
Alma Mater Studiorum
Università di Bologna

Campus di Cesena

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA
Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

PROGETTAZIONE E SVILUPPO DI
UN SISTEMA A MICROSERVIZI PER

LA RACCOLTA DI DATI
ATMOSFERICI

Relatore:
Prof.ssa Silvia Mirri

Correlatore:
Dr. Giovanni Delnevo
Dr. Kelvin Olaiya

Presentata da:
Matteo Zeno Bagli

Sessione II
Anno Accademico 2024-2025

A Miriana

Introduzione

Il monitoraggio della qualità dell’aria urbana rappresenta oggi una delle
sfide più rilevanti per la salute pubblica e la sostenibilità ambientale. In un’e-
poca caratterizzata dalla crescente urbanizzazione e dall’intensificarsi delle
attività antropiche, la necessità di disporre di sistemi affidabili per il rile-
vamento e l’interpretazione dei dati sull’inquinamento atmosferico diventa
sempre più necessario. Le concentrazioni di particolato PM2.5 e PM10, bios-
sido di azoto, ozono troposferico e anidride solforosa nelle aree metropolita-
ne influenzano direttamente il benessere dei cittadini, richiedendo strumenti
di monitoraggio che siano al contempo tecnicamente accurati e facilmente
accessibili.

L’evoluzione tecnologica degli ultimi anni ha aperto nuove prospettive
nell’ambito del monitoraggio ambientale, rendendo possibile lo sviluppo di
sistemi distribuiti di sensori che operano in tempo reale. Parallelamente, la
diffusione delle tecnologie web e dei dispositivi mobili ha creato l’opportunità
di democratizzare l’accesso alle informazioni ambientali, trasformando dati
tecnici complessi in visualizzazioni comprensibili e utilizzabili da un’ampia
gamma di utenti. In questo contesto si inserisce il presente elaborato di tesi,
che propone lo sviluppo di AirQualityInsight, un sistema integrato per la
simulazione, raccolta e visualizzazione di dati sulla qualità dell’aria.

Questo applicativo fornisce all’utente una dashboard web che presenta
una mappa interattiva di Bologna, sulla quale vengono disegnate in tempo
reale le misurazioni effettuate da un insieme di sensori dislocati sul territorio.
La dashboard web, progettata secondo i principi del design mobile-first, offre

i

ii INTRODUZIONE

un’esperienza utente fluida e intuitiva sia su dispositivi desktop che mobili.
La mappa interattiva, arricchita da layer informativi sui confini amministra-
tivi e le ZTL, permette agli utenti di esplorare i dati ambientali nel loro
contesto geografico, facilitando la comprensione delle correlazioni spaziali tra
inquinamento e caratteristiche territoriali.

Una particolare attenzione è stata dedicata alla visualizzazione dei dati
attraverso heatmap dinamiche che traducono le concentrazioni di inquinanti
in rappresentazioni cromatiche intuitive. Questa tecnica di visualizzazione,
basata sulla scala di colori dell’European Air Quality Index (EAQI), permette
di identificare immediatamente le aree critiche e di monitorare l’evoluzione
temporale della qualità dell’aria. L’integrazione di funzionalità di filtraggio
e aggregazione consente agli utenti di personalizzare la visualizzazione in
base alle proprie esigenze, concentrandosi su specifici inquinanti o periodi
temporali.

Il presente elaborato si propone di dimostrare come l’integrazione strate-
gica di tecnologie moderne possa dare vita a sistemi di monitoraggio ambien-
tale che coniughino efficacemente accuratezza tecnica e accessibilità d’uso.
Attraverso l’implementazione di AirQualityInsight, si intende evidenziare le
potenzialità delle architetture distribuite nel contesto delle smart cities, pro-
ponendo soluzioni che possano essere replicate e adattate a diverse realtà
urbane. La metodologia adottata, che privilegia l’approccio incrementale e
la modularità dei componenti, rende il sistema facilmente estensibile e ma-
nutenibile, caratteristiche fondamentali per la sostenibilità a lungo termine
di infrastrutture tecnologiche destinate al servizio pubblico.

Di seguito viene illustrata la struttura e gli obiettivi di ciascun capitolo
del presente elaborato di tesi:

• Il primo capitolo (1) introduce l’obiettivo del progetto di tesi e forni-
sce il quadro teorico necessario alla comprensione del lavoro sviluppato.
Viene presentata un’analisi dello stato dell’arte dei sistemi esistenti af-
fini alla soluzione proposta, unitamente ai concetti fondamentali del

INTRODUZIONE iii

dominio applicativo di riferimento. Il capitolo si conclude con una
descrizione dettagliata delle funzionalità del sistema implementato.

• Il secondo capitolo (2) illustra le tecnologie adoperate nello sviluppo
del progetto. Considerata la natura web-based dell’applicazione, le
tecnologie vengono categorizzate distinguendo tra quelle utilizzate per
il front-end e quelle impiegate per il back-end.

• Il terzo capitolo (3) presenta in modo approfondito la fase di pro-
gettazione e implementazione del sistema. Dopo aver delineato l’ar-
chitettura generale, viene fornita una descrizione dettagliata di ciascun
componente, dai servizi implementati all’interfaccia utente front-end.

Indice

Introduzione i

1 Introduzione del sistema 1

1.1 Scopo del progetto . 1

1.2 Qualità dell’aria . 2

1.3 Principali inquinanti atmosferici e loro origini 6

1.3.1 Materiale particolato (PM) 6

1.3.2 Biossido di azoto (NO2) 6

1.3.3 Ozono troposferico (O3) 7

1.3.4 Anidride solforosa (SO2) 7

1.3.5 Monossido di carbonio (CO) 7

1.4 Sistema di coordinate . 7

1.4.1 EPSG:4326 . 8

1.4.2 EPSG:3857 . 11

1.4.3 WGS84 . 11

1.5 OpenStreetMap . 13

1.5.1 Storia e fondazione . 14

1.5.2 Caratteristiche tecniche 14

1.5.3 Applicazioni e ricerca accademica 14

1.5.4 Struttura dati di OpenStreetMap (OSM) 15

1.5.5 Applicazioni e casi d’uso 16

1.5.6 Integrazione programmatica 17

1.6 Funzionalità del sistema . 20

v

vi INTRODUZIONE

1.6.1 Requisiti funzionali . 20

1.6.2 Requisiti non funzionali 21

1.7 Principali difficoltà del progetto 21

2 Tecnologie 23

2.1 Applicazioni front-end . 23

2.1.1 Vue . 23

2.1.2 Leaflet . 25

2.2 Applicazioni back-end . 31

2.2.1 Node.js . 31

2.2.2 Python . 35

2.2.3 Kafka . 43

2.2.4 MongoDB . 46

2.3 Deployment . 49

2.3.1 Docker . 49

2.3.2 Docker compose . 51

3 Sviluppo dell’elaborato di progetto 53

3.1 Architettura generale del sistema 53

3.1.1 Architettura a microservizi 53

3.1.2 Architettura del sistema 54

3.2 Sensor service . 56

3.2.1 Modello sensore . 56

3.2.2 Generazione pseudo-misurazioni 57

3.2.3 Distribuzione sensori 59

3.3 API service . 62

3.3.1 Implementazione del Server 62

3.3.2 Endpoint Disponibili 63

3.4 Dashboard service . 72

3.4.1 Design e architettura dell’interfaccia 72

3.4.2 Implementazione . 73

INDICE vii

Conclusioni 89

Bibliografia 93

Ringraziamenti 105

Elenco delle figure

1.1 European Air Quality Index (EAQI) per Bologna: (sopra)
Mappa "modellata" interattiva, (sotto) Mappa "a stazioni"
interattiva . 5

1.2 Paralleli della terra [1]. 10

1.3 Ellissoide WGS84 [2]. 13

1.4 Intersezioni fra le strade principali e secondarie nel comune
bolognese . 19

2.1 Piazza Maggiore, Bologna . 30

3.1 Architettura generale del sistema 55

3.2 Intestazione pagina . 60

3.3 Acquisizione punti delle intersezioni stradali 61

3.4 Piè di pagina . 62

3.5 Descrizione . 74

3.6 Tabella valori riferimento European Air Quality Index (EAQI) 74

3.7 Guida . 74

3.8 Calcolo European Air Quality Index (EAQI) 75

3.9 Mappa . 76

3.10 Livelli mappa . 78

3.11 Griglie mappa . 79

3.12 Heatmap - parte 1 . 81

3.13 Heatmap - parte 2 . 82

3.14 Tabella ultime misurazioni . 83

ix

x ELENCO DELLE FIGURE

3.15 Tabella statistiche . 84
3.16 Tabella log di sistema . 85
3.17 Tabella sensori registrati . 86
3.18 Formula matematica di Haversine 87

Elenco delle tabelle

1.1 Indici di qualità dell’aria per diversi inquinanti secondo l’European
Air Quality Index (EAQI), concentrazioni espresse in µg/m3 [3]. 3

1.2 Messaggi relativi alla salute 4

xi

Acronimi

ACID Atomicity, Consistency, Isolation and Durability. 47

AJAX Asynchronous JavaScript and XML. 28

API Application Programming Interface. vi, 17, 19, 25, 27, 28, 33, 43, 54,
56, 62, 63, 65, 67, 69, 71, 85, 90, 91

AQI Air Quality Index. 2, 4, 20, 21

BSON Binary JSON. 46

CAP Codice Avviamento Postale. 77, 78

CLI Command Line Interface. 25

CO Monossido di carbonio. v, 7

CORS Cross-Origin Resource Sharing. 62

CQRS Command Query Responsibility Segregation. 45

CRS Coordinate Reference Systems. 8

CSS Cascading Style Sheets. 24, 27

CSV Comma Separated Values. 17

DOM Document Object Model. 24, 25

EAQI European Air Quality Index. ii, ix, xi, 2–5, 73–75, 89

xiii

xiv Acronimi

EEA European Environment Agency. 2, 80

EPSG European Petroleum Survey Group. v, 8–11, 14

FIFO First In First Out. 77

GIS Geographic Information System. 15, 19

GPS Global Positioning System. 12, 14

HTML HyperText Markup Language. 24, 27

HTTP HyperText Transfer Protocol. 31, 34, 63, 70

IOGP International Association of Oil & Gas Producers. 8

IOT Internet of Things. 34, 35, 43, 47, 91

IP Internet Protocol. 56

IQA Indice di Qualità dell’Aria. 2

ISO Internation Standard Organization. 63

JSON Javascript Object Notation. 17, 47, 60, 62, 63, 67, 70, 71

NO2 Diossido di azoto. v, 2, 6

npm Node Package Manager. 33

O3 Ozono. v, 2, 7

OSM OpenStreetMap. v, 8, 10, 11, 13–17, 19, 26, 28, 91

PM10 Particolato PM10. 2

PM2.5 Particolato PM2.5. 2, 80

PWA Progressive Web App. 25

INDICE xv

PyPI Python Package Index. 36

QL Query Language. 17, 18

REST Representational State Transfer. 28, 33, 43, 54, 62

SAREF Smart Applications REFerence ontology. 34, 35, 67

SFC Single File Components. 24

SO2 Anidride solforosa. v, 2, 7

SPA Single Page Applications. 24, 25

SRP Single Responsibility Principle. 26

SVG Scalable Vector Graphics. 27

TD Thing Descriptions. 34, 35, 67, 71

TTL Time To Live. 46

URI Uniform Resource Identifier. 34

W3C World Wide Web Consortium. 34, 67

WGS84 World Geodetic System 1984. v, ix, 8–15

WoT Web of Things. 34, 35, 67

WWW World Wide Web. 34

XML Extensible Markup Language. 17, 19

ZTL Zona Traffico Limitato. ii, 77, 78, 80, 81

Capitolo 1

Introduzione del sistema

Il primo capitolo ha due obiettivi: il primo obiettivo è l’introduzione del
progetto di tesi, con le sue caratteristiche e funzionalità; il secondo obiettivo
è l’analisi dello stato dell’arte degli attuali sistemi simili al progetto dell’ela-
borato di tesi, descrivendone le caratteristiche principali, ponendo i diversi
sistemi a confronto e approfondendone le funzionalità.

1.1 Scopo del progetto

Lo scopo del progetto di tesi è quello di presentare un sistema di simula-
zione atto alla collezione ed interpretazione di dati sulla qualità dell’aria di
una determinata area geografica.

Tali dati provengono da misurazioni fittizie prodotte da sensori distribuiti
in un’area di studio. I sensori inviano delle rilevazioni ad un intermediario, il
quale le raccoglie e rende disponibili. Viene quindi disposta una dashboard
attraverso la quale gli utenti possono fruirne sotto forma di tabelle e di una
mappa interattiva.

La dashboard consiste in una web app mobile-first che permette di visua-
lizzare l’area geografica coinvolta e i dati sulla qualità dell’aria. Lo sviluppo
della dashboard prende come riferimento le applicazioni della stessa tipologia
attualmente presenti come stato dell’arte.

1

2 1. Introduzione del sistema

L’area geografica di interesse è il comune di Bologna, entro il cui perimetro
vengono posizionati i sensori di simulazione [4].

1.2 Qualità dell’aria

I dati sulla qualità dell’aria vengono definiti dai paesi secondo indici
e scale. L’Indice di Qualità dell’Aria (IQA) (in inglese Air Quality In-
dex)rappresenta il modo in cui i governi scelgono di comunicare con la po-
polazione la qualità dell’aria. Esso converge il livello di diversi inquinanti in
un unico indice comprensibile, consentendo di identificare più facilmente il
livello di inquinamento e l’eventuale rischio associato.

Regioni e paesi diversi utilizzano scale differenti per indicare la qualità
dell’aria in base all’inquinamento locale e a considerazioni sulla salute. Esi-
stono decine di indici locali utilizzati in tutto il mondo; ad esempio, in alcune
regioni dell’Australia si utilizzano sistemi basati su numeri, mentre altre ne
usano uno basato su categorie. Canada, Giappone e Stati Uniti definiscono
indici di qualità dell’aria distinti, così come l’Agenzia europea dell’ambiente
[5].

Il servizio online "The European Air Quality Index" (EAQI) dell’European
Environment Agency (EEA) e della Commissione Europea fornisce informa-
zioni sulla qualità dell’aria basate su più di 2000 stazioni di rilevamento in
tutta Europa [6]. L’indice consiste in una mappa interattiva che mostra la
qualità dell’aria a livello locale, andando ad analizzare i 5 livelli di inquinanti
più pericolosi per le persone e per l’ambiente:

• Particolato PM2.5 e PM10

• Ozono (O3)

• Diossido di azoto (NO2)

• Anidride solforosa (SO2)

https://airindex.eea.europa.eu/AQI/index.html
https://www.eea.europa.eu/it
https://www.eea.europa.eu/it
https://commission.europa.eu/index_it

1.2 Qualità dell’aria 3

Gli utenti possono fare zoom sulla mappa o ricercare città Europee per
controllare la qualità globale dell’aria e verificare i livelli di inquinanti re-
gistrati dai sensori dalle stazioni locali. L’Indice mostra un rating globale
per ogni stazione di rilevamento, andando a marcare la mappa con un punto
colorato, per ognuno dei 5 inquinanti. Il colore indica un livello di qualità
dell’aria:

• Molto buono (verde acqua)

• Buono (verde)

• Moderato (giallo)

• Basso (rosso)

• Molto basso (rosso ciliegia)

• Estremamente basso (viola)

Nella tabella 1.1 sono riportati i valori relativi al livello di qualità dell’aria.

Inquinante Buono Discreto Moderato Scarso Molto scarso Estremamente scarso

Particelle
inferiori a 2.5
µm (PM2.5)

0-5 6-15 16-50 51-90 91-140 >140

Particelle
inferiori a 10
µm (PM10)

0-15 16-45 46-120 121-195 196-270 >270

Biossido di
azoto (NO2)

0-60 61-100 101-120 121-160 161-180 >180

Ozono (O3) 0-10 11-25 26-60 61-100 101-150 >150

Biossido di zolfo
(SO2)

0-20 21-40 41-125 126-190 191-275 >275

Tabella 1.1: Indici di qualità dell’aria per diversi inquinanti secondo
l’European Air Quality Index (EAQI), concentrazioni espresse in µg/m3 [3].

4 1. Introduzione del sistema

Il portale riporta inoltre una serie di messaggi atti a fornire raccoman-
dazioni, sia alla fascia di popolazione normale che a quella più sensibile,
in funzione dell’Air Quality Index (AQI) misurato. La fascia di soggetti
più sensibile comprende sia adulti che bambini con problemi respiratori che
cardiaci.

Nella tabella 1.2 vengono indicati i messaggi suggeriti alle fasce di popo-
lazione relative in relazione al livello di qualità dell’aria.

AQI Popolazione normale Popolazione sensibile

Buono
La qualità dell’aria è buona.
Goditi le tue solite attività
all’aperto.

La qualità dell’aria è buona.
Goditi le tue solite attività
all’aperto.

Discreto
Goditi le tue solite attività
all’aperto.

Goditi le tue solite attività
all’aperto.

Moderato
Goditi le tue solite attività
all’aperto.

Considera di ridurre le attività
intense all’aperto, se avverti
sintomi.

Scadente

Considera di ridurre le attività
intense all’aperto, se avverti
sintomi come irritazione agli
occhi, tosse o mal di gola.

Considera di ridurre le attività
fisiche, soprattutto all’aperto,
specialmente se avverti sintomi.

Molto scadente

Considera di ridurre le attività
intense all’aperto, se avverti
sintomi come irritazione agli
occhi, tosse o mal di gola.

Riduci le attività fisiche,
soprattutto all’aperto,
specialmente se avverti sintomi.

Estremamente
scadente

Riduci le attività fisiche
all’aperto.

Evita le attività fisiche
all’aperto.

Tabella 1.2: Messaggi relativi alla salute

Nelle seguenti figure 1.1 vengono mostrate le due possibili grafiche della
mappa interattiva riportante l’European Air Quality Index (EAQI).

1.2 Qualità dell’aria 5

Figura 1.1: European Air Quality Index (EAQI) per Bologna: (sopra) Mappa
"modellata" interattiva, (sotto) Mappa "a stazioni" interattiva

6 1. Introduzione del sistema

1.3 Principali inquinanti atmosferici e loro ori-

gini

La valutazione della qualità dell’aria si basa sul monitoraggio di specifici
contaminanti presenti nell’atmosfera. Secondo Google [7], i parametri più
frequentemente rilevati nelle aree urbane includono i seguenti elementi.

