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Abstract 

This thesis explores the integration of large language models (LLMs) with semantic web technologies 

to enhance weather-aware decision-making in smart agriculture. The study focuses on bridging 

natural language input with structured environmental data by converting user queries into SPARQL 

using a GPT-based LLM. Historical weather data, including daily minimum, maximum, and average 

air temperatures, was collected from two publicly available weather APIs, demonstrating the role of 

semantic technologies in achieving data interoperability. These datasets were semantically modeled 

using the SOSA ontology and stored in a SPARQL Event Processing Architecture (SEPA) knowledge 

graph, enabling real-time querying over RDF triples. 

To evaluate the effectiveness of this approach, a prototype system was developed to process user 

questions in natural language and return weather observations by executing the corresponding 

SPARQL queries. The system was tested using a one-year dataset from both APIs for the De Bilt 

region (Netherlands), allowing for validation of query results and analysis of vocabulary alignment 

and model consistency. The findings demonstrate the potential of combining LLMs with semantic 

graph infrastructures to improve accessibility, usability, and interpretability of environmental data in 

agricultural applications.  
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1 Introduction 

Precision agriculture is increasingly relying on data-driven decision support systems to optimize 

resource utilization, enhance crop yields, and adapt to dynamic environmental conditions. One of the 

most critical components of these systems is accurate, real-time weather information, which directly 

influences key agricultural decisions, such as irrigation scheduling, pest management, and crop 

performance. However, much of this data remains either unstructured or fragmented across different 

platforms and is inaccessible to end-users without specialized technical expertise. 

To bridge this gap, semantic web technologies offer a solution by enabling machine-readable, 

interoperable environmental data that can be modeled, queried, and understood across different 

systems. One such example is Agorà, an innovative AgriTech solution developed by VAIMEE. Agorà 

acts as a Digital Twin designed to predict the water needs of fields worldwide, leveraging semantic 

interoperability to ensure better decision-making and reduce resource waste, specifically in water 

management. Agorà utilizes data from various sources, including weather stations, soil types, and 

crop-specific information, to provide real-time irrigation predictions for farmers [1]. 

In parallel, the rapid advancements in large language models (LLMs), particularly GPT-4 and other 

transformer-based models, present new opportunities to interface with structured knowledge bases 

and support natural language queries. These models bridge the gap between technical data and user-

friendly interfaces, enabling non-technical users to interact with complex datasets more intuitively. 

By combining these two technologies, semantic web data models and AI-driven natural language 

interfaces, this thesis investigates an approach to weather-aware decision-making in smart 

agriculture. 

This work focuses on integrating historical weather data from the KNMI EDR API [2] and 

OpenWeather History API [3] with Agorà’s framework to enable easy querying of weather 

observations using natural language. The data, including daily minimum, maximum, and mean air 

temperatures for the De Bilt region, is semantically modeled using the SOSA ontology and stored in 

a SPARQL Event Processing Architecture (SEPA) endpoint. A GPT-based module was developed to 

automatically translate user questions into SPARQL queries, which are then executed against the 

SEPA knowledge graph to retrieve the relevant weather data. 

The feasibility of this approach was evaluated by examining the syntactic correctness of the queries 

generated by the LLM, ensuring they aligned with the SOSA and KNMI vocabularies. Additionally, 

the system’s ability to return accurate and actionable weather data was assessed. The experimental 

results demonstrate the potential of combining LLMs and semantic data models for agricultural 

decision support, although challenges remain in query consistency and vocabulary alignment. This 

work lays the foundation for integrating smart agriculture tools with more advanced AI models, 

aiming to enhance the accessibility of complex weather data for farmers and agronomists.  
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2 Technologies and Standards 

This chapter summarizes the main technologies and tools used, with a focus on the features relevant 

to the work carried out. 

2.1  RDF (Resource Description Framework) 

RDF is a standard data model developed by the W3C for encoding, exchanging, and interlinking 

structured information on the web. In RDF, data is expressed in the form of triples, each consisting 

of a subject, predicate, and object. These triples represent directed relationships, allowing data to be 

stored and queried as a graph [4]. 

Each node in the RDF graph may represent an entity (identified by a URI), a literal value (such as a 

number, date, or string), or a blank node. The graph structure enables semantic interoperability across 

heterogeneous systems, supporting integration of distributed datasets. In this thesis, RDF serves as 

the foundational data model for representing meteorological observations retrieved from KNMI and 

OpenWeather sources, which are annotated using the SOSA ontology. 

