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1. Introduction 
1.1 Context and Motivation 

In recent years, the rise of open hardware initiatives have significantly transformed the 

landscape of processor design and embedded system development. Among these, the 

RISC-V instruction set architecture (ISA) has emerged as a prominent and influential 

standard, offering a modular and extensible framework free from licensing constraints. 

RISC-V's growing adoption across both academia and industry reflects its appeal for 

educational use, research purposes, and commercial implementations alike. In this 

context, the ‘nanorv’ processor, a compact implementation of the RISC-V RV32I ISA, 

presents an ideal platform for experimentation and customization, especially in 

applications where simplicity, scalability, and open design are essential. 

Debugging represents a fundamental aspect of processor development and embedded 

systems design. A robust debug infrastructure enables developers to inspect the internal 

state of the processor, set breakpoints, step through instructions, and detect faults during 

execution. Without appropriate debugging mechanisms, identifying the root causes of 

hardware or software errors becomes highly time-consuming and error-prone. This is 

particularly crucial in resource-constrained environments, where visibility into the 

system’s behavior is inherently limited. 

The motivation for this thesis stems from the need to provide a fully functional debug 

module tailored for the nanorv processor. Given the processor’s minimalist architecture, 

integrating a debug solution that is both non-intrusive and compatible with standard 

debugging tools (e.g., those using the JTAG interface) is a non-trivial challenge. The 

design and implementation of such a module aim to bridge the gap between the 

lightweight nature of nanorv and the rich debugging capabilities required in real-world 

applications. 

1.2 Objectives of the Thesis 

The primary objective of this thesis is to design, implement, and validate a debug 

module for the nanorv processor, in compliance with the RISC-V Debug Specification 
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and compatible with widely adopted debugging standards such as JTAG. The module 

must offer essential debug functionalities—such as halting, resuming, and single-

stepping the processor—while maintaining a clean integration with the existing nanorv 

architecture. 

Specifically, this work sets out to: 

• Analyze the debug requirements of RISC-V compliant processors, with a focus on 

minimal implementations like nanorv. In particular, the current state of the nanorv 

design doesn’t support exceptions or interrupts, so the traditional approach to set a 

breakpoint (inserting a halt/debug instruction that’ll trigger an exception when executed) 

can’t be used;  

• Design a hardware-based debug module that enables low-level interaction with the 

processor’s state, including access to registers and memory; 

• Define and implement the communication interfaces between the debug module, the 

processor core, and external debugging tools; 

• Integrate the module with a JTAG interface, enabling external control through standard 

debugging protocols; 

• Validate the functionality of the module through simulation and practical test 

environments. 

Secondary objectives include providing detailed documentation, modular code for ease 

of reuse, and insights into the integration of the debug module with open-source 

development tools. These goals are aimed not only at addressing immediate debugging 

needs but also at offering a reusable blueprint for future extensions or applications 

involving nanorv or similar processors. 

1.3 Structure of the Thesis 

This thesis is structured into several chapters, each addressing a specific aspect of the 

work carried out. Following this introduction: 
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• Chapter 2 provides a general overview of the RISC-V architecture, focusing on the 

RV32I subset, and introduces the nanorv processor. It also discusses the role and 

importance of debugging in the broader context of embedded systems. 

• Chapter 3 is dedicated to the debug module itself. It includes a detailed description of 

the module’s architecture, functionality, and hardware interfaces. The chapter also 

elaborates on the communication mechanisms with the processor and the external world. 

• Chapter 4 explores debugging from a broader perspective, discussing common 

debugging techniques, available software tools, and the integration of the debug module 

with development environments. 

• Chapter 5 focuses on the JTAG interface, explaining its architecture and how it is used 

in debugging contexts. The chapter also outlines the steps required to configure and 

utilize JTAG in conjunction with the designed module. 

• Chapter 6 concludes the thesis by presenting a summary of the results, reflecting on the 

effectiveness of the implemented solution, and proposing potential directions for future 

improvements and developments. 

Finally, the appendices contain relevant technical material, including the full source 

code of the debug module and additional documentation that supports replication or 

further development. 

This structure aims to offer a clear and coherent narrative, guiding the reader through 

the conceptual, architectural, and practical aspects of implementing a debug module in 

a modern open-source processor environment. 
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2. Overview of the RISC‑V System 

The growing demand for open, flexible, and efficient processor architectures has 

positioned RISC‑V as a pivotal standard in both academic and industrial domains. 

Unlike proprietary instruction set architectures, RISC‑V offers a free and extensible 

ISA that fosters transparency, long-term stability, and architectural experimentation. 

This openness has enabled the emergence of lightweight cores for embedded systems, 

as well as high-performance multicore implementations. 

This chapter introduces the foundational aspects of the RISC‑V system architecture, 

with a focus on the RV32I base ISA used in this project. We explore the instruction set 

structure, encoding schemes, register organization, and the design philosophy that 

emphasizes simplicity, modularity, and portability. These characteristics make 

RISC‑V particularly well-suited for system-on-chip (SoC) development and custom 

hardware designs—such as the one implemented and debugged in this thesis. 

We also highlight the role of modular instruction set extensions, the versioning 

mechanism maintained by RISC‑V International, and the advantages that this 

architecture brings to hardware/software co-design. Understanding the baseline 

architecture is critical, as it shapes the implementation decisions for both the processor 

core and the debugging infrastructure described in later chapters. 

2.1 RV32I Architecture of the RISC‑V Family 

The RV32I base integer instruction set constitutes the foundational unprivileged ISA for 

RISC‑V architectures. It comprises 40–47 instructions, depending on the 

implementation: arithmetic, logic, load/store, branch, and system calls (e.g., ECALL, 

EBREAK). The register file consists of 32 general‑purpose 32‑bit registers (x0 to x31), 

with x0 permanently hardwired to zero, supporting deterministic behavior and 

simplified hardware design. 

RV32I uses fixed 32‑bit instruction encoding, employing six instruction formats: R, I, 

S, B, U, and J. This enables a load‑store architectural model, where all memory 

operations are performed via specific instructions, while arithmetic and logical 



10 
 

operations operate exclusively on registers. The spec ensures symmetric encoding 

patterns that facilitate pipelining and simple decoding logic. 

Importantly, the ISA is modular: RV32I is supplemented by optional, standardized 

extensions (e.g., M for multiply/divide, A for atomic operations, C for compressed 

instructions) that can improve performance or reduce footprint, depending on 

application requirements. The specification is ratified by RISC‑V International—the 

unprivileged ISA version 2.1 was ratified in May 2024, ensuring stability for toolchain 

support —. In designer notation, ISA variants are denoted as, for example, RV32IMC 

or RV32IMAFDC where multiple extensions are combined. 

RV32I was specifically crafted to be minimal yet sufficient: it supports OS‐level 

functionality and compiler targets while minimizing hardware complexity, making it 

ideal for embedded contexts and teaching environments. The spec allows 

implementations to treat SYSTEM instructions as traps or NOPs for a minimal core—

this enables simplified implementations achieving even fewer than 40 hardware 

operations. 

2.2 Main Features of the 'nanorv' Processor 

The nanorv processor is the central processing unit of a custom System-on-Chip (SoC) 

developed for educational and experimental purposes. It is designed with minimalism 

and transparency in mind, emphasizing ease of understanding over raw performance. Its 

implementation is entirely written in VHDL, making it an ideal case study for students 

learning about digital systems, hardware description languages, and embedded 

processor design. 

2.2.1 General Overview 

At its core, nanorv is a soft-IP CPU designed to execute the RISC-V RV32I instruction 

set. It is a multi-cycle, non-pipelined processor that prioritizes simplicity over 

complexity. Unlike many modern processors, it does not implement advanced 

architectural features such as pipelining, cache memories, interrupts, or debug 
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interfaces. Instead, the design focuses on minimizing the use of logic elements, which 

significantly reduces FPGA resource usage. 

The nanorv processor acts as a bus master on an AMBA APB bus, enabling it to initiate 

read and write transfers with various on-chip peripherals and memory blocks. Upon 

system reset, it begins fetching instructions from address 0x00000000, using an internal 

program counter (PC) to sequence execution. 

2.2.2 CPU Architecture 

The internal architecture of nanorv consists of several classic CPU components: 

• Program Counter (PC): Holds the address of the instruction to be fetched. 

• Instruction Register (IR): Stores the 32-bit instruction word retrieved from memory. 

• Register File: Contains 32 general-purpose 32-bit registers (x0 to x31). Register x0 is 

hardwired to zero, as per the RISC-V specification. 

• Arithmetic Logic Unit (ALU): Executes arithmetic and logical operations using 

operands from the register file or instruction. 

• Memory Interface: Implements the APB protocol to read/write data from memory and 

I/O. 

• Control Unit (CU): Decodes instructions and orchestrates the operations of the other 

components. 

Each of these modules is implemented as a distinct VHDL component, reinforcing 

modularity and testability. All signals within the processor are synchronized with the 

rising edge of the system clock, except for the asynchronous, active-low reset signal. 

2.2.3 Instruction Execution and Timing 

The execution of an instruction in nanorv follows a five-phase cycle typical of von 

Neumann architectures: 

1. Fetch: Read the instruction from memory using the PC. 

2. Decode: Interpret the instruction to determine the operation and operands. 

3. Operand Fetch: Retrieve operands from the register file. 
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4. Execute: Perform the operation via the ALU. 

5. Write-back: Store the result and update the PC. 

Due to its multi-cycle nature, the processor requires between 3 and 6 clock cycles to 

execute a single instruction. This latency is partly due to the APB protocol, where each 

bus transfer requires a minimum of 2 clock cycles, and some instructions (e.g., 

load/store) need multiple transfers. Unlike pipelined processors, nanorv does not 

execute multiple instructions simultaneously. This design decision simplifies debugging 

and signal tracing during simulation, which is especially beneficial for educational 

environments.  

2.2.4 Instruction Set Support 

Nanorv fully supports the RV32I base instruction set, which includes: 

• Integer arithmetic (e.g., add, sub, addi) 

• Logical operations (e.g., and, or, xor) 

• Memory operations (lw, sw, lb, sh, etc.) 

• Control flow instructions (beq, bne, jal, jalr) 

• System instructions (ecall, ebreak), these instructions are treated as NOP (no-operation) 

instructions, as nanorv doesn't support priviledged instructions 

The standard toolchain used to generate programs for the nanorv platform uses pseudo-

instructions (e.g., li, mv) to enhance human readability, although they are translated into 

legal RV32I instructions by the assembler. These instructions can be interpreted using 

disassembler listings provided by the simulation tools. Register naming in nanorv 

follows RISC-V conventions, where registers are referred to by both their number (x0–

x31) and mnemonic (zero, ra, sp, a0–a7, etc.). 

