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Abstract

This thesis explores the integration of large language models (LLMs) with semantic web technologies
to enhance weather-aware decision-making in smart agriculture. The study focuses on bridging
natural language input with structured environmental data by converting user queries into SPARQL
using a GPT-based LLM. Historical weather data, including daily minimum, maximum, and average
air temperatures, was collected from two publicly available weather APIs, demonstrating the role of
semantic technologies in achieving data interoperability. These datasets were semantically modeled
using the SOSA ontology and stored in a SPARQL Event Processing Architecture (SEPA) knowledge
graph, enabling real-time querying over RDF triples.

To evaluate the effectiveness of this approach, a prototype system was developed to process user
questions in natural language and return weather observations by executing the corresponding
SPARQL queries. The system was tested using a one-year dataset from both APIs for the De Bilt
region (Netherlands), allowing for validation of query results and analysis of vocabulary alignment
and model consistency. The findings demonstrate the potential of combining LLMs with semantic
graph infrastructures to improve accessibility, usability, and interpretability of environmental data in
agricultural applications.
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1 Introduction

Precision agriculture is increasingly relying on data-driven decision support systems to optimize
resource utilization, enhance crop yields, and adapt to dynamic environmental conditions. One of the
most critical components of these systems is accurate, real-time weather information, which directly
influences key agricultural decisions, such as irrigation scheduling, pest management, and crop
performance. However, much of this data remains either unstructured or fragmented across different
platforms and is inaccessible to end-users without specialized technical expertise.

To bridge this gap, semantic web technologies offer a solution by enabling machine-readable,
interoperable environmental data that can be modeled, queried, and understood across different
systems. One such example is Agora, an innovative AgriTech solution developed by VAIMEE. Agora
acts as a Digital Twin designed to predict the water needs of fields worldwide, leveraging semantic
interoperability to ensure better decision-making and reduce resource waste, specifically in water
management. Agora utilizes data from various sources, including weather stations, soil types, and
crop-specific information, to provide real-time irrigation predictions for farmers [1].

In parallel, the rapid advancements in large language models (LLMs), particularly GPT-4 and other
transformer-based models, present new opportunities to interface with structured knowledge bases
and support natural language queries. These models bridge the gap between technical data and user-
friendly interfaces, enabling non-technical users to interact with complex datasets more intuitively.
By combining these two technologies, semantic web data models and Al-driven natural language
interfaces, this thesis investigates an approach to weather-aware decision-making in smart
agriculture.

This work focuses on integrating historical weather data from the KNMI EDR API [2] and
OpenWeather History API [3] with Agora’s framework to enable easy querying of weather
observations using natural language. The data, including daily minimum, maximum, and mean air
temperatures for the De Bilt region, is semantically modeled using the SOSA ontology and stored in
a SPARQL Event Processing Architecture (SEPA) endpoint. A GPT-based module was developed to
automatically translate user questions into SPARQL queries, which are then executed against the
SEPA knowledge graph to retrieve the relevant weather data.

The feasibility of this approach was evaluated by examining the syntactic correctness of the queries
generated by the LLM, ensuring they aligned with the SOSA and KNMI vocabularies. Additionally,
the system’s ability to return accurate and actionable weather data was assessed. The experimental
results demonstrate the potential of combining LLMs and semantic data models for agricultural
decision support, although challenges remain in query consistency and vocabulary alignment. This
work lays the foundation for integrating smart agriculture tools with more advanced Al models,
aiming to enhance the accessibility of complex weather data for farmers and agronomists.



2 Technologies and Standards

This chapter summarizes the main technologies and tools used, with a focus on the features relevant
to the work carried out.

2.1 RDF (Resource Description Framework)

RDF is a standard data model developed by the W3C for encoding, exchanging, and interlinking
structured information on the web. In RDF, data is expressed in the form of triples, each consisting
of a subject, predicate, and object. These triples represent directed relationships, allowing data to be
stored and queried as a graph [4].

Each node in the RDF graph may represent an entity (identified by a URI), a literal value (such as a
number, date, or string), or a blank node. The graph structure enables semantic interoperability across
heterogeneous systems, supporting integration of distributed datasets. In this thesis, RDF serves as
the foundational data model for representing meteorological observations retrieved from KNMI and
OpenWeather sources, which are annotated using the SOSA ontology.