1.3.1 Materiale particolato (PM)

Insieme di particelle microscopiche, solide e liquide, sospese nell’atmosfe-
ra. Le frazioni PM10 e PM2.5 identificano particelle con diametro rispettiva-
mente inferiore a 10 e 2,5 micrometri. Le principali sorgenti comprendono:

• Traffico veicolare e combustione nei motori

• Riscaldamento domestico a biomassa

• Processi industriali

• Fenomeni naturali come incendi boschivi e tempeste di sabbia

1.3.2 Biossido di azoto (NO2)

Gas caratteristico dell’inquinamento urbano, generato prevalentemente
da:

• Emissioni del trasporto su strada

• Attività industriali

• Impianti di produzione energetica

• Sistemi di riscaldamento civile

1.4 Sistema di coordinate 7

1.3.3 Ozono troposferico (O3)

Diversamente dall’ozono stratosferico che ci protegge dai raggi UV, quello
presente negli strati bassi dell’atmosfera costituisce un inquinante secondario.
Si forma attraverso reazioni fotochimiche tra:

• Composti organici volatili

• Ossidi di azoto

• Radiazione solare

Le fonti primarie dei precursori sono veicoli, centrali termoelettriche e
processi industriali.

1.3.4 Anidride solforosa (SO2)

Gas dall’odore caratteristico e dalle proprietà irritanti, originato da:

• Combustione di carbone e derivati petroliferi negli impianti energetici

• Raffinazione del petrolio

• Produzione di cemento

• Attività vulcanica

1.3.5 Monossido di carbonio (CO)

Gas inodore e tossico prodotto dalla combustione incompleta di combu-
stibili fossili in veicoli e macchinari industriali.

1.4 Sistema di coordinate

Nella sezione seguente verranno introdotti i sistemi di coordinate presenti
nei sistemi di elaborazione trattati.

8 1. Introduzione del sistema

1.4.1 EPSG:4326

Per il progetto di tesi, sono state utilizzate come base per la collocazio-
ne dei sensori di rilevamento della qualità dell’aria le mappe di OpenStreet-
Map (OSM). Tale strumento utilizza il sistema di coordinate World Geodetic
System 1984 (WGS84) per rappresentare latitudine e longitudine.

Nello specifico, il sistema di riferimento prevede un formato di coordinate
geografiche decimali, in codice EPSG 4326. L’acronimo EPSG sta per Euro-
pean Petroleum Survey Group, fondato negli anni ’80 dall’industria petrolife-
ra europea con scopo originale la standardizzazione dei sistemi di coordinate
per l’esplorazione petrolifera offshore nel Mare del Nord. Le compagnie pe-
trolifere infatti usavano sistemi di coordinate diversi, creando confusione e
errori costosi [8, 9].

Dal 1986 al 2005, tale sistema di coordinate viene gestito dall’European
Petroleum Survey Group. Dal 2005 ad oggi, viene trasferito alla International
Association of Oil & Gas Producers (IOGP), ma il nome EPSG è rimasto di
comune utilizzo.

Il registro EPSG è diventato lo standard mondiale per i sistemi di coordi-
nate (Coordinate Reference Systems - CRS), i datum geodetici, le proiezioni
cartografiche, le trasformazioni tra sistemi e le unità di misura.

Andiamo a definire ciascuno degli elementi elencati:

• Sistemi di coordinate (CRS): Un framework completo che definisce co-
me identificare univocamente ogni punto sulla Terra usando numeri,
come latitudine/longitudine o coordinate piane.

• Datum geodetici: la forma matematica di riferimento della Terra (ellis-
soide) e il suo posizionamento nello spazio, che serve come “punto zero”
per tutte le misurazioni.

• Proiezioni cartografiche: i metodi matematici per “appiattire” la super-
ficie curva della Terra su una mappa bidimensionale.

1.4 Sistema di coordinate 9

• Trasformazioni tra sistemi: le formule matematiche per convertire coor-
dinate da un sistema di riferimento a un altro.

• Unità di misura: le scale di riferimento per esprimere distanze, angoli
e posizioni (metri, gradi, piedi, radianti, ecc.) all’interno di ciascun
sistema di coordinate.

Ogni sistema di coordinate ha un codice EPSG univoco:

• EPSG:4326 = WGS84 (lat/lon in gradi) [10].

• EPSG:3857 = Web Mercator (usato da Google Maps) [11].

• EPSG:32633 = UTM zone 33N (comune in Italia centrale) [12].

• EPSG:3003 = sistema italiano storico. Italy zone 1 [13].

Il sistema utilizzato per il progetto è il datum WGS84, codice EPSG:4326,
in formato di coordinate geografiche decimali che rappresenta la latitudine,
la longitudine, con una precisione fino a 7-8 cifre decimali.

Il riferimento fondamentale per il calcolo della latitudine è l’Equatore (la-
titudine 0°), definito come il cerchio massimo che divide la Terra in emisfero
Nord e Sud. Si misura come angolo dal piano equatoriale verso nord o sud
con un range da -90° (Polo Sud) a +90° (Polo Nord).

I paralleli di riferimento sono:

• Tropico del Cancro: 23°27’N

• Tropico del Capricorno: 23°27’S

• Circolo Polare Artico: 66°33’N

• Circolo Polare Antartico: 66°33’S

Di seguito un’immagine rappresentativa 1.2.

10 1. Introduzione del sistema

Figura 1.2: Paralleli della terra [1].

Per la longitudine, il riferimento principale è il Meridiano di Greenwich
(longitudine 0°), definito come il meridiano che passa per l’Osservatorio Reale
di Greenwich, London. È stato stabilito nel 1884 alla Conferenza Interna-
zionale del Meridiano, e si misura come angolo dal meridiano di Greenwich
verso est o ovest con un range da -180° (ovest) a +180° (est). I meridiani di
riferimento sono:

• Linea del Cambio di Data: 180°

• Antimeridiano: Opposto a Greenwich

Il sistema di coordinate geografiche funziona come una griglia sferica,
dove la latitudine sono le linee orizzontali (paralleli), la longitudine sono le
linee verticali (meridiani) e le unità sono espresse in gradi decimali o gradi-
minuti-secondi.

Anche se OpenStreetMap (OSM) memorizza i dati in WGS84, per la
visualizzazione delle mappe utilizza spesso la proiezione Web Mercator (EP-

1.4 Sistema di coordinate 11

SG:3857), che è quella usata anche da Google Maps, Bing Maps e altri servizi
di mappe online. Questa proiezione “schiaccia” le aree polari ma mantiene
gli angoli, rendendola ideale per la navigazione. La proiezione Web Merca-
tor (nota anche come Pseudo-Mercator o Google Mercator) è la proiezione
cartografica più utilizzata per le mappe online moderne.

1.4.2 EPSG:3857

La proiezione WebMercator con codice EPSG:3857 (o EPSG:900913),
rappresenta la terra come una sfera perfetta, invece che come un ellissoide
rappresentato dallo standard WGS84. Utilizza come unità i metri.

La proiezione “avvolge” la Terra con un cilindro tangente all’equatore,
poi proietta tutti i punti sulla superficie del cilindro. Tale sistema ha come
vantaggio la conservazione degli angoli, la facilità di implementazione nei
sistemi informatici, uno zoom semplice da utilizzare e un tile system efficiente
che divide la mappa in quadrati per il caricamento veloce.

Gli svantaggi tuttavia sono la distorsione sia delle aree che delle distanze:
infatti la Groenlandia appare grande quanto l’Africa, ma in realtà l’Africa è
14 volte più grande. Le distanze soprattutto alle latitudini elevate appaiono
estremamente distorte. Inoltre non vengono mostrati i poli: la proiezione si
interrompe infatti a circa 85°N e 85°S.

Rimane comunque il sistema più diffuso tra i servizi di mappe online, quali
Google Maps, OpenStreetMap (OSM), Bing Maps, Apple Maps, Mapbox.
Infatti risulta molto efficiente per la navigazione urbana e la consultazione
online, ma di scarso valore per analisi geografiche che richiedono precisione
nelle aree o distanze.

1.4.3 WGS84

Il sistema WGS84 fu creato dal Dipartimento della Difesa USA negli
anni ’80, ufficializzato nel 1984, rivisto nel 1996 e 2004, e periodicamente

12 1. Introduzione del sistema

raffinato. Lo scopo originale era creare un sistema unificato per il GPS
militare americano [14].

WGS84 definisce la forma della Terra usando un ellissoide di riferimento
con questi parametri che definiscono il modello matematico della Terra, la
quale nella realtà è un geoide.

Semiasse maggiore (a) è il raggio equatoriale della Terra, definito come
distanza dal centro della Terra all’equatore. Il valore è di 6.378.137 m.

Schiacciamento (f) misura quanto la Terra è “schiacciata” ai poli. Tale
valore risulta in uno schiacciamento della Terra del 0,34%, in quanto la Terra
non è una sfera perfetta. Il valore numerico è di 298,257223563−1.

Formula:
f =

a− b

a
(1.1)

Semiasse minore (b) è il raggio polare della Terra, definito come distanza
dal centro della Terra ai poli. Risulta circa 21,4 km più corto del semiasse
maggiore, con un valore di 6.356.752,314245 metri.

Formula:
b = a× (1− f) (1.2)

Eccentricità misura la deviazione dalla forma sferica. Per un valore vicino
a 0, si ha una sfera perfetta. Il valore WGS84 indica un ellissoide molto vicino
alla sfera.

Eccentricità = 0,0818191908
Formula:

e2 =
a2 − b2

a2
(1.3)

Il sistema di coordinate 3D ha origine nel centro di massa terrestre, con un
sistema di riferimento temporale basato sul Tempo Atomico Internazionale.
Possiede una precisione teorica centimetrica, mentre l’accuratezza pratica
dipende dal metodo di misurazione.

Di seguito il modello dell’elissoide WGS84 1.3.

1.5 OpenStreetMap 13

Figura 1.3: Ellissoide WGS84 [2].

1.5 OpenStreetMap

OpenStreetMap (OSM) è un progetto collaborativo di mappatura web che
raccoglie dati geospaziali per creare e distribuire mappe online, liberamente
disponibili a chiunque abbia una connessione Internet [15]. Una volta acces-
sibile, OpenStreetMap (OSM) permette agli utenti Internet di contribuire e
modificare i dati geospaziali, rendendolo di fatto l’equivalente cartografico di
Wikipedia.

OpenStreetMap (OSM) è emerso come un progetto globale e una comu-
nità che opera con l’obiettivo di creare e mantenere un database libero e
modificabile e una mappa del mondo basata sui contributi di volontari car-
tografi [16]. Con il suo database che include quasi 7,5 miliardi di punti dati
(nodi), contribuiti da circa 1,8 milioni di utenti a marzo 2022, è forse l’e-
sempio più riuscito di un progetto di geoinformazione crowdsourced e del
concetto di informazione geografica volontaria [16].

14 1. Introduzione del sistema

1.5.1 Storia e fondazione

Il progetto OpenStreetMap (OSM) è stato fondato nel 2004 nel Regno
Unito da Steve Coast, allora studente presso l’University College London
[17], il quale ne ha registrato il dominio openstreetmap.org [17]. La prima
strada è stata inserita il 10 dicembre 2004 dopo che Steve aveva pedalato
intorno a Regent’s Park a Londra con un ricevitore GPS (Global Positioning
System) [18].

Il 22 agosto 2006, la OpenStreetMap (OSM) Foundation è stata istituita
per incoraggiare la crescita, lo sviluppo e la distribuzione di dati geospaziali
liberi e fornire dati geospaziali per chiunque li usi e li condivida [19].

1.5.2 Caratteristiche tecniche

OpenStreetMap (OSM) è mantenuto da cartografi volontari di tutto il
mondo che utilizzano dispositivi GPS, fotocamere portatili e laptop per la
mappatura sul campo. I dati raccolti sono integrati con fotografie aeree open
source digitalizzate e mappe gratuite da fonti governative e commerciali [15].

Il progetto utilizza il sistema di coordinate WGS84 (EPSG:4326) per rap-
presentare latitudine e longitudine, permettendo l’integrazione con sistemi
GPS e altre piattaforme cartografiche digitali.

OpenStreetMap (OSM) è stato definito come “la wikificazione delle map-
pe” da alcuni ricercatori [20], evidenziando il parallelo con il modello colla-
borativo di Wikipedia. Il progetto ha attirato considerevole attenzione da
molteplici attori, incluse industrie, governi e organizzazioni umanitarie [16].

1.5.3 Applicazioni e ricerca accademica

La comunità accademica ha mostrato un interesse duraturo per Open-
StreetMap (OSM), documentato in diverse recenti review [20, 21]. Le appli-
cazioni di ricerca includono studi sulla qualità dei dati, analisi delle dinami-
che della comunità OSM, e utilizzo dei dati OSM per applicazioni di machine
learning e remote sensing [21].

openstreetmap.org

1.5 OpenStreetMap 15

OpenStreetMap (OSM) rappresenta oggi uno dei più grandi progetti di
dati aperti su Internet e un esempio notevole di sistemi di informazione
geografica partecipativa (participatory GIS) [22].

1.5.4 Struttura dati di OpenStreetMap (OSM)

Per rappresentare informazioni geografiche, OpenStreetMap (OSM) uti-
lizza un modello dati basato su tre elementi fondamentali: nodi (nodes),
percorsi (ways) e relazioni (relations) [23].

Nodi (Nodes) Un nodo rappresenta un singolo punto geografico sulla
mappa, caratterizzato da:

• Un identificatore numerico unico a 64 bit

• Coordinate geografiche (latitudine e longitudine) in WGS84

• Un set opzionale di tag (coppie chiave-valore)

• Numero di versione e timestamp per il controllo delle modifiche

I nodi possono rappresentare elementi puntuali come punti di interesse
(negozi, semafori, fermate autobus . . .) oppure essere utilizzati come vertici
per definire la geometria di percorsi più complessi [24].

Percorsi (Ways) Un percorso è una sequenza ordinata di nodi che for-
ma una polilinea o un poligono chiuso. I percorsi non memorizzano diret-
tamente la loro posizione geografica, ma mantengono una lista ordinata di
identificatori di nodi [24]. Possono rappresentare:

• Elementi lineari: strade, fiumi, confini

• Elementi areali: edifici, laghi, parchi (quando il percorso è chiuso)

16 1. Introduzione del sistema

Relazioni (Relations) Le relazioni sono collezioni strutturate di oggetti
(nodi, percorsi o altre relazioni) utilizzate per definire relazioni logiche o
geografiche tra elementi diversi [25]. Ogni membro di una relazione può
avere un ruolo opzionale che descrive la sua funzione. Esempi includono:

• Multipoligoni (aree con buchi o confini complessi)

• Percorsi di trasporto pubblico

• Confini amministrativi

• Limitazioni di svolta

Sistema di tag Tutti gli elementi OSM possono essere descritti attraver-
so tag, costituiti da coppie chiave-valore in formato Unicode (massimo 255
caratteri) [26]. Il sistema di tagging libero permette di includere un numero
illimitato di attributi per ogni elemento, con la comunità che si accorda su
combinazioni standard per le caratteristiche più comuni.

1.5.5 Applicazioni e casi d’uso

OpenStreetMap (OSM) trova applicazione in numerosi contesti, dalla
ricerca accademica alle applicazioni commerciali e umanitarie.

Ricerca accademica OpenStreetMap (OSM) rappresenta una risorsa pre-
ziosa per la ricerca in diversi ambiti:

• Machine Learning e Remote Sensing: utilizzato per training di
modelli di classificazione del territorio e miglioramento della copertura
dei dati [21].

• Analisi urbana: studio della qualità dell’aria, accessibilità, pianifica-
zione dei trasporti.

• Analisi della mobilità: creazione di database nazionali per infra-
strutture ciclabili [27].

1.5 OpenStreetMap 17

Applicazioni commerciali Molte aziende utilizzano OpenStreetMap (OSM)
come base per i loro servizi:

• Servizi di mappe (Facebook, Foursquare, Strava).

• Applicazioni di delivery e logistica.

• Servizi di car sharing e bike sharing.

• Piattaforme di e-commerce per localizzazione servizi.

1.5.6 Integrazione programmatica

Per integrare i dati OpenStreetMap (OSM) in applicazioni software, sono
disponibili diverse librerie e strumenti.

API e strumenti di accesso ai dati OpenStreetMap (OSM) fornisce
diversi metodi per accedere e interrogare i suoi dati, adatti a diverse esigenze
applicative.

Overpass API L’Overpass API è un motore di database ottimizzato per
interrogazioni di sola lettura sui dati OSM [28]. A differenza dell’API princi-
pale ottimizzata per l’editing, Overpass API è progettata per consumatori di
dati che necessitano di pochi elementi selezionati rapidamente o fino a circa
10 milioni di elementi in alcuni minuti, utilizzando criteri di ricerca come
posizione, tipo di oggetti, proprietà dei tag o combinazioni di questi [28].

L’API utilizza un linguaggio di query specializzato (Overpass QL) e offre
diversi formati di output tra cui XML, JSON e CSV. Le query possono essere
testate interattivamente attraverso Overpass Turbo [29], un’interfaccia web
che permette di visualizzare i risultati su una mappa interattiva.

Ad esempio, per la scelta della collocazione dei sensori, è stata realiz-
zata una query per ottenere tutti gli incroci fra le arterie principali e le
strade secondarie del comune di Bologna. Questa scelta è stata fatta in
quanto tali intersezioni, soprattutto quelle semaforizzate, costituiscono zone

18 1. Introduzione del sistema

di concentrazione delle emissioni veicolari, dove il traffico in attesa genera
un incremento localizzato dell’inquinamento atmosferico, rendendo quindi la
misurazione più significativa.

La seguente query 1.1 in Overpass QL estrae tali intersezioni:

Listing 1.1: Query in Overpass QL di esempio

1 [out:json][timeout :90];

2

3 // Area corrispondente al comune di Bologna

4 area[name=" Bologna "][admin_level =8]->. bologna;

5

6 // Strade principali

7 (

8 way(area.bologna)[" highway "=" motorway "];

9 way(area.bologna)[" highway "=" trunk "];

10 way(area.bologna)[" highway "=" primary "];

11 way(area.bologna)[" highway "=" secondary "];

12 way(area.bologna)[" highway "=" tertiary "];

13)->.major;

14

15 // Strade secondarie

16 (

17 way(area.bologna)[highway =" unclassified "];

18 way(area.bologna)[highway =" residential "];

19 way(area.bologna)[highway =" living_street "];

20 way(area.bologna)[highway =" service "];

21 way(area.bologna)[highway =" pedestrian "];

22 way(area.bologna)[highway ="track "];

23)->.minor;

24

25 // Intersezioni stradali

26 node(w.major)(w.minor);

27 out;

1.5 OpenStreetMap 19

Figura 1.4: Intersezioni fra le strade principali e secondarie nel comune bo-
lognese

Formati di dati I dati OSM sono disponibili in diversi formati [30]:

• OSM XML: formato nativo basato su XML

• PBF: formato binario compresso per maggiore efficienza

• GeoJSON: per integrazione con applicazioni web

• Shapefile: per compatibilità con software Geographic Information
System (GIS) tradizionali

L’ecosistema di strumenti e API di OpenStreetMap (OSM) offre quindi
una piattaforma completa e flessibile per lo sviluppo di applicazioni geo-

20 1. Introduzione del sistema

spaziali, dalla semplice visualizzazione di mappe fino a complessi sistemi di
analisi territoriale e routing.