2.2  SPARQL 1.1 (SPARQL Protocol and RDF Query Language) 

SPARQL is the query language used for retrieving and manipulating RDF data. SPARQL 1.1 

supports querying multiple RDF datasets simultaneously, as well as performing updates to RDF 

graphs via dedicated operations. The protocol defines a standardized transport mechanism based on 

HTTP, enabling interaction with remote RDF stores [5]. 

2.2.1 Query 

SPARQL queries typically follow a SELECT pattern, where variables are used to extract matching 

triples from RDF datasets. Queries can include complex filters, joins, and aggregations. In this thesis, 

SPARQL is used to retrieve temperature data stored in a SEPA triple store, with queries either written 

manually or generated automatically by a GPT-based LLM [6]. 

2.2.2 Update 

SPARQL 1.1 Update is an extension of SPARQL with commands for managing RDF data, offering 

a comprehensive set of operations for updating RDF graphs [7], which includes: 

• INSERT DATA: Explicitly adds new triples. 

• DELETE DATA: Removes existing triples. 

• DELETE WHERE: Eliminates triples based on pattern matching. 

• MODIFY: Simultaneous insertion and deletion of triples using a WHERE clause. 

• CLEAR, DROP, COPY, and ADD: Enable management of entire graphs. 

These update operations are essential for incorporating new weather observations into the SEPA 

backend, as illustrated in the JSAP update templates discussed in Section 3.2. 

2.2.3 Federated Query 

SPARQL 1.1 introduces the capability for federated queries through the SERVICE keyword, enabling 

a query to access data from multiple remote SPARQL endpoints in a single execution. This feature 

facilitates the integration of diverse RDF datasets spread across the web, eliminating the need for 

centralized storage. A common application of this functionality is the combination of weather data 

from various APIs or knowledge graphs by distributing segments of the query to their corresponding 
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endpoints. Although the current implementation in this thesis does not directly employ federated 

querying, the architecture is designed to support this method. Future enhancements, particularly those 

involving the incorporation of external agricultural or geospatial datasets, could utilize this capability 

to enhance the system's semantic reasoning and overall coverage [8]. 

Figure 2.1 Illustrates a generic architecture for federated query processing systems, highlighting the 

flow of SPARQL queries from decomposition to execution across multiple data sources [9]. 

 

 

Figure 2.1- Generic architecture for federated SPARQL query processing 

 

2.3  SEPA (SPARQL Event Processing Architecture) 

SEPA is designed to support the development of dynamic linked data applications, where real-time 

updates and synchronization between distributed clients are essential. It extends the classical Web of 

Data by enabling not only queries and updates via SPARQL 1.1, but also subscriptions to data 

changes using a publish/subscribe paradigm. 

The core of SEPA is the SEPA broker, which implements an extension of the SPARQL 1.1 protocol 

called the SPARQL Secure Event (SE) Protocol. This extension introduces two additional primitives, 

Subscribe and Notify, enabling clients to react in real time to changes in RDF data. A SEPA client 

can subscribe to a SPARQL query. Whenever the result set of that query changes (due to updates 

from other clients), a notification is automatically pushed to the subscriber. 

This event-driven architecture facilitates the creation of reactive, loosely coupled systems on top of 

RDF graphs. SEPA also leverages JSON SPARQL Application Profiles (JSAPs) for managing 

configuration, authentication, and semantic interactions in a modular and extensible way. 

Figure 2.2 Illustrates the interaction between SEPA agents (producers, consumers, and aggregators), 

the broker, and the underlying RDF datasets [10]. 



 

4 

 

 

Figure 2.2 - Overview of SEPA architecture and publish/subscribe flows 

 

2.4  Agorà: The Agritech Oracle 

Agorà is an innovative AgriTech solution created by VAIMEE. This Digital Twin is designed to 

accurately forecast the water requirements of fields, crops, and various soil types worldwide, utilizing 

semantic interoperability to minimize water waste. Users can receive irrigation recommendations for 

the following day tailored to a specific unit, which is defined as a combination of soil type, crop type, 

and meteorological station. Agorà utilizes the CRITERIA model to produce its forecasts. This one-

dimensional agro-hydrological model simulates soil water movement, crop growth, root water uptake, 

and irrigation water needs [1][11]. 

