

DEPARTMENT OF ELECTRICAL, ELECTRONIC, AND INFORMATION

ENGINEERING "GUGLIELMO MARCONI" - DEI

SECOND CYCLE DEGREE

ELECTRONICS FOR INTELLIGENT SYSTEMS, BIG DATA, AND

INTERNET OF THINGS

INTEGRATION OF AI WITH

KNOWLEDGE GRAPHS FOR SMART

AGRICULTURE APPLICATIONS

GRADUATION SESSION OCTOBER 2025

ACADEMIC YEAR 2024/2025

Supervisor

Prof. Luca Roffia

Co-Supervisor

Gregorio Monari

Defended by

Bita Alaee Majelan

i

Abstract

This thesis explores the integration of large language models (LLMs) with semantic web technologies

to enhance weather-aware decision-making in smart agriculture. The study focuses on bridging

natural language input with structured environmental data by converting user queries into SPARQL

using a GPT-based LLM. Historical weather data, including daily minimum, maximum, and average

air temperatures, was collected from two publicly available weather APIs, demonstrating the role of

semantic technologies in achieving data interoperability. These datasets were semantically modeled

using the SOSA ontology and stored in a SPARQL Event Processing Architecture (SEPA) knowledge

graph, enabling real-time querying over RDF triples.

To evaluate the effectiveness of this approach, a prototype system was developed to process user

questions in natural language and return weather observations by executing the corresponding

SPARQL queries. The system was tested using a one-year dataset from both APIs for the De Bilt

region (Netherlands), allowing for validation of query results and analysis of vocabulary alignment

and model consistency. The findings demonstrate the potential of combining LLMs with semantic

graph infrastructures to improve accessibility, usability, and interpretability of environmental data in

agricultural applications.

ii

Acknowledgement

I would like to extend my heartfelt gratitude to my supervisor, Professor Luca Roffia, for his

unwavering support and insightful feedback throughout my thesis and internship journey. His

steadfast commitment to academic excellence and meticulous attention to detail have profoundly

shaped the development of this thesis internship.

I would also like to acknowledge my teammates at VAIMEE during this internship for their

invaluable assistance and the engaging discussions that fueled my inspiration throughout my

academic endeavors. Their encouragement has been a fundamental aspect of my research experience.

Furthermore, I am deeply appreciative of my family and friends, who provided both meaningful

distractions when necessary and the motivation required to persevere through challenging times.

iii

Table of Contents

Abstract ... i

Acknowledgement ... ii

List of Figures ... iv

List of Tables ... v

1 Introduction .. 1

2 Technologies and Standards ... 2

2.1 RDF (Resource Description Framework) .. 2

2.2 SPARQL 1.1 (SPARQL Protocol and RDF Query Language) ... 2

2.2.1 Query .. 2

2.2.2 Update .. 2

2.2.3 Federated Query ... 2

2.3 SEPA (SPARQL Event Processing Architecture) ... 3

2.4 Agorà: The Agritech Oracle ... 4

2.5 SOSA Ontology ... 4

2.6 JSAP (JSON SPARQL Application Profile) ... 5

2.7 SEPY Python Client ... 5

2.8 LLM-Based SPARQL Generation using OpenAI GPT API ... 5

2.9 Data APIs: KNMI and OpenWeather .. 6

3 System Design and Implementation .. 7

3.1 Overall System Architecture .. 7

3.2 Data sources ... 8

3.3 AI Module .. 11

3.4 Knowledge Graph Module ... 12

4 Results .. 14

4.1 Experimental setup ... 14

4.2 Test scenarios ... 14

4.3 Discussion .. 16

5 Conclusion and Future Work ... 17

References .. 18

iv

List of Figures

Figure 2.1- Generic architecture for federated SPARQL query processing .. 3
Figure 2.2- Overview of SEPA architecture and publish/subscribe flows .. 4
Figure 3.1- System architecture integrating weather data and LLM-based query generation 7
Figure 3.2- Comparison of temperatures retrieved from KNMI and OpenWeather 9
Figure 3.3- Map of KNMI weather stations across the Netherlands ... 9
Figure 3.4- KNMI station metadata ... 10
Figure 3.5- Core structure of the SOSA ontology ... 13
Figure 4.1- Output Returned by GPT-4 from OpenAI Response API ... 14
Figure 4.2- Output Returned by GPT-4o from OpenAI Response API ... 15

v

List of Tables

Table 4.1- Summary of Temperature Data Sources ... 14
Table 4.2- Comparison of SPARQL Generation by Different GPT Models 15

1

1 Introduction

Precision agriculture is increasingly relying on data-driven decision support systems to optimize

resource utilization, enhance crop yields, and adapt to dynamic environmental conditions. One of the

most critical components of these systems is accurate, real-time weather information, which directly

influences key agricultural decisions, such as irrigation scheduling, pest management, and crop

performance. However, much of this data remains either unstructured or fragmented across different

platforms and is inaccessible to end-users without specialized technical expertise.

