
Dipartimento di Informatica - Scienza e Ingegneria

Corso di Laurea in Ingegneria e Scienze-Informatiche

Sviluppo ed analisi di modelli generativi
di immagini basati su diffusione e

autoencoder variazionali

Relatore:
Damiana Lazzaro

Presentata da:
Kevin Shimaj

Sessione Unica
Anno Accademico 2024/2025





Indice

Introduzione 2

1 L’AI Generativa 3
1.1 Panoramica ed evoluzione . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Dai GAN ai DDPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Legislazioni e limitazioni dell’AI generativa . . . . . . . . . . . . . . . 6

2 Denoising Diffusion Probabilistic Models (DDPM) 8
2.1 Entropia e termodinamica . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Processi forward e reverse . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Forward: catena di Markov gaussiana . . . . . . . . . . . . . . 15
2.2.2 Reverse: modello generativo gaussiano . . . . . . . . . . . . . 18

2.3 Derivazione della loss function . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Training e Sampling nei DDPM . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Procedura di Training . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Procedura di Sampling . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Architettura del modello nei DDPM . . . . . . . . . . . . . . . . . . . 26
2.5.1 Architettura UNet . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Time embedding e iniezione nella UNet . . . . . . . . . . . . . 29
2.5.3 Codifica sinusoidale . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Classifier-Free Guidance . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.1 Posteriori come campi esterni . . . . . . . . . . . . . . . . . . 31
2.6.2 Dal classifier guidance al classifier-free guidance . . . . . . . . 31
2.6.3 Formula di combinazione . . . . . . . . . . . . . . . . . . . . . 32
2.6.4 Interpretazione e risultati . . . . . . . . . . . . . . . . . . . . 32

3 Variational Autoencoder (VAE) 33
3.1 Introduzione e principi generali . . . . . . . . . . . . . . . . . . . . . 33
3.2 Formulazione probabilistica e reparameterization trick . . . . . . . . . 34
3.3 Evidence Lower Bound (ELBO) . . . . . . . . . . . . . . . . . . . . . 35

i



3.3.1 Derivazione matematica . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Interpretazione pratica . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Architettura del modello . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Pseudocodice di training e sampling . . . . . . . . . . . . . . . . . . . 40
3.6 Limiti, varianti e confronto con i DDPM . . . . . . . . . . . . . . . . 40

3.6.1 Limiti principali . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Varianti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3 Confronto con i DDPM . . . . . . . . . . . . . . . . . . . . . . 41

4 Diffuse-VAE 43
4.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Funzionamento generale . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Formulazione 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Implementazione nella tesi . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Limiti e prospettive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Implementazione 47
5.1 DDPM e Diffuse-VAE . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Architettura UNet . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Noise scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Linear Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Cosine Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Metodi forward e reverse . . . . . . . . . . . . . . . . . . . . . 55
5.2.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.5 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.1 Encoder e decoder . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Visualizzazione dello spazio latente . . . . . . . . . . . . . . . 63
5.3.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Ottimizzazione degli iperparametri e addestramento dei modelli
generativi 66
6.1 Descrizione dei dataset utilizzati . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Fashion-MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Panoramica di Optuna . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Spazio di ricerca e campionamento . . . . . . . . . . . . . . . 69
6.2.2 Pruning con MedianPruner . . . . . . . . . . . . . . . . . . . 69



6.2.3 Miglior trial e risultati dell’ottimizzazione . . . . . . . . . . . 69
6.3 Applicazione al Variational Autoencoder (VAE) . . . . . . . . . . . . 70

6.3.1 Configurazione di Optuna per il VAE . . . . . . . . . . . . . . 70
6.3.2 Risultati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 Applicazione al Denoising Diffusion Probabilistic Model (DDPM) . . 71
6.4.1 Configurazione di Optuna per il DDPM . . . . . . . . . . . . . 71
6.4.2 Risultati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 Discussione e confronto . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Valutazione quantitativa e qualitativa delle immagini generate 74
7.1 PSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 SSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.5 Edge Similarity (Sobel-based) . . . . . . . . . . . . . . . . . . . . . . 76
7.6 Histogram Similarity (Chi-Squared) . . . . . . . . . . . . . . . . . . . 77
7.7 LPIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.8 Risultati Finali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.9 Visualizzazione delle immagini generate . . . . . . . . . . . . . . . . . 79

7.9.1 Immagini generate dal VAE . . . . . . . . . . . . . . . . . . . 79
7.9.2 Evoluzione dello spazio latente del VAE . . . . . . . . . . . . 81
7.9.3 Immagini generate dal DiffuseVAE . . . . . . . . . . . . . . . 83
7.9.4 Confronto fra dataset reale, VAE e DiffuseVAE . . . . . . . . 84

Conclusioni 87

Bibliografia 89





Alla mia famiglia, per il vostro amore incondizionato e per tutti i sacrifici che mi
hanno permesso di arrivare fin qui.





Introduzione

L’Intelligenza Artificiale Generativa si sta affermando come una delle tecnologie più
rivoluzionarie degli ultimi anni, con un impatto crescente in ambiti quali automazione
dei processi, creazione di contenuti, sviluppo software e supporto decisionale.[1] In
particolare, nel 2024 una larga maggioranza di organizzazioni ha dichiarato di adottare
sistemi di AI in almeno una delle proprie funzioni aziendali, segnando un significativo
aumento rispetto all’anno precedente. Parallelamente, l’utilizzo di strumenti di
AI generativa si è rapidamente diffuso in diverse aree di business, registrando una
crescita importante su base annua. Tra gli utenti, questi modelli generativi hanno
permesso di risparmiare mediamente una quantità apprezzabile di tempo nel totale
delle ore lavorative settimanali [1], [2], [3].
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Figura 1: Adozione dell’AI e dell’AI generativa (2023 vs 2024), e tempo medio
settimanale risparmiato grazie alla GenAI.

In questo contesto, la presente tesi si propone di contribuire allo studio dei modelli
generativi e alla relativa implementazione. È stato innanzitutto realizzato un De-
noising Diffusion Probabilistic Model (DDPM), affiancato dalla progettazione di un
Variational Autoencoder (VAE), al fine di esplorare i punti di forza e i limiti di ciascun
approccio. Su questa base è stata sviluppata un’architettura ibrida, denominata
Diffuse-VAE, che combina la capacità dei VAE di apprendere spazi latenti compatti
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con la potenza dei DDPM nel generare campioni ad alta fedeltà. L’analisi delle
prestazioni è stata condotta sia in termini quantitativi, attraverso metriche standard
quali PSNR, SSIM e MSE, sia in termini qualitativi, mediante l’ispezione visiva dei
campioni generati. Questo duplice approccio ha permesso di valutare in maniera
bilanciata efficacia, limiti e potenzialità delle soluzioni proposte. Il lavoro è stato
sviluppato principalmente in Python utilizzando il framework PyTorch, scelto per la
flessibilità del modello a tensori con autograd, il supporto GPU, l’ecosistema ricco e
l’ampia diffusione nella comunità di ricerca [4].
La tesi è così organizzata:

• Il Capitolo 1 introduce il contesto dell’intelligenza artificiale generativa e
ne ripercorre l’evoluzione storica, evidenziando i principali approcci e le loro
caratteristiche.

• Il Capitolo 2 è dedicato ai modelli di diffusione,con una descrizione appro-
fondita dei principi teorici e dei meccanismi che ne permettono la generazione
progressiva.

• Il Capitolo 3 approfondisce i Variational Autoencoder (VAE), illustrandone
la formulazione probabilistica e le tecniche di addestramento.

• Il Capitolo 4 presenta l’architettura ibrida DiffuseVAE, analizzando nel
dettaglio come il modello di diffusione (DDPM) venga condizionato dalla
ricostruzione generata dal VAE. Vengono, inoltre, esplorate le interazioni tra i
due modelli e il loro impatto sulla qualità finale delle immagini generate

• Il Capitolo 5 descrive le scelte implementative effettuate e le tecniche di
ottimizzazione degli iperparametri utilizzate.

• Il Capitolo 6 è dedicato all’analisi delle prestazioni, condotta attraverso
metriche quantitative e confronti qualitativi tra i modelli.
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Capitolo 1

L’AI Generativa

In questo capitolo viene presentata l’evoluzione dei modelli generativi di immagini,
ripercorrendo le principali tappe che hanno condotto dalle prime architetture fino
agli approcci più recenti [5], [6]. Oltre agli aspetti tecnici, viene inoltre offerta
una panoramica sul quadro legislativo attualmente in vigore, che definisce limiti e
responsabilità nell’impiego dell’AI generativa [7].

1.1 Panoramica ed evoluzione

Negli ultimi anni l’Intelligenza Artificiale Generativa ha compiuto progressi notevoli,
passando da semplici modelli statistici a sofisticate architetture neurali in grado
di generare immagini, audio e testo di qualità comparabile a quella prodotta da
esseri umani. Questo sviluppo è stato guidato da una combinazione di fattori:
la disponibilità di grandi dataset, l’aumento della potenza computazionale e il
miglioramento degli algoritmi di apprendimento.

In ambito di image synthesis, i modelli generativi hanno seguito un percorso
evolutivo ben definito:

1. Generative Adversarial Networks (GAN), che hanno introdotto un ap-
proccio avversario capace di produrre immagini fotorealistiche, stabilendo per
anni lo stato dell’arte in termini di qualità percepita.

2. Modelli basati su verosimiglianza esplicita (es. Variational Autoenco-
ders e modelli autoregressivi), caratterizzati da una buona copertura della
distribuzione dei dati ma qualità visiva limitata.

3. Denoising Diffusion Probabilistic Models (DDPM), modelli basati
sulla stima della distribuzione di probabilità tramite un processo inverso di
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rimozione del rumore, che uniscono stabilità di addestramento, copertura della
distribuzione e, con recenti miglioramenti, qualità visiva pari o superiore ai
GAN.

1.2 Dai GAN ai DDPM

Le Generative Adversarial Networks (GAN) hanno rappresentato una svolta
fondamentale nei modelli generativi, consentendo di ottenere immagini ad alta
risoluzione. La loro architettura si basa su due componenti principali che competono
in un processo di apprendimento avversariale:

• Generatore (G): prende in input un vettore di rumore casuale z ∼ pz(z),
proveniente da una distribuzione nota (tipicamente gaussiana o uniforme), e lo
trasforma in un campione sintetico G(z) che mira a riprodurre le caratteristiche
statistiche dei dati reali.

• Discriminatore (D): riceve in ingresso sia campioni reali x ∼ pdata(x) che
campioni sintetici G(z), restituendo una probabilità che misura quanto l’input
sembri reale.

L’addestramento è formalizzato come un gioco minimax :

min
G

max
D

Ex∼pdata [log D(x)] + Ez∼pz [log(1−D(G(z)))]

dove il Discriminatore cerca di massimizzare la capacità di distinguere tra dati reali e
generati, mentre il Generatore cerca di minimizzare la capacità del Discriminatore di
riconoscere i falsi, “ingannandolo” con campioni sempre più realistici. Questo processo
iterativo porta entrambe le reti a migliorarsi reciprocamente, fino a raggiungere un
equilibrio in cui le immagini sintetiche diventano difficilmente distinguibili da quelle
reali.
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Figura 1.1: Schema generale di una GAN: il Generatore G trasforma un rumore
casuale z in un campione sintetico, mentre il Discriminatore D valuta la probabilità
che il campione sia reale.

Nonostante i numerosi successi ottenuti, le Generative Adversarial Networks (GAN)
presentano alcuni limiti intrinseci che ne condizionano l’impiego in scenari complessi.
L’addestramento, infatti, risulta spesso instabile a causa della natura avversaria del
processo, che può causare divergenze o oscillazioni difficilmente controllabili. Un
ulteriore problema ricorrente è il cosiddetto mode collapse, ovvero la tendenza del
generatore a produrre soltanto un insieme ristretto di campioni, con conseguente
riduzione della diversità. A ciò si aggiunge una marcata sensibilità alla scelta
degli iperparametri, che rende l’ottimizzazione delicata e ne ostacola la scalabilità
verso domini particolarmente complessi o significativamente differenti da quello di
addestramento.

Per affrontare queste problematiche, si sono affermati i Denoising Diffusion
Probabilistic Models (DDPM), appartenenti alla famiglia dei modelli likelihood-
based. Diversamente dalle GAN, che apprendono a mappare direttamente un rumore
in un’immagine, i DDPM definiscono un processo generativo inverso di denoising
multi-step: partendo da un rumore gaussiano puro, rimuovono progressivamente
il rumore stimando a ogni passo la distribuzione condizionata pθ(xt−1 |xt). Questi
aspetti verranno ripresi e approfonditi nel Capitolo 2, dove verranno illustrati in modo
più dettagliato i principi di funzionamento dei modelli di diffusione e i meccanismi
che ne rendono possibile la fase generativa.

Rispetto alle GAN, i DDPM presentano vantaggi significativi:

• Addestramento stabile, poiché non dipendono dalla dinamica competitiva
che spesso compromette la convergenza dei modelli avversari.

• Maggiore copertura della distribuzione, riducendo sensibilmente il rischio
di mode collapse.
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• Scalabilità a differenti risoluzioni e domini, riuscendo a preservare una buona
consistenza qualitativa nei campioni generati.

Inizialmente, i DDPM non raggiungevano la qualità visiva delle GAN su dataset
complessi. Tuttavia, miglioramenti architetturali come UNet potenziate, attenzione
multi-scala, blocchi di up/downsampling derivati da BigGAN, Adaptive Group
Normalization e tecniche di guidance basate su classificatori hanno consentito di
ottenere un controllo più fine sul compromesso diversità/fedeltà, superando le GAN
in metriche come il FID (Fréchet Inception Distance).

1.3 Legislazioni e limitazioni dell’AI generativa

L’Unione Europea è attualmente la giurisdizione con il quadro regolatorio più avanzato
in materia di intelligenza artificiale. Con l’adozione dell’AI Act, l’UE ha introdotto
una classificazione dei sistemi di AI basata sul livello di rischio (minimo, limitato,
alto, inaccettabile), imponendo obblighi proporzionati alla categoria.

Figura 1.2: Classificazione dei sistemi di intelligenza artificiale secondo l’AI Act
europeo, con esempi per ciascun livello di rischio e relativi obblighi normativi.

L’AI generativa, come i modelli di diffusione e i modelli linguistici di grandi
dimensioni (LLM), può essere collocata in diverse fasce della piramide in funzione
dell’uso previsto. In situazioni a basso impatto, come nei chatbot generici o negli
strumenti creativi per la produzione di immagini, l’AI generativa può essere consi-
derata a rischio limitato, purché vengano rispettati gli obblighi di trasparenza,
ad esempio indicare chiaramente che il contenuto è stato generato artificialmente.
In contesti più delicati, come la generazione di contenuti per processi decisionali
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automatizzati, diagnosi mediche assistite o sistemi di monitoraggio, l’AI generativa
può essere considerata a rischio elevato, poiché potrebbe incidere su diritti fonda-
mentali o sulla sicurezza. Infine, se utilizzata per scopi vietati dall’AI Act, come nel
caso di social scoring, manipolazione psicologica di soggetti vulnerabili o produzione
di deepfake per scopi di disinformazione politica, l’AI generativa rientra nel rischio
inaccettabile.

L’AI Act stabilisce specifici obblighi per l’uso dell’AI generativa, tra cui la traspa-
renza, che richiede di dichiarare chiaramente quando un contenuto è stato generato
o manipolato da un sistema di AI. Inoltre, è necessario fornire documentazione sui
dati di addestramento, specificando i dataset utilizzati, con particolare attenzione
ai contenuti protetti da copyright. Infine, è fondamentale implementare misure per
la mitigazione dei rischi, al fine di prevenire la generazione di contenuti illeciti o
fuorvianti.

Sul piano della proprietà intellettuale, la Direttiva UE 2019/790 sul text and data
mining consente l’estrazione di dati per scopi di ricerca, ma permette ai titolari dei
diritti di escludere esplicitamente le loro opere. Questo pone limiti diretti all’uso di
dataset contenenti materiale protetto.

Infine, il Regolamento Generale sulla Protezione dei Dati (GDPR) si applica
quando i dataset di addestramento includono informazioni personali, imponendo
obblighi di anonimizzazione o pseudonimizzazione e di tutela della privacy. Questi
vincoli assumono un ruolo centrale nell’AI generativa, poiché i modelli di diffusione e
gli autoencoder variazionali richiedono grandi quantità di dati per l’addestramento.
L’impiego di dataset contenenti opere protette da copyright o informazioni personali
deve pertanto essere gestito con attenzione, garantendo la conformità alle normative
vigenti. In particolare, la trasparenza sulla provenienza dei dati e l’adozione di
tecniche di anonimizzazione rappresentano condizioni essenziali per lo sviluppo
responsabile di sistemi generativi.
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Capitolo 2

Denoising Diffusion Probabilistic
Models (DDPM)

In questo capitolo vengono analizzati i Denoising Diffusion Probabilistic Models
(DDPM) [8], [9], [10], [11], una classe di modelli generativi basati su processi di
diffusione che hanno recentemente ottenuto risultati allo stato dell’arte. L’esposizione
parte dai principi fondamentali e dalle motivazioni teoriche che giustificano l’impiego
della diffusione come meccanismo di generazione, approfondendo in particolare il
legame tra entropia, termodinamica e dinamiche stocastiche. Successivamente viene
presentata la formulazione matematica dei processi forward e reverse, insieme alla
derivazione del bound alla log-likelihood e alla sua interpretazione. Un’attenzione
specifica è dedicata al ruolo dei cosiddetti variance scheduler, che influenzano in
maniera significativa la qualità dei campioni prodotti. Il capitolo discute inoltre
l’architettura di riferimento basata su reti U-Net arricchite con meccanismi di time-
embedding, fondamentali per modellare la dipendenza temporale dei passi di denoising.
Infine, viene introdotto il meccanismo di Classifier-Free Guidance, che consente di
controllare la generazione in maniera condizionata, ampliando le possibilità di utilizzo
pratico dei modelli di diffusione.

2.1 Entropia e termodinamica

I modelli di diffusione prendono ispirazione dalla non-equilibrium thermodynamics:
partendo da una distribuzione dei dati q(x(0)) caratterizzata da struttura elevata e
quindi bassa entropia si applica un processo di degradazione controllato, aggiungendo
rumore in più passi fino a ottenere una distribuzione semplice π (forward process),
che rappresenta uno stato di alta entropia. Il modello generativo impara quindi
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a invertire questo processo, rimuovendo gradualmente il rumore e ripristinando la
struttura originale (reverse process).

Figura 2.1: Esempi qualitativi di bassa entropia (alta struttura) e alta entropia
(rumore casuale).

Forward process (aumento di entropia). Il forward process rappresenta la fase
in cui i dati originali vengono progressivamente “degradati” aggiungendo rumore
in più passi, fino a perdere quasi completamente la loro struttura. Indichiamo con
Tπ(· | ·; βt) il kernel di transizione (cioè la regola probabilistica che descrive come
passare da uno stato x(t−1) a uno stato x(t)) al passo t, dove βt controlla la quantità
di rumore aggiunto in quel passo.