2.2 SPARQL 1.1 (SPARQL Protocol and RDF Query Language)

SPARQL is the query language used for retrieving and manipulating RDF data. SPARQL 1.1
supports querying multiple RDF datasets simultaneously, as well as performing updates to RDF
graphs via dedicated operations. The protocol defines a standardized transport mechanism based on
HTTP, enabling interaction with remote RDF stores [5].

2.2.1 Query

SPARQL queries typically follow a SELECT pattern, where variables are used to extract matching
triples from RDF datasets. Queries can include complex filters, joins, and aggregations. In this thesis,
SPARQL is used to retrieve temperature data stored in a SEPA triple store, with queries either written
manually or generated automatically by a GPT-based LLM [6].

2.2.2 Update

SPARQL 1.1 Update is an extension of SPARQL with commands for managing RDF data, offering
a comprehensive set of operations for updating RDF graphs [7], which includes:

e INSERT DATA: Explicitly adds new triples.

e DELETE DATA: Removes existing triples.

e DELETE WHERE: Eliminates triples based on pattern matching.

e MODIFY: Simultaneous insertion and deletion of triples using a WHERE clause.
e CLEAR, DROP, COPY, and ADD: Enable management of entire graphs.

These update operations are essential for incorporating new weather observations into the SEPA
backend, as illustrated in the JSAP update templates discussed in Section 3.2.

2.2.3 Federated Query

SPARQL 1.1 introduces the capability for federated queries through the SERVICE keyword, enabling
a query to access data from multiple remote SPARQL endpoints in a single execution. This feature
facilitates the integration of diverse RDF datasets spread across the web, eliminating the need for
centralized storage. A common application of this functionality is the combination of weather data
from various APIs or knowledge graphs by distributing segments of the query to their corresponding
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endpoints. Although the current implementation in this thesis does not directly employ federated
querying, the architecture is designed to support this method. Future enhancements, particularly those
involving the incorporation of external agricultural or geospatial datasets, could utilize this capability
to enhance the system's semantic reasoning and overall coverage [8].

Figure 2.1 Illustrates a generic architecture for federated query processing systems, highlighting the
flow of SPARQL queries from decomposition to execution across multiple data sources [9].
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Figure 2.1- Generic architecture for federated SPARQL query processing

2.3 SEPA (SPARQL Event Processing Architecture)

SEPA is designed to support the development of dynamic linked data applications, where real-time
updates and synchronization between distributed clients are essential. It extends the classical Web of
Data by enabling not only queries and updates via SPARQL 1.1, but also subscriptions to data
changes using a publish/subscribe paradigm.

The core of SEPA is the SEPA broker, which implements an extension of the SPARQL 1.1 protocol
called the SPARQL Secure Event (SE) Protocol. This extension introduces two additional primitives,
Subscribe and Notify, enabling clients to react in real time to changes in RDF data. A SEPA client
can subscribe to a SPARQL query. Whenever the result set of that query changes (due to updates
from other clients), a notification is automatically pushed to the subscriber.

This event-driven architecture facilitates the creation of reactive, loosely coupled systems on top of
RDF graphs. SEPA also leverages JSON SPARQL Application Profiles (JSAPs) for managing
configuration, authentication, and semantic interactions in a modular and extensible way.

Figure 2.2 Illustrates the interaction between SEPA agents (producers, consumers, and aggregators),
the broker, and the underlying RDF datasets [10].
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Figure 2.2 - Overview of SEPA architecture and publish/subscribe flows

2.4 Agora: The Agritech Oracle

Agora is an innovative AgriTech solution created by VAIMEE. This Digital Twin is designed to
accurately forecast the water requirements of fields, crops, and various soil types worldwide, utilizing
semantic interoperability to minimize water waste. Users can receive irrigation recommendations for
the following day tailored to a specific unit, which is defined as a combination of soil type, crop type,
and meteorological station. Agora utilizes the CRITERIA model to produce its forecasts. This one-
dimensional agro-hydrological model simulates soil water movement, crop growth, root water uptake,
and irrigation water needs [1][11].

2.5 SOSA Ontology

The Sensor, Observation, Sample, and Actuator (SOSA) ontology is a lightweight, modular ontology
for modeling observations, sensing devices, procedures, and the resulting data. It is designed for use
cases where interoperability and ease of integration are essential, such as the Internet of Things,
environmental monitoring, and smart agriculture. SOSA provides a core set of classes (e.g.,
sosa:Observation, sosa:Sensor, sosa:FeatureOfInterest, sosa:Result) and properties (e.g.,
sosa:hasResult, sosa:observedProperty, sosa:resultTime) that make it suitable for describing
observational data in RDF [12].

