
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA
Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

TRANSIZIONE AD ARCHITETTURE
SOFTWARE A MICROSERVIZI E AD

EVENTI PER SISTEMI INFORMATIVI
SANITARI: ANALISI DEL CASO AUSL

DELLA ROMAGNA E PROTOTIPAZIONE
DELLA CARTELLA CLINICA

ELETTRONICA

Elaborato in

SOFTWARE ARCHITECTURE AND PLATFORMS

Relatore

Prof. ALESSANDRO RICCI

Corelatore

Ing. SAMUELE BURATTINI
Ing. ANGELO CROATTI

Presentata da

MARCO FONTANA

Anno Accademico 2024 – 2025

A mia mamma

Abstract

Con questo elaborato si presenta uno studio sulle architetture software per
sistemi informativi sanitari complessi, prendendo in considerazione il caso di
studio di AUSL della Romagna, effettuando un’analisi generale sulle criticità e
possibilità di miglioramento considerando transizioni ad architetture moderne
a partire da microservizi e ad eventi. In particolare, si è identificato nel caso
specifico della cartella clinica elettronica, la possibilità di re-ingegnerizzazione
ad un’architettura distribuita in linea con i requisiti non funzionali moderni,
per cui si è proposto un prototipo di progetto che fornisca le linee guida per
l’ideazione di una soluzione architetturale in grado di superare le limitazioni
attuali.

La ricerca si articola su tre contributi principali. Il primo riguarda un’ana-
lisi comparativa degli standard sanitari HL7 FHIR e OpenEHR, evidenziando
come FHIR presenti vantaggi significativi in termini di semplicità implemen-
tativa e performance, pur mantenendo la possibilità di utilizzo complementare
di entrambi gli standard. Il secondo contributo propone una transizione ver-
so un’architettura distribuita caratterizzata da un partizionamento funzionale
dei diversi contesti clinici, garantendo maggiore autonomia, disaccoppiamento
e robustezza, in linea con i requisiti non funzionali richiesti. Il terzo contributo
presenta una soluzione per l’identificazione di eventuali criticità e validazione
delle architetture, mediante il tracciamento di metriche e creazione di scenari
per la misurazione concreta delle proprietà garantite.

La metodologia adottata combina analisi teorica, progettazione architet-
turale e mostra come effettuare una validazione sperimentale attraverso la
definizione di scenari per la misurazione quantitativa degli attributi di qua-
lità garantiti. Questo avviene mediante l’implementazione di un prototipo
funzionale, a titolo esemplificativo, che prende in considerazione uno scena-
rio rappresentativo della cartella clinica elettronica, per chiarire alcuni aspetti
chiave discussi in questo elaborato e fornire uno strumento da assumere come
modello generale per una futura progettazione del sistema.

5

Indice

Introduzione 12

1 Elementi di Architetture Software 16
1.1 Architetture software monolitiche 16

1.1.1 Architetture monolitiche modulari 17
1.2 Architetture software distribuite 18

1.2.1 Architetture Orientate ai Servizi 19
1.2.2 Architetture a Microservizi 21
1.2.3 Architetture ad Eventi 24

1.3 Differenze tra le architetture descritte 24
1.3.1 Differenza tra Enterprise Service Bus e Message-Oriented

Middleware . 25
1.3.2 Differenza tra le architetture SOA e MSA 27

2 Standard per l’Interoperabilità nella Sanità Digitale 32
2.1 Standard nell’ambito informatico 32
2.2 Standard per la codifica dei dati sanitari 33
2.3 Standard per la condivisione e la persistenza dei dati elettronici

sanitari . 33
2.3.1 HL7 FHIR R5 . 33
2.3.2 OpenEHR . 42

2.4 Differenze tra gli standard HL7 FHIR ed OpenEHR 49

3 Architettura del sistema informativo sanitario di AUSL della
Romagna 52
3.1 Stato dell’arte delle architetture per sistemi informativi sanitari 52
3.2 Contesto e obiettivi strategici di AUSL della Romagna 54
3.3 Sistema informativo di AUSL della Romagna 55

3.3.1 Moduli del sistema informativo ospedaliero 55
3.4 Analisi dell’architettura allo stato attuale 58

3.4.1 Utilizzo degli standard 59
3.4.2 Interoperabilità . 61

6

3.4.3 Monitoraggio e sicurezza 61
3.4.4 Cartella clinica elettronica 61
3.4.5 Integrazione tra CCE Ambulatoriale e gli altri servizi . . 62
3.4.6 Interazioni e scambio di eventi tra CCE Ambulatoriale

ed altri servizi . 62
3.4.7 Dossier Sanitario . 63
3.4.8 Anagrafiche locali e centralizzata 64
3.4.9 CCE di Degenza . 64
3.4.10 Enterprise Service Bus 65
3.4.11 Identificazione delle criticità e validazione dell’architet-

tura attuale e future . 66

4 Progettazione di un prototipo architetturale esemplificativo
per la CCE e sistemi correlati di AUSL della Romagna 68
4.1 Selezione degli scenari . 68
4.2 Analisi . 69