Matematicamente, la dinamica del forward si descrive come:

q(x(t) | x(t−1)) = Tπ

(
x(t) | x(t−1); βt

)
, π(y) =

∫
Tπ(y | y′; β) π(y′) dy′. (2.1)

La prima delle equazioni (2.1) dice che la probabilità di ottenere x(t) dipende solo
dallo stato precedente x(t−1) e dal rumore iniettato. La seconda delle equazioni (2.1)
descrive la distribuzione stazionaria π: se il processo di rumore venisse iterato per un
numero infinito di passi, si convergerebbe a π (tipicamente una Gaussiana standard).
Nel caso continuo, se i dati sono prima normalizzati a varianza unitaria, l’entropia1

non può diminuire quando si aggiunge rumore gaussiano indipendente. Infatti, la
convoluzione di una distribuzione qualsiasi con una gaussiana produce una distribu-
zione più “larga” e meno concentrata: le regioni di alta densità vengono smussate e
quelle di bassa densità si riempiono, incrementando l’incertezza complessiva. In altre
parole, il rumore agisce come un operatore di diffusione che disperde l’informazione,
spingendo la distribuzione verso uno stato di massima entropia (rumore puro).

La relazione
Hq(X(t)) ≥ Hq(X(t−1)) (2.2)

significa che:

• Hq(X(t)) è l’entropia dopo t passi di diffusione;
• Hq(X(t−1)) è l’entropia dopo il passo precedente;

1In questo contesto, l’entropia di Shannon di una variabile casuale continua X è H(X) =
−
∫

p(x) log p(x) dx, e misura il “disordine” o l’incertezza della distribuzione.
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• l’uguaglianza si verifica solo se βt = 0, cioè non viene aggiunto rumore in quel
passo.

In altre parole, ogni passo del forward process non riduce mai l’incertezza della
distribuzione, e nella pratica la aumenta quasi sempre.

Intuitivamente:
• se βt è piccolo, il rumore aggiunto è minimo e la crescita di entropia è lenta;
• se βt è grande, la crescita di entropia è più rapida e la struttura dei dati si

perde velocemente.

Figura 2.2: Rappresentazione schematica del forward process: partendo dai dati com-
plessi pcomplex, il processo di diffusione applica più passi di rumore fino a raggiungere
il prior pprior.

Reverse process (riduzione di entropia). Il reverse process è la fase generativa
vera e propria: partendo da uno stato di rumore puro, il modello cerca di ricostruire
gradualmente la struttura dei dati originali, riducendo passo dopo passo l’incertezza
della distribuzione.

Formalmente, la probabilità di una traiettoria completa (x(0), . . . , x(T )) nel reverse
si scrive come:

p(x(0...T )) = p(x(T ))
T∏

t=1
p(x(t−1) | x(t)), p(x(T )) = π.

Qui:
• p(x(T )) = π indica la distribuzione iniziale del reverse, che è la stessa distribu-

zione di rumore raggiunta dal forward process dopo T passi;
• p(x(t−1) | x(t)) è il kernel inverso che descrive come passare dallo stato x(t) a

quello x(t−1) ricostruendo parte del segnale perso;
• il prodotto ∏T

t=1 combina tutti i passi, partendo dal rumore e tornando ai dati.
Se i passi βt sono abbastanza piccoli, il reverse process ha la stessa forma

funzionale del forward: ad esempio, se il forward aggiunge rumore gaussiano, il
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reverse sarà anch’esso descritto da una distribuzione gaussiana, ma con media e
covarianza scelte in modo da togliere il rumore anziché aggiungerlo.

In pratica, il modello deve apprendere i parametri della distribuzione inversa
al passo t. La media fµ(x(t), t) rappresenta il “punto centrale” attorno a cui è
distribuito il campione x(t−1). Intuitivamente, questa media indica quale sia la
versione più probabile del dato quando proviamo a rimuovere il rumore dal campione
corrente x(t). D’altro canto, la covarianza fΣ(x(t), t) misura l’incertezza associata
a questa ricostruzione. Se il rumore è stato iniettato in modo lieve (cioè per valori
piccoli di βt), la covarianza sarà ridotta e il modello potrà stimare x(t−1) con alta
precisione. Al contrario, quando il campione è molto degradato (per valori elevati di
t), la covarianza aumenta, poiché diverse configurazioni di x(t−1) sono compatibili
con lo stesso x(t).

Dal punto di vista geometrico, possiamo immaginare fµ(x(t), t) come la “direzione
di denoising” che porta il campione verso lo spazio dei dati, mentre fΣ(x(t), t) controlla
quanto il processo resti stocastico o, al contrario, deterministico. In altre parole,
la media dice “dove andare”, mentre la covarianza dice “quanto fidarsi” di quella
direzione.

x1

x2

x(t)

fµ(x(t), t)
denoising

ellisse di covarianza fΣ

x(t)

fµ(x(t), t)
fΣ

Figura 2.3: Media e covarianza nel reverse: la freccia indica la direzione di denoi-
sing verso la media fµ(x(t), t); l’ellisse (1-σ) rappresenta l’incertezza modellata da
fΣ(x(t), t).

Questi due parametri del kernel inverso vengono stimati da una rete neurale (tipi-
camente una UNet), addestrata in modo che la sequenza di passi inversi ricostruisca
fedelmente la distribuzione dei dati originali.
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Figura 2.4: Rappresentazione schematica del reverse process: a partire dal prior pprior,
il modello ricostruisce gradualmente la distribuzione complessa dei dati pcomplex.

Figura 2.5: Esempio di traiettorie nel forward (in blu) e nel reverse process (in verde)
nello spazio delle configurazioni.

Bound alla log-likelihood. L’obiettivo dell’addestramento è massimizzare la
log-likelihood

L = log p(x(0)),

ossia il logaritmo della probabilità che il modello assegna a un campione reale x(0).
L’impiego del logaritmo non è soltanto una convenzione, ma ha motivazioni pratiche:
consente di trasformare prodotti di probabilità condizionate in somme, rendendo
l’ottimizzazione più trattabile, e al tempo stesso stabilizza i calcoli quando si lavora
con valori molto piccoli, tipici di distribuzioni ad alta dimensionalità. In termini
intuitivi, durante il training massimizzare la log-likelihood significa aumentare la
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coerenza tra i campioni generati e i dati osservati: un modello che assegna alta
probabilità (quindi alta log-probabilità) a un’immagine reale avrà maggiori capacità
di ricostruirla, e di conseguenza, nella fase di generazione, sarà in grado di produrre
campioni che appartengono a distribuzioni simili a quelle del dataset. Nel caso
dei modelli di diffusione, L non può essere calcolata in forma chiusa, ma possiamo
ottenere un lower bound (limite inferiore) K che può essere massimizzato in pratica:

L ≥ K = −
T∑

t=2
Eq(x(0),x(t))

[
KL

(
q(x(t−1) | x(t), x(0)) ∥ p(x(t−1) | x(t))

)]
+ Hq(X(T ) | X(0))−Hq(X(1) | X(0))−Hp(X(T )). (2.3)

Vediamo il significato di ogni termine:
• KL(· ∥ ·) è la divergenza di Kullback–Leibler, che misura quanto due distribu-

zioni differiscono tra loro. Qui confronta:
– q(x(t−1) | x(t), x(0)): distribuzione “vera” del passo inverso derivata dal

forward;
– p(x(t−1) | x(t)): distribuzione inversa appresa dal modello.

Ogni termine di KL penalizza il modello quando il reverse appreso si discosta
dal reverse “ideale”.

• La sommatoria ∑T
t=2 calcola la penalità totale lungo tutti i passi, partendo dal

secondo fino all’ultimo.
• Hq(X(T ) | X(0)): entropia condizionata dopo T passi, misura l’incertezza

introdotta dal forward partendo dai dati reali.
• Hq(X(1) | X(0)): entropia condizionata dopo il primo passo, che viene sottratta

per bilanciare la stima.
• Hp(X(T )): entropia (non condizionata) dello stato iniziale del reverse process,

cioè del rumore puro π.
Il bound K diventa esatto (cioè K = L) nel caso ideale in cui il reverse process
appreso coincida perfettamente con quello “vero”. In questo scenario, ogni termine
di KL nella sommatoria si annulla:

KL(q ∥ p) = 0 ⇒ L = K.

Questo caso limite corrisponde a un processo quasi-statico, in cui la generazione è
perfettamente reversibile e non si perde informazione lungo i passi.

Seconda legge in forma discreta. Il punto chiave è che il forward process
q è definito in modo esplicito: siamo noi a stabilire la sequenza di rumori {βt}

13



da applicare, e quindi conosciamo analiticamente le distribuzioni q(x(t) | x(t−1)) e
q(x(t) | x(0)). Questo non vale per il reverse process p, che deve invece essere appreso.
Proprio grazie al fatto che q è noto, è possibile derivare dei bound sull’entropia
condizionata del reverse p, portando alla relazione:

Hq(X(t) | X(t−1)) ≥ Hq(X(t−1) | X(t)) ≥ Hq(X(t) | X(t−1))+Hq(X(t−1) | X(0))−Hq(X(t) | X(0)).

si interpreta così:

• Hq(X(t) | X(t−1)) è l’incertezza introdotta andando da t− 1 a t nel forward;
• Hq(X(t−1) | X(t)) è l’incertezza del reverse nel ricostruire t− 1 conoscendo t;
• il termine Hq(X(t−1) | X(0))−Hq(X(t) | X(0)) corregge il bound tenendo conto

di quanta informazione residua sul dato originale si perde tra t− 1 e t.

Il “divario” tra il lato sinistro e destro della disuguaglianza misura l’irreversibilità del
processo: più è grande, maggiore è la quantità di informazione che è andata persa e
non può essere recuperata. Nel limite di passi infinitesimi (βt → 0) questo divario si
annulla e il processo diventa quasi-statico.

Scheduler βt e dissipazione. Lo scheduler definisce come i valori βt (quantità
di rumore aggiunto a ogni passo del forward) variano nel tempo. La scelta della
schedule influisce su:

• la dissipazione: quantità di “energia informativa” persa lungo il ciclo for-
ward–reverse;

• la precisione del bound K: passi più piccoli e concentrati nelle fasi “critiche”
riducono la divergenza KL tra forward e reverse, avvicinando K a L.

In sintesi: scheduler dolci (piccoli βt) rendono il processo più vicino al quasi-statico
ma aumentano la lunghezza della catena di passi; scheduler aggressivi (grandi βt)
riducono i il numero di passi ma aumentano la perdita di informazione.

2.2 Processi forward e reverse

In questa sezione formalizziamo i processi di forward (diffusione) e reverse (denoising)
nei DDPM, esplicitando le distribuzioni coinvolte, le espressioni in forma chiusa utili
in addestramento e campionamento, e la parametrizzazione pratica impiegata nel
modello.
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2.2.1 Forward: catena di Markov gaussiana

Il forward process (o diffusion process) è una catena di Markov che aggiunge
rumore gaussiano ai dati x(0) ∼ q(x(0)) secondo una sequenza di varianze {βt}T

t=1.
Ad ogni passo t, lo stato corrente x(t) dipende unicamente dallo stato precedente
x(t−1) e da un rumore gaussiano N (0, I):

q(x(1:T ) | x(0)) =
T∏

t=1
q(x(t) | x(t−1)), q(x(t) | x(t−1)) = N

(
x(t);

√
1− βt x(t−1), βtI

)
.

(2.4)

Derivazione intuitiva. Scrivendo αt = 1− βt, l’equazione (2.4) diventa:

xt = √αt xt−1 +
√

βtN (0, I).

Se, ad esempio, αt = 0.5 e βt = 0.1, la distribuzione di xt è una combinazione di metà
del segnale precedente e di rumore gaussiano, con un progressivo “appiattimento”
verso una Gaussiana standard.

Caso estremo: se αt = 0 e βt = 1, otteniamo immediatamente una distribuzione
normale standard indipendente dal dato iniziale x0.

Figura 2.6: Evoluzione della distribuzione nel forward process: (sinistra) distribuzione
strutturata iniziale xt−1; (centro) dopo un passo con αt = 0.5, βt = 0.1; (destra) caso
estremo con αt = 0, βt = 1, che produce immediatamente una Gaussiana standard.

Iterando la definizione per due passi:

xt = √αt

(√
αt−1xt−2 +

√
βt−1W(0, I)

)
+
√

βtN (0, I),

da cui:
xt = α

1/2
t α

1/2
t−1 xt−2 +

√
αtβt−1W(0, I) +

√
βtN (0, I).

Proseguendo e scrivendo xt−2 in funzione di xt−3, si ottiene:

xt = (√αt
√

αt−1
√

αt−2)xt−3 + · · ·+
√

βtN (0, I) + (termini di rumore pesati).
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Generalizzando:

xt = αT x0 +
T −1∑
k=0

√βt−k

k−1∏
j=0

√
αt−j

W(0, I),

dove i pesi dei termini di rumore dipendono dal prodotto delle α precedenti.

Per T sufficientemente grande, il termine αT x0 tende a 0 e resta solo la somma
dei rumori, la cui varianza totale tende a 1:

β
1− (1− β)T

1− (1− β) −−−→T →∞
1.

Quindi la “transition function” porta automaticamente a una distribuzione con media
0 e varianza 1 (Gaussiana standard).

Forma chiusa. Definendo ᾱt = ∏t
s=1 αs, si ottiene la forma chiusa:

q(x(t) | x(0)) = N
(

x(t);
√

ᾱt x(0), (1− ᾱt)I
)

, (2.5)

cioè:
x(t) =

√
ᾱt x(0) +

√
1− ᾱt ε, ε ∼ N (0, I). (2.6)

Scheduler della varianza. La varianza βt non è fissa: l’intuizione è usare uno
variance scheduler, cioè una sequenza β1, β2, . . . , βT che controlla l’entità del rumore
aggiunto a ogni passo. Scheduler comuni sono:

• Lineare: βt cresce linearmente da un valore iniziale (es. β1 = 0.0001) a un
valore finale (es. βT = 0.02).

• Cosine: crescita secondo una curva coseno per distribuire il rumore in modo
più uniforme.

Come euristica, vale il principio: “Create chaos, but do it wisely”, ovvero aggiungere
rumore in modo graduale per rendere il processo più facilmente invertibile.
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Figura 2.7: Confronto visivo tra Linear Scheduler e Cosine Scheduler nell’aggiunta di
rumore a un’immagine MNIST (cifra 3) a diversi timestep t. Si nota come il Cosine
Scheduler mantenga un SNR più alto nelle prime fasi rispetto al Linear Scheduler,
preservando più a lungo la struttura dell’immagine.

Figura 2.8: Andamento del rapporto Segnale-Rumore (SNR) in dB per Cosine e
Linear Scheduler. Il Cosine Scheduler degrada il segnale più lentamente nelle prime
fasi, garantendo una transizione più graduale verso il rumore puro.
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Figura 2.9: Confronto tra le curve di ᾱ(t) nei due scheduler. Il Cosine Scheduler
distribuisce la riduzione di ᾱ in modo più uniforme lungo la catena di Markov, mentre
il Linear Scheduler concentra la riduzione in pochi passi iniziali e finali.

Figura 2.10: Confronto visivo agli istanti critici (t = 100, 300, 500, 700, 900) per
Linear e Cosine Scheduler. Il Cosine mantiene dettagli visivi più a lungo, risultando
in un processo di degradazione più controllato.

2.2.2 Reverse: modello generativo gaussiano

Per brevità adottiamo la notazione xt ≡ x(t). Dopo T passi di diffusione, il reverse pro-
cess è una catena di Markov che parte dal prior gaussiano e rimuove progressivamente
il rumore:

pθ(x0:T ) = p(xT )
T∏

t=1
pθ(xt−1 | xt), p(xT ) = N (0, I), (2.7)
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dove, per ogni t, assumiamo transizioni gaussiane

pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), Σθ(xt, t)

)
. (2.8)

Perché non usiamo direttamente q(xt−1 | xt)? In linea di principio vorremmo
campionare dal vero reverse q(xt−1 | xt), ottenuto applicando Bayes a q(xt | xt−1).
Tuttavia:

q(xt−1 | xt) = q(xt | xt−1) q(xt−1)
q(xt)

= q(xt | xt−1)
∫

q(xt−1 | x0) q(x0) dx0∫
q(xt | x0) q(x0) dx0

,

e le marginali q(xt−1) e q(xt) richiedono integrazioni sulla (sconosciuta) distribuzione
dei dati q(x0). La via diretta è dunque intrattabile; introduciamo quindi il modello
parametrico (2.8) da apprendere.

Posteriori del forward in forma chiusa. Nel forward gaussiano, con αt = 1−βt

e ᾱt = ∏t
s=1 αs, valgono

q(xt | x0) = N
(
xt;
√

ᾱt x0, (1− ᾱt)I
)
, q(xt | xt−1) = N

(
xt;
√

αt xt−1, βtI
)
.

Combinando il teorema di Bayes con la proprietà markoviana del processo di forward
si ottiene, per ogni t, il posteriore di forward (condizionato a x0), che è ancora una
distribuzione gaussiana:

q(xt−1 | xt, x0) = N
(
xt−1; µ̃t(xt, x0), β̃tI

)
, (2.9)

con media e varianza note date da:

µ̃t(xt, x0) =
√

ᾱt−1βt

1− ᾱt

x0 +
√

αt(1− ᾱt−1)
1− ᾱt

xt, β̃t = 1− ᾱt−1

1− ᾱt

βt. (2.10)

ELBO locale: riduzione a una MSE sulla media. Il VLB (ELBO) su
− log pθ(x0) si scompone in termini locali

Lt−1 = Eq(xt|x0)

[
DKL

(
q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt)

)]
, 2 ≤ t ≤ T.

Fissando la varianza del processo reverse Σθ(xt, t) = σ2
t I (uguale per pθ e q al passo

t), la KL tra gaussiane coincide (a costanti additive) con una MSE tra le medie:

Lt−1 = 1
2σ2

t

E
[∥∥∥µ̃t(xt, x0)− µθ(xt, t)

∥∥∥2
]

+ cost. (2.11)

19



Scelte pratiche per σ2
t sono βt (rumore del forward), β̃t (varianza del posteriore

(2.10)) oppure 0 (caso deterministico DDIM).

Dalla forma chiusa del forward alla ε-prediction. Dalla forma chiusa del
forward si ottiene

xt =
√

ᾱt x0 +
√

1− ᾱt ε, ε ∼ N (0, I),

da cui
x0 = 1√

ᾱt

(
xt −

√
1− ᾱt ε

)
. (2.12)

Sostituendo l’espressione in (2.12) nella definizione della media µ̃(xt, x0) in (??), si
ottiene:

µ̃t(xt, x0) = 1
√

αt

(
xt −

βt√
1− ᾱt

ε

)
. (2.13)

Tale forma suggerisce di parametrizzare la media del reverse in funzione del rumore
ϵ predetto dalla rete:

µθ(xt, t) = 1
√

αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)
)

. (2.14)

Sostituendo (2.14) dentro (2.11), il termine locale diventa (a pesi noti)

Lt−1 ∝ E
[∥∥∥ε− εθ(xt, t)

∥∥∥2
]

,

ossia una denoising MSE su più livelli di rumore.

Score matching: legame concettuale. Dalla distribuzione gaussiana del forward
si ricava

∇xt log q(xt | x0) = − xt −
√

ᾱtx0

1− ᾱt

= − ε√
1− ᾱt

.

Quindi predire ε equivale, a un fattore noto, a stimare lo score ∇xt log q(xt). La rete
εθ apprende dunque un campo di forza di denoising coerente con lo score matching.

Regola di campionamento (reverse step). Fissata σ2
t ∈{βt, β̃t, 0}, la regola di

campionamento del passo inverso è data da:

xt−1 = µθ(xt, t) + σtz = 1
√

αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)
)

+ σtz, z ∼ N (0, I),

(2.15)
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con z = 0 per t = 1. In pratica, se si imposta σt =
√

βt, come nel DDPM classico, la
varianza del processo inverso coincide con quella del forward al passo t. In questo
caso, la componente stocastica z ∼ N (0, I) riproduce fedelmente il disturbo aggiunto
durante la diffusione, mantenendo così la coerenza statistica tra forward e reverse.
Questa scelta consente di ottenere campioni molto variabili partendo dalla stessa
condizione iniziale, ma introduce una componente di casualità nei risultati.