2.2.5 Integration within the SoC 

The nanorv CPU is embedded within a custom SoC architecture that includes: 

• Instruction and data memory blocks (2 KB for code, 512 bytes for data) 

• A simple GPIO module with read/write 32-bit ports 
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• A custom multi-channel PWM peripheral 

• An APB interconnect with a slave decoder for address-based module selection 

All components are instantiated in the apb_system_simple.vhd top-level entity, where 

the nanorv CPU plays the role of APB master. The slave decoder routes requests to the 

correct APB slave by analyzing CPU addresses and control signals. Figure 9 of the 

source document illustrates the entire SoC interconnection. 

The CPU fetches instructions from the 0x00000000 address space and accesses data 

memory and peripherals using standard APB transfers. The simplicity of this setup 

makes the system predictable and easy to simulate or analyze, though it lacks flexibility 

for dynamic application development (e.g., it cannot download code dynamically or be 

debugged externally without extensions). 

2.2.6 Development and Toolchain 

The nanorv SoC workflow is based on a set of open-source and proprietary tools: 

• RISC-V GCC toolchain (riscv64-unknown-elf) for compiling C and assembly 

programs 

• ihexconv: a utility to convert compiled binaries into VHDL memory content files 

• Modelsim: a VHDL simulator used to run the system in a testbench environment 

The embedded application is developed separately, compiled to .elf format, then 

transformed into .hex and finally into a VHDL package (memory_contents_pkg.vhd) 

that initializes the instruction memory. This workflow, though automated, is relatively 

slow, as each change to the program requires recompiling the entire SoC design. 

In the absence of debugging support, developers rely on waveform analysis (e.g., PC 

and IR signals) and simulation logs to validate processor behavior. This limitation 

reinforces the motivation for developing an integrated debug module, which would 

greatly improve test efficiency and usability. 
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2.3 Importance of Debugging in Embedded Systems 

In embedded-system development, debugging plays a critical role for several reasons. 

Embedded devices often lack rich I/O interfaces (keyboards, displays, file systems), 

making traditional debugging approaches (console output, file logging) infeasible. As a 

result, hardware-assisted debugging—via interfaces like JTAG or specialized debug 

modules—is essential. 

A robust debug infrastructure helps locate semantic bugs (e.g., incorrect logic) and low-

level issues such as memory corruption or concurrency faults—areas known to consume 

significant debugging effort, especially in constrained environments. Studies show that 

memory and concurrency bugs are less frequent but disproportionately time-consuming, 

underlining the value of tools enabling precise inspection and control at runtime [1]. 

 Embedded‑software debugging is further challenged by real‑time constraints, limited 

observability, and minimal on-chip resources. Research into embedded developer 

behavior shows that successful debugging often requires iterative fault localization and 

close inspection of program state, often using external trace or data retrieval tools for 

effective diagnosis [2]. Techniques such as in‑circuit emulation (ICE) or on‑chip debug 

support via standard interfaces like JTAG enable non‑intrusive access to processor 

internals, even in production silicon. 

Without integrated debug support, developers rely on intrusive methods like printf‑style 

debugging or instrumented builds, which may alter timings and mask faults—a 

phenomenon especially problematic in embedded real‑time systems. 

Therefore, integrating a hardware debug module into nanorv (and similar architectures) 

equips developers with powerful capabilities: halting execution, single‑stepping through 

instructions, setting breakpoints, and accessing registers and memory—all essential for 

reliable embedded-system development and validation. 
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3. Debug Module for RISC-V 

Modern embedded processors require integrated debugging capabilities to support 

development workflows, test routines, and fault isolation. While high-end 

microcontrollers may offer complex trace units or vendor-specific debug subsystems, 

custom SoCs often lack such infrastructure, making debugging both intrusive and 

inefficient. 

To address this challenge, a custom debug module was designed and integrated into the 

nanorv RISC‑V SoC. The objective was to enable full control over the CPU during 

runtime via an external debugger, with functionality inspired by the Debug Module 

Interface (DMI) defined in the official RISC‑V Debug Specification. 

This hardware module implements a JTAG-accessible register interface that allows 

developers to halt execution, inspect and modify CPU state, read/write general-purpose 

registers, and access memory-mapped peripherals. The module was designed to be 

lightweight, synthesizable on entry-level FPGAs, and compatible with both simulation 

workflows and real hardware debugging via OpenOCD. 

What follows in this chapter is a detailed analysis of its architecture, design decisions, 

and the VHDL implementation strategies adopted to ensure portability, observability, 

and robust integration with the rest of the SoC. 

3.1 Description of the Debug Module 

The debug_module implemented for the nanorv processor is a VHDL-based hardware 

component designed to enable external access to core internal data structures such as 

the program counter, instruction register, register file, and memory interface. It acts 

as a bridge between the CPU and a JTAG interface, allowing developers to monitor 

and control the processor's state in real-time, particularly during simulation or external 

debugging via hardware. 
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The core structure of the module is built around a set of dedicated debug registers 

(JTAG_USER_DATA_REG), which serve as a shared communication point between 

the CPU and the external interface. These include: 

• Control Register (JTAG_CTRL_REG): manages operational commands such as 

go/stop, reset, memory access, and register access. 

• Status Register (JTAG_STATUS_REG): reflects internal flags and states, including 

CPU activity, memory operations, and program counter usage. 

• Memory Address Register: used to store the target address for memory read/write 

operations. 

• Write Data Register: holds data to be written to memory. 

• Read Data Register: returns data read from memory or the register file. 

Follow a table with all fields of all JTAG register. 

Register Name Bits Field Name Description 

Control Register 

JTAG_CTRL_REG 

0 JTAG_CTRL_RSTN_

BIT 

Active-low reset 

control for the CPU. 

 1 JTAG_CTRL_GO_BI

T 

Run/stop control (1 

= Go, 0 = Stop). 

 2 JTAG_CTRL_RDPC_

BIT 

Enable read of 

Program Counter. 

 3 JTAG_CTRL_WRPC_

BIT 

Enable write to 

Program Counter. 

 4:8 JTAG_CTRL_REGAD

DR 

Target register 

address for register 

file access. 

 9 JTAG_CTRL_RDREG

_BIT 

Enable read from 

register file. 

 10 JTAG_CTRL_WRRE

G_BIT 

Enable write to 

register file. 

 11:12 JTAG_CTRL_MEMSI

ZE 

Memory access size 

(00 = byte, 01 = 

halfword, 10 = 

word). 

 13 JTAG_CTRL_RDME

M_BIT 

Enable memory read. 

 14 JTAG_CTRL_WRME

M_BIT 

Enable memory 

write. 
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 15 JTAG_CTRL_RDME

M_UNS_BIT 

Enable unsigned 

memory read. 

Status Register 

JTAG_STATUS_REG 

0 JTAG_STATUS_GO_

BIT 

Indicates if CPU is 

running (Go mode). 

 1 JTAG_STATUS_ME

M_BUSY_BIT 

Memory interface is 

busy. 

 2 JTAG_STATUS_PC_

BUSY_BIT 

Program Counter is 

being accessed. 

 3 JTAG_STATUS_REG

_BUSY_BIT 

Register file 

interface is busy. 

Memory Address Register 

JTAG_MEMADDR_REG 

0:31 mem_addr Address for memory 

read/write 

operations. 

Write Data Register 

JTAG_WRDATA_REG 

0:31 wr_data Data to be written to 

memory or registers. 

Read Data Register 

JTAG_RDDATA_REG 

0:31 rd_data Data read from 

memory or registers. 

The module is architected to be fully synchronous with the system clock (PCLK) and 

supports asynchronous reset (PRSTn). It connects to the CPU through two custom 

record types: debug_inputs (providing the module with CPU state) and debug_outputs 

(used to control the CPU). 

Through this interface, developers can halt the processor, inspect and modify register 

contents, and perform memory transactions in a controlled, non-intrusive manner. 

Internally, the module is governed by three distinct state machines that manage control 

flow, register file access, and memory transactions. 

Following block diagram showing debug module and CPU interconnected with 

debug_inputs and debug_outputs. DEBUG_OUT and DEBUG_IN are records so 

include different signals to access at the program counter, register and memory 

(Debug_out: - rstn; - go; (to access PC) - pc_rd; - pc_wr; (to access registers) - reg_addr; 

- reg_rd; - reg_wr; (to access memory) - mem_size; - mem_addr; - mem_rd; - mem_wr; 

- read_unsigned; (shared by Pc, reg and mem); - wr_data) (Debug_in: - fetch; - 

mem_busy;-rd_data). 
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3.2 Functionality of the Module 

The debug module offers a rich set of debugging functionalities specifically tailored for 

low-level embedded development. It provides: 

• External halting and resuming of CPU execution via the jtag_go signal (bit in the 

control register). 

• Read and write access to the register file through the reg_addr, reg_rd, and reg_wr 

signals. 

• Program counter (PC) inspection and overwrite, controlled via read_pc and 

write_pc. 

• Memory read/write transactions, handled through the mem_addr, mem_size, 

read_mem, write_mem, and read_unsigned fields. 

• CPU reset control, using the rstn signal in the control register. 

CPU 

Debug_input 

Debug_output 

Debug Module 

PCLK      

PRSTn     

DEBUG_IN  

wr_value  

rd_addr   

wr_ena    

wr_addr   

rd_value  

DEBUG_OUT 
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A key architectural decision was to decouple all functionality via a register-mapped 

interface, allowing software-controlled debugging without tight coupling to internal 

CPU implementation details. All operations are issued by writing to the control register 

and processed through synchronized state machines. 

The status register acts as an important feedback mechanism. It provides flags such as: 

• GO: Whether the CPU is currently running. 

• MEM_BUSY, REG_BUSY, PC_BUSY: Indicators that memory, register file, or PC 

are currently being accessed or updated. 

Furthermore, by combining control and status monitoring, the debug module supports 

safe single-step execution. This is achieved by toggling jtag_go and monitoring fetch 

from the CPU (received via DEBUG_IN.fetch) to ensure execution completes before 

halting again. 

Data exchanges with the CPU are realized by writing or reading from 

JTAG_USER_DATA_REG. For example, during a memory read, the address is placed 

in the memory address register, a read is triggered via read_mem in the control register, 

and the result is later read from the rd_data register. 

This functionality is especially useful in simulations where interactive debugging can 

be implemented by driving these control and data signals directly from a testbench. 

3.3 Architecture of the Debug Module 

Internally, the debug module defines a register file (JTAG_USER_DATA_REG) with 

five key registers: 

• Control Register – used to send commands (e.g., GO, STOP, RESET, memory or 

register access). 

• Status Register – provides flags indicating the current state (e.g., memory busy, core 

executing). 