1.6 Funzionalità del sistema

La presente sezione illustra in modo approfondito i requisiti del sistema
da implementare, derivanti dallo studio preliminare. Il progetto di tesi si
propone di sviluppare un’applicazione web conforme ai requisiti funzionali e
non funzionali che verranno esposti.

1.6.1 Requisiti funzionali

• Visualizzazione della mappa: l’utente dovrà poter visualizzare una
mappa in cui

– verrà centrata l’area interessata dall’applicativo

– verranno mostrate le misurazioni in tempo reale ed i conseguenti
Air Quality Index (AQI) relativi ai sensori

– sarà possibile scegliere quali livelli osservare

– sarà presentato un livello heatmap le Air Quality Index (AQI) ed
ogni altro inquinante in esame

– sarà possibile arrestare e riprendere la raccolta delle registrazioni
live

– verranno predisposte tabelle per elencare sensori, misurazioni, sta-
tistiche e log

– dovrà essere possibile visualizzare le informazioni relative ad ogni
sensore quali nome, posizione, data ultima registrazione, livello di
qualità dell’aria corrente e livelli singoli inquinanti

• Fruizione dei dati: verranno predisposte delle rotte specifiche per fare
interrogazioni preformate alle registrazioni salvate.

1.7 Principali difficoltà del progetto 21

1.6.2 Requisiti non funzionali

• Design: l’interfaccia web dovrà essere mobile-first nativamente e re-
sponsive.

• Usabilità: l’interfaccia web dovrà risultare semplice ed intuitiva, ren-
dendo l’esperienza più semplice, favorendo elementi grafici come colori
e simboli rispetto al testo.

• Deployment: il progetto dev’essere strutturato in modo da essere ese-
guito in un ambiente virtualizzato, rendendo così il deploy possibile at-
traverso un solo comando. L’installazione di dipendenze deve limitarsi
esclusivamente agli strumenti di containerizzazione e/o virtualizzazione
appropriati.

1.7 Principali difficoltà del progetto

Le principali sfide affrontate durante lo sviluppo del progetto riguardano:

• La gestione delle misurazioni registrate e l’orchestrazione dei vari mi-
croservizi.

• La generazione di pseudo misurazioni aleatorie (mocking).

• La visualizzazione in tempo reale dei dati sulla mappa e la corretta
presentazione della heatmap (mappa di calore) dei correnti Air Quality
Index (AQI) relativi ai rispettivi sensori.

Capitolo 2

Tecnologie

Nel seguente capitolo verranno presentate le tecnologie adottate per la
realizzazione del progetto AirQualityInsight. Data la natura di applicazione
web del progetto, le tecnologie sono state classificate distinguendo tra quelle
utilizzate per il front-end e quelle per il back-end.

2.1 Applicazioni front-end

In questa sezione verranno presentate le principali tecnologie front-end
impiegate nello sviluppo del progetto AirQualityInsight. L’applicazione front-
end verrà sviluppata in Javascript utilizzando i seguenti framework:

• Vue per lo sviluppo dell’architettura e della struttura generale dell’ap-
plicazione.

• Leaflet per la visualizzazione della mappa interattiva.

Di seguito, la descrizione dettagliata delle singole tecnologie.

2.1.1 Vue

Vue.js è un framework JavaScript progressivo per la costruzione di inter-
facce utente, creato da Evan You nel 2014 [31]. Nato dall’esperienza dell’au-

23

24 2. Tecnologie

tore con AngularJS [32] durante il suo periodo in Google, Vue è stato proget-
tato per essere facilmente adottabile, combinando le peculiarità di Angular
e React [33] con una curva di apprendimento più veloce per gli sviluppatori
che si interfacciano con esso.

La caratteristica distintiva di Vue risiede nella sua natura progressiva, che
consente di adottarlo gradualmente in base alle necessità del progetto. Al
livello più elementare, Vue può essere utilizzato come una semplice libreria
JavaScript per arricchire pagine HTML esistenti con funzionalità interattive.
A livello intermedio invece, il framework è in grado di gestire componen-
ti complessi in relazione fra loro utilizzando sistemi di routing sofisticati.
Infine, al livello più avanzato, Vue permette la costruzione di Single Page
Applications (SPA) [34] complete.

Il sistema di reattività costituisce uno dei pilastri fondamentali dell’ar-
chitettura di Vue. Questo meccanismo garantisce infatti la sincronizzazione
automatica tra il modello dati e la vista, attraverso un sistema di data bin-
ding bidirezionale, ossia un meccanismo di sincronizzazione automatica che
mantiene allineati i dati tra il modello dell’applicazione (model) e l’interfaccia
utente (view) in entrambe le direzioni. Le computed properties permettono
la definizione di proprietà calcolate che si aggiornano automaticamente quan-
do cambiano le loro dipendenze, mentre i watchers offrono la possibilità di
creare osservatori personalizzati per reagire a modifiche specifiche dei dati.

Vue adotta un’architettura basata su componenti, in cui ciascun compo-
nente costituisce un elemento modulare e riutilizzabile dell’interfaccia utente.
I Single File Components (SFC), caratterizzati dall’estensione .vue, incapsu-
lano template HTML, logica JavaScript e stili CSS in un unico file, facilitando
la manutenzione e l’organizzazione del codice. La comunicazione tra compo-
nenti avviene attraverso un sistema ben definito di props per il passaggio di
dati da genitore a figlio e di eventi per la comunicazione inversa.

A livello tecnico, Vue implementa un sistema di template dichiarativo
che utilizza una sintassi intuitiva. Il framework utilizza un Virtual DOM per
ottimizzare le prestazioni, effettuando confronti tra stati precedenti e nuovi

2.1 Applicazioni front-end 25

per minimizzare gli aggiornamenti del DOM reale.

L’ambiente Vue si caratterizza per la presenza di molteplici strumenti di
tipologie differenti. Per la gestione e compilazione dei progetti Vue, vengono
maggiormente utilizzati Vue CLI [35] e Vite [36]: Vue CLI permette la per la
creazione e gestione di progetti da riga di comando, mentre Vite rappresenta
un build tool con tempi di compilazione ridotti e maggiore semplicità d’uti-
lizzo. Per il routing esiste Vue Router [37], il quale gestisce il routing nelle
Single Page Applications (SPA). Per la gestione centralizzata dello stato si
hanno Vuex [38] e Pinia [39]. Infine, per il debugging, Vue DevTools [40]
fornisce strumenti avanzati attraverso estensioni per browser.

L’evoluzione di Vue ha visto il passaggio da Vue 2, che ha consolida-
to l’adozione del framework nell’ambiente enterprise, a Vue 3, rilasciato nel
2020. L’innovazione più significativa di questa major release è probabilmente
la Composition API, che permette una migliore organizzazione della logica
dei componenti e facilita la riusabilità del codice rispetto alla Options API.
Inoltre, è stato migliorato il supporto nativo per il Typescript e, con l’in-
troduzione del supporto per il tree-shaking, sono state ridotte le dimensioni
generali dei bundle.

In conclusione, Vue.js trova applicazione ideale nello sviluppo di appli-
cazioni web moderne, dalle Single Page Applications (SPA) alle Progres-
sive Web App (PWA), dai dashboard amministrativi alle piattaforme e-
commerce. La sua natura incrementale lo rende particolarmente adatto per
la migrazione graduale di applicazioni legacy e per la prototipazione rapida
di nuove funzionalità.

2.1.2 Leaflet

Leaflet rappresenta una delle librerie JavaScript open-source più popolari
per la creazione di mappe interattive ottimizzate per dispositivi mobili e
l’integrazione di funzionalità cartografiche nelle applicazioni web. Sviluppata
inizialmente da Vladimir Agafonkin nel 2011 [41] è stata successivamente
mantenuta da una comunità attiva di sviluppatori per la cartografia digitale.

26 2. Tecnologie

I punti cardine di Leaflet sono la semplicità, l’efficienza e l’usabilità, qua-
lità che lo rendono uno strumento di larga diffusione per sviluppatori che
necessitano di implementare mappe interattive senza la complessità di libre-
rie più pesanti, grazie anche ad un footprint di soli 39 KB di JavaScript
compresso [42].

L’architettura modulare di Leaflet costituisce uno dei suoi principali punti
di forza. Tale libreria è stata infatti progettata seguendo il principio della re-
sponsabilità singola (SRP), dove ogni componente gestisce solo alcuni aspetti
specifici della funzionalità cartografica. Questa approccio consente di sceglie-
re di utilizzare solo i moduli necessari per il proprio progetto, riducendo così
l’impatto sulle prestazioni e facilitando la manutenzione del codice.

Le funzionalità core di Leaflet includono la gestione di layer cartografici
multipli, il supporto per vari formati di tile server, la gestione di marker per-
sonalizzabili, popup informativi, controlli di navigazione e zoom interattivo.
La libreria supporta nativamente i più comuni sistemi di proiezione carto-
grafica, con particolare attenzione alla proiezione Web Mercator utilizzata
dalla maggior parte dei servizi di tile moderni come OpenStreetMap (OSM)
e Google Maps.

È possibile inoltre installare moduli accessori (plugin) sviluppati da terzi
per integrare funzionalità aggiuntive. Tali moduli vengono realizzati, mante-
nuti e resi disponibili dalla comunità open source. Questi vanno ad estende-
re le funzionalità base della libreria, ad esempio, aggiungendo supporto per
clustering di marker, drawing tools, integrazione con servizi di geocoding,
visualizzazione di heatmap, gestione di dati GPX e altro ancora. Questa
modularità permette di costruire applicazioni cartografiche complesse par-
tendo da una base leggera e aggiungendo solo le funzionalità effettivamente
necessarie.

Dal punto di vista delle prestazioni, Leaflet implementa diverse ottimiz-
zazioni per garantire un’esperienza utente fluida. Il sistema di gestione dei
tile implementa strategie di caching e lazy loading, caricando solo le porzioni
di mappa effettivamente presenti nell’area di visualizzazione. Il rendering

2.1 Applicazioni front-end 27

dei marker è ottimizzato attraverso tecniche di virtualizzazione che gestisco-
no efficientemente svariati punti disegnati sulla mappa senza appesantire le
prestazioni di scrolling e zoom.

L’API di Leaflet offre un’interfaccia intuitiva e ben documentata che se-
gue convenzioni JavaScript moderne. La libreria supporta sia approcci pro-
grammatici tradizionali che pattern più moderni come la programmazione
funzionale e l’utilizzo di Promise per operazioni asincrone. L’integrazione
con framework JavaScript contemporanei come Vue.js, React e Angular è fa-
cilitata da wrapper specifici e da una architettura event-driven che si integra
naturalmente con i sistemi di reattività di questi framework.

La compatibilità cross-platform di Leaflet consente di supportare i bro-
wser moderni desktop e mobile. La libreria gestisce automaticamente le dif-
ferenze tra dispositivi touch e mouse, offrendo un’esperienza di navigazione
ottimizzata per ogni tipo di interfaccia.

Dal punto di vista della personalizzazione, Leaflet offre un controllo gra-
nulare sull’aspetto e il comportamento delle mappe. Il sistema di styling
basato su CSS permette di personalizzare completamente l’aspetto dei con-
trolli, marker e popup, mentre l’API JavaScript consente di definire compor-
tamenti interattivi complessi. La libreria supporta la creazione di marker
personalizzati utilizzando HTML, CSS e SVG, permettendo la realizzazione
di interfacce cartografiche su misura.

L’integrazione con servizi di tile esterni è una delle principali caratteristi-
che del framework, che consentono di supportare nativamente servizi come
OpenStreetMap, Google Maps, HERE ed altri. Questa flessibilità permette
agli sviluppatori di scegliere il provider di tile più adatto alle proprie esigenze
in termini di qualità, copertura geografica e costi, mantenendo la stessa API
di sviluppo.

La libreria dei dati geografici supporta il formato GeoJSON nativo, per-
mettendo la visualizzazione di geometrie complesse come poligoni, linee e
punti direttamente da dati strutturati, come le aree comunali ed i confini
territoriali ed amministrativi di regioni, province ed altre suddivisioni geo-

28 2. Tecnologie

grafiche. L’integrazione con servizi REST e API geografiche è semplificata
dalla gestione intrinseca di richieste AJAX e dalla capacità di processare dati
in tempo reale.

La community di Leaflet mantiene attivo il core della libreria e contribui-
sce con supporto tecnico, numerosi plugin, tutorial, esempi d’utilizzo ed una
documentazione ufficiale completa ed aggiornata.

In termini di performance e scalabilità, Leaflet gestisce elasticamente ap-
plicazioni di varia natura e dimensione. Per le applicazioni più semplici,
la libreria offre una soluzione plug-and-play che richiede configurazione mi-
nima per installare le sole funzionalità necessarie, in modo da migliorare
l’esperienza d’utilizzo.

Il seguente esempio 2.1 mostra come sia possibile realizzare una map-
pa con tile OpenStreetMap (OSM) centrata su Piazza Maggiore (Bologna),
ottenendo la mappa mostrata in figura 2.1:

Listing 2.1: Mappa Bologna con Leaflet

1 // Coordinates of Piazza Maggiore

2 const lat = 44.4939;

3 const lng = 11.3426;

4

5 const map = L.map(’map ’).setView ([lat , lng], 13);

6

7 // Tiles layer (OpenStreetMap)

8 L.tileLayer(’https ://{s}.tile.openstreetmap.org/{z}/{x

}/{y}.png ’, {

9 maxZoom: 19,

10 attribution: ’<a href="http ://www.openstreetmap.org/

copyright">OpenStreetMap ’

11 }).addTo(map);

12

13 // Current position marker

14 const marker = L.marker ([lat , lng]).addTo(map);

15

2.1 Applicazioni front-end 29

16 // Marker popup

17 marker.bindPopup(‘

18 <div style="text -align: center;">

19 <h4>Piazza Maggiore , Bologna </h4>

20 <p>Lat: ${lat}</p>

21 <p>Lng: ${lng}</p>

22 </div >

23 ‘).openPopup ();

24

25 // Circle on area

26 L.circle ([lat , lng], {

27 color: ’red ’,

28 fillColor: ’#f03 ’,

29 fillOpacity: 0.2,

30 radius: 1000 // meters

31 }).addTo(map);

32

33 // Optional controls

34 L.control.scale({

35 imperial: false ,

36 metric: true

37 }).addTo(map);

30 2. Tecnologie

Figura 2.1: Piazza Maggiore, Bologna

In conclusione, Leaflet si posiziona come una soluzione affidabile per l’in-
tegrazione di funzionalità cartografiche in applicazioni web moderne. Com-
binando leggerezza, potenza, estensibilità e facilità d’uso diventa una scel-
ta indicata per sviluppatori che necessitano di implementare mappe inte-
rattive performanti e personalizzabili, dal prototipo rapido all’applicazione
complessa.

2.2 Applicazioni back-end 31

2.2 Applicazioni back-end

In questa sezione verranno presentate le principali tecnologie back-end
impiegate nello sviluppo del progetto AirQualityInsight.

Verranno utilizzati Node.js per realizzare il server, Python per simula-
re i dispositivi di misurazione della qualità dell’aria, Kafka come broker
dei messaggi e MongoDB per mantenere un database documentale delle
registrazioni.

2.2.1 Node.js

Node.js è un runtime system open-source multipiattaforma costruito sul
motore JavaScript V8 di Google Chrome [43]. A differenza dei tradizionali
ambienti JavaScript che operano esclusivamente nel browser, Node.js per-
mette l’esecuzione di codice JavaScript lato server, abilitando lo sviluppo di
applicazioni web complete utilizzando un unico linguaggio di programmazio-
ne.

Le principali caratteristiche di Node.js sono l’adozione di un paradigma
event-driven, un approccio non-blocking I/O ed un processo single-threaded.
Il modello di programmazione orientato agli eventi consente di gestire effi-
cientemente operazioni asincrone basate sulla manifestazione di determinati
eventi. Le operazioni di input e di output non bloccanti migliorano le per-
formance dell’applicativo. L’uso di un singolo thread principale con un event
loop riduce la complessità della gestione della concorrenza.

Il seguente esempio 2.2 mostra come creare un server HTTP minimale
utilizzando Node.js:

Listing 2.2: Server HTTP base in Node.js

1 const http = require(’http ’);

2

3 const server = http.createServer ((req , res) => {

4 res.writeHead (200, {’Content -Type ’: ’text/plain ’});

5 res.end(’Hello world!’);

32 2. Tecnologie

6 });

7

8 const PORT = 3000;

9 server.listen(PORT , () => {

10 console.log(‘Server listening on port ${PORT}‘);

11 });

Node.js offre ampie funzionalità per l’interazione con il file system. L’e-
sempio seguente 2.3 dimostra la lettura asincrona di un file:

Listing 2.3: Lettura asincrona di file

1 const fs = require(’fs ’);

2

3 // Asynchronous reading

4 fs.readFile(’file.txt ’, ’utf8 ’, (err , data) => {

5 if (err) {

6 console.error(’Error in file reading:’, err);

7 return;

8 }

9 console.log(’File content:’, data);

10 });

11

12 // Synchronous reading (not file for large files)

13 try {

14 const data = fs.readFileSync(’example.txt ’, ’utf8 ’);

15 console.log(’File content:’, data);

16 } catch (err) {

17 console.error(’Error in file reading:’, err);

18 }

L’architettura di Node.js si basa sul concetto di event loop, un meccani-
smo che permette di gestire multiple operazioni I/O senza bloccare l’esecuzio-
ne del programma principale [44]. Questo approccio lo rende particolarmente
adatto per applicazioni che richiedono alta concorrenza con operazioni I/O

2.2 Applicazioni back-end 33

intensive, come API REST, applicazioni real-time su dispositivi distribuiti e
microservizi.

Le performance di Node.js sono generalmente migliori rispetto ai server
tradizionali multi-threaded per applicazioni I/O-bound, grazie alla riduzione
dell’overhead dovuto al context switching tra thread e alla gestione efficiente
della memoria. Questo poiché i sistemi tradizionali adottano tecniche di
gestione delle richieste creando un nuovo thread per ogni nuova connessione,
mentre Node.js, operando su un singolo thread ed utilizzando chiamate I/O
non bloccati, riesce a supportare un maggior numero di richieste concorrenti
nell’event loop.

Quello che ha reso popolare tale framework è la praticità e la versatilità
che lo contraddistinguono. Risulta infatti una buona scelta nel realizzare
velocemente applicazioni web scalabili, grazie alla sua capacità di gestire un
numero elevato di connessioni simultanee.

Node.js dispone di un gestore di pacchetti chiamato “npm” (Node Package
Manager), il quale fornisce un insieme di librerie e componenti riutilizzabili
e disponibili al pubblico, facilmente installabili tramite un repository online,
con gestione delle versioni e delle dipendenze. Tali librerie sono accessibili
attraverso uno strumento command-line dedicato.