To bridge this gap, semantic web technologies offer a solution by enabling machine-readable,

interoperable environmental data that can be modeled, queried, and understood across different

systems. One such example is Agorà, an innovative AgriTech solution developed by VAIMEE. Agorà

acts as a Digital Twin designed to predict the water needs of fields worldwide, leveraging semantic

interoperability to ensure better decision-making and reduce resource waste, specifically in water

management. Agorà utilizes data from various sources, including weather stations, soil types, and

crop-specific information, to provide real-time irrigation predictions for farmers [1].

In parallel, the rapid advancements in large language models (LLMs), particularly GPT-4 and other

transformer-based models, present new opportunities to interface with structured knowledge bases

and support natural language queries. These models bridge the gap between technical data and user-

friendly interfaces, enabling non-technical users to interact with complex datasets more intuitively.

By combining these two technologies, semantic web data models and AI-driven natural language

interfaces, this thesis investigates an approach to weather-aware decision-making in smart

agriculture.

This work focuses on integrating historical weather data from the KNMI EDR API [2] and

OpenWeather History API [3] with Agorà’s framework to enable easy querying of weather

observations using natural language. The data, including daily minimum, maximum, and mean air

temperatures for the De Bilt region, is semantically modeled using the SOSA ontology and stored in

a SPARQL Event Processing Architecture (SEPA) endpoint. A GPT-based module was developed to

automatically translate user questions into SPARQL queries, which are then executed against the

SEPA knowledge graph to retrieve the relevant weather data.

The feasibility of this approach was evaluated by examining the syntactic correctness of the queries

generated by the LLM, ensuring they aligned with the SOSA and KNMI vocabularies. Additionally,

the system’s ability to return accurate and actionable weather data was assessed. The experimental

results demonstrate the potential of combining LLMs and semantic data models for agricultural

decision support, although challenges remain in query consistency and vocabulary alignment. This

work lays the foundation for integrating smart agriculture tools with more advanced AI models,

aiming to enhance the accessibility of complex weather data for farmers and agronomists.

2

2 Technologies and Standards

This chapter summarizes the main technologies and tools used, with a focus on the features relevant

to the work carried out.

2.1 RDF (Resource Description Framework)

RDF is a standard data model developed by the W3C for encoding, exchanging, and interlinking

structured information on the web. In RDF, data is expressed in the form of triples, each consisting

of a subject, predicate, and object. These triples represent directed relationships, allowing data to be

stored and queried as a graph [4].

Each node in the RDF graph may represent an entity (identified by a URI), a literal value (such as a

number, date, or string), or a blank node. The graph structure enables semantic interoperability across

heterogeneous systems, supporting integration of distributed datasets. In this thesis, RDF serves as

the foundational data model for representing meteorological observations retrieved from KNMI and

OpenWeather sources, which are annotated using the SOSA ontology.

2.2 SPARQL 1.1 (SPARQL Protocol and RDF Query Language)

SPARQL is the query language used for retrieving and manipulating RDF data. SPARQL 1.1

supports querying multiple RDF datasets simultaneously, as well as performing updates to RDF

graphs via dedicated operations. The protocol defines a standardized transport mechanism based on

HTTP, enabling interaction with remote RDF stores [5].

2.2.1 Query

SPARQL queries typically follow a SELECT pattern, where variables are used to extract matching

triples from RDF datasets. Queries can include complex filters, joins, and aggregations. In this thesis,

SPARQL is used to retrieve temperature data stored in a SEPA triple store, with queries either written

manually or generated automatically by a GPT-based LLM [6].

2.2.2 Update

SPARQL 1.1 Update is an extension of SPARQL with commands for managing RDF data, offering

a comprehensive set of operations for updating RDF graphs [7], which includes:

• INSERT DATA: Explicitly adds new triples.

• DELETE DATA: Removes existing triples.

• DELETE WHERE: Eliminates triples based on pattern matching.

• MODIFY: Simultaneous insertion and deletion of triples using a WHERE clause.

• CLEAR, DROP, COPY, and ADD: Enable management of entire graphs.

These update operations are essential for incorporating new weather observations into the SEPA

backend, as illustrated in the JSAP update templates discussed in Section 3.2.

2.2.3 Federated Query

SPARQL 1.1 introduces the capability for federated queries through the SERVICE keyword, enabling

a query to access data from multiple remote SPARQL endpoints in a single execution. This feature

facilitates the integration of diverse RDF datasets spread across the web, eliminating the need for

centralized storage. A common application of this functionality is the combination of weather data

from various APIs or knowledge graphs by distributing segments of the query to their corresponding

3

endpoints. Although the current implementation in this thesis does not directly employ federated

querying, the architecture is designed to support this method. Future enhancements, particularly those

involving the incorporation of external agricultural or geospatial datasets, could utilize this capability

to enhance the system's semantic reasoning and overall coverage [8].

Figure 2.1 Illustrates a generic architecture for federated query processing systems, highlighting the

flow of SPARQL queries from decomposition to execution across multiple data sources [9].

Figure 2.1- Generic architecture for federated SPARQL query processing

2.3 SEPA (SPARQL Event Processing Architecture)

SEPA is designed to support the development of dynamic linked data applications, where real-time

updates and synchronization between distributed clients are essential. It extends the classical Web of

Data by enabling not only queries and updates via SPARQL 1.1, but also subscriptions to data

changes using a publish/subscribe paradigm.

