, q2:Qubit, q3:Qubit, q4:Qubit

> Operations:

Hadamard (q0) -> q2;

CNot ((q2, q1)) -> (q3, q4).

> Expression:

(q3, q4)

which correctly represents the Bell state.

If we examine intermediate evaluation results during the complete evaluation of the PQ

program, we can focus our attention in the moment of the second application of the boxed

circuit to the underlying circuit being produced:

Evaluating:

> Label Context: q0:Qubit, q1:Qubit, q2:Qubit, q3:Qubit, q4:Qubit

> Operations:

QInit0 (*) -> q0;

QInit1 (*) -> q1;

Hadamard (q0) -> q2; <-- first box is appended here

CNot ((q2, q1)) -> (q3, q4).

> Expression:

apply((boxed ((q0, q1), [BOXED CIRC], (q3, q4))), (q3, q4)) <-- the term

being evaluated

We expect the input labels of the boxed circuit and the labels that the circuit is applied to

to become the same, whereas the other labels of the box to be mapped to names not existing

in the underlying circuit. In fact, that is the case, as shown in the evaluated circuit:

Evaluating:

> Label Context: q0:Qubit, q1:Qubit, q2:Qubit, q3:Qubit, q4:Qubit, q5:Qubit,

q6:Qubit, q7:Qubit

> Operations:

QInit0 (*) -> q0;

QInit1 (*) -> q1;

Hadamard (q0) -> q2; <-- first box appended here

CNot ((q2, q1)) -> (q3, q4);

Hadamard (q3) -> q5; <-- second box appended here

CNot ((q5, q4)) -> (q6, q7).

> Expression:

> (q6, q7)

which is also the fully evaluated configuration of the program.
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4.5 Evaluating More Complex Programs

After validating our evaluation strategy for simple programs, we now turn to more complex

PQ programs that implement real algorithms, exploiting the full spectrum og the language’s

features. These examples are designed to test the full expressive power of the language and

to showcase how the interpreter handles non-trivial evaluation scenarios.

Unlike the simpler cases seen before, these programs interact with quantum resources

in more sophisticated ways. During evaluation, qubits may be allocated, manipulated, and

measured in different contexts, leading to non-trivial transformations of the circuit structure.

This allows us to observe how our semantics correctly tracks label contexts, appends gates

in the right order, and ensures that the resulting circuit faithfully represents the intended

computation.

Finally, these examples provide a bridge to the next chapter, where the metrics of the

evaluated circuits are compared with the estimates inferred by QuRA, with the assurance that

the generated circuits faithfully match their expected structure.

4.5.1 Teleportation Protocol

Inspecting the programs presented in the last sections helped us understand the effects of

quantum operations on the underlying circuit. This concept was the reason to introduce

an operation buffer and a label context, that together represent the CRL expression of the

circuit. When we first presented it, we used the teleportation protocol as example of its usage

(Section 3.2.1). We will now verify that QuRA output matches the expected representation of

the program; the PQ implementation is shown in Program 4.4.

1 -- put q and p into the entangled |+> state

2 bell :: !((Qubit, Qubit) -o (Qubit, Qubit))

3 bell (q, p) =

4 let q = (force hadamard @0) q in

5 let (q,p) = (force cnot @0 @0) q p in

6 (q,p)

7 --- Alice ' s part of the teleportation protocol

8 alice :: !((Qubit, Qubit) -o (Bit, Bit))

9 alice (p, r) =

10 let (r,p) = (force cnot @0 @0) r p in

11 let r = (force hadamard @0) r in
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12 let c = (force meas @0) p in

13 let d = (force meas @0) r in

14 (c,d)

15 --- Bob ' s part of the teleportation protocol

16 bob :: !((Qubit, Bit, Bit) -o Qubit)

17 bob (q, c, d) =

18 let (c,q) = (force ccnot @0 @0) c q in

19 let (d,q) = (force ccz @0 @0) d q in

20 let _ = (force cdiscard @0) c in

21 let _ = (force cdiscard @0) d in

22 q

23 --- teleport the state of qubit r (at depth i) into qubit q

24 teleport :: !(Qubit -o Qubit)

25 teleport r =

26 let p = force qinit0 in

27 let q = force qinit0 in

28 let (q,p) = force bell (q,p) in

29 let (c,d) = force alice (p,r) in

30 force bob (q,c,d)

31 --- MAIN

32 main =

33 let q = force qinit1 -- initialize the qubit to |1>

34 in force teleport q -- teleport it

Program 4.4: PQ implementation of the Quantum Teleportation Protocol.

The reader may notice a small change in the way quantum operations are applied. Pre-

viously, we applied operations directly to their arguments via the apply construct, as with

the CNot of Program 4.4.2. However, this approach required matching the exact type of the

operation, which means that all parameters needed to be provided at once, typically bundled

into a tuple. This was somewhat restrictive, as it prevented partially applying an operation to

one argument and supplying the remaining arguments later.

To improve usability, we now rely on the corresponding library functions that wrap each

quantum operation. These wrappers expose the operations as ordinary functions, allowing

us to apply arguments sequentially in a natural and functional style, as demonstrated with

the CNot used in the teleportation example. Semantically, nothing changes, as the resulting

circuits remain identical, but the syntax becomes more convenient and expressive.
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Figure 4.4 shows the evaluation output of the program and the graphical representation of

the circuit labels. The obtained operations rigidly follow the CRL representation introduced

in Section 3.2.1, with the only exception being the qubit to teleport q, already present in the

circuit.

> Operations:
QInit1 (*) -> q0;
QInit0 (*) -> q1;
QInit0 (*) -> q2;
Hadamard (q2) -> q3;
CNot ((q3, q1)) ->

(q4, q5);
CNot ((q0, q5)) ->

(q6, q7);
Hadamard (q6) -> q8;
Meas (q7) -> b0;
Meas (q8) -> b1;
CCNot ((b0, q4)) ->

(b2, q9);
CCZ ((b1, q9)) ->

(b3, q10);
CDiscard (b2) -> *;
CDiscard (b3) -> *.

While evaluating to:
> q10

𝑞0 𝑞6 𝑞8 𝑏1 𝑏3

𝑞1 𝑞5 𝑞7 𝑏0 𝑏2

𝑞2 𝑞3 𝑞4 𝑞9 𝑞10

|1⟩ 𝐻

|0⟩

|0⟩ 𝐻 𝑍

Figure 4.4: The evaluated configuration of the Quantum Teleportation Protocol and the
corresponding circuit with annotated wires. The label context is omitted for simplicity.

4.5.2 Mapping the Hadamard Gate to a List

The next program we present serves as an introduction to parametric constructions. PQ allows

the definition of functions whose output type can depend on its inputs. For example, it could

be used to define a function which takes as input a list of 𝑛 Qubits at depth 𝑑 and outputs the

same list with an Hadamard gate applied to each qubit.

The simple program we describe can be implemented in PQ as follows:

1 mapHadamard :: !forall n. List[_<n] Qubit -o List[_<n] Qubit

2 mapHadamard n list =

3 let hadaStep = lift forall step. \(qs ,q) :: (List[_<step] Qubit,

Qubit). qs: (force hadamard @0) q

4 in fold(hadaStep , [], list)

Evaluating this program on lists of qubits with increasing length, we obtain the outputs

captured in Figure 4.5. Besides the initialization of progressively more qubits, the number of

Hadamard gates is also increasing, each being applied to a different qubit.
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File
'mapHadamard.pq',
produced circuit:

> Label Context:
q0:Qubit,
q1:Qubit,
q2:Qubit, q3:Qubit

> Operations:
QInit0 (*) -> q0;
QInit0 (*) -> q1;
Hadamard (q1) -> q2;
Hadamard (q0) -> q3.

(a) mapHadamard on a 2-qubit
list.

File
'mapHadamard.pq',
produced circuit:

> Label Context:
q0:Qubit,
q1:Qubit,
q2:Qubit,
q3:Qubit,
q4:Qubit, q5:Qubit

> Operations:
QInit0 (*) -> q0;
QInit0 (*) -> q1;
QInit0 (*) -> q2;
Hadamard (q2) -> q3;
Hadamard (q1) -> q4;
Hadamard (q0) -> q5.

(b) mapHadamard on a 3-qubit
list.

File
'mapHadamard.pq',
produced circuit:

> Label Context:
q0:Qubit,
q1:Qubit,
q2:Qubit,
q3:Qubit,
q4:Qubit,
q5:Qubit,
q6:Qubit, q7:Qubit

> Operations:
QInit0 (*) -> q0;
QInit0 (*) -> q1;
QInit0 (*) -> q2;
QInit0 (*) -> q3;
Hadamard (q3) -> q4;
Hadamard (q2) -> q5;
Hadamard (q1) -> q6;
Hadamard (q0) -> q7.

(c) mapHadamard on a 4-qubit
list.

Figure 4.5: QuRA outputs of the function mapHadamard on different register lengths.

If we focus on the output of Figure 4.5c, we can verify the expected behavior of the

function:

𝑞0 𝑞7

𝑞1 𝑞6

𝑞2 𝑞5

𝑞3 𝑞4

|0⟩ 𝐻

|0⟩ 𝐻

|0⟩ 𝐻

|0⟩ 𝐻

Figure 4.6: Label annotations on the output circuit of mapHadamard on 4 qubits.

4.5.3 Quantum Fourier Transform

The QFT program, whose code is presented in Appendix A.2, makes extensive use of folds,

needed to iterate over a list of qubits parametrically over a certain index; in this program, the

iteration is used to determine which controlled rotation to apply and to reverse lists.

As discussed in previous sections, the Quantum Fourier Transform (QFT) algorithm

constructs a family of circuits in a systematic and well-defined manner, parametrically on 𝑛.

For 𝑖 going from 0 to 𝑛− 1, 𝑖 − 1 controlled rotations are applied to the 𝑖-th qubit, followed by

an Hadamard gate. The reader might refer to Fig. 3.4 to confirm the structure of the circuit.

From the evaluation of the program, we expect to find a chain of controlled rotations on
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the wires, controlled by subsequent qubits:

File 'examples/qft.pq', produced circuit:

> Label Context: [...]

> Operations:

QInit0 (*) -> q0;

QInit0 (*) -> q1;

QInit0 (*) -> q2;

QInit0 (*) -> q3;

Hadamard (q3) -> q4;

CR2 ((q4, q2)) -> (q5, q6);

Hadamard (q6) -> q7;

CR3 ((q5, q1)) -> (q8, q9);

CR2 ((q7, q9)) -> (q10, q11);

Hadamard (q11) -> q12;

CR4 ((q8, q0)) -> (q13, q14);

CR3 ((q10, q14)) -> (q15, q16);

CR3 ((q12, q16)) -> (q17, q18);

Hadamard (q18) -> q19.

While evaluating to:

> (((([]:q13):q15):q17):q19)

We can verify the correctness of both the labels and the sequence of operations by

reconstructing the annotated circuit from the output. This also allows us to confirm that the

final expression, in this case the list of labels, indeed corresponds to the output wires of the

circuit. The representation obtained is shown in Figure 4.7.

𝑞0 𝑞14 𝑞16 𝑞18 𝑞19

𝑞1 𝑞9 𝑞11 𝑞12 𝑞17

𝑞2 𝑞6 𝑞7 𝑞10 𝑞15

𝑞3 𝑞4 𝑞5 𝑞8 𝑞13

𝑞0 𝑅4 𝑅3 𝑅2 𝐻

𝑞1 𝑅3 𝑅2 𝐻

𝑞2 𝑅2 𝐻

𝑞3 𝐻

Figure 4.7: Wire names for the QFT circuit acting on 4 qubits.



Chapter 5

Validating Resource Estimates via

Concrete Circuits

In the previous chapters, we introduced the evaluation of PQ programs and described how the

resulting configurations capture the families of generated circuits. Although we have verified

the structural correctness of these circuits by comparing their shapes with the corresponding

CRL representations, we are still missing a detailed analysis of resource metrics such as gate

counts, circuit depth, and qubit usage.