I moduli principali sono:

• Express, un framework di sviluppo web [45];

• Socket.io, un componente server-side di due WebSocket components
comuni [46];

• Mongodb, che fornisce API per l’omonimo database [47];

• Redis, un sistema di caching [48].

È possibile per chiunque realizzare e pubblicare la propria libreria su Node
Package Manager (npm).

In conclusione, Node.js rappresenta una soluzione moderna e efficace per
lo sviluppo di applicazioni server-side, disponendo di una vasta scelta di libre-
rie disponibili attraverso Node Package Manager (npm) ed una community

34 2. Tecnologie

attiva. La sua architettura event-driven e le performance elevate lo rendono
una scelta ideale per molte tipologie di applicazioni web moderne.

WoT

Il Web of Things (WoT) rappresenta un paradigma architetturale che
estende i principi del WWW all’IOT, permettendo l’interoperabilità tra di-
spositivi eterogenei attraverso standard web consolidati [49]. L’implementa-
zione analizzata trasforma sensori di qualità dell’aria in Things web-accessibili,
seguendo le specifiche W3C e utilizzando l’ontologia Smart Applications RE-
Ference ontology (SAREF) [50]. Ogni sensore fisico viene quindi trasformato
in una risorsa web identificabile univocamente, accessibile attraverso proto-
colli HTTP standard e descritta mediante metadati strutturati secondo il
vocabolario WoT. Questa approccio garantisce l’interoperabilità semantica e
l’integrazione seamless con applicazioni web esistenti.

L’architettura utilizza le Thing Descriptions (TD) come elemento cen-
trale, conformi alla specifica W3C WoT Thing Descriptions v1.1 [49]. La
struttura della TD include diversi componenti fondamentali che definiscono
l’identità, le capacità e le modalità di interazione del dispositivo. Ogni senso-
re viene identificato univocamente attraverso URI strutturati (urn:sensor:air-
quality:${sensor_id}) e classificato semanticamente usando il tipo saref:Sensor.

Il contesto semantico integra il vocabolario WoT standard con l’ontolo-
gia SAREF, facilitando l’interpretazione automatica delle funzionalità del
dispositivo. Le proprietà modellano parametri ambientali con schemi di dati
precisi che includono tipo, unità di misura e range di validità.

La directory WoT (/wot/things) supporta il discovery automatico dei di-
spositivi, fornendo informazioni sommarie su identità, stato operativo e ulti-
mo contatto. Le notifiche proattive via WebSocket mantengono sincronizzate
le applicazioni client senza polling periodico.

L’implementazione rispetta le specifiche W3C WoT [51], utilizzando vo-
cabolari semantici standard e implementando gli elementi necessari. L’uso

2.2 Applicazioni back-end 35

dell’ontologia SAREF [50] aggiunge un layer semantico che facilita l’intero-
perabilità con sistemi di building automation e smart city.

La separazione tra modello logico (Thing Descriptions) e implementazione
fisica (sensori hardware) facilita l’evoluzione dell’architettura e l’integrazione
di nuove tipologie di dispositivi, confermando la validità del paradigma WoT
per applicazioni IOT di larga scala e garantiscono compatibilità con toolchain
WoT esistenti e scalabilità orizzontale [52].

2.2.2 Python

Python è un linguaggio di programmazione di alto livello, interpretato
e multi-paradigma. È stato creato da Guido Van Rossum e rilasciato per
la prima volta nel 1991 [53]. Il nome deriva dalla serie televisiva britan-
nica "Monty Python’s Flying Circus", riflettendo l’approccio creativo che
caratterizza l’intera filosofia del linguaggio.

La filosofia di Python è codificata nel famoso "Zen of Python" di Tim
Peters, un insieme di principi guida che enfatizzano la leggibilità, la sempli-
cità e la qualità del codice. Tra questi principi spicca il motto "Beautiful is
better than ugly" e "Simple is better than complex", che hanno influenzato
profondamente la progettazione del linguaggio e la sua evoluzione nel corso
degli anni [54].

Uno degli elementi che contraddistinguono Python rispetto ad altri lin-
guaggi di programmazione è l’assenza di parentesi graffe per delimitare i
blocchi di codice, ma bensì l’utilizzo dell’indentazione stessa. Tale carat-
teristica ha promosso l’apprendimento del linguaggio a programmatori alle
prime armi, che hanno potuto così concentrarsi maggiormente sul contenuto
del codice grazie alla sua forma più pulita e leggibile.

Il supporto di diversi modelli di programmazione da parte di Python lo
ha reso un linguaggio versatile e popolare. Si possono infatti scegliere ap-
procci procedurali per script semplici, orientati agli oggetti per applicazioni
più complesse o funzionali per elaborazioni matematiche più avanzate. Que-

36 2. Tecnologie

sta flessibilità permette di scegliere il paradigma migliore per il problema
specifico da risolvere.

Una peculiarità del linguaggio Python è il concetto dove tutto è un og-
getto, inclusi numeri, stringhe, funzioni e persino le classi stesse. Tale uni-
formità concettuale semplifica notevolmente il modello mentale necessario
per comprendere il linguaggio, facilitando quindi l’apprendimento di concetti
avanzati.

Il sistema di tipizzazione è forte (strong typing) ed eseguito a run-time
(dynamic typing), evitando così errori comuni dipesi dalle operazioni impli-
cite tra tipi incompatibili. È stato introdotto il supporto per type hints,
permettendo di annotare esplicitamente i tipi delle variabili e dei parame-
tri delle funzioni. Queste annotazioni, pur non influenzando l’esecuzione del
programma, migliorano significativamente la leggibilità del codice e abilitano
strumenti di analisi statica per la rilevazione precoce di errori di tipo.

Python gestisce in autonomia la memoria allocata grazie ad un sistema
garbage collector. Questo solleva il programmatore dalla necessità di ge-
stire manualmente l’allocazione e la deallocazione della memoria, riducendo
drasticamente i bug legati alla gestione delle risorse. Il garbage collector
rappresenta un utile strumento che, sfruttando il reference counting ed inte-
grato con un rilevatore di cicli, permette di individuare e segnalare riferimenti
circolari.

Anche se spesso viene inteso come linguaggio interpretato, Python in real-
tà non converte direttamente il codice sorgente in linguaggio macchina, ma
passa prima una fase di pre-compilazione bytecode, evitando di reinterpretare
integralmente il codice e migliorando le prestazioni.

L’ecosistema di Python è arricchito dal Python Package Index (PyPI),
un repository centrale che ospita centinaia di migliaia di pacchetti di terze
parti [55]. Viene così praticamente ricoperto ogni dominio applicativo, dalla
sviluppo web all’intelligenza artificiale, dall’analisi dei dati alla computer
vision.

Il sistema di gestione dei pacchetti, principalmente attraverso pip, rende

2.2 Applicazioni back-end 37

estremamente semplice l’installazione e la gestione delle dipendenze. L’intro-
duzione di strumenti come virtualenv e, più recentemente, pipenv e poetry,
ha ulteriormente migliorato la gestione degli ambienti di sviluppo isolati, per-
mettendo di evitare conflitti tra diverse versioni delle librerie. Questo risulta
molto comodo qualora si lavori a progetti che utilizzando versioni differenti
delle dipendenze.

La libreria standard provvede un ricco numero di moduli base, come quelli
per le operazioni su file system, networking, regex, database, threading, e
molto altro. Questa completezza riduce la necessità di dipendenze esterne
per molte operazioni comuni.

Uno dei campi in cui il linguaggio è maggiormente usato è quello scien-
tifico, dove librerie come NumPy e SciPy hanno trasformato Python in uno
strumento fondamentale per il calcolo numerico, fornendo strutture dati ef-
ficienti e algoritmi ottimizzati per operazioni matematiche complesse. Pan-
das ha rivoluzionato l’analisi dei dati, offrendo strutture dati potenti per la
manipolazione e l’analisi di dataset strutturati.

Il seguente esempio 2.4 mostra come sia possibile generare misurazioni
aleatorie in Python:

Listing 2.4: Generazione di misurazioni aleatorie in Python

1 import random

2 import numpy as np

3 from datetime import datetime , timedelta

4

5 class MeasurementGenerator:

6 def __init__(self):

7 self.sensors = {

8 ’temperature ’: {’min ’: 15, ’max ’: 35, ’unit ’: ’C’},

9 ’humidity ’: {’min ’: 30, ’max ’: 90, ’unit ’: ’%’},

10 ’pressure ’: {’min ’: 990, ’max ’: 1030, ’unit ’: ’hPa

’}

11 }

12

38 2. Tecnologie

13 def generate_measurement(self , sensor_type):

14 config = self.sensors[sensor_type]

15 value = random.uniform(config[’min ’], config[’max

’])

16 return {

17 ’timestamp ’: datetime.now().isoformat (),

18 ’sensor ’: sensor_type ,

19 ’value ’: round(value , 2),

20 ’unit ’: config[’unit ’]

21 }

22

23 def generate_time_series(self , sensor_type , hours=24,

interval_minutes =60):

24 measurements = []

25 start_time = datetime.now() - timedelta(hours=hours)

26

27 for i in range(0, hours * 60, interval_minutes):

28 timestamp = start_time + timedelta(minutes=i)

29 config = self.sensors[sensor_type]

30

31 base_value = (config[’min ’] + config[’max ’]) / 2

32 daily_variation = 5 * np.sin(2 * np.pi * i / (24 *

60))

33 noise = random.gauss(0, 1)

34 value = base_value + daily_variation + noise

35

36 measurements.append ({

37 ’timestamp ’: timestamp.isoformat (),

38 ’sensor ’: sensor_type ,

39 ’value ’: round(np.clip(value , config[’min ’],

config[’max ’]), 2),

40 ’unit ’: config[’unit ’]

41 })

2.2 Applicazioni back-end 39

42

43 return measurements

44

45 if __name__ == ’__main__ ’:

46 generator = MeasurementGenerator ()

47

48 single_measurement = generator.generate_measurement(’

temperature ’)

49 print(f"Single: {single_measurement }")

50

51 time_series = generator.generate_time_series(’

temperature ’, hours =12)

52 print(f"Generated {len(time_series)} measurements ")

53 print(f"First: {time_series [0]}")

54 print(f"Last: {time_series [-1]}")

Eseguendo il codice riportato nell’esempio 2.4 si può ottenere un output
come riportato in lista 2.5:

Listing 2.5: Output di esempio ottenuto dalla generazione di misurazioni
aleatorie in Python

1 Single: {’timestamp ’: ’2025-08-28T18 :55:41.327822 ’ , ’

sensor ’: ’temperature ’, ’value ’: 30.71, ’unit ’: ’C’}

2 Generated 12 measurements

3 First: {’timestamp ’: ’2025-08-28T05 :55:41.327850 ’ , ’

sensor ’: ’temperature ’, ’value ’: 25.79, ’unit ’: ’C’}

4 Last: {’timestamp ’: ’2025-08-28T22 :55:41.327850 ’ , ’

sensor ’: ’temperature ’, ’value ’: 26.01, ’unit ’: ’C’}

Anche nello sviluppo web, Python rimane una delle scelte preferire dagli
sviluppatori, i quali possono usare framework come Django e Flask [56, 57]
per realizzare le proprie applicazioni web. Fra i due, Flask risulta più mini-
male e flessibile per progetti che richiedono un controllo più granulare dell’ar-

40 2. Tecnologie

chitettura, mentre Django include tutto il necessario per sviluppare sistemi
complessi.

Il seguente esempio 2.6 mostra come sia possibile realizzare un semplice
server usando Flask:

Listing 2.6: Server Flask base in Python

1 from flask import Flask , jsonify , request

2

3 app = Flask(__name__)

4

5 users = [

6 {"id": 1, "name": "John", "email": "john@example.com"},

7 {"id": 2, "name": "Jane", "email": "jane@example.com"}

8]

9

10 @app.route(’/’)

11 def home():

12 return {" message ": "Flask server running", "users_count

": len(users)}

13

14 @app.route(’/api/users ’, methods=[’GET ’])

15 def get_users ():

16 return jsonify(users)

17

18 @app.route(’/api/users/<int:user_id >’, methods=[’GET ’])

19 def get_user(user_id):

20 user = next((u for u in users if u["id"] == user_id),

None)

21 if user:

22 return jsonify(user)

23 return jsonify ({" error": "User not found "}), 404

24

25 @app.route(’/api/users ’, methods=[’POST ’])

26 def create_user ():

2.2 Applicazioni back-end 41

27 data = request.get_json ()

28 if not data or ’name ’ not in data or ’email ’ not in

data:

29 return jsonify ({" error": "Name and email required "}),

400

30

31 new_user = {

32 "id": max([u["id"] for u in users]) + 1,

33 "name": data["name"],

34 "email": data["email"]

35 }

36 users.append(new_user)

37 return jsonify(new_user), 201

38

39 if __name__ == ’__main__ ’:

40 app.run(debug=True , port =5000)

Eseguendo il codice riportato nell’esempio 2.6 si può ottenere un output
come riportato in lista 2.7:

Listing 2.7: Output di esempio ottenuto dall’interazione con le rotte disposte
dal server web in Flask

1 // Main url

2 curl 127.0.0.1:5000

3 {

4 "message ": "Flask server running",

5 "users_count ": 2

6 }

7

8 // Get all users

9 curl 127.0.0.1:5000/ api/users

10 [

11 {

12 "email": "john@example.com",

42 2. Tecnologie

13 "id": 1,

14 "name": "John"

15 },

16 {

17 "email": "jane@example.com",

18 "id": 2,

19 "name": "Jane"

20 }

21]

22

23 // Show informations about user #1

24 curl 127.0.0.1:5000/ api/users/1

25 {

26 "email": "john@example.com",

27 "id": 1,

28 "name": "John"

29 }

30

31 // Show informations about user #2

32 curl 127.0.0.1:5000/ api/users/2

33 {

34 "email": "jane@example.com",

35 "id": 2,

36 "name": "Jane"

37 }

38

39 // Create new user

40 curl -X POST http ://127.0.0.1:5000/ api/users \

41 -H "Content -Type: application/json" \

42 -d ’{"name": "Mario Rossi", "email": "mario.

rossi@example.com"}’

43 {

44 "email": "mario.rossi@example.com",

2.2 Applicazioni back-end 43

45 "id": 3,

46 "name": "Mario Rossi"

47 }

L’approccio "pythonic" enfatizza la leggibilità del codice e la rapidità di
sviluppo, permettendo di creare prototipi funzionali in tempi molto brevi e
di scalare gradualmente verso applicazioni enterprise.

Sempre nel campo scientifico, Python è diventato il linguaggio de-facto
per data science e machine learning, grazie alle librerie specializzate. Ten-
sorFlow e PyTorch, ad esempio, hanno reso accessibili le tecniche di deep
learning senza il bisogno di avere nozioni approfondite di matematica avan-
zata.

Un altro campo in cui il linguaggio è fortemente utilizzato è quello delle
DevOps e dell’amministrazione di sistemi, grazie alla capacità di interagire
facilmente con il sistema operativo, nel processare file di testo, interfacciarsi
con database e API REST. Viene infatti scelto per automatizzare processi
ripetitivi, creare pipeline di elaborazione dati ed integrazione di sistemi ete-
rogenei, settori dove la rapidità di sviluppo e la manutenibilità del codice
sono cruciali.

Python rimane uno dei linguaggi più popolari e trasversali, godendo di
una forte comunità che ne segue gli sviluppi e lo aggiorna in modo continua-
tivo, con rilasci annuali che introducono nuove funzionalità e miglioramenti
delle performance. L’adozione crescente in settori come l’intelligenza artifi-
ciale, l’Internet of Things (IOT) e l’edge computing suggerisce che Python
rimarrà rilevante e in continua evoluzione, adattandosi alle esigenze di un
panorama tecnologico in rapido cambiamento.

2.2.3 Kafka

Apache Kafka è una piattaforma di streaming distribuito basato su Java
e Scala, progettata per gestire flussi di dati in tempo reale su larga scala [58].
Sviluppato originariamente da LinkedIn e successivamente donato alla Apa-

44 2. Tecnologie

che Software Foundation nel 2011, Kafka ha acquisito presto popolarità nel
panorama della messaggistica e del processing di eventi in sistemi distribuiti
[59].

La filosofia di Kafka si basa sul concetto di event streaming, dove i dati
vengono trattati come una sequenza immutabile di eventi che possono essere
pubblicati, memorizzati e processati in tempo reale [60]. Questo paradig-
ma si discosta significativamente dai tradizionali message broker, offrendo
persistenza duratura, elevata throughput e capacità di replay dei messaggi,
caratteristiche fondamentali per architetture moderne basate su microservizi
e event-driven architecture.

L’architettura distribuita di Kafka consente la gestione in tempo reale di
grandi volumi di dati, rendendolo una valida scelta in campi quali analytics,
monitoring, fraud detection e real-time recommendation systems [61]. Il
sistema organizza i dati in topic, entità logiche che rappresentano categorie
di messaggi correlati [58]. Ogni topic è suddiviso in partition, unità fisiche
di parallelizzazione che permettono la distribuzione del carico e la scalabilità
orizzontale del sistema.

Il modello di persistenza di Kafka utilizza un commit log distribuito, do-
ve ogni messaggio viene assegnato a un offset sequenziale all’interno di una
partizione [59]. Questa struttura garantisce l’ordinamento dei messaggi all’in-
terno di ciascuna partizione e permette un accesso efficiente, sia sequenziale
che random, ai dati storici. La persistenza è implementata attraverso seg-
ment files ottimizzati per operazioni append-only, minimizzando la latenza
di scrittura e massimizzando la throughput.

I broker Kafka formano un cluster distribuito che gestisce la replica dei
dati attraverso il meccanismo di leader-follower replication [60]. Ogni parti-
zione ha un broker leader che gestisce tutte le operazioni di lettura e scrittura,
mentre i follower mantengono copie sincronizzate dei dati. Il sistema di ele-
zione del leader, basato su Apache ZooKeeper (e successivamente su KRaft
metadata management), garantisce alta disponibilità e fault tolerance.

Il modello publish-subscribe di Kafka si basa sull’interazione tra produt-

2.2 Applicazioni back-end 45

tori, che pubblicano messaggi sui topic, e consumatori, che leggono e pro-
cessano questi messaggi [61]. I produttori possono configurare diverse stra-
tegie di partitioning, utilizzando chiavi di partizionamento per garantire che
messaggi correlati vengano sempre inviati alla stessa partizione, preservando
l’ordinamento temporale.

Kafka supporta diverse semantiche di delivery [58]: la semantica at-least-
once garantisce che ogni messaggio venga consegnato almeno una volta, ma
può comportare duplicazioni; la semantica at-most-once assicura l’assenza di
duplicati ma può causare perdite di messaggi in caso di failure; la semanti-
ca exactly-once, introdotta nelle versioni più recenti, combina transazioni e
idempotenza per garantire elaborazione esatta dei messaggi.