• Memory Address Register – indicates the memory location targeted for read/write. 

• Write Data Register – contains data to be written to memory or registers. 
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• Read Data Register – holds the result of a read operation. 

The internal architecture of the debug module is composed of three main subsystems, 

each managed by a dedicated Finite State Machine (FSM): 

1. FSM_GO – handles CPU execution state (GO, STOP, RESET). 

2. FSM_MEM – manages memory operations. 

3. FSM_REG – coordinates register file access. 

These FSMs operate synchronously with the system clock (PCLK) and reset signal 

(PRSTn), maintaining consistent state transitions in the presence of external debug 

commands. 

1. GO-State Controller (FSM_handle_go) 

This FSM manages the CPU execution state: 

• GO: Normal execution mode. 

• STOP: CPU is halted; all activities suspended. 

• BUSY / FETCH_BUSY: Transitional states for safe halting. 

• RESET: Resets internal debug module logic. 

• P_STOP: Pre-stop transitional state. 

This logic uses the jtag_go bit and CPU fetch signal to coordinate controlled halting and 

resuming, ensuring instructions complete safely before halting. 

2. Memory Controller (FSM_memory_operation) 

Manages memory operations via: 

• IDLE: Awaiting operation. 

• MEM_BUSY: Active memory transaction. 

• DONE: Operation completed, awaiting next command. 

Signals involved: read_mem, write_mem, mem_addr, mem_size, wr_data, rd_data. 
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The jtag_mem_busy signal flags when the memory interface is in use and updates the 

corresponding bit in the status register. 

3. Register File Controller (FSM_reg_file) 

Handles access to the CPU's register file using: 

• REG_IDLE: Idle state. 

• REG_BUSY: A read/write operation is in progress. 

• REG_DONE: Transaction complete. 

Signals involved: reg_addr, reg_rd, reg_wr, and wr_data. A reg_busy_flag signal 

indicates activity and updates the status register accordingly. 

4. JTAG Register File (JTAG_USER_DATA_REG) 

This array of registers serves as the central configuration and data interface for the 

module. Index-based aliases provide access to: 

• mem_addr, wr_data, rd_data 

• status, control 

• Register-level fields (e.g., reg_addr, read_pc, write_pc, read_mem, etc.) 

Each field is accessed by reading from or writing to a specific index in the array, which 

mimics a memory-mapped I/O interface often seen in JTAG systems. 

5. Data Path Logic 

The jtag_wr process handles register writes, enforces write-protection for the first two 

read-only registers, and ensures that CPU read data (DEBUG_IN.rd_data) is saved into 

rd_data for external inspection. 

The jtag_rd process simply returns the requested data from JTAG_USER_DATA_REG 

to the external world. 

Subsystem Description 

GO FSM Manages CPU execution (GO, STOP, etc.) 

Memory FSM Handles read/write operations to memory 
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Register FSM Handles access to CPU register file 

Status register Tracks GO mode, memory, and PC activity 

Control register Issues commands: halt, reset, PC access 

JTAG registers Unified register map for control & data flow 

 

 

3.4 Interfaces and Connections 

The debug module developed for the nanorv processor acts as a bridge between the 

CPU and the external JTAG interface, enabling external debugging actions such as 

halting execution, inspecting and modifying registers, and reading or writing to memory. 

Its interfaces are carefully designed to ensure minimal intrusion in the CPU pipeline 

while offering robust control and visibility. 

3.4.1 Involved Hardware Components 

The main hardware components involved in the debug infrastructure are: 

• The nanorv_cpu processor – a RISC-V RV32I implementation that exposes a 

dedicated debug interface via record ports (debug_inputs and debug_outputs). The CPU 

itself does not directly read or write the debug module’s internal registers; instead, it 

provides signals representing its internal state (e.g., program counter, fetched 

instruction, register file outputs) and accepts external control signals (e.g., go, pause, 

read/write) from the debug module. 

• The JTAG interface – used for external communication. In simulation, this is typically 

modeled as a set of processes that read/write the debug module’s register file. In 

hardware, a physical JTAG adapter connects to the FPGA and drives the same register 

interface through a virtual JTAG core. 

• The APB-based SoC architecture – the SoC in which the CPU and debug module are 

instantiated uses an APB bus for peripheral interconnection. However, the 

debug_module is not connected to the APB as a standard slave; instead, it is directly 

linked between the CPU’s debug ports and the JTAG/adapter interface, operating 

outside the APB address map. 
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• The debug_module entity – implements the core debugging functionality and acts as a 

bridge between the CPU and the external debug interface (JTAG or simulation adapter). 

It maintains an internal register file for control, status, memory access, and register file 

access, which can be manipulated externally to observe or modify CPU state. 

3.4.2 Communication with the Processor 

The interaction between the debug module and the processor is realized through two 

custom VHDL records: debug_inputs and debug_outputs. These serve as structured 

buses allowing clean bidirectional communication: 

• debug_outputs (from CPU to debug module) includes: 

o rd_data: result of read operations (PC, memory, or registers). 

o fetch: indicates whether the CPU is fetching an instruction. 

o mem_busy: indicates if a memory operation is ongoing. 

• debug_inputs (from debug module to CPU) includes: 

o rstn: CPU reset signal (active low). 

o go: signal to allow or halt execution. 

o pc_rd, pc_wr: flags to read or write the program counter. 

o reg_addr, reg_rd, reg_wr: register file access control. 

o mem_addr, mem_rd, mem_wr, mem_size, read_unsigned: memory access parameters. 

o wr_data: data to be written (used by memory or register writes). 

When debugging is active (go = '0'), the CPU routes memory, PC, and register 

operations through these debug interfaces, allowing external tools to intervene safely 

and predictably. 

 

3.5 Communication Protocol with the Outside 

The debug module communicates with the outside world primarily via the JTAG 

interface. In simulation environments, this connection is simulated using direct port 

mapping (e.g., JTAG_wr_value, JTAG_rd_addr), while in hardware setups, the system 

uses an Altera Virtual JTAG module paired with a JTAG Debug Adapter. 
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External tools interact with the module through a series of addressable registers: 

• Write operations are performed via the wr_ena, wr_addr, and wr_value signals. 

• Read operations are enabled by setting rd_addr, with the result provided on rd_value. 

This communication protocol enables precise, low-level control over the CPU's 

behavior and state, including: 

• Halting the CPU (GO = 0) 

• Reading the program counter or registers 

• Reading/writing memory at any address 

• Injecting instructions or data 

All of this is done without interrupting the processor’s operation, ensuring the debug 

process is both non-invasive and fully deterministic. 
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4. Debugging and Debug Tools 

Debugging is not a peripheral activity in hardware design—it is an intrinsic part of the 

engineering process. As digital systems become more complex and heterogeneous, with 

tightly coupled processors, peripherals, and memory hierarchies, the ability to observe, 

control, and interpret internal behavior becomes both a necessity and a challenge. 

In FPGA-based SoCs, traditional software debugging methods fall short due to limited 

visibility into internal signals and the absence of an operating system to host standard 

tools. Instead, dedicated hardware debugging infrastructures must be designed into the 

system from the ground up. These include mechanisms for halting the CPU, inspecting 

internal registers, and injecting commands from external tools—all without disturbing 

the system's functional correctness. 

This chapter explores both the theoretical foundations and the practical implementation 

of debug features in the context of a RISC-V SoC. It provides insight into the debugging 

strategies adopted, the software tools employed during development, and the low-level 

architectural choices that enable full-system observability and control, whether during 

simulation or on real FPGA hardware. 

4.1 Debugging Techniques 

Embedded systems designers commonly adopt two complementary debugging 

paradigms: run‑stop (halt-based) debugging and real-time trace debugging, as 

outlined in authoritative surveys of industrial SoCs [3][4].  

• Run‑stop debugging: Involves halting program execution at defined points—e.g., 

breakpoints—to inspect CPU state, memory, and control flow. This method ensures 

precise control but is intrusive, interrupting real-time behavior, which may alter fault 

conditions [5].  

• Real‑time trace debugging: Captures internal execution behavior asynchronously, 

allowing post‑mortem analysis of program flow and memory access without stopping 
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the processor. Embedded trace cores, like ARM CoreSight or RISC‑V proposals, 

implement this non‑intrusive approach [6].  

Another critical concept is Design-for-Debug (DfD), which advocates embedding 

debug infrastructure within the SoC architecture from the outset to enable effective fault 

localization without requiring costly redesigns at later stages. 

The on-chip debugging module developed in this thesis implements a run-stop 

approach via a JTAG-like register interface, enabling deterministic control of program 

flow, read/write access to registers and memory, and safe halt/resume execution — fully 

consistent with established DfD principles. 

Importantly, the current debug module design does not preclude the adoption of real-

time trace debugging techniques in future iterations. For example, since the module 

already allows examination of the program counter (PC) while the processor is running, 

a trace-enhanced version could continuously capture and stream PC values to 

reconstruct the execution flow, thereby enabling low-intrusion program tracing 

alongside the run-stop capabilities. 

4.2 Software Tools for Debugging 

In this project, we utilized several industry-standard software tools customized for the 

RISC‑V-based nanorv SoC: 

• ModelSim: Employed for VHDL simulation of the nanorv CPU and the debug module. 

ModelSim provides signal waveforms (e.g., PC, IR, APB bus lines) and allows 

interactive control of debug register transactions for simulation of external JTAG 

commands. 

• Intel Quartus Prime: Used for FPGA synthesis, particularly targeting the Cyclone 

family with integration of the altera_mf MegaFunction library. Quartus enables both 

functional and timing simulation, and inclusion of debug-support flags 

(DEBUG_SUPPORT := true) to instantiate the debug module. 

• Doxygen: Utilized to generate structured documentation from the commented VHDL 

source (using --! \brief annotations). It produces HTML and PDF outputs describing 
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entities, registers, alias mappings, FSM states, and interface specifications, greatly 

enhancing code maintainability and clarity. 

• OpenOCD (Open On‑Chip Debugger): Used for real hardware debugging once the 

SoC is deployed on FPGA. OpenOCD facilitates JTAG-based control using standard 

RISC‑V DMI commands (dmi_read, dmi_write, progbuf, sysbus, abstract) to access 

debug modules and memory via GDB [7].  

To support OpenOCD on Windows, we installed nodist (Node.js distribution) and 

GnuWin32 (Unix toolset for Windows), allowing execution of Tcl scripts and cross-

platform utilities for target communication. 

This combination provides a seamless debugging workflow both in simulation and on 

real hardware, fully leveraging open-source RISC‑V tooling. 

4.3 Integration of the Debug Module with Development Tools 

The integration of the debug_module into the development toolchain involves 

orchestrated coordination between simulation, synthesis, documentation, and runtime 

tools. 