Nel caso in cui si imposti σt =
√

β̃t, il processo inverso si allinea meglio all’ideale
probabilistico previsto dal modello. Questo riduce la discrepanza statistica tra
forward e reverse, producendo risultati con minore rumore residuo e traiettorie di
denoising più stabili.

Infine, fissando σt = 0, si ottiene il metodo deterministico usato nei DDIM(Denoising
Diffusion Implicit Models). In questo caso, la componente stocastica viene completa-
mente eliminata e il campionamento diventa deterministico: fissato il valore iniziale
xT e il seme casuale usato, si ottiene sempre lo stesso x0. Questo approccio permette
di ridurre il numero di passi necessari per il campionamento, mantenendo alta la
qualità visiva, ma a discapito della diversità nei campioni generati a parità di xT .

Perché funziona nella pratica. Per valori piccoli di t , xt conserva informazione
rilevante su x0 (varianza (1− ᾱt)I ridotta), fornendo un segnale di apprendimento
forte per la predizione di ε. Per valori grandi di t , il segnale è più debole, ma la
coerenza accumulata nei passi precedenti e la struttura markoviana della catena
consentono traiettorie di denoising stabili fino a x0.

2.3 Derivazione della loss function

Partiamo dal modello di transizione inverso:

pθ(xt−1 | xt) = N
(
xt−1 ; µθ(xt, t), Σθ(xt, t)

)
, (2.16)

dove µθ è la media predetta dalla rete neurale, mentre la varianza Σθ viene spesso
fissata (tipicamente βtI), così che la rete non debba predirla.

Loss function di partenza. L’obiettivo teorico è massimizzare la log-likelihood:

L = − log pθ(x0). (2.17)
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Tuttavia, questa quantità è difficile da calcolare esattamente, poiché dipende da tutti
i passi t. Per questo motivo si introduce il Variational Lower Bound (VLB):

− log pθ(x0) ≤ − log pθ(x0) + DKL
(
q(x1:T | x0) ∥ pθ(x1:T | x0)

)
, (2.18)

dove il termine di Kullback–Leibler misura la somiglianza tra la distribuzione di
forward q e quella generata dal modello nel reverse pθ.

Riformulazione. Usando la definizione di KL:

DKL
(
q ∥ p

)
= Eq

[
log q

p

]
, (2.19)

e applicando il teorema di Bayes per decomporre le probabilità condizionate, si
ottiene:

− log pθ(x0) ≤ log q(x1:T | x0)
pθ(x0:T ) (2.20)

= − log pθ(xT ) +
T∑

t=2
log q(xt−1 | xt, x0)

pθ(xt−1 | xt)
+

T∑
t=2

log q(xt | x0)
q(xt−1 | x0)

. (2.21)

La seconda sommatoria può essere semplificata:

T∑
t=2

log q(xt | x0)
q(xt−1 | x0)

= log q(xT | x0)
q(x1 | x0)

,

portando il bound nella forma:

− log pθ(xT ) +
T∑

t=2
log q(xt−1 | xt, x0)

pθ(xt−1 | xt)
+ log q(xT | x0)

q(x1 | x0)
. (2.22)

Riconoscendo nuovamente le definizioni di KL, si ottiene:

LVLB = DKL
(
q(xT | x0) ∥ pθ(xT )

)
+

T∑
t=2

DKL
(
q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt)

)
−log pθ(x0 | x1).

(2.23)

Osservazioni pratiche. Dal punto di vista applicativo, il primo termine di KL
della Equation (2.23) risulta poco rilevante durante l’addestramento. Infatti, la
distribuzione q(xT | x0) non dipende da parametri da ottimizzare ed è completamente
determinata dal processo di diffusione che abbiamo definito a priori; inoltre, il modello
pθ(xT ) coincide con un rumore gaussiano isotropo, cioè una distribuzione normale in
cui la varianza è la stessa in tutte le direzioni e non privilegia alcun asse dello spazio
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latente. In altre parole, non vi è alcun guadagno reale nell’ottimizzare questo termine.
Un discorso analogo vale per l’ultimo termine, − log pθ(x0 | x1), che si riferisce al
passo finale di ricostruzione diretta dal primo stato rumoroso. Nella pratica questo
contributo viene spesso trascurato o trattato separatamente, poiché il suo impatto
sull’ottimizzazione complessiva è marginale e non influisce in maniera significativa
sulla capacità del modello di apprendere il processo di denoising lungo gli altri passi
della catena.

Espressioni di q e pθ

Sappiamo che:

pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), βtI

)
, (2.24)

q(xt−1 | xt, x0) = N
(
xt−1; µ̃t(xt, x0), β̃tI

)
, (2.25)

dove:

µ̃t(xt, x0) =
√

ᾱt−1βt

1− ᾱt

x0 +
√

αt(1− ᾱt−1)
1− ᾱt

xt, (2.26)

β̃t = 1− ᾱt−1

1− ᾱt

βt. (2.27)

Dalla definizione del forward:

xt =
√

ᾱtx0 +
√

1− ᾱt ε,

ricaviamo:
x0 = 1√

ᾱt

(
xt −

√
1− ᾱt ε

)
.

Sostituendo in µ̃t e semplificando:

µ̃t(xt, x0) = 1
√

αt

(
xt −

βt√
1− ᾱt

ε

)
. (2.28)

Loss per passo

La KL gaussiana fra q e pθ porta a:

ℓt = 1
2σ2

t

∥µ̃t(xt, x0)− µθ(xt, t)∥2 . (2.29)
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Parametrizzando la media del reverse in funzione del rumore predetto:

µθ(xt, t) = 1
√

αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)
)

, (2.30)

la loss diventa:
ℓt = β2

t

2σ2
t αt(1− ᾱt)

∥ε− εθ(xt, t)∥2 . (2.31)

Forma “simple” finale. Tralasciando costanti e pesi, la loss usata in pratica è:

Lsimple = Et,x0,ε

[∥∥∥ε− εθ

(√
ᾱtx0 +

√
1− ᾱt ε, t

)∥∥∥2
]

, (2.32)

dove ε ∼ N (0, I) e t è campionato uniformemente da {1, . . . , T}.

Regola di campionamento nel reverse e procedure operative. Una volta
addestrato il modello, la generazione avviene applicando ricorsivamente la regola di
aggiornamento:

xt−1 = 1
√

αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)
)

+ σtz, (2.33)

dove z ∼ N (0, I) se t > 1 e z = 0 se t = 1. Qui σt è tipicamente scelto come
√

βt

per rispettare la varianza del processo inverso.

2.4 Training e Sampling nei DDPM

Il funzionamento dei DDPM può essere sintetizzato in due procedure principali:

• Training, durante il quale la rete neurale impara a predire il rumore ε iniettato
nei dati a diversi livelli di rumore;

• Sampling, che consiste nel partire da rumore puro e applicare il processo
inverso per generare campioni realistici.
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2.4.1 Procedura di Training

Algorithm 1 Training di un DDPM
1: repeat
2: x0 ∼ q(x0) ▷ Campione reale dal dataset
3: t ∼ Uniform({1, . . . , T}) ▷ Scelta casuale del timestep
4: ε ∼ N (0, I) ▷ Rumore gaussiano standard
5: Aggiorna θ minimizzando:

∥∥∥ε− εθ

(√
ᾱtx0 +

√
1− ᾱt ε, t

)∥∥∥2

6: until convergenza

Durante l’addestramento:

1. Si campiona un’immagine reale x0.

2. Si sceglie un timestep t casuale.

3. Si aggiunge rumore per ottenere xt.

4. La rete εθ predice il rumore ε.

5. Si minimizza l’MSE tra rumore vero e predetto.

2.4.2 Procedura di Sampling

Algorithm 2 Sampling da un DDPM
1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: if t > 1 then
4: z ∼ N (0, I)
5: else
6: z = 0
7: end if
8: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
εθ(xt, t)

)
+ σtz

9: end for
10: return x0

Durante il sampling:

1. Si parte da un rumore puro xT .
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2. Ad ogni passo, la rete predice il rumore in xt.

3. Si rimuove il rumore e si aggiunge rumore stocastico z (tranne all’ultimo passo).

4. Dopo T passi si ottiene x0.

2.5 Architettura del modello nei DDPM

In questa sezione descriviamo in dettaglio la struttura della UNet utilizzata nei
modelli di diffusione e il meccanismo di time embedding, evidenziando come
quest’ultimo venga integrato all’interno dell’architettura per condizionare ogni passo
del processo di denoising.

2.5.1 Architettura UNet

La UNet nei modelli di diffusione è una rete convoluzionale encoder–decoder carat-
terizzata da skip connections tra i livelli di pari risoluzione. Questa architettura
permette di combinare il contesto globale, ottenuto riducendo progressivamente la
risoluzione delle feature map, con i dettagli locali, preservati e recuperati grazie ai
collegamenti diretti tra encoder e decoder.

L’encoder, che segue un percorso di downsampling, riduce la risoluzione spaziale
aumentando al contempo il numero di canali per estrarre caratteristiche sempre più
astratte. Il bottleneck, ovvero il punto in cui la risoluzione è minima e il campo
recettivo massimo, è spesso integrato con moduli di attenzione per catturare relazioni
a lungo raggio tra le feature. Infine, il decoder, che segue il percorso di upsam-
pling, ricostruisce la risoluzione originale combinando le informazioni provenienti
dall’encoder tramite i collegamenti di skip connection.
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Figura 2.11: Architettura UNet classica con percorso encoder–decoder e connessioni
skip. La riduzione della risoluzione avviene nel percorso di codifica tramite operazioni
di downsampling, mentre il recupero della risoluzione originale è effettuato nel
percorso di decodifica tramite upsampling.

Skip connections Le connessioni skip mettono in comunicazione i livelli dell’enco-
der e del decoder alla stessa risoluzione spaziale. Il loro scopo è preservare e trasferire
informazioni locali ad alta frequenza, che andrebbero altrimenti perse nei passaggi
di downsampling. In fase di ricostruzione, queste feature vengono concatenate alle
mappe del decoder, consentendo di combinare dettagli strutturali con rappresen-
tazioni semantiche più astratte. Questo meccanismo è cruciale per la qualità delle
ricostruzioni nei modelli di diffusione, poiché permette di mantenere coerenza spaziale
e nitidezza anche dopo molti strati convoluzionali.

Downsampling block

Ogni blocco di downsampling ha il compito di ridurre progressivamente la risoluzione
spaziale delle feature map, aumentando al contempo la profondità e l’astrazione delle
rappresentazioni. Il processo inizia con una serie di convoluzioni 3 × 3 seguite da
funzioni di attivazione non lineari, come ReLU o sue varianti, che permettono di
catturare pattern complessi nei dati.

Per garantire stabilità numerica e favorire la convergenza, le convoluzioni vengono
accompagnate da meccanismi di normalizzazione, tipicamente la Group Normalization.
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La riduzione della dimensione spaziale è realizzata tramite convoluzioni con stride pari
a 2 o, in alternativa, operazioni di pooling, consentendo di comprimere gradualmente
l’informazione e ampliare il campo recettivo della rete.

All’interno di questi blocchi sono spesso presenti anche residual connections, che
facilitano il flusso del gradiente durante l’addestramento e permettono di preservare
l’informazione utile evitando la degradazione delle feature. Infine, viene integrato il
contributo del time embedding, proiettato sui canali della feature map: in questo
modo, la rete incorpora in maniera esplicita la consapevolezza del passo temporale t,
condizionando le rappresentazioni intermedie al contesto del processo di denoising.

Upsampling block

Ogni blocco di upsampling ha l’obiettivo di ricostruire progressivamente la risoluzione
originale dell’input, integrando al tempo stesso i dettagli provenienti dall’encoder.
La prima operazione consiste nell’aumentare la risoluzione spaziale, tipicamente
tramite convoluzioni trasposte oppure con uno schema di interpolazione seguita da
convoluzione, così da recuperare gradualmente la dimensione originaria dei dati senza
compromettere la coerenza locale.

Successivamente, le feature map ottenute vengono arricchite concatenandole con
quelle corrispondenti del percorso di codifica attraverso le skip connections. Questo
passaggio è cruciale poiché consente al decoder di riutilizzare i dettagli locali che
sarebbero andati persi nella fase di compressione, evitando che la ricostruzione si
basi esclusivamente su rappresentazioni troppo astratte.

Le mappe combinate vengono quindi sottoposte ad un processo di affinamento,
che include convoluzioni 3× 3, funzioni di attivazione non lineari e meccanismi di
normalizzazione. In questo modo, l’informazione globale e i dettagli locali vengono
integrati in maniera armonica, producendo rappresentazioni stabili e coerenti.

Infine, anche nei blocchi di upsampling viene iniettato il contributo del time
embedding.

Bottleneck e attenzione

Il bottleneck rappresenta il punto di minima risoluzione della rete, in cui le feature
map hanno una dimensione spaziale ridotta ma un numero elevato di canali. In questa
fase la rappresentazione è altamente compressa e astratta, e il campo recettivo della
rete è al massimo. Per arricchire ulteriormente l’informazione, è comune introdurre
meccanismi di self-attention o di multi-head attention.
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Questi moduli consentono di modellare in maniera esplicita le dipendenze a lungo
raggio tra regioni anche molto distanti dell’immagine, superando i limiti locali delle
convoluzioni. In tal modo la rete integra un contesto globale che si rivela cruciale
nella successiva fase di ricostruzione, permettendo al decoder di generare output più
coerenti e consistenti dal punto di vista semantico.

2.5.2 Time embedding e iniezione nella UNet

Nei modelli di diffusione, il passo temporale t indica il livello di rumore nell’input
xt. Il time embedding fornisce alla rete un’informazione esplicita su questo livello,
permettendo di modulare il comportamento di ogni blocco.

2.5.3 Codifica sinusoidale

Il passo t viene codificato come:

TE(t)2k = sin
(

t

100002k/d

)
, TE(t)2k+1 = cos

(
t

100002k/d

)
, (2.34)

dove d indica la dimensione dell’embedding.

Proiezione e iniezione

L’informazione temporale, inizialmente rappresentata tramite un embedding sinusoi-
dale, viene trasformata attraverso uno o più strati fully-connected, spesso intervallati
da funzioni di attivazione non lineari che ne arricchiscono la capacità rappresentativa.
La proiezione così ottenuta viene poi rimodellata e aggiunta, tramite una somma con
broadcast, ai canali delle feature map all’interno di ciascun residual block. In questo
modo il contributo del time embedding si integra direttamente con le rappresentazioni
intermedie della rete. L’iniezione dell’informazione temporale non è confinata a una
singola parte della rete, ma viene applicata in maniera coerente sia nei blocchi di
downsampling che in quelli di upsampling. Ciò assicura che la consapevolezza del
passo temporale influenzi l’intero processo di denoising, guidando la rete a generare
aggiornamenti consistenti lungo tutta la catena di trasformazioni.
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Figura 2.12: Architettura UNet adattata ai modelli di diffusione, con iniezione
del time embedding in ciascun blocco e moduli di self-attention inseriti nei livelli a
risoluzione intermedia e bassa.

Ruolo del time embedding

Il time embedding svolge un ruolo fondamentale nei modelli di diffusione. Nei primi
passi (valori bassi di t, con rumore ridotto), il time embedding guida la rete a
preservare i dettagli locali. Nei passi successivi (valori alti di t, con rumore più
elevato), orienta la rete verso il recupero di strutture globali. Permette di usare un
unico modello per tutti i timestep, evitando di addestrare reti distinte per ciascun
valore di t.

Sintesi del flusso dati

Il flusso dati nel modello segue un percorso ben definito. L’input xt attraversa il
percorso dell’encoder, dove subisce una serie di convoluzioni e riduzioni di risoluzione.
Allo stesso tempo, il time embedding, calcolato a partire dal passo temporale t, viene
iniettato in ogni blocco della rete. Nel bottleneck, la rete utilizza moduli di attenzione
per integrare il contesto globale, catturando relazioni a lungo raggio tra le feature.
Nel decoder, le feature vengono upsampled e fuse con le corrispondenti informazioni
provenienti dall’encoder, per ricostruire l’immagine. Alla fine, la rete restituisce
εθ(xt, t), che rappresenta una stima del rumore presente nell’input xt.

2.6 Classifier-Free Guidance

Un aspetto fondamentale dei modelli di diffusione è la possibilità di introdurre un
meccanismo di guidance, ossia un sistema che orienti la generazione verso campioni
coerenti con un vincolo o una condizione esterna. Questo principio può essere
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interpretato matematicamente come l’introduzione di un campo esterno, in grado
di modificare la traiettoria media del reverse process senza alterarne l’incertezza
intrinseca [12].

2.6.1 Posteriori come campi esterni

Moltiplicare la distribuzione generativa p(x(0)) per una funzione r(x(0)) (ad esempio
una likelihood che codifica un vincolo o un’evidenza osservata) equivale a favorire i
campioni compatibili con r. Dal punto di vista del reverse process, questo effetto si
traduce in una forza esterna che devia la dinamica di denoising verso regioni dello
spazio che rispettano il vincolo imposto.

Nel caso di transizioni gaussiane, la struttura della distribuzione rimane semplice.
La covarianza fΣ(x(t), t) resta invariata, il che implica che il livello di incertezza
del passo inverso non subisce modifiche. Al contrario, la media fµ(x(t), t) viene
traslata di una quantità proporzionale al gradiente ∇ log r(x(0)), che agisce come una
forza orientante, guidando la ricostruzione verso una versione più precisa dell’input
originale.

Formalmente:

p̃(x(t−1) | x(t)) ≈ N
(

x(t−1); fµ(x(t), t) + fΣ(x(t), t)∇ log r, fΣ(x(t), t)
)

.

Questa interpretazione fornisce una cornice unificata per comprendere tecniche
come il denoising (dove r penalizza configurazioni rumorose), l’inpainting (dove r

vincola solo le regioni osservate) e il guidance condizionato, in cui r rappresenta la
coerenza con una condizione esterna (es. testo o etichetta di classe).

2.6.2 Dal classifier guidance al classifier-free guidance

Un primo approccio al guidance consiste nell’aggiungere al modello di diffusione
un classificatore esterno, capace di fornire un gradiente ∇ log p(c | x) che spinga
le traiettorie verso campioni compatibili con la classe desiderata. Questo metodo
incrementa la qualità visiva ma richiede l’addestramento di un modello separato e
presenta limiti di stabilità.

Il classifier-free guidance (CFG) supera queste difficoltà evitando completa-
mente il classificatore. L’idea è di addestrare un’unica rete neurale sia in modalità
condizionata che non condizionata: durante il training, con probabilità puncond si ri-
muove il condizionamento (impostando c = ∅), così che il modello apprenda entrambe
le situazioni.
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2.6.3 Formula di combinazione

In fase di campionamento, il modello produce due predizioni distinte. La prima,
εθ(zλ, c), rappresenta lo score condizionato da una certa informazione c (ad esempio,
una classe o un prompt testuale). La seconda, εθ(zλ), è lo score non condizionato,
che riflette la dinamica "pura" del processo di diffusione senza alcun vincolo esterno.

Lo score guidato si ottiene combinando linearmente i due contributi:

ε̃θ(zλ, c) = (1 + w) εθ(zλ, c) − w εθ(zλ),

dove w ≥ 0 è un iperparametro di controllo.
Dal punto di vista intuitivo, per w = 0 si ottiene semplicemente il modello

condizionato standard. Aumentando w, la differenza tra lo score condizionato
e quello non condizionato viene amplificata, spingendo il modello con maggiore
decisione verso campioni che siano coerenti con la condizione c. Valori molto alti di
w portano a immagini che sono visivamente molto fedeli al prompt o alla condizione,
ma a scapito della diversità, poiché i campioni tendono a diventare simili fra loro.