2.5  SOSA Ontology 

The Sensor, Observation, Sample, and Actuator (SOSA) ontology is a lightweight, modular ontology 

for modeling observations, sensing devices, procedures, and the resulting data. It is designed for use 

cases where interoperability and ease of integration are essential, such as the Internet of Things, 

environmental monitoring, and smart agriculture. SOSA provides a core set of classes (e.g., 

sosa:Observation, sosa:Sensor, sosa:FeatureOfInterest, sosa:Result) and properties (e.g., 

sosa:hasResult, sosa:observedProperty, sosa:resultTime) that make it suitable for describing 

observational data in RDF [12]. 

In this thesis, SOSA was adopted as the primary ontology for representing weather observations, 

enabling semantic alignment across different data sources. The ontology’s compatibility with the 

W3C PROV-O model also facilitates the traceability and provenance tracking of observations, which 

is crucial in critical domains such as precision farming. A visual summary of SOSA's structure is 

provided later in Section 3.4 to contextualize its use in modeling temperature values. 
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2.6  JSAP (JSON SPARQL Application Profile) 

JSON SPARQL Application Profile (JSAP) is a configuration format developed within the SEPA 

ecosystem that describes all SPARQL endpoints and their associated operations in a single, machine-

readable JSON file. Each JSAP file specifies named SPARQL queries and updates, namespace 

prefixes, forced bindings, and graph URIs, allowing client applications to interact with RDF graphs 

in a modular and reusable way. 

In this thesis, JSAP files were used to insert weather observations into the SEPA triple store 

(INSERT_OBSERVATION) and to retrieve specific records based on query conditions 

(GET_OBSERVATIONS_FOR_STATION). JSAP enabled clear separation between semantic logic and API 

implementation, simplifying integration with Python scripts and the SEPY library. A representative 

JSAP configuration is later discussed in Section 3.4, where its structure and practical use are 

demonstrated [13]. 

2.7  SEPY Python Client 

To interact programmatically with SEPA, this project uses SEPY, a Python client library developed 

for loading JSAP files and executing SPARQL queries, updates, and subscriptions. The SAPObject 

class parses the JSAP and manages SPARQL templates, while the SEPA class establishes connections 

to the query and update endpoints defined in the configuration. 

This library simplifies integration between Python scripts and the SEPA broker, allowing automation 

of data insertion, live monitoring, and query execution. It was used in both the data ingestion phase 

(e.g., uploading temperature observations) and in the LLM query interface, where GPT-generated 

SPARQL queries are executed dynamically [14]. 

2.8  LLM-Based SPARQL Generation using OpenAI GPT API 

Large language models (LLMs), such as GPT-4o, have showcased impressive abilities in 

comprehending and generating natural language. Trained on extensive text corpora, these models can 

execute complex reasoning tasks, produce contextually relevant responses, and even translate human 

inquiries into structured query languages. In the realm of semantic web technologies, LLMs provide 

an innovative interface for engaging with RDF-based knowledge graphs through natural language. 

This thesis leverages these capabilities to bridge the gap between human questions and SPARQL 

queries by integrating OpenAI's GPT API into the data pipeline. 

The OpenAI GPT API provides programmatic access to large language models that can understand 

natural language input and generate structured output [15]. In this project, the API is utilized to 

convert user questions (for example, "What was the maximum temperature in De Bilt on June 6, 

2025?") into corresponding SPARQL queries using controlled prompting. 

The prompt includes context, prefix definitions for the SOSA and KNMI vocabularies, and specific 

task instructions. The model used is GPT-4o, selected for its ideal balance between speed and syntax-

awareness.  

This integration enables natural language interfaces to interact with RDF knowledge graphs, acting 

as a semantic layer that simplifies SPARQL complexity for end-users. The generated queries are 

validated and subsequently executed via SEPY against the SEPA knowledge graph. 
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2.9  Data APIs: KNMI and OpenWeather 

Meteorological data for this study were retrieved from two publicly available APIs. The KNMI EDR 

API provides historical weather observations in JSON format, offering high-resolution data for the 

Netherlands meteorological stations. In parallel, the OpenWeather History API supplies globally 

available weather records with flexible date range queries and simplified JSON formatting. 