This chapter is devoted to assessing the accuracy of QuRA’s resource estimation capabil-

ities. Specifically, we compare the metrics inferred by QuRA with those computed directly

from the concrete circuits produced during the evaluation of the program. Although QuRA is

formally sound [9], meaning that its inferred bounds never underestimate the actual resource

consumption, it is important to evaluate the tightness of these estimates. In other words, we

investigate whether the bounds closely reflect the true cost of executing a program, or if they

tend to be overly conservative. This empirical validation provides insight into the practical

reliability of QuRA’s estimates.

For clarity, we categorize quantum programs into two classes:

• Non-Parametric Circuits: Circuits whose structure and size are fixed, independent

of any external parameter, such as input size or iteration count.

• Parametric Circuit Families: Circuits whose structure depends on input parameters,

such as the number of qubits, the desired precision, or the number of iterations in the

algorithm.
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This classification allows us to examine both simple, fixed-size programs and scalable al-

gorithmic families, providing a comprehensive assessment of QuRA’s resource estimation

performance.

5.1 CRL Metric Computation

To perform this validation, we analyze the circuits generated during program evaluation,

computing their width, depth, and gate counts. It is important to note that QuRA analysis

follows a strict rule: the width of a circuit is always calculated assuming that qubit recycling

is possible, while the depth calculation always assumes that new initializations are performed

at depth zero, and therefore without wire recycling. Gatecount is not affected by the notion

of recycling, as the number of gates does not vary depending on which wires they are applied

to.

To align QuRA results with the metrics computed for the generated circuits, whenever we

want to compute depth, we must explicitly adopt the --no-recycling flag.

Before being able to compare the circuit resources, we have to formally define them for a

circuit in the CRL notation.

Definition 5.1 (Width of a Circuit). Let C be a circuit. The width of C, written width(C), is

defined recursively on C as follows:

width(𝑖𝑑𝑄) = |𝑄 |;

width(C; 𝑔(ℓ̄) → 𝑘̄) = width(C) + ((| 𝑘̄ | − |ℓ̄ |) .− reusable(C));

reusable(C) = width(C) − outputs(C),

where |𝑄 | is the cardinality of the domain of 𝑄, |ℓ̄ | is the number of labels occurring in ℓ̄,

and 𝑛
.− 𝑚 denotes natural subtraction of 𝑚 from 𝑛, which is 0 if 𝑛 ≤ 𝑚. outputs(C) is the

number of output wires of C.

The depth definition of a CRL circuit that we adopt in this chapter is slightly more compact

than the generic one proposed in [10]. In our specific scenario, all circuits produced by a

program are closed, that is the labels existing in the label context can only originate from the

circuit itself. This simplifies the notion of depth, since we can simply assume that every label
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starts at a depth of zero. The depth of a circuit followed by an operation can be computed

with the more standard approach of putting the output labels of an operation at the depth of

the deepest input label plus one, which is the depth of the operation itself.

Definition 5.2 (Depth of a Circuit). Let C be a circuit and let FL(ℓ̄) denote the set of label

names occurring in a wire bundle ℓ̄. The depth of label 𝑡 in C, written depth(C, 𝑡), is defined

as follows:

depth(𝑖𝑑•, 𝑡) = 0;

depth(C; 𝑔(ℓ̄) → 𝑘̄ , 𝑡) =


max{depth(C, ℓ) | ℓ ∈ FL(ℓ̄)} + 1 if 𝑡 ∈ FL( 𝑘̄),

depth(C, 𝑡) otherwise.

As introduced earlier, the gatecount metric is quite easy as it is enough to count the number

of operations that appear in the circuit, with the empty circuit and the meta-operations – such

as QInit, CInit, QDiscard, CDiscard – having a gatecount of zero.

Definition 5.3 (Gate Count of a Circuit). Let C be a circuit. The gate count of C, written

gatecount(C), is defined by structural induction on C as follows:

gatecount(𝑖𝑑𝑄) = 0;

gatecount(C; 𝑔(ℓ̄) → 𝑘̄) = gatecount(C), 𝑔 ∈ {QInit,CInit,QDiscard,CDiscard};

gatecount(C; 𝑔(ℓ̄) → 𝑘̄) = gatecount(C) + 1, otherwise.

5.2 Resources Analysis of Non-Parametric Circuits

5.2.1 The Quantum Teleportation Algorithm

As a canonical example of a non-parametric program, we revisit the teleportation protocol.

Let us start by executing QuRA on the program to collect the metrics values. To do so,

we refine the code, presented earlier in Section 4.5.1, with the required signatures for our

metrics. For this first example, we show the extended program annotated with width and

depth, Program 5.1, and with gatecount and depth, provided in Appendix A.1.

1 -- teleportation.pq annotated for width and depth

2 --- put q and p into the entangled |+> state

3 bell :: ![0](forall[0,0] dq. forall[0,0] dp.
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4 (Qubit{dq}, Qubit{dp}) -o[2,0] (Qubit{max(dq+1, dp) + 1}, Qubit{max(dq+1, dp) + 1}))

5 bell dq dp (q, p) =

6 let q = (force hadamard @dq) q in

7 let (q,p) = (force cnot @dq+1 @dp) q p in

8 (q,p)

9 --- Alice ' s part of the teleportation protocol

10 alice :: ![0](forall[0,0] dp. forall[0,0] dr.

11 (Qubit{dp}, Qubit{dr}) -o[2,0] (Bit{max(dp, dr) + 2}, Bit{max(dp, dr) + 3}))

12 alice dp dr (p, r) =

13 let (r,p) = (force cnot @dr @dp) r p in

14 let r = (force hadamard @ max(dp, dr) + 1) r in

15 let c = (force meas @ max(dp, dr) + 1) p in

16 let d = (force meas @ max(dp, dr) + 2) r in

17 (c,d)

18 --- Bob ' s part of the teleportation protocol

19 bob :: ![0](forall[0,0] dq. forall[0,0] dc. forall[0,0] dd.

20 (Qubit{dq}, Bit{dc}, Bit{dd}) -o[3,0] Qubit{max(dd, max(dc, dq) + 1) + 1})

21 bob dq dc dd (q, c, d) =

22 let (c,q) = (force ccnot @dc @dq) c q in

23 let (d,q) = (force ccz @dd @ max(dc, dq) + 1) d q in

24 let _ = (force cdiscard @ max(dc, dq) + 1) c in

25 let _ = (force cdiscard @ max(dd, max(dc, dq) + 1) + 1) d in

26 q

27 --- teleport the state of qubit r (at depth dr) into qubit q

28 teleport :: ![0](forall[0,0] dr. Qubit{dr} -o[3,0] Qubit{dr+6})

29 teleport dr r =

30 let q = force qinit0 in

31 let p = force qinit0 in

32 let (q,p) = (force bell @0 @0) (q,p) in

33 let (c,d) = (force alice @2 @dr) (p,r) in

34 (force bob @2 @ max(2, dr) + 2 @ max(2, dr) + 3) (q,c,d)

Program 5.1: PQ implementation of the Quantum Teleportation Protocol, annotated with

width and depth signatures.

Width

$ qura teleportation -width-depth.pq -g width

[... more outputs, omitted for brevity ...]

teleport :: ![0](forall[0, 0] dr. Qubit -o[3, 0] Qubit)

The annotation of the arrow type tells us that when applying this function to a qubit, it

produces a circuit of width at most 3.

Depth
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$ qura teleportation -gatecount -depth.pq -l depth --no-recycling

[... more outputs, omitted for brevity ...]

teleport :: !(forall dr. Qubit{dr} -o Qubit{dr + 6})

The depth annotations on the qubits {dr} and {dr+6}, tells us that the teleportation

function takes as input a qubit at depth dr and outputs a qubit at depth 𝑑𝑟 + 6, for each

possible value of dr.

Gatecount

$ qura teleportation -gatecount -depth.pq -g gatecount

[... more outputs, omitted for brevity ...]

teleport :: ![0](forall[0, 0] dr. Qubit -o[8, 0] Qubit)

The global annotation of the arrow type, -o[8, 0], tells us that teleportation is a function

that constructs a circuit composed of 8 gates.

Size of the Generated Circuit

From the previous QuRA outputs, we know that if we prepare a qubit to teleport using the

teleportation function, we expect that the circuit is composed of 8 gates, has a width of 3,

while placing the qubit 6 steps deeper.

To verify these values, we simply define a main function that initializes a qubit to |0⟩, at

depth 0, and applies the teleportation function to teleport it:

$ qura teleportation.pq

[... more outputs, omitted for brevity ...]

Size of the produced circuit:

> Metric Values:

- Width: 3

- Depth: 6

- Gatecount: 8

With this simple program, we are able to verify that QuRA predicted metric values and

that the generated program size are exactly the same.
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5.3 Resources Analysis of Parametric Families of Circuits

For parametric algorithms, we automate the validation process by appending a minimal main

function that initializes the required number of input qubits, passes them to the target function,

and extracts the resulting resource metrics directly from the QuRA command-line output.

In the rest of this chapter, we will refer to the metrics computed on the produced CRL as

ground truth.

5.3.1 The mapHadamard Function

As a first example of a program building a parametric family of circuits, we inspect the simple

mapHadamard function, which applies the Hadamard gate to a list of qubits. The annotated

program is presented in Figure 5.2. In this specific case, the global annotations work for both

the width and the gatecount; this is, of course, not true in general.

1 mapHadamard :: ![0](forall [0 ,0] d. forall [0 ,0] n. (List[_<n] Qubit{d

}) -o[n ,0] (List[_<n] Qubit{d+1}))

2 mapHadamard d n list =

3 let hadaStep = lift forall step. \(qs ,q) :: (List[_<step] Qubit{d+1},

Qubit{d}). qs: (force hadamard @d) q

4 in fold(hadaStep , [], list)

Program 5.2: The mapHadamard function in Proto-Quipper-RA, with global and local

annotations.

Of course, we expect that the program width is the same as the size of the input register,

while the depth is 1, as one gate is applied to each qubit and the gatecount is equal to the

number of Hadamard gates applied which is equal to the width of the circuit.

This can be easily verified with QuRA:

$ qura mapHadamard.pq -g width

[... more outputs, omitted for brevity ...]

mapHadamard :: ![0](forall[0, 0] d. forall[0, 0] n. List[_ < n] Qubit -o[n,

0] List[_ < n] Qubit)

and:

$ qura mapHadamard.pq -g gatecount -l depth

[... more outputs, omitted for brevity ...]
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mapHadamard :: ![0](forall[0, 0] d. forall[0, 0] n. List[_ < n] Qubit{d}

-o[n, 0] List[_ < n] Qubit{d + 1})

The signatures of the function provide us with the following information:

• mapHadamard constructs a circuit of width at most 𝑛,

• the number of gates is 𝑛,

• and each output qubit sits ad depth 𝑑 + 1.

Resource Metrics Results Evaluating the program on a register of 𝑛 qubits initialized at

depth 𝑑 = 0 results in the values presented in Table 5.1, which confirm the QuRA estimates.

Width
𝑛 1 2 3 4 5 . . .

QuRA estimate: 𝑛 1 2 3 4 5 . . .
Ground truth: 1 2 3 4 5 . . .

(a) Widths

Depth
𝑛 1 2 3 4 5 . . .

QuRA estimate: 1 1 1 1 1 1 . . .
Ground truth: 1 1 1 1 1 . . .

(b) Depths

Gatecount
𝑛 1 2 3 4 5 . . .

QuRA estimate: 𝑛 1 2 3 4 5 . . .
Ground truth: 1 2 3 4 5 . . .

(c) Gatecounts

Table 5.1: Comparison of QuRA-inferred and ground-truth results for mapHadamard on 𝑛

qubits.

5.3.2 The Quantum Fourier Transform

As QFT circuits [29] exhibit well-understood resource requirements in both gate count and

depth, they provide a rigorous benchmark for validating QuRA’s symbolic estimations.