4.2.1 Requisiti funzionali . 69
4.2.2 Requisiti non-funzionali 69
4.2.3 Quality Attributes . 70
4.2.4 Dominio . 71

4.3 Design . 73
4.3.1 Architettura per la Cartella Clinica Elettronica 73
4.3.2 Integrazione tra CCE e servizi esterni 77
4.3.3 Pattern per la raccolta di metriche e validazione delle

architetture . 80
4.3.4 Pattern per la raccolta di log e tracciamento delle inte-

razioni dell’utente . 83
4.3.5 Pattern per l’incremento delle performance 84

4.4 Implementazione . 85
4.4.1 Esempio di raccolta delle metriche e monitoraggio del

sistema complessivo . 88
4.4.2 Tecnologie utilizzate . 89

4.5 Validazione della soluzione proposta 94
4.5.1 Testing e valutazioni sperimentali 95

4.6 Analisi dell’architettura proposta 104

Conclusioni 108

Elenco delle figure

1.1 Architettura monolitica modulare 18
1.2 Topologia orientata all’orchestratore per architetture orientate

ai servizi . 20
1.3 Architettura a microservizi . 22
1.4 Bounded Contexts . 23

2.1 Moduli che compongono lo standard FHIR 35
2.2 Suddivisione in livelli delle risorse FHIR 35
2.3 Esempio di risorse FHIR correlate 36
2.4 Esempio di Bundle di risorse FHIR 37
2.5 Regole di conformità . 37
2.6 Struttura richieste e risposte HTTP standard su FHIR 38
2.7 Esempio di documento . 41
2.8 Componenti della specifica OpenEHR 43
2.9 Modellazione multi-livello di dati su OpenEHR 44
2.10 Struttura dati OpenEHR . 45
2.11 Composizione dati OpenEHR 45
2.12 Diagramma a stati finiti standard per le istruzioni (ISM) 46
2.13 Modello architetturale minimo OpenEHR 47
2.14 Validazione dati su OpenEHR mediante archetipi e template . . 48

3.1 Macro elementi del informativo ospedaliero AUSL Romagna . . 56
3.2 Schema C&C dell’architettura SOA attualmente in uso ad AU-

SL della Romagna . 60

4.1 Schema C&C di soluzione, esemplificativo, per la CCE 74
4.2 Schema C&C per la CCE specifico riguardo gli eventi per la

sospensione automatizzata delle terapie 76
4.3 Schema C&C di soluzione per l’integrazione tra ESB e servizi

terzi . 78
4.4 Schema C&C di soluzione specifico tra CCE e ESB 81
4.5 Schema C&C di pattern per la raccolta di metriche 82
4.6 Esempio di pattern per la raccolta di log generico 83

8

4.7 Esempio di pattern CQRS generico 84
4.8 Diagramma delle sequenze per la lettura dei piani di terapia . . 86
4.9 Diagramma delle sequenze per la sospensione di una terapia a

fronte della rilevazione di un evento di conflitto con una nuova
patologia . 87

4.10 Esempio di tracciamento del 95° percentile del tempo richiesto
dai servizi ad elaborare ogni richiesta ricevuta negli ultimi 5
minuti, via prometheus GUI . 90

4.11 Esempio di tracciamento del rapporto tra numero di richie-
ste di lettura che hanno avuto successo rispetto al totale, via
prometheus GUI . 91

4.12 Esempio di tracciamento del rapporto tra numero di richieste
di lettura rispetto al totale per ciascun servizio, via prometheus
GUI . 92

4.13 Esempio di tracciamento del rapporto tra numero di richieste
di lettura rispetto al totale per ciascun servizio negli ultimi 5
minuti, via prometheus GUI . 93

4.14 Validazione: latenza media, calcolata ogni 30 secondi, a fronte
di un numero crescente di richieste da 50 a 500 100

4.15 Validazione: latenza al 95° percentile, calcolata ogni 30 secondi,
a fronte di un numero crescente di richieste da 50 a 500 101

Elenco dei codici

4.1 File ’yaml’ di configurazione ’kubernetes’ per la realizzazione di
un ’horizontal pod autoscaler’ relativo al servizio di ’terapia’,
per la creazione dello scenario di validazione 97

4.2 Test con carico crescente nel tempo 98
4.3 Test per valutare il tempo impiegato da un servizio a tornare

operativo dopo un fallimento 102
4.4 Risultato del test utilizzato per valutare il tempo impiegato da

un servizio a tornare operativo dopo un fallimento 103

Introduzione

Con questo elaborato si presenta uno studio sulle architetture software per
sistemi informativi sanitari complessi, prendendo in considerazione il caso di
studio di AUSL della Romagna, effettuando un’analisi generale sulle criticità e
possibilità di miglioramento considerando transizioni ad architetture moderne
a partire da microservizi e ad eventi. In particolare, si è identificato nel caso
specifico della cartella clinica elettronica, la possibilità di re-ingegnerizzazione
ad un’architettura distribuita in linea con i requisiti non funzionali moderni,
per cui si è proposto un prototipo di progetto che fornisca le linee guida per
l’ideazione di una soluzione architetturale in grado di superare le limitazioni
attuali.