The core of SEPA is the SEPA broker, which implements an extension of the SPARQL 1.1 protocol

called the SPARQL Secure Event (SE) Protocol. This extension introduces two additional primitives,

Subscribe and Notify, enabling clients to react in real time to changes in RDF data. A SEPA client

can subscribe to a SPARQL query. Whenever the result set of that query changes (due to updates

from other clients), a notification is automatically pushed to the subscriber.

This event-driven architecture facilitates the creation of reactive, loosely coupled systems on top of

RDF graphs. SEPA also leverages JSON SPARQL Application Profiles (JSAPs) for managing

configuration, authentication, and semantic interactions in a modular and extensible way.

Figure 2.2 Illustrates the interaction between SEPA agents (producers, consumers, and aggregators),

the broker, and the underlying RDF datasets [10].

4

Figure 2.2 - Overview of SEPA architecture and publish/subscribe flows

2.4 Agorà: The Agritech Oracle

Agorà is an innovative AgriTech solution created by VAIMEE. This Digital Twin is designed to

accurately forecast the water requirements of fields, crops, and various soil types worldwide, utilizing

semantic interoperability to minimize water waste. Users can receive irrigation recommendations for

the following day tailored to a specific unit, which is defined as a combination of soil type, crop type,

and meteorological station. Agorà utilizes the CRITERIA model to produce its forecasts. This one-

dimensional agro-hydrological model simulates soil water movement, crop growth, root water uptake,

and irrigation water needs [1][11].

2.5 SOSA Ontology

The Sensor, Observation, Sample, and Actuator (SOSA) ontology is a lightweight, modular ontology

for modeling observations, sensing devices, procedures, and the resulting data. It is designed for use

cases where interoperability and ease of integration are essential, such as the Internet of Things,

environmental monitoring, and smart agriculture. SOSA provides a core set of classes (e.g.,

sosa:Observation, sosa:Sensor, sosa:FeatureOfInterest, sosa:Result) and properties (e.g.,

sosa:hasResult, sosa:observedProperty, sosa:resultTime) that make it suitable for describing

observational data in RDF [12].

In this thesis, SOSA was adopted as the primary ontology for representing weather observations,

enabling semantic alignment across different data sources. The ontology’s compatibility with the

W3C PROV-O model also facilitates the traceability and provenance tracking of observations, which

is crucial in critical domains such as precision farming. A visual summary of SOSA's structure is

provided later in Section 3.4 to contextualize its use in modeling temperature values.

5

2.6 JSAP (JSON SPARQL Application Profile)

JSON SPARQL Application Profile (JSAP) is a configuration format developed within the SEPA

ecosystem that describes all SPARQL endpoints and their associated operations in a single, machine-

readable JSON file. Each JSAP file specifies named SPARQL queries and updates, namespace

prefixes, forced bindings, and graph URIs, allowing client applications to interact with RDF graphs

in a modular and reusable way.

In this thesis, JSAP files were used to insert weather observations into the SEPA triple store

(INSERT_OBSERVATION) and to retrieve specific records based on query conditions

(GET_OBSERVATIONS_FOR_STATION). JSAP enabled clear separation between semantic logic and API

implementation, simplifying integration with Python scripts and the SEPY library. A representative

JSAP configuration is later discussed in Section 3.4, where its structure and practical use are

demonstrated [13].

2.7 SEPY Python Client

To interact programmatically with SEPA, this project uses SEPY, a Python client library developed

for loading JSAP files and executing SPARQL queries, updates, and subscriptions. The SAPObject

class parses the JSAP and manages SPARQL templates, while the SEPA class establishes connections

to the query and update endpoints defined in the configuration.

This library simplifies integration between Python scripts and the SEPA broker, allowing automation

of data insertion, live monitoring, and query execution. It was used in both the data ingestion phase

(e.g., uploading temperature observations) and in the LLM query interface, where GPT-generated

SPARQL queries are executed dynamically [14].

2.8 LLM-Based SPARQL Generation using OpenAI GPT API

Large language models (LLMs), such as GPT-4o, have showcased impressive abilities in

comprehending and generating natural language. Trained on extensive text corpora, these models can

execute complex reasoning tasks, produce contextually relevant responses, and even translate human

inquiries into structured query languages. In the realm of semantic web technologies, LLMs provide

an innovative interface for engaging with RDF-based knowledge graphs through natural language.

This thesis leverages these capabilities to bridge the gap between human questions and SPARQL

queries by integrating OpenAI's GPT API into the data pipeline.

The OpenAI GPT API provides programmatic access to large language models that can understand

natural language input and generate structured output [15]. In this project, the API is utilized to

convert user questions (for example, "What was the maximum temperature in De Bilt on June 6,

2025?") into corresponding SPARQL queries using controlled prompting.

The prompt includes context, prefix definitions for the SOSA and KNMI vocabularies, and specific

task instructions. The model used is GPT-4o, selected for its ideal balance between speed and syntax-

awareness.