In this thesis, SOSA was adopted as the primary ontology for representing weather observations,
enabling semantic alignment across different data sources. The ontology’s compatibility with the
W3C PROV-0 model also facilitates the traceability and provenance tracking of observations, which
is crucial in critical domains such as precision farming. A visual summary of SOSA's structure is
provided later in Section 3.4 to contextualize its use in modeling temperature values.



2.6 JSAP (JSON SPARQL Application Profile)

JSON SPARQL Application Profile (JSAP) is a configuration format developed within the SEPA
ecosystem that describes all SPARQL endpoints and their associated operations in a single, machine-
readable JSON file. Each JSAP file specifies named SPARQL queries and updates, namespace
prefixes, forced bindings, and graph URIs, allowing client applications to interact with RDF graphs
in a modular and reusable way.

In this thesis, JSAP files were used to insert weather observations into the SEPA triple store
(INSERT_OBSERVATION) and to retrieve specific records based on query conditions
(GET_OBSERVATIONS_FOR_STATION). JSAP enabled clear separation between semantic logic and API
implementation, simplifying integration with Python scripts and the SEPY library. A representative
JSAP configuration is later discussed in Section 3.4, where its structure and practical use are
demonstrated [13].

2.7 SEPY Python Client

To interact programmatically with SEPA, this project uses SEPY, a Python client library developed
for loading JSAP files and executing SPARQL queries, updates, and subscriptions. The SAPObject
class parses the JSAP and manages SPARQL templates, while the sepa class establishes connections
to the query and update endpoints defined in the configuration.

This library simplifies integration between Python scripts and the SEPA broker, allowing automation
of data insertion, live monitoring, and query execution. It was used in both the data ingestion phase
(e.g., uploading temperature observations) and in the LLM query interface, where GPT-generated
SPARQL queries are executed dynamically [14].

2.8 LLM-Based SPARQL Generation using OpenAl GPT API

Large language models (LLMs), such as GPT-4o0, have showcased impressive abilities in
comprehending and generating natural language. Trained on extensive text corpora, these models can
execute complex reasoning tasks, produce contextually relevant responses, and even translate human
inquiries into structured query languages. In the realm of semantic web technologies, LLMs provide
an innovative interface for engaging with RDF-based knowledge graphs through natural language.
This thesis leverages these capabilities to bridge the gap between human questions and SPARQL
queries by integrating OpenAl's GPT API into the data pipeline.

The OpenAl GPT API provides programmatic access to large language models that can understand
natural language input and generate structured output [15]. In this project, the API is utilized to
convert user questions (for example, "What was the maximum temperature in De Bilt on June 6,
2025?") into corresponding SPARQL queries using controlled prompting.

The prompt includes context, prefix definitions for the SOSA and KNMI vocabularies, and specific
task instructions. The model used is GPT-40, selected for its ideal balance between speed and syntax-
awareness.

This integration enables natural language interfaces to interact with RDF knowledge graphs, acting
as a semantic layer that simplifies SPARQL complexity for end-users. The generated queries are
validated and subsequently executed via SEPY against the SEPA knowledge graph.



2.9 Data APIs: KNMI and OpenWeather

Meteorological data for this study were retrieved from two publicly available APIs. The KNMI EDR
API provides historical weather observations in JSON format, offering high-resolution data for the
Netherlands meteorological stations. In parallel, the OpenWeather History API supplies globally
available weather records with flexible date range queries and simplified JSON formatting.

These sources were used to collect daily mean (TG), minimum (TN), and maximum (TX) air
temperature values for the De Bilt region. The retrieved data was parsed and semantically annotated
by mapping temperature observations to relevant concepts in the SOSA ontology. Each observation
was then inserted into a SEPA (SPARQL Event Processing Architecture) knowledge graph as RDF
triples using the SEPY client and JSAP configuration.

A comparative analysis of the datasets, including differences in temporal resolution, value
discrepancies, and data availability, is presented in subsequent chapters.



3 System Design and Implementation

3.1 Overall System Architecture

The system architecture proposed in this thesis draws conceptual inspiration from the Agora platform.
In Agora, weather information serves as a critical input to a broader reasoning component known as
the criteria model, which evaluates user-defined objectives such as yield optimization or resource
efficiency.

