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“Was mich nicht umbringt, macht mich starker.”

— Friedrich Nietzsche
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Introduzione

Negli ultimi anni, il riconoscimento facciale e diventato una tecnologia di
riferimento nei sistemi di sicurezza, in particolare nei controlli automatizzati di
frontiera. Tuttavia, la diffusione di attacchi ai sistemi biometrici, che includono
tecniche di manipolazione delle immagini e di presentazione di dati falsificati,
ha messo in luce vulnerabilita significative. Queste minacce possono ingannare
i sistemi di riconoscimento, compromettendone 1'affidabilita [16].

La ricerca si concentra sulle nuove strategie di rilevazione e mitigazione
degli attacchi, spostando ’attenzione dall’analisi di immagini statiche a quella
video-based, piu rappresentativa delle reali condizioni operative. L’approccio
video-based, infatti, consente di sfruttare la variabilita dei fotogrammi per
aumentare la robustezza dei processi di verifica, pur introducendo nuove sfide
legate alla qualita delle acquisizioni e all’eterogeneita dei dati.

L’obiettivo e di valutare le prestazioni di due modelli di riconoscimento
facciale, MagFace [35] e AdaFace [29], applicati a sequenze video acquisite in
condizioni realistiche. L’analisi prende in considerazione non solo le metriche
tradizionali di errore, come FRR (False Rejection Rate) e FAR (False Accep-
tance Rate), ma anche l'impatto di diversi criteri di aggregazione degli score
(media, massimo, minimo) e di metriche di qualita dei frame (SER-FIQ [50] e
OFIQ [36]). I risultati ottenuti permettono di valutare in che misura tali stra-
tegie contribuiscano a migliorare 1’affidabilita del riconoscimento in presenza
di variazioni di posa, occlusioni e condizioni operative reali, oltre a verificarne
I'efficacia nel ridurre la probabilita di successo degli attacchi.

La tesi e strutturata come segue: nel Capitolo[I]viene introdotto il problema
degli attacchi ai sistemi biometrici e le principali tecniche di generazione. Il
Capitolo[2 descrive le metodologie di rilevamento degli attacchi, con particolare
attenzione agli approcci basati su singole immagini e su sequenze video. Nel
Capitolo |3| viene descritto il processo di acquisizione del database utilizzato
per le valutazioni. Il Capitolo {4 illustra la soluzione proposta, i modelli di
riconoscimento adottati e i criteri di aggregazione dei fotogrammi. Infine, il
Capitolo |5 riporta e discute i risultati sperimentali, confrontando le diverse
strategie di valutazione.

vil






Capitolo 1

Face morphing

1.1 Morphing

Il morphing ha origine nella computer grafica e viene concepito come una
tecnica per realizzare una transizione fluida e graduale tra due immagini. A
partire dagli anni '90, ¢ stato adottato nell’industria dell’animazione per oltre
un decennio per creare effetti speciali nei film, come la deformazione progres-
siva della forma e del colore di un soggetto fino a farlo scivolare su un altro
soggetto, creando un effetto di metamorfosi continua [31]. L’effetto si ottiene
utilizzando tecniche semplici come il cross-dissolve, che fa svanire un’imma-
gine mentre l'altra appare. Tuttavia, questa tecnica non rappresenta bene
la metamorfosi dell’oggetto, poiché produce artefatti come il “ghosting”, zo-
ne trasparenti doppie, o forme irreali, come riportato in [2]. La qualita del
morphing ¢ stata migliorata attraverso tecniche come warping, per allineare
le forme degli oggetti nelle due immagini, e il cross-dissolve che combina i co-
lori e le texture (Figura . Negli anni, questi metodi si sono evoluti fino
ad arrivare a modelli generativi, come autoencoder e GAN, con pipeline quasi
del tutto automatizzate grazie alla disponibilita di ampi dataset pubblici e di
software open source [14].

1.2 Face Morphing Generation

Quando il morphing interessa un volto si parla di face morphing. Que-
sto puo avvenire sia nella combinazione di un volto con elementi diversi (es.,
paesaggi, oggetti), sia, come nel nostro caso, nella fusione di due o piu volti
differenti, con I'obiettivo di generare un nuovo volto che preservi le caratteristi-
che biometriche di ciascun soggetto [16]. Il contributo di ogni volto & regolato
da un parametro «, con valori compresi tra 0 e 1. Attualmente, la generazione
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Source 1 Source 2 Cross-dissolve Morphed

Figura 1.1: Esempio di morphing applicato a immagini generiche. A partire
da Source 1 e Source 2, il risultato morphed & ottenuto tramite fusione con
cross-dissolve (adattato da [47])

di immagini morphing ¢ diventata un’operazione semplice e a basso costo. So-
no infatti disponibili numerose soluzioni open-source, come il plugin GAP per
GIMP [24]. Oltre a questi, esistono anche strumenti gratuiti o a pagamento,
come FaceMorpher [33] o FantaMorph [1], e applicazioni per dispositivi mobili
e servizi online [14].

1.2.1 Tipologie di Face Morphing

Le metodologie di face morphing si suddividono principalmente in due ca-
tegorie, in base al tipo di approccio utilizzato: landmark based e deep learning
based [14]. Di seguito, verranno descritte nel dettaglio entrambe le metodolo-
gie, illustrandone i loro processi di funzionamento, i vantaggi e le limitazioni.

Landmark Based Morphing

La prima, nota come landmark-based si basa su tre processi principali.
Partendo dall’individuazione dei principali landmark facciali quali occhi, naso,
bocca e contorno del volto, si vede Figura[l.2] La seconda fase, detta warping,
consiste in una deformazione geometrica delle due immagini che consente di
allineare in modo coerente tutti i landmark individuati nei due campioni, come
illustrato nella Figura Infine, nella fase di blending, le intensita dei pixel
delle immagini deformate vengono combinate per ottenere 'immagine morphed
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Figura 1.2: Esempio di landmarks facciali e i corrispondenti triangoli delaunay
(adattato da [14])

finale [44]. Nei paragrafi successivi verranno descritte in modo dettagliato
queste fasi, insieme alle tecniche di post elaborazione volte a rimuovere i difetti
piu evidenti.

Rilevamento e Localizzazione dei Landmark Facciali Questo processo
consiste nell’individuare i punti chiave del viso, detti anche landmark o punti
caratteristici, a partire da due immagini Iy e I; da unire. Si individuano i
rispettivi insiemi di landmark F, e P;, come mostrato in Figura |1.3]

[ landmark sono i tratti piu evidenti di un volto, come gli angoli degli occhi,
la punta del naso, gli angoli della bocca e il contorno del viso [14]. Possono

Figura 1.3: Immagini genitrici I, e I; (Fonte: [19])
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essere suddivisi in due tipologie: i primari, rilevabili anche tramite caratteri-
stiche a basso livello, e i secondari, meno evidenti e la cui individuazione e
spesso guidata dalla posizione dei primari [7].

Esistono diversi metodi per il rilevamento dei landmark, tra cui quello ma-
nuale, che, se eseguito correttamente, risulta molto accurato ma richiede tempi
di esecuzione elevati [44]. Per questo motivo, ¢ stato introdotto il rilevamento
automatico, reso possibile da algoritmi come Dlib[L una libreria open source
basata su tecniche di machine learning che utilizza regressori di forma per loca-
lizzare automaticamente i punti chiave del volto [41]. L’approccio consiste nel
rilevare ogni punto separatamente, utilizzando caratteristiche geometriche [44].

Altri approcci includono gli Active Shape Models (ASM), che utilizzano un
modello predefinito adattato al contorno dell'immagine per individuare i punti
chiave [34], e gli Elastic Bunch Graph Models (EBGM), che impiegano i Gabor
Jets, ovvero insiemi di valori ottenuti applicando dei filtri speciali, come filtri
di Gabor, sull'immagine, in diverse direzioni e scale, per evidenziare i dettagli
del volto. In questo modo, & possibile identificare con maggiore precisione i
punti caratteristici associati ai nodi del grafo [7].

Warping Dopo aver individuato i landmark, dei due volti su cui si vuo-
le applicare il morphing, questi punti vengono sottoposti ad interpolazione
(Figura|1.4)) per ottenere un nuovo insieme di punti intermedi.
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Figura 1.4: Esempio di interpolazione dei landmark tra due insiemi sorgente
(Po) e target (P;) in funzione del fattore di morphing « (Fonte: [14])

Considerando un singolo landmark, definendo con u; la sua posizione nel-
I'immagine sorgente e con v; la posizione del punto corrispondente nell’'imma-
gine target, la posizione intermedia si calcola come:

ri=1—-a) u+a-v (1.1)

'Dlib: http://dlib.net/
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dove « ¢ il fattore di morphing, che rappresenta la percentuale di presenza del
volto sorgente all’interno del volto morphed risultante. L’insieme dei nuovi
punti ottenuti, indicato come P,, verra utilizzato nelle fasi successive.

Le due immagini vengono deformate geometricamente mediante un proces-
so di triangolazione, nel quale i due insiemi di punti vengono rappresentati
con mesh triangolari topologicamente equivalenti, che permettono di allinear-
li in modo coerente [4I]. A questo scopo, viene utilizzata la triangolazione
di Delaunay, che consente di massimizzare 'ampiezza degli angoli piu pic-
coli di ogni triangolo, garantendo che i triangoli risultino piu regolari e non
sovrapposti [34].

Per ogni triangolo in input, viene calcolata una trasformazione affine stan-
dard, che mappa i pixel all’interno del triangolo nella corrispondente posizione
nella medesima mesh triangolare ottenuta da P, [32].

Come mostrato in Figura[l.5, un punto p appartenente a un triangolo della
mesh dell’immagine target viene riportato al triangolo corrispondente della
mesh dell'immagine sorgente tramite una trasformazione affine. In questo
modo, ogni pixel viene riallineato in base ai landmark corrispondenti [14].

Py

a
y Wpgp,(P)

Figura 1.5: Esempio di warping usando il triangular meshes (Fonte: [14])

Formalmente, se un punto p appartiene al triangolo Abybsb, si calcolano
le sue coordinate baricentriche (A1, Ao, \3) rispetto ai vertici del triangolo. Il
punto corrispondente nell'immagine sorgente e dato da:

P = )\1@2 + )\gag + )\3@4 (12)

garantendo che la posizione relativa di p all’interno del triangolo venga pre-
servata anche dopo la trasformazione affine [I4]. Siano I e I, rispettivamente
I'immagine sorgente e I'immagine target, wy; e wy; le funzioni di mapping per
il triangolo ¢;, le immagini risultanti Ig,; e Iy, si ottengono tramite [34]:

L4 Iswi = wsi<Isi>

o [iyi = wti(Iti)
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La Figura mostra I'immagine risultante dal processo di warping, generata
a partire dalle immagini della Figura [1.3]

Figura 1.6: Risultato del warping di un volto

Blending Una volta che le immagini deformate sono state allineate geometri-
camente, le loro texture vengono fuse per ottenere I'immagine morphed finale.
Il metodo piu comunemente utilizzato ¢ la fusione lineare: i valori di colore
dei pixel vengono calcolati come media ponderata, per poi essere combinati.
Anche nella fase di blending e presente un fattore « che regola il contributo
delle texture nell'immagine morphed [44].

Quindi il processo di morphing puo essere definito come una combinazione
di warping e blending, vedi Figura [I.7] ciascuno controllato da un proprio
fattore:

Lop.aw(P) = (1 — ap) - Iy(Wpay—p (P)) + ap - [i(Wpay—p (P)) (1.3)

dove:
e p rappresenta un punto nell'immagine morphed

e w rappresenta la funzione di warping

Post-Elaborazione [ risultati ottenuti possono presentare artefatti visibili
introdotti dal processo di morphing, dovuti principalmente al disallineamento
dei landmark o a una densita insufficiente di punti, ma anche all’imprecisione
del rilevamento automatico dei punti di riferimento. In particolare, si eviden-
ziano artefatti di tipo ghost, ovvero zone semitrasparenti o simili a ombre,
facilmente percepibili a occhio umano, come mostrato in Figura[l.9) Anche in
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Figura 1.7: Esempio degli effetti combinati del fattore di warping ay (colonne)
e del fattore di blending ap (righe) sui soggetti della Figura con il relativo
risultato di face morphing (Fonte: [19])
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Figura 1.8: Immagine morphed senza rimozione degli artefatti ghost (prima
riga, con dettaglio a destra); le righe successive mostrano le versioni ritoccate
con diversi metodi (Fonte: [3])

prossimita di occhi, sopracciglia, bocca, naso e mento possono comparire difet-
ti minori dovuti a un numero insufficiente o a un’identificazione non corretta
dei landmark, vedi Figura [I.8] Oltre a questi, il processo di morphing puo
generare gradienti di colore innaturali, bordi netti o interruzioni, che possono
derivare da differenze tra le immagini sorgente o dall’'uso di metodi di inter-
polazione non adeguati. Infine, la perdita di contrasto e la sfocatura generale
possono emergere come effetto della mediazione dei pixel e dei relativi valori
cromatici durante il blending [14].