These sources were used to collect daily mean (TG), minimum (TN), and maximum (TX) air 

temperature values for the De Bilt region. The retrieved data was parsed and semantically annotated 

by mapping temperature observations to relevant concepts in the SOSA ontology. Each observation 

was then inserted into a SEPA (SPARQL Event Processing Architecture) knowledge graph as RDF 

triples using the SEPY client and JSAP configuration. 

A comparative analysis of the datasets, including differences in temporal resolution, value 

discrepancies, and data availability, is presented in subsequent chapters.  
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3 System Design and Implementation 

3.1 Overall System Architecture 

The system architecture proposed in this thesis draws conceptual inspiration from the Agorà platform. 

In Agorà, weather information serves as a critical input to a broader reasoning component known as 

the criteria model, which evaluates user-defined objectives such as yield optimization or resource 

efficiency. 

In the present work, the criteria model has been intentionally excluded to simplify the system design 

and focus on the technical integration challenges associated with external weather APIs, semantic 

knowledge graphs, and large language models. The central objective is to demonstrate the feasibility 

of linking natural language user interfaces with RDF-based environmental datasets through LLM-

generated SPARQL queries. This foundational architecture can be extended in future iterations by 

incorporating domain reasoning layers, such as Agorà’s criteria model, to support fully automated 

decision-making. 

Figure 3.1 Illustrates the overall system architecture. The pipeline begins with the retrieval of daily 

minimum (TN), maximum (TX), and mean (TG) air temperature values from two publicly available 

sources: the KNMI EDR API and the OpenWeather History API. Data acquisition is handled through 

Python scripts that manage endpoint authentication, parameterized HTTP requests, and JSON 

parsing. 

 

 

Figure 3.1- System architecture integrating weather data, semantic modeling, and LLM-based query 

generation 
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The retrieved datasets are then cleaned and harmonized into a unified format by aligning timestamp 

conventions and standardizing temperature units. Once processed, the data is semantically annotated 

using the SOSA ontology and stored in a SPARQL Event Processing Architecture (SEPA) triple store 

via the SEPY client API and a structured JSAP configuration file.  

On the user-facing side, the system enables natural language interaction, where free-text queries are 

processed by an LLM (specifically, GPT‑4o). The model translates these inputs into SPARQL queries 

that are syntactically valid and semantically aligned with the SOSA and KNMI vocabularies. These 

queries are then executed against the SEPA endpoint to retrieve the corresponding weather 

observations from the RDF graph. 

Finally, the system provides two visualization components: a Folium-based map for displaying the 

spatial distribution of KNMI stations across the Netherlands, and Pandas and Matplotlib plots for 

comparing historical weather data retrieved from KNMI and OpenWeather. This architecture 

illustrates how AI-powered natural language interfaces and semantic web technologies can be jointly 

deployed to facilitate intuitive access to structured meteorological data, forming a foundational layer 

for potential extensions of the Agorà platform in real-world smart agriculture use cases. 

3.2  Data sources 

Meteorological data used in this thesis were retrieved from two public providers: the KNMI (Royal 

Netherlands Meteorological Institute) and OpenWeather. Both organizations offer multiple datasets 

and APIs, each with different data formats, time resolutions, and access methods. To ensure 

consistency and reliability, several candidate sources were explored and compared before selecting 

the most suitable raw data endpoints for the scope of this work. 

For KNMI, data was accessed through two different mechanisms. The first was the KNMI EDR API, 

which provides observational data in JSON format. This API enables querying historical weather 

values from a gridded dataset [16], including daily minimum (TN), maximum (TX), and mean (TG) 

air temperatures, for specific coordinates. The second source was the KNMI OpenData API, which 

exposes complete multi-station historical datasets in NetCDF format. The latter was processed using 

the Python xarray library, which allows for structured parsing and extraction of relevant parameters, 

such as station names, geographic coordinates, and temperature observations. The result was a tabular 

dataset visualized using Pandas and Matplotlib, enabling both numerical inspection and graphical 

comparison. 

In parallel, the OpenWeather History API was queried using a different structure, relying on global 

grid-based weather archives and customizable time intervals. The API returns data in simplified 

JSON format, making it easier to integrate but often less localized than station-based data. To enable 

fair comparison, both the KNMI and OpenWeather datasets were filtered and aligned by timestamp 

and location (De Bilt), and the retrieved values were plotted over a one-year observation period. 