In the present work, the criteria model has been intentionally excluded to simplify the system design
and focus on the technical integration challenges associated with external weather APIs, semantic
knowledge graphs, and large language models. The central objective is to demonstrate the feasibility
of linking natural language user interfaces with RDF-based environmental datasets through LLM-
generated SPARQL queries. This foundational architecture can be extended in future iterations by
incorporating domain reasoning layers, such as Agora’s criteria model, to support fully automated
decision-making.

Figure 3.1 Illustrates the overall system architecture. The pipeline begins with the retrieval of daily
minimum (TN), maximum (TX), and mean (TG) air temperature values from two publicly available
sources: the KNMI EDR API and the OpenWeather History API. Data acquisition is handled through
Python scripts that manage endpoint authentication, parameterized HTTP requests, and JSON
parsing.

Case Study: Daily mean, max, min Temperature Values of De Bilt Location (Lat = 52.101, Long = 5.179 )

- Time Range: 01-07-2024 to 01-07-2025 UTC

JSAP config file SEPA dashboard

) 3

OpenWeather

Python Query Data SEPY (SEP.—\._p}ﬁonAPIs)
using API callz

¥

h 4

v v

Processing Data LLM (OpenAl response API), act
(dataset format conversions) as SPARQL parser

h

l l

Generate Map of KNMI .
Stations using folium for Plot KNMI vs OpenWeather

P for Visual Comparison using User ask Question
\.uualmu:nr::: Coverage Pandas & (Natural Language)

Figure 3.1- System architecture integrating weather data, semantic modeling, and LLM-based query
generation



The retrieved datasets are then cleaned and harmonized into a unified format by aligning timestamp
conventions and standardizing temperature units. Once processed, the data is semantically annotated
using the SOSA ontology and stored in a SPARQL Event Processing Architecture (SEPA) triple store
via the SEPY client API and a structured JSAP configuration file.

On the user-facing side, the system enables natural language interaction, where free-text queries are
processed by an LLM (specifically, GPT-40). The model translates these inputs into SPARQL queries
that are syntactically valid and semantically aligned with the SOSA and KNMI vocabularies. These
queries are then executed against the SEPA endpoint to retrieve the corresponding weather
observations from the RDF graph.

Finally, the system provides two visualization components: a Folium-based map for displaying the
spatial distribution of KNMI stations across the Netherlands, and Pandas and Matplotlib plots for
comparing historical weather data retrieved from KNMI and OpenWeather. This architecture
illustrates how Al-powered natural language interfaces and semantic web technologies can be jointly
deployed to facilitate intuitive access to structured meteorological data, forming a foundational layer
for potential extensions of the Agora platform in real-world smart agriculture use cases.

3.2 Data sources

Meteorological data used in this thesis were retrieved from two public providers: the KNMI (Royal
Netherlands Meteorological Institute) and OpenWeather. Both organizations offer multiple datasets
and APIs, each with different data formats, time resolutions, and access methods. To ensure
consistency and reliability, several candidate sources were explored and compared before selecting
the most suitable raw data endpoints for the scope of this work.

For KNMI, data was accessed through two different mechanisms. The first was the KNMI EDR API,
which provides observational data in JSON format. This API enables querying historical weather
values from a gridded dataset [16], including daily minimum (TN), maximum (TX), and mean (TG)
air temperatures, for specific coordinates. The second source was the KNMI OpenData API, which
exposes complete multi-station historical datasets in NetCDF format. The latter was processed using
the Python xarray library, which allows for structured parsing and extraction of relevant parameters,
such as station names, geographic coordinates, and temperature observations. The result was a tabular
dataset visualized using Pandas and Matplotlib, enabling both numerical inspection and graphical
comparison.

In parallel, the OpenWeather History API was queried using a different structure, relying on global
grid-based weather archives and customizable time intervals. The API returns data in simplified
JSON format, making it easier to integrate but often less localized than station-based data. To enable
fair comparison, both the KNMI and OpenWeather datasets were filtered and aligned by timestamp
and location (De Bilt), and the retrieved values were plotted over a one-year observation period.