Per ridurre questi artefatti e rendere 'immagine piu realistica, si ricorre a
diversi passaggi di elaborazione [14], 44]:

e sostituzione automatica dello sfondo: durante il morphing la fusione
interessa principalmente la regione del volto, mentre lo sfondo rimane
quello originale delle due immagini. Poiché gli sfondi possono differire
per colore, luminosita o texture, cio puo generare artefatti visivi evidenti.
La sostituzione automatica prevede di utilizzare lo sfondo di una sola
immagine, solitamente quella con fattore di morphing « maggiore (pin
vicina al target), in modo da garantire continuita attorno al volto, come
mostrato nella Figura [1.9}

e histogram matching: dopo il blending, le differenze nella tonalita del-
la pelle tra le due immagini possono generare zone irregolari. L’histo-
gram matching allinea la distribuzione dei valori di colore (es., intensita,
tonalita) tra le due immagini, uniformando l'aspetto della pelle, vedi
Figura (1.10
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Figura 1.9: Immagine morphed con artefatti ghost attorno al volto (a); versione
corretta con sostituzione automatica dello sfondo (b) (Fonte [14])

(b)

Figura 1.10: Esempio di histogram matching: (a) immagine sorgente, (b) im-
magine target, (c) immagine morphed con differenze di tonalita evidenti, (d)
risultato dopo I’histogram matching con tonalita della pelle uniformate (Fon-

te: [19])
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Figura 1.11: Artefatti di morphing nella regione oculare, come bordi doppi e

riflessi multipli nell’iride (a). La stessa area dopo la rimozione manuale degli
artefatti (b) (Fonte: [14])

e smoothing: la triangolazione puo generare piccole discontinuita tra i
triangoli. Per correggerle, si applica lo smoothing, un filtro mediano
2 x 2 sostituisce ogni pixel con il valore mediano dei suoi pixel vicini,
ottenendo una transizione piu fluida;

e sharpening: dopo smoothing e blending, il volto puo apparire troppo
sfocato, con perdita di dettagli nei contorni (es., bocca, occhi, capelli).
Lo sharpening aumenta il contrasto locale ai bordi, restituendo nitidezza
e profondita.

e equalizzazione dell’istogramma, anche dopo histogram matching,
I'immagine morphed puo risultare poco contrastata o troppo scura/chia-
ra, soprattutto se le foto originali hanno illuminazioni diverse. L’equa-
lizzazione dell’istogramma ridistribuisce i livelli di intensita, migliorando
luminosita e contrasto globale.

Per i difetti impercettibili, non risolvibili automaticamente, il modo piu
accurato per risolvere ¢ un ritocco manuale con strumenti di image editing,
vedi Figura Questo tipo di intervento richiede esperienza e tempo, ma
riesce ad aumentare considerevolmente le possibilita di successo di un attacco

di morphing [I4].

Deep Learning Based Morphing

Per superare i limiti dei metodi landmark based, recentemente sono sta-
ti proposti metodi in grado di generare un volto morphed basati su tecniche
di deep learning, in particolare le Generative Adversarial Network (GAN) e
Morphing through Identity Prior driven GAN (MIPGAN) [14]. Gli approcci
GAN-based sfruttano le reti neurali, una tipologia di modelli di apprendimento



CAPITOLO 1. FACE MORPHING 11

automatico in grado di estrarre le caratteristiche dai dati per sintetizzare le
immagini morphed. Questi approcci non richiedono né landmark né allinea-
mento, ma operano nello spazio latente, un tipo di rappresentazione dei dati
che cattura le caratteristiche e i modelli piu importanti in una forma astratta
e strutturata. Cio consente di generare immagini di alta qualita e risoluzione
e di alleggerire il carico di lavoro umano [41]. Gli approcci di morphing basati
su GAN [9] riescono a produrre immagini pulite di alta qualita, in grado di
ingannare alcuni FRS, ma non permettono di controllare in maniera precisa la
somiglianza dell'immagine ottenuta rispetto ai due soggetti originali e potreb-
bero non ingannare facilmente un esperto umano. Sono comunque necessari
ulteriori miglioramenti per poter competere con il landmark based morphing.

Negli studi esistenti, sono stati fatti pochi tentativi di usare le GAN per
generare immagini morphed. Il primo e stato MorGAN [I0], che produce
immagini molto piccole 64 x 64 pixel, poi migliorate fino a 120 x 120 pixel.
Tuttavia, la qualita rimane bassa e, soprattutto, le immagini ottenute non sono
conformi agli standard ICAQO, pertanto non sono utilizzabili in scenari pratici
come documenti d’identita o controlli di frontiera.

Morph using StyleGAN Morph using Landmark

Figura 1.12: Confronto tra morph generati con StyleGAN e morph generati
con metodo landmark-based (Fonte: [55])

L’idea & che, per rappresentare una minaccia reale, le immagini morphed
devono avere un’alta qualita: devono sembrare realistiche a un esperto umano
che controlla un documento e, allo stesso tempo, devono riuscire a ingannare i
sistemi di riconoscimento automatici. Per risolvere questo problema di qualita,
gli autori di [55] hanno proposto un nuovo approccio basato su StyleGAN, una
delle GAN piu potenti. Con StyleGAN e possibile generare morph ad alta riso-
luzione 1024 x 1024 pixel, molto piu realistici e con meno artefatti visivi. Con
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questo metodo, 1 piu tipici artefatti intorno agli occhi vengono eliminati auto-
maticamente (Figura . Quindi, rispetto alle immagini morphed generate
con il metodo landmark-based, che spesso presentano artefatti e richiedono
un lavoro manuale intenso per essere pulite, i morph ottenuti con StyleGAN
hanno una qualita elevata e sono potenzialmente conformi agli standard ICAO.

1.3 Face Morphing Attack

Nell’'ultima decade gli attacchi di morphing hanno rappresentato una grave
minaccia per i sistemi di Face Recognition System (FRS), in quanto sfrut-
tano la tolleranza del sistema alle variazioni dello stesso soggetto, e possono
essere impiegati in scenari critici come la gestione dell’identita, i controlli alle
frontiere, e il rilascio di visti, ecc [38]. Questa tipologia di attacco ¢ stata rile-
vata per la prima volta nel contesto degli Electronic Machine Readable Travel
Document (eMRTD) [27], che memorizzano le caratteristiche biometriche per
I'identificazione automatizzata, ed & oggi considerata una delle principali mi-
nacce alla sicurezza dei sistemi di Automated Border Control (ABC). Infatti, la
verifica dell’identita presso i varchi ABC si basa su algoritmi di riconoscimento
facciale e sull’ispezione visiva da parte dell’operatore [16].

(a) Subject 1 (b) Morphed (c) Subject 2

Figura 1.13: Esempio di face morphing, dove I'immagine (b) rappresenta il
volto morphed ottenuto combinando i soggetti (a) e (¢) (Fonte: [4])

Nella Figura|l.13|e riportato un esempio di face morphing tra due soggetti:
se I'immagine risultante ¢ sufficientemente simile ai volti dei soggetti originali,
allora puo essere inserita nel’eMRTD, consentendo a due persone di condi-
videre lo stesso documento. Di conseguenza, negli ABC questa immagine e
in grado di ingannare l’esperto umano senza destare sospetti e di ingannare
anche il sistema di riconoscimento per la verifica automatica dell’identita. A
questo punto, il volto modificato puo essere abbinato con successo a entrambi
i soggetti [14]. Questo scenario e rappresentato dalla Figura m
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Figura 1.14: Scenario di attacco morphing su eMRTD (Fonte: [16])






Capitolo 2

Face morphing detection

Numerosi studi hanno evidenziato che i sistemi di riconoscimento faccia-
le sono vulnerabili agli attacchi di face morphing, anche in scenari operativi
avanzati. Il problema e aggravato dal fatto che negli ultimi anni i documenti
d’identita tradizionali sono stati sostituiti da documenti elettronici. Inoltre, le
foto contenute nei documenti elettronici devono rispettare rigorosi standard di
qualita, come stabilito dalla norma ISO/IEC 19794-5 [28], che segue le linee
guida proposte dall'TCAO. Questi standard prevedono che il soggetto abbia
una posa neutra, un’illuminazione corretta, un’espressione naturale e che non
indossi accessori che coprano il volto, ecc. [21]. Oltre ai requisiti qualitativi, nei
varchi aeroportuali (ABC) si seguono le linee guida [23] di Frontex (European
Border and Coast Guard Agency) [22], secondo le quali, in tali sistemi operan-
ti in modalita verifica, I’algoritmo di riconoscimento deve garantire un False
Accept Rate (FAR) non superiore a 0,1% e un False Rejection Rate (FRR)
inferiore al 5% [16].

Gli attacchi di morphing possono essere realizzati in due modalita prin-
cipali: immagini digitali e immagini stampate e successivamente scansionate
(P&S) [38]. La prima modalita prevede che il cittadino possa caricare diret-
tamente una fotografia in formato digitale tramite piattaforme online ufficiali.
Questa opzione e adottata in alcuni paesi, come il Regno Unito per il rinnovo
del passaporto [25] o la Nuova Zelanda per le richieste di visto [12]. La foto
viene quindi inviata come file digitale, tipicamente nel formato JPEG, come
si pud vedere nella Figura 2.1} Questo processo riduce il tempo e gli errori
generati durante la scansione o la stampa, ma presenta comunque dei rischi,
in quanto il fatto che il cittadino possa caricare un file digitale puo portare
a manipolazioni intenzionali. Prima dell’'upload, I'attaccante puo modificare
la foto con software di morphing, basati su landmark o GAN, come descritti
nel capitolo precedente. Successivamente, 'immagine morphed viene inviata
come se fosse una foto genuina e, non essendoci la fase di stampa e scansione,

15



16 CAPITOLO 2. FACE MORPHING DETECTION

(a) No augmentation : (b) P&S (c) JPEG ‘ (d) P&S + JPEG

Figura 2.1: Esempi di immagini facciali sottoposte a diverse operazioni di data
augmentation: (a) originale, (b) stampa e scansione, (¢) compressione JPEG,
(d) combinazione dei due processi (Fonte: [4])

I'immagine mantiene tutti i dettagli digitali del morph, che possono facilmen-
te ingannare i sistemi di riconoscimento facciale. Invece, in molti altri Paesi,
la procedura per 'emissione di documenti elettronici richiede al cittadino di
consegnare una fotografia stampata su supporto cartaceo. In questo scenario,
un attaccante puo prima manipolare digitalmente 'immagine e successiva-
mente stamparla, ottenendo cosi una foto apparentemente regolare che viene
presentata all’autorita competente.

In questi due scenari, oltre alla verifica di conformita agli standard, si po-
trebbe chiedere un ulteriore controllo per accertarsi che la foto non sia stata
alterata [21, B8]. Se l'immagine supera i requisiti, allora verra scansionata
per essere salvata nel chip del documento. Durante la fase di stampa e scan-
sione (P&S) la qualita dell'immagine degrada notevolmente, nascondendo dei
piccoli dettagli e artefatti digitali che rendono piu difficile I'individuazione
dell'immagine morphed sia per il sistema automatizzato sia per il personale
addetto, vedi Figura di fatto, le immagini P&S restano quelle piu difficili
da gestire [43], 20].

Questa evidenza ha portato la comunita scientifica a sviluppare metodi di
Morphing Attack Detection (MAD) [38] con l'obiettivo di mitigare la vulne-
rabilita dei sistemi biometrici. Questi sistemi hanno 1'obiettivo di distinguere
tra immagini genuine e immagini morphed, riducendo il rischio che un docu-
mento elettronico contenente una fotografia morphed venga accettato da un
FRS o da un operatore umano durante i controlli. Negli ultimi anni sono state
proposte numerose soluzioni MAD, che differiscono per approccio, complessita
e ambito di applicazione. Tradizionalmente questi approcci si suddividono in
due categorie:

e Single-image-Based MAD (S-MAD), si basa sull’analisi di una singo-
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Figura 2.2: Schema del processo di Video-based Morphing Attack Detection
(V-MAD): I'immagine del documento e la sequenza video live vengono analiz-
zate e confrontate per classificare I'input (Fonte: [5])

la immagine facciale, tipicamente quella memorizzata nel documento
elettronico, senza necessita di confronto con altri campioni;

e Differential-Tmage-Based MAD (D-MAD), sfrutta il confronto tra I'im-
magine sospetta e un’immagine fidata, acquisita direttamente in un con-
testo controllato come un varco ABC.

Tuttavia, nei contesti reali, come i varchi ABC presenti negli aeroporti inter-
nazionali, i sistemi FRS commerciali acquisiscono spesso flussi video e non solo
immagini singole, perché una sequenza di fotogrammi, acquisita in diverse pose
o condizioni di illuminazione, consente di selezionare le immagini pit adatte
e quindi di verificare con maggiore accuratezza l'identita del soggetto. Allo
stesso tempo, pero, cio rappresenta anche un vantaggio per i sistemi MAD che
possono sfruttare la sequenza per rendere il rilevamento pitu robusto, scartando
i fotogrammi di bassa qualita dovuti a un’illuminazione non uniforme o a pose
non frontali. Per affrontare questa sfida, e stato proposto di estendere il MAD
al contesto video, dando origine al Video-based MAD (V-MAD) [5]. L’obiet-
tivo e di sfruttare le sequenze video per aumentare precisione e robustezza,
vedi Figura [2.2] adattando gli algoritmi MAD a scenari reali come i controlli
aeroportuali. Nelle sezioni successive verra presentata un’analisi dettagliata di
queste tre tipologie.