This integration enables natural language interfaces to interact with RDF knowledge graphs, acting

as a semantic layer that simplifies SPARQL complexity for end-users. The generated queries are

validated and subsequently executed via SEPY against the SEPA knowledge graph.

6

2.9 Data APIs: KNMI and OpenWeather

Meteorological data for this study were retrieved from two publicly available APIs. The KNMI EDR

API provides historical weather observations in JSON format, offering high-resolution data for the

Netherlands meteorological stations. In parallel, the OpenWeather History API supplies globally

available weather records with flexible date range queries and simplified JSON formatting.

These sources were used to collect daily mean (TG), minimum (TN), and maximum (TX) air

temperature values for the De Bilt region. The retrieved data was parsed and semantically annotated

by mapping temperature observations to relevant concepts in the SOSA ontology. Each observation

was then inserted into a SEPA (SPARQL Event Processing Architecture) knowledge graph as RDF

triples using the SEPY client and JSAP configuration.

A comparative analysis of the datasets, including differences in temporal resolution, value

discrepancies, and data availability, is presented in subsequent chapters.

7

3 System Design and Implementation

3.1 Overall System Architecture

The system architecture proposed in this thesis draws conceptual inspiration from the Agorà platform.

In Agorà, weather information serves as a critical input to a broader reasoning component known as

the criteria model, which evaluates user-defined objectives such as yield optimization or resource

efficiency.

In the present work, the criteria model has been intentionally excluded to simplify the system design

and focus on the technical integration challenges associated with external weather APIs, semantic

knowledge graphs, and large language models. The central objective is to demonstrate the feasibility

of linking natural language user interfaces with RDF-based environmental datasets through LLM-

generated SPARQL queries. This foundational architecture can be extended in future iterations by

incorporating domain reasoning layers, such as Agorà’s criteria model, to support fully automated

decision-making.

Figure 3.1 Illustrates the overall system architecture. The pipeline begins with the retrieval of daily

minimum (TN), maximum (TX), and mean (TG) air temperature values from two publicly available

sources: the KNMI EDR API and the OpenWeather History API. Data acquisition is handled through

Python scripts that manage endpoint authentication, parameterized HTTP requests, and JSON

parsing.

Figure 3.1- System architecture integrating weather data, semantic modeling, and LLM-based query

generation

8

The retrieved datasets are then cleaned and harmonized into a unified format by aligning timestamp

conventions and standardizing temperature units. Once processed, the data is semantically annotated

using the SOSA ontology and stored in a SPARQL Event Processing Architecture (SEPA) triple store

via the SEPY client API and a structured JSAP configuration file.

On the user-facing side, the system enables natural language interaction, where free-text queries are

processed by an LLM (specifically, GPT‑4o). The model translates these inputs into SPARQL queries

that are syntactically valid and semantically aligned with the SOSA and KNMI vocabularies. These

queries are then executed against the SEPA endpoint to retrieve the corresponding weather

observations from the RDF graph.

Finally, the system provides two visualization components: a Folium-based map for displaying the

spatial distribution of KNMI stations across the Netherlands, and Pandas and Matplotlib plots for

comparing historical weather data retrieved from KNMI and OpenWeather. This architecture

illustrates how AI-powered natural language interfaces and semantic web technologies can be jointly

deployed to facilitate intuitive access to structured meteorological data, forming a foundational layer

for potential extensions of the Agorà platform in real-world smart agriculture use cases.

3.2 Data sources

Meteorological data used in this thesis were retrieved from two public providers: the KNMI (Royal

Netherlands Meteorological Institute) and OpenWeather. Both organizations offer multiple datasets

and APIs, each with different data formats, time resolutions, and access methods. To ensure

consistency and reliability, several candidate sources were explored and compared before selecting

the most suitable raw data endpoints for the scope of this work.

For KNMI, data was accessed through two different mechanisms. The first was the KNMI EDR API,

which provides observational data in JSON format. This API enables querying historical weather

values from a gridded dataset [16], including daily minimum (TN), maximum (TX), and mean (TG)

air temperatures, for specific coordinates. The second source was the KNMI OpenData API, which

exposes complete multi-station historical datasets in NetCDF format. The latter was processed using

the Python xarray library, which allows for structured parsing and extraction of relevant parameters,

such as station names, geographic coordinates, and temperature observations. The result was a tabular

dataset visualized using Pandas and Matplotlib, enabling both numerical inspection and graphical

comparison.

In parallel, the OpenWeather History API was queried using a different structure, relying on global

grid-based weather archives and customizable time intervals. The API returns data in simplified

JSON format, making it easier to integrate but often less localized than station-based data. To enable

fair comparison, both the KNMI and OpenWeather datasets were filtered and aligned by timestamp

and location (De Bilt), and the retrieved values were plotted over a one-year observation period.

Figure 3.2 Shows the comparison between KNMI and OpenWeather daily minimum and maximum

temperatures for the De Bilt region over a 12-month interval. The discrepancies observed between

the two sources underscore the importance of data selection and standardization in building robust

smart agriculture pipelines.