In sintesi, il parametro w introduce un trade-off controllabile tra diversità e fedeltà
condizionata: valori bassi privilegiano una copertura più ampia della distribuzione dei
dati, mentre valori elevati enfatizzano la coerenza con il condizionamento a scapito
della varietà.

2.6.4 Interpretazione e risultati

Il CFG può essere interpretato come un’applicazione pratica del concetto di campo
esterno: la componente non condizionata agisce come termine “repulsivo”, mentre
la componente condizionata spinge il campione verso la distribuzione desiderata.
L’effetto complessivo è un bilanciamento tra fedeltà e diversità. In particolare, valori
bassi di w privilegiano la diversità, mentre valori alti di w favoriscono la fedeltà
percettiva. Questa semplice procedura ha reso il CFG una componente essenziale
nei moderni modelli di diffusione condizionati, consentendo di ottenere risultati di
alta qualità senza necessità di classificatori esterni.
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Capitolo 3

Variational Autoencoder (VAE)

3.1 Introduzione e principi generali

I Variational Autoencoder (VAE) rappresentano una classe di modelli generativi
basati sull’inferenza variazionale. L’idea di fondo è estendere la struttura classica
degli autoencoder introducendo una formulazione probabilistica, così da permettere
non solo la ricostruzione dei dati in ingresso, ma anche la generazione di nuovi
campioni da una distribuzione latente appresa.

A differenza di un autoencoder standard, in cui l’encoder mappa il dato osservato
in un codice latente deterministico, nel VAE l’encoder definisce una distribuzione ap-
prossimata qϕ(z|x) nello spazio latente. L’obiettivo è avvicinare questa distribuzione
posteriori al vero pθ(z|x), generalmente intrattabile, tramite il principio dell’evidence
lower bound (ELBO). Il decoder, a sua volta, genera campioni nello spazio osservabile
tramite la distribuzione pθ(x|z).

Il vantaggio principale di questa formulazione è che lo spazio latente non funge
più da semplice contenitore compressivo, ma acquisisce una struttura probabilistica
capace di riflettere i fattori generativi sottostanti ai dati. In tale prospettiva, i
VAE consentono di campionare nuovi dati realistici a partire da variabili latenti
z ∼ p(z) e, al contempo, di apprendere rappresentazioni latenti interpretabili che,
in alcune varianti, risultano anche disentangled, ossia sensibili a singoli fattori di
variazione indipendenti. Inoltre, l’addestramento si mantiene stabile e scalabile grazie
all’impiego del reparameterization trick e di obiettivi basati sulla likelihood, rendendo
i VAE modelli versatili e solidi per la generazione e l’analisi dei dati [13], [14].
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3.2 Formulazione probabilistica e reparameteriza-
tion trick

Il Variational Autoencoder è un modello generativo che assume l’esistenza di variabili
latenti non osservabili z, dalle quali i dati osservati x vengono generati secondo una
distribuzione condizionata pθ(x|z). La formulazione probabilistica completa è data
da:

pθ(x, z) = pθ(x|z) p(z), (3.1)

dove p(z) è la distribuzione prior sullo spazio latente, tipicamente scelta come N (0, I)
per ragioni di semplicità e regolarizzazione.

L’obiettivo è stimare la distribuzione marginale dei dati:

pθ(x) =
∫

pθ(x|z) p(z) dz, (3.2)

ma questa integrazione risulta in generale intrattabile, soprattutto a causa dell’alta
dimensionalità dello spazio latente. Per ovviare a questo problema, si introduce
una distribuzione variazionale qϕ(z|x) che approssima il vero posteriore pθ(z|x).
L’addestramento del VAE consiste dunque nel massimizzare la log-likelihood dei dati
tramite il bound variazionale (Evidence Lower Bound, ELBO), che verrà approfondito
nella sezione successiva.

Sampling e difficoltà di backpropagation

Generare nuovi campioni dal modello prevede di estrarre prima un vettore latente
z ∼ qϕ(z|x) e quindi passare a un dato x ∼ pθ(x|z). Tuttavia, se z viene campionato
in modo stocastico, il gradiente della loss rispetto ai parametri ϕ dell’encoder non
può essere calcolato in maniera diretta, impedendo l’applicazione standard della
backpropagation.

Reparameterization trick

Per risolvere questa problematica, si utilizza il reparameterization trick. L’idea è
di esprimere il campione latente z come trasformazione deterministica di una variabile
aleatoria ε indipendente:

z = µϕ(x) + σϕ(x)⊙ ε, ε ∼ N (0, I), (3.3)
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dove µϕ(x) e σϕ(x) sono le uscite dell’encoder e ⊙ indica il prodotto elemento per
elemento. In questo modo, la stocasticità viene confinata in ε, che non dipende
dai parametri del modello, mentre la mappatura µϕ(x), σϕ(x) resta differenziabile
rispetto a ϕ.

Questo trucco consente di applicare la backpropagation attraverso il campiona-
mento, rendendo l’addestramento del VAE stabile ed efficiente. Inoltre, la parame-
trizzazione gaussiana dello spazio latente consente al modello di generare campioni
continui e di interpolare agevolmente tra punti diversi nello spazio latente.

Figura 3.1: Schema del Variational Autoencoder (VAE). L’encoder probabilistico
qϕ(z|x) mappa l’input x in una distribuzione gaussiana parametrizzata da media µ e
deviazione standard σ. Il reparameterization trick permette di campionare il vettore
latente z = µ + σ⊙ ε con ε ∼ N (0, I), garantendo la differenziabilità del processo. Il
decoder pθ(x|z) ricostruisce l’input x′, che idealmente approssima l’input originale x.

3.3 Evidence Lower Bound (ELBO)

3.3.1 Derivazione matematica

L’obiettivo di un VAE è massimizzare la log-likelihood dei dati osservati x rispetto
ai parametri θ del modello generativo:

log pθ(x) = log
∫

pθ(x | z) p(z) dz. (3.4)

Tuttavia, l’integrale sullo spazio latente z è in generale intrattabile, poiché lo spazio
può avere dimensionalità elevata e la funzione integranda non è nota in forma chiusa.
Per superare questo problema si introduce una distribuzione variazionale qϕ(z | x),
che approssima il vero posteriore pθ(z | x). Questa scelta permette di riscrivere la

35



log-likelihood come:

log pθ(x) = log
∫

qϕ(z | x) pθ(x | z)p(z)
qϕ(z | x) dz (3.5)

= log Eqϕ(z|x)

[
pθ(x | z)p(z)

qϕ(z | x)

]
. (3.6)

Applicando la disuguaglianza di Jensen, che per una funzione convessa f e
una variabile aleatoria X vale:

f
(
E[X]

)
≤ E[f(X)].

E considerando che il logaritmo è concavo (quindi la disuguaglianza si inverte),si
ottiene:

logE[X] ≥ E[log X].

Applicando questo principio all’espressione precedente si ricava un limite inferiore
(lower bound) della log-likelihood:

log pθ(x) ≥ Eqϕ(z|x)

[
log pθ(x | z)p(z)

qϕ(z | x)

]
. (3.7)

Separando i termini si arriva alla forma canonica della Evidence Lower Bound
(ELBO):

log pθ(x) ≥ Eqϕ(z|x)
[

log pθ(x | z)
]
−DKL

(
qϕ(z | x) ∥ p(z)

)
(3.8)

=: LELBO(θ, ϕ; x). (3.9)

La ELBO massimizza contemporaneamente due obiettivi:

• Accuratezza di ricostruzione

Eqϕ(z|x)
[

log pθ(x | z)
]
,

che misura quanto bene il decoder pθ(x | z) riesce a ricostruire i dati.
• Regolarizzazione del latente

−DKL
(
qϕ(z | x) ∥ p(z)

)
,

che penalizza le deviazioni tra il posteriore approssimato e il prior scelto p(z)
(tipicamente N (0, I)).
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Figura 3.2: Effetto dei due termini della ELBO. A sinistra, con sola ricostruzione,
lo spazio latente collassa in regioni disordinate e non regolarizzate. Al centro, con
solo termine di regolarizzazione KL, i punti si dispongono secondo il prior ma
senza struttura utile. A destra, la combinazione dei due termini produce uno spazio
latente organizzato, in cui le classi sono separabili e coerenti con il prior.

3.3.2 Interpretazione pratica

Dal punto di vista operativo, la ELBO può essere interpretata come il risultato di un
compromesso tra due esigenze contrastanti. Da un lato, il termine di ricostruzione
assicura che l’autoencoder probabilistico mantenga l’informazione rilevante: dato
un campione x, il decoder deve essere in grado di riprodurlo fedelmente a partire
dalla corrispondente variabile latente z. Dall’altro, il termine di regolarizzazione,
rappresentato dalla divergenza di Kullback–Leibler, forza la distribuzione latente
qϕ(z | x) ad avvicinarsi al prior N (0, I). Questa spinta regolarizzante garantisce che
lo spazio latente sia continuo, ben organizzato e adatto al campionamento di nuovi
dati plausibili.

Se il termine di ricostruzione prevale eccessivamente, il modello rischia di adattarsi
troppo ai dati di addestramento, arrivando a memorizzarli e producendo così uno
spazio latente poco strutturato e irregolare. Al contrario, se domina il termine di re-
golarizzazione, lo spazio latente risulta ben organizzato e regolare, ma le ricostruzioni
perdono fedeltà e dettaglio rispetto ai dati originali. Solo bilanciando correttamente
queste due componenti si ottiene un modello capace, al tempo stesso, di ricostruire
con buona qualità e di generare campioni nuovi e coerenti.

La ELBO rappresenta dunque non soltanto il criterio di addestramento del
VAE, ma anche il principio che gli consente di unire capacità ricostruttiva e potere
generativo in un unico quadro probabilistico.
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3.4 Architettura del modello

Un Variational Autoencoder (VAE) è costituito da due componenti principali:
• un encoder probabilistico qϕ(z|x), che mappa un input x in una distribuzione

latente gaussiana parametrizzata da media µϕ(x) e varianza σ2
ϕ(x);

• un decoder generativo pθ(x|z), che a partire da un campione z dallo spazio
latente ricostruisce i dati nello spazio osservabile.

L’insieme encoder–decoder realizza una compressione e successiva ricostruzione dei
dati, dove lo spazio latente ha una struttura probabilistica regolarizzata dal prior
p(z).

Encoder

L’encoder riduce progressivamente la dimensionalità dell’input tramite una sequenza
di trasformazioni convoluzionali. Tipicamente, blocchi di convoluzioni sono arricchiti
con normalizzazioni (ad esempio Group Normalization) e funzioni di attivazione non
lineari (SiLU, ReLU o GELU). Per migliorare la stabilità dell’addestramento e la
capacità di rappresentazione, si utilizzano spesso blocchi residuali, che aiutano a
mantenere il flusso del gradiente nelle reti profonde. A risoluzioni intermedie possono
essere inseriti meccanismi di attenzione, utili a cogliere dipendenze a lungo raggio e
relazioni globali tra le feature estratte. Inoltre, lo schema prevede un downsampling
gerarchico, realizzato tramite convoluzioni con stride o operazioni di pooling, che
riducono progressivamente la risoluzione spaziale mentre aumentano la profondità
delle feature.

Alla fine della catena di trasformazioni, l’encoder produce due mappe distinte,
µ(x) e log σ2(x), che definiscono i parametri della distribuzione latente gaussiana
qϕ(z|x).

Decoder

Il decoder opera in direzione opposta: a partire dal campione latente z, proietta
l’informazione verso lo spazio dei dati originali. La ricostruzione segue uno schema
gerarchico di upsampling, in cui la risoluzione viene gradualmente aumentata
tramite interpolazioni seguite da convoluzioni, oppure mediante convoluzioni trasposte
con stride. Analogamente all’encoder, i blocchi di ricostruzione possono includere
residual blocks, che stabilizzano il processo di generazione, e moduli di attenzione, che
migliorano la coerenza semantica dell’immagine prodotta. Inoltre, l’uso di tecniche
come la normalizzazione e il dropout regolarizza l’apprendimento. Il decoder termina
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con una convoluzione finale che restituisce un output nello spazio dei dati originali,
ad esempio un’immagine con lo stesso numero di canali dell’input.

Schema complessivo

L’architettura complessiva del VAE realizza dunque una mappatura x 7→ (µ(x), σ2(x)) 7→
z 7→ x̂, dove:

z = µ(x) + σ(x)⊙ ε, ε ∼ N (0, I). (3.10)

Il reparameterization trick garantisce la differenziabilità del passaggio stocastico, con-
sentendo di addestrare congiuntamente encoder e decoder tramite backpropagation.

Figura 3.3: Schema concettuale di un VAE: l’encoder qϕ(z|x) proietta i dati nello
spazio latente regolarizzato dal prior p(z), mentre il decoder pθ(x|z) ricostruisce
l’input.

Dal punto di vista architetturale, l’adozione di blocchi residuali e meccanismi
di attenzione si è affermato come pratica consolidata per migliorare sia la stabilità
dell’ottimizzazione sia la qualità dei campioni generati. Queste soluzioni aiutano a
bilanciare efficacemente la capacità rappresentativa del modello con la sua scalabilità,
rendendo i VAE componenti fondamentali all’interno di modelli generativi più
complessi, come ad esempio i modelli di diffusione condizionati su spazi latenti.
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3.5 Pseudocodice di training e sampling

Per completezza, si riportano di seguito gli pseudocodici che descrivono in forma
operativa le due fasi fondamentali di un Variational Autoencoder (VAE). Il
primo algoritmo illustra il procedimento di training, basato sulla minimizzazione
della ELBO mediante il reparameterization trick. Il secondo algoritmo mostra invece
la procedura di sampling, attraverso la quale è possibile generare nuovi dati a partire
dal prior latente e dal decoder.

Algorithm 3 Training di un VAE
1: repeat
2: x ∼ q(x) ▷ Campione reale dal dataset
3: Ottieni parametri latenti: µϕ(x), σϕ(x)
4: Campiona ε ∼ N (0, I)
5: Reparameterization: z ← µϕ(x) + σϕ(x)⊙ ε

6: Ricostruzione: x̂ ∼ pθ(x|z)
7: Calcola la loss ELBO:

L(x; θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x) ∥ p(z))

8: Aggiorna i parametri θ, ϕ tramite backpropagation
9: until convergenza

Algorithm 4 Sampling da un VAE
1: Campiona z ∼ p(z) = N (0, I)
2: Genera x̂ ∼ pθ(x|z)
3: return x̂ come nuovo campione generato

3.6 Limiti, varianti e confronto con i DDPM

3.6.1 Limiti principali

Nonostante la solidità della loro formulazione matematica, i VAE presentano alcune
limitazioni nella pratica. Tra queste, le ricostruzioni tendono a risultare sfocate,
soprattutto con immagini complesse, a causa dell’assunzione di una distribuzione
gaussiana semplice nello spazio latente. Inoltre, in certi casi si verifica il posterior
collapse, ovvero il decoder tende a ignorare la variabile latente z, trasformando di
fatto il modello in un autoencoder deterministico. Infine, l’uso di un prior semplice e
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isotropico, come la distribuzione normale standard N(0,I), può limitare la capacità
del modello di rappresentare strutture latenti più complesse e articolate.

3.6.2 Varianti

Per superare i limiti dei VAE classici sono state sviluppate diverse varianti, ognuna
pensata per risolvere specifici problemi. Tra queste, la β-VAE modifica la funzione
obiettivo introducendo un fattore β che moltiplica il termine della divergenza di
Kullback–Leibler. Quando β è maggiore di 1, la regolarizzazione sullo spazio latente
diventa più severa, spingendo la distribuzione latente ad aderire meglio al prior e
favorendo una separazione più netta dei fattori latenti, ovvero una disentanglement
che rende le variabili più interpretabili e indipendenti. Va però considerato che questo
miglioramento a livello di disentanglement porta spesso a ricostruzioni meno precise,
meno fedeli ai dati originali.

Un altro approccio è rappresentato dal VQ-VAE (Vector Quantized VAE),
che sostituisce lo spazio latente continuo con uno discreto, ottenuto tramite una
tecnica di quantizzazione vettoriale. In questo modo, i codici latenti sono mappati
su un dizionario finito di embedding discreti. Questa strategia risolve il problema
della sovra-regolarizzazione gaussiana, migliora la nitidezza delle immagini generate
e permette di combinare la compressione con modelli sequenziali potenti, come i
Transformer o i modelli di diffusione applicati allo spazio latente discreto.

Infine, le varianti gerarchiche come Hi-VAE estendono il modello introducendo
più livelli latenti disposti in modo gerarchico. Ogni livello cattura diversi fattori
di variazione: quelli più alti modellano aspetti globali e semantici, come la forma
complessiva di un oggetto, mentre i livelli più bassi si occupano dei dettagli locali.
Questa struttura gerarchica consente di aumentare la capacità espressiva del modello
e di rappresentare distribuzioni latenti più complesse e multimodali.

3.6.3 Confronto con i DDPM

I modelli di diffusione (Denoising Diffusion Probabilistic Models, DDPM) hanno
recentemente superato i VAE in termini di qualità visiva, grazie alla capacità di
modellare distribuzioni complesse senza assumere forme parametriche semplici per lo
spazio latente.
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(a) Campioni generati con un VAE: ri-
costruzioni tendono ad essere sfocate e
meno realistiche.

(b) Campioni generati con un DDPM: le
immagini risultano più nitide e fedeli alla
distribuzione dei dati.

Figura 3.4: Confronto qualitativo tra campioni generati da un VAE e da un DDPM.

I VAE restano comunque competitivi in scenari in cui efficienza e compattezza
della rappresentazione sono cruciali, mentre i DDPM eccellono nella generazione di
immagini ad alta fedeltà, al costo di una maggiore complessità computazionale e
tempi di campionamento più lunghi.
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Capitolo 4

Diffuse-VAE

In questo capitolo viene presentato il DiffuseVAE, un modello ibrido che combina le
proprietà dei VAE e dei DDPM. Dopo aver introdotto le motivazioni che sorreggono la
sua definizione, ne verrà descritto il funzionamento generale e le principali formulazioni
proposte in letteratura, con particolare attenzione alla Formulation 1, che costituisce
il nucleo dell’implementazione sviluppata in questa tesi. Verranno quindi illustrate
le scelte progettuali adottate, i vantaggi e le criticità del modello, per concludere con
una discussione dei limiti emersi e delle possibili estensioni future [15].

4.1 Introduzione

I Variational Autoencoder (VAE) e i Denoising Diffusion Probabilistic Models (DD-
PM) presentano punti di forza complementari: i primi offrono uno spazio latente
compatto e interpretabile, mentre i secondi garantiscono una qualità di campiona-
mento superiore. Tuttavia, i VAE tendono a produrre ricostruzioni poco nitide,
mentre i DDPM richiedono un numero elevato di passi di campionamento e non
dispongono di una rappresentazione latente esplicita.

Il DiffuseVAE nasce con l’obiettivo di combinare i vantaggi di entrambi: utiliz-
zare il VAE come meccanismo di codifica–decodifica che fornisce una ricostruzione
preliminare e uno spazio latente strutturato, delegando al DDPM il compito di affina-
re progressivamente i dettagli e migliorare la qualità visiva dei campioni generati. In
questo modo, il modello integra interpretabilità e compattezza con realismo e fedeltà,
risultando particolarmente adatto come architettura generativa modulare e scalabile.

L’idea alla base di DiffuseVAE è quella di combinare i due approcci in una
pipeline a due stadi:

1. uno stadio VAE che produce una ricostruzione preliminare dell’input;
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2. uno stadio DDPM che agisce come refiner, migliorando la qualità del campione
generato.