2.1 Single Image-Based MAD

L’obiettivo dell’'S-MAD e di rilevare un attacco di face morphing basan-
dosi su una singola immagine presentata all’algoritmo [52]. Gli algoritmi S-
MAD [38] generalmente si basano sul training di un classificatore che distingue
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Figura 2.3: Esempio di applicazione del S-MAD nello scenario di domanda per
il passaporto (Fonte: [52])

tra immagini autentiche e immagini morphed. Un esempio e riportato in Fi-
gura 2.3 relativo alla fase di richiesta del passaporto, in cui la foto consegnata
dal cittadino viene sottoposta ad analisi per accertarne ’autenticita e rileva-
re eventuali morph. Nei primi lavori di ricerca, si utilizzavano i metodi piu
classici [37] per I'analisi della texture, e le principali feature utilizzate erano:

e Binarized Statistical Image Features (BSIF), & un descrittore di texture.
Funziona creando delle maschere statistiche che analizzano piccoli blocchi
dell’immagine e trasformano le informazioni in sequenze binarie (0 e 1).
Serve per catturare dettagli fini e ricorrenti della pelle o del volto;

e Local Binary Patterns (LBP), confronta ogni pixel con i suoi vicini e
segnala con 1 i pixel piu chiari e con 0 quelli piu scuri. Questo crea una
sorta di impronta binaria della regione. E utile per rilevare differenze nei
pattern di pelle, rughe, pori, ecc.

I lavori BSIF e LBP riguardavano solo le texture in bianco e nero o in spazi di
colore semplici. Tuttavia, un morph puo lasciare tracce anche nei colori, come
nelle piccole differenze tra i canali RGB, o nei residui nei canali HSV [53].
Inoltre, alcuni artefatti sono piu visibili a diverse scale: in una scala fine si
possono notare sfocature o difetti nei bordi, mentre in una scala piu grande,
invece, emergono incoerenze di tonalita o blending [54]. Per questo motivo,
alcuni ricercatori hanno combinato 1’analisi dei vari spazi di colore e a piu
scale, per catturare meglio le tracce invisibili del morphing [40].

Inoltre, alcuni Paesi non accettano le immagini digitali, ma richiedono la
foto stampata, che poi viene scansionata dall’ufficio passaporti. Questo pro-
cesso di stampa e scansione degrada l'immagine, pertanto le tecniche basate
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su texture classiche, LBP e BSIF diventano meno efficaci. In questo caso,
vengono utilizzate reti profonde pre-addestrate, VGG19 [48] e AlexNet [30],
spesso impiegate per estrarre feature piti robuste e capaci di cogliere tracce piu
sottili anche dopo la degradazione da P&S | come dimostrato in [39]. Ricavate
le caratteristiche di texture, queste vengono date in input a un classificatore,
spesso una SVM preaddestrata [43] per riconoscere se I'immagine & genuina o
morphed.

2.2 Differential Image-Based MAD

Suspected Morph Image
(e.g., from Passport)

PASSPORT

Morphing Attack ->
| Reject

Differences -
of Features
« Differences
in Facial Bona fide ->

Landmarl.(s Face Recognition
. + DeMorphing System
/

AJML.A‘AAJ
|

Feature Extraction | maD Classifier

Feature Extraction

Probe Imagﬁrom Trusted
Environment (e.g., from ABC Gates)

Figura 2.4: Schema di un sistema D-MAD: confronto tra immagine sospetta
del documento e immagine acquisita in ambiente controllato per rilevare la
presenza di morphing (Fonte: [38])

L’obiettivo del D-MAD e quello di stabilire se un’immagine sospetta e stata
manipolata o se e genuina, sfruttando pero una seconda immagine di riferimen-
to acquisita in un ambiente affidabile [52]. Nel caso dei controlli di frontiera
ABC, I'immagine sospetta (generalmente quella presente nel passaporto) viene
confrontata con un’immagine acquisita dal vivo; il processo e illustrato nella
Figura[2.4l 1l principio generale ¢ il seguente: si prende I'immagine sospetta I
e la si confronta con un’immagine di riferimento I;, acquisita in un ambiente
fidato. In seguito, si misura la differenza tra le due immagini; questa opera-
zione puo essere effettuata direttamente in uno spazio immagine o nello spazio
delle feature. Se la differenza ottenuta e bassa, il sistema tende ad accettare
I'immagine come autentica; se invece ¢ alta puo indicare che 'immagine so-
spetta & un morph [38]. T metodi D-MAD si possono suddividere in due grandi
categorie: la feature difference-based D-MAD [45] e il demorphing [17].
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Feature difference Il Feature Difference-Based D-MAD [52] si basa sul con-
fronto delle feature estratte da un’immagine sospetta e da un’immagine di ri-
ferimento. Per rilevare eventuali manipolazioni, la differenza viene calcolata
nello spazio delle feature, che possono rappresentare diversi aspetti del volto.
I primi studi si sono concentrati sulle texture e sui gradienti [§], in quanto le
texture descrivono la distribuzione dei pixel e i pattern superficiali della pelle,
come rughe, pori e micro-dettagli. I gradienti, invece, rappresentano le varia-
zioni di intensita luminosa tra i pixel adiacenti e mettono in evidenza i bordi e
i contrasti. Le immagini morphed, a causa delle operazioni di blending, spes-
so presentano transizioni innaturali lungo i bordi facciali, che possono essere
rilevate tramite questa analisi.

I volti manipolati con morphing spesso possono presentare anche anoma-
lie geometriche rispetto a quelli autentici. Un ulteriore approccio riguarda i
landmark facciali [42], perché durante il processo di morphing questi punti
possono subire piccoli spostamenti e deformazioni, che risultano individuabili
se confrontati con quelli rilevati sull'immagine fidata. Con 'avvento delle reti
neurali profonde, sono state introdotte le deep features [45], rappresentazio-
ni ad alto livello estratte da reti neurali profonde. Queste hanno prestazioni
migliori nel raccogliere differenze piu sottili e complesse rispetto ai metodi
classici, rendendo I’analisi piu robusta anche in scenari difficili.

Infine, per stabilire se 'immagine e autentica o modificata viene calcolata
la differenza tra i vettori di feature. Da notare che la maggior parte dei lavori
riguarda casi con immagini digitali. Solo recentemente sono stati studiati
anche i casi di immagini P&S, con risultati peggiori rispetto alle immagini
digitali [45].

Face Demorphing Il Face Demorphing e un’altra soluzione proposta contro
il morphing nei passaporti elettronici [17]. L’idea di base ¢ di pensare che il
morph e come una combinazione di due volti:

M=A+C

dove A rappresenta il complice, e C' il criminale. Al momento della verifica
si ha 'immagine morphed M e una nuova acquisizione live C, con cui si pud
tentare di riottenere il soggetto complice andando a rimuovere dall’'immagine
morphed la nuova immagine acquisita:

D=M-C

Se M ¢ un morph, allora D assomigliera molto di piu al complice, invece
se M non e morphed, allora D rimarra sostanzialmente uguale all’identita
legittima. Nella Figura [2.5] il soggetto viene sottoposto al normale sistema di
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Figura 2.5: Flusso operativo del metodo di Face Demorphing in un sistema

ABC (Fonte: [17])
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riconoscimento facciale; se supera il controllo, viene eseguito il demorphing.
Se invece emerge un mismatch, il sistema genera un avviso e invia il caso a un
ufficiale umano per ulteriori controlli. Per funzionare, il sistema deve percio
mantenere basso sia il Morphing Acceptance Rate sia il numero di falsi allarmi.

In teoria, il face demorphing dovrebbe riuscire a rilevare un’immagine mor-
phed per capire chi ¢’e dietro, ma nella pratica questo processo non e preciso.
Questo perché nel gate non abbiamo la stessa foto utilizzata per creare il mor-
ph, ma una foto scattata al momento al gate. Inoltre, la persona in questa foto
puo avere una posa leggermente diversa, una luce differente o un’espressione di-
versa. Queste piccole differenze rendono piu difficile il processo di demorphing,
rischiando di generare falsi allarmi [18].

2.3 Video-Based MAD

L’idea alla base dello scenario V-MAD e simile allo scenario D-MAD, in
quanto entrambi presuppongono il confronto tra un’immagine sospetta e un
altro dato affidabile (una singola immagine nel D-MAD e un video in V-
MAD) [49]. Nel caso del D-MAD, la foto memorizzata nel documento elet-
tronico viene confrontata con una singola immagine acquisita live al gate, pro-
ducendo un punteggio che esprime la probabilita che 'immagine del documento
sia un morph. Il V-MAD estende questo concetto allo scenario video: invece
di un’unica immagine, il sistema riceve in input una sequenza di fotogrammi
catturati durante il passaggio del soggetto al varco.

Quindi l'idea di V-MAD ¢ di analizzare I'intera sequenza di fotogrammi
F = (f1, fa,..., fn) e confrontarla con la foto del documento d, producendo
come output un unico punteggio, che indica la probabilita che I'immagine
del documento sia un morph. Poiché non esistono ancora metodi V-MAD
consolidati, nelle prime soluzioni ¢ stato proposto di adattare i metodi D-MAD
al nuovo scenario [5], come rappresentato nella Figura2.6] Un sistema D-MAD
calcola un punteggio D(d, f;), probabilita che I'immagine del documento d sia
morphed, confrontando con un singolo frame f;. Nel V-MAD si ripete questo
processo per tutti i frame della sequenza ottenendo una serie di punteggi:

S(d,F)=(D(d, f;),i=1,..n)

Attraverso una funzione di aggregazione ¢ possiamo trasformare questi pun-
teggi multipli in un unico risultato finale:

V(d, F) = ¢(5(d, F)) (2.1)

Si deve tenere conto che i frame acquisiti possono non avere tutti la stes-
sa qualita. In questo caso, se il V-MAD desse lo stesso peso a tutti i frame,
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Figura 2.6: (Fonte: [5])

quelli di qualita inferiore rischierebbero di abbassare I'accuratezza del siste-

ma [5]. Per questo motivo, vengono utilizzati gli algoritmi di Face Image
Quality Assessment (FIQA) [46], come:

e MagFace [35], produce un embedding per misurare la qualita di una
faccia: la misura ¢ data dalla magnitudine dell’embedding, quindi piu e
grande, piu la qualita del volto presente nell'immagine ¢ elevata.

e CR-FIQA [6], lavora sulla posizione della faccia nello spazio delle feature
angolari. Pertanto, valuta la posizione del volto rispetto al suo centro
e ai centri delle altre identita: piu il volto e distinguibile, migliore ¢ la
qualita.

e SER-FIQ [50], I'idea & che una foto di alta qualita produce embedding
stabili, quindi simili anche se il modello cambia leggermente. Per veri-
ficarlo, misura quanto gli embedding restano stabili con variazioni del
modello: piu sono stabili, migliore e la qualita.

e OFIQ [36], stima la qualita del volto mappando i parametri interni del-
la rete di riconoscimento (es., feature maps, attivazioni, gradienti) in
un punteggio. Piu il volto contiene caratteristiche discriminative ben
rappresentate nei parametri della rete, piu alto sara il punteggio di
qualita.

In questo modo, quando si calcola il punteggio finale del V-MAD, i frame di
qualita elevata avranno un peso maggiore, mentre quelli con pose o illumina-
zione sfavorevoli vengono attenuati o scartati.
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Database

Uno degli aspetti piu rilevanti nello studio degli attacchi di morphing e
nello sviluppo di contromisure efficaci e la disponibilita di database adeguati
e realistici. La maggior parte dei dataset pubblici contiene immagini singole
acquisite in condizioni controllate che non rispecchiano pienamente gli scenari
reali di controllo alle frontiere. Per questo motivo, uno degli obiettivi della
tesi e stato quello di acquisire un datasetE] contenente, per ciascun soggetto,
almeno una foto conforme agli standard International Civil Aviation Organi-
zation (ICAO)E], come quelle usate nei documenti ufficiali quali i passaporti e
piu sequenze video, raccolte in condizioni differenti.

Le acquisizioni sono state studiate per simulare in maniera realistica lo sce-
nario di un controllo automatizzato alle frontiere: in particolare, riproducono
il passaggio di un soggetto davanti a un gate ABC, registrando sequenze video
che riflettono la variabilita delle pose, delle condizioni di illuminazione, della
direzione dello sguardo e della qualita dei frame acquisiti.

Sono stati coinvolti 65 soggetti, per ciascuno di essi sono state raccolte
5-6 immagini statiche in posa standard, successivamente selezionate tramite
strumenti di valutazione della qualita, e 6 sequenze video, contenenti in media
845 frame per sequenza. Le immagini statiche sono state acquisite mediante
uno smartphone Nokia Lumia 9307 con una risoluzione di 3024 x 5376 pixel,
salvate in formati standard PNG o JPG, al fine di garantire fotografie di alta
qualita. Le sequenze video sono state registrate con una telecamera Intel
RealSense D435{Y] con risoluzione di 1280 x 720 pixel e un frame rate di 30 fps
e salvate sia in formato MP4 sia come sequenze di frame.