After updating the code in Program 3.1 to correctly behave for the gatecount analysis,

Program 5.3, we obtain the two programs for which QuRA infers the required resources.
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1 -- qft.pq annotated with gatecount and depth analysis

2 --- HELPER FUNCTIONS ---

3 -- invert the list of intermediate qubits at iteration iter

4 qrev = forall iter. forall d.

5 \reg :: List[i<iter] Qubit{d+iter+i}.

6 let revStep = lift forall step.

7 \(rev, q) :: (List[i<step] Qubit{d+2*iter-(i+1)}, Qubit{d+2*iter-(step+1)}).

8 rev:q in

9 fold(revStep, [], reg)

10 -- apply the controlled rotation gate to the target qubit trg at iteration iter

11 rotate = forall d. forall iter. lift forall step.

12 \((ctrls, trg), ctrl)::((List[i<step] Qubit{d+iter+i+1}, Qubit{d+iter+step}), Qubit{d+

iter+step}).

13 let (ctrl, trg) = (force cr @((iter+1)-step) @(d+iter+step) @(d+iter+step)) ctrl trg in

14 (ctrls:ctrl, trg) -- :: (List[i<step+1] Qubit{d+iter+i+1}, Qubit{d+iter+step+1})

15 --- QUANTUM FOURIER TRANSFORM ---

16 --- Parameters:

17 --- n : size of the input to the QFT

18 --- d : initial depth of the input qubits

19 --- iter : current iteration of the QFT

20 -- apply the Quantum Fourier Transform to n qubits at depth d

21 qft :: ![0](forall[0,0] n. forall[0,0] d. List[i<n] Qubit{d} -o[sum[iter < n]iter+1,0] List

[i<n] Qubit{d+n+i})

22 qft n d reg =

23 let qftIter = lift forall iter. -- define the iteration of the QFT

24 \(ctrls, trg)::(List[i<iter] Qubit{d+iter+i}, Qubit{d}).

25 let revctrls = (force qrev @iter @d) ctrls in -- List[i<iter] Qubit{d+2*iter-(i+1)}

26 let (ctrls, trg) = fold(force rotate @d @iter, ([], trg), revctrls) in

27 -- note (ctrls, trg) :: (List[i<iter] Qubit{d+iter+i+1}, Qubit{d+2*iter})

28 let trg = (force hadamard @(d+2*iter)) trg in

29 ctrls:trg -- List[i<iter+1] Qubit{d+iter+1+i}

30 in fold(qftIter, [], reg) -- List[i<n] Qubit{d+n+i}

Program 5.3: PQ implementation of the Quantum Fourier Transform, annotated with

gatecount and depth signatures.

Width

$ qura qft-width-depth.pq -g width

[... more outputs, omitted for brevity ...]

qft :: ![0](forall[0, 0] n. forall[0, 0] d. List[i < n] Qubit -o[n, 0] List[i

< n] Qubit)

As expected, the QFT circuit takes as input a list of 𝑛 qubits and returns a list of 𝑛 qubits,

without introducing any additional wire. We can inspect the size of the generated circuits in
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the following table:

Width
𝑛 1 2 3 4 5 . . . 10 11 . . . 50 51 . . .

QuRA estimate: 𝑛 1 2 3 4 5 . . . 10 11 . . . 50 51
Ground truth: 1 2 3 4 5 . . . 10 11 . . . 50 51

Table 5.2: Comparison of QuRA-inferred widths and generated QFT circuit widths on 𝑛

qubits.

Depth

$ qura qft-gatecount -depth.pq -l depth --no-recycling

[... more outputs, omitted for brevity ...]

qft :: !(forall n. forall d. List[i < n] Qubit{d} -o List[i < n] Qubit{d + n

+ i})

The function takes as input a list of 𝑛 qubits at depth 𝑑 and outputs a list of 𝑛 qubits, where

the 𝑖-th qubit sits at depth 𝑑 +𝑛+ 𝑖. The depth of the whole circuit is then equal to the deepest

output qubit, 𝑑 + 𝑛 + (𝑛 − 1). In our testing scenario, input qubits are freshly initialized,

therefore we can fix 𝑑 = 0.

QuRA estimates hold, as we can see in the following results:

Depth
𝑛 1 2 3 4 5 . . . 10 11 . . . 50 51 . . .

QuRA estimate: 2𝑛 − 1 1 3 5 7 9 . . . 19 21 . . . 99 101
Ground truth: 1 3 5 7 9 . . . 19 21 . . . 99 101

Table 5.3: Comparison of QuRA-inferred depths and generated QFT circuit depths on 𝑛 qubits.

Gatecount

$ qura qft-gatecount -depth.pq -g gatecount

[... more outputs, omitted for brevity ...]

qft :: ![0](forall[0, 0] n. forall[0, 0] d. List[i < n] Qubit -o[sum[iter <

n]iter + 1, 0] List[i < n] Qubit)

The function qft produces a circuit whose size can be read in the arrow-type signature:

-o[sum[iter<n]iter+1, 0], which represents the quantity
∑𝑛−1

𝑖𝑡𝑒𝑟=0(𝑖𝑡𝑒𝑟 + 1) = 𝑛(𝑛+1)
2 .
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The number of gates grows quite faster compared to the other metrics: in particular,

gatecount grows quadratically, whereas the other metrics remain linear with reference to the

input size. We can observe that the values inferred by QuRA match exactly the generated

circuits:

Gatecount
𝑛 1 2 3 4 5 . . . 10 11 . . . 50 51 . . .

QuRA estimate: 𝑛(𝑛 + 1)/2 1 3 6 10 15 . . . 55 66 . . . 1275 1326 . . .
Ground truth: 1 3 6 10 15 . . . 55 66 . . . 1275 1326 . . .

Table 5.4: Comparison of QuRA-inferred gatecounts and generated QFT circuit gatecounts
on 𝑛 qubits.

5.3.3 Grover’s Algorithm

Grover’s search algorithm [23] is one of the many examples of quantum speedup, providing

a quadratic improvement over classical exhaustive search. Its circuit structure consists of

three main components: the initialization of a uniform superposition, the application of an

oracle that marks the solution states, and the Grover diffusion operator that amplifies their

amplitude. This sequence of oracle calls and diffusion steps is repeated for a number of

iterations proportional to
√
𝑁 , where 𝑁 is the size of the search space. In our analysis, we

do not need that this values matches this rule, as we are only analyzing the resources of

algorithms, which depend on their parameters.

Circuit Structure

The whole circuit is composed of the initialization of an ancilla and a register in superposition,

applying the oracle and the diffusion operator for the given number of iterations. Together,

the generic structure of the algorithm is shown in Figure 5.1, where 𝑈 𝑓 is the oracle.

Oracle Implementation

We select a simple oracle that outputs true whenever all qubits of the input register are equal

to 1. This condition can be encoded with a multi-controlled NOT (MCNot), and we define

the auxiliary function nconj(𝑛, 𝑑) to represent the corresponding family of oracles as an

(𝑛 + 2)-controlled NOT applied to a register of initial depth 𝑑. The PQ implementation is

shown in Program 5.4.
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. . .

. . .

...
...

. . .

. . .

|0⟩ 𝐻

Uf diffusion Uf diffusion

|0⟩ 𝐻

|0⟩ 𝐻

|1⟩ 𝐻

Figure 5.1: The generic Grover’s algorithm circuit. 𝑈 𝑓 is the oracle function, diffusion is the
diffusion operator.

1 -- The oracle nconj : nconj(x) = 1 <==> x = 11...1

2 nconj = forall n. forall d.

3 box $ lift \(reg, a) :: (List[_<n+2] Qubit{d}, Qubit{d}).

4 (force mcnot @ n @ d @ d) reg a

Program 5.4: PQ implementation of the nconj oracle for Grover’s search algorithm, annotated

with the width and depth of the mcnot implementation used [39].

The generic MCNot, which will also be used later in the diffusion operator, has been

implemented using a function that creates a circuit according to the structure proposed by

Siddhartha Sinha and Peter Russer [39]. The circuit is quite simple: it starts by assigning

the intermediate value of the control to a first ancilla, using the first two controls Then, new

ancillas are created at each step, using the last ancilla and the next control, until all the controls

have been conjoined. The remaining ancilla will then be used to control the target qubit, and

all the computations will be reversed using the same Toffoli gates applied backward.

Of course, many improvements can be made in terms of reducing the number of ancillas

and gates, for example, using the last Toffoli directly on the target of the multi-controlled Not,

but this is outside the scope of this example.

The PQ implementation of the multi-controlled-not is provided in Appendix A.3, whereas

the circuit in Figure 5.2 shows the structure of the circuits generated using such function.

Grover’s Diffusion Operator

This operator is used to amplify the amplitude of the state marked by the oracle. It consists

of applying an Hadamard gate followed by an X gate to each qubit of the register, applying an

MCNot controlled by the register and targeting an additional qubit, applying X and Hadamard
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c1
c2
c3

target

a1
a2

Figure 5.2: Visualization of the 3-CNot circuit, generated from the mcnot.pq function. The
first three qubits are the controls, followed by the target. The last two wires are ancillas.

again. The diffusion operator on a three-qubit register is depicted in Figure 5.3.

𝑞0 𝐻 𝑋 𝑋 𝐻

𝑞1 𝐻 𝑋 𝑋 𝐻

𝑞2 𝐻 𝑋 𝑋 𝐻

𝑡

Figure 5.3: Diffusion operator of a 3-qubit register, which uses an ancillary qubit 𝑡.

Note that the multi-controlled not used in the analyzed implementation of Grover’s algo-

rithm is the same as the one used previously in the oracle.

Visualization of the Complete Circuit

The circuit portrayed in Figure 5.4 presents the structure of the algorithm for a three-qubit

register, with the diffusion operator replaced by its implementation. The last substitution

consists of replacing the conj oracle and the MCNots with the structure presented previously

in this section.

|0⟩ 𝐻

conj

𝐻 𝑋 𝑋 𝐻

conj

𝐻 𝑋 𝑋 𝐻

|0⟩ 𝐻 𝐻 𝑋 𝑋 𝐻 𝐻 𝑋 𝑋 𝐻

|0⟩ 𝐻 𝐻 𝑋 𝑋 𝐻 𝐻 𝑋 𝑋 𝐻

|1⟩ 𝐻

Figure 5.4: The circuit built by the grover function applied to the conj oracle, with 𝑟 = 2
iterations.
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Resource Analysis

The PQ implementation of Grover’s algorithm is provided in Program 5.5 and Appendix A.4,

respectively annotated with width and gatecount, plus depth. It defines a parametric family

of circuits that perform 𝑟 iterations on a register of size 𝑛, using an oracle of size 𝑜𝑠 and depth

𝑜𝑑. Since that the oracle that we are using is implemented with an MCNot, the values of 𝑜𝑠

an 𝑜𝑑 depend on the chosen implementation of multi-controlled gates [39]; in our case, the

depth of the oracle is 𝑜𝑑 = 2(𝑛 + 2), while its size depends on wether we are considering the

width or the gatecount. The width of the MCNot we use is 2(𝑛+ 2) and requires 2(𝑛+ 1) + 1

gates. The PQ implementation can be consulted in Appendix A.3.

1 --- GROVER ' S ALGORITHM annotated with width and depth---

2 -- the diffusion operator on n qubits with ancilla a (all qubits at depth d)

3 diffusion :: ![0](forall[0,0] n. forall[0,0] d. List[_<n+2] Qubit{d} -o[0,0] Qubit{d} -o

[2*(n+2), n+2] (List[_<n+2] Qubit{d+4+2*(n+2)}, Qubit{d+4+n}))

4 diffusion n d reg a =

5 let reg = (force mapHadamard @ n+2 @ d) reg in

6 -- begin negatively controlled not

7 let reg = (force mapQnot @ n+2 @ d+1) reg in

8 let (reg,a) = (force mcnot @ n @ d+2 @ d) reg a in

9 let reg = (force mapQnot @ n+2 @ d+2+2*(n+2)) reg in

10 -- end negatively controlled not

11 let reg = (force mapHadamard @ n+2 @ d+3+2*(n+2)) reg in

12 (reg, a)

13 -- perform a single grover iteration on n qubits at depth d, using an ancilla a at depth d,

and an oracle of size os and depth od

14 groverIteration :: ![0](forall[0,0] n. forall[0,0] d. forall[0,0] os. forall[0,0] od.