Figure 3.2 Shows the comparison between KNMI and OpenWeather daily minimum and maximum
temperatures for the De Bilt region over a 12-month interval. The discrepancies observed between
the two sources underscore the importance of data selection and standardization in building robust
smart agriculture pipelines.
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Figure 3.2- Comparison of daily minimum and maximum air temperatures retrieved from KNMI and
OpenWeather for the De Bilt region over 1 year.

In addition to the temperature comparison, a geographic analysis of KNMI station coverage was
conducted. The NetCDF file retrieved from the KNMI OpenData platform includes metadata for all
51 automatic weather stations, of which 37 are land-based and 14 are located at sea. A Folium-based
interactive map was created to visualize station distribution across the Netherlands. This allowed
qualitative inspection of spatial coverage, helping identify areas that may lack nearby observations.

The goal was not to quantify accuracy by distance, but rather to gain an intuitive understanding of
potential coverage gaps.
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Figure 3.3- Map of KNMI weather stations across the Netherlands (Green points represent Land stations
and red points are Sea stations).



To semantically integrate the processed weather data into the system, observations were annotated
using the SOSA ontology and converted into RDF triples. These triples were inserted into the SEPA
broker using the SEPY Python client, which requires a configuration file in JSAP format. The JSAP
defines all queryable SPARQL endpoints by specifying QUERY and UPDATE templates in JSON.
Understanding how to write and customize JSAP files was an essential prerequisite for making SEPA
interactions modular and reusable.

A simplified snippet of the JSAP file used in this project is shown below, highlighting the structure
of an INSERT_OBSERVATION update template:

{ "INSERT OBSERVATION": {

"sparql": "PREFIX sosa: <http://www.w3.org/ns/sosa/> PREFIX knmi: <http://example.org/knmi#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#> INSERT { GRAPH
<http://example.org/knmi/observations> { ?observation a sosa:Observation ;
sosa:hasFeatureOfInterest ?foi ; sosa:observedProperty ?property ; sosa:hasResult ?value ;
sosa:resultTime ?timestamp ; sosa:madeBySensor ?sensor . } } WHERE {}",

"forcedBindings": {

"observation": { "type": "uri", "value": "knmi:OBSERVATION_ID" },
"foi": { "type": "uri", "value": "knmi:StationDeBilt" },
"property": { "type": "uri", "value": "knmi:TG" },
"value": { "type": "literal", "value": "18.5", "datatype": "xsd:float" },
"timestamp": { "type": "literal", "value": "2024-07-01T00:00:00Z", "datatype":
"xsd:dateTime" },
"sensor": { "type": "uri", "value": "knmi:TEMP_SENSOR" }
}
}
}

This configuration ensures that new observations can be programmatically inserted into the
knowledge graph in a consistent and SPARQL-compliant manner. Working with JSAP required an
understanding of SPARQL INSERT and SELECT queries, triple patterns, and RDF datatypes, all of which
were incrementally learned and applied throughout the project via iterative development tasks.

Figure 3.4 Provides a snippet of the dataset after parsing it into a structured table using xarray and
pandas, which facilitated the spatial analysis and mapping tasks.

name M n Y helght 1so dataset product projection
stations
6-20006-8-66261

Platform/AWS 2

AWs 2

3 B

Saba Airport 7 y. AS

78 Sint Eustatius Airport y. AWS
71 Bonaire Airport 7899 2 AWS/Aerodrome

[72 rows x 11 columns]

Figure 3.4- KNMI station metadata extracted from NetCDF and displayed as a Pandas DataFrame
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3.3 AI Module

To enable natural language interaction with the weather data stored in SEPA, the system integrates
an Al module powered by the OpenAl GPT API. The goal of this module is to translate human-
readable questions into syntactically correct SPARQL queries that are compatible with the RDF
vocabulary used in the knowledge graph (i.e., SOSA and KNMI namespaces).

The selected model for this task is GPT-40, accessed through the chat.completions endpoint of the
OpenAl Python SDK. A simple two-message prompt is used: the system message defines the
assistant’s role as a SPARQL expert (with access to SOSA ontology), and the user message contains
a weather-related question, such as:

from openai import OpenAI
client = OpenAI(api_key="sk-...")

response = client.chat.completions.create(
model="gpt-40",

messages=|
{"role": "system", "content": "You are a SPARQL expert. You generate SPARQL queries from natural
language questions."},
{"role": "user", "content": "How much was the maximum temperature today in De Bilt?"} ],

temperature=0.0 )

print(response.choices[0].message.content)

The temperature=0.0 parameter disables randomness in the LLM’s output, ensuring that the model
always returns the most probable response. This deterministic behavior is critical for generating
consistent and reproducible SPARQL queries, especially during testing and validation. By contrast,
using higher temperature values (e.g., 0.7 or 1.0) introduces variability, which can lead to hallucinated
predicates, incorrect vocabulary usage, or syntactically invalid queries, making the system unreliable
for structured data interactions. The resulting SPARQL string is printed and passed directly to the
SEPY client for execution against the SEPA endpoint.