9

Figure 3.2- Comparison of daily minimum and maximum air temperatures retrieved from KNMI and

OpenWeather for the De Bilt region over 1 year.

In addition to the temperature comparison, a geographic analysis of KNMI station coverage was

conducted. The NetCDF file retrieved from the KNMI OpenData platform includes metadata for all

51 automatic weather stations, of which 37 are land-based and 14 are located at sea. A Folium-based

interactive map was created to visualize station distribution across the Netherlands. This allowed

qualitative inspection of spatial coverage, helping identify areas that may lack nearby observations.

The goal was not to quantify accuracy by distance, but rather to gain an intuitive understanding of

potential coverage gaps.

Figure 3.3- Map of KNMI weather stations across the Netherlands (Green points represent Land stations

and red points are Sea stations).

10

To semantically integrate the processed weather data into the system, observations were annotated

using the SOSA ontology and converted into RDF triples. These triples were inserted into the SEPA

broker using the SEPY Python client, which requires a configuration file in JSAP format. The JSAP

defines all queryable SPARQL endpoints by specifying QUERY and UPDATE templates in JSON.

Understanding how to write and customize JSAP files was an essential prerequisite for making SEPA

interactions modular and reusable.

A simplified snippet of the JSAP file used in this project is shown below, highlighting the structure

of an INSERT_OBSERVATION update template:

{ "INSERT_OBSERVATION": {
 "sparql": "PREFIX sosa: <http://www.w3.org/ns/sosa/> PREFIX knmi: <http://example.org/knmi#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> INSERT { GRAPH
<http://example.org/knmi/observations> { ?observation a sosa:Observation ;
sosa:hasFeatureOfInterest ?foi ; sosa:observedProperty ?property ; sosa:hasResult ?value ;
sosa:resultTime ?timestamp ; sosa:madeBySensor ?sensor . } } WHERE {}",
 "forcedBindings": {
 "observation": { "type": "uri", "value": "knmi:OBSERVATION_ID" },
 "foi": { "type": "uri", "value": "knmi:StationDeBilt" },
 "property": { "type": "uri", "value": "knmi:TG" },
 "value": { "type": "literal", "value": "18.5", "datatype": "xsd:float" },
 "timestamp": { "type": "literal", "value": "2024-07-01T00:00:00Z", "datatype":
"xsd:dateTime" },
 "sensor": { "type": "uri", "value": "knmi:TEMP_SENSOR" }
 }
 }
}

This configuration ensures that new observations can be programmatically inserted into the

knowledge graph in a consistent and SPARQL-compliant manner. Working with JSAP required an

understanding of SPARQL INSERT and SELECT queries, triple patterns, and RDF datatypes, all of which

were incrementally learned and applied throughout the project via iterative development tasks.

Figure 3.4 Provides a snippet of the dataset after parsing it into a structured table using xarray and

pandas, which facilitated the spatial analysis and mapping tasks.

Figure 3.4- KNMI station metadata extracted from NetCDF and displayed as a Pandas DataFrame

11

3.3 AI Module

To enable natural language interaction with the weather data stored in SEPA, the system integrates

an AI module powered by the OpenAI GPT API. The goal of this module is to translate human-

readable questions into syntactically correct SPARQL queries that are compatible with the RDF

vocabulary used in the knowledge graph (i.e., SOSA and KNMI namespaces).

The selected model for this task is GPT-4o, accessed through the chat.completions endpoint of the

OpenAI Python SDK. A simple two-message prompt is used: the system message defines the

assistant’s role as a SPARQL expert (with access to SOSA ontology), and the user message contains

a weather-related question, such as:

from openai import OpenAI

client = OpenAI(api_key="sk-...")

response = client.chat.completions.create(
 model="gpt-4o",
 messages=[
 {"role": "system", "content": "You are a SPARQL expert. You generate SPARQL queries from natural
language questions."},
 {"role": "user", "content": "How much was the maximum temperature today in De Bilt?"}],

 temperature=0.0)

print(response.choices[0].message.content)

The temperature=0.0 parameter disables randomness in the LLM’s output, ensuring that the model

always returns the most probable response. This deterministic behavior is critical for generating

consistent and reproducible SPARQL queries, especially during testing and validation. By contrast,

using higher temperature values (e.g., 0.7 or 1.0) introduces variability, which can lead to hallucinated

predicates, incorrect vocabulary usage, or syntactically invalid queries, making the system unreliable

for structured data interactions. The resulting SPARQL string is printed and passed directly to the

SEPY client for execution against the SEPA endpoint.