15 (forall[0,0] d. Circ[os]((List[_<n+2] Qubit{d}, Qubit{d}), (List[_<n+2] Qubit{d + od},

Qubit{d + od})))

16 -o[0,0] List[_<n+2] Qubit{d} -o[0,0] Qubit{d}

17 -o[max(max(n+3,os),2*(n+2)),n+2] (List[_<n+2] Qubit{d+od+4+2*(n+2)}, Qubit{d+od+4+n}))

18 groverIteration n d os od oracle reg a =

19 let (reg, a) = apply(oracle @ d, (reg, a)) in

20 (force diffusion @ n @ d+od) reg a

21 -- run Grover ' s algorithm on an oracle of input size n, width os and depth od

22 grover :: ![0](forall[0, 0] r. forall[0, 0] n. forall[0, 0] os. forall[0, 0] od.

23 (forall[0,0] d. Circ[os]((List[_<n+2] Qubit{d}, Qubit{d}), (List[_<n+2] Qubit{d+od},

Qubit{d+od})))

24 -o[max(max(n+3,os),2*(n+2)),0] List[_<n+2] Bit{2 + r*(od+4+2*(n+2))})

25 grover r n os od oracle =

26 -- prepare working qubits

27 let wqs = force qinit0Many @ n+2 in

28 let wqs = (force mapHadamard @ n+2 @ 0) wqs in

29 -- prepare ancilla

30 let a = force qinit1 in

31 let a = (force hadamard @ 0) a in
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32 -- iterate Grover ' s algorithm

33 let iteration = lift forall step. \((wqs, a), _) :: ((List[_<n+2] Qubit{1+step*(od+4+2*(n

+2))}, Qubit{1+step*(od+4+2*(n+2))}), ()).

34 (force groverIteration @ n @ 1+step*(od+4+2*(n+2)) @ os @ od) oracle wqs a

35 in let (wqs, a) = fold(iteration , (wqs, a), force range @r) in

36 let _ = (force qdiscard @ 1 + r * (od+4+2*(n+2))) a in

37 (force mapMeasure @ n+2 @ 1 + r * (od+4+2*(n+2))) wqs

Program 5.5: PQ implementation of the Grover’s Algorithm, annotated with width and depth

signatures.

This setting allows us to analyze the scaling of Grover’s algorithm in terms of both

resource consumption and iteration count and to verify whether QuRA bounds are only loose

upper estimates or if they can still be precise in the face of complex control flow.

In the subsequent analysis, circuits are generated for different oracle sizes. Recall that the

length of the register on which the oracle operates in 𝑛 + 2, where 𝑛 is the argument of the

conj oracle.

Width Obtain the width annotation of the Grover function:

$ qura grover-width-depth.pq.pq -g width

[... more outputs, omitted for brevity ...]

grover :: ![0](forall[0, 0] r. forall[0, 0] n. forall[0, 0] os. forall[0, 0]

od. (forall[0, 0] d. Circ[os]((List[_ < n + 2] Qubit, Qubit), (List[_ < n

+ 2] Qubit, Qubit))) -o[max(max(n + 3, os), 2 * (n + 2)), 0] List[_ < n +

2] Bit)

As expected, the signature of the function tells us that the number of iterations of the

algorithm does not influence the width of the circuit. The function is annotated for a generic

oracle, so we can substitute the width of our oracle, 2(𝑛 + 2), for 𝑜𝑠 in the signature of the

arrow type:

𝑤𝑖𝑑𝑡ℎ = max(max(𝑛 + 3, 𝑜𝑠), 2(𝑛 + 2)) = max(max(𝑛 + 3, 2𝑛 + 4), 2(𝑛 + 2)) = 2(𝑛 + 2).

We generate circuits for a different number of iterations, while also providing the correct

depth and width of the oracle, which depend on 𝑛. The results are shown in Table 5.5, we can

observe that the number of iterations does not influence the width of the generated circuits,

as deduced from QuRA.

Depth Execute QuRA on the program to obtain the depth annotation of grover:
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Width, 𝑟 = 1, 2, 3
𝑛 0 1 2 3 4 . . . 10 11 . . . 50 51 . . .

QuRA estimate: 2(𝑛 + 2) 4 6 8 10 12 . . . 24 26 . . . 104 106 . . .
Ground truth: 4 6 8 10 12 . . . 24 26 . . . 104 106 . . .

Table 5.5: Comparison of QuRA-inferred width and generated width of the circuits for Grover
algorithm on a register of 𝑛 + 2 qubits, with 𝑟 = 1, 2, 3 iterations.

$ qura grover-gatecount -depth.pq -l depth --no-recycling

[... more outputs, omitted for brevity ...]

grover :: !(forall r. forall n. forall os. forall od. (forall d. Circ((List[_

< n + 2] Qubit{d}, Qubit{d}), (List[_ < n + 2] Qubit{d + od}, Qubit{d +

od}))) -o List[_ < n + 2] Bit{2 + r * (od + 4 + 2 * (n + 2))})

Recalling the depth of our oracle, 𝑜𝑑 = 2(𝑛 + 2), the overall depth of Grover’s circuits

becomes

𝑑𝑒𝑝𝑡ℎ = 2 + 𝑟 (𝑜𝑑 + 4 + 2(𝑛 + 2)) = 2 + 𝑟 (2(𝑛 + 2) + 4 + 2(𝑛 + 2)) = 2 + 4𝑟 (𝑛 + 3)

This time, we prepare tests that generates circuits that implement the algorithm with a

different number of iterations, so we also have the r parameter, in addition to the size of the

register 𝑛. The comparison between QuRA’s predicted depth and the depth of the generated

circuits is shown in Table 5.6.

DEPTH
QuRA estimate: 2 + 4𝑟 (𝑛 + 3)

n 0 1 2 3 4 . . . 10 11 . . . 50 51 . . .

𝑟 = 1 EST: 14 18 22 26 30 . . . 54 58 . . . 214 218 . . .
GT: 12 16 20 24 28 . . . 52 56 . . . 212 216 . . .

𝑟 = 2 EST: 26 34 42 50 58 . . . 106 114 . . . 426 434 . . .
GT: 22 30 38 46 54 . . . 102 110 . . . 422 430 . . .

𝑟 = 3 EST: 38 50 62 74 86 . . . 158 170 . . . 638 650 . . .
GT: 32 44 56 68 80 . . . 152 164 . . . 632 644 . . .

Table 5.6: Comparison of QuRA-inferred depth and generated depth of the circuits for Grover
algorithm on a register of 𝑛 + 2 qubits, with 𝑟 = 1, 2, 3 iterations. The value estimated by
QuRA is on the EST row, the GT row represents the ground truth.

We can observe from the results that a small over-approximation is performed by QuRA,

as the real depth of the generated circuits is always smaller than the predicted value by a
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constant 2𝑟. QuRA always tries to match the type signature written in the PQ program, without

trying to optimize it further. It is therefore possible to annotate with suboptimal resource

values and obtain a loose upper bound. In this case, it is possible that one or more function

annotation could be stricter.

Gatecount Lastly, let us analyze the gatecount of the function:

$ qura grover-gatecount -depth.pq -g gatecount

[... more outputs, omitted for brevity ...]

grover :: ![0](forall[0, 0] r. forall[0, 0] n. forall[0, 0] os. forall[0, 0]

od. (forall[0, 0] d. Circ[os]((List[_ < n + 2] Qubit, Qubit), (List[_ < n

+ 2] Qubit, Qubit))) -o[1 + 2 * (n + 2) + r * (os + 4 * (n + 2) + 2 * (n +

1) + 1), 0] List[_ < n + 2] Bit)

The given formula for the gatecount can be simplified and the size of the oracle, in this

case the gatecount 𝑜𝑠 = 2(𝑛 + 1) + 1, can be substituted in the following way:

𝑔𝑎𝑡𝑒𝑐𝑜𝑢𝑛𝑡 = 1 + 2(𝑛 + 2) + 𝑟 (𝑜𝑠 + 4(𝑛 + 2) + 2(𝑛 + 1) + 1) = 5 + 2𝑛 + 2𝑟 (4𝑛 + 7)

Results can be consulted in Table 5.7 , QuRA is able to correctly infer the exact number of

gates required for the given PQ implementation of the Grover algorithm.

GATECOUNT
QuRA estimate: 5 + 2𝑛 + 2𝑟 (4𝑛 + 7)

n 0 1 2 3 4 . . . 10 11 . . . 50 51 . . .

𝑟 = 1 EST: 19 29 39 49 59 . . . 119 129 . . . 519 529 . . .
GT: 19 29 39 49 59 . . . 119 129 . . . 519 529 . . .

𝑟 = 2 EST: 33 51 69 87 105 . . . 213 231 . . . 933 951 . . .
GT: 33 51 69 87 105 . . . 213 231 . . . 933 951 . . .

𝑟 = 3 EST: 47 73 99 125 151 . . . 307 333 . . . 1347 1373 . . .
GT: 47 73 99 125 151 . . . 307 333 . . . 1347 1373 . . .

Table 5.7: Comparison of QuRA-inferred gatecount and generated gatecount of the circuits
for Grover algorithm on a register of 𝑛 + 2 qubits, with 𝑟 = 1, 2, 3 iterations. The value
estimated by QuRA is on the EST row, the GT row represents the ground truth.

5.3.4 Quantum Adder

The next program proposed is taken from the QuRA GitHub repository, used to define the

circuit family of quantum binary adders, adder.pq. At the time of writing this thesis, the
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1 adder :: ![0](forall[0,0] n. (List[_<n+1] Qubit, List[_<n+1] Qubit) -o
[3*(n+1) + 1, 0] (List[_<n+1] Qubit, List[_<n+2] Qubit))

2 adder n (a, b) =
3 let (rest:((c,a),b),lsb) = (force adderFirstPhase @n) (a,b) in
4 let (a,b) = force cnot a b in
5 let (c,a,b) = force csum (c,a,b) in
6 let (lastc, final) = (force adderSecondPhase @n) (c, rest) in
7 let _ = (force qdiscard) lastc in
8 let complete = (((force revpair @n) final) : (a,b)) in back in
9 let (ares,b) = (force qunzip @ n+1) complete in

10 let bres = b : lsb in
11 ((force rev @ n+1) ares, (force rev @ n+2) bres)

Program 5.6: The main body of the binary adder written in PQ.

program is only annotated with the width metric, so we limit our comparison to the width of

the generated circuits.

The main adder function, shown in Program 5.6, performs the sum between two registers

of size 𝑛 + 1, returning the first register and a new register of size 𝑛 + 2. The inputs to the

function are 𝑛 and the two numbers to add, which we can trivially initialize to |00 . . . 0⟩, as

bit and qubit initializations are operation with zero depth and gatecount.

Width

As a first step, we inspect the output produced by QuRA when computing the width of this

circuit:

$ qura adder.pq -g width

[... more outputs, omitted for brevity ...]

adder :: ![0](forall[0, 0] n. (List[_ < n + 1] Qubit, List[_ < n + 1] Qubit)

-o[3 * (n + 1) + 1, 0] (List[_ < n + 1] Qubit, List[_ < n + 2] Qubit))

We obtain a signature telling us that the produced circuit has size 3(𝑛 + 1) + 1. We test

this by generating many circuits while varying the size of the input registers. Recall from the

start of the example, that 𝑛 is not exactly the size of the input registers, but they have size

𝑛+1. An example of a generated circuit, summing registers of two bits (so, 𝑛 = 1) initialized

to 0, is presented: the CRL obtained is shown in Figure 5.7 and its graphical representation

is depicted in Figure 5.5.
$ qura adder-width.pq

[... more outputs, omitted for brevity ...]