1. ModelSim-based testbench: The debug module is instantiated alongside the CPU in a 

custom testbench. Control signals (wr_ena, wr_addr, rd_addr) are driven via Tcl or 

VHDL stimulus, simulating interaction with a host. Outputs (rd_value, status, 

DEBUG_OUT) are observed via waveform. This method enables interactive validation 

of register map behavior and FSM transitions. 

2. Quartus synthesis for FPGA deployment: When configured with 

DEBUG_SUPPORT = true, the SoC includes the debug_module. In simulation mode, 

the adapter is bypassed via direct port mapping; in hardware mode (Cyclone FPGA), the 

altera_virtual_jtag and jtag_adapter components convert physical JTAG signals into 

internal register transactions. This enables external tools to communicate with the 

module. 

3. Documentation with Doxygen: The annotated VHDL code is processed to generate 

browsable documentation, including descriptions of: 



28 
 

a. Control and status registers (addresses, bit mapping) 

b. FSM states in memory and register controllers 

c. Alias names used (e.g. mem_addr, wr_data, status) 

d. Interface records (debug_inputs, debug_outputs) 

This facilitates easier onboarding and maintenance for future developers or extensions. 

4. OpenOCD + GDB hardware debugging: In hardware mode, OpenOCD interfaces 

with the FPGA via JTAG. Using RISC‑V DMI commands, GDB can access the debug 

module’s register file (JTAG_USER_DATA_REG), control execution flow 

(GO/STOP), and perform read/write operations on memory and registers. This fully 

supports run‑stop debugging, breakpoints, and memory inspection without modifying 

the CPU design—leveraging the debug module's register-mapped protocol. 

This integrated toolchain (ModelSim, Quartus, Doxygen, OpenOCD/GDB) provides a 

coherent workflow for: 

• Designing and verifying the debug module in simulation, 

• Documenting and maintaining the module, 

• Executing hardware-assisted debugging on physical FPGA boards. 
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5. JTAG Interface 

In complex digital systems, especially in processor-based or SoC designs, observing and 

controlling internal states during execution is a fundamental aspect of debugging. 

Traditional simulation environments provide some visibility, but they become 

impractical when moving to physical hardware. In this context, the JTAG interface 

offers a standardized and low-pin-count method to access internal signals, memories, 

and registers, even after synthesis and implementation. 

In this project, JTAG is not only a physical interface but also a conceptual bridge 

between external debugging tools and the internal debug logic. While hardware vendors 

provide official support for JTAG-based debugging, implementing a custom 

communication channel using the virtual JTAG features of Intel FPGAs enables greater 

control and flexibility. This choice influences both the architecture and simulation 

approach of the design, requiring careful integration with custom VHDL modules. 

The following sections explore the technical details of the JTAG protocol, its structural 

components, and the rationale behind its use in this work, both in simulation and real 

hardware scenarios. 

5.1 Introduction to JTAG 

JTAG (Joint Test Action Group) is a standard (IEEE 1149.1) developed to facilitate 

testing and debugging of integrated circuits (ICs) and complex systems on chip (SoCs). 

Originally intended for boundary scan testing, JTAG has become a fundamental tool in 

modern digital design, especially for tasks like in-system programming, verification, 

and on-chip debugging. 

The core idea behind JTAG is to provide access to the internal registers and logic of an 

integrated circuit via a standardized serial interface. This allows developers to observe 

and control the internal state of a system without requiring physical access to every 

internal node — which would be impractical or impossible in deeply embedded systems. 
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JTAG interfaces are now commonly found in FPGAs, microcontrollers, processors, and 

custom logic blocks. The protocol is characterized by a small number of dedicated pins: 

Test Clock (TCK), Test Mode Select (TMS), Test Data In (TDI), Test Data Out (TDO), 

and an optional reset (TRST). Through a state machine known as the TAP (Test Access 

Port), it becomes possible to shift data into and out of internal scan chains and instruction 

registers. 

In this project, the JTAG interface is used not only for boundary scan, but primarily to 

implement a debug communication channel between a host (e.g., OpenOCD on a PC) 

and the internal debug module inside the FPGA. 

5.2 Architecture and Functioning of JTAG 

The architecture of a typical JTAG implementation revolves around the TAP 

controller, a finite state machine that manages access to two main registers: 

• Instruction Register (IR): selects which operation or module the JTAG interface will 

interact with. 

• Data Register (DR): used to shift in data (e.g., values to write) and shift out data (e.g., 

values to read). 

The TAP controller follows a fixed state diagram dictated by the IEEE standard, 

including states such as Test-Logic-Reset, Run-Test/Idle, Shift-IR, Shift-DR, Capture-

DR, and Update-DR. 

In our design, the core JTAG interaction is abstracted through the use of Altera's 

altera_virtual_jtag component, which acts as a JTAG interface inside the FPGA, 

allowing us to expose virtual instruction and data registers accessible by tools like 

OpenOCD. This component handles the TAP FSM internally and provides clean signals 

to the rest of the system, such as shift_dr, capture_dr, update_dr, and the serial data lines 

tdi and tdo. 

To interpret and manage these signals, a jtag_debug_adapter module is implemented. 

This VHDL component acts as a bridge between the JTAG TAP interface and the 
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internal debug logic, decoding commands, writing to debug registers, and returning read 

values via a scan chain. It effectively converts the low-level serial protocol into parallel 

control signals usable by the system's debug logic. 

This adapter defines its own protocol format over the Data Register (DR), typically 

structured to include fields such as write enable, write address, write value, and read 

address. On receiving a full JTAG scan operation (shifted in and updated), the adapter 

extracts the command and drives the corresponding operations internally. 

5.3 Configuration of the JTAG Interface 

In order to use the JTAG interface in the project, a layered configuration was developed. 

At the hardware level, the altera_virtual_jtag IP component from Intel Quartus was 

instantiated. This module automatically exposes the physical JTAG interface of the 

FPGA and allows creation of one or more virtual JTAG instances, each with its own 

instruction and data registers. 

The configuration includes: 

• Instruction register width and decoding. 

• Number of virtual JTAG instances. 

• Interface signals (tck, tdi, tdo, shift_dr, update_dr, capture_dr, etc.) connected to the 

custom debug logic. 

The JTAG interface is then connected to a custom jtag_debug_adapter module. Inside 

this adapter, a shift register (or scan chain) is defined to process incoming data from the 

JTAG host. This register is 64 bits wide in the current implementation, enough to 

support complex transactions (e.g., read and write combined). 

Furthermore, a generic parameter SIMULATION_MODE was introduced. This allows 

the same design to support two modes of operation: 

• Simulation mode: Bypasses the virtual JTAG and allows low-level testbenches to 

directly stimulate the debug interface by writing to the shift register signals in 

simulation. 
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• Hardware mode: Enables full JTAG interaction via the physical JTAG interface and a 

real adapter (e.g., OpenOCD connected to an FTDI or USB-Blaster). 

This dual-mode design greatly improves testability and flexibility, making it possible to 

validate the design both in simulation and on real hardware with the same core logic. 

5.4 Applications and Use of JTAG in Debugging 

The most powerful use of JTAG in this project is for debugging purposes. By integrating 

the altera_virtual_jtag interface and the custom debug adapter, the system gains the 

ability to inspect and control its internal state at runtime without invasive modifications 

to the logic. 

Key debugging functionalities enabled by this JTAG setup include: 

• Read and write access to debug registers: Enables real-time manipulation of CPU 

internals, including general-purpose registers, program counters, and control flags. 

• Memory access: Allows direct interaction with memory-mapped regions, useful for 

analyzing variables, peripheral registers, or injecting test patterns. 

• Instruction and program loading: Small test routines or instructions can be loaded 

dynamically into memory via JTAG. 

• Integration with OpenOCD: Open-source tools like OpenOCD are supported to 

interface with the debug system using standard RISC-V debug commands (dmi_read, 

dmi_write, etc.), making debugging sessions scriptable and automatable. 

The altera_virtual_jtag interface is used in hardware mode, enabling high-speed, non-

intrusive communication with internal logic when the system is deployed on an FPGA. 

In simulation mode, the JTAG protocol is emulated by directly driving the shift 

registers and control signals, enabling thorough pre-silicon validation. 

This dual-path approach draws inspiration from and is compatible with the architecture 

proposed in the Advanced Debug System [8], an open-source reference project 

implementing modular debug over JTAG for soft processors. The design philosophy is 
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aligned with this project’s goals: modularity, compatibility with open tooling, and 

robustness across development and production environments. 
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6. Methodology 

The development of the debug module for the nanorv processor followed an 

incremental and iterative methodology, combining theoretical study, code analysis, 

and systematic simulation. 

The first phase consisted of an extensive review of the available documentation on the 

nanorv SoC and its RV32I CPU. This study was fundamental to understand the baseline 

architecture, the interaction between the CPU and its peripherals, and the feasibility of 

extending the design with dedicated debugging capabilities. 

Subsequently, the VHDL source code of the processor and the SoC was examined in 

detail. Through this analysis, the structural hierarchy, signal interconnections, and 

functional processes were identified. This step enabled the definition of a clear 

integration point for the debug module without altering the core datapath of the CPU. 

The next step involved the use of the already available simulation environment. In fact, 

the initial testbench was provided together with the SoC and was fully functional, 

although it did not include any reference to the debug module. In the early stages, 

ModelSim and the testbench were mainly used to observe the overall behavior of the 

system and to better understand the SoC operation, without introducing structural 

modifications. This allowed starting from a stable and reliable simulation baseline, 

which later served as a reference for the subsequent extensions. 

Once the use of the simulation framework was consolidated, the design of the debug 

interfaces — represented by the debug_inputs and debug_outputs records — was 

initiated. These records define the structured communication channel between the CPU 

and the debug module. Their incremental introduction made it possible to expose 

essential internal CPU information — such as the program counter value, the current 

instruction, and the register contents — while at the same time providing the processor 

with external control signals (halt, resume, single-step). 

The practical implementation proceeded in stages. First, the halt/resume mechanism 

was implemented, ensuring that the CPU could be paused whenever the go signal was 



35 
 

deasserted and resumed when it was asserted again. After validating this functionality, 

the focus shifted to read operations, enabling external access to CPU state, registers, 

and memory. Only after the read operations were reliably functioning, write operations 

were introduced, allowing controlled modification of internal CPU state and memory 

content. 