I consumer groups rappresentano un meccanismo di parallelizzazione del
consumo di messaggi [59]. Ogni consumer all’interno di un gruppo riceve
messaggi da un sottoinsieme delle partizioni del topic, permettendo scala-
bilità orizzontale del processing. Il consumer group rebalancing automatico
redistribuisce le partizioni tra i consumatori attivi, favorendo load balancing
dinamico e fault tolerance.

Kafka Streams costituisce una libreria client per il processing di stream di
dati che elimina la necessità di framework esterni per elaborazioni in tempo
reale [60]. Questa libreria implementa il paradigma di stream processing
attraverso topology di trasformazioni che possono includere operazioni di
filtering, mapping, aggregation e joining tra stream differenti.

La scalabilità orizzontale di Kafka è limitata principalmente dal numero
di partizioni per topic, che determina il massimo grado di parallelismo achie-
vable [58]. L’aggiunta di broker al cluster permette di aumentare la capacità
di storage e processing, ma richiede careful planning del numero di partizioni
e della strategia di replica. Il processo di partition reassignment può essere
utilizzato per bilanciare il carico tra broker esistenti e nuovi.

Kafka si rivela particolarmente efficace in architetture event-driven dove la
decoupling tra componenti e la capacità di replay degli eventi sono requisiti
fondamentali [60]. Pattern architetturali come Event Sourcing, Command

46 2. Tecnologie

Query Responsibility Segregation (CQRS) e Saga pattern sono indicati per
tale strumento.

I casi d’uso tipici di Kafka includono real-time analytics, log aggregation,
metrics collection, stream processing per machine learning e data pipeline
per data lake e data warehouse [61]. La capacità di Kafka di fungere sia da
message broker che da storage system può essere sfruttata in architetture dove
i dati devono essere processati da multiple applicazioni con diverse temporal
requirements.

2.2.4 MongoDB

MongoDB è uno dei database NoSQL orientati ai documenti più noti ed
utilizzati [62]. Sviluppato inizialmente da 10gen (ora MongoDB Inc.) nel
2009, questo database ha rivoluzionato il modo in cui gli sviluppatori ap-
procciano la persistenza dei dati, offrendo un’alternativa flessibile e scalabile
ai tradizionali database relazionali [63].

La filosofia alla base di MongoDB si discosta significativamente dal para-
digma relazionale in favore di un modello basato su documenti Binary JSON
(BSON) che permette una maggiore flessibilità nella strutturazione dei dati
[64]. Questa caratteristica consente agli sviluppatori di memorizzare oggetti
complessi e annidati senza la necessità di normalizzazione, tipica dei database
SQL tradizionali.

L’architettura di MongoDB si avvale di un approccio document-oriented,
dove ogni record è rappresentato come un documento flessibile che può con-
tenere campi di diversi tipi di dati [65]. Questa struttura elimina la rigidità
dello schema fisso, permettendo l’evoluzione dinamica delle strutture dati
durante il ciclo di vita dell’applicazione.

Il sistema di indicizzazione di MongoDB supporta indici di varia natura
quali composti, testuali, geospaziali ed altro, offrendo prestazioni ottimizzate
per diversi tipi di query [66]. Gli indici vengono implementati utilizzando
strutture dati B-tree per ottenere operazioni di ricerca efficienti anche su
grandi volumi di dati. Inoltre, MongoDB supporta indici parziali e Time To

2.2 Applicazioni back-end 47

Live (TTL), consentendo una gestione automatica dei dati basata su criteri
temporali.

La gestione della memoria in MongoDB utilizza il memory mapping per
migliorare le prestazioni di lettura e scrittura [67]. Il WiredTiger storage
engine ottiene ciò attraverso la compressione dei dati e il controllo della
concorrenza a livello di documento.

MongoDB utilizza un linguaggio di query basato su JavaScript che si
integra naturalmente con gli ambienti di sviluppo web moderni [65]. Le
query vengono espresse attraverso documenti JSON che specificano i criteri
di ricerca, proiezione e ordinamento. Questa sintassi risulta particolarmen-
te intuitiva per gli sviluppatori familiari con JavaScript e altri linguaggi di
programmazione moderni.

L’Aggregation Framework rappresenta uno strumento potente per l’ela-
borazione e l’analisi dei dati, offrendo funzionalità comparabili a quelle dei
sistemi SQL attraverso pipeline di trasformazione [66]. Le operazioni di ag-
gregazione includono filtering, grouping, sorting, reshaping e computational
operations, permettendo analisi complesse direttamente a livello di database.

Le prestazioni di MongoDB dipendono significativamente dalla proget-
tazione dello schema e dalla strategia di indicizzazione adottata [62]. A
differenza dei database relazionali, dove la normalizzazione è spesso priori-
taria, in MongoDB è frequentemente vantaggioso denormalizzare i dati per
ottimizzare le performance di lettura.

MongoDB si rivela particolarmente efficace in scenari caratterizzati da
rapido sviluppo, schema evolutivo e necessità di scalabilità orizzontale [63].
Applicazioni web, sistemi di gestione contenuti, piattaforme di social media
e applicazioni IOT rappresentano casi d’uso ideali per questo database. Tut-
tavia, per applicazioni che richiedono transazioni ACID complesse o relazioni
complesse tra entità, i database relazionali tradizionali possono risultare più
appropriati.

Il seguente esempio 2.8 presenta quale query di esempio in un database
Mongodb:

48 2. Tecnologie

Listing 2.8: Query MongoDB

1 // Document example

2 {

3 "_id": ObjectId ("...") ,

4 "station ": "Bologna Piazza Maggiore",

5 "coordinates ": {"lat": 44.4939 , "lng": 11.3426} ,

6 "pm25": 35.2,

7 "pm10": 42.8,

8 "no2": 48.5,

9 "o3": 62.1,

10 "temperature ": 22.5,

11 "humidity ": 65,

12 "aqi": 78,

13 "level": "Moderate",

14 "timestamp ": ISODate ("2025 -08 -23 T14 :30:00Z")

15 }

16

17 // Find stations with PM2.5 above 25 micrograms per

cube meter

18 db.air_quality.find ({" pm25": {$gt: 25}})

19

20 // Find stations with good air quality level in

previous 24 hours

21 db.air_quality.find({

22 "level": "Good",

23 "timestamp ": {$gte: new Date(Date.now() -

24*60*60*1000)}

24 })

25

26 // Daily average of PM2.5 per station

27 db.air_quality.aggregate ([

28 {$match: {" timestamp ": {$gte: ISODate ("2025 -08 -23 T00

:00:00Z")}}},

2.3 Deployment 49

29 {$group: {_id: "$station", avg_pm25: {$avg: "$pm25"},

measurements: {$sum: 1}}},

30 {$sort: {avg_pm25: -1}}

31])

2.3 Deployment

In questa sezione verranno descritti gli strumenti adoperati nel deploy-
ment, quali Docker come ambiente di containerizzazione e Docker compose
come strumento d’orchestrazione dei container realizzati dal primo.

2.3.1 Docker

Docker è un progetto open-source, il cui sviluppo è a cura della Docker
Inc, divenuto uno dei principali attori nel campo dello sviluppo e deployment
di applicazioni basate su container Linux [68]. Questa tecnologia di contai-
nerizzazione permette di incapsulare un’applicazione insieme a tutte le sue
dipendenze in un contenitore leggero e portabile, garantendo che l’applica-
zione funzioni in modo consistente fra differenti sistemi operativi. Questo
container rappresenta infatti un sistema isolato dove l’applicazione dispone
di tutte le librerie necessarie alla sua esecuzione.

La filosofia alla base di Docker è fondata sul concetto di "write once, run
anywhere", permettendo agli sviluppatori di creare applicazioni che possono
essere eseguite senza modifiche sui sistemi operativi che supportano Docker
[69]. I container Docker condividono il kernel del sistema operativo host,
rendendoli più efficienti rispetto alle tradizionali macchine virtuali in termini
di utilizzo delle risorse e tempi di avvio. Non è quindi necessario avere in-
stallati sul proprio sistema operativo strumenti usati dall’applicazione poiché
saranno disponibili direttamente all’interno del container.

I container Docker vengono costruiti sulla base di file Dockerfile, i quali
riportano tutte le istruzioni necessarie a realizzare l’immagine. Un’imma-

50 2. Tecnologie

gine Docker è un pacchetto completo e immutabile che contiene l’essenzia-
le per eseguire un’applicazione: codice, librerie, dipendenze, configurazio-
ni. Funziona come uno "stampo digitale" che garantisce la riproducibilità
dell’ambiente software, eliminando i problemi di compatibilità tra diversi
sistemi.

Le immagini sono costruite a livelli sovrapposti, dove ogni strato aggiun-
ge componenti specifici, rendendo efficiente sia l’archiviazione che la condi-
visione. Questo risulta ottimale quando immagini differenti necessitano di
elementi in comune, condividendo fra loro livelli e riducendo lo spazio uti-
lizzato, gli eventuali tempi di download e di compilazione degli stessi. Una
volta creata, l’immagine rimane invariata e può essere utilizzata per gene-
rare molteplici container identici, che rappresentano le istanze in esecuzione
dell’applicazione.

Docker permette anche la realizzazione di volumi, per disporre di dati
persistenti, e di reti, per mettere in comunicazione più container fra loro.
I volumi trovano impiego qualora sia necessario mantenere dati una volta
arrestata l’esecuzione di un container, come per i database. Le reti sono
usate invece per sistemi più complessi in cui due o più container devono
poter comunicare. Un container può essere disposto su una o più reti virtuali
per interagire con altri container. Avere più reti può risultare utile nel caso
in cui determinati container abbiano bisogno di vedere solo altri container su
certi livelli, distinguendo ad esempio servizi di back-end e di front-end.

Nel seguente esempio viene mostrato come sia possibile realizzare un con-
tainer con l’ultima versione disponibile di Python per eseguire il proprio script
app.py e le relative dipendenze definite nel file requirements.txt 2.9:

Listing 2.9: Dockerfile Python

1 FROM python:latest

2 WORKDIR /app

3 COPY requirements.txt .

4 RUN pip install --no-cache -dir -r requirements.txt

5 COPY . .

2.3 Deployment 51

6 EXPOSE 8000

7 CMD [" python", "app.py"]

2.3.2 Docker compose

Docker Compose è uno strumento che semplifica la gestione di applica-
zioni composte da più container Docker. Attraverso un singolo file di confi-
gurazione YAML, permette di definire tutti i servizi che compongono l’appli-
cazione, specificando come devono comunicare tra loro, quali porte esporre,
quali volumi condividere e come configurare le reti.

Il vantaggio di Docker Compose è la capacità di trasformare la complessità
di gestire assieme un insieme di più container Docker. Ad esempio, è possibile
avviare tutti i container, con relativi volumi e reti, con un semplice ‘docker-
compose up‘ piuttosto che caricare manualmente ogni container, volume e
rete. Con questo singolo comando è infatti possibile avviare simultaneamente
i servizi necessari all’applicazione, creando automaticamente le connessioni e
le dipendenze specificate nel file di configurazione.

Docker Compose trova impiego principalmente negli ambienti di sviluppo
e testing, dove permette di replicare facilmente le architetture di applicazio-
ni complesse. Basandosi su un file docker-compose.yml, è possibile ricreare
l’intero stack applicativo con un comando, agevolando lo sviluppo. In aggiun-
ta, gestisce automaticamente aspetti come reti isolate, volumi persistenti e
variabili d’ambiente, rendendo trasparente la complessità dell’orchestrazione
multi-container.

Nel seguente esempio riproduciamo quanto illustrato in 2.9 ma utilizzando
invece direttamente Docker Compose 2.10:

Listing 2.10: Docker Compose Python

1 version: ’3.8’

2

3 services:

4 python -app:

52 2. Tecnologie

5 image: python:latest

6 ports:

7 - "8000:8000"

8 volumes:

9 - .:/app

10 working_dir: /app

11 environment:

12 - ENV=test

13 command: >

14 sh -c "pip install -r requirements.txt 2>/dev/

null || true &&

15 python app.py"

16 restart: unless -stopped

Capitolo 3

Sviluppo dell’elaborato di

progetto

In questo capitolo verrà descritto il progetto sviluppato, in particolare
l’architettura generale del sistema, la descrizione dei singoli componenti e
l’applicazione front-end.

3.1 Architettura generale del sistema

In questa sezione verrà descritta l’architettura generale del sistema, ana-
lizzando i componenti principali, le loro interazioni e le scelte progettuali
adottate.

3.1.1 Architettura a microservizi

Il progetto AirQualityInsight è stato realizzato utilizzando un’insieme di
microservizi.

I microservizi rappresentano un approccio architetturale per lo sviluppo
di applicazioni software che prevede la scomposizione di un sistema monoli-
tico, dove tutti i processi sono interdipendenti e funzionano come un singolo
servizio, in un insieme di servizi indipendenti, ognuno dei quali implementa

53

54 3. Sviluppo dell’elaborato di progetto

una specifica funzionalità di business [70]. Ogni microservizio viene esegui-
to nel proprio processo e comunica attraverso API REST (Representational
State Transfer), event streaming e broker di messaggistica asincrona [71].

Le caratteristiche distintive di questa architettura includono l’autonomia
di deployment, la responsabilità su specifici domini di business, la gestione
decentralizzata dei dati e la possibilità di utilizzare tecnologie eterogenee per
diversi servizi. Utilizzare i microservizi piuttosto che un sistema monolitico
presenta diversi vantaggi: semplifica l’aggiornamento del codice; permette di
implementare nuove funzionalità senza modificare l’intera architettura appli-
cativa; aumenta il grado di libertà nella scelta sulle tecnologie e linguaggi di
programmazione da adottare, che possono così essere differenti per ciascun
componente; favorisce la scalabilità orizzontale e consente di dimensionare
indipendentemente ogni servizio in base alle specifiche esigenze di carico [72],
eliminando gli sprechi e riducendo i costi derivanti dalla necessità di scala-
re l’intera applicazione quando solo una specifica funzione richiede risorse
aggiuntive.

Tuttavia, l’adozione dei microservizi introduce anche sfide significative,
tra cui la complessità nella gestione della comunicazione inter-servizio, la
necessità di implementare pattern di resilienza e la gestione della consistenza
dei dati in un ambiente distribuito [73]. La governance e il monitoraggio
di sistemi distribuiti richiedono inoltre strumenti e pratiche specifiche per
garantire osservabilità e debugging efficaci [74].

In conclusione, questo approccio offre vantaggi nella progettazione di si-
stemi complessi, rendendo più chiara la suddivisione dei vari aspetti del do-
minio applicativo, e nella realizzazione degli stessi, facilitando la resilienza
del sistema.

3.1.2 Architettura del sistema

L’architettura del sistema AirQualityInsight si basa su 5 componenti prin-
cipali, come illustrato in figura 3.1: i sensori atti a realizzare misurazioni

3.1 Architettura generale del sistema 55

simulate, il broker di messaggistica, il server per la fruizione degli stessi, la
dashboard front-end ed infine il database non relazionale.

Figura 3.1: Architettura generale del sistema

Di seguito vengono esplicitate le varie responsabilità per ognuno dei ser-
vizi precedentemente elencati.

• Sensor service: questo servizio simula l’esercizio di un insieme di senso-
ri, i quali registrano, con cadenza regolare, le misurazioni della qualità
dell’aria. Ogni sensore è provvisto di un id univoco, un nome, una po-
sizione geografica (le coordinate della sua collocazione) ed un indirizzo

56 3. Sviluppo dell’elaborato di progetto

IP. Tali misurazioni vengono inviate al broker dei messaggi in modo
che vengano poi trasmesse ai servizi in ascolto.

• API service: questo servizio consuma dal broker le misurazioni, le salva
sul database non relazione e le rende disponibili attraverso API.

• Dashboard service: questo servizio fornisce un’interfaccia grafica trami-
te cui è possibile consultare la mappa interattiva, aggiornata in tempo
reale con i dati forniti dal server API, e le relative tabelle.

3.2 Sensor service

In questa sezione verrà descritto il servizio che simula il sensore e la
relativa generazione di misurazioni fittizie sulla qualità dell’aria.

3.2.1 Modello sensore

Il sensore è dotato di un insieme di proprietà specifiche che ne determinano
il funzionamento. Queste proprietà sono:

• Id (sensor_id): stringa, identificatore univoco del sensore.

• Nome (name): stringa, nome del sensore.

• Posizione (location): oggetto, posizione in cui è collocato il sensore. Si
tratta di un oggetto composto dal tipo (in questo caso Point) e dalle
coordinate, longitudine e latitudine, ambo valori numerici a virgola
mobile (double).

• IP (ip): stringa, indirizzo ip del sensore.

• Attivo (active): booleano, indica se il sensore è attivo (true) oppure
no (false).

• Ultima misurazione (last_seen): data, ultima volta che il sensore ha
registrato una misurazione.

3.2 Sensor service 57

3.2.2 Generazione pseudo-misurazioni

La classe AirQualitySensor è dotata di un metodo generate_reading

che produce misurazioni simulate. Ad ogni sensore viene fornita la configu-
razione presentata nel listato 3.1 per la generazione delle misurazioni.

Listing 3.1: Configurazione sensore

1 SENSOR_CONFIG = {

2 ’sampling_rate ’: 10, # seconds (def. 60)

3

4 # Sensor ranges

5 ’temperature_range ’: (-15, 35), # Celsius degrees

6 ’humidity_range ’: (30, 100), # %

7 ’pressure_range ’: (980, 1020), # hPa

8 ’voc_range ’: (0, 3), # ppm

9 ’co2_range ’: (400, 2000), # ppm

10 ’pm25_range ’: (0, 150), # micrograms/m^3

11 ’pm10_range ’: (0, 300), # micrograms/m^3

12 ’no2_range ’: (0, 200), # micrograms/m^3

13 ’o3_range ’: (0, 200), # micrograms/m^3

14 ’so2_range ’: (0, 300), # micrograms/m^3

15 }

Per mantenere coerenza nei dati e evitare valori troppo discordanti, ogni
nuova misurazione generata dal sensore si basa sulla lettura precedente (quan-
do disponibile) e si discosta da essa di una percentuale compresa tra l’1% e
il 5%.

Parte del codice Python utilizzato per la generazione di queste misurazioni
simulate è riportato nel listato 3.2 che segue.