In questo modo, si ottiene un modello in grado di mantenere la struttura latente dei
VAE e, al contempo, la qualità visiva dei DDPM.

4.2 Funzionamento generale

Il funzionamento di DiffuseVAE può essere riassunto in due fasi principali:

• Stage 1 – VAE: dato un input x0, l’encoder produce i parametri della
distribuzione latente, µ(x) e σ2(x), da cui si campiona un vettore z. Il decoder
genera quindi una ricostruzione x̂0 = pθ(x | z). Questa ricostruzione funge da
bozza iniziale.

• Stage 2 – DDPM: il modello di diffusione viene addestrato a partire da
rumore puro xT e procede attraverso il reverse process p(xt−1 | xt, x̂0). Qui, il
condizionamento avviene direttamente sulla ricostruzione del VAE, che guida
il denoising verso campioni più realistici.

Figura 4.1: Schema del DiffuseVAE: nello Stage 1 il VAE produce una ricostruzione
preliminare x̂0; nello Stage 2 il DDPM utilizza tale ricostruzione come condiziona-
mento per affinare la generazione.

4.3 Formulazione 1

Nel paper originale vengono discusse diverse possibili formulazioni. Nella mia tesi è
stata implementata la Formulation 1, caratterizzata da due assunzioni principali:

1. Forward process indipendente: le transizioni del processo forward non
dipendono dal codice latente z né dalla ricostruzione x̂0, bensì solo dall’input
originale:

q(x1:T | z, x0) ≈ q(x1:T | x0).
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2. Reverse process condizionato: le transizioni inverse dipendono unicamente
dalla ricostruzione del VAE:

p(x0:T | z) ≈ p(x0:T | x̂0).

In questo modo, il ruolo del VAE è quello di fornire una ricostruzione preliminare
x̂0 che il DDPM utilizza come condizionamento durante tutte le fasi del reverse
process. L’interpretazione intuitiva è che il VAE fornisce una bozza a bassa fedeltà,
mentre il DDPM agisce come un raffinatore progressivo, correggendo i dettagli e
portando il campione verso una distribuzione ad alta qualità visiva.

4.4 Implementazione nella tesi

Nella mia implementazione ho seguito la Formulation 1, integrando un VAE
addestrato separatamente con un modello DDPM condizionato sulla sua ricostruzione.
In particolare:

• il VAE è stato addestrato in modo classico, producendo ricostruzioni x̂0;
• il DDPM riceve in input lo stato rumoroso xt concatenato alla ricostruzione

x̂0, così da imparare a predire la componente rumorosa e guidare il denoising
verso l’immagine pulita.

Questa scelta consente una chiara separazione tra la fase di rappresentazione
latente (affidata al VAE) e la fase di raffinamento ad alta qualità (affidata al DDPM),
ottenendo un modello più modulare e scalabile rispetto ai VAE o DDPM puri. Un
ulteriore vantaggio di questa combinazione riguarda i costi computazionali: poiché
il VAE condensa l’informazione in uno spazio latente strutturato e produce già una
ricostruzione coerente, il DDPM non deve apprendere da zero la distribuzione globale
dei dati, ma si concentra unicamente sul raffinamento dei dettagli locali. Questo
comporta un addestramento più efficiente e una pipeline più semplice da scalare a
dataset complessi.

4.5 Limiti e prospettive

Sebbene il DiffuseVAE rappresenti un passo significativo nella combinazione tra VAE
e DDPM, non è privo di alcune criticità. La qualità complessiva del modello dipende
fortemente dal VAE: se quest’ultimo produce ricostruzioni poco fedeli, il DDPM è in
grado soltanto di attenuare parzialmente l’imprecisione, con un conseguente limite
sulla qualità finale dei campioni generati. Inoltre, il condizionamento imposto dal
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VAE introduce un compromesso tra fedeltà e diversità: da un lato la generazione
risulta più stabile e coerente, dall’altro la varietà dei campioni tende a ridursi,
poiché il modello rimane vincolato alla bozza iniziale. A questo si aggiunge il costo
addestrativo più elevato, dovuto alla natura a due stadi della pipeline, che richiede
prima il pre-addestramento del VAE e successivamente quello del DDPM. Infine,
la scalabilità a domini più complessi, come dati ad alta risoluzione o multimodali,
potrebbe richiedere architetture più sofisticate, ad esempio varianti gerarchiche di
VAE o meccanismi di condizionamento avanzati.

Nonostante tali limitazioni, il DiffuseVAE si configura come un framework mo-
dulare e flessibile, che offre ampi margini di estensione. Tra le prospettive future
più promettenti vi è l’impiego di VAE più espressivi, come i VQ-VAE o i β-VAE, in
grado di fornire uno spazio latente meglio strutturato e più ricco di informazione.
Un’altra direzione interessante è l’integrazione con tecniche di guidance condizionata,
ad esempio mediante testo o etichette di classe, così da ottenere generazioni più con-
trollabili e aderenti a vincoli esterni. Parallelamente, un obiettivo cruciale riguarda
la riduzione dei tempi di campionamento, perseguibile attraverso reverse process
accorciati, che permetterebbero di rendere la fase generativa molto più rapida ed
efficiente.

In conclusione, il DiffuseVAE rappresenta un compromesso efficace tra efficienza
e qualità visiva, ponendosi come una base solida su cui costruire sviluppi futuri. La
sua natura modulare lo rende particolarmente adatto a essere adattato, potenziato e
ottimizzato in funzione delle esigenze applicative.
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Capitolo 5

Implementazione

In questo capitolo vengono presentati i dettagli implementativi delle architetture e
dei modelli discussi nei capitoli precedenti. L’obiettivo non è fornire un’esposizione
esaustiva del codice, ma mettere in evidenza le componenti essenziali come la struttura
della UNet, i meccanismi di scheduling del rumore, i metodi di training e sampling,
mostrando gli elementi chiave che collegano la teoria alla pratica.

5.1 DDPM e Diffuse-VAE

5.1.1 Architettura UNet

Timestep embedding. Il passo temporale t viene codificato tramite un embedding
sinusoidale (Listing 5.1), che combina funzioni seno e coseno a frequenze diverse,
in modo simile al positional encoding dei Transformer. Il risultato è un vettore
denso di dimensione fissa che fornisce una rappresentazione continua e periodica del
tempo. Per aumentarne l’espressività e adattarlo ai canali della rete, l’embedding
viene ulteriormente elaborato da un multilayer perceptron (self.t_proj), composto
da due trasformazioni lineari intervallate da un’attivazione SiLU. La funzione di
attivazione SiLU (Sigmoid Linear Unit) è definita come

SiLU(x) = x · σ(x) = x

1 + e−x
,

dove σ(x) è la funzione sigmoid standard. Questa scelta introduce non linearità e
modulazione proporzionale all’input, migliorando la capacità della rete di modellare
relazioni complesse. In questo modo, l’embedding temporale può essere iniettato nei
blocchi della U-Net, permettendo alla rete di modulare dinamicamente il processo di
denoising in funzione del timestep.
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1 def timestep_embedding(timesteps: torch.Tensor, dim: int, max_period:

int = 10000):

2 assert dim % 2 == 0

3 half = dim // 2

4 freqs = torch.exp(-math.log(max_period) * torch.arange(0, half,

device=timesteps.device, dtype=timesteps.dtype) / half)

5 args = timesteps[:, None] * freqs[None, :]

6 return torch.cat([torch.cos(args), torch.sin(args)], dim=-1) #

[B, dim]

7

8 self.t_proj = nn.Sequential(

9 nn.Linear(self.t_emb_dim, self.t_emb_dim), nn.SiLU(),

10 nn.Linear(self.t_emb_dim, self.t_emb_dim)

11 )

Listing 5.1: Embedding temporale sinusoidale e proiezione MLP

Downsampling: residual + time injection + attention. I blocchi di downsam-
pling hanno il compito di ridurre progressivamente la risoluzione spaziale delle feature
map, aumentando al tempo stesso la profondità del tensore e quindi la capacità
rappresentativa della rete. Ogni blocco è costituito da due percorsi principali: il
primo è un residual path, che applica convoluzioni 3× 3 seguite da normalizzazione
e attivazioni non lineari (SiLU); a questo viene aggiunto un collegamento residuo
che preserva l’informazione di partenza e facilita la propagazione del gradiente. Il
secondo contributo deriva dal time embedding, che viene proiettato in un vettore
della stessa dimensionalità dei canali e iniettato additivamente nelle feature map.
In questo modo, la rappresentazione rimane esplicitamente condizionata al passo
temporale t del processo di diffusione.

Infine, all’interno di ciascun blocco viene integrato un modulo di multi-head at-
tention, applicato sulle feature spazialmente appiattite: questa operazione consente
di modellare dipendenze a lungo raggio tra diverse regioni dell’immagine, arricchendo
la rappresentazione con un contesto globale che andrebbe altrimenti perso con sole
convoluzioni locali. Dopo queste trasformazioni, una convoluzione con stride 2 (o
un’operazione equivalente di pooling) effettua la riduzione di risoluzione vera e
propria, comprimendo l’informazione spaziale e permettendo alla rete di ampliare
progressivamente il proprio campo recettivo.

Il risultato è un blocco che non solo riduce dimensionalità e complessità spaziale,
ma che integra dettagli locali, consapevolezza temporale e relazioni globali, fornendo
feature profonde e strutturate utili per la fase di ricostruzione.
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1 class DownBlock(nn.Module):

2 def __init__(self, in_channels, out_channels, t_emb_dim,

down_sample=True, num_heads=4, num_layers=1):

3 ...

4 self.resnet_conv_first = nn.Sequential(

5 nn.GroupNorm(8, in_channels),

6 nn.SiLU(),

7 nn.Conv2d(in_channels, out_channels, kernel_size=3,

padding=1)

8 )

9 self.t_emb_layer = nn.Linear(t_emb_dim, out_channels)

10 self.attention = nn.MultiheadAttention(out_channels,

num_heads, batch_first=True)

11 self.down_sample_conv = nn.Conv2d(out_channels, out_channels,

4, 2, 1)

12

13 def forward(self, x, t_emb):

14 out = self.resnet_conv_first(x)

15 out = out + self.t_emb_layer(t_emb)[:, :, None, None] #

iniezione temporale

16 b, c, h, w = out.shape

17 attn_in = out.view(b, c, h*w).transpose(1, 2)

18 out_attn, _ = self.attention(attn_in, attn_in, attn_in)

19 out = out + out_attn.transpose(1, 2).view(b, c, h, w)

20 out = self.down_sample_conv(out) # riduzione risoluzione

21 return out

Listing 5.2: Downsampling block con residual connections, time injection e attenzione

Mid-block con attenzione multi-head. Il mid-block, situato nel collo di bottiglia
dell’architettura UNet, rappresenta il punto in cui le feature map hanno minima
risoluzione spaziale ma profondità massima. In questa fase la rete dispone di un
campo recettivo molto ampio, condizione ideale per integrare meccanismi in grado
di catturare relazioni a lungo raggio tra regioni spazialmente distanti.

Il blocco alterna sequenze di convoluzioni residue e moduli di multi-head self-
attention. I percorsi residui, costituiti da convoluzioni 3× 3 seguite da attivazioni
non lineari e normalizzazione, mantengono stabile il flusso dell’informazione e del
gradiente, preservando i dettagli locali appresi nelle fasi precedenti. L’iniezione del
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time embedding, aggiunta ai canali delle feature, assicura che la rappresentazione
rimanga coerente con lo specifico passo temporale t del processo di diffusione.

In parallelo, i moduli di self-attention trasformano le feature map in sequenze di
token e apprendono dipendenze contestuali globali, permettendo alla rete di correlare
strutture visive anche molto distanti tra loro. Questa alternanza tra convoluzioni
residue (per i dettagli locali) e attenzione (per il contesto globale) rende il mid-
block un componente cruciale per combinare informazioni multi-scala e migliorare la
capacità generativa della rete.

1 class MidBlock(nn.Module):

2 def forward(self, x, t_emb):

3 out = x

4 # Primo percorso residuo

5 res = out

6 out = self.resnet_conv_first[0](out)

7 out = out + self.t_emb_layers[0](t_emb)[:, :, None, None]

8 out = self.resnet_conv_second[0](out)

9 out = out + self.residual_input_conv[0](res)

10

11 # Alternanza attenzione + residui

12 for i in range(self.num_layers):

13 # Self-attention multi-head

14 b, c, h, w = out.shape

15 tokens = out.view(b, c, h*w).transpose(1, 2)

16 attn, _ = self.attentions[i](tokens, tokens, tokens)

17 out = out + attn.transpose(1, 2).view(b, c, h, w)

18

19 # Percorso residuo con iniezione temporale

20 res = out

21 out = self.resnet_conv_first[i+1](out)

22 out = out + self.t_emb_layers[i+1](t_emb)[:, :, None,

None]

23 out = self.resnet_conv_second[i+1](out)

24 out = out + self.residual_input_conv[i+1](res)

25 return out

Listing 5.3: MidBlock: alternanza tra residui e attenzione multi-head

Upsampling e skip connections. La fase di ricostruzione dell’UNet avviene
attraverso i blocchi di upsampling, che hanno il compito di riportare progressivamente
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le feature map alla risoluzione originaria. Il processo inizia con un’operazione di
upsampling, realizzata tramite convoluzioni trasposte o interpolazioni seguite da
convoluzioni, che espandono la risoluzione spaziale preservando coerenza locale.

Un aspetto fondamentale è la presenza delle skip connections: le feature
map prodotte dall’encoder, corrispondenti allo stesso livello di risoluzione, vengono
concatenate con quelle del decoder. Questo meccanismo consente di reintegrare i
dettagli locali persi nella fase di compressione, evitando che la ricostruzione si basi
esclusivamente su rappresentazioni troppo astratte.

Dopo la fusione con le feature provenienti dall’encoder, le mappe risultanti
attraversano percorsi residui costituiti da convoluzioni 3× 3, arricchite dall’iniezione
del time embedding. In questo modo la rete mantiene consapevolezza del passo
temporale t durante tutto il processo di generazione.

Infine, anche nei blocchi di upsampling è integrato un meccanismo di self-
attention, che consente di modellare relazioni a lungo raggio e garantisce coerenza
globale nella ricostruzione. La combinazione di upsampling, skip connections, residui
e attenzione rende questa fase essenziale per bilanciare dettagli locali e struttura
complessiva.

1 class UpBlock(nn.Module):

2 def forward(self, x, out_down, t_emb):

3 # Upsampling tramite conv trasposta

4 x = self.up_sample_conv(x)

5 # Fusione con feature simmetriche dall’encoder

6 x = torch.cat([x, out_down], dim=1)

7

8 out = x

9 for i in range(self.num_layers):

10 # Percorso residuo con iniezione del time embedding

11 res = out

12 out = self.resnet_conv_first[i](out)

13 out = out + self.t_emb_layers[i](t_emb)[:, :, None, None]

14 out = self.resnet_conv_second[i](out)

15 out = out + self.residual_input_conv[i](res)

16

17 # Self-attention per catturare relazioni globali

18 b, c, h, w = out.shape

19 tokens = out.view(b, c, h*w).transpose(1, 2)

20 attn, _ = self.attentions[i](tokens, tokens, tokens)

21 out = out + attn.transpose(1, 2).view(b, c, h, w)
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22 return out

Listing 5.4: UpBlock: upsampling, fusione con skip e attenzione

Condizionamento “Formulation-1”. Nella pipeline Diffuse-VAE, la ricostruzione
preliminare x̂0 generata dal VAE non viene utilizzata unicamente come informazione
iniziale, ma viene integrata a più livelli della UNet. Questo approccio, noto come
Formulation-1, permette al modello di sfruttare la bozza del VAE in maniera
gerarchica, guidando il processo di denoising in modo più stabile ed efficace.

Il condizionamento avviene in tre punti distinti:
• all’ingresso della rete, dove xt e x̂0 vengono concatenati e proiettati nello spazio

dei canali originali tramite una convoluzione 1× 1 (fuse_in);
• lungo il percorso di downsampling, dove le feature intermedie vengono arricchite

aggiungendo la ricostruzione ridimensionata, fusa nuovamente con convoluzioni
1× 1 (fuse_down);

• nelle skip connections durante l’upsampling, in cui la ricostruzione viene
combinata con le feature provenienti dall’encoder per preservare i dettagli locali
(fuse_skip).

Questo schema multi-scala garantisce che l’informazione del VAE permei l’intera
architettura, fornendo un condizionamento coerente sia sui dettagli locali che sulla
struttura globale. In altre parole, x̂0 funge da vincolo strutturale che accompagna il
denoising ad ogni livello, evitando che il DDPM generi campioni incoerenti o troppo
lontani dalla ricostruzione iniziale.

1 self.fuse_in = nn.Conv2d(self.im_channels * 2, self.im_channels,

kernel_size=1)

2

3 self.fuse_down = nn.ModuleList([

4 nn.Conv2d(ch + self.im_channels, ch, kernel_size=1)

5 for ch in self.down_skip_channels

6 ])

7

8 self.fuse_skip = nn.ModuleList([

9 nn.Conv2d(ch + self.im_channels, ch, kernel_size=1)

10 for ch in reversed(self.down_skip_channels)

11 ])

Listing 5.5: Layer di fusione per il condizionamento multi-scala
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Outline del forward. Infine, uno schema semplificato mostra come il condiziona-
mento viene applicato lungo il percorso.

1 def forward(self, x, t, cond=None):

2 # Embedding temporale

3 t_emb = self.t_proj(timestep_embedding(t, self.t_emb_dim))

4

5 # Fusione iniziale

6 if cond is not None:

7 cond = F.interpolate(cond, size=x.shape[-2:],

mode="bilinear", align_corners=False)

8 x = self.fuse_in(torch.cat([x, cond], dim=1))

9 out = self.conv_in(x)

10

11 # Encoder con condizionamento

12 skips = []

13 for i, down in enumerate(self.downs):

14 if cond is not None:

15 cond_r = F.interpolate(cond, size=out.shape[-2:],

mode="bilinear", align_corners=False)

16 out = self.fuse_down[i](torch.cat([out, cond_r], dim=1))

17 skips.append(out)

18 out = down(out, t_emb)

19

20 # Bottleneck

21 for mid in self.mids:

22 out = mid(out, t_emb)

23

24 # Decoder con skip condizionati

25 for i, up in enumerate(self.ups):

26 skip = skips.pop()

27 if cond is not None:

28 cond_r = F.interpolate(cond, size=skip.shape[-2:],

mode="bilinear", align_corners=False)

29 skip = self.fuse_skip[i](torch.cat([skip, cond_r], dim=1))

30 out = up(out, skip, t_emb)

31

32 # Output finale

33 return self.conv_out(nn.SiLU()(self.norm_out(out)))

Listing 5.6: Outline del forward con condizionamento multiscala
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5.2 Noise scheduler

Il noise scheduler definisce la quantità di rumore iniettata ad ogni passo del processo
di diffusione. La scelta della schedulazione influenza sia la stabilità dell’addestramento
sia la qualità dei campioni generati, poiché controlla come la distribuzione dei dati
viene progressivamente corrotta (forward process) e ricostruita (reverse process). Di
seguito riportiamo due strategie comunemente adottate: lo scheduler lineare e lo
scheduler coseno.

5.2.1 Linear Scheduler

Lo scheduler lineare introduce una progressione uniforme dei valori di rumore. I βt

crescono linearmente dal valore iniziale βstart fino a βend, garantendo una corruzione
graduale e stabile. Questo approccio è semplice ed efficace, ma può risultare meno
ottimale nei passi iniziali o finali, dove la distribuzione del rumore influenza in
maniera critica la dinamica del modello.