> Operations:

QInit0 (*) -> q0;
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QInit0 (*) -> q1;

QInit0 (*) -> q2;

QInit0 (*) -> q3;

QInit0 (*) -> q4;

QInit0 (*) -> q5;

QInit0 (*) -> q6;

Toffoli ((q0, q2, q5)) -> (q7, q8, q9);

CNot ((q7, q8)) -> (q10, q11);

Toffoli ((q6, q11, q9)) -> (q12, q13, q14);

Toffoli ((q1, q3, q4)) -> (q15, q16, q17);

CNot ((q15, q16)) -> (q18, q19);

Toffoli ((q14, q19, q17)) -> (q20, q21, q22);

CNot ((q18, q21)) -> (q23, q24);

CNot ((q23, q24)) -> (q25, q26);

CNot ((q20, q26)) -> (q27, q28);

Toffoli ((q10, q13, q27)) -> (q35, q36, q37);

CNot ((q35, q36)) -> (q38, q39);

Toffoli ((q12, q39, q37)) -> (q40, q29, q30);

CNot ((q38, q29)) -> (q31, q32);

CNot ((q40, q32)) -> (q33, q34);

QDiscard (q30) -> *;

QDiscard (q33) -> *.

While evaluating to:

> ((([]:q25):q31), ((([]:q22):q28):q34))

Program 5.7: Generated circuit from the adder function, on two 2-bit registers initialized to

zero. The output of the function is the first register and the updated second register, plus one

wire for the offset

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Figure 5.5: Graphical representation of the generated circuit from the adder function, on
two 2-bit registers initialized to zero.

The metric results are shown in Table 5.8, in which QuRA estimates are exact.
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Width
𝑛 0 1 2 3 4 . . . 10 11 . . . 50 51 . . .

QURA estimate:
3(𝑛 + 1) + 1 4 7 10 13 16 . . . 34 37 . . . 154 157 . . .

Ground truth: 4 7 10 13 16 . . . 34 37 . . . 154 157 . . .

100 . . . 125 . . . 150 . . . 200 . . . 500 . . . 1000 . . .

304 . . . 379 . . . 454 . . . 604 . . . 1504 . . . 3004 . . .
304 . . . 379 . . . 454 . . . 604 . . . 1504 . . . 3004 . . .

Table 5.8: Comparison of QuRA-inferred widths and generated adder circuit widths, summing
two registers of 𝑛 + 1 qubits.

5.3.5 Shor’s Algorithm

Shor’s algorithm [38] is a landmark quantum algorithm for integer factorization, providing

an exponential speedup over the best-known classical algorithms. Its circuit can be divided

into two main components: the modular exponentiation oracle, which encodes the function

𝑓 (𝑥) = 𝑎𝑥 mod 𝑁 , and the quantum Fourier transform (QFT) that enables period finding.

Together, these components allow the extraction of the factors of a composite integer 𝑁 with

high probability.

In our PQ implementation, the modular exponentiation is encapsulated in the oracle

function vbe [46]. This function takes as input 𝑛 and creates a boxed circuit that performs

the necessary modular exponentiation operations to encode the function 𝑓 (𝑥) on a 𝑛+1 qubit

register. The width of this construction has been verified with QuRA[1] to be 7(𝑛 + 1) + 4.

Unfortunately, at the moment of writing this thesis the program is not annotated with other

resources, other than width, so we limit our analysis to it.

The PQ implementation of Shor’s algorithm [1] constructs a parametric family of circuits

for an input register of size 𝑛+1. The algorithm applies the vbe oracle followed by an inverse

QFT on the first register, repeats the required measurement and classical post-processing

steps, and extracts the period of the function. An excerpt of the PQ program which we are

testing can be found in Program 5.8.

Width

If we run QuRA on the program to analyze the width, we obtain the following outputs:

$ qura shor.pq -g width

[... more outputs, omitted for brevity ...]
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1 --- Oracle VBE ---
2 vbe :: ![0](forall[0, 0] n. Circ[7*(n+1)+4]((List[_ < n + 1] Qubit, List[_ < n + 1] Qubit,

List[_ < n + 1] Bit), (List[_ < n + 1] Qubit, List[_ < n + 1] Qubit, List[_ < n + 1]
Bit)))

3 vbe n = box $ lift \(x, reg0, regMod) :: (List[_<n+1] Qubit, List[_<n+1] Qubit, List[_<n+1]
Bit).

4 -- init register 1, I initialize it here in order to keep the unitarity
5 let reg1 = (force qinit1Many @n) in
6 -- Modular exponentiation
7 let (r, a, reg0, regMod) = (force modularExp @n) (x,reg1,reg0,regMod) in
8 let _ = (force qdiscardMany @n) reg0 in
9 (r, a, regMod)

10
11 --- Shor circuit ---
12 shor :: ![0](forall[0, 0] n. forall[0, 0] we. (Circ[we]((List[_ < n + 1] Qubit, List[_ < n

+ 1] Qubit, List[_ < n + 1] Bit), (List[_ < n + 1] Qubit, List[_ < n + 1] Qubit, List[_
< n + 1] Bit)), List[_ < n + 1] Bit) -o[max(n + 1 + n + 1 + n + 1, we), 0] (List[i < n
+ 1] Bit, List[i < n + 1] Bit, List[_ < n + 1] Bit))

13 shor n we (oracle, regMod) =
14 -- prepare n qubits in the state |0> then apply hadamard
15 let x = (force mapHadamard @ n) (force qinit0Many @ n) in
16 -- prepare n qubits in the state |0>
17 let w = force qinit0Many @ n in
18 -- oracle function
19 let (x, a, regMod) = apply(oracle, (x, w, regMod)) in
20 -- phase estimation throught inverse QFT
21 let r = (force iqft @ n @ 0) x in
22 -- measure the results
23 ((force mapMeasure @ n) r, (force mapMeasure @ n) a, regMod)
24 -- |x>|w> -> (r, a), where r is the period and a is the base (a^r mod N)

Program 5.8: An excerpt of the PQ implementation of Shor’s factorization algorithm.

shor :: ![0](forall[0, 0] n. forall[0, 0] we. (Circ[we]((List[_ < n + 1]

Qubit, List[_ < n + 1] Qubit, List[_ < n + 1] Bit), (List[_ < n + 1]

Qubit, List[_ < n + 1] Qubit, List[_ < n + 1] Bit)), List[_ < n + 1] Bit)

-o[max(n + 1

+ n + 1 + n + 1, we), 0] (List[i < n + 1] Bit, List[i < n + 1] Bit, List[_ <

n + 1] Bit))

which tells us that the size of the generated circuits depends on the size of the oracle we, and

it evaluates to max(𝑛 + 1 + 𝑛 + 1 + 𝑛 + 1, 𝑤𝑒). We know from the previous Section, that the

vbe oracle has size 7 ∗ (𝑛 + 1) + 4, so we can substitute it inside the expression and obtain

that:

𝑤𝑖𝑑𝑡ℎ = 𝑚𝑎𝑥(𝑛 + 1 + 𝑛 + 1 + 𝑛 + 1, 𝑤𝑒) = max(3(𝑛 + 1), 7(𝑛 + 1) + 4) = 7(𝑛 + 1) + 4.

Finally, we can generate circuits with different values of 𝑛 and inspect their resulting

widths:

The generated circuits have a width that is always 2 smaller than QuRA’s estimate. This is

first of all a good result, as we obtained circuits which are in practice smaller than the estimates,

and the estimates are actually quite tight, since they are only off by a constant factor. The latter
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Width
𝑛 1 2 3 4 5 . . . 10 11 . . . 50 51 . . .

QuRA expr.: 7(𝑛 + 1) + 4 18 25 32 39 46 . . . 81 88 . . . 361 368 . . .
Generated Circuit: 16 23 30 37 44 . . . 79 86 . . . 359 366 . . .

Table 5.9: Comparison of QuRA-inferred width and generated width of the Shor’s algorithms
circuits, on an input register of size 𝑛 + 1.

might signify that the annotations in the PQ implementation of the algorithm may be slightly

too conservative, and a deeper analysis could point out which signature is overestimating the

width resources, if any.
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Conversion of Produced Circuits to QASM
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Having established the evaluation of QuRA programs and validated the precision of its

resource estimates, we now turn to the problem of making the resulting circuits executable

and inspectable. To this end, we extend QuRA with a compilation pipeline that exports

evaluated configurations into OpenQASM 3.0, the standard intermediate representation for

quantum circuits.

This translation bridges the gap between the abstractions of QuRA and practical quantum

toolchains. By importing the generated OpenQASM 3.0 code into frameworks such as Qiskit,

we can visualize the circuits, confirm their structural correctness, and prepare them for

execution on simulators or hardware backends. We revisit the representative examples

encountered previously, including the quantum Fourier transform and Grover’s algorithm, to

illustrate how the exported circuits align with their representation language.

The results of this part show that QuRA is not only a framework for theoretical resource

analysis but also a practical toolchain component: programs can be evaluated, translated and

executed in many quantum computing environments.



Chapter 6

From Circuits to QASM Programs

In the previous chapters, we focused on evaluating Proto-Quipper-RA programs and obtaining

their corresponding circuit representations. However, these evaluated circuits remain an

abstract, internal representation used by QuRA for resource analysis and verification. To make

the resulting quantum programs executable on real quantum hardware or simulators, we need

to translate these circuits into a widely supported, low-level representation.

For this purpose, we adopt OpenQASM 3.0 [15, 16] (Quantum Assembly Language),

an intermediate language designed to describe quantum circuits in a hardware-agnostic yet

execution-ready format. QASM is supported by several major quantum toolchains and back-

ends, such as Qiskit [32] and IBM Quantum devices [33], making it an ideal target for

code generation. Its syntax allows us to explicitly declare quantum and classical registers,

initialize qubits and bits, and apply quantum operations using standard instructions.

This chapter introduces the translation pipeline that converts evaluated circuits into

OpenQASM 3.0 programs. We first provide a brief overview of QASM, focusing on its syntax

and how qubits, classical bits, and quantum operations are represented. After that, we present

the mapping between quantum operations defined inside QuRA and their QASM counterparts,

ensuring circuit equivalency during translation. We then describe the circuit simplification

phase, where the CRL representation of the circuit is translated to be more similar to the

actual QASM implementation. Finally, we discuss how simplified circuits can be used to com-

pute relevant resource metrics such as circuit width, depth, and gatecount, enabling accurate

comparisons between the abstract evaluation provided by QuRA and the hardware-ready im-

plementation. New metrics oriented to QASM need to be developed to correctly infer the

resources of the generated circuits, according to the OpenQASM 3.0 set of instructions.
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By bridging the gap between abstract circuit representations and concrete QASM code, this

chapter completes the transition from program evaluation to executable quantum circuits.

This extension significantly enhances QuRA’s capabilities, transforming it from a purely

analytical tool into a practical frontend for generating runnable quantum programs.

6.1 OpenQASM 3.0: A Brief Overview

QASM is an imperative, hardware-agnostic assembly language designed as an intermediate

representation for quantum computations. It serves as a bridge between high-level quantum

programming languages and quantum hardware, making it a common compilation target and

a de facto standard for describing quantum circuits [16].

The last version of QASM introduced many improvements to the language, but we will

focus only on its basic constructs, such as initialization, gate application, and measurements,

which will be presented briefly.

6.1.1 Qubit and Bit Initialization

Qubits, as well as registers of qubits, are declared explicitly:

1 qubit q;

2 qubit[5] qreg;

These declarations create virtual qubits—abstract references to quantum resources. A qubit

is always initialized in the computational basis state |0⟩, and QASM provides the reset

instruction to be able to reset it to this value:

1 reset q;

Bits are initialized like almost any other language by simply assigning them to a value:

1 bit b=1;

6.1.2 Native and Derived Gates in OpenQASM 3

OpenQASM 3.0 provides a versatile framework for describing quantum circuits at a high level

of abstraction. However, despite the broad set of gates commonly used in quantum algorithms,
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the language specification deliberately defines only a minimal set of native gates. All other

gates are introduced as derived operations, either hierarchically or by applying modifiers to

existing gates.