The final phase of the methodology focused on consolidation and refinement. The 

registers were structured into a coherent register file accessible via the debug module, 

the VHDL code was enriched with consistent comments and Doxygen-compatible 

documentation, and a procedure file was developed for the testbench. This file replaced 

repetitive signal-driving code with reusable procedures, greatly improving the 

readability and maintainability of the simulation environment. 
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7. Practical Work 

The practical implementation of the debug module began with the definition and 

integration of the debug I/O records. The debug_inputs record was used to capture the 

CPU status signals, such as the fetch signal (to check the progress of instruction 

execution), the mem_busy signal (to monitor whether the memory is busy or free), and 

the reg_data signal (to read data from the register file). Conversely, the debug_outputs 

record provided the control signals to the CPU, enabling read and write access to the 

program counter, the register file, and memory. This interface ensured a clear separation 

between the processor core and the external debug infrastructure. 

The next step was the incremental design of the module’s internal state machines. 

Initially, a simple controller was implemented to verify that the CPU could be halted 

and resumed deterministically via the go signal. This step was essential to validate the 

core principle of run-stop debugging. Once this was achieved, the register file access 

logic was introduced. The design supported read requests first, as they are non-intrusive: 

the CPU’s internal state could be observed without modifying its behavior. Only in a 

subsequent stage were write operations introduced, enabling modifications of registers 

and memory. 

Each new feature was introduced in isolation and verified through simulation. For 

instance, before enabling write access to memory, the read functionality was thoroughly 

tested with different addresses and data sizes. This staged approach minimized the risk 

of introducing hard-to-trace errors and made the debugging process itself more 

manageable. 

To support usability and maintainability, the VHDL source was enriched with detailed 

comments and structured documentation. Using Doxygen, a documentation set was 

generated that automatically described entities, ports, registers, and processes. 

Finally, a library of procedures was developed to automate common tasks within the 

testbench. Instead of manually coding long sequences of signal toggling for each 

simulation, the procedures encapsulated operations such as “write to register,” “read 
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from memory,” or “halt CPU”. This significantly reduced testbench verbosity, 

transforming what could have been thousands of repetitive code lines into compact, 

readable simulation scripts. 
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8. Results and Analysis 

The experimental validation demonstrated that the debug module was successfully 

integrated into the nanorv SoC and operated as intended. 

The halt/resume mechanism worked reliably: whenever the go signal was deasserted, 

the CPU execution paused deterministically, and it resumed seamlessly when the signal 

was asserted again. This provided precise control over program execution, confirming 

the run-stop principle of the design. 

The read functionality was verified across the program counter, register file, and 

memory. External tools could issue a read request together with an address in one clock 

cycle, and the corresponding value was made available on the subsequent cycle. This 

deterministic one-cycle latency proved to be consistent across all simulations. 

The write functionality was likewise confirmed. By issuing a write command along 

with the target address and data, the CPU’s register file and memory were successfully 

updated, with the operation completed in a predictable cycle-by-cycle manner. 

From a usability standpoint, the introduction of a structured register file and documented 

interface significantly improved accessibility. The Doxygen-generated documentation 

provided an immediate reference for developers, and the testbench procedure library 

drastically simplified simulation workflows. 

In summary, the results show that: 

• The CPU can be halted and resumed on demand. 

• Register and memory reads execute with a 1-cycle request and 1-cycle response 

latency. 

• Register and memory writes complete correctly and predictably. 

• The debug module enables deterministic and reproducible control of the CPU without 

introducing instability. 
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These results validate both the functional correctness of the debug module and its 

integration methodology, demonstrating that the module can serve as a robust 

foundation for extended debug features, including potential trace-based enhancements. 

 

The picture  shows that the different reading and writing of the debug module. 
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9. Conclusions 

This thesis presented the design, implementation, and validation of a hardware debug 

module for the nanorv processor, addressing the need for controllability and 

observability in embedded systems. The work demonstrated how a structured, 

incremental approach—spanning from theoretical analysis to practical implementation 

and simulation—can produce a robust component that improves the usability and 

reliability of a custom RISC-V core. The results confirm that debugging is not merely 

an auxiliary feature, but a fundamental element of processor design, enabling efficient 

development, verification, and future extensibility. 

9.1 Reflections on the Results Obtained 

The work presented in this thesis achieved the objective of designing and integrating a 

functional debug module for the nanorv processor. The module successfully provides 

deterministic run–stop control, read/write access to program counter, registers and 

memory, and a clean interface with the CPU through dedicated debug records. 

Simulations confirmed that the CPU can be halted and resumed on demand, and that 

both read and write operations are executed with predictable cycle-level accuracy. 

The incremental methodology adopted—starting from documentation study, through 

progressive implementation of halt/resume, reads, and writes, and culminating in 

documentation and testbench automation—proved highly effective. It minimized design 

errors, facilitated verification, and ensured a smooth integration process. Furthermore, 

the generation of structured documentation and reusable testbench procedures enhanced 

the maintainability and accessibility of the project. 

9.2 Possible Future Developments 

While the implemented debug module fulfills the core requirements, several avenues 

remain open for future improvement: 

• Trace-based debugging: as discussed in the methodology, the current design could be 

extended with real-time trace capabilities. By continuously sampling the program 
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counter and optionally data accesses, the module could reconstruct program execution 

flow without halting the CPU, enabling more advanced performance analysis and fault 

detection. 

• Integration with higher-level tools: connecting the debug module to established 

frameworks such as OpenOCD or GDB would allow seamless source-level debugging 

on top of the hardware mechanisms. 

• Enhanced testbench automation: while the current procedure library improves 

readability, more sophisticated verification environments (e.g., SystemVerilog UVM or 

cocotb) could be explored to further strengthen validation. 

• FPGA prototyping and hardware validation: extending beyond simulation, the debug 

module could be synthesized on an FPGA platform (such as Intel Cyclone) and 

connected to physical JTAG interfaces to assess timing, performance, and usability in a 

real hardware environment. 

9.3 Final Considerations 

This thesis demonstrated the feasibility and effectiveness of embedding a structured 

debug module within the nanorv processor. By adhering to Design-for-Debug 

principles, the module not only enables controlled observation and manipulation of 

CPU state but also lays the groundwork for more advanced debugging methodologies. 

From a broader perspective, the project illustrates how academic-scale processor 

designs can benefit from professional-level debugging infrastructures, bridging the gap 

between didactic systems and industrial-grade SoCs. The developed module provides a 

solid foundation for both research and education, contributing to the advancement of 

open-source RISC-V platforms and their ecosystem. 
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12. Appendix 
The Physical JTAG Port provides the external connection between the host debugger 

and the FPGA device through the standard JTAG interface (TCK, TDI, TDO, TMS). 

Inside the FPGA, the Altera Virtual JTAG IP core bridges this physical port to the user 

logic, exposing JTAG control signals to custom hardware modules. 

The JTAG Debug Adapter translates the low-level JTAG scan operations into 

read/write commands for the internal registers of the debug system. 

These commands are handled by the Debug Module, which manages CPU control 

(start, stop, reset) as well as memory and register access. 

Finally, the CPU core executes the instructions and responds to the debug commands, 

enabling full external debugging through the JTAG infrastructure. 

 

 

 

 

 

 

 

12.1 Source Code of the Debug Module  
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use work.nanorv_pkg.all; 

entity debug_module is 

    port ( 

        PCLK      : in std_logic;  

        PRSTn     : in std_logic; 

        DEBUG_IN  : in debug_inputs; 
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        wr_value  : in std_logic_vector(31 downto 0);  

        rd_addr   : in std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0);  

        wr_ena    : in std_logic;  

        wr_addr   : in std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0);  

        rd_value  : out std_logic_vector(31 downto 0);  

        DEBUG_OUT : out debug_outputs ; 

end entity debug_module; 

use work.nanorv_pkg.all; 

architecture behavioral of debug_module is  

    signal actual_go : std_logic; 

    signal jtag_mem_busy : std_logic; 

    type jtag_regfile_t is array(0 to JTAG_REG_NUMBER-1) of std_logic_vector (31 downto 
0); 

    signal JTAG_USER_DATA_REG : jtag_regfile_t;  

    alias mem_addr  : std_logic_vector(31 downto 0) is 
JTAG_USER_DATA_REG(JTAG_MEMADDR_REG; 

    alias wr_data   : std_logic_vector(31 downto 0) is 
JTAG_USER_DATA_REG(JTAG_WRDATA_REG);  

    alias rd_data   : std_logic_vector(31 downto 0) is 
JTAG_USER_DATA_REG(JTAG_RDDATA_REG);  

    alias status    : std_logic_vector(31 downto 0) is 
JTAG_USER_DATA_REG(JTAG_STATUS_REG);  

 --! JTAG control register, used to control the state of the module and to read and write 
the values of the program counter, the instruction register and the memory interface. 
The JTAG control register has the following bits: 

    alias rstn      : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_RSTN_BIT);  

    alias jtag_go   : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_GO_BIT); 

    alias read_pc   : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_RDPC_BIT);  
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    alias write_pc  : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_WRPC_BIT);  

    alias reg_addr  : std_logic_vector(4 downto 0) is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_REGADDR_BIT_H downto 
JTAG_CTRL_REGADDR_BIT_L); 

    alias reg_rd    : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_RDREG_BIT);  

    alias reg_wr    : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_WRREG_BIT);  

    alias mem_size  : std_logic_vector(1 downto 0) is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_MEMSIZE_BIT_H downto 
JTAG_CTRL_MEMSIZE_BIT_L);  

    alias read_mem  : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_RDMEM_BIT);  

    alias write_mem : std_logic is JTAG_USER_DATA_REG 
(JTAG_CTRL_REG)(JTAG_CTRL_WRMEM_BIT); 

    alias read_unsigned : std_logic is 
JTAG_USER_DATA_REG(JTAG_CTRL_REG)(JTAG_CTRL_RDMEM_UNS_BIT); 

    --! The FSMs are used to handle the state of the module during the operation with the 
memory and the register file of the CPU. 

    type state_GO is (GO, STOP, BUSY, FETCH_BUSY, RESET, P_STOP);  

    signal go_current_state, go_next_state : state_GO; 

    type state_MEM is (IDLE, MEM_BUSY, DONE); 

    signal mem_current_state, mem_next_state : state_MEM; 

    type state_REG is (REG_IDLE, REG_BUSY, REG_DONE); 

    signal reg_current_state, reg_next_state : state_REG; 

    signal reg_busy_flag : std_logic; 

begin  

    -- CPU Connection 

    DEBUG_OUT.rstn      <= rstn; 

    DEBUG_OUT.go        <= actual_go; 
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    DEBUG_OUT.pc_rd     <= read_pc; 

    DEBUG_OUT.pc_wr     <= write_pc; 

    DEBUG_OUT.reg_addr  <= reg_addr; 

    DEBUG_OUT.reg_rd    <= reg_rd; 

    DEBUG_OUT.reg_wr    <= reg_wr; 