1 Per motivi di privacy, il dataset raccolto non viene reso disponibile né illustrato in questa
tesi

2ICAO: https://www.icao.int/publications/doc-series/doc-9303

3Lumia 930: https://techcrunch.com/2014/04/03/nokia-1umia-930-hands-on/

4Intel: https://www.intel.com/content/www/us/en/products/sku/190004/intel-r
ealsense-depth-camera-d435i/specifications.html
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3.1 Acquisizione di Immagini ICAQO

Durante ’acquisizione e stata prestata particolare attenzione alla qualita
visiva e alla coerenza delle inquadrature, cosi da simulare foto archiviate nei
chip degli eMRTD per essere conformi alle specifiche ICAO/ISO [28]. Ogni
soggetto e stato posizionato frontalmente alla telecamera davanti a una parete
bianca con sfondo uniforme, e per ciascuno sono state acquisite piu immagini in
diverse condizioni: con e senza flash e variando la distanza della fotocamera.
Se il soggetto indossava gli occhiali, I'intero processo e stato ripetuto con e
senza di essi, per aumentare la varieta delle condizioni di acquisizione.

Una volta acquisite tutte le immagini, e stata verificata la loro confor-
mita agli standard ICAQO, che rappresentano i requisiti internazionali per le
foto memorizzate nei passaporti elettronici. Per eseguire questa verifica ¢ sta-
to utilizzato il tool BioLab-ICAO Check Tool [13], sviluppato all’interno del
Biometric System Laboratory dell’Universita di Bologna.

Il BioLab-ICAO Check Tool valuta 30 requisiti ICAQ, tra cui la posizione
degli occhi, la presenza di accessori (es., occhiali, cappelli), la qualita dell’il-
luminazione e la rotazione del volto. I dettagli dei vari criteri per valutare
la conformita alle normative ICAO sono riportati nella Tabella [3.1] Questo
strumento fornisce una valutazione da 0 a 100 per ogni requisito. Un requisito
e considerato superato se supera il punteggio minimo richiesto. Se 'immagine
soddisfa tutti i requisiti, viene riconosciuta conforme allo standard ICAO. L’o-
biettivo dell’'uso di questo strumento e quello di selezionare in modo oggettivo
le immagini che rispettano i requisiti richiesti dallo standard ICAO, garantendo
cosi un livello adeguato di qualita del dataset per le fasi successive.

Per alcuni soggetti non e stato possibile ottenere un’immagine che soddi-
sfacesse tutti i requisiti previsti. In questi casi, ¢ stata selezionata I'immagine
che superava il maggior numero possibile di requisiti. Successivamente, le im-
magini selezionate tramite il tool sono state rinominate in modo sistematico
sulla base di diverse informazioni associate a ciascun file. Ogni immagine &
stata etichettata con un nome che codifica:

e L’identificativo del soggetto (001, 002, 003, ...)
e Il genere (GM per maschio, GF per femmina)

e L’etnia del soggetto, come ad esempio EEA per soggetti di origine euro-
pea ed americana o EAS per soggetti est-asiatici

e L’cta del soggetto, espressa in anni (A25 per 25 anni, AO0 per eta
sconosciuta)

e La presenza o meno di occhiali (T10 se presenti, T00 se assenti)
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Tabella 3.1: Test definiti per la valutazione dei sistemi di verifica della confor-
mita allo standard ISO/IEC 19794-5 (Fonte: [15])

N° Description of the test ‘ EER Threshold
Feature extraction accuracy tests
1 | Eye Location Accuracy
2 | Face Location Accuracy (other points)
Geometric tests (Full Frontal Image Format)

3 | Eye Distance (min 90 pixels)

4 | Vertical Position (0.3B < M, < 0.5B*)

5 | Horizontal Position (0.45A < M, < 0.55A)

6 | Head Image Width Ratio (0.5A < CC < 0.75A)

7 | Head Image Height Ratio (0.6B < DD < 0.9B%)

Photographic and pose-specific tests

8 | Blurred 4
9 | Looking Away 64
10 | Ink Marked/Created 99
11 | Unnatural Skin Tone 81
12 | Too Dark/Light 70
13 | Washed Out 56
14 | Pixelation 10
15 | Hair Across Eyes 75
16 | Eyes Closed 100
17 | Varied Background 99
18 | Roll/Pitch/Yaw Greater than 8° 100
19 | Flash Reflection on Skin 7
20 | Red Eyes 39
21 | Shadows Behind Head 96
22 | Shadows Across Face 86
23 | Dark Tinted Lenses 28
24 | Flash Reflection on Lenses 43
25 | Frames too Heavy 33
26 | Frame Covering Eyes 35
27 | Hat/Cap 62
28 | Veil over Face 66
29 | Mouth Open 100
30 | Presence of Other Faces or Toys too Close to Face 86

1'0.3B < M, < 0.6B for children under the age of 11 years.
20.5B < DD < 0.9B for children under the age of 11 years.
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La tipologia di acquisizione, come immagini ICAO (LI), o video da gate
(LV)

I1 dispositivo utilizzato, ad esempio D05 per Nokia Lumia 930 o D04 per
Intel RealSense D4351

La sessione di acquisizione (S01, S02, ...)

La fotocamera specifica impiegata, se ve ne erano piu di una (C1, C2,

)

Il numero progressivo del file all’interno della sessione (1001, 1002, ...)

3.2 Acquisizione di Sequenze Video

Per ogni soggetto sono state acquisite sei sequenze video studiate per simu-
lare le condizioni tipiche di un controllo automatizzato ai varchi aeroportuali.
Le sequenze sono state acquisite in due ambienti distinti, appositamente scelti
per introdurre variabilita in termini di luminosita, sfondo e presenza di om-
bre. Il primo ambiente ¢ caratterizzato da una combinazione di luce naturale,
proveniente da una finestra laterale, e illuminazione artificiale. Il secondo am-
biente e illuminato solo artificialmente e con zone circostanti complessivamente
piu scure. In ciascun ambiente sono state raccolte tre sequenze, per un totale
di sei, cosi da riprodurre scenari con diverse condizioni di illuminazione. Le
tre sequenze acquisite in ciascun ambiente hanno le seguenti caratteristiche:

e Sequenza frontale, il soggetto guarda dritto verso la telecamera, mante-
nendo la posa frontale mentre di muove verso I'obiettivo;

e Sequenza con rotazione del capo, il soggetto ruota leggermente la testa a
sinistra o a destra, senza fissare direttamente la telecamera, introducendo
variazioni di posa e di direzione dello sguardo;

e Sequenza con accessori, il soggetto indossa un accessorio, come un cap-
pello o una sciarpa e ruota leggermente la testa, combinando occlusioni
parziali e variazioni di posa.

3.3 Struttura

Terminata la fase di acquisizione, il dataset ¢ stato organizzato come mo-
strato nella Figura [3.1] Per ciascun soggetto ¢ stata selezionata la foto ICAO
con la migliore qualita. L’intero dataset ha un peso totale di circa 103 GB.
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Legend

m ICAO photo O video frame
et

7 7 T video sequence

ICAO

Seqy

Seq,

Seqg

Figura 3.1: Organizzazione dei dati per soggetto: una foto ICAO e sei sequenze
video

La struttura delle cartelle del dataset, vedi Figura 3.2} & organizzata in ma-
niera gerarchica. Per ciascun soggetto (es. ID001, ...,ID065) sono disponibili:

e una cartella con le immagini ICAO-compliant;
e una cartella con immagini frontali non ICAQO;

e una cartella contenente le sequenze video, suddivise a loro volta in se-
quenze relative ai diversi ambienti (sequence_01, sequence_02) e, per cia-
scuna sequenza, nei diversi tipi di posa (frontal_gaze, looking around,
looking_around_with_occlusion).
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/
| IDO01
| ICAO_photo
|_img.jpg
| non_ICAO frontal photo
t img1.jpg
img2.jpg
| video_sequences
| sequence 01
frontal gaze
l_ rgb
looking around
L ...
looking around with_occlusion

L ...

| _sequence_02

| IDO65
L ..
| _morphed

...

Figura 3.2: Struttura ad albero del dataset




Capitolo 4

Soluzione proposta

Nei sistemi di controllo automatico delle frontiere (ABC), basati su tecniche
di riconoscimento facciale, ¢ fondamentale garantire un equilibrio tra sicurez-
za ed efficienza operativa. Da un lato, il sistema deve essere sufficientemente
robusto da evitare che un passeggero legittimo venga respinto ingiustamente,
circostanza che si traduce in un aumento del False Rejection Rate (FRR) con
conseguenti disagi e ritardi. Dall’altro, ¢ altrettanto importante prevenire che
un volto morphed venga erroneamente accettato, fenomeno che incrementa il
False Acceptance Rate (FAR) e che rappresenta una minaccia diretta alla sicu-
rezza del sistema. In tale contesto, 'analisi presentata si propone di valutare
le prestazioni di due modelli di riconoscimento facciale di ultima generazio-
ne, MagFace e AdaFace, applicati a sequenze video acquisite in condizioni
realistiche. L’obiettivo e stimarne ’affidabilita sia nei confronti di variabilita
naturali (es., posa, illuminazione e qualita visiva), sia in presenza di attacchi
di morphing, misurando in modo sistematico i valori di FRR e FAR.

In questo capitolo vengono innanzitutto presentati i modelli e le tecnolo-
gie adottate, con la descrizione delle loro caratteristiche e del loro ruolo nel
processo di riconoscimento facciale. In seguito, viene illustrata la metodologia
sviluppata per affrontare il problema e vengono definite le procedure per la sti-
ma delle metriche di prestazione FRR e FAR, calcolate sia a livello di singolo
fotogramma sia mediante criteri di aggregazione dell’intera sequenza.

4.1 Modelli e Tecnologie di Riferimento

In questa sezione vengono descritte le tecnologie su cui si basa la soluzione
proposta. Si presentano i modelli di riconoscimento facciale MagFace e AdaFa-
ce, che introducono meccanismi adattivi per integrare la qualita dell’immagine
nella rappresentazione degli embedding, e le metriche di qualita SER-FIQ e
OFIQ, utilizzate per selezionare i frame piu affidabili. Questi strumenti co-
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stituiscono il riferimento metodologico per le procedure di valutazione delle
prestazioni illustrate nei capitoli successivi.

4.1.1 MagFace

Uno dei limiti delle precedenti loss function basate sulla similarita coseno,
come ArcFace [I1], ¢ 'impiego di un margine fisso m. In ArcFace gli embed-
ding dei volti vengono confrontati in similarita coseno, e il margine serve ad
aumentare la separazione tra soggetti diversi. Tuttavia, essendo costante e
uguale per tutti i confronti, questo approccio risulta efficace in scenari con-
trollati, ma mostra dei limiti in condizioni non controllate, dove la variabilita
dovute a pose differenti, illuminazione o qualita delle immagini puo rendere
instabile la struttura degli embedding dello stesso soggetto.

Per affrontare questo problema, MagFace [35] propone un nuovo sche-
ma in cui il modulo del vettore delle feature diventa parte integrante della
rappresentazione facciale. Dato un embedding f;, il suo modulo e definito
come:

a; = ||f]] (4.1)

A differenza dei metodi tradizionali che normalizzano gli embedding, MagFace
mantiene l'informazione contenuta nel modulo, trattandola come un indica-
tore implicito di qualita. In questo modo, la direzione del vettore rappre-
senta l'identita del soggetto, mentre il modulo riflette il livello di qualita del
campione.

Per garantire queste proprieta, MagFace introduce due funzioni ausiliarie:

e il margine angolare dipendente dal modulo m(a;), che restringe la regione
ammissibile per i campioni di alta qualita, con modulo elevato, concen-
trandoli attorno al centro di classe w, ovvero il vettore di peso associato
all’identita corretta;

e il regolizzatore g(a;), progettato come funzione convessa decrescente del
modulo, rafforza gli embedding di alta qualita e li avvicina al centro w,
vedi Figura [4.1]

La MagFace loss estende la ArcFace loss integrando m(a;) e g(a;):
s cos(By,+m(a;))

N
1 e
LMag = N Z < - log escos(Gyi-‘rm(ai)) + Z

=1

escos(ej) : Ag(al)) (42)

J7Yi
dove:

e 0,, ¢ I'angolo tra '’embedding f; e il centro della classe y;,
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Figura 4.1: Esempi di volti con diversa difficolta (a) e rappresentazione nello
spazio delle feature (b). Nei campioni facili, gli embedding hanno moduli
maggiori e si concentrano vicino al centro della classe, mentre quelli difficili
hanno moduli ridotti e si avvicinano all’origine (Fonte: [35])

e m(a;) € il margine adattivo legato al modulo,
e g(a;) ¢ il regolarizzatore,
e ) bilancia il peso tra classificazione e regolarizzazione.

Questa definizione consente di ottenere la proprieta di convergenza per
a; € [la,u,), per la quale la funzione di perdita risulta strettamente convessa
e ammette una soluzione ottimale unica, garantendo stabilita e rapidita nel-
I’addestramento. L’altra proprieta ¢ quella di monotonicita, che garantisce
I’aumento del modulo ottimale a; con la qualita del campione, riflettendone il
grado di difficolta e fungendo da indicatore della qualita del volto.