This module was iteratively evaluated with multiple models (GPT-4, GPT-40, GPT-5, and GPT-5-
thinking), and various prompt structures were explored. Outputs were manually reviewed for
correctness in terms of syntax, vocabulary alignment, and semantic validity. The goal was not to train
or fine-tune any LLM, but to assess feasibility and robustness when using LLM in direct integration
without fine-tuning with structured weather data.

response = client.chat.completions.create(
model="gpt-40",
messages=|
{"role": "system", "content": (
"You are a SPARQL-generating assistant that answers natural language weather questions”
"by generating SPARQL queries using the SOSA ontology and KNMI dataset structure.\n"
"Use these prefixes in all queries:\n"
"PREFIX sosa: <http://www.w3.org/ns/sosa/>\n"
"PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n"
"PREFIX knmi: <http://example.org/knmi/>" ) },
{"role": "user", "content": "What was the maximum temperature in De Bilt on 16 September 2025?"
3P

temperature=0.0 )

print(response.choices[0].message.content)
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Overall, the AI module demonstrates that, even without fine-tuning, current large language models
can produce executable and meaningful SPARQL queries in the context of weather data stored as
RDF. These results open opportunities for future work in prompt optimization, vocabulary constraint
injection, or reinforcement-style feedback loops to improve query accuracy and reduce hallucinations
[17].

3.4 Knowledge Graph Module

To semantically structure the retrieved weather data, this thesis adopts a knowledge graph (KG)
approach based on the Resource Description Framework (RDF). A knowledge graph represents
information as subject—predicate—object triples, enabling the creation of machine-readable,
interoperable data models. In this work, each weather observation was described using concepts from
the SOSA (Sensor, Observation, Sample, and Actuator) ontology, which is designed for representing
sensor-based data in the environmental and Internet of Things domains.

The annotated RDF data was inserted into a SEPA triple store using the SEPY Python client. SEPA
enables both querying and subscribing to RDF data over time, supporting real-time updates to the
graph. To interact with SEPA, a structured configuration for the JSAP file was defined. This file
specifies SPARQL INSERT and SELECT operations along with the necessary bindings and namespaces
for interacting with the knowledge base.

Before integrating the pipeline, early development experiments involved creating a small RDF dataset
in Turtle (.tt]) format and loading it into Protégé for validation [18]. This allowed a preliminary
understanding of how ontologies like SOSA are structured and how semantic models are navigated.
These foundational steps ensured that the final system could semantically represent and store weather
observations in a SPARQL-compliant manner, serving as the backbone for LLM-powered query
execution in later stages.

To formally represent the framework of environmental observations, the SOSA ontology was utilized
as the base vocabulary. SOSA offers a lightweight and adaptable structure for detailing sensor-driven
observations, encompassing the property being observed, the sensor itself, the outcome, and the
feature of interest. To become familiar with the SOSA classes and properties, initial testing was
performed using Protégé, where a simple RDF graph was manually constructed in Turtle syntax and
visualized. The following Figure 3.5, outlines the fundamental structure of the SOSA ontology,
showcasing its key relationships with the PROV-O (Provenance Ontology) model. This diagram,
sourced from Janowicz et al. [12], informed the development of the RDF triples and ensured semantic
accuracy in aligning the dataset schema with the ontology’s framework.
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4 Results

4.1 Experimental setup

The implementation phase involved retrieving and processing one year of temperature observations
from two sources: KNMI and OpenWeather APIs.