Figure 3.2 Shows the comparison between KNMI and OpenWeather daily minimum and maximum 

temperatures for the De Bilt region over a 12-month interval. The discrepancies observed between 

the two sources underscore the importance of data selection and standardization in building robust 

smart agriculture pipelines. 
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Figure 3.2- Comparison of daily minimum and maximum air temperatures retrieved from KNMI and 

OpenWeather for the De Bilt region over 1 year. 

In addition to the temperature comparison, a geographic analysis of KNMI station coverage was 

conducted. The NetCDF file retrieved from the KNMI OpenData platform includes metadata for all 

51 automatic weather stations, of which 37 are land-based and 14 are located at sea. A Folium-based 

interactive map was created to visualize station distribution across the Netherlands. This allowed 

qualitative inspection of spatial coverage, helping identify areas that may lack nearby observations. 

The goal was not to quantify accuracy by distance, but rather to gain an intuitive understanding of 

potential coverage gaps. 

 

Figure 3.3- Map of KNMI weather stations across the Netherlands (Green points represent Land stations 

and red points are Sea stations). 
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To semantically integrate the processed weather data into the system, observations were annotated 

using the SOSA ontology and converted into RDF triples. These triples were inserted into the SEPA 

broker using the SEPY Python client, which requires a configuration file in JSAP format. The JSAP 

defines all queryable SPARQL endpoints by specifying QUERY and UPDATE templates in JSON. 

Understanding how to write and customize JSAP files was an essential prerequisite for making SEPA 

interactions modular and reusable. 

A simplified snippet of the JSAP file used in this project is shown below, highlighting the structure 

of an INSERT_OBSERVATION update template: 

 

{ "INSERT_OBSERVATION": { 
    "sparql": "PREFIX sosa: <http://www.w3.org/ns/sosa/> PREFIX knmi: <http://example.org/knmi#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> INSERT { GRAPH 
<http://example.org/knmi/observations> { ?observation a sosa:Observation ; 
sosa:hasFeatureOfInterest ?foi ; sosa:observedProperty ?property ; sosa:hasResult ?value ; 
sosa:resultTime ?timestamp ; sosa:madeBySensor ?sensor . } } WHERE {}", 
    "forcedBindings": { 
      "observation": { "type": "uri", "value": "knmi:OBSERVATION_ID" }, 
      "foi":         { "type": "uri", "value": "knmi:StationDeBilt" }, 
      "property":    { "type": "uri", "value": "knmi:TG" }, 
      "value":       { "type": "literal", "value": "18.5", "datatype": "xsd:float" }, 
      "timestamp":   { "type": "literal", "value": "2024-07-01T00:00:00Z", "datatype": 
"xsd:dateTime" }, 
      "sensor":      { "type": "uri", "value": "knmi:TEMP_SENSOR" } 
    } 
  } 
} 

 

This configuration ensures that new observations can be programmatically inserted into the 

knowledge graph in a consistent and SPARQL-compliant manner. Working with JSAP required an 

understanding of SPARQL INSERT and SELECT queries, triple patterns, and RDF datatypes, all of which 

were incrementally learned and applied throughout the project via iterative development tasks. 

Figure 3.4 Provides a snippet of the dataset after parsing it into a structured table using xarray and 

pandas, which facilitated the spatial analysis and mapping tasks. 

 

 

Figure 3.4- KNMI station metadata extracted from NetCDF and displayed as a Pandas DataFrame 
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3.3  AI Module 

To enable natural language interaction with the weather data stored in SEPA, the system integrates 

an AI module powered by the OpenAI GPT API. The goal of this module is to translate human-

readable questions into syntactically correct SPARQL queries that are compatible with the RDF 

vocabulary used in the knowledge graph (i.e., SOSA and KNMI namespaces). 