This module was iteratively evaluated with multiple models (GPT-4, GPT-4o, GPT-5, and GPT-5-

thinking), and various prompt structures were explored. Outputs were manually reviewed for

correctness in terms of syntax, vocabulary alignment, and semantic validity. The goal was not to train

or fine-tune any LLM, but to assess feasibility and robustness when using LLM in direct integration

without fine-tuning with structured weather data.

response = client.chat.completions.create(
 model="gpt-4o",
 messages=[
{"role": "system", "content": (
 "You are a SPARQL-generating assistant that answers natural language weather questions"
 "by generating SPARQL queries using the SOSA ontology and KNMI dataset structure.\n"
 "Use these prefixes in all queries:\n"
 "PREFIX sosa: <http://www.w3.org/ns/sosa/>\n"
 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n"
 "PREFIX knmi: <http://example.org/knmi/>") },
{"role": "user", "content": "What was the maximum temperature in De Bilt on 16 September 2025?"
}],
 temperature=0.0)

print(response.choices[0].message.content)

12

Overall, the AI module demonstrates that, even without fine-tuning, current large language models

can produce executable and meaningful SPARQL queries in the context of weather data stored as

RDF. These results open opportunities for future work in prompt optimization, vocabulary constraint

injection, or reinforcement-style feedback loops to improve query accuracy and reduce hallucinations

[17].

3.4 Knowledge Graph Module

To semantically structure the retrieved weather data, this thesis adopts a knowledge graph (KG)

approach based on the Resource Description Framework (RDF). A knowledge graph represents

information as subject–predicate–object triples, enabling the creation of machine-readable,

interoperable data models. In this work, each weather observation was described using concepts from

the SOSA (Sensor, Observation, Sample, and Actuator) ontology, which is designed for representing

sensor-based data in the environmental and Internet of Things domains.

The annotated RDF data was inserted into a SEPA triple store using the SEPY Python client. SEPA

enables both querying and subscribing to RDF data over time, supporting real-time updates to the

graph. To interact with SEPA, a structured configuration for the JSAP file was defined. This file

specifies SPARQL INSERT and SELECT operations along with the necessary bindings and namespaces

for interacting with the knowledge base.

Before integrating the pipeline, early development experiments involved creating a small RDF dataset

in Turtle (.ttl) format and loading it into Protégé for validation [18]. This allowed a preliminary

understanding of how ontologies like SOSA are structured and how semantic models are navigated.

These foundational steps ensured that the final system could semantically represent and store weather

observations in a SPARQL-compliant manner, serving as the backbone for LLM-powered query

execution in later stages.

To formally represent the framework of environmental observations, the SOSA ontology was utilized

as the base vocabulary. SOSA offers a lightweight and adaptable structure for detailing sensor-driven

observations, encompassing the property being observed, the sensor itself, the outcome, and the

feature of interest. To become familiar with the SOSA classes and properties, initial testing was

performed using Protégé, where a simple RDF graph was manually constructed in Turtle syntax and

visualized. The following Figure 3.5, outlines the fundamental structure of the SOSA ontology,

showcasing its key relationships with the PROV-O (Provenance Ontology) model. This diagram,

sourced from Janowicz et al. [12], informed the development of the RDF triples and ensured semantic

accuracy in aligning the dataset schema with the ontology’s framework.

13

Figure 3.5- Core structure of the SOSA ontology [12].

14

4 Results

4.1 Experimental setup

The implementation phase involved retrieving and processing one year of temperature observations

from two sources: KNMI and OpenWeather APIs.

Table 4.1- Summary of Temperature Data Sources

Feature KNMI EDR API OpenWeather History API

Source Type Station-based (Netherlands) Global grid-based model

Temporal Coverage Full historical coverage Limited to certain years

Granularity Daily min, max, mean (TG, TN, TX) Daily min, max, mean

Data Format OGC Coverage JSON Simplified JSON

Geo Precision Exact station location Approximate geocoordinates

Accessibility Open Data Portal (NetCDF, EDR) Commercial API

Initial comparisons revealed that KNMI provided more precise and readily available data, as it is

directly derived from physical weather stations nationwide. In contrast, OpenWeather delivers global

coverage with a more generalized, grid-based approach, which may sacrifice local accuracy. This

observation aligns with OpenWeather’s own report on accuracy and quality of weather data, which

states that their outputs are based on a combination of modeled and observational sources [19].

To visualize the discrepancies between the two APIs, the retrieved values were aligned by timestamp

and plotted using Pandas and Matplotlib. Figure 3.2 (previous section) illustrates potential differences

in temperature values throughout the year.

4.2 Test scenarios

This section describes how the system's behavior changed in response to modifications made to the

prompt used in the OpenAI GPT-4 model, as discussed in Section 3.3.

In the initial test, a general prompt was provided to the LLM without any SPARQL or ontology

context. The result, shown in Figure 4.1 was a natural language explanation, warning that SPARQL

cannot retrieve real-time data directly from weather APIs. The model correctly explained that

SPARQL is used for querying RDF-based knowledge graphs, not for direct API access.

Figure 4.1- Output Returned by GPT-4 from OpenAI Response API

15

Subsequent tests with the same prompt and different models (e.g., GPT-5, GPT-5 Thinking) yielded

similar generic responses, often indicating that more context or specific data access tools were

required to answer the question accurately.

To improve the output, the prompt was refined by explicitly stating the desired behavior (i.e.,

generating a SPARQL query using SOSA and KNMI vocabulary) and by including relevant prefixes

in the system role message. This change produced significantly better results: instead of returning an

answer, the model generated a structured and syntactically valid SPARQL query. An example of this

improved output is shown in Figure 4.2.