    DEBUG_OUT.mem_size  <= mem_size; 

    DEBUG_OUT.mem_addr  <= mem_addr; 

    DEBUG_OUT.mem_rd    <= read_mem; 

    DEBUG_OUT.mem_wr    <= write_mem; 

    DEBUG_OUT.read_unsigned <= read_unsigned; 

    DEBUG_OUT.wr_data   <= wr_data;   

    FSM_go_update:process(PCLK,PRSTn) is --! The process is used to update the state of 
the module (GO, RESET, BUSY, FETCH_BUSY, STOP and P_STOP) 

    begin  

        if (PRSTn = '0') then 

            go_current_state <= RESET; 

        elsif rising_edge(PCLK) then 

            go_current_state <= go_next_state; 

        end if;  

    end process FSM_go_update; 

    FSM_handle_go: process (go_current_state, jtag_go, DEBUG_IN.fetch) is --! The 
process is used to handle the state of the debug module depending on the fetch of the 
CPU, jtag_go signal and the current state of the module 

    begin 

        case go_current_state is      

            when GO => 

                if (jtag_go = '0' and DEBUG_IN.fetch = '1') then 

                    go_next_state <= FETCH_BUSY; 

                elsif (jtag_go = '0' and DEBUG_IN.fetch = '0') then 
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                    go_next_state <= BUSY; 

                end if; 

                if (DEBUG_OUT.rstn = '0') then 

                    go_next_state <= RESET; 

                end if; 

                actual_go <= '1'; 

            when STOP => 

                if (jtag_go = '1') then 

                    go_next_state <= GO; 

                end if; 

                if (DEBUG_OUT.rstn = '0') then 

                    go_next_state <= RESET; 

                end if; 

                actual_go <= '0'; 

            when BUSY => 

                if (DEBUG_IN.fetch = '1') then 

                    go_next_state <= P_STOP; 

                end if; 

                if (DEBUG_OUT.rstn = '0') then 

                    go_next_state <= RESET; 

                end if; 

                actual_go <= '1'; 

            when FETCH_BUSY => 

                if (DEBUG_IN.fetch = '0') then 

                    go_next_state <= BUSY; 

                end if; 

                if (DEBUG_OUT.rstn = '0') then 

                    go_next_state <= RESET; 
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                end if; 

                actual_go <= '1'; 

            when RESET => 

                if (DEBUG_OUT.rstn = '1') then 

                    go_next_state <= GO; 

                end if; 

                actual_go <= '1'; 

            when P_STOP => 

                if (DEBUG_OUT.rstn = '1') then 

                    go_next_state <= STOP; 

                else 

                    go_next_state <= RESET; 

                end if; 

                actual_go <= '1'; 

        end case; 

    end process FSM_handle_go; 

    FSM_memory_update: process(PCLK,PRSTn) is --! The process is used to update the 
state of the memory module (IDLE, MEM_BUSY and DONE) 

    begin  

        if (PRSTn = '0') then 

            mem_current_state <= IDLE; 

        elsif rising_edge(PCLK) then 

            mem_current_state <= mem_next_state; 

        end if;  

    end process FSM_memory_update; 

 FSM_memory_operation: process (mem_current_state, read_mem, write_mem, 
actual_go) is --! The process is used to handle the state of the debug module during the 
operation with the memory of the CPU 

    begin 
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        case mem_current_state is 

            when IDLE => 

                if (read_mem = '1' or write_mem = '1') then 

                    mem_next_state <= MEM_BUSY; 

                else  

                    mem_next_state <= IDLE; 

                end if; 

                jtag_mem_busy <= '0'; 

            when MEM_BUSY => 

                if (actual_go = '0') then 

                    mem_next_state <= DONE; 

                else 

                    mem_next_state <= MEM_BUSY; 

                end if; 

                jtag_mem_busy <= '1'; 

            when DONE => -- wait for writing on to the control register, with jtag_mem_busy <= 
'0'; 

                if (read_mem = '0' and write_mem = '0') then 

                    mem_next_state <= IDLE; 

                else  

                    mem_next_state <= DONE; 

                end if;  

                jtag_mem_busy <= '0'; 

        end case; 

    end process FSM_memory_operation; 

    -- FSM Register File 

    FSM_reg_file_update: process(PCLK,PRSTn) is --! The process is used to update the 
state of the register file (REG_IDLE, REG_BUSY and REG_DONE) 

       begin  
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           if (PRSTn = '0') then 

               reg_current_state <= REG_IDLE; 

           elsif rising_edge(PCLK) then 

               reg_current_state <= reg_next_state; 

           end if;  

       end process FSM_reg_file_update; 

    FSM_reg_file: process(reg_current_state, reg_wr, reg_rd, actual_go) is --! The process 
is used to handle the state of the debug module during the operation with the register 
file of the CPU 

       begin 

            case reg_current_state is 

            when REG_IDLE => 

                if (reg_wr = '1' or reg_rd = '1') then 

                    reg_next_state <= REG_BUSY; 

                else  

                    reg_next_state <= REG_IDLE; 

                end if; 

                reg_busy_flag <= '0'; 

            when REG_BUSY => 

                if (actual_go = '0') then 

                    reg_next_state <= REG_DONE; 

                else  

                    reg_next_state <= REG_BUSY; 

                end if; 

                reg_busy_flag <= '1'; 

            when REG_DONE => 

                if (reg_rd = '0' and reg_wr = '0') then  

                    reg_next_state <= REG_IDLE;                                             

                else 
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                    reg_next_state <= REG_DONE;  

                end if; 

                reg_busy_flag <= '0'; 

            end case; 

        end process FSM_reg_file; 

    jtag_wr: process(PCLK, PRSTn) is  

    --! The JTAG connection is used to connect the CPU to the JTAG interface. It uses the 
JTAG_USER_DATA_REG register file to write or read the values from JTAG to the 
instruction register, the program counter and the memory interface of the CPU. 

    --! Update JTAG status register every clock cycle, if a reset event comes the register 
are settet to zero. Remember that the first two registers are only reading. 

   begin 

        if (PRSTn = '0') then 

            JTAG_USER_DATA_REG <= (others => (others => '0')); 

            JTAG_USER_DATA_REG (JTAG_CTRL_REG)(JTAG_CTRL_RSTN_BIT) <= '1'; 

            JTAG_USER_DATA_REG (JTAG_CTRL_REG)(JTAG_CTRL_GO_BIT) <= '1'; 

            status <= (others => '0'); 

            rd_data <= (others => '0');     

        elsif rising_edge(PCLK) then 

            -- Update JTAG status register every clock cycle 

            status (JTAG_STATUS_GO_BIT)       <= actual_go; 

            status (JTAG_STATUS_MEM_BUSY_BIT) <= jtag_mem_busy; 

            status (JTAG_STATUS_REG_BUSY_BIT) <= reg_busy_flag; 

            if (read_pc = '1' or write_pc = '1' ) then 

                status(JTAG_STATUS_PC_BUSY_BIT) <= '1'; 

            else 

                status(JTAG_STATUS_PC_BUSY_BIT) <= '0'; 

            end if; 

            rd_data <= DEBUG_IN.rd_data;  
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            if ((wr_ena = '1') and (to_integer(unsigned(wr_addr))>= 2)) then  

                JTAG_USER_DATA_REG(to_integer(unsigned(wr_addr))) <= wr_value; 

            end if;  

        end if; 

   end process jtag_wr; 

   jtag_rd: process(PCLK) is --! \brief JTAG Read process 

   begin 

        if rising_edge(PCLK) then 

            rd_value <= JTAG_USER_DATA_REG(to_integer(unsigned(rd_addr))); 

        end if; 

   end process jtag_rd; 

end architecture behavioral; 

 

12.2 Procedures Used 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use work.nanorv_pkg.all; 

package procedure_pkg is 

    --Register constants 

    constant JTAG_CTRL_GO       : std_logic_vector(31 downto 0) := (JTAG_CTRL_RSTN_BIT 
=> '1', JTAG_CTRL_GO_BIT => '1', others => '0'); 

    constant JTAG_CTRL_STOP     : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '0', others => '0'); 

    constant JTAG_CTRL_GORST    : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '0', JTAG_CTRL_GO_BIT => '1', others => '0'); 

    constant JTAG_CTRL_RST      : std_logic_vector(31 downto 0) := (JTAG_CTRL_RSTN_BIT 
=> '0', JTAG_CTRL_GO_BIT => '0', others => '0'); 
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    constant JTAG_CTRL_RDPC_STOP : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '0', JTAG_CTRL_RDPC_BIT => '1', 
others => '0'); 

    constant JTAG_CTRL_RDPC_GO   : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '1', JTAG_CTRL_RDPC_BIT => '1', 
others => '0'); 

    constant JTAG_CTRL_WRPC      : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '0', JTAG_CTRL_WRPC_BIT => '1', 
others => '0'); 

    constant mem_size               : std_logic_vector(1 downto 0) := "10"; -- 10 = 32 bits, 01 = 
16 bits, 00 = 8 bits, 11 = 64 bits ??? 

    constant JTAG_CTRL_RDMEM_STOP   : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '0', JTAG_CTRL_RDMEM_BIT => '1', 
JTAG_CTRL_MEMSIZE_BIT_H downto JTAG_CTRL_MEMSIZE_BIT_L => mem_size, others 
=> '0'); 

    constant JTAG_CTRL_WRMEM_STOP   : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '0', JTAG_CTRL_WRMEM_BIT => '1', 
JTAG_CTRL_MEMSIZE_BIT_H downto JTAG_CTRL_MEMSIZE_BIT_L => mem_size, others 
=> '0'); 

    constant addr_reg0          : std_logic_vector (4 downto 0) := "00000"; 

    constant addr_reg1          : std_logic_vector (4 downto 0) := "00010"; 

    constant JTAG_CTRL_RDREG_ADDR : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '0', JTAG_CTRL_RDREG_BIT => '1', 
JTAG_CTRL_REGADDR_BIT_H downto JTAG_CTRL_REGADDR_BIT_L => addr_reg1, 
others => '0'); 

    constant JTAG_CTRL_WRREG_ADDR : std_logic_vector(31 downto 0) := 
(JTAG_CTRL_RSTN_BIT => '1', JTAG_CTRL_GO_BIT => '0', JTAG_CTRL_WRREG_BIT => '1', 
JTAG_CTRL_REGADDR_BIT_H downto JTAG_CTRL_REGADDR_BIT_L => addr_reg0, 
others => '0'); 

    signal reading_value : std_logic_vector(31 downto 0) := (others => '0'); 