The selected model for this task is GPT-4o, accessed through the chat.completions endpoint of the 

OpenAI Python SDK. A simple two-message prompt is used: the system message defines the 

assistant’s role as a SPARQL expert (with access to SOSA ontology), and the user message contains 

a weather-related question, such as: 

from openai import OpenAI 
 
client = OpenAI(api_key="sk-...") 
 
response = client.chat.completions.create( 
 model="gpt-4o", 
 messages=[ 
 {"role": "system", "content": "You are a SPARQL expert. You generate SPARQL queries from natural 
language questions."}, 
 {"role": "user", "content": "How much was the maximum temperature today in De Bilt?"} ],  
 
 temperature=0.0 ) 
 
print(response.choices[0].message.content) 

 

The temperature=0.0 parameter disables randomness in the LLM’s output, ensuring that the model 

always returns the most probable response. This deterministic behavior is critical for generating 

consistent and reproducible SPARQL queries, especially during testing and validation. By contrast, 

using higher temperature values (e.g., 0.7 or 1.0) introduces variability, which can lead to hallucinated 

predicates, incorrect vocabulary usage, or syntactically invalid queries, making the system unreliable 

for structured data interactions. The resulting SPARQL string is printed and passed directly to the 

SEPY client for execution against the SEPA endpoint. 

This module was iteratively evaluated with multiple models (GPT-4, GPT-4o, GPT-5, and GPT-5-

thinking), and various prompt structures were explored. Outputs were manually reviewed for 

correctness in terms of syntax, vocabulary alignment, and semantic validity. The goal was not to train 

or fine-tune any LLM, but to assess feasibility and robustness when using LLM in direct integration 

without fine-tuning with structured weather data. 

response = client.chat.completions.create( 
     model="gpt-4o", 
     messages=[ 
{"role": "system", "content": ( 
         "You are a SPARQL-generating assistant that answers natural language weather questions" 
             "by generating SPARQL queries using the SOSA ontology and KNMI dataset structure.\n" 
                "Use these prefixes in all queries:\n" 
                "PREFIX sosa: <http://www.w3.org/ns/sosa/>\n" 
                "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>\n" 
                "PREFIX knmi: <http://example.org/knmi/>" ) }, 
{"role": "user", "content": "What was the maximum temperature in De Bilt on 16 September 2025?" 
}], 
     temperature=0.0 ) 
 
print(response.choices[0].message.content) 
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Overall, the AI module demonstrates that, even without fine-tuning, current large language models 

can produce executable and meaningful SPARQL queries in the context of weather data stored as 

RDF. These results open opportunities for future work in prompt optimization, vocabulary constraint 

injection, or reinforcement-style feedback loops to improve query accuracy and reduce hallucinations 

[17]. 

3.4  Knowledge Graph Module 

To semantically structure the retrieved weather data, this thesis adopts a knowledge graph (KG) 

approach based on the Resource Description Framework (RDF). A knowledge graph represents 

information as subject–predicate–object triples, enabling the creation of machine-readable, 

interoperable data models. In this work, each weather observation was described using concepts from 

the SOSA (Sensor, Observation, Sample, and Actuator) ontology, which is designed for representing 

sensor-based data in the environmental and Internet of Things domains. 

The annotated RDF data was inserted into a SEPA triple store using the SEPY Python client. SEPA 

enables both querying and subscribing to RDF data over time, supporting real-time updates to the 

graph. To interact with SEPA, a structured configuration for the JSAP file was defined. This file 

specifies SPARQL INSERT and SELECT operations along with the necessary bindings and namespaces 

for interacting with the knowledge base. 

Before integrating the pipeline, early development experiments involved creating a small RDF dataset 

in Turtle (.ttl) format and loading it into Protégé for validation [18]. This allowed a preliminary 

understanding of how ontologies like SOSA are structured and how semantic models are navigated. 

These foundational steps ensured that the final system could semantically represent and store weather 

observations in a SPARQL-compliant manner, serving as the backbone for LLM-powered query 

execution in later stages. 

To formally represent the framework of environmental observations, the SOSA ontology was utilized 

as the base vocabulary. SOSA offers a lightweight and adaptable structure for detailing sensor-driven 

observations, encompassing the property being observed, the sensor itself, the outcome, and the 

feature of interest. To become familiar with the SOSA classes and properties, initial testing was 

performed using Protégé, where a simple RDF graph was manually constructed in Turtle syntax and 

visualized. The following Figure 3.5, outlines the fundamental structure of the SOSA ontology, 

showcasing its key relationships with the PROV-O (Provenance Ontology) model. This diagram, 

sourced from Janowicz et al. [12], informed the development of the RDF triples and ensured semantic 

accuracy in aligning the dataset schema with the ontology’s framework. 
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Figure 3.5- Core structure of the SOSA ontology [12]. 
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4 Results 

4.1  Experimental setup 

The implementation phase involved retrieving and processing one year of temperature observations 

from two sources: KNMI and OpenWeather APIs.  