1 class LinearNoiseScheduler:

2 def __init__(self, num_timesteps, beta_start, beta_end):

3 self.num_timesteps = num_timesteps

4 self.betas = torch.linspace(beta_start, beta_end,

num_timesteps)

5 self.alphas = 1.0 - self.betas

6 self.alpha_bars = torch.cumprod(self.alphas, dim=0)

7

8 def add_noise(self, x, noise, t):

9 alpha_bar = self.alpha_bars[t.cpu()].to(x.device)

10 return alpha_bar.sqrt().view(-1,1,1,1) * x + \

11 (1 - alpha_bar).sqrt().view(-1,1,1,1) * noise

Listing 5.7: Linear scheduler

5.2.2 Cosine Scheduler

Lo scheduler coseno propone invece una schedulazione non lineare, in cui i valori ᾱt

seguono una curva a coseno. Questo schema, introdotto per ridurre la perdita di
informazione nei primi passi, preserva meglio la struttura dei dati e tende a produrre
campioni di qualità superiore. La definizione è:

ᾱt = cos2
(

t/T + s

1 + s
· π2

)
,
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normalizzata affinché ᾱ0 = 1.

1 class CosineNoiseScheduler:

2 def __init__(self, num_timesteps, s=0.008):

3 self.num_timesteps = num_timesteps

4 self.alpha_bars = self._compute_alpha_bars(num_timesteps, s)

5 self.alphas = self.alpha_bars[1:] / self.alpha_bars[:-1]

6 self.betas = 1.0 - self.alphas

7

8 def _compute_alpha_bars(self, T, s):

9 steps = torch.arange(0, T+1)

10 f = torch.cos(((steps / T + s) / (1+s)) * math.pi / 2) ** 2

11 return f / f[0]

Listing 5.8: Cosine scheduler

In sintesi, mentre lo scheduler lineare offre un controllo uniforme sulla diffusione,
quello coseno gestisce in maniera più sofisticata la distribuzione della corruzione,
migliorando la qualità della generazione soprattutto nelle prime fasi del processo.

5.2.3 Metodi forward e reverse

Forward process (DiffuseVAE). Durante la fase di addestramento il modello
apprende a ricostruire il rumore iniettato nei dati. Dato un batch di immagini
normalizzate x ∈ [0, 1], si estrae un passo temporale t e un rumore gaussiano
ε ∼ N (0, I). Lo noise scheduler combina i due, generando la versione rumorosa
xt =

√
ᾱt x +

√
1− ᾱt ε. La ricostruzione preliminare x̂0 ottenuta dal VAE viene

utilizzata come condizionamento aggiuntivo per la U-Net, che in questo contesto non
ricostruisce direttamente l’immagine, ma impara a predire il rumore ε responsabile
della corruzione di x. In questo modo, il training forza la rete a modellare la
distribuzione del rumore in funzione sia del passo temporale t sia della bozza x̂0,
garantendo un legame stretto tra il processo di diffusione e lo spazio latente del VAE.

1 x = x.to(device) # [0,1]

2 with torch.no_grad():

3 x_hat, _, _ = vae(x) # condizionamento immagine

4 x_hat = x_hat.clamp(0, 1)

5

6 B = x.size(0)

7 t = torch.randint(0, scheduler.num_timesteps, (B,),

device=device).long()

8 eps = torch.randn_like(x)
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9 x_t = scheduler.add_noise(x, eps, t) # x_t = q(x_t | x, t)

10

11 eps_pred = unet(x_t, t, cond=x_hat) # predizione rumore

12 loss = mse(eps_pred, eps) # obiettivo standard DDPM

Listing 5.9: Forward: add_noise e loss su rumore con condizionamento VAE

Reverse process (sampling guidato). Durante la generazione si parte da xT ∼
N (0, I) e si applica iterativamente il processo inverso per t = T−1→ 0. Ad ogni passo
la U-Net predice il rumore εθ(xt, t, x̂0), che viene utilizzato dallo noise scheduler per
stimare lo stato precedente xt−1. La transizione può essere deterministica (schema
DDIM) oppure includere una componente stocastica, producendo così campioni
diversi a partire dalla stessa condizione iniziale.

1 @torch.no_grad()

2 def sample_grid(unet, vae, scheduler, x, device, cond_from_gt=True):

3 unet.eval(); vae.eval()

4 x_hat = vae(x)[0].clamp(0,1) if cond_from_gt else None

5

6 def step_back(sched, x_t, eps_pred, t):

7 try: return sched.sample_prev_timestep(x_t, eps_pred, t,

eta=0.0)

8 except TypeError:

9 return sched.sample_prev_timestep(x_t, eps_pred, t)

10

11 x_t = torch.randn_like(x, device=device)

12 for t_step in reversed(range(scheduler.num_timesteps)):

13 t = torch.full((x_t.size(0),), t_step, device=device,

dtype=torch.long)

14 eps_pred = unet(x_t, t, cond=x_hat)

15 x_t, _ = step_back(scheduler, x_t, eps_pred, t)

16 return x_t.clamp(0, 1)

Listing 5.10: Sampling: loop reverse con condizionamento da VAE

5.2.4 Training

Passo di training (loss su rumore). Dato un campione reale x ∈ [0, 1], durante
l’addestramento si sceglie casualmente un passo temporale t e si genera rumore
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gaussiano ε ∼ N (0, I). Lo noise scheduler combina questi elementi costruendo

xt =
√

ᾱt x +
√

1− ᾱt ε,

che rappresenta la versione rumorosa di x al passo t.
La U-Net riceve in input xt, insieme all’informazione temporale t e (nel caso di

DiffuseVAE) alla ricostruzione x̂0 del VAE, e ha il compito di predire il rumore ε̂.
L’obiettivo del training consiste nel minimizzare la differenza tra il rumore predetto
e quello reale attraverso una loss di tipo MSE, ossia

LDDPM = Ex,ε,t

[
∥ε̂(xt, t, x̂0)− ε∥2

]
.

In questo modo la rete impara a invertire progressivamente il processo di diffusione,
acquisendo la capacità di rimuovere il rumore passo dopo passo fino a ricostruire un
campione pulito.

1 model.train(); optimizer.zero_grad(set_to_none=True)

2

3 imgs = imgs.to(device) # [0,1]

4 t = torch.randint(0, scheduler.num_timesteps, (imgs.size(0),),

device=device).long()

5 eps = torch.randn_like(imgs)

6 x_t = scheduler.add_noise(imgs, eps, t) # x_t = sqrt(ab_t) * x +

sqrt(1-ab_t) * eps

7

8 eps_pred = model(x_t, t) # U-Net predice il rumore

9 loss = F.mse_loss(eps_pred, eps)

10

11 loss.backward()

12 torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) #

opzionale

13 optimizer.step()

Listing 5.11: Passo di training DDPM (loss su rumore)

Validazione (stessa loss, no grad).
1 model.eval()

2 with torch.no_grad():

3 val_losses = []

4 for imgs, _ in val_loader:

5 imgs = imgs.to(device)
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6 t = torch.randint(0, scheduler.num_timesteps,

(imgs.size(0),), device=device).long()

7 eps = torch.randn_like(imgs)

8 x_t = scheduler.add_noise(imgs, eps, t)

9 eps_pred = model(x_t, t)

10 val_losses.append(F.mse_loss(eps_pred, eps).item())

11 avg_val = sum(val_losses)/len(val_losses)

Listing 5.12: Loop di validazione

5.2.5 Sampling

Denoising loop (DDPM/DDIM). Il processo di campionamento parte da
xT ∼ N (0, I), cioè un rumore gaussiano puro. Si procede iterativamente dal passo
T fino a 0: ad ogni iterazione la U-Net predice il rumore εθ(xt, t, x̂0), e lo scheduler
calcola lo stato precedente xt−1. Il passo di reverse, in forma compatta, è descritto
da:

xt−1 = 1
√

αt

(
xt −

βt√
1− ᾱt

εθ(xt, t, x̂0)
)

+ σtz, z ∼ N (0, I),

dove σt controlla l’eventuale rumore aggiuntivo in fase di generazione.
Se si imposta η = 0, il termine stocastico σtz scompare e si ottiene una dinamica

deterministica (DDIM), in cui una stessa condizione iniziale produce sempre lo stesso
campione. Con η > 0, invece, si mantiene una componente stocastica che aumenta
la diversità dei campioni, come nel caso classico dei DDPM. In questo modo, il loop
di denoising rappresenta il cuore della generazione: partendo da rumore casuale e
guidati dal condizionamento x̂0, si ricostruiscono progressivamente immagini coerenti
e di alta qualità.

1 model.eval()

2 x = torch.randn(num_samples, C, H, W, device=device) # x_T

3 T = scheduler.num_timesteps

4

5 with torch.no_grad():

6 for t_step in reversed(range(T)):

7 t = torch.full((x.size(0),), t_step, device=device,

dtype=torch.long)

8 eps_pred = model(x, t)

9 try:

10 x, _ = scheduler.sample_prev_timestep(x, eps_pred, t,

eta=0.0) # (x_{t-1}, x0_pred)
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11 except TypeError:

12 x, _ = scheduler.sample_prev_timestep(x, eps_pred, t)

13

14 # denormalizzazione per salvataggio

15 x = torch.clamp(x, 0, 1)

16 save_image(x, "samples.png", nrow=int(math.sqrt(num_samples)))

Listing 5.13: Loop di sampling

5.3 VAE

5.3.1 Encoder e decoder

Blocchi residui. I ResidualBlock rappresentano una parte fondamentale sia nel-
l’encoder che nel decoder. Ogni blocco applica due convoluzioni 3× 3 intervallate
da normalizzazione GroupNorm e attivazione SiLU, garantendo stabilità numerica e
capacità di modellare relazioni non lineari. La skip connection somma direttamente
l’input all’output del blocco, facilitando il flusso del gradiente ed evitando il degrado
delle feature. Quando il numero di canali cambia, lo shortcut usa una convoluzione
1×1 (o 3×3) per adattare le dimensioni, mantenendo coerenza tra le rappresentazioni.
In questo modo, i blocchi residui combinano apprendimento profondo e preservazione
delle informazioni.

1 class ResidualBlock(nn.Module):

2 def __init__(self, in_ch, out_ch=None, dropout=0.0, groups=8,

use_conv_shortcut=False):

3 super().__init__()

4 out_ch = out_ch or in_ch

5 self.norm1 = nn.GroupNorm(min(groups, in_ch), in_ch)

6 self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1)

7 self.norm2 = nn.GroupNorm(min(groups, out_ch), out_ch)

8 self.dropout = nn.Dropout(dropout)

9 self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)

10 self.shortcut = (

11 nn.Identity() if in_ch == out_ch

12 else nn.Conv2d(in_ch, out_ch, 1 if not use_conv_shortcut

else 3, padding=0 if not use_conv_shortcut else 1)

13 )

14

15 def forward(self, x):
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16 h = self.conv1(F.silu(self.norm1(x)))

17 h = self.conv2(self.dropout(F.silu(self.norm2(h))))

18 return h + self.shortcut(x)

Listing 5.14: ResidualBlock con GroupNorm e SiLU

Self-Attention. I blocchi di self-attention consentono di catturare dipendenze
a lungo raggio tra regioni diverse dell’immagine, andando oltre il limitato campo
recettivo delle convoluzioni locali. L’input viene normalizzato e trasformato in insiemi
di query, key e value, sui quali si applica il meccanismo di attenzione scalato per
ottenere una combinazione pesata delle feature spaziali. Questo consente alla rete
di integrare informazioni globali e contestuali in ogni rappresentazione intermedia.
La proiezione finale dei valori è inizializzata a zero per garantire stabilità durante
le prime fasi di addestramento, evitando che l’attenzione perturbi eccessivamente
l’ottimizzazione iniziale.

1 class AttentionBlock(nn.Module):

2 def __init__(self, ch, groups=8):

3 super().__init__()

4 self.norm = nn.GroupNorm(min(groups, ch), ch)

5 self.q = nn.Conv2d(ch, ch, 1); self.k = nn.Conv2d(ch, ch, 1);

self.v = nn.Conv2d(ch, ch, 1)

6 self.proj_out = nn.Conv2d(ch, ch, 1)

7 nn.init.zeros_(self.proj_out.weight);

nn.init.zeros_(self.proj_out.bias)

8

9 def forward(self, x):

10 b, c, h, w = x.shape

11 h_ = self.norm(x)

12 q = self.q(h_).reshape(b, c, h*w).permute(0, 2, 1) # [B,

HW, C]

13 k = self.k(h_).reshape(b, c, h*w) # [B, C,

HW]

14 v = self.v(h_).reshape(b, c, h*w).permute(0, 2, 1) # [B,

HW, C]

15 attn = F.softmax(torch.bmm(q, k) / math.sqrt(c), dim=-1)

16 out = torch.bmm(attn, v).permute(0, 2, 1).reshape(b, c, h, w)

17 return x + self.proj_out(out)

Listing 5.15: Self-attention 2D con proiezione zero-init
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Encoder: compressione a µ, log σ2. L’encoder ha il compito di comprimere
l’immagine nello spazio latente. Dopo una convoluzione iniziale, la rappresentazione
attraversa una sequenza di blocchi residui e, se previsto, moduli di self–attention
che arricchiscono le feature con dipendenze globali. Ad ogni livello viene eseguito un
downsampling con fattore 2, così da ridurre progressivamente la risoluzione e ampliare
il campo recettivo. Nel collo di bottiglia, la rete stima i parametri della distribuzione
gaussiana fattoriale qϕ(z | x) = N (µ, σ2I), dalla quale verrà campionato il vettore
latente z. Per garantire stabilità numerica, i valori di log σ2 vengono vincolati a un
intervallo predefinito, evitando esplosioni o degenerazioni durante l’addestramento.

1 class Encoder(nn.Module):

2 def __init__(...):

3 ...

4 self.conv_in = nn.Conv2d(in_channels, base_channels, 3,

padding=1)

5 self.down_blocks = nn.ModuleList([...]) #

ResidualBlock(+Attention)+Downsample ripetuti

6 self.mid_block1 = ResidualBlock(in_ch, in_ch); self.mid_attn

= AttentionBlock(in_ch)

7 self.mid_block2 = ResidualBlock(in_ch, in_ch)

8 self.norm_out = nn.GroupNorm(min(group_norm_groups, in_ch),

in_ch)

9 self.conv_out = nn.Conv2d(in_ch, latent_channels * 2, 3,

padding=1)

10

11 def forward(self, x):

12 h = self.conv_in(x)

13 for block in self.down_blocks: h = block(h)

14 h = self.mid_block2(self.mid_attn(self.mid_block1(h)))

15 h = self.conv_out(F.silu(self.norm_out(h)))

16 mu, logvar = h.chunk(2, dim=1)

17 logvar = torch.clamp(logvar, min=-30.0, max=20.0)

18 return mu, logvar

Listing 5.16: Head/tail dell’encoder: conv-in, path, split in (mu, logvar)

Decoder: ricostruzione da z. Il decoder ha il compito di trasformare il vettore
latente in un’immagine nello spazio dei dati. Dopo una proiezione iniziale, le
feature attraversano una serie di blocchi residui che ne raffinano la rappresentazione,
intervallati da stadi di upsampling che raddoppiano progressivamente la risoluzione
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spaziale. In analogia all’encoder, possono essere inseriti moduli di self–attention per
catturare coerenze globali anche in fase di generazione. Al termine del percorso, un
livello di normalizzazione seguito da un σ-head con attivazione sigmoide produce
l’output ricostruito, assicurando che i valori siano compresi nell’intervallo [0, 1] e
dunque interpretabili come intensità di pixel.

1 class Decoder(nn.Module):

2 def __init__(...):

3 ...

4 in_ch = base_channels * channel_multipliers[-1]

5 self.conv_in = nn.Conv2d(latent_channels, in_ch, 3, padding=1)

6 self.mid_block1 = ResidualBlock(in_ch, in_ch); self.mid_attn

= AttentionBlock(in_ch)

7 self.mid_block2 = ResidualBlock(in_ch, in_ch)

8 self.up_blocks = nn.ModuleList([...]) # (ResidualBlock N)

+ Upsample per livello

9 self.norm_out = nn.GroupNorm(min(group_norm_groups, in_ch),

in_ch)

10 self.conv_out = nn.Conv2d(in_ch, out_channels, 3, padding=1)

11 nn.init.zeros_(self.conv_out.weight);

nn.init.zeros_(self.conv_out.bias)

12

13 def forward(self, z):

14 h = self.conv_in(z)

15 h = self.mid_block2(self.mid_attn(self.mid_block1(h)))

16 for block in self.up_blocks: h = block(h)

17 x = self.conv_out(F.silu(self.norm_out(h)))

18 return torch.sigmoid(x)

Listing 5.17: Decoder: conv-in dal latente, upsampling gerarchico, head sigmoide

VAE: reparameterization trick e percorso end-to-end. Il campionamento
differenziabile z = µ+σ⊙ε (ε∼N (0, I)) consente di propagare il gradiente attraverso
la latente; il forward esegue encode–sample–decode.

1 class VAE(nn.Module):

2 def sample(self, mu, logvar):

3 std = torch.exp(0.5 * logvar)

4 eps = torch.randn_like(std)

5 return mu + eps * std

6
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7 def forward(self, x):

8 mu, logvar = self.encoder(x) # parametri q(z|x)

9 z = self.sample(mu, logvar) # reparameterization

10 x_rec = self.decoder(z) # ricostruzione

11 return x_rec, mu, logvar

Listing 5.18: Reparameterization trick e forward del VAE

5.3.2 Visualizzazione dello spazio latente

Per ispezionare la struttura del latente, si possono proiettare le medie µ dell’encoder
in 2D tramite t-SNE, una tecnica di riduzione della dimensionalità non lineare, utile
per visualizzare dati ad alta dimensionalità in uno spazio a 2 o 3 dimensioni, rendendo
possibile rappresentarli con grafici di dispersione.. In pratica, si raccolgono le medie
µ su un sottoinsieme del dataset (senza calcolare i gradienti), appiattendo le mappe
spaziali in vettori; successivamente si applica t-SNE e per ridurre la dimensionalità e
la figura risultante viene colorata in base alla classe di appartenenza dei dati. (utile
su MNIST/Fashion–MNIST per verificare separabilità e coerenza semantica).

1 @torch.no_grad()

2 def collect_latents_and_labels(model, loader, device,

max_points=3000):

3 model.eval()

4 mu_list, y_list, n = [], [], 0

5 for x, y in loader:

6 x = x.to(device)

7 _, mu, _ = model(x) # mu: [B, C, H’, W’]

8 mu = mu.flatten(start_dim=1).cpu() # [B, C*H’*W’]

9 mu_list.append(mu); y_list.append(y)

10 n += x.size(0)

11 if n >= max_points: break

12 Z = torch.cat(mu_list, 0).numpy().astype("float32")

13 Y = torch.cat(y_list, 0).numpy()

14 return Z, Y

Listing 5.19: Raccolta di mu e proiezione t-SNE

5.3.3 Sampling

Per generare nuove immagini, viene campionato un vettore z ∼ N (0, I) nel formato
spaziale corretto e che viene successivamente decodificato tramite il decoder del VAE;
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per valutare la qualità ricostruttiva, le immagini originali vengono affiancate alle
rispettive ricostruzioni.. Il codice seguente mostra (i) il calcolo della risoluzione
latente a partire dall’immagine d’ingresso e dai livelli di downsampling, (ii) il sampling
diretto dal prior e (iii) il salvataggio di griglie di ricostruzioni.