Native Gates

The OpenQASM 3.0 specification defines exactly two primitive gates:

• U(𝜃, 𝜙, 𝜆): A fully parameterized single-qubit unitary gate, capable of representing any

arbitrary single-qubit operation up to a global phase. Its matrix form is given by:

𝑈 (𝜃, 𝜙, 𝜆) :=
1
2
©­«

1 + 𝑒𝑖𝜃 −𝑖𝑒𝑖𝜆 (1 − 𝑒𝑖𝜃)

𝑖𝑒𝑖𝜙 (1 − 𝑒𝑖𝜃) 𝑒𝑖(𝜙+𝜆) (1 + 𝑒𝑖𝜃)
ª®¬

• gphase(𝛾): A global phase gate that applies a phase factor 𝑒𝑖𝛾 to the entire quantum

state:

gphase(𝛾) := 𝑒𝑖𝛾 𝐼𝑚,

where 𝐼𝑚 denotes the identity matrix with size 2𝑚.

These two gates form the complete set of native operations in OpenQASM 3.0. Any

other gate supported by the language is expressed in terms of these primitives or of other

user-defined gates.

Derived Gates

Derived gates fall into two categories:

Hierarchically Defined Gates Users can define named gates using the gate keyword. For

example, the Hadamard gate (h) can be expressed in terms of U and gphase:

1 gate h q {

2 U(pi/2, 0, pi) q;

3 gphase -pi/4;

4 }

Here, h is not primitive; instead, it expands into a sequence of native operations.
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Modifier-Based Gates OpenQASM 3.0 also supports gate modifiers that derive new opera-

tions from existing ones without requiring explicit definitions. The most relevant modifiers

include:

• ctrl @ G: produces a controlled version of gate 𝐺 (e.g., ctrl @ X is equivalent to a

CNot).

• inv @ G: produces the inverse of gate 𝐺.

• pow(𝑘) @ G: applies gate 𝐺 raised to a real-valued power 𝑘 .

These modifiers are combinators: they do not introduce new primitives but rather compose

and modify existing gates.

Version String and Included Files

An OpenQASM 3.0 program may begin with an optional version declaration on the first

non-comment line, specifying the major and minor version numbers:

1 OPENQASM 3.0;

If the minor version number is omitted, it is assumed to be zero by default. The version

declaration, if present, must appear only once and exclusively as the first non-comment line

of the program.

QASM supports the inclusion of external files using the include directive:

1 // First non-comment is a version string

2 OPENQASM 3.0;

3 include "stdgates.qasm";

4 // Rest of QASM program

The contents of the included file are parsed as if they were directly inserted at the location

of the statement. stdgates.qasm1 is a particularly useful standard library, as it provides

simple implementations of the most common quantum gates, relieving the programmer from

having to manually define them using the primitive gates U and gphase and the modifiers

presented in the previous section.
1See the file stdgates.inc at https://github.com/Qiskit/qiskit/blob/main/qiskit/qasm/

libs/stdgates.inc.

https://github.com/Qiskit/qiskit/blob/main/qiskit/qasm/libs/stdgates.inc
https://github.com/Qiskit/qiskit/blob/main/qiskit/qasm/libs/stdgates.inc
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This library includes a comprehensive set of one-qubit rotation gates, such as rx, ry,

and rz, which are parameterized rotations around the respective Bloch-sphere axes. It

additionally defines the commonly used Pauli gates x, y, and z, as well as the Hadamard gate

h (introduced earlier), each expressed internally in terms of native primitives.

Beyond single-qubit operations, stdgates.qasm also provides definitions for widely

used multi-qubit gates, including controlled operations like cx (CNot), cy, and cz, as well as

more general controlled phase rotations, e.g. cp and cu. Furthermore, higher-level gates are

provided, such as the Toffoli (ccx) and the swap gate (swap), again constructed using only

the primitive gates and modifiers.

1 // Toffoli

2 gate ccx a, b, c { ctrl @ ctrl @ x a, b, c; }

Applying Quantum Gates

Quantum gates are applied using a simple and expressive syntax:

1 h q1;

2 cx q1, q2;

OpenQASM also supports broadcasting, allowing a gate to be applied to all aligned qubits

in a register at once:

1 h qreg; // Applies Hadamard to all qubits in qreg

This mechanism simplifies the expression of symmetric or repetitive operations.

Classically controlled gates do not exist, as the classical if statement checks dynamically

the value of a bit.

Measuring a Qubit

Measuring a qubit collapses its quantum state into a classical bit value. This is done using

the measure instruction, which maps the result of a quantum measurement onto a classical

register:

1 qubit q;

2 bit c;
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3 h q; // Put the qubit in superposition

4 c = measure q;

In this example, the qubit q is first placed in a superposition by applying an Hadamard

gate. The measure operation then collapses its state, storing the result in the classical bit c.

The outcome will be 0 or 1 with equal probability.

6.2 From Quantum Operations to QASM Instructions

In the previous Section, we briefly introduced the basic syntax of QASMand the gates introduced

in the library stdgates.qasm, which will be enough to cover all the operations defined inside

QuRA. In this Section, we will define how to convert the quantum operations into valid QASM

instructions.

The conversions between the individual elements of the QuRACRL and the corresponding

OpenQASM 3.0 instructions are shown in Table 6.1. The most important aspect of the QASM

notation is that whenever you apply an instruction to a qubit or a bit, the result will still be the

same qubit, but transformed. This is quite different from how quantum operations behave in

CRL, consuming the input labels and creating new output labels. Resource annotations are

also completely ignored, as there is no such counterpart in QASM. In a later section, we will

see how the circuit needs to be modified in order to correctly protract the names of the wires

through the operations.

When we first introduced OpenQASM 3.0, we explained that qubits are always initialized

to the |0⟩ state, but we are often interested in starting from state |1⟩. To do so, we have to

negate the qubit once after initialization. Here, a large discrepancy with QuRA occurs, as

initializations were always considered to have depth and gatecount of 0. Of course, applying

a X gate raises both quantities to 1. Later, we will handle this gracefully, introducing new

metrics specifically designed for the QASM backend.

In OpenQASM 3.0 there is no such concept as qubit discarding, but the reset instruction

is used instead. Their behavior can be similar, as both remove qubits from the superposition,

but QASM allows us to put the qubit back to |0⟩ and use it later. This design choice allows us to

recycle qubits, that is, using previously discarded wires for the new qubits instead of using a

fresh wire. Potentially, being able to reuse existing wires can noticeably reduce the width of

circuits. In order to be able to control this, we introduced a flag to QuRA: --no-recycling,
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QuRA Boxed Circuit OpenQASM 3.0 Instruction
(∗,QInit0, 𝑞) qubit q;

(∗,QInit1, 𝑞) qubit q; x q;

(𝑞,QDiscard, ∗) reset q;

(𝑞,Meas, 𝑏) b = measure q;

(∗,CInit𝑛, 𝑏) bit[1] b = "n";

(𝑏,CDiscard, ∗) // -
(𝑞1,H, 𝑞2) h q1;

(𝑞1,X, 𝑞2) x q1;

(𝑞1,Y, 𝑞2) y q1;

(𝑞1, Z, 𝑞2) z q1;

(𝑞1, T, 𝑞2) t q1;

(𝑞1,R 𝑛, 𝑞2) rz(pi/k) q1; with 𝑘 = 2𝑛−1

(𝑞1,Rinv 𝑛, 𝑞2) rz(-pi/k) q1; with 𝑘 = 2𝑛−1

((𝑞1, 𝑞2),CNot, (𝑞3, 𝑞4)) cx q1, q2;

((𝑞1, 𝑞2),CZ, (𝑞3, 𝑞4)) cz q1, q2;

((𝑞1, 𝑞2),CR 𝑛, (𝑞3, 𝑞4)) crz(pi/k) q1, q2; with 𝑘 = 2𝑛−1

((𝑞1, 𝑞2),CRinv 𝑛, (𝑞3, 𝑞4)) crz(-pi/k) q1, q2; with 𝑘 = 2𝑛−1

((𝑏1, 𝑞1),CCNot, (𝑏2, 𝑞2)) cx b1, q1;

((𝑏1, 𝑞1),CCZ, (𝑏2, 𝑞2)) cz b1, q1;

((𝑞1, 𝑞2, 𝑞3), Toffoli, (𝑞4, 𝑞5, 𝑞6)) ccx q1, q2, q3;

Table 6.1: Quantum operations conversion table between QuRA and OpenQASM 3.0

allowing us to decide whether to initialize new logical qubits on previously discarded wires

or to always initialize them at the start of the circuit (at depth 0).

The classically-controlled gates in CRL are translated into quantum-controlled operations,

since the behavior of classical controls can be carried by a qubit whose value is classical. Of

course, this simplification does not work if the classical control is not the result of a measured

qubit, but is a simple classical wire. In that case, a wire of type qubit, initialized to the

required classical value of the bit, is used instead.

No QASM operation is defined for discarding bits, as they are not interfering with the circuit.

Lastly, the rotations defined in QuRA are rotations around the z axis, which corresponds to rz

in QASM. Furthermore, there is no distinction between the R𝑛 gate and the Rinv𝑛 gate, given

that R−𝑛 = Rinv𝑛, and we can therefore use rz for both operations.
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6.3 Circuit Simplification

Inspecting the conversion table between QuRA and OpenQASM 3.0 from Table 6.1, we find

that QASM instructions do not produce output labels, but rather act in place on the input

variables. In this section, our aim is to provide enough motivation as to why the CRL circuit

representation needs to be adapted to be more similar to the QASM behavior. Then, we present

the proposed solution to the problem that simplifies the circuit labeling so that it becomes

easier to convert the operations into QASM instructions.

To better understand the need for a strategy that unifies the names of the circuit, consider

the following example, presenting an excerpt of the operations produced by QuRA and a naive

conversion to QASM:

> Operations:

QInit0 (*) -> q0;

QInit1 (*) -> q1;

Hadamard (q0) -> q2;

CNot ((q2, q1)) -> (q3, q4);

1 qubit q0;

2 qubit q1;

3 x q1;

4 h q0;

5 cx q2, q1;

Figure 6.1: Naive conversion of a circuit generated by QuRA into OpenQASM 3.0.

This is not a valid OpenQASM 3.0 program, as the variable 𝑞2 is undefined. The problem is

caused by the fact that CRL re-binds outputs, but QASM does not. For example, the Hadamard

gate acting on 𝑞0 produces the label 𝑞2, and the CNot tries to act on this new wire.

6.3.1 Label Renaming

The circuit in the previous example, Figure 6.1, could easily be converted if the output of

each operations produces a wire bundle with the same names as the inputs. To achieve this

new labeling, it is enough to step through the operations, create a renaming from the output

labels to the input labels and propagate it to the rest of the operations until the last operation.

The only exception is with measurements, as QASM explicitly requires that a bit is assigned to

the measurement result, so we cannot keep the qubit in the output. In that case, the output bit

is kept, but the renaming is propagated, since we now use the collapsed qubit instead of the

classical bit. For this reason, we also convert classically controlled gates into quantum gates

in order to preserve a typed circuit.
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Unfortunately, this simple solution only works if qubit recycling is not involved. In fact,

a new qubit initialization should consider previously discarded qubits and should change the

name of the output wire to a name not in use anymore. This is done by being more careful

when handling operations such as discards and initializations. A set of names is used to

track the currently discarded names, and is used whenever a new variable needs initialization.

Once the name has been selected, either from the discarded set or the actual name assigned

by QuRA, the renaming is performed as before. If chosen from the discarded set, the label

with the lesser depth is selected.