Listing 3.2: Metodo per la generazione di pseudo-misurazioni

1 def generate_reading(self):

2 """ Generate a realistic sensor reading with some

correlation between values

58 3. Sviluppo dell’elaborato di progetto

3 and small random changes (1-5%) from previous

readings if available """

4

5 # Apply random change of 1-5% to previous values

6 def random_change(value):

7 percent_change = random.uniform (0.01, 0.05) #

1-5%

8 direction = random.choice([-1, 1]) # Increase or

decrease

9 return value * (1 + direction * percent_change)

10

11 # Gas pollutants with random changes #

12

13 # PM2.5 and PM10 with correlation maintained

14 pm25 = random_change(self.last_reading[’pm25 ’])

15 pm25 = np.clip(pm25 , *self.config[’pm25_range ’])

16

17 pm10 = max(pm25 + random_change(self.last_reading[’

pm10 ’] - self.last_reading[’pm25 ’]), pm25)

18 pm10 = np.clip(pm10 , pm25 , self.config[’pm10_range

’][1])

19

20 # Nitrogen dioxide levels

21 no2 = random_change(self.last_reading[’no2 ’])

22 no2 = np.clip(no2 , *self.config[’no2_range ’])

23

24 # Ozone levels

25 o3 = random_change(self.last_reading[’o3 ’])

26 o3 = np.clip(o3, *self.config[’o3_range ’])

27

28 # Sulfur dioxide levels

29 so2 = random_change(self.last_reading[’so2 ’])

30 so2 = np.clip(so2 , *self.config[’so2_range ’])

3.2 Sensor service 59

3.2.3 Distribuzione sensori

La scelta dei sensori è stata fatta relativamente ai punti di maggiore traffi-
co, quali le intersezioni stradali fra le arterie principali e le strade secondarie.
Bologna presenta una moltitudine di semafori, luogo dove veicoli fermi in
attesa tendono a creare punti di maggiore concentrazione di inquinanti. Co-
me anticipato precedentemente con la query 1.1, sono stati estrapolati tutti
i punti che rappresentano un’intersezione stradale di questo tipo. Data l’ele-
vata densità di posizioni rilevate, è stata applicata una selezione sistematica
per mantenere un singolo punto per ogni intervallo di spazio regolare. Questa
selezione ha permesso anche di gestire le situazioni di affollamento, tipiche
di rotonde, nelle quali ogni svincolo è rappresentato come un incrocio, e di
centri abitati, nei quali la concentrazione di queste intersezioni risulta più
elevato.

Nelle immagini 3.3a e 3.3b viene mostrato come, partendo da un dataset
consistente di punti, questi siano stati poi filtrati secondo i criteri preceden-
temente esposti. È stata implementata una griglia di campionamento con
spaziatura di 250 metri, parametro calibrato sperimentalmente per ottenere
una densità ottimale di punti. Per fare ciò è stata realizzata una pagina
dedicata allo scopo, dato che si tratta di un processo che può essere ripro-
dotto cambiando la distanza fra i punti tramite input numerico. La pagina
presenta una parte iniziale dove è possibile scegliere la città (nel nostro caso
Bologna) e lo spazio minimo fra un sensore e l’altro. Viene anche indicata
la query di estrazione, la stessa citata in precedenza nel listato 1.1. Questa
parte d’intestazione è riportata nell’immagine 3.2, dove si possono notare gli
elementi citati.

60 3. Sviluppo dell’elaborato di progetto

Figura 3.2: Intestazione pagina

Sotto di essa, è disponibile la mappa che mostra i nodi risultanti dalla
query. Tali nodi vengono disposti su 3 livelli, che sono: nodi originali, nodi
filtrati e nodi differenza. I primi, quelli originali (in rosso, immagine 3.3a),
sono ottenuti direttamente dalla query 3.1. I secondi, quelli filtrati (in blu,
immagine 3.3b), sono il risultato del trattamento effettuato su di essi, dato
dall’elezione di un solo nodo ogni 250 metri 3.2. Gli ultimi infine, quelli
di differenza (in verde, immagine 3.3c), sono semplicemente i nodi originali
meno quelli filtrati 3.3. La richiesta viene effettuata nel momento in cui
viene cliccato il pulsante di invio, che riporta la dicitura "Submit request".
Si tratta di una chiamata POST all’indirizzo https://overpass-api.de/

api/interpreter", il quale restituisce un JSON in caso di esito positivo.

O = insieme degli elementi originali (3.1)

F = sottoinsieme filtrato, dove F ⊆ O (3.2)

D = O \ F = {x ∈ O : x /∈ F} (3.3)

https://overpass-api.de/api/interpreter"
https://overpass-api.de/api/interpreter"

3.2 Sensor service 61

(a) Risultato originale della query

(b) Punti filtrati finali

(c) Punti di differenza

Figura 3.3: Acquisizione punti delle intersezioni stradali

62 3. Sviluppo dell’elaborato di progetto

Come ultimo elemento, la parte finale della pagina, esposta nell’immagi-
ne 3.4, riporta le statistiche quali il numero di sensori originale, il numero
di sensori filtrati e la riduzione espressa come percentuale. Premendo il pul-
sante con scritto "Download filtered JSON" è possibile scaricare il JSON dei
sensori filtrati ottenuti. Tale JSON presenta i sensori usati per popolare la
mappa dell’applicazione principale.

Figura 3.4: Piè di pagina

3.3 API service

In questa sezione verrà descritto il servizio API che riceve le misurazioni
simulate della qualità dell’aria dal broker di messaggi, le trasforma ed eroga
ai client che lo interrogano.

3.3.1 Implementazione del Server

Il server Node.js fornisce un servizio web per la gestione e l’accesso ai dati
delle misurazioni ambientali. Utilizza Express.js per implementare un’inter-
faccia REST che espone diversi endpoint per le operazioni sui dati. Il server
integra MongoDB per la memorizzazione persistente dei dati sensoriali, Apa-
che Kafka per il consumo continuo dei flussi di dati in arrivo dai sensori,
e Socket.IO per fornire notifiche push in tempo reale ai client web quando
vengono registrate nuove misurazioni o superati i valori di soglia configu-
rati. La configurazione CORS permette l’accesso sicuro da domini diversi,
consentendo l’integrazione con applicazioni web distribuite.

3.3 API service 63

3.3.2 Endpoint Disponibili

Di seguito verranno elencati gli endpoint disponibili esposti dalle API.
Tutti gli endpoint di seguito elencati restituiscono un JSON ed un codice
di stato HTTP che può essere 200 OK in caso di successo o 500 Internal

Server Error in caso di errore.

Health Check - GET /health Endpoint per il monitoraggio dello stato del
servizio. Verifica la disponibilità del server e restituisce lo stato operativo.
Risponde con un semplice JSON con lo status, il tempo di attività, il numero
di sensori attivi e le misurazioni registrate come da esempio nel listato 3.3.

Listing 3.3: Risposta di sucesso per endpoint health

1 {

2 "status ":" healthy",

3 "timestamp ":"2025 -08 -30 T13 :58:44.198Z",

4 "uptime ":39.198012656 ,

5 "wot_things ":459,

6 "active_measurements ":258

7 }

Recupero Misurazioni - GET /api/measurements Endpoint per il re-
cupero delle misurazioni ambientali con supporto per filtri e paginazione.
Restituisce le misurazioni archiviate nel database con possibilità di filtraggio
per sensore e intervallo temporale.

È possibile utilizzare dei parametri opzionali di query, quali sensorId
come identificativo del sensore specifico, data di inizio startDate e fine
endDate del periodo di misurazione (in formato ISO 8601). Se specifica-
to sensorId, filtra per sensore specifico, mentre se specificati startDate

e endDate, filtra per intervallo temporale. Le misurazioni in risposta sono
in ordine crescente per timestamp e con limite massimo di 1000 record per
richiesta.

Un esempio di risposta di successo è riportato nel listato 3.4

64 3. Sviluppo dell’elaborato di progetto

Listing 3.4: Risposta di sucesso per endpoint measurements

1 [

2 {

3 "_id ":"68 a4def8c82270d8766481f6",

4 "sensor_id ":" SENSOR00436",

5 "timestamp ":"2025 -08 -19 T22 :30:48.494Z",

6 "temperature ":2.64 ,

7 "humidity ":75.87 ,

8 "pressure ":1019.63 ,

9 "voc ":0.647 ,

10 "co2 ":400 ," pm25 ":55.43 ,

11 "pm10 ":177.75 ,

12 "no2 ":132.4 ,

13 "o3":65.45 ,

14 "so2 ":35.95 ,

15 "__v":0

16 },

17 ...

18]

Lista Sensori - GET /api/sensors Endpoint per il recupero dell’elenco
completo dei sensori registrati nel sistema. Restituisce tutti i sensori configu-
rati con le relative informazioni di localizzazione e configurazione. È possibile
utilizzare come parametro opzionale di query sensorId come identificativo
del sensore specifico, estraendo il solo sensore indicato (se disponibile).

Un esempio di risposta di successo è riportato nel listato 3.5

Listing 3.5: Risposta di sucesso per endpoint sensors

1 [

2 {

3 "location ": { "type": "Point", "coordinates ":

[11.3482468 , 44.4856545] },

4 "_id": "68 a4b0b50bb78efcdfbaa8b9",

3.3 API service 65

5 "sensor_id ": "SENSOR00001",

6 "name": "d0d54bf349674398",

7 "ip": "192.168.0.1" ,

8 "active ": true ,

9 "last_seen ": "2025 -08 -30 T10 :21:32.252Z"

10 },

11 ...

12]

Ultima Misurazione - GET /api/latest Endpoint per il recupero del-
la misurazione più recente nel sistema. Restituisce l’ultima misurazione
registrata, ordinata per timestamp decrescente.

Un esempio di risposta di successo è riportato nel listato 3.6

Listing 3.6: Risposta di sucesso per endpoint latest

1 {

2 "_id ":"68 b421c342b53a3e45108d73",

3 "sensor_id ":" SENSOR00238",

4 "timestamp ":"2025 -08 -30 T12 :19:47.467Z",

5 "temperature ":15.42 ,

6 "humidity ":32.71 ,

7 "pressure ":980,

8 "voc ":1.937 ,

9 "co2 ":417.1 ,

10 "pm25 ":16.76 ,

11 "pm10 ":131.12 ,

12 "no2 ":57.75 ,

13 "o3":130.33 ,

14 "so2 ":112.44 ,

15 "__v":0

16 }

66 3. Sviluppo dell’elaborato di progetto

Directory WoT - GET /wot/things Endpoint per il discovery automa-
tico dei dispositivi registrati nel gateway. Restituisce un elenco di tutti i
Thing disponibili con informazioni sommarie su identità, stato operativo e
ultimo contatto. Supporta la notifica proattiva via WebSocket per mantenere
sincronizzate le applicazioni client senza polling periodico.

Un esempio di risposta di successo è riportato nel listato 3.7

Listing 3.7: Risposta di successo per endpoint /wot/things

1 [

2 {

3 "id": "SENSOR00001",

4 "title": "d0d54bf349674398",

5 "description ": "Air Quality Sensor monitoring

environmental parameters at

11.3482468 ,44.4856545" ,

6 "base": "http :// localhost :3000/ wot/things/SENSOR00001

",

7 "status ": "active",

8 "lastContact ": "2025 -08 -30 T10 :21:32.252Z",

9 "properties ": [

10 "temperature",

11 "humidity",

12 "pressure",

13 "voc",

14 "co2",

15 "pm25",

16 "pm10",

17 "no2",

18 "o3",

19 "so2",

20 "status",

21 "location"

22],

3.3 API service 67

23 "actions ": [" getLatestMeasurement "]

24 },

25 ...

26]

Thing Descriptions - GET /wot/things/{sensorId} Endpoint per il re-
cupero della Thing Descriptions completa per un sensore specifico. Restitui-
sce la TD conforme alla specifica W3C WoT TD v1.1, includendo il contesto
semantico, le proprietà disponibili, le azioni supportate e tutti i metadati del
dispositivo. La risposta contiene l’intera struttura JSON della Thing Descrip-
tions con vocabolari Smart Applications REFerence ontology e definizioni
complete delle forme di interazione.

Un esempio di risposta di successo è riportato nel listato 3.8

Listing 3.8: Risposta di successo per endpoint /wot/things/sensorId

1 {

2 "@context ": [

3 "https ://www.w3.org /2022/ wot/td/v1.1",

4 { "saref": "https :// saref.etsi.org/core/" }

5],

6 "@type": [" Thing", "saref:Sensor"],

7 "id": "urn:sensor:air -quality:SENSOR00001",

8 "title": "d0d54bf349674398",

9 "description ": "Air Quality Sensor monitoring

environmental parameters at 11.3482468 ,44.4856545" ,

10 "base": "http :// localhost :3000/ wot/things/SENSOR00001",

11 "securityDefinitions ": { "nosec_sc ": { "scheme ": "nosec

" } },

12 "security ": [" nosec_sc"],

13 "properties ": {

14 "temperature ": {

15 "type": "number",

16 "title": "Temperature",

68 3. Sviluppo dell’elaborato di progetto

17 "description ": "Ambient temperature in Celsius",

18 "unit": "Celsius degrees",

19 "minimum ": -15,

20 "maximum ": 35,

21 "readOnly ": true ,

22 "observable ": false ,

23 "forms": [

24 {

25 "href": "http :// localhost :3000/ wot/things/

SENSOR00001/properties/temperature",

26 "contentType ": "application/json",

27 "op": [" readproperty "]

28 }

29]

30 },

31 "humidity ": {...},

32 "pressure ": {...},

33 "voc": {...},

34 "co2": {...},

35 "pm25": {...},

36 "pm10": {...},

37 "no2": {...},

38 "o3": {...},

39 "so2": {...},

40 "status ": {

41 "type": "string",

42 "title": "Status",

43 "description ": "Current sensor status",

44 "enum": [" active", "inactive"],

45 "readOnly ": true ,

46 "observable ": false ,

47 "forms": [

48 {

3.3 API service 69

49 "href": "http :// localhost :3000/ wot/things/

SENSOR00001/properties/status",

50 "contentType ": "application/json",

51 "op": [" readproperty "]

52 }

53]

54 },

55 "location ": {

56 "type": "object",

57 "title": "Location",

58 "description ": "Sensor geographical location",

59 "properties ": {

60 "latitude ": { "type": "number" },

61 "longitude ": { "type": "number" }

62 },

63 "readOnly ": true ,

64 "observable ": false ,

65 "forms": [

66 {

67 "href": "http :// localhost :3000/ wot/things/

SENSOR00001/properties/location",

68 "contentType ": "application/json",

69 "op": [" readproperty "]

70 }

71]

72 }

73 },

74 "actions ": {

75 "getLatestMeasurement ": {

76 "title": "Get Latest Measurement",

77 "description ": "Get the latest complete measurement

from this sensor",

78 "forms": [

70 3. Sviluppo dell’elaborato di progetto

79 {

80 "href": "http :// localhost :3000/ wot/things/

SENSOR00001/actions/getLatestMeasurement",

81 "contentType ": "application/json",

82 "op": [" invokeaction "]

83 }

84]

85 }

86 }

87 }

Proprietà Singola - GET /wot/things/{sensorId}/properties/{propertyName}

Endpoint per l’accesso alle singole proprietà del Thing. Restituisce il valore
corrente della proprietà richiesta incapsulato in un oggetto JSON standar-
dizzato. Supporta tutte le proprietà ambientali (temperature, humidity,
pressure, voc, co2, pm25, pm10, no2, o3, so2) oltre a proprietà di sistema
(status, location).

Un esempio di risposta di successo per la proprietà temperature è ripor-
tato nel listato 3.9

Listing 3.9: Risposta di successo per proprietà singola

1 {

2 "value": 23.5

3 }

Tutte le Proprietà - GET /wot/things/{sensorId}/properties End-
point per il recupero di tutte le proprietà del Thing in una singola chiamata.
Ottimizza l’efficienza della comunicazione permettendo di recuperare lo stato
completo del sensore senza multiple richieste HTTP. Restituisce un oggetto
JSON contenente tutte le proprietà con i relativi valori correnti.

Un esempio di risposta di successo è riportato nel listato 3.10

3.3 API service 71

Listing 3.10: Risposta di successo per tutte le proprietà

1 {

2 "temperature ": { "value": -7.15 },

3 "humidity ": { "value": 54.52 },

4 "pressure ": { "value": 1020 },

5 "voc": { "value": 1.71 },

6 "co2": { "value": 431.7 },

7 "pm25": { "value": 36.91 },

8 "pm10": { "value": 90.61 },

9 "no2": { "value": 133.43 },

10 "o3": { "value": 54.66 },

11 "so2": { "value": 270.31 },

12 "status ": { "value": "active" },

13 "location ": { "value": { "latitude ": 11.3482468 , "

longitude ": 44.4856545 } }

14 }

Invocazione Azioni - GET /wot/things/{sensorId}/actions/{actionName}

Endpoint per l’invocazione delle azioni definite nella Thing Descriptions. At-
tualmente supporta l’azione getLatestMeasurement che restituisce l’insieme
completo delle misurazioni più recenti del sensore. L’azione viene eseguita
immediatamente e restituisce il risultato in formato JSON strutturato con
tutti i parametri ambientali misurati.

Un esempio di risposta di successo per l’azione getLatestMeasurement

è riportato nel listato 3.11

Listing 3.11: Risposta di successo per azione getLatestMeasurement

1 {

2 "result ": {

3 "sensor_id ": "SENSOR00001",

4 "timestamp ": "2025 -08 -30 T10 :21:39.092Z",

5 "temperature ": -6.74,

6 "humidity ": 55.31,

72 3. Sviluppo dell’elaborato di progetto

7 "pressure ": 1020,

8 "voc": 1.791,

9 "co2": 421.9,

10 "pm25": 35.67,

11 "pm10": 89.71,

12 "no2": 129.49 ,

13 "o3": 56.53,

14 "so2": 286.01

15 }

16 }

3.4 Dashboard service

Questa sezione sarà dedicata alla descrizione dell’applicazione frontend
sviluppata per il progetto AirQualityInsight. L’esposizione verrà articolata
in due parti distinte: nella prima sottosezione verrà presentata l’interfac-
cia utente e verranno illustrate le scelte progettuali che hanno guidato la
definizione del design, mentre nella seconda sottosezione verrà fornita una
descrizione dettagliata dell’implementazione tecnica dell’applicazione.

3.4.1 Design e architettura dell’interfaccia

In questa sottosezione verrà illustrata l’interfaccia dell’applicazione e ver-
ranno esaminate le scelte progettuali che hanno determinato la sua confi-
gurazione. La progettazione dell’interfaccia è stata condotta tenendo conto
degli obiettivi e delle funzionalità stabilite durante la fase di analisi, nonché
dello studio dello stato dell’arte delle applicazioni attualmente disponibili
nel settore. Il processo di design dell’interfaccia grafica è stato orientato dai
seguenti principi guida:

• i requisiti funzionali e non funzionali definiti rispettivamente nelle sot-
tosezioni 1.6.1 e 1.6.2

3.4 Dashboard service 73

• l’approccio mobile-first

• l’adozione del principio KISS, orientando l’interfaccia verso uno sti-
le minimalista che privilegia strumenti di comunicazione non testuali,
quali icone, elementi cromatici e simboli grafici

• l’analisi dello stato dell’arte delle applicazioni per il monitoraggio del-
la qualità dell’aria, riportata nel capitolo 1: si è scelto di mantenere
continuità con le applicazioni esistenti per il monitoraggio della qualità
dell’aria, al fine di offrire agli utenti un’esperienza familiare e sfruttare
le soluzioni progettuali già consolidate

L’architettura dell’interfaccia è stata strutturata mediante la suddivisione dei
componenti in tre categorie principali, classificate in base alla loro colloca-
zione spaziale e alle rispettive funzionalità, sia individuali che sinergiche con
gli altri elementi del sistema. Nei paragrafi seguenti verranno presentate le
categorie identificate e i rispettivi componenti costitutivi.