4.1.2 AdaFace

Spesso, nelle immagini contenenti un volto quando la qualita e troppo bas-
sa, I'identita del soggetto diventa irriconoscibile, e possono creare problemi
nel training, perché il modello, non trovando tratti facciali, impara a sfruttare
indizi irrilevanti, come il colore dei vestiti, la risoluzione, lo sfondo [51], vedi
Figura . E quindi necessario assegnare un peso diverso ai campioni in base
alla loro difficolta e alla qualita dell'immagine. Nel caso di immagini ad alta
qualita e opportuno enfatizzare i campioni difficili (ad esempio pose partico-
lari o leggere occlusioni), mentre nelle immagini di bassa qualita i campioni
troppo complessi da riconoscere vanno ignorati, altrimenti il modello rischia di
addestrarsi sul rumore [26].
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Recognizability Easy to Hard to Impossible to
Image Recognize Recognize Recognize
Quality

High Quality
Low Quality

: Images contain enough clues to identify the subject

: Images do not have enough clues to identify the subject

Figura 4.2: Esempi di immagini facciali caratterizzate da diversa qualita e
grado di riconoscibilita (Fonte: [29])

E stato dimostrato che la norma del vettore di feature puo essere utilizzata
come valido proxy della qualita dell'immagine. Partendo da questa osservazio-
ne, ¢ stata introdotta una loss function adattiva, AdaFace [29], che modifica
dinamicamente il margine angolare in funzione della qualita del campione. In
questo modo i campioni difficili vengono enfatizzati soltanto quando la qualita
e elevata, mentre quelli troppo difficili, tipici delle immagini a bassa qualita e
spesso non riconoscibili, vengono ridimensionati nel loro contributo all’adde-
stramento. L’intero processo avviene senza la necessita di moduli aggiuntivi
per stimare la qualita, poiché la qualita viene ricavata implicitamente dalla
feature norm.

La progettazione di AdaFace si fonda sulla combinazione di due osserva-
zioni chiave. In primo luogo, la norma del vettore di feature ||z;|| puo essere
utilizzata come indicatore della qualita dell'immagine, se con valori elevati si
riferisce a immagini di buona qualita, mentre i valori bassi riflettono campioni
degradati o difficili da riconoscere. In secondo luogo, 'impiego di differen-
ti funzioni di margine consente di enfatizzare in maniera mirata campioni di
diversa difficolta.

Normalizzazione della feature norm La norma [|z;|| ¢ intrinsecamente
dipendente dal modello e puo assumere distribuzioni differenti. Per rendere
tale misura confrontabile tra campioni e batch, essa viene normalizzata:

dove p, e o, rappresentano rispettivamente la media e la deviazione standard
stabilizzate tramite una exponential moving average (EMA). L’operatore di
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clipping limita i valori a [—1, 1], mentre h (tipicamente 0.33) regola la concen-
trazione. Il gradiente viene bloccato per evitare che la rete manipoli diretta-
mente la norma, garantendo cosi un indicatore stabile e affidabile della qualita
dell’embedding.

Funzione di margine adattivo L’obiettivo della loss adattiva e di enfa-
tizzare i campioni difficili quando I'immagine ¢ di elevata qualita, e di ridurre
I'impatto dei campioni troppo difficili quando la qualita & bassa. Per rag-
giungere questo scopo, la loss introduce due termini adattivi, gangle € gadd, che
modulano rispettivamente il margine angolare e quello additivo:

07 ancle) — Jadd)s  J = Ui
16, m)AdaFaco — 4 S(CO0T + Gungic) = guaa). T=vi
scos b, iy
con - N
ganglez —m - HZzH, gadd =m - ||ZZH +m (45)

La loss di AdaFace ¢ una formula che contiene al suo interno sia ArcFace che
CosFace [56] come casi speciali:

e sec il valore normalizzato della norma ||z;|] = —1, la loss si comporta
esattamente come ArcFace

—

e se ||z =0, comporta come CosFace

e se ||z]| = 1, produce un amrgine diverso, un nuovo caso non coperto dai
precedenti modelli.

4.1.3 SER-FIQ

La qualita delle immagini ¢ un fattore cruciale che influenza le prestazio-
ni dei sistemi di riconoscimento facciale. Le metodologie tradizionali per la
valutazione della qualita presentano tuttavia diversi limiti: alcune si basano
su etichette derivate da punteggi di confronto tra immagini, rendendo la qua-
lita relativa e dipendente da fattori esterni; altre, invece, utilizzano etichette
ottenute dalla percezione umana, introducendo inevitabilmente un grado di
soggettivita. In entrambi i casi, la misura della qualita non risulta pienamente
coerente con le esigenze di un sistema automatico di riconoscimento.

Per superare tali limiti, e stato proposto Stochastic Embedding Robust-
ness for Face Image Quality (SER-FIQ) [50], un approccio non supervisionato
per valutare la qualita delle immagini facciali, che non richiede etichette di
addestramento. L’idea ¢ di misurare la robustezza degli embedding prodotti
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Subnetworks of
Input 7 model M

Figura 4.3: Processo del metodo SER-FIQ: I'immagine facciale di input viene
elaborata da diverse sottoreti del modello di riconoscimento (generate tramite
dropout), producendo pitt embedding. La qualita dell'immagine e stimata in
base alla variabilita tra questi embedding: minore ¢ la variazione, maggiore ¢
la qualita (Fonte: [50])

dal modello: vengono generati m embedding stocastici a partire dalla stessa
immagine, sfruttando il meccanismo di dropout, e ottenendo cosi un insieme:

X(I) = {z 3 (4.6)
dove m ¢ il numero di forward pass stocastici e x5 sono gli embedding che
provengono da una subnetworks casuale del modello M. Se la variazione tra gli
embedding e ridotta, I'immagine ¢ considerata di alta qualita; al contrario, una

forte instabilita tra i vettori indica un’immagine di bassa qualita (Figura .
La qualita di un’immagine I ¢ definita come:

(X)) =0 (—%Zﬂ%@ﬂ) 7 (4.7)

i<j

dove:
e d(x;,x;) e la distanza euclidea tra due embedding,
e la somma ¢ calcolata su tutte le coppie (i, ),

e o(-) ¢ la funzione sigmoide che normalizza il punteggio in [0, 1].
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4.1.4 OFIQ

Negli ultimi anni, grazie all’introduzione di tecniche basate su deep lear-
ning, gli errori nel riconoscimento facciale si sono ridotti in maniera significa-
tiva. Pero, persistono difficolta legate alle condizioni di acquisizione, al livello
della collaborazione del soggetto e della qualita tecnica dell'immagine. Per
affrontare queste criticita risulta fondamentale avere algoritmi in grado di sti-
mare la qualita delle immagini facciali, assegnando un Quality Score (QS) a
ciascuna immagine. Questo punteggio consente di escludere le immagini che
non superano una soglia minima di qualita e, se necessario, di richiedere una
nuova acquisizione.

OFIQ Framework

Captured face
image

i Pre-processed

Unified
quality score
70

Quality Measures

Unified quality ¢§*

Component-wise

| . O face image Capture-related Subject-related :
Q 4 components Q‘} components Q‘“ qualnézcores
. +
FiIEERETE \ + Brightness + Pose [72‘|

F A + Sharpness + Expression

[ 1 S 50

- ] + Exposure + Eyes visible R
+ Compression + Inter-eye distance 80

Figura 4.4: Schema del framework OFIQ: dall’immagine facciale acquisita ven-
gono eseguite operazioni di pre-processing e successivamente calcolati 1'unified
quality score e i vari componenti di qualita, normalizzati nell’intervallo [0-100]
(Fonte: [36])

A tale scopo ¢ stato sviluppato Open Source Facial Image Quality (OFIQ) [36]
che integra diversi algoritmi, vedi Figura tra cui:

e un algoritmo per il calcolo di un punteggio unificato di qualita, che
predice I'utilita complessiva dell'immagine ai fini del riconoscimento;

e un insieme di algoritmi per la valutazione di singoli componenti di qua-
lita, che verificano la conformita a requisiti specifici definiti nello stan-
dard ISO/IEC 39794-5:2019. Tali componenti possono essere legati al-
I’ambiente di acquisizione (capture-related, come illuminazione o nitidez-
za) oppure a caratteristiche del volto stesso (subject-related, come posa,

occlusioni o espressione), vedi Tabella .

I valori ottenuti possono essere interpretati e analizzati secondo tre pro-
spettive principali: il punteggio unificato di qualita, i componenti legati al
processo di acquisizione e quelli legati al soggetto.
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Capture-related Quality Com-
ponents

Subject-related Quality Com-
ponents

Background uniformity

Single Face Present

[lumination uniformity

Eyes open

Moments of the luminance distribu-
tion (Brightness, Variance)

Mouth closed

Over-exposure prevention

Eyes visible

Under-exposure prevention

Mouth occlusion prevention

Dynamic range

Face occlusion prevention

Sharpness

Inter-eye distance

Head size

Crop of the face (leftward, right-
ward, upward, downward)

Head pose (yaw, pitch, roll)
Expression neutrality

No head coverings

No compression artifacts
Natural colour

Tabella 4.1: Elenco dei componenti di qualita legati all’acquisizione e al sog-
getto in OFIQ (Fonte: [36])

Unified Quality Score L’Unified quality score puo essere ottenuto seguen-
do due approcci differenti: da un lato e possibile aggregare i punteggi delle
singole componenti di qualita, dall’altro si puo ricorrere a un algoritmo end-to-
end, tipicamente basato su tecniche di deep learning. Dai risultati sperimentali
di OFIQ con i due approcci, si osserva che i metodi basati su reti neurali pro-
fonde forniscono le prestazioni migliori. Un esempio rilevante ¢ MagFace, che
rappresenta un caso concreto di come un algoritmo di deep learning possa for-
nire direttamente, insieme alle feature per il riconoscimento, anche un indice
di qualita complessiva dell'immagine. Nel corso delle valutazioni, MagFace ha
dimostrato un impatto significativo sulle prestazioni: scartando il 10% delle
immagini di bassa qualita, riducendo il tasso di false non-match dal 10% al

6%.

Capture-related Quality Components Traicomponenti di qualita legati
all’acquisizione, quelli con 'impatto maggiore sulle prestazioni del riconosci-
mento facciale sono sharpness e no compression artifacts. Eliminando il 10%
delle immagini con punteggi peggiori per questi parametri, 'indicatore Fal-
se Non-Match Error (FNMR) si & ridotto dal 10% all’8%. Altri componenti,
come illumination uniformity, natural colour e background uniformity hanno
mostrato un’influenza solo marginale.
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Subject-related Quality Components Per quanto riguarda i componenti
legati al soggetto, molti derivano dalla stima dei landmark facciali o dalla
segmentazione del volto, con un’accuratezza superiore al 95%. Tra i fattori
piu rilevanti si conferma 'effetto delle occlusioni (occhi, bocca e volto), la cui
esclusione ha portato a una riduzione dell’errore dal 10% all’8%. Risultati
simili si sono osservati per la componente eyes open, con una riduzione di
circa il 2%. Anche la distanza interpupillare (inter-eye distance) influisce in
maniera sensibile: valori troppo bassi o troppo elevati peggiorano la qualita
della rappresentazione, e ’eliminazione del 10% delle immagini peggiori ha
comportato un miglioramento dal 10% all’8%.

Per quanto riguarda il head pose, le tre componenti principali mostrano un
impatto differente: la rotazione laterale (yaw) & la piu critica, con riduzioni
dell’errore fino al 4%, mentre le variazioni di pitch e roll influiscono in mi-
sura minore (1-2%). Al contrario, componenti come mouth closed, no head
coverings ed expression neutrality hanno mostrato un’influenza trascurabile
(< 0.5%) sulle prestazioni dei sistemi di riconoscimento.

4.2 Verifica dell’identita

Come punto di partenza, I’analisi si € concentrata sulla valutazione delle
prestazioni di due modelli di face recognition, MagFace e AdaFace, applicati
ai singoli frame del dataset. Ogni frame e stato trattato come un’immagine
indipendente, al fine di stimare il comportamento dei modelli in condizioni
variabili di posa, illuminazione e qualita visiva.

I modelli sono stati utilizzati per estrarre gli embedding a partire dalle
immagini facciali, successivamente impiegati per calcolare la similarita tra la
foto ICAO di riferimento di ciascun soggetto e i frame delle relative sequenze
video. La misura di similarita adottata e la cosine similarity, definita come:

. xT-y
R FIT P 4
dove z e y rappresentano i vettori di embedding confrontati. Il valore ottenuto
dalla misura di cosine similarity varia nell’intervallo [—1,1] e rappresenta il
grado di somiglianza tra i due vettori di embedding x e y. In particolare:

e un risultato vicino a 1 indica che i vettori sono quasi paralleli, quindi
I'immagine di input ¢ altamente simile alla foto ICAO di riferimento;

e un risultato vicino a 0 indica una bassa correlazione, ovvero che i due
embedding condividono poche caratteristiche discriminanti;

e valori negativi denotano una forte dissimilarita.
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Per garantire un confronto equo tra i due modelli di face recognition, e
stata adottata la soglia di riferimento F AR = 0, 1%, valore indicato dalle linee
guida FRONTEX [23] per i gate ABC utilizzabili negli aeroporti. Tale soglia
corrisponde a un tasso massimo di una falsa accettazione ogni 1000 tentativi,
consente in un contesto applicativo come quello aeroportuale di assicurare che
al pitt un passeggero su mille venga accettato erroneamente dal sistema.