    -- JTAG signals 

    signal JTAG_wr_ena   : std_logic := '0'; 

    signal JTAG_wr_addr  : std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0) := 
(others => '0'); 
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    signal JTAG_wr_value : std_logic_vector(31 downto 0) := (others => '0'); 

    signal JTAG_rd_addr  : std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0) := 
(others => '0'); 

    signal JTAG_rd_value : std_logic_vector(31 downto 0) := (others => '0'); 

       --FSM state type debugging 

    type tb_type is (W_RST_OFF, W_GO1, GO1, W_RST1, RST1, W_GO2, GO2, W_RST2, 
RST2, W_RST3, RST3, W_RST4, RST4, 

                    reading_pc, stop_reading_pc, reading_mem, stop_reading_mem, 
reading_regfile, stop_reading_regfile,  

                    writing_pc, stop_writing_pc, writing_mem, stop_writing_mem, writing_regfile, 
stop_writing_regfile); 

    signal tb_state : tb_type := W_RST_OFF; 

    -- Procedure declarations 

    procedure wait_clk          (signal clk: std_logic; num: integer); 

    procedure find_clk          (signal clk, find: std_logic; value: std_logic); 

    procedure jtag_write        (signal JTAG_wr_ena: out std_logic;  

                                 signal JTAG_wr_addr : out std_logic_vector (JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                 signal JTAG_wr_value : out std_logic_vector(31 downto 0);  

                                 signal clk: std_logic;  

                                 reg: in integer;  

                                 value: std_logic_vector(31 downto 0)); 

    procedure jtag_write2reg    (signal JTAG_wr_ena: out std_logic;  

                                signal JTAG_wr_addr : out std_logic_vector (JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal JTAG_wr_value : out std_logic_vector(31 downto 0);  

                                signal clk: std_logic;  

                                value1: std_logic_vector(31 downto 0); 

                                value2: std_logic_vector (31 downto 0)); 

    procedure jtag_rdmem        (signal clk : std_logic;  
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                                signal value: out std_logic_vector(31 downto 0);  

                                signal JTAG_rd_addr: out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal JTAG_rd_value: in std_logic_vector (31 downto 0)); 

    procedure jtag_control_stop(signal JTAG_wr_ena: out std_logic;  

                                signal JTAG_wr_addr : out std_logic_vector (JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal JTAG_wr_value : out std_logic_vector(31 downto 0);  

                                signal JTAG_rd_addr  : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal clk: std_logic);    

    procedure cpu_rst_go        (signal tb_state      : out tb_type; 

                                signal JTAG_wr_ena    : out std_logic; 

                                signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                                signal CLOCK_50       : in  std_logic; 

                                signal PRSTn          : in  std_logic); 

    procedure read_pc           (signal JTAG_wr_ena   : out std_logic; 

                                signal tb_state       : out tb_type; 

                                signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                                signal CLOCK_50       : in  std_logic); 

    procedure read_mem          (signal JTAG_wr_ena   : out std_logic; 

                                signal tb_state       : out tb_type; 

                                signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 
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                                signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal CLOCK_50       : in  std_logic; 

                                signal reading_value  : out std_logic_vector(31 downto 0); 

                                signal JTAG_rd_value  : in  std_logic_vector(31 downto 0); 

                                signal address        : in std_logic_vector (31 downto 0)); 

    procedure read_regfile      (signal JTAG_wr_ena   : out std_logic; 

                                signal tb_state       : out tb_type;     

                                signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                                signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal CLOCK_50       : in  std_logic); 

    procedure write_pc          (signal JTAG_wr_ena  : out std_logic; 

                                signal tb_state      : out tb_type; 

                                signal JTAG_wr_addr  : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal JTAG_wr_value : out std_logic_vector(31 downto 0); 

                                signal CLOCK_50      : in  std_logic; 

                                constant pc_value    : in  std_logic_vector(31 downto 0)); 

       procedure write_mem         (signal JTAG_wr_ena   : out std_logic; 

                                signal tb_state       : out tb_type; 

                                signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                                signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal CLOCK_50       : in  std_logic; 

                                signal mem_value      : in std_logic_vector(31 downto 0); 
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                                signal address        : in std_logic_vector (31 downto 0)); 

    procedure write_regfile     (signal JTAG_wr_ena   : out std_logic; 

                                signal tb_state       : out tb_type;     

                                signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                                signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                                signal CLOCK_50       : in  std_logic; 

                                signal reg_value      : in std_logic_vector(31 downto 0)); 

end package procedure_pkg; 

package body procedure_pkg is 

    procedure wait_clk(signal clk: std_logic; num: integer) is 

    begin 

        for i in 0 to num-1 loop 

            wait until rising_edge(clk); 

        end loop; 

        wait for 5 ns; 

    end procedure wait_clk; 

 procedure find_clk(signal clk, find: std_logic; value: std_logic) is 

    begin 

        while true loop 

            wait until rising_edge(clk); 

            wait for 5 ns; 

            if (find = value) then 

                exit; 

            end if; 

        end loop; 

    end procedure find_clk; 
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    -- JTAG write register procedure 

    procedure jtag_write(signal JTAG_wr_ena: out std_logic;  

                         signal JTAG_wr_addr : out std_logic_vector (JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                         signal JTAG_wr_value : out std_logic_vector(31 downto 0);  

                         signal clk: std_logic;  

                         reg: in integer;  

                         value: std_logic_vector(31 downto 0)) is 

    begin 

        JTAG_wr_addr <= std_logic_vector(to_unsigned(reg, JTAG_wr_addr'length)); 

        JTAG_wr_value <= value; 

        JTAG_wr_ena <= '1'; 

        wait_clk(clk, 1); 

        JTAG_wr_ena <= '0'; 

    end procedure jtag_write; 

    -- JTAG write CONTROL register and MEMORY ADDRESS register procedure 

    procedure jtag_write2reg(signal JTAG_wr_ena: out std_logic;  

                         signal JTAG_wr_addr : out std_logic_vector (JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                         signal JTAG_wr_value : out std_logic_vector(31 downto 0);  

                         signal clk: std_logic;  

                         value1: std_logic_vector(31 downto 0); 

                         value2: std_logic_vector (31 downto 0)) is 

    begin 

        JTAG_wr_ena <= '1'; 

        JTAG_wr_addr <= std_logic_vector(to_unsigned(JTAG_CTRL_REG, 
JTAG_wr_addr'length)); 

        JTAG_wr_value <= value1; 

        wait_clk(clk, 1); 
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        JTAG_wr_addr <= std_logic_vector(to_unsigned(JTAG_MEMADDR_REG, 
JTAG_wr_addr'length)); 

        JTAG_wr_value <= value2; 

        wait_clk(clk, 1); 

        JTAG_wr_ena <= '0'; 

    end procedure jtag_write2reg;  

    -- JTAG read procedure 

    procedure jtag_rdmem   (signal clk : std_logic;  

                         signal value: out std_logic_vector(31 downto 0);  

                         signal JTAG_rd_addr: out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                         signal JTAG_rd_value: in std_logic_vector (31 downto 0)) is 

    begin 

        JTAG_rd_addr <= std_logic_vector(to_unsigned(JTAG_MEMADDR_REG, 
JTAG_rd_addr'length)); 

        wait_clk(clk, 1);  

        value <= JTAG_rd_value; 

        wait_clk(clk, 1); 

    end procedure jtag_rdmem; 

    -- JTAG stop CPU procedure for reading registers 

    -- This procedure pausing the execution *and* reads the status register waiting for the 
actual_go to be '0' 

    procedure jtag_control_stop(signal JTAG_wr_ena: out std_logic;  

                                signal JTAG_wr_addr : out std_logic_vector (JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal JTAG_wr_value : out std_logic_vector(31 downto 0);  

                                signal JTAG_rd_addr  : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                                signal clk: std_logic) is 

    begin 
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        -- Set rd address to get the value of the status register (actual_go is bit 0) 

        JTAG_rd_addr <= std_logic_vector(to_unsigned(JTAG_STATUS_REG, 
JTAG_rd_addr'length)); 

        JTAG_wr_addr <= std_logic_vector(to_unsigned(JTAG_CTRL_REG, 
JTAG_wr_addr'length)); 

        JTAG_wr_value <= JTAG_CTRL_STOP; 

        JTAG_wr_ena <= '1'; 

        wait_clk(clk, 1); 

        JTAG_wr_ena <= '0'; 

        while (JTAG_rd_value(0) = '1') loop 

            wait_clk(clk, 1); 

        end loop; 

    end procedure jtag_control_stop; 

    -- JTAG reset and go the CPU  

    -- This procedure wait the reset is disactivated, then the CPU goes, then do reset 
operation and then CPU starts again 

    procedure cpu_rst_go (  signal tb_state       : out tb_type; 

                            signal JTAG_wr_ena    : out std_logic; 

                            signal JTAG_wr_addr   : out std_logic_vector (JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                            signal JTAG_wr_value  : out std_logic_vector (31 downto 0); 

                            signal CLOCK_50       : in  std_logic; 

                            signal PRSTn          : in  std_logic) is 

    begin 

        tb_state <= W_RST_OFF; 

        wait until (PRSTn = '1'); 

        tb_state <= W_GO1; 

        wait_clk(CLOCK_50, 10); 

        -- CPU is going -- 
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        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); -- go = 1, rstn = 1 

        tb_state <= GO1; 

        wait_clk(CLOCK_50, 15); 

        tb_state <= W_RST1; 

        -- Reset CPU after 25 clock cycles -- 

        wait_clk(CLOCK_50, 10); 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_RST); -- go = 0, rstn = 0 

        tb_state <= RST1; 

        wait_clk(CLOCK_50, 10); 

        tb_state <= W_GO2; 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GORST); -- go = 1, rstn = 0 

        wait_clk(CLOCK_50, 10); 

        -- CPU restart from the beginning executing normally -- 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); -- go = 1, rstn = 1 

        tb_state <= GO2; 

        wait_clk(CLOCK_50, 10); 

    end procedure cpu_rst_go; 

    -- This procedure read the PC after 10 clk cycles when the go is 0 and after other 10 clk 
cycles when the go is 1  

    procedure read_pc ( signal JTAG_wr_ena    : out std_logic; 

                        signal tb_state       : out tb_type; 

                        signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                        signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                        signal CLOCK_50       : in  std_logic) is 

    begin 
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        tb_state <= reading_pc; 

        -- Read PC when GO = 0 (CPU stopped) 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_RDPC_STOP);  

        wait_clk(CLOCK_50, 10); 

         -- Read PC when GO = 1 (CPU running) 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_RDPC_GO); 

        wait_clk(CLOCK_50, 10); 

        tb_state <= stop_reading_pc; 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); -- go = 1, rstn = 1 

        wait_clk(CLOCK_50, 10); 

    end procedure read_pc; 

    procedure write_pc (signal JTAG_wr_ena   : out std_logic; 