3.4.2 Implementazione

In questa sottosezione verrà approfondita nel dettaglio l’implementazione
dell’applicazione web di AirQualityInsight. Tale applicazione è stata rea-
lizzata basandosi principalmente su Vue e Leaflet. Nelle seguenti sottose-
zioni verranno esaminati i componenti dell’applicativo, ognuno dei quali fa
riferimento ad una porzione dell’interfaccia utente.

Intestazione La prima parte dell’applicazione web fornisce un’introduzio-
ne riguardo lo scopo del progetto e le sue funzionalità. Nella seguenti im-
magini, vengono presentate all’utente, dall’alto verso il basso, una breve de-
scrizione 3.5, la tabella relativa ai criteri di valutazione della qualità dell’aria
3.6, una guida sintetica sull’utilizzo della pagina 3.7 ed infine il metodo di
calcolo utilizzato per ottenere l’European Air Quality Index (EAQI) 3.8.

74 3. Sviluppo dell’elaborato di progetto

Figura 3.5: Descrizione

Figura 3.6: Tabella valori riferimento European Air Quality Index (EAQI)

Figura 3.7: Guida

3.4 Dashboard service 75

Figura 3.8: Calcolo European Air Quality Index (EAQI)

Mappa Accedendo alla pagina principale, l’utente si trova di fronte a una
mappa dettagliata della città di Bologna, come documentato nell’immagine
3.9a. I sensori attivi sul territorio sono contrassegnati da spilli rossi, mentre
il centro della mappa (Piazza Maggiore) è evidenziato da uno spillo blu come
si può osservare nell’immagine 3.9b. Nel momento in cui viene ricevuta una
nuova misurazione, il sensore responsabile viene lampeggia per un paio di
secondi.

L’interfaccia cartografica è dotata di diversi controlli interattivi: sul lato
sinistro sono posizionati i pulsanti per aumentare o diminuire lo zoom (+ e
-) della mappa, mentre sul lato destro si trovano due pulsanti verdi ed uno
bianco avente come icona uno spillo rosso.

Al centro della mappa è presente un mirino a croce (crosshair) rosso den-
tro una cornice circolare bianca, che indica il centro della mappa attualmente
visualizzata. Il sistema registra automaticamente le coordinate geografiche ad
esso, conservandole in memoria e rendendole disponibili per la consultazione.
Quando l’utente naviga sulla mappa spostando la visualizzazione, le coordi-
nate del punto centrale vengono aggiornate per mantenere la corrispondenza
con la nuova area geografica inquadrata.

Il pulsante verde contrassegnato dalla dicitura "Start" rappresenta l’in-
terruttore principale per attivare o disattivare la ricezione in tempo reale

76 3. Sviluppo dell’elaborato di progetto

(a) Mappa principale

(b) Centro della mappa

Figura 3.9: Mappa

3.4 Dashboard service 77

delle misurazioni dai sensori. All’avvio dell’applicazione, questa funzionalità
risulta disabilitata per impostazione predefinita. Una volta attivata, il si-
stema inizierà a visualizzare graficamente sulla mappa i valori ricevuti dai
sensori e aggiornerà automaticamente le tabelle informative sottostanti, come
documentato nelle figure 3.14, 3.15, 3.16 e 3.17.

Il pulsante avente come icona lo spillo rosso attiva l’espansione di un pan-
nello di controllo che fornisce informazioni dettagliate sulla mappa e strumen-
ti aggiuntivi per l’interazione con l’interfaccia cartografica, come mostrato
nelle figure 3.10a e 3.10b.

Procedendo dall’alto verso il basso, la prima informazione visualizzata
concerne il conteggio complessivo di tutti i sensori presenti sulla mappa, in-
dipendentemente dal loro stato. La sezione successiva presenta un pulsante
verde dedicato alla copia delle coordinate geografiche del centro mappa (cor-
rispondenti alla posizione del mirino). Seguono una serie di pulsanti grigi
che consentono di attivare o disattivare la visualizzazione dei diversi layer
cartografici: sensori, demarcazioni territoriali come le zone di avviamento
postale (CAP) (figura 3.10c), quartieri (figura 3.10d), zone amministrative
(figura 3.10e) e ZTL (figura 3.10f).

Nella parte inferiore del pannello si trovano un menu a tendina per la
selezione del tipo di inquinante da visualizzare, uno slider orizzontale per
impostare il numero di misurazioni da registrare (range da 50 a 1000), un
indicatore del numero di misurazioni attualmente memorizzate e un pulsante
rosso con icona cestino per l’eliminazione dei dati registrati. Il sistema im-
plementa un meccanismo di registrazione delle misurazioni dei sensori basato
su una coda (struttura dati FIFO), che garantisce l’eliminazione automatica
delle registrazioni più datate quando viene raggiunta la capacità massima
prestabilita, conservando i dati più recenti.

Conclude l’interfaccia un menu a tendina aggiuntivo per l’attivazione di
griglie di riferimento sulla mappa quali una grigia (figura 3.11a), una rossa
(figura 3.11b) ed una grigia crosshair che divide la mappa in quattro quarti
(figura 3.11c).

78 3. Sviluppo dell’elaborato di progetto

(a) Pannello controllo espanso con sen-

sori visualizzati

(b) Pannello controllo espanso con sen-

sori nascosti

(c) Livello a CAP (d) Livello a quartieri

(e) Livello a zone (f) Livello ZTL

Figura 3.10: Livelli mappa

3.4 Dashboard service 79

(a) Griglia grigia (b) Griglia rossa

(c) Griglia crosshair

Figura 3.11: Griglie mappa

80 3. Sviluppo dell’elaborato di progetto

Heatmap Una heatmap (mappa di calore) è una rappresentazione grafica
bidimensionale di dati in cui i valori individuali, contenuti in una matrice,
sono rappresentati attraverso colori [75]. Questa tecnica di visualizzazione
permette di identificare rapidamente pattern, correlazioni e anomalie all’in-
terno di dataset complessi mediante l’uso di una scala cromatica che associa
intensità di colore a valori numerici [76]. Il suo utilizzo aiuta a rendere più
intuitiva la distribuzione dei dati poiché a maggior concentrazione risulta un
colore più intenso, facilitandone la comprensione ed attirando l’attenzione
sui principali focolai.

Formalmente, data una matrice M ∈ Rm×n dove Mij rappresenta il va-
lore nella posizione (i, j), una heatmap è una funzione di mappatura f :

Mij → Cij dove Cij è il colore corrispondente al valore Mij secondo una scala
cromatica predefinita.

La scelta della palette di colori è cruciale per l’efficacia comunicativa
della heatmap. È fondamentale utilizzare scale cromatiche che rispettino
principi di accessibilità e che siano percettivamente uniformi [77]. Tali colori
sono infatti quelli forniti dall’European Environment Agency (EEA) come
indicato nella tabella 1.1;

Nelle immagini seguenti viene mostrata la heatmap relativa alle misura-
zioni di PM2.5. Partendo dalla vista default in immagine 3.12a, passiamo
ad una versione con zoom inferiore senza sensori (figura 3.12b) e con sensori
(figura 3.12c). Successivamente diminuiamo ulteriormente lo zoom senza sen-
sori (figura 3.12d), per poi riavvicinarci (figura 3.12e), visualizzarle la ZTL
(figura 3.12f) ed i quartieri (figura 3.13a). Infine, visualizziamo una versio-
ne con concentrazioni più elevate (figura 3.13b) rispetto alle prime, essendo
passato più tempo ed avendo quindi un numero maggiore di misurazioni, e
le altre misurazioni disponibili (figura 3.13c).

Come anticipato, allontanarci dal centro della mappa porterà a concentra-
zioni maggiori, mentre avvicinarci il contrario. Anche il numero di misurazio-
ni influisce sulle concentrazioni della mappa di calore, essendo direttamente
correlate.

3.4 Dashboard service 81

(a) Heatmap default (b) Heatmap zoom 11 senza sensori

(c) Heatmap zoom 11 con sensori (d) Heatmap zoom 9 senza sensori

(e) Heatmap zoom 12 senza sensori (f) Heatmap zoom 12 senza sensori ZTL

Figura 3.12: Heatmap - parte 1

82 3. Sviluppo dell’elaborato di progetto

(a) Heatmap zoom 12 senza sensori con

quartieri

(b) Heatmap zoom 12 senza sensori,

concentrazione maggiore

(c) Heatmap zoom 12 senza sensori,

apertura lista misurazioni disponibili

Figura 3.13: Heatmap - parte 2

3.4 Dashboard service 83

Ultime misurazioni La tabella delle misurazioni illustrata nella figura 3.14
offre una visualizzazione organizzata delle ultime 50 rilevazioni acquisite dal
sistema. Ogni misurazione viene presentata su una riga separata, contenente
informazioni essenziali come l’identificativo del sensore, il momento preciso
dell’acquisizione e tutti i parametri rilevati con le corrispondenti unità di
misura. L’interfaccia è progettata per facilitare la navigazione: selezionando
una qualsiasi riga della tabella, l’utente viene automaticamente reindiriz-
zato alla vista mappa centrata sul sensore responsabile di quella specifica
rilevazione. Questa funzionalità permette di collegare rapidamente i dati nu-
merici alla loro posizione geografica, offrendo una comprensione più completa
delle informazioni raccolte. La struttura tabulare garantisce una consulta-
zione rapida e ordinata dei dati più recenti, mantenendo sempre visibili le
informazioni più aggiornate del sistema di monitoraggio.

Figura 3.14: Tabella ultime misurazioni

84 3. Sviluppo dell’elaborato di progetto

Statistiche La tabella delle statistiche riportata nell’immagine 3.15 forni-
sce un’analisi completa dei dati per ogni tipologia di misurazione ambientale
raccolta dal sistema. Il processo di elaborazione calcola automaticamente gli
indicatori statistici fondamentali: vengono determinati valore medio e me-
diana per identificare la tendenza centrale, mentre i valori minimo e massimo
evidenziano gli estremi registrati. Il range di variazione, ottenuto dalla diffe-
renza tra questi due estremi, quantifica l’ampiezza delle oscillazioni rilevate.
Oltre agli indicatori numerici, il sistema integra una valutazione qualitativa
dell’aria specifica per ciascun tipo di inquinante monitorato. Questa analisi
applica criteri di classificazione standardizzati riportati nella tabella 1.1, i
quali traducono i valori numerici in categorie comprensibili, accompagnate
da un sistema di colori intuitivo che permette di identificare immediatamente
il livello di qualità raggiunto. L’approccio combinato tra dati statistici e valu-
tazione qualitativa offre agli utenti sia una comprensione tecnica dettagliata
che un’interpretazione immediata dello stato ambientale monitorato.

Figura 3.15: Tabella statistiche

3.4 Dashboard service 85

Log di sistema L’applicazione mantiene un registro completo delle attivi-
tà utente attraverso una tabella di log che documenta tutte le interazioni, sia
quelle effettuate tramite interfaccia grafica che attraverso chiamate API, co-
me si può vedere nell’immagine 3.16. Il sistema traccia diversi tipi di eventi:
l’arrivo di nuove misurazioni dai sensori, i clic sui dispositivi nell’interfac-
cia, le operazioni di registrazione dei sensori e l’attivazione o disattivazione
della ricezione dati. Per ottimizzare la visualizzazione, il log raggruppa au-
tomaticamente gli eventi identici che si verificano nel medesimo secondo,
mostrando il numero di occorrenze (in grigio) accanto alla voce principale.
Questa funzionalità evita la duplicazione di informazioni e mantiene il re-
gistro più leggibile. Il sistema limita la visualizzazione a un massimo di 25
righe per garantire prestazioni ottimali e una consultazione agevole. Quando
questo limite viene raggiunto, le voci più recenti sostituiscono automatica-
mente quelle più datate, assicurando che il log mostri sempre le attività più
attuali del sistema.

Figura 3.16: Tabella log di sistema

86 3. Sviluppo dell’elaborato di progetto

Tabella dei sensori registrati La parte finale della pagina principale
riporta la tabella dei sensori registrati.

Questa tabella è formata da diverse colonne, quali l’id del sensore, la-
titudine, longitudine, stato, distanza dal centro della mappa, data ultima
misurazione registrata e relativo tempo trascorso da essa.

Figura 3.17: Tabella sensori registrati

Il calcolo per ottenere la distanza di un sensore dal centro della mappa è
realizzato attraverso la formula di Haversine [78], ovvero una funzione usata
per calcolare la distanza ortodromica (linea retta sulla superficie terrestre)
tra due punti. Essendo i sensori dotati di coordinate spaziali quali latitudine
e longitudine, come il centro della mappa, la formula è risultata l’ideale per
calcolarne la distanza.

Formula di Haversine Di seguito la formula in termini matematici 3.18,
con relativa legenda 3.4.2, e la versione di codice Javascript 3.12 realmente
utilizzata dall’applicazione.

3.4 Dashboard service 87

a = sin2

(
∆φ

2

)
+ cosφ1 · cosφ2 · sin2

(
∆λ

2

)
(3.4)

c = 2 · atan2
(√

a,
√
1− a

)
(3.5)

d = R · c (3.6)

Figura 3.18: Formula matematica di Haversine

Simbolo Significato

φ latitudine (in radianti)
φ1, φ2 latitudine del punto 1 e punto 2
∆φ differenza di latitudine (φ2 − φ1)
λ longitudine (in radianti)
λ1, λ2 longitudine del punto 1 e punto 2
∆λ differenza di longitudine (λ2 − λ1)
R raggio terrestre medio (∼ 6371 km)
d distanza tra i punti (in metri o km)
c distanza angolare (in radianti)
a termine intermedio

Listing 3.12: Formual di Haversine in codice Javascript

1 // Function to calculate the distance between two

geographic points (Haversine formula)

2 calculateDistance(lat1 , lon1 , lat2 , lon2) {

3 const R = 6371000; // Earth radius in meters

4 const dLat = ((lat2 - lat1) * Math.PI) / 180;

5 const dLon = ((lon2 - lon1) * Math.PI) / 180;

6 const a =

7 Math.sin(dLat / 2) * Math.sin(dLat / 2) +

8 Math.cos((lat1 * Math.PI) / 180) *

9 Math.cos((lat2 * Math.PI) / 180) *

10 Math.sin(dLon / 2) *

88 3. Sviluppo dell’elaborato di progetto

11 Math.sin(dLon / 2);

12 const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 -

a));

13 return R * c;

14 }

Conclusioni

Il progetto AirQualityInsight ha dimostrato la fattibilità e l’efficacia di
un approccio integrato al monitoraggio ambientale urbano, combinando tec-
nologie moderne di sviluppo web, architetture distribuite e tecniche avanzate
di visualizzazione dati. L’implementazione del sistema ha permesso di vali-
dare le scelte architetturali adottate e di confermare l’importanza della user
experience nella progettazione di strumenti per il monitoraggio ambientale
destinati al pubblico generale.

Uno degli aspetti più significativi emersi durante lo sviluppo è stata l’im-
portanza della geolocalizzazione strategica dei sensori. L’utilizzo delle query
Overpass per identificare le intersezioni stradali più rilevanti e la successiva
applicazione di algoritmi di filtraggio spaziale hanno permesso di ottimizzare
la copertura territoriale, bilanciando efficacemente densità di monitoraggio e
utilizzo delle risorse. La scelta di concentrarsi sui punti di maggiore criticità
del traffico urbano si è dimostrata una strategia interessante per massimizzare
l’utilità informativa del sistema.

L’implementazione delle heatmap dinamiche ha evidenziato le potenziali-
tà delle visualizzazioni geografiche nel rendere accessibili informazioni tecni-
che complesse. La capacità di tradurre concentrazioni di inquinanti in rappre-
sentazioni cromatiche intuitive ha trasformato dataset numerici in strumenti
di comunicazione efficaci e rappresentativi, facilitando la comprensione im-
mediata delle condizioni ambientali e dei loro pattern spaziali. L’integrazione
con gli standard europei EAQI ha inoltre garantito la coerenza con i siste-
mi di monitoraggio ufficiali, aumentando la credibilità e l’utilità pratica del

89

90 CONCLUSIONI

sistema.

Il progetto ha tuttavia evidenziato anche alcune limitazioni e aree di
possibile miglioramento. La natura simulata dei dati, pur permettendo lo
sviluppo e il testing del sistema, non può sostituire completamente l’integra-
zione con sensori reali per una validazione completa dell’efficacia operativa.
Inoltre, l’attuale implementazione si concentra esclusivamente sul territorio
bolognese, limitando la valutazione della scalabilità geografica del sistema.

Le fondamenta architetturali e tecnologiche di AirQualityInsight aprono
numerose prospettive per estensioni e miglioramenti futuri, ciascuna delle
quali potrebbe significativamente ampliare l’utilità e l’impatto del sistema.
Di seguito si propongo degli sviluppi futuri che potrebbero arricchire il si-
stema realizzato in modo da accrescerne il potere informativo e migliorare
l’esperienza utente con l’aggiunta di nuove funzionalità.

Le evoluzioni principali riguardano l’implementazione di funzionalità di
analisi retrospettiva con controlli temporali granulari per visualizzare l’evo-
luzione della qualità dell’aria su diverse scale temporali, dall’analisi oraria a
quella mensile. Questa funzionalità richiederebbe algoritmi di compressione
e aggregazione dei dati storici per garantire prestazioni ottimali.

Un sistema di notifiche proattivo trasformerebbe il sistema da strumento
passivo a piattaforma di allerta attiva, implementando soglie personalizzabili
e meccanismi di notifica multicanale. Gli algoritmi predittivi potrebbero anti-
cipare il superamento delle soglie critiche, integrando servizi di messaggistica
esterni per garantire l’affidabilità delle comunicazioni.

Il modulo di reporting avanzato beneficerebbe enti pubblici e ricercatori
attraverso la generazione automatica di grafici statistici e report personaliz-
zabili, trasformando i dati grezzi in strumenti di supporto decisionale. L’im-
plementazione includerebbe librerie di visualizzazione avanzate e template
conformi agli standard normativi europei.