Table 4.1- Summary of Temperature Data Sources 

Feature KNMI EDR API OpenWeather History API 

Source Type Station-based (Netherlands) Global grid-based model 

Temporal Coverage Full historical coverage Limited to certain years 

Granularity Daily min, max, mean (TG, TN, TX) Daily min, max, mean 

Data Format OGC Coverage JSON Simplified JSON 

Geo Precision Exact station location Approximate geocoordinates 

Accessibility Open Data Portal (NetCDF, EDR) Commercial API 

 

Initial comparisons revealed that KNMI provided more precise and readily available data, as it is 

directly derived from physical weather stations nationwide. In contrast, OpenWeather delivers global 

coverage with a more generalized, grid-based approach, which may sacrifice local accuracy. This 

observation aligns with OpenWeather’s own report on accuracy and quality of weather data, which 

states that their outputs are based on a combination of modeled and observational sources [19]. 

To visualize the discrepancies between the two APIs, the retrieved values were aligned by timestamp 

and plotted using Pandas and Matplotlib. Figure 3.2 (previous section) illustrates potential differences 

in temperature values throughout the year. 

4.2  Test scenarios 

This section describes how the system's behavior changed in response to modifications made to the 

prompt used in the OpenAI GPT-4 model, as discussed in Section 3.3. 

In the initial test, a general prompt was provided to the LLM without any SPARQL or ontology 

context. The result, shown in Figure 4.1 was a natural language explanation, warning that SPARQL 

cannot retrieve real-time data directly from weather APIs. The model correctly explained that 

SPARQL is used for querying RDF-based knowledge graphs, not for direct API access. 

 

Figure 4.1- Output Returned by GPT-4 from OpenAI Response API 
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Subsequent tests with the same prompt and different models (e.g., GPT-5, GPT-5 Thinking) yielded 

similar generic responses, often indicating that more context or specific data access tools were 

required to answer the question accurately. 

To improve the output, the prompt was refined by explicitly stating the desired behavior (i.e., 

generating a SPARQL query using SOSA and KNMI vocabulary) and by including relevant prefixes 

in the system role message. This change produced significantly better results: instead of returning an 

answer, the model generated a structured and syntactically valid SPARQL query. An example of this 

improved output is shown in Figure 4.2. 

 

Figure 4.2- Output Returned by GPT-4o from OpenAI Response API 

The results, summarized in Table 4.2, indicate a clear improvement in SPARQL generation accuracy 

when moving from earlier models to GPT-5 Thinking, especially when SOSA and KNMI 

vocabularies were embedded into the system prompt. 

The output still required careful evaluation to ensure semantic correctness and alignment with the 

underlying ontology. Still, it represented a successful step toward connecting natural language 

interfaces with machine-interpretable environmental data. 

Table 4.2- Comparison of SPARQL Generation by Different GPT Models 

Model Prompt Output Hallucination 
SPARQL 

Validity 
Comments 

GPT-4 
Basic 

prompt 

Textual 

explanation 
Yes Invalid 

Misinterpreted query 

intent, suggested 

general-purpose tools 

GPT-4o 

SOSA+ 

enhanced 

prompt 

Partial 

SPARQL 
Occasional 

Partially 

valid 

Improved syntax, but 

needed domain prefixes 

to avoid errors 

GPT-5 
SOSA + 

Prefixes 

Mostly correct 

SPARQL 
Rare Mostly valid 

Good structure, minor 

vocabulary mismatches 

GPT-5 

Thinking 

Refined 

contextual 

Mostly correct 

SPARQL 
Rare Mostly valid 

Correct SOSA structure 

and accurate bindings, 

but high latency 
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4.3  Discussion 

The research findings outlined in this thesis support the technical viability of integrating natural 

language interfaces with RDF-based weather knowledge graphs, particularly in the context of smart 

agriculture. By leveraging GPT-4's capabilities to convert user questions into SPARQL queries and 

linking them to a SEPA knowledge graph populated with carefully organized temperature data, this 

prototype establishes a valuable and relevant connection between AI-driven language models and 

semantic web technologies. 

The comparative examination of data from KNMI and OpenWeather highlights the crucial 

importance of data provenance and reliability in informing agricultural decision-making processes. 