Figure 4.2- Output Returned by GPT-4o from OpenAI Response API

The results, summarized in Table 4.2, indicate a clear improvement in SPARQL generation accuracy

when moving from earlier models to GPT-5 Thinking, especially when SOSA and KNMI

vocabularies were embedded into the system prompt.

The output still required careful evaluation to ensure semantic correctness and alignment with the

underlying ontology. Still, it represented a successful step toward connecting natural language

interfaces with machine-interpretable environmental data.

Table 4.2- Comparison of SPARQL Generation by Different GPT Models

Model Prompt Output Hallucination
SPARQL

Validity
Comments

GPT-4
Basic

prompt

Textual

explanation
Yes Invalid

Misinterpreted query

intent, suggested

general-purpose tools

GPT-4o

SOSA+

enhanced

prompt

Partial

SPARQL
Occasional

Partially

valid

Improved syntax, but

needed domain prefixes

to avoid errors

GPT-5
SOSA +

Prefixes

Mostly correct

SPARQL
Rare Mostly valid

Good structure, minor

vocabulary mismatches

GPT-5

Thinking

Refined

contextual

Mostly correct

SPARQL
Rare Mostly valid

Correct SOSA structure

and accurate bindings,

but high latency

16

4.3 Discussion

The research findings outlined in this thesis support the technical viability of integrating natural

language interfaces with RDF-based weather knowledge graphs, particularly in the context of smart

agriculture. By leveraging GPT-4's capabilities to convert user questions into SPARQL queries and

linking them to a SEPA knowledge graph populated with carefully organized temperature data, this

prototype establishes a valuable and relevant connection between AI-driven language models and

semantic web technologies.

The comparative examination of data from KNMI and OpenWeather highlights the crucial

importance of data provenance and reliability in informing agricultural decision-making processes.

Although both APIs showed generally consistent trends, the KNMI data, derived from official

weather stations throughout the Netherlands, displayed less variability and greater temporal

consistency compared to OpenWeather data, which aggregates information from global models and

various external sources. This observation aligns with OpenWeather's own findings, which

acknowledge that accuracy can vary significantly across different locations and time frames. Such

differences can have significant implications in real-world applications, such as irrigation planning,

where precise moisture level thresholds determine whether to initiate or postpone irrigation actions.

From the perspective of artificial intelligence, initial assessments indicated that language models like

GPT-4 faced difficulties in producing syntactically correct and semantically appropriate SPARQL

queries without specific prompt engineering. Initial results often contained hallucinatory components

or used unsuitable terminology. However, by enhancing the system's prompts with targeted domains,

such as the SOSA ontology and the KNMI vocabulary, and by offering accurate SPARQL prefixes

and structural guidelines, the quality of the generated queries improved significantly. This

observation highlights the sensitivity of LLM performance to the design of prompts and their

contextual grounding, a crucial consideration for future integrations of LLMs with knowledge graphs.

While the current prototype does not fully represent Agorà's comprehensive decision-making logic,

its modular architecture enables potential future improvements. Prospective enhancements could

involve adding geospatial reasoning abilities through GeoSPARQL, context-aware prompting

tailored to specific agricultural situations, or developing real-time fallback systems that intelligently

select the most reliable weather API based on coverage or confidence levels.

Furthermore, implementing feedback loops and correction mechanisms for erroneous queries,

possibly through reinforcement learning methods or by analyzing user interaction logs, could play a

crucial role in reducing hallucinations and enhancing the overall resilience and accuracy of the

system. This comprehensive approach to enhancing LLM and knowledge graph integration is

essential for advancing the tools available to modern agricultural practitioners.

17

5 Conclusion and Future Work

This thesis has demonstrated the feasibility of combining large language models (LLMs) with

semantic web technologies to enable natural language interaction with weather-related knowledge

graphs for smart agriculture applications. By linking GPT-generated SPARQL queries to a SEPA

semantic backend populated with structured temperature data from KNMI and OpenWeather, the

system facilitates intuitive environmental queries, marking an important step toward intelligent

decision-support systems in precision farming.

A key area for future research is improving the robustness and precision of SPARQL query generation

by the LLM. In this study, GPT-4o was employed to translate user questions into SPARQL, guided

by carefully crafted prompts and a vocabulary aligned with the SOSA. While many outputs were

syntactically correct and semantically relevant, several failure modes were observed, such as

incomplete triple patterns, invalid variable bindings, and hallucinated predicates that are not present

in the RDF schema. In smart agriculture, such inaccuracies are especially problematic, as even minor

errors may lead to incorrect irrigation scheduling or misinterpretation of environmental data.

To address these challenges, future implementations could incorporate feedback mechanisms to

detect and respond to query failures, either through runtime execution feedback or structural

validation. This feedback could inform prompt redesign, improve training dataset curation, or, where

applicable, support fine-tuning of the underlying language model. Over time, this would establish a

reinforcement-style learning loop, in which invalid queries help refine system behavior. Although

fine-tuning was beyond the scope of this thesis, such mechanisms could significantly reduce

hallucinations and improve semantic alignment. Incorporating Retrieval-Augmented Generation

(RAG) techniques may further increase control over knowledge usage and improve query consistency

[20][21].