4.2.1 Analisi a livello di frame

Per ogni sequenza video, I’analisi parte dal confronto a livello di singolo
frame. Ogni frame 7 viene confrontato con la foto ICAO del soggetto mediante
I'estrazione degli embedding MagFace e AdaFace, producendo uno score di
similarita sim;, vedi Figura [4.5] La decisione ¢ presa verificando se lo score
supera la soglia operativa 7:

Legend

[@] ICAO photo SiM;  Frame-ICAO similarity

[T video sequence Gi Frame quality

[0  video frame

ICAO

sim, simy SiM3 sim, sim,

L4 |

Seq;

d1 92 d3 Q4 An

Figura 4.5: Schema del processo di valutazione: ogni frame e confrontato
con la foto ICAO tramite embedding (MagFace e AdaFace), producendo le
similarita sim;. Tali valori, aggregati o combinati con le metriche di qualita
(SER-FIQ e OFIQ), rappresentano I'intera sequenza e sono confrontati con la
soglia operativa.
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Yi = (4-9)

. 1 sesim; > 71
0 sesim; <7

dove T rappresenta la soglia operativa, fissata a
7 =0.3501 per MagFace
7 =0.27497 per AdaFace

4.2.2 Criteri di Aggregazione delle Sequenze

Per estendere I’analisi dal singolo frame all’intera sequenza video, sono stati
adottati diversi criteri di aggregazione delle similarita calcolate. In particolare,
data una sequenza con n frame e i relativi score di similarita sim;, sono stati
considerati i seguenti criteri di aggregazione:

e Valore massimo: selezione dello score di similarita piu alto tra tutti i
frame della sequenza.

Smax — Max sim;
i<i<n

e Valore minimo: selezione dello score di similarita piu basso.

Smin = Iin sim;
1<i<n
e Media: calcolo della media degli score di similarita di tutti i frame.

n

1 .
Savg = — g sim;
n

=1

e Metriche di qualita: selezione dei frame con qualita migliore, stimata
tramite SER-FIQ e OFIQ. Sono stati considerati i primi 1, 3 e 5 frame
di qualita pit alta. Su cui e stata poi condotta l'analisi di similarita e,
nei casi in cui il numero di frame fosse maggiore di uno, i valori ottenuti
sono stati aggregati tramite media aritmetica.

I valori cosi ottenuti sono stati successivamente confrontati con le soglie
operative definite per ciascun modello. In particolare, dato un valore di simi-

larita aggregato s:
1 >
g:{ ses>T (4.10)

0 ses<T

In questo modo, una sequenza viene accettata (y = 1) se il valore aggregato di
similarita supera la soglia del modello, altrimenti viene respinta (y = 0).






Capitolo 5

Risultati sperimentali

In questo capitolo vengono riportati e discussi i risultati sperimentali ot-
tenuti nell’analisi comparativa dei modelli AdaFace e MagFace. L’obiettivo e
valutare prestazioni dei sistemi di riconoscimento facciale in scenari realistici,
caratterizzati da variabilita nelle condizioni di acquisizione e dalla presenza di
attacchi di morphing.

Dopo aver introdotto le metriche di valutazione adottate, viene analizzato
i risultati ottenuti a livello di singolo frame e di sequenza video, applican-
do diversi criteri di aggregazione e strategie basate sulla qualita dei frame.
Per entrambe le metriche, i risultati vengono presentati sia globalmente sia
per singola sequenza, con l'obiettivo di cogliere I'impatto delle condizioni di
acquisizione sulle prestazioni dei modelli.

5.1 Metriche di Valutazione

In questa sezione vengono definiti gli indicatori di performance utilizzati
per la valutazione dei modelli, ovvero FRR (False Rejection Rate) e FAR (False
Acceptance Rate).

5.1.1 Valutazione del FRR

L’FRR misura la probabilita che il sistema respinga erroneamente un cam-
pione genuino. Valori elevati indicano difficolta di usabilita, poiché soggetti
legittimi rischiano di essere rifiutati. Per il calcolo dell’FRR, ogni frame o ag-
gregato di sequenza viene confrontato con la corrispondente immagine ICAQ.
Se lo score di similarita risulta inferiore alla soglia operativa 7, il sistema re-
spinge il campione. Qualora tale campione appartenga in realta allo stesso
soggetto, il rifiuto viene classificato come false rejection. Formalmente, 'FRR
€ espresso come:
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falsi rifiuti SV 1 {sim; < 7}
genuini totali Nenuini

FRR = (5.1)

5.1.2 Valutazione del FAR

I1 FAR rappresenta la probabilita che il sistema accetti erroneamente un’im-
magine morphed come se fosse genuina. In pratica, dato uno score di similarita
sim(M, f;) tra un’immagine morphed M e un frame f; della sequenza video, se
tale valore supera la soglia operativa 7, il campione viene accettato dal sistema
e, qualora si tratti di un morph, I'accettazione e considerata un falso positivo.
Formalmente, il FAR ¢ definito come:

FAR — accettazigni errzjxte _ SN 1 {sim(M;, £) > 7} (5.2)
attacchi totali Nattacchi

5.2 Risultati sul FRR

In questa sezione vengono confrontati i risultati del FRR ottenuti con tutti
i criteri analizzati (frame singolo, aggregazioni e metriche di qualita). L’obiet-
tivo e fornire una visione complessiva delle prestazioni di AdaFace e MagFace,
mettendo in luce le differenze, i punti di forza e i limiti dei due modelli nelle
diverse condizioni di acquisizione.

Per comprendere meglio i risultati, nelle tabelle riportate, la rign GLOBAL
indica il valore di riferimento calcolato considerando l'intero insieme dei fra-
me confrontati con le foto ICAQO, senza distinzione di sequenza. Le altre righe
riportano invece i valori specifici per ciascuna tipologia di sequenza video: fron-
tal_gaze, with_occlusion e looking_around. Ciascuna tipologia e stata acquisita
in due sessioni sperimentali distinte: sequence_01, con illuminazione naturale
e artificiale, e sequence_02, con sola illuminazione artificiale, generalmente piu
critica.

5.2.1 Risultati a livello di frame

Nella Tabella sono riportati i valori di FRR calcolati a livello di frame
per ciascuna sequenza del dataset, confrontando le prestazioni di AdaFace e
MagFace. I risultati evidenziano alcune differenze significative:

e AdaFace mantiene un FRR complessivo molto contenuto (4.3%), con va-
lori particolarmente bassi nelle condizioni di frontal gaze (0.66% e 3.47%),
che rappresentano lo scenario piu favorevole. Anche in presenza di oc-
clusioni o variazioni di posa, pur registrando un incremento del’FRR,
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Sequence AdaFace (%) | MagFace (%)
GLOBAL 4.30 64.08
sequence_01_frontal _gaze 0.66 34.85
sequence_01_with_occlusion 5.57 77.47
sequence_01_looking_around 3.70 74.49
sequence_02_frontal _gaze 3.47 43.58
sequence_02_with_occlusion 11.23 82.16
sequence_02_looking_around 7.78 79.54

Tabella 5.1: Valori di FRR calcolati a livello di frame per ciascuna sequenza,
confrontando AdaFace e MagFace (in percentuale).

le percentuali rimangono sotto il 12%. Quindi, nella maggior parte dei
casi AdaFace soddisfa i requisiti indicati dalle linee guida FRONTEX
(FRR < 5% con soglia fissata a FAR = 0.1%), dimostrando una buona
affidabilita in contesti applicativi controllati.

e MagFace, al contrario, presenta un FRR estremamente elevato (64.1%),
con performance insufficienti gia in condizioni semplici di frontal gaze
(34.9% e 43.6%) e valori critici nelle sequenze con occlusioni e movimen-
to, dove I'FRR supera spesso il 75-80%. Tali risultati dimostrano che
MagFace non soddisfa mai le specifiche FRONTEX, evidenziando valori
sistematicamente troppo elevati.

Si osserva inoltre che la sequence_02 produce sistematicamente valori di
FRR piu elevati rispetto alla sequence_01 per entrambi i modelli. Tale dif-
ferenza puo essere ricondotta alle condizioni di acquisizione: le sequenze del
secondo set sono state registrate in presenza di sola illuminazione artificiale,
mentre le sequenze del primo set presentano una combinazione di luce na-
turale e artificiale. La differenza puo essere ricondotta principalmente alla
qualita dell’acquisizione: le sequence_01 risultano probabilmente caratterizza-
te da una migliore messa a fuoco e da un livello di rumore inferiore rispetto
alle sequence_02.

5.2.2 Risultati con criteri di aggregazione
Media degli score

Nella Tabella [5.2| sono riportati i valori ottenuti applicando come criterio
di aggregazione la media degli score di similarita a livello di sequenza video,
espressi in percentuale. Si osserva che AdaFace mantiene una notevole robu-
stezza anche in condizioni di acquisizione non ottimali: i valori piu elevati si
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registrano nelle sequenze con occlusioni e variazioni di posa della sequence_02,
rispettivamente pari a 1.59% e 0.79%, mentre nelle altre configurazioni, inclu-
se le condizioni frontal_gaze, 'FRR risulta pari a zero. Questo conferma che
I'utilizzo della media come criterio di aggregazione rende AdaFace un modello
affidabile e stabile per applicazioni reali.

Sequence AdaFace (%) | MagFace (%)
GLOBAL 0.26 69.79
sequence_01_frontal_gaze 0.00 16.92
sequence_01_with_occlusion 0.00 93.75
sequence_01_looking_around 0.00 91.41
sequence_02_frontal_gaze 0.00 33.85
sequence_02_with_occlusion 1.59 95.24
sequence_02_looking_around 0.79 93.65

Tabella 5.2: Confronto dei valori di FRR ottenuti con aggregazione media degli
score, per AdaFace e MagFace (in percentuale)

Al contrario, MagFace dimostra molto piu sensibile alle variazioni di posa,
alle occlusioni e alle condizioni di illuminazione, registrando un valore globale
del 69.79%. E tuttavia interessante notare che, considerando I’aggregazione
media, i risultati per le sequenze frontal_gaze sono migliorati rispetto all’analisi
di livello del frame, Tabella 5.1} in sequence_01 'FRR passa dal 34.85% al
16.92%, mentre in sequence_02 dal 43.58% al 33.85%, con una riduzione di
circa dieci punti percentuali. Cio dimostra che, sebbene il modello resti poco
adatto in scenari critici, I'uso della media consente di mitigare parzialmente
Ieffetto di frame degradati o non rappresentativi.

Valore massimo degli score

I risultati riportati in Tabella |5.3] hanno adottato come criterio di aggre-
gazione il valore massimo degli score di similarita, sia AdaFace sia MagFace
ottengono un FRR_max pari a 0% in tutte le sequenze.

Questo risultato e spiegabile con la natura stessa dell’operatore massimo:
¢ infatti sufficiente che almeno un frame della sequenza superi la soglia 7 af-
finché 'intera sequenza venga accettata come genuina. Nel caso di AdaFace,
tale comportamento conferma quanto gia osservato con il criterio della me-
dia, poiché anche in condizioni difficili almeno un frame risulta sufficiente a
garantire ’accettazione corretta dei campioni genuini. Per MagFace, invece,
I’adozione del massimo tende a mascherare le debolezze emerse con altri criteri
di aggregazione: la presenza di un singolo frame positivo consente alla sequen-
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Sequence AdaFace (%) | MagFace (%)
GLOBAL 0.00 0.00
sequence_01_frontal_gaze 0.00 0.00
sequence_01_with_occlusion 0.00 0.00
sequence_01_looking_around 0.00 0.00
sequence_02_frontal _gaze 0.00 0.00
sequence_02_with_occlusion 0.00 0.00
sequence_02_looking_around 0.00 0.00

Tabella 5.3: Confronto dei valori di FRR ottenuti con aggregazione massima
degli score di similarita, per AdaFace e MagFace (in percentuale)

za di superare il controllo, eliminando i falsi rifiuti ma riducendo al contempo
il potere discriminativo della valutazione.

In termini applicativi, I'impiego del criterio basato sul valore massimo com-
porta, da un lato, ’azzeramento dei falsi rifiuti, ma dall’altro introduce un
aumento potenziale del tasso di false accettazioni. Questo accade perché il
sistema, assumendo un approccio eccessivamente permissivo, prende decisione
sull'unico frame con similarita piu elevata, trascurando la qualita complessiva
della sequenza.

Valore minimo degli score

I valori riportati in Tabella [5.4] evidenziano i risultati dell’FRR quando
viene adottato come criterio di aggregazione il valore minimo degli score di si-
milarita. Sitratta di un approccio particolarmente restrittivo, poiché considera
rappresentativo dell’intera sequenza il frame con la prestazione peggiore.

Sequence AdaFace (%) | MagFace (%)
GLOBAL 73.44 100.00
sequence_01_frontal_gaze 43.08 100.00
sequence_01_with_occlusion 82.81 100.00
sequence_01_looking_around 69.53 100.00
sequence_02_frontal_gaze 78.46 100.00
sequence_02_with_occlusion 96.83 100.00
sequence_02_looking_around 90.48 100.00

Tabella 5.4: Confronto dei valori di FRR ottenuti con aggregazione minima
degli score di similarita, per AdaFace e MagFace (in percentuale)

Per AdaFace, i risultati si attestano su valori complessivamente molto eleva-
ti. Nonostante la robustezza del modello, la presenza di singoli frame degradati
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all’interno della sequenza compromette l'intero processo di riconoscimento, in-
nalzando il tasso di falsi rifiuti. La situazione e ancora piu critica per MagFace,
che registra un FRR pari al 100% in tutte le condizioni analizzate. Cio implica
che, indipendentemente dalla sequenza considerata, ¢ sempre presente alme-
no un frame al di sotto della soglia di accettazione, con il conseguente rifiuto
totale di tutti i campioni genuini.