1 @torch.no_grad()

2 def latent_spatial_size(image_size: int, channel_multipliers):

3 # Ogni livello (tranne il primo) dimezza H,W: fattore =

2^(len(mult)-1)

4 num_down = len(channel_multipliers) - 1

5 s = image_size // (2 ** num_down)

6 return s

7

8 @torch.no_grad()

9 def generate_samples(vae, num_samples, image_size,

channel_multipliers, out_path):

10 vae.eval()

11 s = latent_spatial_size(image_size, channel_multipliers)

12 z = torch.randn(num_samples, vae.latent_channels, s, s,

device=next(vae.parameters()).device)

13 x = vae.decode(z).clamp(0, 1)

14 from torchvision.utils import save_image

15 nrow = int(num_samples**0.5); nrow = nrow if

nrow*nrow==num_samples else min(8, num_samples)

16 save_image(x, out_path, nrow=nrow)

17

18 @torch.no_grad()

19 def save_reconstructions(vae, loader, num_images, out_path):

20 vae.eval()

21 xs, xh = [], []

22 for x, _ in loader:

23 x = x.to(next(vae.parameters()).device)

24 xr, _, _ = vae(x); xr = xr.clamp(0,1)

25 take = min(x.size(0), num_images - sum(t.size(0) for t in xs))

26 xs.append(x[:take].cpu()); xh.append(xr[:take].cpu())

27 if sum(t.size(0) for t in xs) >= num_images: break

28 if not xs: return

29 import torch

30 grid = torch.cat([torch.cat(xs,0), torch.cat(xh,0)], dim=0)

31 from torchvision.utils import save_image
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32 save_image(grid, out_path, nrow=num_images)

Listing 5.20: Sampling dal prior e salvataggio ricostruzioni
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Capitolo 6

Ottimizzazione degli iperparametri
e addestramento dei modelli
generativi

L’ottimizzazione degli iperparametri è una fase cruciale nello sviluppo di modelli
di apprendimento automatico, poiché influenza direttamente le prestazioni e la
convergenza del modello. A differenza dei parametri del modello, che vengono appresi
durante l’addestramento, gli iperparametri sono impostazioni predefinite che regolano
il processo di addestramento, come il tasso di apprendimento, la dimensione del
batch e le configurazioni architetturali. La regolazione manuale degli iperparametri
è spesso laboriosa e inefficiente, portando all’adozione di framework automatici per
l’ottimizzazione, come Optuna.

In questo capitolo, viene introdotto Optuna, un framework avanzato per l’ot-
timizzazione degli iperparametri [16], [17], e viene descritta la sua applicazione
nell’ottimizzazione di due modelli generativi: un Variational Autoencoder (VAE) e
un Denoising Diffusion Probabilistic Model (DDPM). Vengono discussi i componenti
principali di Optuna, tra cui la strategia di ricerca, lo spazio degli iperparametri,
gli obiettivi di ottimizzazione e i meccanismi di pruning. Inoltre, viene dettagliata
l’integrazione di Optuna nei processi di addestramento dei modelli VAE e DDPM,
evidenziando gli iperparametri ottimizzati e il loro impatto sulle prestazioni.

6.1 Descrizione dei dataset utilizzati

Per la valutazione dei modelli generativi sono stati utilizzati due dataset classici:
MNIST e Fashion-MNIST. Entrambi i dataset sono costituiti da immagini in
scala di grigi, con dimensione 28 × 28 pixel e un singolo canale, e comprendono
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10 classi distinte. Queste caratteristiche li rendono particolarmente adatti come
benchmark iniziali per modelli generativi e di rappresentazione.

6.1.1 MNIST

Il dataset MNIST (Modified National Institute of Standards and Technology) contiene
immagini di cifre scritte a mano, suddivise in 60.000 esempi per il training e 10.000
per il test. Le immagini sono normalizzate in scala [0,1]. La distribuzione delle
classi è uniforme, garantendo un equilibrio tra i dieci numeri da 0 a 9. MNIST
è ampiamente utilizzato come benchmark per testare la capacità dei modelli di
apprendere rappresentazioni latenti compatte, ricostruire dati e generare campioni
plausibili. La relativa semplicità del dataset permette di analizzare in modo chiaro
le prestazioni dei modelli senza introdurre complessità eccessive.

Per fornire un riscontro visivo, riportiamo alcuni esempi di cifre dal dataset
MNIST:

Figura 6.1: Esempi di cifre dal dataset MNIST.

6.1.2 Fashion-MNIST

Il dataset Fashion-MNIST è stato introdotto come alternativa più complessa a
MNIST. Contiene immagini di articoli di abbigliamento (come magliette, scarpe,
borse, giacche, borse e cappelli) con la stessa dimensione e suddivisione in training
(60.000) e test (10.000) di MNIST. La distribuzione delle classi è uniforme e la
varietà intra-classe è maggiore rispetto a MNIST, con differenze sottili tra categorie
visivamente simili. Fashion-MNIST rappresenta quindi una sfida più realistica per i
modelli generativi, richiedendo capacità di catturare dettagli complessi, texture e
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forme differenti. L’utilizzo di questo dataset consente di valutare la generalizzazione
dei modelli e la loro capacità di mantenere coerenza semantica nelle generazioni.

Alcuni esempi di articoli presenti nel dataset Fashion-MNIST sono mostrati nella
figura seguente:

Figura 6.2: Esempi di articoli dal dataset Fashion-MNIST.

Utilizzo nei modelli generativi. Sia MNIST che Fashion-MNIST sono stati
utilizzati per testare le pipeline di VAE e DiffuseVAE. MNIST permette di valutare
le proprietà di ricostruzione e generazione in uno scenario semplice, mentre Fashion-
MNIST mette alla prova la capacità dei modelli di apprendere e generare strutture
più complesse. L’analisi dei risultati su entrambi i dataset consente di confrontare
fedeltà percettiva, diversità dei campioni e organizzazione dello spazio latente.

6.2 Panoramica di Optuna

Optuna è un framework open-source per l’ottimizzazione automatica degli iper-
parametri, progettato per accelerare e semplificare la ricerca delle configurazioni
ottimali. È altamente flessibile e compatibile con diversi framework di apprendimento
automatico, come PyTorch, TensorFlow e scikit-learn. Le principali caratteristiche
di Optuna includono:

• API Define-by-Run: A differenza delle tradizionali API define-and-run, Optu-
na consente di costruire dinamicamente lo spazio di ricerca durante l’esecuzione,
adattando le proposte di iperparametri in base ai risultati intermedi.

68



• Algoritmi di ricerca efficienti: Optuna utilizza il Tree-structured Parzen
Estimator (TPE) come strategia di campionamento predefinita, che model-
la la relazione tra iperparametri e prestazioni per guidare la ricerca verso
configurazioni promettenti.

• Meccanismo di pruning: Optuna supporta l’interruzione anticipata dei trial
meno promettenti tramite pruner come il MedianPruner, che termina i trial
con prestazioni inferiori rispetto alla mediana dei risultati intermedi .

• Scalabilità: Optuna supporta la parallelizzazione e l’ottimizzazione distribuita,
rendendolo adatto a esperimenti su larga scala.

Optuna organizza il processo di ottimizzazione in studi e trial. Uno studio
rappresenta l’intero processo di ottimizzazione, definito da un obiettivo (ad esempio,
minimizzare la perdita di validazione) e una direzione di ottimizzazione (minimizzare o
massimizzare). Ogni trial corrisponde a una singola valutazione di una configurazione
di iperparametri, in cui Optuna suggerisce valori di iperparametri da uno spazio di
ricerca predefinito e li valuta tramite una funzione obiettivo definita dall’utente.

6.2.1 Spazio di ricerca e campionamento

Lo spazio di ricerca definisce l’insieme dei valori possibili per ciascun iperparametro.
Optuna supporta diversi tipi di parametri, tra cui categorici (ad esempio, scelta
tra scheduler “lineare” o “coseno”), interi (ad esempio, numero di timestep) e
continui (ad esempio, tasso di apprendimento). Il campionatore TPE costruisce
un modello probabilistico della funzione obiettivo, dando priorità alle regioni dello
spazio di ricerca con maggiore probabilità di produrre risultati ottimali in base ai
trial precedenti.

6.2.2 Pruning con MedianPruner

Per migliorare l’efficienza, Optuna implementa il pruning per terminare anticipata-
mente i trial poco promettenti. Il MedianPruner, utilizzato in entrambi gli esperimenti
VAE e DDPM, confronta le prestazioni intermedie di un trial (ad esempio, la perdita
di validazione a una determinata epoca) con la mediana delle prestazioni dei trial
precedenti. Se le prestazioni di un trial sono peggiori della mediana dopo un periodo
di warmup specificato, il trial viene interrotto, risparmiando risorse computazionali.

6.2.3 Miglior trial e risultati dell’ottimizzazione

Al termine di uno studio, Optuna identifica il miglior trial, che corrisponde alla con-
figurazione di iperparametri con il miglior valore obiettivo. I parametri e le metriche
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di prestazione del miglior trial vengono salvati per ulteriori analisi o implementazioni.

6.3 Applicazione al Variational Autoencoder (VAE)

Il VAE è stato ottimizzato utilizzando Optuna per migliorare le sue prestazioni sui
dataset. L’obiettivo era minimizzare la perdita di validazione, che combina la perdita
di ricostruzione e la divergenza di Kullback-Leibler (KL), bilanciate tramite un peso
KL (kl_weight).

6.3.1 Configurazione di Optuna per il VAE

Per il VAE, è stato definito uno spazio di ricerca che includeva i seguenti iperparametri:

• latent_channels: numero di canali nello spazio latente, con valori possibili
[8, 16, 32, 64].

• base_channels: numero di canali base nell’architettura, con valori [16, 32, 64].
• dropout: probabilità di dropout, compresa tra 0.0 e 0.3.
• learning_rate: tasso di apprendimento, campionato log-uniformemente tra

10−5 e 10−3.
• kl_weight: peso della divergenza KL nella funzione di perdita, campionato

log-uniformemente tra 10−6 e 10−2.
• batch_size: dimensione del batch, con valori [64, 128, 256].

Il processo di ottimizzazione è stato eseguito per 25 trial, con un massimo di 40
epoche per trial, utilizzando il MedianPruner con 5 trial di startup e 5 epoche di
warmup. La funzione obiettivo restituiva la perdita di validazione media, calcolata
utilizzando la funzione di perdita VAELoss, che combina la perdita di ricostruzione e
la divergenza KL. Il pruning veniva attivato se la perdita di validazione di un trial
era significativamente peggiore della mediana delle perdite intermedie.

6.3.2 Risultati

I risultati dell’ottimizzazione sono stati salvati in un file YAML (optuna_best_params.yaml),
contenente la configurazione ottimale del miglior trial. L’ottimizzazione ha consentito
di identificare una combinazione di iperparametri in grado di bilanciare efficacemente
la qualità della ricostruzione e la regolarizzazione dello spazio latente, migliorando la
capacità del VAE di generare immagini coerenti e diverse sul dataset MNIST.
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6.4 Applicazione al Denoising Diffusion Probabili-
stic Model (DDPM)

Il DDPM è stato ottimizzato utilizzando Optuna per migliorare le prestazioni sul
dataset. L’obiettivo è stato quello di minimizzare la perdita di validazione, calcolata
come l’errore quadratico medio (MSE) tra il rumore predetto (eps_pred) e il rumore
reale (eps).

6.4.1 Configurazione di Optuna per il DDPM

Per il DDPM, lo spazio di ricerca includeva i seguenti iperparametri:

• scheduler_type: tipo di scheduler per il processo di diffusione, con valori
linear o cosine.

• num_timesteps: numero di timestep nel processo di diffusione, con valori
[500, 750, 1000].

• beta_end: valore massimo dello scheduler lineare, campionato tra 0.01 e 0.03
con passo 0.002.

• lr: tasso di apprendimento, campionato log-uniformemente tra 5 × 10−5 e
5× 10−4.

• batch_size: dimensione del batch, con valori [32, 64, 128].
• time_emb_dim: dimensione dell’embedding temporale, con valori [64, 128].
• num_heads: numero di teste di attenzione, con valori [2, 4].

L’ottimizzazione è stata condotta per 20 trial, ciascuno con 3 epoche di adde-
stramento, utilizzando il MedianPruner con una sola epoca di warmup. La funzione
obiettivo calcolava la perdita di validazione media (MSE) su un set di validazione. I
trial venivano interrotti anticipatamente in caso di prestazioni inferiori alla mediana
o in caso di errori di memoria CUDA, garantendo un uso efficiente delle risorse
computazionali.

6.4.2 Risultati

La configurazione ottimale è stata salvata in un file YAML (ddpm_best_optuna.yaml).
L’ottimizzazione ha permesso di identificare una combinazione di iperparametri che
ha migliorato la qualità delle immagini generate dal DDPM, bilanciando la comples-
sità del modello e la stabilità del processo di diffusione. La Tabella 6.1 riporta gli
iperparametri ottimali identificati per il DDPM.
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Tabella 6.1: Migliori iperparametri trovati per il DDPM tramite Optuna sul MNIST

Iperparametro Valore
scheduler_type linear
num_timesteps 1000
beta_start 0.0001
beta_end 0.024
lr 0.000374048
batch_size 64
time_emb_dim 128
num_heads 4

6.5 Discussione e confronto

L’uso di Optuna ha semplificato e accelerato il processo di ottimizzazione per
entrambi i modelli generativi. Per il VAE, l’ottimizzazione si è concentrata sul
bilanciamento tra la ricostruzione e la regolarizzazione dello spazio latente, mentre
per il DDPM l’attenzione era sulla qualità della predizione del rumore e sulla stabilità
del processo di diffusione. Il MedianPruner si è rivelato efficace nel ridurre il tempo
di calcolo, interrompendo i trial meno promettenti. I risultati hanno mostrato che
configurazioni con tassi di apprendimento più bassi e dimensioni di batch moderate
tendevano a produrre migliori prestazioni in entrambi i modelli.

Il training è stato effettuato utilizzando due tipologie di GPU all’interno del cluster
di calcolo reso disponibile dal Dipartimento di Informatica, Scienza ed Ingegneria
dell’Università di Bologna. La prima, RTX 2080 Ti (partizione rtx2080), dispone
di nodi di elaborazione con CPU singola quad-core e 44 GB di RAM, e una scheda
grafica Nvidia GeForce RTX 2080 Ti (GPU Turing TU102 con 4352 core e memoria
da 11 GB), pilotata con driver Nvidia v. 535 e librerie CUDA 11.8. La seconda, L40
(partizione L40), dispone di nodi di elaborazione con CPU singola octa-core e 64 GB
di RAM, e una scheda grafica Nvidia L40 (GPU Ada Lovelace AD102GL con 18176
core e memoria da 48 GB), anch’essa gestita tramite driver Nvidia v. 535 e librerie
CUDA 11.8.

Sia il VAE che il DDPM (all’interno della pipeline DiffuseVAE) sono stati
addestrati per 50 epoche. I tempi di training e di sampling variano in funzione della
GPU e della dimensione del batch: il VAE mostra tempi di inferenza nell’ordine dei
millisecondi per immagine, mentre DiffuseVAE, eseguendo 1000 passi di denoising
DDPM, richiede un tempo di generazione superiore ma comunque gestibile in scenari
batch. I valori di riferimento per MNIST e Fashion-MNIST (ridimensionati a 32×32)
sono riportati nelle Tabelle 6.2 e 6.3. Il DDPM, integrato nella pipeline DiffuseVAE,
beneficia del pre-addestramento del VAE: la componente latente fornisce una buona
inizializzazione della struttura globale, consentendo al processo di diffusione di
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concentrarsi sul raffinamento dei dettagli.

Tabella 6.2: Confronto tra VAE e DiffuseVAE su MNIST (28× 28, ridimensionato a
32× 32) nelle partizioni rtx2080 e L40. I tempi di training sono espressi in hh:mm.
Sampling calcolato con 1000 step DDPM e batch size 128.

Modello Partizione Training (50 epoche) Sampling / immagine (ms)

VAE rtx2080 04:45 4
VAE L40 02:08 2
DiffuseVAE rtx2080 11:20 ∼1200
DiffuseVAE L40 04:58 ∼600

Tabella 6.3: Confronto tra VAE e DiffuseVAE su Fashion-MNIST (28× 28, ridimen-
sionato a 32× 32) nelle partizioni rtx2080 e L40. I tempi di training sono espressi
in hh:mm. Sampling calcolato con 1000 step DDPM e batch size 128.

Modello Partizione Training (50 epoche) Sampling / immagine (ms)

VAE rtx2080 05:10 5
VAE L40 02:23 3
DiffuseVAE rtx2080 12:05 ∼1300
DiffuseVAE L40 05:21 ∼700
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Capitolo 7

Valutazione quantitativa e
qualitativa delle immagini generate

Questo capitolo presenta un’analisi dettagliata delle prestazioni dei modelli generativi,
VAE e DiffuseVAE, utilizzati per la ricostruzione e la generazione di immagini sui
dataset MNIST e FashionMNIST [18], [19]. L’obiettivo è valutare la qualità delle im-
magini generate rispetto a quelle originali attraverso un insieme di metriche standard,
tra cui PSNR, SSIM, MSE, MAE, Edge Similarity (basata su Sobel) e Histogram
Similarity (basata sul chi-quadrato). Ogni metrica viene descritta in termini di
formula matematica e significato pratico, fornendo una base rigorosa per confrontare
i due modelli. I risultati quantitativi e qualitativi, derivati dall’elaborazione di 10.000
immagini per ciascun dataset, saranno presentati nella sezione finale, consentendo
di valutare l’efficacia dei modelli in termini di fedeltà visiva, accuratezza numerica
e preservazione dei dettagli strutturali. Questo capitolo rappresenta un elemento
chiave della tesi, poiché permette di quantificare le capacità dei modelli e di discutere
i loro punti di forza e limiti nel contesto della generazione di immagini.

7.1 PSNR

Il Peak Signal-to-Noise Ratio (PSNR) è una metrica ampiamente utilizzata per
valutare la qualità di ricostruzione delle immagini. Misura il rapporto tra il segnale
massimo possibile e il rumore presente tra l’immagine originale e quella ricostruita,
esprimendo il risultato in decibel (dB). Valori di PSNR più alti indicano una migliore
qualità di ricostruzione, con meno distorsione rispetto all’immagine originale.

La formula del PSNR è data da:
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PSNR = 10 · log10

(
MAX2

MSE

)

dove: MAX è il valore massimo possibile del pixel (ad esempio, 1.0 per immagini
normalizzate in [0, 1]); MSE è l’errore quadratico medio (Mean Squared Error),
definito nella sezione 7.3.

Il PSNR è particolarmente utile per confrontare la fedeltà delle immagini rico-
struite rispetto a quelle originali, specialmente in contesti come la compressione o
la ricostruzione di immagini tramite modelli generativi come VAE e DiffuseVAE.
Tuttavia, non tiene conto della percezione visiva umana, il che può limitarne l’efficacia
in alcune applicazioni.

7.2 SSIM

La Structural Similarity Index Measure (SSIM) è una metrica progettata per valutare
la somiglianza strutturale tra due immagini, tenendo conto di luminanza, contrasto
e struttura. A differenza del PSNR, l’SSIM è più allineata alla percezione visiva
umana, poiché considera le relazioni locali tra i pixel.

La formula dell’SSIM è definita come:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

dove:

• µx, µy: medie di intensità dei pixel delle immagini x e y;
• σ2

x, σ2
y : varianze delle intensità dei pixel di x e y;

• σxy: covarianza tra x e y;
• C1 = (k1L)2, C2 = (k2L)2: costanti di stabilizzazione, con k1 = 0.01, k2 = 0.03,

e L il range dinamico dell’immagine (es. 1.0 per immagini normalizzate).