                        signal tb_state      : out tb_type; 

                        signal JTAG_wr_addr  : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                        signal JTAG_wr_value : out std_logic_vector(31 downto 0); 

                        signal CLOCK_50      : in  std_logic; 

                        constant pc_value    : in  std_logic_vector(31 downto 0)) is 

    begin 

        tb_state <= writing_pc; 

        -- The CPU is stopped, write new PC value 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_WRPC); 

        jtag_write (JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_WRDATA_REG, pc_value); 

        wait_clk(CLOCK_50, 20); 

        -- Restart the CPU (GO = 1) 
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        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); 

        tb_state <= stop_writing_pc; 

        wait_clk(CLOCK_50, 10); 

    end procedure write_pc; 

    -- This procedure ensure that the CPU is stopped and then read the memory address 
specified in JTAG_MEMADDR_REG, the CPU still stopped 

    procedure read_mem (signal JTAG_wr_ena    : out std_logic; 

                        signal tb_state       : out tb_type; 

                        signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                        signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                        signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                        signal CLOCK_50       : in  std_logic; 

                        signal reading_value  : out std_logic_vector(31 downto 0); 

                        signal JTAG_rd_value  : in  std_logic_vector(31 downto 0); 

                        signal address        : in std_logic_vector (31 downto 0)) is 

    begin 

        wait_clk(CLOCK_50, 10); 

        tb_state <= reading_mem; 

        -- Pause CPU and wait for actual_go = 0 

        jtag_control_stop(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, JTAG_rd_addr, 
CLOCK_50); -- go= 0, rstn = 1 

        -- Set memory address 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_MEMADDR_REG, address); 

        -- Issue memory read request 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_RDMEM_STOP); -- go = 0, rstn = 1, read_mem = 1 
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        -- Perform actual memory read 

        jtag_rdmem(CLOCK_50, reading_value, JTAG_rd_addr, JTAG_rd_value); 

        tb_state <= stop_reading_mem; 

        wait_clk(CLOCK_50, 20); 

        -- Restore CPU to GO state 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); -- go = 1, rstn = 1 

        wait_clk(CLOCK_50, 10); 

    end procedure read_mem; 

procedure write_mem (signal JTAG_wr_ena    : out std_logic; 

                     signal tb_state       : out tb_type; 

                     signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0);  

                     signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                     signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                     signal CLOCK_50       : in  std_logic; 

                     signal mem_value      : in std_logic_vector(31 downto 0); 

                     signal address        : in std_logic_vector (31 downto 0)) is 

    begin 

        tb_state <= writing_mem; 

        -- Stop the CPU (go = 0) 

        jtag_control_stop(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, JTAG_rd_addr, 
CLOCK_50); 

        -- Command to write memory 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_WRMEM_STOP); 

        -- Set memory address to write 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_MEMADDR_REG, address); 
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        -- Set the value to write in memory 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_WRDATA_REG, mem_value); 

        wait_clk(CLOCK_50, 20); 

        -- CPU is going (go = 1) 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); 

        tb_state <= stop_writing_mem; 

        wait_clk(CLOCK_50, 10); 

    end procedure write_mem; 

    -- This procedure ensure that the CPU is stopped and then read the register address 
specified in JTAG_CTRL_REGADDR, the CPU still stopped 

    procedure read_regfile (signal JTAG_wr_ena    : out std_logic; 

                            signal tb_state       : out tb_type;     

                            signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                            signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                            signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                            signal CLOCK_50       : in  std_logic) is 

    begin 

        -- Wait 10 clock cycles 

        tb_state <= reading_regfile; 

        wait_clk(CLOCK_50, 10); 

        -- Pause CPU and wait for actual_go = 0 

        jtag_control_stop(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, JTAG_rd_addr, 
CLOCK_50); -- go= 0, rstn = 1 

        -- Set register address and trigger the register to be read 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_RDREG_ADDR); 
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        wait_clk(CLOCK_50, 20); 

        tb_state <= stop_reading_regfile; 

        -- Restore CPU to GO state 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); -- go = 1, rstn = 1 

        wait_clk(CLOCK_50, 10); 

    end procedure read_regfile; 

    procedure write_regfile (signal JTAG_wr_ena    : out std_logic; 

                            signal tb_state       : out tb_type;     

                            signal JTAG_wr_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                            signal JTAG_wr_value  : out std_logic_vector(31 downto 0); 

                            signal JTAG_rd_addr   : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 
downto 0); 

                            signal CLOCK_50       : in  std_logic; 

                            signal reg_value      : in std_logic_vector(31 downto 0)) is 

    begin 

        tb_state <= writing_regfile; 

        wait_clk(CLOCK_50, 10); 

        -- Stop the CPU 

        jtag_control_stop(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, JTAG_rd_addr, 
CLOCK_50);  -- go = 0, rstn = 1 

        -- Set the register address to write and enable the writing 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_WRREG_ADDR); 

        -- Set the register value to write 

        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_WRDATA_REG, reg_value); 

        wait_clk(CLOCK_50, 20); 

        -- CPU is going (go = 1) 
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        jtag_write(JTAG_wr_ena, JTAG_wr_addr, JTAG_wr_value, CLOCK_50, 
JTAG_CTRL_REG, JTAG_CTRL_GO); 

        tb_state <= stop_writing_regfile; 

        wait_clk(CLOCK_50, 10); 

    end procedure write_regfile; 

end package body procedure_pkg; 

 

12.3 Jtag Adapter 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

use work.nanorv_pkg.all;  

entity jtag_debug_adapter is 

    port ( 

        PCLK                 : in  std_logic; 

        PRSTn                : in  std_logic; 

        -- Signals from altera_virtual_jtag 

        jtag_tck             : in  std_logic; 

        jtag_tdi             : in  std_logic; 

        jtag_shift_dr        : in  std_logic; 

        jtag_capture_dr      : in  std_logic; 

        jtag_update_dr       : in  std_logic; 

        jtag_test_logic_reset: in  std_logic; 

        jtag_run_test_idle   : in  std_logic;  

        -- Signals to altera_virtual_jtag 

        jtag_tdo             : out std_logic; 

        -- Signals to debug_module (output of this adapter) 

        debug_wr_value       : out std_logic_vector(31 downto 0); 
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        debug_rd_addr        : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0); 

        debug_wr_ena         : out std_logic; 

        debug_wr_addr        : out std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0); 

        -- Signals from debug_module (input to this adapter) 

        debug_rd_value       : in  std_logic_vector(31 downto 0) 

    ); 

end entity jtag_debug_adapter; 

architecture behavioral of jtag_debug_adapter is 

    -- Define the scan chain length of the Data Register (DR). 

    -- It must be large enough to contain address, value, and control signals. 

    -- For simplicity, we assume a 64-bit DR (to hold two 32-bit values or a complex 
command) 

    constant JTAG_DR_WIDTH : integer := 64;  

    signal jtag_data_register_in  : std_logic_vector(JTAG_DR_WIDTH-1 downto 0); 

    signal jtag_data_register_out : std_logic_vector(JTAG_DR_WIDTH-1 downto 0); 

    -- Intermediate signals for debug_module operations 

    signal s_wr_value  : std_logic_vector(31 downto 0); 

    signal s_rd_addr   : std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0); 

    signal s_wr_ena    : std_logic; 

    signal s_wr_addr   : std_logic_vector(JTAG_REG_ADDR_WIDTH-1 downto 0); 

begin 

    -- Connect the TDO output of the JTAG 

    -- The least significant bit of the DR is shifted out first 

    jtag_tdo <= jtag_data_register_out(0);  

    -- Process to manage the JTAG Data Register (DR) 

    -- This is the conceptual equivalent of how data is exchanged via JTAG 

    process (jtag_tck, jtag_test_logic_reset) 

    begin 
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        if jtag_test_logic_reset = '1' then  

            jtag_data_register_in  <= (others => '0'); 

            jtag_data_register_out <= (others => '0'); 

        elsif rising_edge(jtag_tck) then 

            if jtag_shift_dr = '1' then  

                -- Shift incoming data (tdi) into the DR 

                jtag_data_register_in <= jtag_tdi & jtag_data_register_in(JTAG_DR_WIDTH-1 
downto 1); 

                -- Output data is handled outside this process 

            elsif jtag_capture_dr = '1' then  

                -- Load the data to be read (debug_rd_value) into the DR to be shifted out 

                jtag_data_register_out <= debug_rd_value & std_logic_vector(to_unsigned(0, 
JTAG_DR_WIDTH - debug_rd_value'length)); -- Load rd_value into the first 32 bits, rest to 
0 

            elsif jtag_update_dr = '1' then -- In Update-DR state 

                -- When exiting Shift-DR and entering Update-DR, the shifted-in value 

                -- in the DR is stable and can be used for operations 

                jtag_data_register_out <= jtag_data_register_in;  

            end if; 

        end if; 

    end process; 

    -- Logic to decode commands from the JTAG Data Register and control the 
debug_module 

    process(PCLK, PRSTn) 

    begin 

        if PRSTn = '0' then 

            s_wr_value  <= (others => '0'); 

            s_rd_addr   <= (others => '0'); 

            s_wr_ena    <= '0'; 
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            s_wr_addr   <= (others => '0'); 

            debug_wr_value <= (others => '0'); 

            debug_rd_addr  <= (others => '0'); 

            debug_wr_ena   <= '0'; 

            debug_wr_addr  <= (others => '0'); 

        elsif rising_edge(PCLK) then 

            -- Default to zero to avoid continuous operations 

            debug_wr_ena <= '0';  

            if jtag_update_dr = '1' then  

                -- Decode data shifted into jtag_data_register_out 

                s_wr_ena   <= jtag_data_register_out(0); -- Write control bit 

                s_wr_addr  <= jtag_data_register_out(5 downto 1);  

                s_wr_value <= jtag_data_register_out(37 downto 6);  

                s_rd_addr  <= jtag_data_register_out(42 downto 38);  

            end if; 

            -- Load values into the outputs of the debug_adapter 

            debug_wr_value <= s_wr_value; 

            debug_rd_addr  <= s_rd_addr; 

            debug_wr_ena   <= s_wr_ena; -- This should be a pulse, not a constant level 

            debug_wr_addr  <= s_wr_addr; 

            -- Reset or deactivate write enable after one cycle, or based on a flag 

            -- to avoid continuous writes. 

        end if; 

    end process; 

end architecture behavioral; 
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12.4 Altera virtual JTAG 

Only this file was taken from the online repository [8]. 
 

12.5 Additional Technical Documentation from Droxygen  
The complete code documentation, generated with Doxygen, is provided in the digital 
attachments (html/ folder). 