Table 4.1- Summary of Temperature Data Sources

Feature KNMI EDR API OpenWeather History API
Source Type Station-based (Netherlands) Global grid-based model
Temporal Coverage Full historical coverage Limited to certain years
Granularity Daily min, max, mean (TG, TN, TX) Daily min, max, mean
Data Format OGC Coverage JSON Simplified JSON
Geo Precision Exact station location Approximate geocoordinates
Accessibility Open Data Portal (NetCDF, EDR) Commercial API

Initial comparisons revealed that KNMI provided more precise and readily available data, as it is
directly derived from physical weather stations nationwide. In contrast, OpenWeather delivers global
coverage with a more generalized, grid-based approach, which may sacrifice local accuracy. This
observation aligns with OpenWeather’s own report on accuracy and quality of weather data, which
states that their outputs are based on a combination of modeled and observational sources [19].

To visualize the discrepancies between the two APIs, the retrieved values were aligned by timestamp
and plotted using Pandas and Matplotlib. Figure 3.2 (previous section) illustrates potential differences
in temperature values throughout the year.

4.2 Test scenarios

This section describes how the system's behavior changed in response to modifications made to the
prompt used in the OpenAl GPT-4 model, as discussed in Section 3.3.

In the initial test, a general prompt was provided to the LLM without any SPARQL or ontology
context. The result, shown in Figure 4.1 was a natural language explanation, warning that SPARQL
cannot retrieve real-time data directly from weather APIs. The model correctly explained that
SPARQL is used for querying RDF-based knowledge graphs, not for direct API access.

Sorry, but S5PARQL cannot be used to fetch real-time data such as today's
maximum temperature in De Bilt. SPARQL is a query language used for datab
ases that support the RDF (Resource Description Framework) data model, ty
pically used for querying data in semantic web or linked data applieation

s. It's not designed to interact with real-time weather APIs or similar d
ata sources. You would need to use a different tool or programming langua
ge to fetch this kind of data.

Figure 4.1- Output Returned by GPT-4 from OpenAl Response API
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Subsequent tests with the same prompt and different models (e.g., GPT-5, GPT-5 Thinking) yielded
similar generic responses, often indicating that more context or specific data access tools were
required to answer the question accurately.

To improve the output, the prompt was refined by explicitly stating the desired behavior (i.e.,
generating a SPARQL query using SOSA and KNMI vocabulary) and by including relevant prefixes
in the system role message. This change produced significantly better results: instead of returning an
answer, the model generated a structured and syntactically valid SPARQL query. An example of this
improved output is shown in Figure 4.2.

To find the maximum temperature in De Bilt on 16 September 2025, you can use the following SPARQL query:

" “sparql

PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchemat>
PREFIX knmi: <http://example.org/knmi/>

SELECT ?maxTemperature
WHERE {

?observation sosa:hasFeatureOfInterest knmi:DeBilt ;
sosa:observedProperty knmi:maximumTemperature ;
sosa:resultTime "2025-09-16"""xsd:date ;
sosa:hasSimpleResult ?maxTemperature .

This query selects the maximum temperature observed in De Bilt on the specified date.

Figure 4.2- Output Returned by GPT-40 from OpenAl Response API

The results, summarized in Table 4.2, indicate a clear improvement in SPARQL generation accuracy
when moving from earlier models to GPT-5 Thinking, especially when SOSA and KNMI
vocabularies were embedded into the system prompt.

The output still required careful evaluation to ensure semantic correctness and alignment with the
underlying ontology. Still, it represented a successful step toward connecting natural language
interfaces with machine-interpretable environmental data.

Table 4.2- Comparison of SPARQL Generation by Different GPT Models

. SPARQL
Model Prompt Output Hallucination Validity Comments
) Misinterpreted query
GPT-4 Basic Textua‘l Yes Invalid intent, suggested
prompt explanation
general-purpose tools
+
SOSA Partial ' Partially Improved syntax, but
GPT-40 | enhanced Occasional . needed domain prefixes
SPARQL valid .
prompt to avoid errors
SOSA + | Mostly correct ) Good structure, minor
PT- R Mostly val .
GPT-5 Prefixes SPARQL are ostly valid vocabulary mismatches
GPT-5 Refined | Mostly correct Rare Mostly valid Caligzztcigtsﬁ)isflﬁim; )
Thinking | contextual SPARQL Y . &5
but high latency
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4.3 Discussion

The research findings outlined in this thesis support the technical viability of integrating natural
language interfaces with RDF-based weather knowledge graphs, particularly in the context of smart
agriculture. By leveraging GPT-4's capabilities to convert user questions into SPARQL queries and
linking them to a SEPA knowledge graph populated with carefully organized temperature data, this
prototype establishes a valuable and relevant connection between Al-driven language models and
semantic web technologies.