Criteri basati sulla qualita

Per valutare in che misura la qualita delle immagini influisca sulle presta-
zioni dei modelli, sono stati applicati criteri basati su SER-FIQ e OFIQ, sele-
zionando i migliori frame (Q1, Q3, Q5) di ciascuna sequenza per analizzarne

Ueffetto sull' FRR.

SER-FIQ Dai risultati basati su SER-FIQ emerge un quadro netto.

Per AdaFace, vedi Tabella [5.5] 'FRR ¢ sempre pari a 0% in tutte le se-
quenze e per tutte le configurazioni Q1, Q3 e Q5: la selezione dei frame di
qualita piu alta e sufficiente, gia con Q1, a garantire ’accettazione dei campio-
ni genuini, e 'aumento a Q3 e Q5 non porta benefici ulteriori, il che e indice
di stabilita dei frame e di embedding robusti anche in condizioni non ideali.

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 0.00 0.00 0.00
sequence_01_with_occlusion 0.00 0.00 0.00
sequence_01_looking_around 0.00 0.00 0.00
sequence_02_frontal_gaze 0.00 0.00 0.00
sequence_02_with_occlusion 0.00 0.00 0.00
sequence_02_looking_around 0.00 0.00 0.00

Tabella 5.5: Valori di FRR con criteri SER-FIQ (AdaFace), selezionando i

primi 1, 3 e 5 frame di qualita.

Per MagFace, vedi Tabella [5.6, si osserva un miglioramento significati-
vo rispetto ai risultati precedenti: nelle condizioni piu semplici (frontal_gaze),
I'FRR scende fino allo 0% con Q3 e Q5, mentre negli scenari piu critici (with_occlusion,
looking_around) rimane comunque non trascurabile (= 14-25%), pur riducen-
dosi con 'aumentare di Q. Anche con I'impiego di SER-FIQ, MagFace continua
a mostrare criticita nelle condizioni piu complesse.
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Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 3.08 0.00 0.00
sequence_01_with_occlusion 21.88 18.75 20.31
sequence_01_looking_around 7.81 4.69 7.81
sequence_02_frontal_gaze 7.69 4.62 4.62
sequence_02_with_occlusion 19.05 17.46 14.29
sequence_02_looking_around | 25.40 22.22 17.46

Tabella 5.6: Valori di FRR con criteri SER-FIQ (MagFace), selezionando i
primi 1, 3 e 5 frame di qualita.

OFIQ L’impiego della metrica OFIQ consente di valutare 'impatto della
qualita delle immagini sulle prestazioni dei modelli di riconoscimento. Oltre
al punteggio unificato, UnifiedQualityScore, sono stati considerati anche alcuni
parametri specifici, ritenuti tra i piu influenti sul riconoscimento facciale, come
Sharpness e HeadPoseYaw. L’obiettivo e verificare se la selezione dei frame
in base alla qualita, e in particolare dei migliori 1, 3 o 5 frame di ciascuna
sequenza, possa ridurre FRR e migliorare 'affidabilita complessiva dei sistemi
analizzati.

e Unified Quality Score: I risultati riportati nelle Tabelle e
mostrano i risultati del’FRR quando si applica un filtro basato su OFIQ),
selezionando rispettivamente i migliori 1, 3 e 5 frame di ciascuna sequenza

video.
Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 0.00 0.00 0.00
sequence_01_with_occlusion 0.00 0.00 0.00
sequence_01_looking_around 1.92 1.72 1.64
sequence_02_frontal_gaze 0.00 0.00 0.00
sequence_02_with_occlusion 2.50 3.92 1.92
sequence_02_looking_around 0.00 0.00 0.00

Tabella 5.7: Valori di FRR (%) con AdaFace applicando il criterio Unified-
QualityScore

Per AdaFace, i valori risultano prossimi a zero nella maggior parte delle
condizioni. Solo in scenari pitt complessi, come le sequenze looking_around
e with_occlusion della sequence_02, si registrano FRR lievemente supe-
riori (fino a circa il 3.9%), che restano comunque contenuti e trascurabili
in prospettiva applicativa.
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Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 4.62 7.69 7.69
sequence_01_with_occlusion 32.81 35.94 37.50
sequence_01_looking_around 32.81 29.69 31.25
sequence_02_frontal_gaze 10.77 10.77 9.23
sequence_02_with_occlusion 50.82 54.84 57.14
sequence_02_looking_around | 44.44 46.03 49.21

Tabella 5.8: Valori di FRR (%) con MagFace applicando il criterio Unified-
QualityScore

La situazione di MagFace ¢ piu complessa: pur mantenendo valori di
FRR elevati nelle condizioni piu difficili, si osservano miglioramenti ri-
spetto ai risultati senza filtro di qualita. Nelle sequenze piu semplici,
come frontal_gaze, 'FRR scende a circa 9-10%, mentre anche in presen-
za di occlusioni o variazioni di posa, 'uso di OFIQ consente comunque
una riduzione parziale degli errori.

e Sharpness: I risultati ottenuti con il criterio Sharpness (Tabelle
e5.10) evidenziano differenze significative tra i due modelli.

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 0.00 0.00 0.00
sequence_01_with_occlusion 0.00 0.00 0.00
sequence_01_looking_around 0.00 1.75 1.69
sequence_02_frontal_gaze 1.64 0.00 0.00
sequence_02_with_occlusion 0.00 4.88 2.17
sequence_02_looking_around 3.92 5.26 3.45

Tabella 5.9: Valori di FRR (%) con AdaFace considerando il criterio Sharpness

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 6.15 6.15 7.69
sequence_01_with_occlusion 46.88 48.44 51.56
sequence_01_looking_around | 43.75 42.19 43.75
sequence_02_frontal_gaze 13.85 12.31 12.31
sequence_02_with_occlusion 62.30 66.13 66.67
sequence_02_looking_around | 58.06 63.49 58.73

Tabella 5.10: Valori di FRR (%) con MagFace considerando il criterio Shar-
pness
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AdaFace mostra valori di FRR molto bassi, con variazioni quasi nulle
all’aumentare dei frame selezionati (Q3, Q5). MagFace, invece, registra
valori sensibilmente piu elevati, soprattutto in presenza di occlusioni e
variazioni di posa, con FRR che superano il 40-60%. In alcuni casi,
I'inclusione di piu frame comporta addirittura un incremento degli errori,
segnalando una certa instabilita del modello.

e Head Pose Yaw: Con il criterio HeadPoseYaw (Tabelle e si
osserva un andamento analogo. AdaFace mantiene i valori di FRR vicini
allo zero nella maggior parte delle condizioni, con lievi incrementi nelle
sequenze piu critiche. Per MagFace, invece, i valori rimangono elevati
e, ancora una volta, l'effetto della selezione multipla dei frame non e
uniforme: a volte riduce 'errore, ma in altri casi lo aumenta.

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 0.00 0.00 0.00
sequence_01_with_occlusion 0.00 0.00 0.00
sequence_01_looking_around 0.00 1.61 1.61
sequence_02_frontal_gaze 1.69 0.00 0.00
sequence_02_with_occlusion 0.00 2.00 0.00
sequence_02_looking_around 1.89 3.51 3.39

Tabella 5.11: Valori di FRR (%) con AdaFace considerando il criterio Head-
PoseYaw

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 3.13 6.15 7.69
sequence_01_with_occlusion 26.56 25.00 28.13
sequence_01_looking_around | 25.40 21.88 21.88
sequence_02_frontal_gaze 6.25 7.69 9.23
sequence_02_with_occlusion 42.62 41.94 44.44
sequence_02_looking_around | 30.16 34.92 36.51

Tabella 5.12: Valori di FRR (%) con MagFace considerando il criterio Head-
PoseYaw

In generale, i dati suggeriscono che le metriche di qualita possano ridurre
parzialmente gli errori, ma non sono sufficienti a compensare le difficolta
di MagFace in condizioni non controllate.
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5.2.3 Confronto complessivo sul FRR

Dalla Figura [5.1] e possibile osservare 'andamento dell’ FRR per ciascuna
sequenza video, confrontando i diversi criteri di aggregazione adottati.
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Figura 5.1: Confronto dei valori di FRR (%) per AdaFace e MagFace su diverse

sequenze video, utilizzando differenti criteri di aggregazione e filtri di qualita
(Frame, Media, SER-FIQ Q3, OFIQ Q3)

Per quanto riguarda AdaFace, i risultati mostrano valori di FRR prossimi
allo zero in quasi tutte le condizioni, indipendentemente dal tipo di sequenza.
In scenari semplici, come le sequenze frontal, sia sequence_01 sia sequence_02,
la combinazione di criteri di aggregazione basati sulla media o sulle metriche di
qualita (SER-FIQ e OFIQ, entrambi con Q3) permette di mantenere un tasso
di falsi rifiuti nullo o trascurabile. Anche nelle condizioni piu critiche, carat-
terizzate da occlusioni parziali o variazioni di posa, 1’applicazione dei criteri
di qualita (SER-FIQ o OFIQ) garantisce un FRR quasi nullo, confermando la
stabilita del modello.

La situazione di MagFace appare piu complessa: 1'utilizzo diretto dei frame
o della media degli score comporta valori molto elevati di FRR, spesso superiori
al 70-90%, anche in condizioni favorevoli. Un miglioramento significativo si
osserva adottando il criterio SER-FIQ (Q3), che riduce I'FRR fino a valori
compresi tra lo 0% e il 22%, a seconda della sequenza. Anche OFIQ (Q3)
produce benefici, soprattutto nelle sequenze frontali, dove 'FRR si riduce a
circa il 9-11%, ma nelle sequenze in presenza di occlusioni o pose variabili i
valori rimangono alti (= 30-50%).
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5.3 Risultati sul FAR

In questa sezione vengono presentati i risultati relativi al FAR ottenuti nei
diversi scenari sperimentali per verificare la robustezza dei due modelli rispetto
agli attacchi di face morphing. L’analisi considera sia i valori calcolati a livello
di singolo frame, sia quelli derivanti dall’applicazione di criteri di aggregazione
e metriche di qualita. L’obiettivo ¢ fornire una panoramica completa delle
prestazioni dei modelli AdaFace e MagFace, mettendone in luce le differenze,
i punti di forza e le criticita.

5.3.1 Risultati a livello di frame

Dalla Tabella si osserva che, a livello globale, MagFace presenta un
FAR piu contenuto (13.32%) rispetto ad AdaFace (45.92%), evidenziando una
maggiore capacita di limitare le false accettazioni sull’intero dataset. Anche
in condizioni di acquisizione favorevoli, come nel caso frontal_gaze, AdaFace
tende comunque a generare un numero elevato di accettazioni errate. Nelle se-
quenze piu complesse, caratterizzate da movimenti del volto, variazioni di posa
e presenza di occlusioni, MagFace conferma la propria robustezza, mantenen-
do valori di FAR ridotti, a differenza di AdaFace che mostra una significativa
perdita di affidabilita. Va tuttavia sottolineato che, per entrambi i modelli, i
valori restano di gran lunga superiori alla soglia dello 0.1% indicata dalle linee
guida FRONTEX, risultando quindi non compatibili con i requisiti operativi
dei sistemi aeroportuali.

Sequence AdaFace (%) | MagFace (%)
GLOBAL 45.92 13.32
sequence_01_frontal _gaze 57.85 28.58
sequence_01_with_occlusion 45.61 7.21
sequence_01_looking_around 47.38 8.73
sequence_02_frontal_gaze 44.36 21.72
sequence_02_with_occlusion 37.86 4.79
sequence_02_looking_around 3791 5.63

Tabella 5.13: Valori di FAR (%) calcolati a livello di sequenza per AdaFace e
MagFace senza filtri.
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5.3.2 Risultati con criteri di aggregazione
Media degli score

Dalla Tabella [5.14] emerge che 1’adozione del criterio della media mette in
evidenza la differenza tra i due modelli. A livello globale, MagFace riduce il
FAR al 3.65%, rispetto al 40.36% di AdaFace. Anche nelle sequenze piu criti-
che, AdaFace mantiene valori elevati e poco stabili, mentre MagFace in diversi
casi azzera completamente le false accettazioni, confermando una maggiore

affidabilita.

Sequence AdaFace (%) | MagFace (%)
GLOBAL 40.36 3.65
sequence_01_frontal_gaze 61.54 13.85
sequence_01_with_occlusion 45.31 0.00
sequence_01_looking_around 45.31 0.00
sequence_02_frontal _gaze 38.46 7.69
sequence_02_with_occlusion 20.63 0.00
sequence_02_looking_around 25.40 0.00

Tabella 5.14: Valori di FAR (%) calcolati con aggregazione media degli score,
per AdaFace e MagFace.

Dal punto di vista tecnico, la media rappresenta un criterio valido, in quan-
to riduce l'influenza dei singoli frame non conformi, fornendo una stima piu
stabile della similarita complessiva. A livello applicativo, questo criterio risulta
piu adatto a scenari reali, dove il sistema deve valutare sequenze video e non
singoli frame isolati.