Although both APIs showed generally consistent trends, the KNMI data, derived from official 

weather stations throughout the Netherlands, displayed less variability and greater temporal 

consistency compared to OpenWeather data, which aggregates information from global models and 

various external sources. This observation aligns with OpenWeather's own findings, which 

acknowledge that accuracy can vary significantly across different locations and time frames. Such 

differences can have significant implications in real-world applications, such as irrigation planning, 

where precise moisture level thresholds determine whether to initiate or postpone irrigation actions. 

From the perspective of artificial intelligence, initial assessments indicated that language models like 

GPT-4 faced difficulties in producing syntactically correct and semantically appropriate SPARQL 

queries without specific prompt engineering. Initial results often contained hallucinatory components 

or used unsuitable terminology. However, by enhancing the system's prompts with targeted domains, 

such as the SOSA ontology and the KNMI vocabulary, and by offering accurate SPARQL prefixes 

and structural guidelines, the quality of the generated queries improved significantly. This 

observation highlights the sensitivity of LLM performance to the design of prompts and their 

contextual grounding, a crucial consideration for future integrations of LLMs with knowledge graphs. 

While the current prototype does not fully represent Agorà's comprehensive decision-making logic, 

its modular architecture enables potential future improvements. Prospective enhancements could 

involve adding geospatial reasoning abilities through GeoSPARQL, context-aware prompting 

tailored to specific agricultural situations, or developing real-time fallback systems that intelligently 

select the most reliable weather API based on coverage or confidence levels.  

Furthermore, implementing feedback loops and correction mechanisms for erroneous queries, 

possibly through reinforcement learning methods or by analyzing user interaction logs, could play a 

crucial role in reducing hallucinations and enhancing the overall resilience and accuracy of the 

system. This comprehensive approach to enhancing LLM and knowledge graph integration is 

essential for advancing the tools available to modern agricultural practitioners. 
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5 Conclusion and Future Work 

This thesis has demonstrated the feasibility of combining large language models (LLMs) with 

semantic web technologies to enable natural language interaction with weather-related knowledge 

graphs for smart agriculture applications. By linking GPT-generated SPARQL queries to a SEPA 

semantic backend populated with structured temperature data from KNMI and OpenWeather, the 

system facilitates intuitive environmental queries, marking an important step toward intelligent 

decision-support systems in precision farming. 

A key area for future research is improving the robustness and precision of SPARQL query generation 

by the LLM. In this study, GPT-4o was employed to translate user questions into SPARQL, guided 

by carefully crafted prompts and a vocabulary aligned with the SOSA. While many outputs were 

syntactically correct and semantically relevant, several failure modes were observed, such as 

incomplete triple patterns, invalid variable bindings, and hallucinated predicates that are not present 

in the RDF schema. In smart agriculture, such inaccuracies are especially problematic, as even minor 

errors may lead to incorrect irrigation scheduling or misinterpretation of environmental data. 

To address these challenges, future implementations could incorporate feedback mechanisms to 

detect and respond to query failures, either through runtime execution feedback or structural 

validation. This feedback could inform prompt redesign, improve training dataset curation, or, where 

applicable, support fine-tuning of the underlying language model. Over time, this would establish a 

reinforcement-style learning loop, in which invalid queries help refine system behavior. Although 

fine-tuning was beyond the scope of this thesis, such mechanisms could significantly reduce 

hallucinations and improve semantic alignment. Incorporating Retrieval-Augmented Generation 

(RAG) techniques may further increase control over knowledge usage and improve query consistency 

[20][21]. 

Another valuable extension would be to enhance the system's ability to dynamically select data 

sources based on geographic input. While this thesis focused on KNMI and OpenWeather data for 

the De Bilt region, many APIs lack uniform global coverage. Future versions could analyze API 

availability and reliability for a given latitude–longitude pair and automatically select the most 

appropriate provider. This would improve the system's generalizability and effectiveness in diverse 

agricultural contexts. 

Finally, incorporating GeoSPARQL, the W3C standard for geospatial RDF querying, would 

significantly expand the system's reasoning capabilities [22]. GeoSPARQL support would enable 

spatial filters such as identifying the nearest weather stations or visualizing gaps in sensor coverage 

and enhance the integration of geospatial data, including satellite observations and IoT-based sensor 

networks.  
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