I servizi di prossimità geografica fornirebbero informazioni sulla qualità
dell’aria nel raggio di distanze personalizzabili, utilizzando API di geoloca-
lizzazione e algoritmi di interpolazione spaziale per calcolare indici medi in

CONCLUSIONI 91

tempo reale, risultando particolarmente utili per applicazioni mobile.
L’evoluzione più ambiziosa riguarda lo sviluppo di capacità predittive

tramite modelli di machine learning che integrino variabili meteorologiche,
pattern di traffico e dati storici per fornire previsioni affidabili a breve e medio
termine.

L’integrazione con l’ecosistema urbano includerebbe l’interoperabilità con
sistemi smart city esistenti attraverso API standardizzate, mentre l’espan-
sione geografica oltre Bologna richiederebbe meccanismi automatizzati per
l’acquisizione di dati via OpenStreetMap. Infine, l’evoluzione verso un moni-
toraggio collaborativo integrerebbe sensori citizen science e dispositivi IOT
domestici, democratizzando l’accesso alle informazioni ambientali.

La modularità del sistema e l’adozione di standard aperti facilitano un’im-
plementazione incrementale che bilanci innovazione tecnologica e sostenibilità
operativa.

92 CONCLUSIONI

Bibliografia

[1] Chimica Online. Che cos’è l’equatore, 2025.

[2] Topgeometri. Concetti base sul sistema wgs84 del gps, 2022.

[3] European Environment Agency. European air quality index, map and
charts, 2025.

[4] AccuWeather. Accuweather website, 2025.

[5] European Environment Agency. European environment agency, 2025.

[6] Agenzia Europea dell’Ambiente and Commissione Europea. Indice
europeo della qualità dell’aria: informazioni aggiornate sulla qualità
dell’aria a portata di mano, 2017.

[7] Google. Visualizzare le informazioni sulla qualità dell’aria in google
maps, 2025.

[8] International Association of Oil & Gas Producers. Geomatics guidance
note 7-1: Using the epsg geodetic parameter dataset. Technical Report
373-7-1, IOGP, London, 2019.

[9] V. Ashkenazi, S.A. Crane, G.T. Johnston, and S. Millard. Coordina-
te systems and map projections for offshore surveying. International
Hydrographic Review, 61(2):7–23, 1984.

[10] EPSG Official Database. Wgs 84 - wgs84 - world geodetic system 1984,
used in gps - epsg:4326. EPSG Official Database, 2022. Definizione
ufficiale completa con parametri WKT e Proj4.

93

94 BIBLIOGRAFIA

[11] EPSG Official Database. Wgs 84 / pseudo-mercator - spherical merca-
tor, google maps, openstreetmap, bing, arcgis, esri - epsg:3857. EPSG
Official Database, 2020. Definizione completa Pseudo-Mercator.

[12] EPSG Official Database. Wgs 84 / utm zone 33n - epsg:32633. EPSG
Official Database, 2022. Definizione WGS84/UTM zone 33N.

[13] EPSG Official Database. Monte mario / italy zone 1 - epsg:3003. EPSG
Official Database, 2021. Definizione Monte Mario zone 1.

[14] GPS.GOV. The world geodetic system 1984 (wgs84) and its updates.
GPS.gov, 2008.

[15] P. Neis and A. Zipf. Openstreetmap. International Journal of
Interactive Communication Systems and Technologies, 2(1):69–78,
2012.

[16] C.C. Fonte, V. Antoniou, L. Bastin, J. Estima, J.J. Arsanjani, J.C.L.
Bayas, L. See, and R. Vatseva. Osm science—the academic study of
the openstreetmap project, data, contributors, community, and appli-
cations. ISPRS International Journal of Geo-Information, 11(4):230,
2022.

[17] OpenStreetMap Wiki. History of openstreetmap. OpenStreetMap
Wiki, 2024. Accesso: 2024.

[18] Steve Coast. First street entered. OpenStreetMap mailing list,
December 2004.

[19] OpenStreetMap Foundation. About openstreetmap. OpenStreetMap
Wiki, 2006. Fondazione istituita il 22 agosto 2006.

[20] Sukhjit Singh Sehra, Jaiteg Singh, and Hardeep Singh Rai. Assessment
of openstreetmap data - a review. International Journal of Computer
Applications, 76(8):1–8, 2013.

BIBLIOGRAFIA 95

[21] J.E. Vargas-Muñoz, S. Srivastava, D. Tuia, and A.X. Falcão. Open-
streetmap: Challenges and opportunities in machine learning and
remote sensing. IEEE Geoscience and Remote Sensing Magazine,
8(3):44–55, 2020. Review sulle applicazioni ML e remote sensing con
OSM.

[22] Sterling Quinn. Using openstreetmap for your research: leveraging a
massive global geographic database that emphasizes local knowledge.
SFU Library Scholarly Publishing, 2022.

[23] OpenStreetMap Wiki. Elements. OpenStreetMap Wiki, 2024.
Documentazione del modello dati OSM: nodi, percorsi e relazioni.

[24] FLOSS Manuals. The openstreetmap data model. FLOSS Manuals,
2024. Guida completa al modello dati OpenStreetMap.

[25] OpenStreetMap Wiki. Relation. OpenStreetMap Wiki, 2024.
Documentazione delle relazioni OSM.

[26] OpenStreetMap Wiki. Map features. OpenStreetMap Wiki, 2024.
Sistema di tag e caratteristiche delle mappe OSM.

[27] Sterling Quinn. Using openstreetmap for your research: leveraging a
massive global geographic database that emphasizes local knowledge.
SFU Library Scholarly Publishing, 2022. Guida per ricercatori sull’uso
di OSM.

[28] OpenStreetMap Wiki. Overpass api. OpenStreetMap Wiki, 2024. API
per interrogazioni avanzate sui dati OSM.

[29] Web based data mining tool. overpass turbo. Web-based data mining
tool, 2024. Interfaccia web interattiva per Overpass API.

[30] Geoapify Documentation. 3 ways to get openstreetmap(osm) data.
Geoapify Documentation, May 2024. Metodi per ottenere e utilizzare
dati OSM.

96 BIBLIOGRAFIA

[31] Evan You. Vue.js: The progressive javascript framework, 2014.

[32] Misko Hevery and Adam Abrons. Angularjs: Superheroic javascript
mvw framework, 2010.

[33] Pete Hunt, Jordan Walke, and React Team. React: A javascript library
for building user interfaces, 2013.

[34] MDN Web Docs Contributors. Single-page applications, 2024.

[35] Vue.js Core Team. Vue cli: Standard tooling for vue.js development,
2018. Strumento da riga di comando per scaffolding e gestione progetti
Vue.js.

[36] Evan You and Vite Contributors. Vite: Next generation frontend
tooling, 2021. Build tool veloce per applicazioni web moderne.

[37] Eduardo San Martin Morote Posva and Vue.js Contributors. Vue rou-
ter: The official router for vue.js, 2016. Libreria ufficiale per il routing
in applicazioni Vue.js.

[38] Evan You and Vue.js Contributors. Vuex: Centralized state manage-
ment for vue.js, 2016. Libreria per la gestione centralizzata dello stato
nelle applicazioni Vue.js.

[39] Eduardo San Martin Morote Posva and Pinia Contributors. Pinia: The
vue store that you will enjoy using, 2021. Store di nuova generazione
per Vue.js, successore ufficiale di Vuex.

[40] Vue.js Core Team. Vue devtools: Browser extension for debugging
vue.js applications, 2016. Estensione browser per il debugging e l’analisi
di applicazioni Vue.js.

[41] Vladimir Agafonkin. Leaflet: An open-source javascript library for
mobile-friendly interactive maps, May 2011.

[42] Leaflet Contributors. Leaflet - npm package, 2024.

BIBLIOGRAFIA 97

[43] Tomislav Capan. Why the hell would i use node.js? a case-by-case
tutorial, August 2013.

[44] Node.js Documentation Team. Node.js event loop, timers, and
process.nexttick(), 2023.

[45] Express.js Team. Express.js: Fast, unopinionated, minimalist web
framework for node.js, 2025.

[46] Socket.IO Team. Socket.io: Bidirectional and low-latency
communication for every platform, 2025.

[47] MongoDB Inc. Mongodb: The developer data platform, 2025.

[48] Redis Ltd. Redis: The open source, in-memory data store, 2025.

[49] W3C WoT Working Group. Web of things (wot) thing description.
Technical report, World Wide Web Consortium, April 2020. W3C
Recommendation.

[50] ETSI Technical Committee SmartM2M. Saref: the smart applications
reference ontology, 2020. ETSI TS 103 264.

[51] W3C WoT Working Group. Web of things (wot) architecture.
Technical report, World Wide Web Consortium, April 2020. W3C
Recommendation.

[52] Dominique Guinard, Vlad Trifa, and Erik Wilde. The web of things:
challenges and opportunities for the internet of things. Computer,
44(4):30–37, 2011.

[53] Guido van Rossum. Python Reference Manual. CWI, Amsterdam,
Netherlands, 1995.

[54] Tim Peters. Pep 20 – the zen of python, 2004. Accessed: 2025-08-21.

[55] Python Software Foundation. Python package index, 2023. Accessed:
2025-08-21.

98 BIBLIOGRAFIA

[56] Django Software Foundation. Django: The web framework for
perfectionists with deadlines, 2023. Accessed: 2025-08-21.

[57] Armin Ronacher. Flask: A lightweight wsgi web application framework,
2023. Accessed: 2025-08-21.

[58] Neha Narkhede, Gwen Shapira, and Todd Palino. Kafka: The
Definitive Guide. O’Reilly Media, 1st edition, 2017.

[59] Nishant Garg. Apache Kafka. Packt Publishing, 2013.

[60] Ben Stopford. Designing Event-Driven Systems: Concepts and Pat-
terns for Streaming Services with Apache Kafka. O’Reilly Media,
2018.

[61] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: a distributed mes-
saging system for log processing. Proceedings of the NetDB Workshop,
2011. Republished and expanded 2014.

[62] Kristina Chodorow. MongoDB: the definitive guide. O’Reilly Media,
2nd edition, 2013.

[63] Kyle Banker. MongoDB in action. Manning Publications, 2011.

[64] Eelco Plugge, Tim Hawkins, and Peter Membrey. The definitive guide
to MongoDB: the noSQL database for cloud and desktop computing.
Apress, 2010.

[65] Rick Harrison. MongoDB Applied Design Patterns. O’Reilly Media,
2015.

[66] Peter Membrey, Eelco Plugge, and Tim Hawkins. The Definitive Gui-
de to MongoDB: A complete guide to dealing with Big Data using
MongoDB. Apress, 3rd edition, 2014.

[67] Brad Dayley. MongoDB and Python: Patterns and processes for
the popular document-oriented database. Addison-Wesley Professional,
2014.

BIBLIOGRAFIA 99

[68] Adrian Mouat. Using Docker: Developing and Deploying Software with
Containers. O’Reilly Media, 2015.

[69] Dirk Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux journal, 2014(239):2, 2014.

[70] Sam Newman. Building Microservices: Designing Fine-Grained
Systems. O’Reilly Media, 2015.

[71] Martin Fowler and James Lewis. Microservices: a definition of
this new architectural term. https://martinfowler.com/articles/

microservices.html, 2014. Accessed: 2024-08-25.

[72] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-
croservices: yesterday, today, and tomorrow. Present and Ulterior
Software Engineering, pages 195–216, 2017.

[73] Chris Richardson. Microservices Patterns: With examples in Java.
Manning Publications, 2018.

[74] Eberhard Wolff. Microservices: Flexible Software Architecture.
Addison-Wesley Professional, 2016.

[75] Leland Wilkinson. The Grammar of Graphics. Springer Science &
Business Media, New York, 2nd edition, 2009.

[76] William S. Cleveland. Visualizing Data. Hobart Press, Summit, NJ,
1993.

[77] Colin Ware. Information Visualization: Perception for Design. Morgan
Kaufmann, Boston, MA, 3rd edition, 2012.

[78] Chris Veness. Calculate distance, bearing and more between latitu-
de/longitude points. https://www.movable-type.co.uk/scripts/

latlong.html, 2002-2022.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html

100 BIBLIOGRAFIA

[79] European Environment Agency. Air pollution, 2025.

[80] European Environment Agency. European air quality index., 2025.

[81] European Petroleum Survey Group. Epsg:3857 - wgs 84 / pseudo-
mercator. Technical Report Guidance Note 7-2, European Petroleum
Survey Group, 2008. Disponibile online su epsg.org.

[82] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS – Glo-
bal Navigation Satellite Systems: GPS, GLONASS, Galileo, and more.
Springer, 2007.

[83] S.E. Battersby, M.P. Finn, E.L. Usery, and K.H. Yamamoto. Im-
plications of web mercator and its use in online mapping. Carto-
graphica: The International Journal for Geographic Information and
Geovisualization, 49(2):85–101, 2014.

[84] Google Inc. Google Maps API Documentation, 2005. Documentazione
tecnica originale sulla implementazione Web Mercator.

[85] OpenStreetMap. Copyright and license. OpenStreetMap, 2024.

[86] History of Information. Openstreetmap begins. History of Information,
2024.

[87] Algorithms for Geographic Data. Using openstreetmap data. Algori-
thms for Geographic Data, 2024. Tutorial tecnico per l’utilizzo dei dati
OSM.

[88] Sandeep Pandey. Openstreetmap: Access, data mining and data
manipulation. Personal Blog, October 2020. Tutorial su accesso e
manipolazione dati OSM con Python.

[89] Sandeep Pandey. Open source routing: Exploring open route service
(osr). Personal Blog, February 2025. Setup e utilizzo di Open Route
Service.

BIBLIOGRAFIA 101

[90] Nikolai Janakiev. Loading data from openstreetmap with python and
the overpass api. TDS Archive, Medium, May 2023. Tutorial Python
per accesso dati OSM via Overpass API.

[91] Itinero Documentation. Openstreetmap data model. Itinero Do-
cumentation, 2024. Documentazione del modello dati OSM per
sviluppatori.

[92] Overpass API Documentation. The data model of openstreetmap.
Overpass API Documentation, 2024. Documentazione tecnica del
modello dati per Overpass API.

[93] S. Auer, J. Lehmann, and S. Hellmann. Linkedgeodata: Adding a
spatial dimension to the web of data. ResearchGate, 2009. Architettura
tecnica OpenStreetMap e componenti.

[94] Vladimir Agafonkin. Leaflet: An open-source javascript library for
mobile-friendly interactive maps, 2011.

[95] Leaflet Contributors. Leaflet documentation, 2023.

[96] Vladimir Agafonkin and Leaflet Contributors. Leaflet, 2011. Open-
source JavaScript library, Version 1.9.x.

[97] Vue.js Contributors. Vue.js documentation, 2024.

[98] Evan You and Vue.js Contributors. Vue.js, 2014. Progressive JavaScript
framework, Version 3.x.

[99] Vue.js Contributors. Vue.js api reference, 2024. Official API
documentation.

[100] Node.js Foundation. Node.js official documentation, 2023.

[101] Dylan Palino and Rajini Sivaram. Kafka in Action. Manning
Publications, 2022.

102 BIBLIOGRAFIA

[102] Gwen Shapira. Building real-time data pipelines with apache kafka.
Technical report, Confluent Inc., 2016.

[103] Docker Inc. Docker compose overview. https://docs.docker.com/

compose/, 2023. Accessed: 2024-01-15.

[104] Martin Fowler and James Lewis. Microservices. ThoughtWorks, 2014.
Accessed: 2024-01-15.

[105] Sam Newman. Building microservices: designing fine-grained systems.
O’Reilly Media, 2015.

[106] Liang Chen, Babar Ali, and Muhammad Bilal. From monolith to mi-
croservices: a dataflow-driven approach. In Proceedings of the 24th
Asia-Pacific Software Engineering Conference, pages 466–475. IEEE,
2017.

[107] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Definition, be-
nefits and challenges of microservices: A systematic mapping study.
Journal of Systems and Software, 144:61–79, 2018.

[108] Nuha Alshuqayran, Nour Ali, and Roger Evans. A systematic mapping
study in microservice architecture. In 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications (SOCA),
pages 44–51. IEEE, 2016.

[109] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[110] Flavio Battaglia et al. The role of ontologies in enabling dynamic
interoperability. Future Generation Computer Systems, 76:371–382,
2017.

https://docs.docker.com/compose/
https://docs.docker.com/compose/

BIBLIOGRAFIA 103

[111] Matthias Kovatsch, Marius Lanter, and Zach Shelby. A restful run-
time for the web of things. In Internet of Things (IOT), 2012 3rd
International Conference on the, pages 10–17. IEEE, 2012.

[112] Vlad Stirbu. Towards a restful plug & play experience in the web of
things. Semantic Web, 1(1-2):105–110, 2010.

Ringraziamenti

Vorrei ringraziare Miriana, che mi sostiene ed accompagna ogni giorno
nelle difficoltà e negli impegni della vita che assieme ci stiamo costruendo.

Ringrazio i miei genitori, Anna e Domenico, mia sorella Benedetta, mia
cugina Valeria e la mia famiglia tutta.

Ringrazio i miei suoceri, Immacolata e Marco, che mi hanno sin da subito
accolto nella loro vita e fatto sentire parte della famiglia, ma che sopratutto
mi hanno permesso di scegliere Miriana come la mia compagna.

Ringrazio Luca, che prima di essere stato il mio mentore e collega è stato
mio amico.

Ringrazio Daniele, nel quale ho trovato un amico sincero e leale.
Ringrazio il Professor Olaiya, che mi ha seguito in questo lavoro con

attenzione e disponibilità, senza il quale non sarebbe stato possibile realizzare
quanto prodotto.

	Introduzione
	Introduzione del sistema
	Scopo del progetto
	Qualità dell'aria
	Principali inquinanti atmosferici e loro origini
	Materiale particolato (PM)
	Biossido di azoto (no2)
	Ozono troposferico (o3)
	Anidride solforosa (so2)
	Monossido di carbonio (co)

	Sistema di coordinate
	epsg:4326
	epsg:3857
	wgs84

	osm
	Storia e fondazione
	Caratteristiche tecniche
	Applicazioni e ricerca accademica
	Struttura dati di osm
	Applicazioni e casi d'uso
	Integrazione programmatica

	Funzionalità del sistema
	Requisiti funzionali
	Requisiti non funzionali

	Principali difficoltà del progetto

	Tecnologie
	Applicazioni front-end
	Vue
	Leaflet

	Applicazioni back-end
	Node.js
	Python
	Kafka
	MongoDB

	Deployment
	Docker
	Docker compose

	Sviluppo dell'elaborato di progetto
	Architettura generale del sistema
	Architettura a microservizi
	Architettura del sistema

	Sensor service
	Modello sensore
	Generazione pseudo-misurazioni
	Distribuzione sensori

	api service
	Implementazione del Server
	Endpoint Disponibili

	Dashboard service
	Design e architettura dell'interfaccia
	Implementazione

	Conclusioni
	Bibliografia
	Ringraziamenti