L’SSIM produce valori in [0, 1], dove 1 indica identità perfetta tra le immagini.
Nel nostro contesto, l’SSIM è stato calcolato utilizzando una finestra Gaussiana di
dimensione 11x11 con σ = 1.5.

7.3 MSE

L’Mean Squared Error (MSE) misura l’errore quadratico medio tra i pixel di due
immagini, fornendo un’indicazione della differenza media al quadrato tra valori
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corrispondenti.. È una metrica semplice ma efficace per quantificare la distorsione
numerica.

La formula dell’MSE è:

MSE = 1
N

N∑
i=1

(xi − yi)2

dove:
• xi, yi: valori dei pixel dell’immagine originale x e di quella ricostruita y;
• N : numero totale di pixel.
Valori di MSE più bassi indicano una maggiore fedeltà dell’immagine ricostruita

rispetto all’originale. Tuttavia, come il PSNR, l’MSE non considera la percezione
visiva umana e può non riflettere pienamente la qualità percepita. Nel nostro studio,
l’MSE è stato calcolato per ogni batch di immagini e mediato per ottenere un valore
rappresentativo per i dataset MNIST e FashionMNIST.

7.4 MAE

L’Mean Absolute Error (MAE) misura l’errore assoluto medio tra i pixel di due
immagini, calcolando la differenza media in valore assoluto tra pixel corrispondenti.
Rispetto all’MSE, l’MAE è meno sensibile agli errori di grande entità, fornendo una
valutazione più robusta in presenza di outlier.

La formula dell’MAE è:

MAE = 1
N

N∑
i=1
|xi − yi|

dove:
• xi, yi: valori dei pixel dell’immagine originale x e di quella ricostruita y;
• N : numero totale di pixel.
L’MAE è stato introdotto per valutare la qualità delle ricostruzioni di VAE

e DiffuseVAE, offrendo un complemento all’MSE. Valori più bassi indicano una
maggiore somiglianza tra le immagini.

7.5 Edge Similarity (Sobel-based)

La Edge Similarity basata su Sobel misura la somiglianza tra le strutture di contorno
(bordi) di due immagini, utilizzando filtri Sobel per rilevare i gradienti. Questa
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metrica è utile per valutare la capacità dei modelli di preservare i dettagli strutturali,
come i contorni degli oggetti nelle immagini.

La procedura è la seguente: 1. Si applicano due filtri Sobel (orizzontale e verticale)
alle immagini x e y:

Gx =


−1 0 1
−2 0 2
−1 0 1

 , Gy =


−1 −2 −1
0 0 0
1 2 1


2. Si calcola l’ampiezza del gradiente per ogni immagine:

Edgex =
√

(Gx ∗ x)2 + (Gy ∗ x)2, Edgey =
√

(Gx ∗ y)2 + (Gy ∗ y)2

dove ∗ indica la convoluzione. 3. Si calcola l’errore quadratico medio tra le mappe
dei bordi:

Edge Similarity = 1
N

N∑
i=1

(Edgex(i)− Edgey(i))2

Valori più bassi di questa metrica indicano una maggiore somiglianza tra i contorni
delle immagini. Nel nostro studio, l’Edge Similarity è stata calcolata per valutare la
capacità dei modelli VAE e DiffuseVAE di preservare i dettagli strutturali nei dataset
MNIST e FashionMNIST, particolarmente rilevanti per immagini con contorni netti
come cifre e abiti.

7.6 Histogram Similarity (Chi-Squared)

La Histogram Similarity basata sulla distanza del chi-quadrato misura la somiglianza
tra le distribuzioni di intensità dei pixel di due immagini, confrontando i loro
istogrammi. Questa metrica è utile per valutare la somiglianza globale delle immagini
in termini di distribuzione del colore o dell’intensità.

La formula della distanza del chi-quadrato è:

HistSimilarity =
B∑

i=1

(hx(i)− hy(i))2

hx(i) + hy(i) + ϵ

dove:

• hx, hy: istogrammi normalizzati delle immagini x e y, con B bin (nel nostro
caso, 256);

• ϵ: piccola costante (es. 10−10) per evitare la divisione per zero.
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Valori più bassi indicano una maggiore somiglianza tra le distribuzioni di intensità.
Nel nostro esperimento, gli istogrammi sono stati calcolati sui valori dei pixel
normalizzati in [0, 1]. Questa metrica è particolarmente utile per valutare la fedeltà
tonale delle immagini generate.

7.7 LPIPS

Il Learned Perceptual Image Patch Similarity (LPIPS) è una metrica percettiva
che misura la distanza tra immagini utilizzando feature apprese da reti neurali
convoluzionali pre-addestrate (ad esempio AlexNet o VGG). A differenza di MSE
o PSNR, LPIPS è più allineata alla percezione visiva umana, poiché confronta
rappresentazioni intermedie invece che valori di pixel grezzi.

La definizione formale è:

LPIPS(x, y) =
∑

l

1
HlWl

∑
h,w

∥wl ⊙ (ϕl(x)hw − ϕl(y)hw)∥2
2

dove:

• ϕl(·) indica le feature estratte al layer l della rete pre-addestrata,
• Hl, Wl sono dimensioni spaziali delle feature map,
• wl sono pesi di calibrazione appresi per ciascun layer.

LPIPS restituisce valori reali non negativi: più bassi sono i valori, maggiore è la
somiglianza percettiva tra le immagini.

7.8 Risultati Finali

La valutazione dei modelli è stata effettuata utilizzando metriche che privilegiano
la qualità percettiva e strutturale delle immagini generate, come SSIM, LPIPS,
EdgeSim e HistSim, oltre a misure pixel-wise (MSE, PSNR, MAE) per avere un
quadro completo delle prestazioni.

Modello MSE PSNR SSIM LPIPS MAE EdgeSim HistSim

VAE 0.0102 20.37 0.686 7.38×10−6 0.059 2.323 0.377

DiffuseVAE 0.0142 19.01 0.730 7.96×10−6 0.062 2.644 0.036

Tabella 7.1: Confronto quantitativo e qualitativo tra VAE e DiffuseVAE su Fa-
shionMNIST.
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Modello MSE PSNR SSIM LPIPS MAE EdgeSim HistSim

VAE 0.0069 23.42 0.823 6.90×10−6 0.038 1.80 0.070

DiffuseVAE 0.0085 22.50 0.858 6.50×10−6 0.045 1.95 0.055

Tabella 7.2: Confronto quantitativo e qualitativo tra VAE e DiffuseVAE su MNIST.

Dalle tabelle emerge chiaramente che su FashionMNIST, il DiffuseVAE ottiene
valori superiori di SSIM e EdgeSim, indicando una migliore preservazione della
struttura locale e dei dettagli visivi rispetto al VAE, mentre quest’ultimo mostra un
MSE leggermente più basso. Anche l’HistSim leggermente inferiore per DiffuseVAE
non compromette la percezione complessiva, poiché le immagini risultano più coerenti
e realistiche all’occhio umano.

Su MNIST, nonostante il VAE mostri un MSE e un PSNR leggermente migliori,
il DiffuseVAE eccelle in termini di SSIM e EdgeSim, confermando la capacità del
modello di mantenere coerenza strutturale e dettagli percettivi. Questo suggerisce
che, pur sacrificando leggermente l’accuratezza numerica, il DiffuseVAE è più efficace
nel generare immagini visivamente convincenti e fedeli alla distribuzione dei dati,
con caratteristiche che rispecchiano meglio la percezione visiva umana.
In sintesi, i risultati evidenziano una differenza di priorità tra i due modelli: il VAE
tende a ottimizzare la precisione a livello di singolo pixel, mentre il DiffuseVAE
privilegia la qualità percettiva e la coerenza strutturale (SSIM, EdgeSim, HistSim).
Di conseguenza, il DiffuseVAE risulta più adatto a compiti di generazione visiva
realistica, dove la fedeltà percettiva e la struttura globale dell’immagine sono più
rilevanti dell’errore numerico medio.

7.9 Visualizzazione delle immagini generate

In questa sezione vengono riportati esempi di immagini generate dai modelli VAE e
DiffuseVAE su dataset MNIST e FashionMNIST. Inoltre, viene mostrata l’evoluzione
dello spazio latente durante l’addestramento, insieme a una comparazione qualitativa
tra i due approcci.

7.9.1 Immagini generate dal VAE

7.9.1.1 MNIST

Per valutare la capacità generativa del VAE sul dataset MNIST, sono state analizzate
le immagini prodotte in diverse fasi dell’addestramento. Le figure riportano un con-
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fronto tra un’epoca iniziale e una finale, evidenziando un progressivo miglioramento
della qualità delle cifre generate.

Figura 7.1: Evoluzione delle immagini generate dal VAE su MNIST: epoca 5 (sinistra)
ed epoca 50 (destra).

7.9.1.2 FashionMNIST

Per analizzare l’andamento dell’addestramento sul dataset FashionMNIST, sono
state generate immagini campione in diverse epoche. Il confronto tra epoca 5 ed epoca
50 evidenzia un miglioramento significativo nella nitidezza e nella riconoscibilità dei
capi di abbigliamento, segno della progressiva capacità del modello di catturare le
strutture del dataset.

Figura 7.2: Evoluzione delle immagini generate dal VAE su FashionMNIST: epoca 5
(sinistra) ed epoca 50 (destra).
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7.9.2 Evoluzione dello spazio latente del VAE

7.9.2.1 MNIST

Per comprendere come il VAE strutturi le rappresentazioni interne, è stata analizzata
l’evoluzione dello spazio latente mediante t-SNE. Le figure mostrano la disposizione
dei campioni in differenti epoche, evidenziando la progressiva formazione di cluster
più definiti e la separazione tra classi numeriche.

Figura 7.3: Evoluzione dello spazio latente del VAE su MNIST visualizzata con
t-SNE: (a) Epoca 10, (b) Epoca 20, (c) Epoca 40, (d) Epoca 50.

7.9.2.2 FashionMNIST

Anche per il dataset FashionMNIST è stata analizzata l’evoluzione dello spazio
latente mediante t-SNE. la formazione dei cluster risulta meno netta e presenta
sovrapposizioni parziali, riflettendo la maggiore complessità visiva rispetto al dataset
MNIST.
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Figura 7.4: Evoluzione dello spazio latente del VAE su FashionMNIST visualizzata
con t-SNE: (a) Epoca 10, (b) Epoca 20, (c) Epoca 40, (d) Epoca 50.

Dall’analisi delle rappresentazioni nello spazio latente emerge una differenza signi-
ficativa tra i due dataset. Nel caso di MNIST, il VAE riesce a suddividere le classi
in cluster ben distinti e regolarmente distribuiti, mostrando una chiara separazione
tra le cifre. Questa organizzazione regolare riflette la relativa semplicità del dataset,
caratterizzato da strutture visive poco complesse e facilmente distinguibili.

Al contrario, nel caso di FashionMNIST, lo spazio latente risulta meno regolare,
con cluster meno definiti e parzialmente sovrapposti. Questo fenomeno è imputabile
alla maggiore complessità intrinseca del dataset, i cui campioni presentano variabilità
più elevata in termini di forme, texture e dettagli visivi. Di conseguenza, il VAE
incontra maggiori difficoltà nel modellare una separazione netta tra le classi, gene-
rando una rappresentazione latente che risulta meno strutturata rispetto a quella
osservata per MNIST.
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7.9.3 Immagini generate dal DiffuseVAE

Per confrontare il comportamento del modello proposto con quello del VAE standard,
sono state analizzate le immagini generate dal DiffuseVAE su entrambi i dataset a
diverse epoche di training.

Figura 7.5: Evoluzione delle immagini generate dal DiffuseVAE su MNIST e Fa-
shionMNIST: (a) Epoca 5 MNIST, (b) Epoca 50 MNIST, (c) Epoca 5 Fashion-MNIST,
(d) Epoca 50 Fashion-MNIST.

Un aspetto particolarmente rilevante riguarda il ruolo del condizionamento nel
processo di generazione. Come mostrato in Figura 7.5, già dopo sole 5 epoche di adde-
stramento il DiffuseVAE produce immagini di qualità visibilmente superiore rispetto
al VAE. Tale risultato è attribuibile al forte vincolo imposto dal condizionamento
della rete di diffusione sulle ricostruzioni fornite dal VAE pre-addestrato e congelato.
In fase di training, infatti, l’UNet del modello di diffusione riceve come input non
soltanto la versione rumorizzata xt del dato, ma anche xhat = VAE(x), che fornisce
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una guida strutturale stabile per la predizione del rumore ϵ. Questo meccanismo
consente al modello di apprendere in maniera più rapida la distribuzione dei dati,
preservando fin dalle prime epoche la coerenza strutturale e i dettagli percettivi delle
immagini reali. Al contrario, il VAE tradizionale, privo di tale condizionamento,
richiede molte più epoche di addestramento per raggiungere un livello qualitativo
comparabile.

7.9.4 Confronto fra dataset reale, VAE e DiffuseVAE

Per concludere l’analisi qualitativa, viene proposto un confronto diretto tra immagini
reali, ricostruzioni ottenute dal VAE e campioni generati dal DiffuseVAE. Questo
confronto permette di evidenziare le differenze visive e valutare la capacità dei modelli
di preservare fedelmente le caratteristiche intrinseche del dataset.

Figura 7.6: Confronto qualitativo su FashionMNIST: (a) immagini reali, (b) generate
dal VAE, (c) generate dal DiffuseVAE.

Un esempio emblematico è visibile nella Figura 7.6, in particolare nella prima
riga, seconda colonna, dove l’immagine reale presenta chiaramente la scritta “Lee”
sulla maglia. Tale dettaglio risulta molto meno delineato sia nella ricostruzione del
VAE, sia nel campione generato dal DiffuseVAE. Questo fenomeno riflette la natura
probabilistica dei modelli generativi: essi non ricostruiscono pixel per pixel, ma
approssimano la distribuzione statistica dei dati, privilegiando la coerenza globale
delle forme piuttosto che i dettagli locali meno ricorrenti (come loghi o testi). Il
VAE, per via della struttura compressa della rappresentazione latente latente, tende
a produrre immagini più sfocate e prive di finezze, mentre il DiffuseVAE recupera
parzialmente texture e realismo, ma non riesce comunque a riprodurre con fedel-
tà assoluta elementi così specifici. Questo evidenzia il trade-off fra preservare la
struttura complessiva e catturare dettagli fini. Da un lato i modelli sono efficaci
nel rappresentare correttamente le categorie principali (scarpe, magliette, pantalo-
ni), dall’altro mostrano limiti nel riprodurre accuratamente informazioni testuali o
grafiche. Tale osservazione rappresenta un punto di transizione naturale verso le
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conclusioni, dove verranno discusse le prospettive di miglioramento in termini di
qualità visiva e capacità di generare dettagli più complessi e specifici.
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Conclusioni

In questa tesi sono stati progettati, implementati e analizzati tre modelli generativi
per immagini: un Denoising Diffusion Probabilistic Model (DDPM), un Variational
Autoencoder (VAE) e un’architettura ibrida, DiffuseVAE, in cui il DDPM è guidato
dalla ricostruzione prodotta dal VAE. Il lavoro ha attraversato sia gli aspetti teorici
(processi forward e reverse, ELBO, embedding temporale e architettura UNet) sia le
scelte implementative, tra cui lo scheduler della varianza e l’iniezione multiscala del
condizionamento, fino a una valutazione sperimentale quantitativa e qualitativa su
MNIST e Fashion-MNIST, con ottimizzazione degli iperparametri eseguita tramite
Optuna.

Dal punto di vista metodologico, è stata realizzata un’implementazione modulare
di DDPM e VAE, basata su una UNet con time embedding sinusoidale, atten-
zione multi-head e blocchi residuali. L’architettura DiffuseVAE ha introdotto un
condizionamento multiscala all’ingresso, nei percorsi di downsampling e nelle skip
connections, che utilizza la ricostruzione del VAE come guida stabile durante il
denoising. L’impianto sperimentale ha previsto un’ottimizzazione automatica degli
iperparametri dei due modelli principali e una valutazione con un set ampio di
metriche, comprendente PSNR, SSIM, MSE/MAE, Edge/Hist Similarity e LPIPS,
così da coprire sia accuratezza numerica sia qualità percettiva e strutturale.

I risultati mostrano che il VAE tende a ottenere errori numerici medi inferiori,
come evidenziato da MSE e PSNR, mentre DiffuseVAE si distingue sulle metriche
percettive e strutturali (SSIM, EdgeSim e, in diversi scenari, LPIPS), generando
campioni più coerenti e convincenti all’occhio umano. Queste evidenze confermano la
natura complementare dei due paradigmi: il VAE offre compattezza latente e buona
ricostruzione pixel-wise, i modelli di diffusione garantiscono stabilità di training e
fedeltà visiva. Nel complesso, l’ibrido si rivela una soluzione efficace per conciliare
rappresentazione latente strutturata e alta qualità percettiva.

Il lavoro presenta tuttavia alcuni limiti. La qualità finale dipende dalla bontà
della ricostruzione del VAE, le cui imperfezioni possono propagarsi nel processo di
denoising. Inoltre, il reverse process multi-step comporta un costo computazionale e
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tempi di campionamento più elevati rispetto a un decoder VAE puro, soprattutto
all’aumentare dei timestep. Infine, la batteria di metriche non include ancora FID e
KID, indicatori utili per confronti più diretti con la letteratura.

Queste considerazioni orientano le direzioni future.
Dal punto di vista valutativo può essere opportuno integrare FID e KID. Il

Fréchet Inception Distance (FID) confronta la distribuzione dei descrittori estratti
con Inception v3 per immagini reali e generate, approssimandole con gaussiane
multivariate e calcolando la distanza di Fréchet; valori più bassi indicano campioni
più realistici e migliore copertura della distribuzione. Il Kernel Inception Distance
(KID) misura invece la Maximum Mean Discrepancy con kernel polinomiale sugli
stessi descrittori e impiega uno stimatore non polarizzato, più affidabile su campioni
di dimensione ridotta e adatto a riportare intervalli di confidenza. Riportare entrambi
rende i risultati comparabili con la letteratura e più robusti rispetto alla dimensione
del campione e ai dettagli di implementazione.

Per il condizionamento, è possibile impiegare il meccanismo di cross-attention: le
feature dell’immagine (query) prestano attenzione a chiavi e valori derivati dall’em-
bedding di condizione (testo, classe o altra modalità), così da iniettare informazione
in modo selettivo e localmente consapevole lungo la UNet. In continuità con la
classifier-free guidance già discussa, per guidance testuale e guidance di classe in-
tendiamo l’uso, rispettivamente, dell’embedding di un prompt testuale o della label
di classe come condizione c; durante il campionamento si combinano le predizioni
condizionate e non condizionate con un fattore di scala s, ottenendo un controllo
continuo dell’allineamento semantico (testuale) o categoriale (di classe).

Parallelamente, si possono estendere i benchmark a dataset più sfidanti, come
CIFAR-10, CelebA o immagini a risoluzione superiore; migliorando l’efficienza del
campionamento tramite l’adozione di sampler avanzati (DDIM, DPM-Solver, con-
sistency o rectified-flow) o tecniche di distillazione per ridurre il numero di passi a
parità di qualità; esploreremo spazi latenti più espressivi, ad esempio VQ-VAE o
β-VAE, e condizionamenti alternativi che traggano vantaggio dalla cross-attention e
dalla guidance sopra descritte.

In conclusione, DiffuseVAE rappresenta un compromesso pratico tra efficienza,
controllo e qualità visiva. L’integrazione tra una rappresentazione latente informativa
e un processo di diffusione robusto fornisce una base solida e flessibile su cui innestare
ulteriori miglioramenti, con l’obiettivo di elevare la qualità percettiva, accelerare la
generazione e aumentare la controllabilità del contenuto.
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