To demonstrate the differences, suppose the evaluation of a simple program being:

> Label Context: q0:Qubit, q1:Qubit

> Operations:

QInit0 (*) -> q0;

QDiscard (q0) -> *;

QInit1 (*) -> q1;

The simplified circuits obtained with the recycling strategy and without it are shown in

Figure 6.2: we can notice that the second qubit is initialized on the previously existing wire,

instead of using a fresh qubit.

> Simplified Circuit:

> Label Context: q0:Qubit

> Operations:

QInit0 (*) -> q0;

QDiscard (q0) -> *;

QInit1 (*) -> q0;

(a) Qubit recycling.

> Simplified Circuit:

> Label Context: q0:Qubit, q1:Qubit

> Operations:

QInit0 (*) -> q0;

QDiscard (q0) -> *;

QInit1 (*) -> q1;

(b) No recycling.

Figure 6.2: Comparison between the simplified circuits generated using qubit recycling (a)
and without the recycling option (b).

6.3.2 Metric Computation of the Simplified Circuits

Once the evaluated configuration has been reduced to its simplified circuit form, the compu-

tation of the converted circuit resource metrics becomes natural and efficient. The simplified

representation preserves all essential information about the requirements of the quantum

computation, as it only renames the wires to produce consistent input and output labels of the

operations, and to specialize the circuit whenever qubit recycling is involved.

This compact structure allows us to directly compute the most relevant resource metrics:
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• Gate count: obtained simply by counting the number of operations in the sequence,

considering that QInit1 now requires one gate.

• Circuit depth: computed by tracking the maximum number of operations applied

sequentially on any given qubit, considering that the QInit1 operation now has a depth

of one.

• Width: deduced from the number of names that appear in the label context of the

circuit.

This makes the representation suitable not only for conversion into QASM, but also as an

efficient basis for accurate resource analysis. Note that the simplified circuit is already

specialized for recycling, so the metric computation remains the same.

6.3.3 Introducing an Updated Set of Metrics for QuRA

The semantics of OpenQASM 3.0 introduce certain behaviors that differ from those assumed in

QuRA, particularly with respect to the initialization and measurement of qubits. For instance,

initializing a qubit to the state |1⟩ should contribute to both the gate count and the circuit depth,

each by one. Similarly, measurements in OpenQASM 3.0 produce new classical wires rather

than changing the type of the existing qubit wires, thus increasing the width of the circuit.

These differences require the introduction of QASM-specific metrics to allow a meaningful

comparison between the inferred resources in QuRA and the concrete values obtained from

the generated circuits.

Extending QuRA with additional metrics is straightforward, as documented in the official

documentation [8]. In our work, we added two global metrics, qasmwidth and qasmgatecount,

accessible via -g [qasmwidth|qasmgatecount], as well as a local metric, qasmdepth,

accessible via -l qasmdepth. These behave analogously to their generic counterparts, with

the key modifications that QInit1 contributes a cost of one to both gate count and depth, and

measurements introduce an additional wire to the circuit, increasing the width.

By aligning the metrics in this way, we obtain a consistent framework that allows us to

quantitatively validate the correctness of the generated circuits and assess the precision of

QuRA’s resource estimations against the concrete OpenQASM 3.0 outputs.
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6.4 Converting the Simplified Circuit to OpenQASM 3.0

In previous sections, we defined a conversion between QuRA quantum operations and QASM

instructions and a simplified circuit representation that can be used as a closer intermediate

representation to QASM. Most of the required elements are already present in the simplified

circuit, which already accounts for the case of qubit recycling. The only thing that we are

missing is a subtle attention towards qubit and bit initializations.

Whenever an instruction acts on a variable, that variable needs to be already initialized,

otherwise an error occurs. In addition to this, we cannot initialize a variable more than

once. In simplified circuits, both scenarios might occur: storing the result of a measurement

requires that the bit already exists, which could not be the case; recycling an existing wire

requires a new initialization, but that is not correct since the variable already exists. In order

to produce valid OpenQASM 3.0 code, during the conversion of the operations, we also need

to prepare a set containing all the initialized variables, to avoid double initializations.

Thanks to the circuit simplification step, we obtain a streamlined representation of the

program that significantly reduces the complexity of the conversion process. In particular, the

simplified circuit is directly translatable to OpenQASM 3.0: qubit allocations, measurements,

and gate applications are presented in a clean, ordered sequence acting on consistent wires.

As a result, the conversion can be carried out in just two steps:

1. Prepend the version string, OPENQASM 3.0;, and include the stdgates.qasm library.

2. Traverse the simplified circuit and translate each operation according to Table 6.1.

Whenever an operation involves the creation of new labels, for example, through qubit

initializations or measurements, we check whether the corresponding variable is already

defined; if not, it is properly initialized and added to the set of existing variables.

This reduction ensures that the simplified circuit acts as a ready-to-convert intermediate

representation, that is also well suited to compute the resource analysis of the circuit, as

presented in the previous Section.

6.4.1 Inspecting the Generated QASM Programs

To validate the translation from evaluated configurations to QASM, we examine several rep-

resentative circuits. By importing the generated QASM code into Qiskit and visualizing the
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resulting circuits, we can confirm that their structure and gate sequence correspond precisely

to the original CRL representations.

The Teleportation Protocol

The teleportation circuit has been a running example in this thesis, used to verify the correct-

ness of the various steps of the interpretation.

|1⟩ 𝐻

|0⟩

|0⟩ 𝐻 𝑍

Figure 6.3: Comparison between the circuit to teleport the value 1 and the obtained QASM
circuit, drawn using Qiskit.

We can observe that the two circuits present the same structure, but they differ slightly in

some details:

• To perform the initialization of the first Qubit to |1⟩, an X gate is applied.

• The classically controlled gates are now controlled by quantum wires after measuring

them in the two wires below.

• The controlled Z gate is represented by the last vertical line with a dot at each end,

instead of the classical representation of an X gate on the target wire.

Quantum Fourier Transform

The quantum Fourier transform (QFT) provides an excellent benchmark to validate the

correctness of generated parametric circuits. Figure 6.4 presents again the canonical structure

of the QFT on a 𝑛-qubit register: the most significant qubit undergoes a Hadamard gate,

followed by a sequence of controlled phase rotations 𝑅𝑘 with the remaining qubits. Afterward,

the QFT is applied recursively to the other 𝑛 − 1 qubits.

To illustrate the recursive structure of the generated QFT circuits, we present the cases

for 𝑛 = 1, 2, 3, and 4 qubits in Figure 6.5. As expected, each increment in 𝑛 introduces
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𝑞0 𝑅𝑛+1 𝑅𝑛 𝑅2 𝐻

width 𝑛𝑞𝑛−2 𝑅2 𝐻

𝑞𝑛−1 𝐻

Figure 6.4: The generic QFT circuit on an 𝑛-qubit register.

one additional Hadamard gate and a sequence of controlled rotations 𝑅𝑘 applied to the first

qubit. This progression confirms that the generated circuits follow the canonical parametric

definition of the QFT.

(a) 𝑛 = 1 qubit (b) 𝑛 = 2 qubits

(c) 𝑛 = 3 qubits (d) 𝑛 = 4 qubits

Figure 6.5: QFT circuits generated by QuRA for 𝑛 = 1, 2, 3, 4 qubits, visualized using Qiskit.
The recursive structure is clearly visible: each additional qubit introduces one Hadamard gate
and a growing sequence of controlled rotations 𝑅𝑘 , as expected.

Recall that each controlled phase rotation 𝑅𝑘 is defined as:

𝑅𝑘 =
©­«
1 0

0 𝑒𝑖𝜃

ª®¬ , 𝜃 =
𝜋

2𝑘−1 .

Since the PQ implementation of the QFT is defined using folds, this visual verification

for small 𝑛 directly supports the correctness of the entire parametric family: for 𝑛 = 1, the

generated circuit consists solely of a single Hadamard gate, matching the canonical definition;

assuming the (𝑛 − 1)-qubit circuit is correctly generated, the 𝑛-qubit circuit is obtained by

appending the recursive (𝑛 − 1)-qubit QFT, the appropriate sequence of controlled rotations

𝑅𝑘 , and one Hadamard gate. This recursive structure guarantees that the correctness observed
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for small values of 𝑛 extends to arbitrary circuit sizes.

Grover’s Algorithm

In Chapter 5.3.3, we compared the resources of Grover’s algorithm and we presented a

graphical representation of the algorithm elements and the overall circuit. Executing QuRA

on grover.pq generated to perform 2 iterations on a register of three qubits gives us the

circuit of Figure 6.6, displayed using Qiskit.

Figure 6.6: Grover’s algorithm circuit generated by QuRA with two iterations, using the nconj
oracle on a 3 qubits register, visualized using Qiskit.

Similarly to the teleportation protocol, the QASM conversion uses many new bit wires to

store the classical result of measuring the quantum registers. Other than that, we can clearly

see that it matches the circuit representation of Figure 5.4.

By default QuRA tries to reuse qubits, and we can see that it is the case, since all the

ancillas needed for the multi-controlled operations lays on the same wires. If we were to

execute the program with the --no-recycling tag, we would obtain a circuit that always

initializes new ancillary qubits for the MCNots. This behavior can be observed in Figure 6.7,

where the grover function is executed using the same parameters.

Quantum Adder

The last conversion example that we provide is the previously analyzed adder function. Given

the classical nature of the circuit, we can also verify that it correctly computes the addition

of two binary numbers through simulations.

The circuit generated for the function that sums two registers of 2 bits, the first initialized

to 01 and the second to 11, is shown in Figure 6.8. Note that the structure of the obtained

circuit is really similar to the CRL obtained in Section 5.3.4 and showed in Figure 5.5, with

the exception that the first three operations have been moved two steps to the right.
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Figure 6.7: Grover’s algorithm circuit generated by QuRA with two iterations, using the nconj
oracle on a 3 qubits register without enabling wire recycling, visualized using Qiskit.

Figure 6.8: Adder circuit generated by QuRA for two 2-qubit registers, visualized using
Qiskit.

As we can see from the figure, the Pauli-X gates are used to initialize the registers to the

desired values. If we run a simulation, we expect that the output register holds the value

100, which corresponds to 012 + 112 = 1002. The simulation is run through Qiskit and the

results are shown in Figure 6.9, confirming our expectations.
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Figure 6.9: Simulation results of the adder circuit generated by QuRA for two 2-qubit registers,
run through Qiskit.



Chapter 7

Conclusions

7.1 Contributions of this Thesis

The contributions of this thesis are threefold:

1. Formal Evaluation Engine for Proto-Quipper-RA: We formalized the reduction of

PQ programs into a Circuit Representation Language (CRL) and implemented an in-

terpreter based on big-step semantics. This enables explicit circuit construction from

well-typed programs and provides a uniform basis for both dynamic resource account-

ing and code generation.

2. Validation of Resource Estimates: We validated QuRA’s inferred resource bounds

against metrics measured directly from the generated circuits. For simple, non-

parametric circuits (e.g., the Teleportation Protocol), the inferred and measured values

coincided exactly. For scalable families (QFT, Grover, Adder), the symbolic formulas

inferred by QuRA closely matched the empirical growth across input sizes. In more

complex cases (e.g., Shor’s algorithm), bounds remained sound but slightly conser-

vative, with constant to linear overapproximatinos, highlighting opportunities for a

refinement on the analysis.

3. Conversion to Executable OpenQASM 3.0: We developed a translation pipeline from

evaluated circuits to OpenQASM 3.0, allowing visualization and execution through

frameworks such as Qiskit. To support this, we introduced QASM-specific metrics

(qasmwidth, qasmgatecount, qasmdepth) that accurately capture the semantics

of initialization and measurement. This ensures meaningful comparisons between
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inferred bounds and concrete circuit costs.