Valore massimo degli score

Dalla Tabella |5.15| si puo notare che 'uso del criterio del valore massimo
porta a valori di FAR estremamente elevati per entrambi i modelli. La differen-
za rimane significativa soprattutto nelle sequenze con occlusioni o variazioni di
posa, dove MagFace riduce il FAR di circa 10-20 punti percentuali rispetto al
concorrente. Dal punto di vista applicativo, questo criterio risulta poco adatto
agli scenari reali, soprattutto in contesti ad alta sicurezza come i varchi aero-
portuali, in cui non e accettabile che un singolo frame comprometta l'intero
processo di verifica. Sebbene MagFace mostri una maggiore robustezza rispet-
to ad AdaFace, i valori assoluti di FAR rimangono troppo elevati per garantire
I’affidabilita operativa.
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Sequence AdaFace (%) | MagFace (%)
GLOBAL 97.40 85.94
sequence_01_frontal _gaze 98.46 93.85
sequence_01_with_occlusion 95.31 84.38
sequence_01_looking_around 97.66 86.72
sequence_02_frontal _gaze 96.92 90.77
sequence_02_with_occlusion 95.24 80.95
sequence_02_looking_around 96.83 78.57

Tabella 5.15: Valori di FAR (%) calcolati con aggregazione massima degli score
di similarita, per AdaFace e MagFace.

Valore minimo degli score

I risultati riportati nella Tabella [5.16 sono calcolati con il criterio del va-
lore minimo, che porta i FAR dei due modelli a zero. In particolare, MagFace
ottiene valori nulli in tutte le sequenze, mentre AdaFace presenta deviazioni
minime (fino all’1.56% nel caso di occlusioni). Questo risultato riflette la pre-
senza, in quasi tutte le sequenze, di almeno un frame altamente discriminante,
anche per i tentativi impostori.

Sequence AdaFace (%) | MagFace (%)
GLOBAL 0.26 0.00
sequence_01_frontal _gaze 0.00 0.00
sequence_01_with_occlusion 1.56 0.00
sequence_01_looking_around 0.78 0.00
sequence_02_frontal_gaze 0.00 0.00
sequence_02_with_occlusion 0.00 0.00
sequence_02_looking_around 0.00 0.00

Tabella 5.16: Valori minimi di FAR (%) calcolati per AdaFace e MagFace.

Dal punto di vista tecnico, il criterio del valore minimo adotta una politica
conservativa che riduce al minimo le false accettazioni, ma aumenta il rischio di
falsi rifiuti, in quanto basta un frame degradato per invalidare I'intera sequenza.
A livello applicativo, il criterio del minimo non ¢ adatto come regola decisionale
finale, ma rappresenta un utile indicatore del limite inferiore del sistema e uno
strumento per la selezione dei frame piu affidabili.
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Criteri basati sulla qualita

In questa sezione vengono analizzati i criteri di selezione dei frame basati
su misure di qualita, con l'obiettivo di valutare se e in che misura possano
ridurre il tasso di false accettazioni nei modelli considerati.

SER-FIQ La selezione dei frame con SER-FIQ evidenzia una differenza tra
i due modelli. Come mostrato nella Tabella [5.17, AdaFace mantiene valori di
FAR elevati in tutte le sequenze, anche quando vengono selezionati i frame di
qualita migliore.

Al contrario, come mostrato nella Tabella[5.18 MagFace beneficia maggior-
mente di questo criterio, in quanto il FAR si riduce sensibilmente, soprattutto
in presenza di occlusioni e variazioni di posa. Cio conferma che 'uso di metri-
che di qualita come SER-FIQ puo migliorare la robustezza della verifica video,
risultando efficace con MagFace, mentre I'impatto su AdaFace rimane limitato.

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 84.13 81.54 81.54
sequence_01_with_occlusion 75.93 77.42 75.81
sequence_01_looking_around | 72.13 74.60 77.78
sequence_02_frontal_gaze 65.08 70.77 75.38
sequence_02_with_occlusion 65.57 70.97 69.84
sequence_02_looking around | 57.14 63.49 66.67

Tabella 5.17: Valori di FAR (%) per AdaFace con selezione dei frame tramite
SER-FIQ (Q1, Q3, Q5).

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 63.08 61.54 53.85
sequence_01_with_occlusion 34.38 37.50 32.81
sequence_01_looking_around | 39.06 34.38 35.94
sequence_02_frontal gaze 44.62 46.15 43.08
sequence_02_with_occlusion 31.75 26.98 28.57
sequence_02_looking_around | 36.51 31.75 31.75

Tabella 5.18: Valori di FAR (%) per MagFace con selezione dei frame tramite
SER-FIQ (Q1, Q3, Q5).

OFIQ In questo paragrafo vengono analizzati i risultati ottenuti applicando
diversi criteri di selezione dei frame basati su misure di qualita fornite da
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OFIQ. In particolare, sono state considerate tre varianti: Unified Quality Score,
CompressionArtifacts e InterEyeDistance, in quanto questi fattori sono ritenuti
tra i piu influenti sulla qualita delle immagini.

e Unified Quality Score: La selezione dei frame tramite OFIQ conferma
quanto osservato con SER-FIQ. Come mostrato nella Tabella Ada-
Face mantiene valori di FAR elevati (70-85%), con riduzioni marginali
anche scegliendo i frame di qualita piu alta. Al contrario, i risultati della
Tabella di MagFace sembrano produrre effetti positivi, con un calo
sensibile del FAR, specialmente in presenza di occlusioni e variazioni di
posa, che si stabilizza intorno al 20 — 30%.

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 83.05 83.61 80.65
sequence_01_with_occlusion 84.62 84.00 82.69
sequence_01_looking_around | 80.77 74.14 72.13
sequence_02_frontal_gaze 75.81 70.31 70.31
sequence_02_with_occlusion 80.00 72.55 71.15
sequence_02_looking_around | 71.15 67.80 60.00

Tabella 5.19: Valori di FAR (%) per AdaFace con selezione dei frame tramite
il criterio UnifiedQualityScore (Q1, Q3, Q5)

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 53.85 55.38 55.38
sequence_01_with_occlusion 37.50 34.38 34.38
sequence_01_looking_around | 28.13 31.25 29.69
sequence_02_frontal_gaze 58.46 55.38 55.38
sequence_02_with_occlusion 19.67 19.35 19.05
sequence_02_looking_around | 23.81 19.05 17.46

Tabella 5.20: Valori di FAR (%) per MagFace con selezione dei frame tramite
il criterio UnifiedQualityScore (Q1, Q3, Q5)

e Compression Artifacts: Dalla Tabella emerge che, con il criterio
CompressionArtifacts, AdaFace mantiene valori di FAR elevati (55-77%)
con riduzioni limitate anche selezionando i frame piu affidabili. Al con-
trario, la Tabella mostra che MagFace trae vantaggio significativo
dalla selezione. Il FAR diminuisce significativamente fino a valori in-
feriori al 10% nelle condizioni piu critiche. Questo risultato evidenzia
che, mentre AdaFace rimane vulnerabile agli artefatti di compressione,
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MagFace riesce a sfruttare efficacemente tale metrica di qualita, rilevan-
dosi pit adatto agli scenari applicativi reali in cui i video sono spesso
sottoposti a compressione.

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 72.22 77.05 74.19
sequence_01_with_occlusion 65.63 69.05 68.00
sequence_01_looking_around | 70.73 60.38 70.49
sequence_02_frontal_gaze 59.26 56.45 57.14
sequence_02_with_occlusion 63.64 55.56 57.45
sequence_02_looking_around | 63.41 52.83 48.28

Tabella 5.21: Valori di FAR (%) per AdaFace con selezione dei frame tramite
il criterio CompressionArtifacts (Q1, Q3, Q5)

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 42.19 41.54 33.85
sequence_01_with_occlusion 21.88 14.06 7.81
sequence_01_looking_around | 23.44 10.94 10.94
sequence_02_frontal_gaze 33.85 29.23 24.62
sequence_02_with_occlusion 11.48 6.45 3.17
sequence_02_looking_around 14.52 6.35 7.94

Tabella 5.22: Valori di FAR (%) per MagFace con selezione dei frame tramite
il criterio CompressionArtifacts (Q1, Q3, Q5)

e Inter Eye Distance: Dalla Tabella si nota che AdaFace sembra
ottenere valori di FAR piu contenuti rispetto ad altre metriche, in alcuni
casi anche inferiori al 20%. Questo potrebbe indicare un miglioramen-
to relativo, pur rimanendo meno stabile di MagFace. Come riportato
nella Tabella [5.24] MagFace mantiene valori nulli in tutte le sequenze,
suggerendo una maggiore robustezza. A livello applicativo, I'utilita del
criterio InterEyeDistance sembra comunque limitata e potrebbe essere
considerato piu come un supporto per altre metriche piuttosto che come
uno strumento autonomo di selezione.
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Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 0.00 23.81 28.85
sequence_01_with_occlusion 8.33 21.21 32.61
sequence_01_looking_around 7.14 19.05 22.45
sequence_02_frontal_gaze 7.14 14.63 15.09
sequence_02_with_occlusion 18.75 8.11 16.28
sequence_02_looking_around 8.33 7.89 13.33

Tabella 5.23: Valori di FAR (%) per AdaFace con selezione dei frame tramite
il criterio InterEyeDistance (Q1, Q3, Q5)

Sequence Q1 (%) | Q3 (%) | Q5 (%)
sequence_01_frontal_gaze 0.00 0.00 0.00
sequence_01_with_occlusion 0.00 0.00 0.00
sequence_01_looking_around 0.00 0.00 0.00
sequence_02_frontal_gaze 0.00 0.00 0.00
sequence_02_with_occlusion 0.00 0.00 0.00
sequence_02_looking_around 0.00 0.00 0.00

Tabella 5.24: Valori di FAR (%) per MagFace con selezione dei frame tramite
il criterio InterEyeDistance (Q1, Q3, Q5)

5.3.3 Confronto complessivo sul FAR

Dalla Figura si nota chiaramente la differenza tra i due modelli. Per
AdaFace, le metriche di qualita non portano miglioramenti significativi: il
modello resta vulnerabile e instabile. L’uso della media degli score riduce in
parte il problema, ma i risultati non sono abbastanza solidi per gli scenari
in cui ¢ neccessaria un’alta sicurezza. Per MagFace, invece, la media degli
score ¢ il metodo piu efficace, in quanto assicura prestazioni affidabili anche
in condizioni difficili come l'occlusione o i cambi di posa. Le metriche di
qualita possono comunque essere utili, ma non raggiungono i benefici garantiti
dall’aggregazione statistica.
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Figura 5.2: Andamento del FAR (%) per AdaFace e MagFace sulle diverse

sequenze video, considerando i criteri di aggregazione Frame, Media, SER-
FIQ (Q3) e OFIQ Unified (Q3)



Conclusioni e sviluppi futuri

I1 lavoro di ricerca ha messo in luce differenze sostanziali tra i due modelli
di riconoscimento facciale analizzati, ciascuno caratterizzato da specifici punti
di forza e limiti. AdaFace ha mostrato una maggiore stabilita nei confron-
ti genuini, con valori di FRR contenuti anche senza ’applicazione di criteri
di aggregazione, soprattutto nelle sequenze acquisite in condizioni favorevoli,
prive di variazioni di posa o occlusioni. In questo contesto, I'impiego della
metrica di qualita SER-FIQ ha permesso di raggiungere risultati ottimali, ri-
ducendo il FRR a valori prossimi allo zero. Tuttavia, in presenza di immagini
morphed, AdaFace ha evidenziato una marcata vulnerabilita: sebbene I'aggre-
gazione tramite la media degli score abbia consentito una riduzione parziale
del FAR, i valori raggiunti non sono sufficienti a garantire livelli di sicurezza
adeguati in scenari applicativi reali.

MagFace, al contrario, non ha sempre mostrato prestazioni eccellenti in
termini assoluti, ma ha registrato un comportamento piu equilibrato e, so-
prattutto, una maggiore capacita di contenere le false accettazioni. Gia senza
criteri di aggregazione, i valori di FAR sono rimasti sensibilmente inferiori a
quelli di AdaFace, con un range compreso tra il 5% e il 28%. L’applicazione
della media degli score ha ulteriormente migliorato la robustezza del modello,
azzerando il FAR in diverse sequenze. Per quanto riguarda il FRR, MagFace
ha mostrato un miglioramento significativo grazie all’'uso della metrica SER-
FIQ, che ha permesso di ridurre gli errori di rifiuto a circa il 9 — 10% nelle
sequenze frontali, evidenziando un effetto positivo, seppur non risolutivo.

Nel complesso, i risultati confermano che l'introduzione di criteri di ag-
gregazione e di metriche di qualita puo incrementare la resistenza dei sistemi
di riconoscimento agli attacchi di morphing in scenari video-based. Le stra-
tegie che hanno mostrato gli effetti piu significativi sono state ’aggregazione
tramite media, capace di stabilizzare le prestazioni complessive, e I'impiego di
SER-FIQ, che ha prodotto un impatto positivo su entrambi i modelli. Restano
tuttavia alcune criticita: AdaFace continua a mostrare una marcata vulnera-
bilita in termini di FAR, mentre MagFace, pur risultando piu affidabile, non
raggiunge prestazioni ottimali in termini di FRR.

Resta comunque spazio per ulteriori miglioramenti: alcuni valori di sco-
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re hanno infatti evidenziato margini di ottimizzazione che meritano di essere
esplorati. Tra le prospettive future vi sono 'integrazione di strategie di fusione
tra pit metriche di qualita, 'ampliamento e la diversificazione del dataset e
la valutazione in scenari operativi piu ampi. Nonostante i suoi limiti, questo
lavoro contribuisce alla comprensione delle potenzialita e dei limiti delle tecni-
che video-based per la rilevazione delle morphing attack, ponendo le basi per
futuri sviluppi orientati a soluzioni pratiche e affidabili.
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