Another valuable extension would be to enhance the system's ability to dynamically select data

sources based on geographic input. While this thesis focused on KNMI and OpenWeather data for

the De Bilt region, many APIs lack uniform global coverage. Future versions could analyze API

availability and reliability for a given latitude–longitude pair and automatically select the most

appropriate provider. This would improve the system's generalizability and effectiveness in diverse

agricultural contexts.

Finally, incorporating GeoSPARQL, the W3C standard for geospatial RDF querying, would

significantly expand the system's reasoning capabilities [22]. GeoSPARQL support would enable

spatial filters such as identifying the nearest weather stations or visualizing gaps in sensor coverage

and enhance the integration of geospatial data, including satellite observations and IoT-based sensor

networks.

18

References

1. Agorà, https://vaimee.com/agora-2/

2. KNMI-Royal Netherlands Meteorological Institute, https://dataplatform.knmi.nl/

3. OpenWeather API, https://openweathermap.org/api

4. Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and Abstract

Syntax, W3C Recommendation 25 February 2014. 2014. url: https://www.w3.org/TR/rdf11-

concepts/.

5. Lee Feigenbaum et al. SPARQL 1.1 Protocol, W3C Recommendation 21 March 2013. 2013.

url: http://www.w3.org/TR/sparql11-protocol/.

6. Steve Harris e Andy Seaborne. SPARQL 1.1 Query Language, W3C Recommendation 21

March 2013. 2013. url: http://www.w3.org/TR/sparql11-query/.

7. Paula Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1 Update, W3C

Recommendation 21 March 2013. 2013. url: http://www.w3.org/TR/sparql11 update/.

8. https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/

9. Endris, K.M., Vidal, ME., Graux, D. (2020). Chapter 5 Federated Query Processing. In:

Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds) Knowledge Graphs and Big Data

Processing. Lecture Notes in Computer Science(), vol 12072. Springer, Cham.

https://doi.org/10.1007/978-3-030-53199-7_5

10. Roffia, L., Azzoni, P., Aguzzi, C., Viola, F., Antoniazzi, F., & Salmon Cinotti, T. (2018).

Dynamic Linked Data: A SPARQL Event Processing Architecture. Future Internet, 10(4),

36. https://doi.org/10.3390/fi10040036

11. CRITERIA-1D, https://github.com/ARPA-SIMC/CRITERIA1D

12. Janowicz, Krzysztof & Haller, Armin & Cox, Simon & Phuoc, Danh & Lefrançois,

Maxime. (2018). SOSA: A Lightweight Ontology for Sensors, Observations, Samples, and

Actuators. 10.48550/arXiv.1805.09979.

13. JSON SPARQL Application Profile (JSAP), https://vaimee.org/TR/jsap.html

14. SEPA Python3 APIs, https://github.com/arces-wot/SEPA-python3-APIs

15. OpenAI. (2023). OpenAI API documentation. https://platform.openai.com/docs/

16. Subedi, Samikshya & Kechchour, Ayoub & Kantar, Michael & Sharma, Vasudha & Runck,

Bryan. (2025). Can gridded real‐time weather data match direct ground observations for

irrigation decision‐support? . Agrosystems, Geosciences & Environment. 8.

10.1002/agg2.70100.

17. Emonet, V., Bolleman, J., Duvaud, S., de Farias, T. M., & Sima, A. C. (2024). Llm-based

sparql query generation from natural language over federated knowledge graphs. arXiv

preprint arXiv:2410.06062.

18. Protégé, Ontology Editor, https://protege.stanford.edu/

19. Accuracy and quality of weather data at OpenWeather, https://openweather.co.uk/accuracy-

and-quality

20. Yang, S. et al. (2025). ShizishanGPT: An Agricultural Large Language Model Integrating

Tools and Resources. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information

Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol

15439. Springer, Singapore. https://doi.org/10.1007/978-981-96-0573-6_21

https://dataplatform.knmi.nl/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/
https://doi.org/10.1007/978-3-030-53199-7_5
https://doi.org/10.3390/fi10040036
https://github.com/ARPA-SIMC/CRITERIA1D
https://vaimee.org/TR/jsap.html
https://github.com/arces-wot/SEPA-python3-APIs
https://platform.openai.com/docs/
https://protege.stanford.edu/
https://openweather.co.uk/accuracy-and-quality
https://openweather.co.uk/accuracy-and-quality

19

21. Samuel, Dinesh Jackson & Skarga-Bandurova, Inna & Sikolia, David & Awais,

Muhammad. (2025). AgroLLM: Connecting Farmers and Agricultural Practices through

Large Language Models for Enhanced Knowledge Transfer and Practical Application.

10.48550/arXiv.2503.04788.

22. GeoSPARQL, https://www.ogc.org/standards/geosparql/

23. CoverageJSON, https://www.ogc.org/standards/coveragejson/

24. Semantic Sensor Network Ontology, https://www.w3.org/TR/vocab-ssn/

https://www.ogc.org/standards/geosparql/
https://www.ogc.org/standards/coveragejson/
https://www.w3.org/TR/vocab-ssn/