Significance and Future Directions

This work substantially extends QuRA’s scope, turning it into a practical toolchain component

that spans the entire lifecycle of quantum program development: from type-driven analysis

to concrete circuit execution. By providing a modular evaluation and translation pipeline,

it bridges the gap between theoretical resource reasoning and practical backend compati-

bility. Furthermore, our contribution made it possible to empirically validate QuRA’s static

resource estimates against the metrics of the generated circuits, strengthening confidence in

its soundness and practical applicability.

Several directions for future work are particularly promising:

• Syntactic Sugar and New Language Constructs: Introduce higher-level constructs in

PQ that simplify the expression of common quantum subroutines (e.g., modular expo-

nentiation, controlled operations). These constructs could be systematically desugared

into existing primitives, making Proto-Quipper-RA programs more concise and acces-

sible.

• Refinement of Resource Estimates: Investigate ways to narrow the gap between in-

ferred and concrete metrics, for example by refining typing rules for complex algorithms

or incorporating backend-specific cost models.

• Expanded Backend Compatibility: Generalize the translation layer to target multiple

intermediate representations beyond QASM, such as MLIR (Multi-Level Intermediate

Representation [27]) or other quantum intermediate representations, enabling broader

adoption across different quantum toolchains.

In conclusion, this thesis validates and extends the QuRA tool advancing the state-of-

the-art in preparing quantum algorithms for the Noisy Intermediate-Scale Quantum era and

beyond.
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1 -- teleportation.pq annotated for gatecount and depth

2 --- put q and p into the entangled |+> state

3 bell :: ![0](forall[0,0] dq. forall[0,0] dp.

4 (Qubit{dq}, Qubit{dp}) -o[2,0] (Qubit{max(dq+1, dp) + 1}, Qubit{max(dq+1, dp) + 1}))

5 bell dq dp (q, p) =

6 let q = (force hadamard @dq) q in

7 let (q,p) = (force cnot @dq+1 @dp) q p in

8 (q,p)

9 --- Alice ' s part of the teleportation protocol

10 alice :: ![0](forall[0,0] dp. forall[0,0] dr.

11 (Qubit{dp}, Qubit{dr}) -o[4,0] (Bit{max(dp, dr) + 2}, Bit{max(dp, dr) + 3}))

12 alice dp dr (p, r) =

13 let (r,p) = (force cnot @dr @dp) r p in

14 let r = (force hadamard @ max(dp, dr) + 1) r in

15 let c = (force meas @ max(dp, dr) + 1) p in

16 let d = (force meas @ max(dp, dr) + 2) r in

17 (c,d)

18 --- Bob ' s part of the teleportation protocol

19 bob :: ![0](forall[0,0] dq. forall[0,0] dc. forall[0,0] dd.

20 (Qubit{dq}, Bit{dc}, Bit{dd}) -o[2,0] Qubit{max(dd, max(dc, dq) + 1) + 1})

21 bob dq dc dd (q, c, d) =

22 let (c,q) = (force ccnot @dc @dq) c q in

23 let (d,q) = (force ccz @dd @ max(dc, dq) + 1) d q in

24 let _ = (force cdiscard @ max(dc, dq) + 1) c in

25 let _ = (force cdiscard @ max(dd, max(dc, dq) + 1) + 1) d in

26 q

27 --- teleport the state of qubit r (at depth dr) into qubit q

28 teleport :: ![0](forall[0,0] dr. Qubit{dr} -o[8,0] Qubit{dr+6})

29 teleport dr r =

30 let q = force qinit0 in

31 let p = force qinit0 in

32 let (q,p) = (force bell @0 @0) (q,p) in

33 let (c,d) = (force alice @2 @dr) (p,r) in

34 (force bob @2 @ max(2, dr) + 2 @ max(2, dr) + 3) (q,c,d)

Program A.1: PQ implementation of the Quantum Teleportation Protocol, annotated with

gatecount and depth signatures.
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A.2 Quantum Fourier Transform

1 -- qft-n4.pq

2 --- HELPER FUNCTIONS ---

3 -- invert the list of intermediate qubits at iteration iter

4 qrev :: !(forall iter. List[i<iter] Qubit -o List[i<iter] Qubit)

5 qrev iter reg =

6 let revStep = lift forall step.

7 \(rev, q) :: (List[i<step] Qubit, Qubit).

8 rev:q in

9 fold(revStep, [], reg)

10 -- apply the controlled rotation gate to the target qubit trg at iteration iter

11 rotate :: !(forall iter. !(forall step.

12 ((List[i < step] Qubit, Qubit), Qubit) -o (List[i < step + 1] Qubit, Qubit)))

13 rotate iter = lift forall step.

14 \((ctrls, trg), ctrl)::((List[i<step] Qubit, Qubit), Qubit).

15 let (ctrl, trg) = (force cr @(iter+1-step) @0 @0) ctrl trg in

16 (ctrls:ctrl, trg)

17 --- QUANTUM FOURIER TRANSFORM ---

18 qftIteration :: !(forall iter. (List[i<iter] Qubit, Qubit) -o List[i<iter+1] Qubit)

19 qftIteration iter (ctrls, trg) =

20 let revctrls = (force qrev @iter) ctrls in

21 let (ctrls, trg) = fold(force rotate @iter, ([], trg), revctrls) in

22 let trg = (force hadamard @0) trg in

23 ctrls:trg

24 -- apply the Quantum Fourier Transform to n qubits at depth d

25 qft :: !(forall n. List[i<n] Qubit -o List[i<n] Qubit)

26 qft n reg = fold(qftIteration , [], reg)

27 --- MAIN ---

28 main =

29 let w = force qinit1 in

30 let x = force qinit1 in

31 let y = force qinit1 in

32 let z = force qinit1 in

33 (force qft @4) [w,x,y,z]

Program A.2: PQ implementation of the QFT on a 4-qubit register.
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A.3 Multi-Controlled Not

1 --- MCNOT

2 -- actually , is (n+2)cnot, so n = m-2

3 mcnot :: ![0](forall[0,0] n. forall[0,0] dc. forall[0,0] dt. List[_<n+2] Qubit{dc} -o[0,0]

Qubit{dt} -o[2*(n+2),n+2] (List[_<n+2] Qubit{max(dc+n+2,dt+1)+n+2}, Qubit{max(1+dc+n

+1,1+dt)}))

4 mcnot n dc dt ctrls trgt =

5 let restControls:q2:q1 = ctrls in

6 let a1 = force qinit0 in -- first ancilla

7 --- create the first intermediate value ---

8 let (q1,q2,a1) = (force toffoli @dc@dc@0) q1 q2 a1 in

9 --- forward pass ---

10 let toffoliStep = lift forall step. \((cs, as, a), c) :: ((List[_<step] Qubit{dc+step+2},

List[_<step] Qubit{dc+step+2}, Qubit{dc+step+1}), Qubit{dc}).

11 let new = force qinit0 in

12 let (a,c,new) = (force toffoli @max(1,dc+1)+step @dc @0) a c new in

13 (cs:c, as:a, new)

14 in let (restControls , ancillas , lastAncilla) = fold(toffoliStep , ([],[],a1), restControls

) in

15 --- control the target ---

16 -- let ancillas:lastAncilla = ancillas in -- extract last ancilla

17 let (lastAncilla , trgt) = (force cnot @dc+n+1 @dt) lastAncilla trgt in -- apply cnot to

the target

18 --- backwards pass ---

19 let ca = (force qzip @n @dc+n+2) ((force rev @n @dc+n+2) restControls , (force rev @n @dc+

n+2)ancillas) in -- zip controls and ancillas

20 let bwToffoliStep = lift forall step. \((cs,nextTarget),(c,a)) :: ((List[_<step] Qubit{

max(dc+n+2,dt+1)+step+2}, Qubit{max(dc+n+2,dt+1)+step+1}),(Qubit{dc+n+2},Qubit{dc+n

+2})).

21 let (c,a,nextTarget) = (force toffoli @dc+n+2 @dc+n+2 @max(dc+n+2,dt+1)+step+1) c a

nextTarget in

22 let _ = (force qdiscard @max(dc+n+2,dt+1)+step+2) nextTarget in

23 (cs:c, a)

24 in let (restControls , a1) = fold(bwToffoliStep , ([],lastAncilla), ca) in

25 let (q1,q2,a1) = (force toffoli @dc+1 @dc+1 @max(dc+n+2,dt+1)+n+1) q1 q2 a1 in

26 let _ = (force qdiscard @max(dc+n+2,dt+1)+n+2) a1 in

27 --- return the mcnot outputs ---

28 (restControls:q2:q1, trgt) -- reorder the controls

Program A.3: PQ implementation of the multi-controlled Not function.
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1 --- GROVER ' S ALGORITHM annotated with gatecount and depth ---

2 -- the diffusion operator on n qubits with ancilla a (all qubits at depth d)

3 diffusion :: ![0](forall[0,0] n. forall[0,0] d. List[_<n+2] Qubit{d} -o[0,0] Qubit{d} -o

[4*(n+2)+2*(n+1)+1, 0] (List[_<n+2] Qubit{d+4+2*(n+2)}, Qubit{d+4+n}))

4 diffusion n d reg a =

5 let reg = (force mapHadamard @ n+2 @ d) reg in

6 -- begin negatively controlled not

7 let reg = (force mapQnot @ n+2 @ d+1) reg in

8 let (reg,a) = (force mcnot @ n @ d+2 @ d) reg a in

9 let reg = (force mapQnot @ n+2 @ d+2+2*(n+2)) reg in

10 -- end negatively controlled not

11 let reg = (force mapHadamard @ n+2 @ d+3+2*(n+2)) reg in

12 (reg, a)

13 -- perform a single grover iteration on n qubits at depth d, using an ancilla a at depth d,

and an oracle of size os and depth od

14 groverIteration :: ![0](forall[0,0] n. forall[0,0] d. forall[0,0] os. forall[0,0] od.

15 (forall[0,0] d. Circ[os]((List[_<n+2] Qubit{d}, Qubit{d}), (List[_<n+2] Qubit{d + od},

Qubit{d + od})))

16 -o[0,0] List[_<n+2] Qubit{d} -o[0,0] Qubit{d}

17 -o[os+4*(n+2)+2*(n+1)+1, 0] (List[_<n+2] Qubit{d+od+4+2*(n+2)}, Qubit{d+od+4+n}))

18 groverIteration n d os od oracle reg a =

19 let (reg, a) = apply(oracle @ d, (reg, a)) in

20 (force diffusion @ n @ d+od) reg a

21 -- run Grover ' s algorithm on an oracle of input size n, width os and depth od

22 grover :: ![0](forall[0, 0] r. forall[0, 0] n. forall[0, 0] os. forall[0, 0] od.

23 (forall[0,0] d. Circ[os]((List[_<n+2] Qubit{d}, Qubit{d}), (List[_<n+2] Qubit{d+od},

Qubit{d+od})))

24 -o[n+2+1+r*(os+4*(n+2)+2*(n+1)+1)+n+2, 0] List[_<n+2] Bit{2 + r*(od+4+2*(n+2))})

25 grover r n os od oracle =

26 -- prepare working qubits

27 let wqs = force qinit0Many @ n+2 in

28 let wqs = (force mapHadamard @ n+2 @ 0) wqs in

29 -- prepare ancilla

30 let a = force qinit1 in

31 let a = (force hadamard @ 0) a in

32 -- iterate Grover ' s algorithm

33 let iteration = lift forall step. \((wqs, a), _) :: ((List[_<n+2] Qubit{1+step*(od+4+2*(n

+2))}, Qubit{1+step*(od+4+2*(n+2))}), ()).

34 (force groverIteration @ n @ 1+step*(od+4+2*(n+2)) @ os @ od) oracle wqs a

35 in let (wqs, a) = fold(iteration , (wqs, a), force range @r) in

36 let _ = (force qdiscard @ 1 + r * (od+4+2*(n+2))) a in

37 (force mapMeasure @ n+2 @ 1 + r * (od+4+2*(n+2))) wqs

Program A.4: PQ implementation of the Grover’s Algorithm, annotated with gatecount and

depth signatures.
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