The comparative examination of data from KNMI and OpenWeather highlights the crucial
importance of data provenance and reliability in informing agricultural decision-making processes.
Although both APIs showed generally consistent trends, the KNMI data, derived from official
weather stations throughout the Netherlands, displayed less variability and greater temporal
consistency compared to OpenWeather data, which aggregates information from global models and
various external sources. This observation aligns with OpenWeather's own findings, which
acknowledge that accuracy can vary significantly across different locations and time frames. Such
differences can have significant implications in real-world applications, such as irrigation planning,
where precise moisture level thresholds determine whether to initiate or postpone irrigation actions.

From the perspective of artificial intelligence, initial assessments indicated that language models like
GPT-4 faced difficulties in producing syntactically correct and semantically appropriate SPARQL
queries without specific prompt engineering. Initial results often contained hallucinatory components
or used unsuitable terminology. However, by enhancing the system's prompts with targeted domains,
such as the SOSA ontology and the KNMI vocabulary, and by offering accurate SPARQL prefixes
and structural guidelines, the quality of the generated queries improved significantly. This
observation highlights the sensitivity of LLM performance to the design of prompts and their
contextual grounding, a crucial consideration for future integrations of LLMs with knowledge graphs.

While the current prototype does not fully represent Agora's comprehensive decision-making logic,
its modular architecture enables potential future improvements. Prospective enhancements could
involve adding geospatial reasoning abilities through GeoSPARQL, context-aware prompting
tailored to specific agricultural situations, or developing real-time fallback systems that intelligently
select the most reliable weather API based on coverage or confidence levels.

Furthermore, implementing feedback loops and correction mechanisms for erroneous queries,
possibly through reinforcement learning methods or by analyzing user interaction logs, could play a
crucial role in reducing hallucinations and enhancing the overall resilience and accuracy of the
system. This comprehensive approach to enhancing LLM and knowledge graph integration is
essential for advancing the tools available to modern agricultural practitioners.
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5 Conclusion and Future Work

This thesis has demonstrated the feasibility of combining large language models (LLMs) with
semantic web technologies to enable natural language interaction with weather-related knowledge
graphs for smart agriculture applications. By linking GPT-generated SPARQL queries to a SEPA
semantic backend populated with structured temperature data from KNMI and OpenWeather, the
system facilitates intuitive environmental queries, marking an important step toward intelligent
decision-support systems in precision farming.

A key area for future research is improving the robustness and precision of SPARQL query generation
by the LLM. In this study, GPT-40 was employed to translate user questions into SPARQL, guided
by carefully crafted prompts and a vocabulary aligned with the SOSA. While many outputs were
syntactically correct and semantically relevant, several failure modes were observed, such as
incomplete triple patterns, invalid variable bindings, and hallucinated predicates that are not present
in the RDF schema. In smart agriculture, such inaccuracies are especially problematic, as even minor
errors may lead to incorrect irrigation scheduling or misinterpretation of environmental data.

To address these challenges, future implementations could incorporate feedback mechanisms to
detect and respond to query failures, either through runtime execution feedback or structural
validation. This feedback could inform prompt redesign, improve training dataset curation, or, where
applicable, support fine-tuning of the underlying language model. Over time, this would establish a
reinforcement-style learning loop, in which invalid queries help refine system behavior. Although
fine-tuning was beyond the scope of this thesis, such mechanisms could significantly reduce
hallucinations and improve semantic alignment. Incorporating Retrieval-Augmented Generation
(RAG) techniques may further increase control over knowledge usage and improve query consistency
[20][21].

Another valuable extension would be to enhance the system's ability to dynamically select data
sources based on geographic input. While this thesis focused on KNMI and OpenWeather data for
the De Bilt region, many APIs lack uniform global coverage. Future versions could analyze API
availability and reliability for a given latitude—longitude pair and automatically select the most
appropriate provider. This would improve the system's generalizability and effectiveness in diverse
agricultural contexts.

Finally, incorporating GeoSPARQL, the W3C standard for geospatial RDF querying, would
significantly expand the system's reasoning capabilities [22]. GeoSPARQL support would enable
spatial filters such as identifying the nearest weather stations or visualizing gaps in sensor coverage
and enhance the integration of geospatial data, including satellite observations and IoT-based sensor
networks.
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