I sistemi informativi sanitari rappresentano oggi una delle sfide architet-
turali più complesse nel panorama informatico contemporaneo. La necessità
di gestire enormi volumi di dati critici, garantire l’interoperabilità tra sistemi
eterogenei e assicurare performance elevate, richiede soluzioni architetturali
innovative e robuste. Questo elaborato di tesi affronta uno studio riguardo
le principali architetture software moderne, gli standard principalmente uti-
lizzati e lo stato dell’arte delle architetture software in ambito sanitario, per
poi proseguire con una analisi del caso specifico di AUSL della Romagna, mo-
strando criticità e possibilità di miglioramenti ed in infine la progettazione
di un’architettura distribuita per il servizio di cartella clinica elettronica e si-
stemi correlati. L’analisi parte da una situazione attuale caratterizzata da
un’architettura monolitica modulare che, pur funzionale, presenta limitazio-
ni significative in termini di robustezza, performance e disaccoppiamento, il
prototipo sviluppato fornisce le linee guida per l’ideazione di una soluzione
architetturale in grado di superare le limitazioni attuali.

La ricerca si articola su tre direttrici principali, ognuna delle quali contri-
buisce a fornire linee guida per la definizione di una soluzione architetturale
complessiva più resiliente ed efficace:

Il primo contributo riguarda l’analisi comparativa degli standard sanitari:
attraverso un’analisi approfondita degli standard HL7 FHIR e OpenEHR, l’e-
laborato mette in evidenza le caratteristiche distintive di ciascun approccio.
FHIR si concentra sullo scambio di dati sanitari con una complessità ridotta e

prestazioni generalmente superiori, utilizzando payload più leggeri e offrendo
maggiore flessibilità nell’integrazione con sistemi legacy. OpenEHR, d’altra
parte, eccelle nella modellazione strutturata e persistenza dei dati attraverso
il suo sistema di archetipi e template. L’analisi conclude che, pur essendo
entrambi gli standard efficaci, FHIR presenta vantaggi significativi in termini
di semplicità implementativa e proprietà non funzionali, mostrando anche la
possibilità di utilizzare entrambi gli standard in maniera complementare.

Il secondo contributo riguarda lo studio delle architetture sanitarie allo
stato dell’arte ed un’analisi dell’architettura attualmente utilizzata in AUSL
della Romagna, proponendo una transizione architetturale da monolitica a
distribuita, in grado di superare le maggiori criticità attualmente rilevate e
garantire le proprietà richieste: la tesi propone le linee guida per l’ideazione di
un’architettura per la cartella clinica elettronica e sistemi correlati in linea con
i requisiti non funzionali forniti. Il partizionamento proposto separa i diversi
contesti clinici in maniera funzionale, sfruttando in parte la suddivisione già
presente, ma ciascuno dei servizi utilizza il proprio modello di dati specifico e
requisiti non funzionali dedicati, in modo da essere il più possibile indipendente
rispetto agli altri.

Il terzo contributo riguarda la progettazione ed implementazione di pattern
per la raccolta di metriche, per permettere la misurazione concreta dei requisiti
non funzionali attualmente garantiti e la validazione di proposte architetturali
future, in modo da poter identificare e quantificare dettagliatamente la presen-
za di criticità e la loro misura. Questi pattern possono essere inoltre utilizzati
per effettuare comparazioni tra l’architettura attuale e quelle proposte, in mo-
do da valutare l’effettiva efficacia delle soluzioni fornite in termini di proprietà
non funzionali.

La ricerca adotta un approccio metodologico che combina analisi teorica,
progettazione architetturale e propone degli scenari per la validazione speri-
mentale. Partendo dallo studio dello stato dell’arte delle architetture software
(monolitiche, service oriented architecture, microservizi ed event-driven), viene
condotta un’analisi del sistema attuale di AUSL della Romagna per identificare
criticità e opportunità di miglioramento.

Le linee guida per una futura implementazione della cartella clinica elettro-
nica in linea con i requisiti forniti, sono rafforzate dalla progettazione a livello
architetturale di un prototipo funzionale e una sua implementazione, che mo-
stra uno scenario rappresentativo sufficientemente generale da essere esempli-
ficativo per la progettazione della cartella clinica elettronica e una validazione
architetturale della stessa, mostrando come creare scenari per la validazione e
misurazione degli attributi di qualità garantiti.

Nei capitoli successivi, questa introduzione si svilupperà attraverso un’a-
nalisi dettagliata delle tecnologie architetturali, al Capitolo 1, degli standard

13

sanitari, al Capitolo 2, dello stato dell’arte dei sistemi informativi sanitari,
al sezione 3.1, dell’analisi del sistema attuale di AUSL della Romagna, cri-
ticità e opportunità di miglioramento, al Capitolo 3, fino alla presentazione
di un prototipo, che considera uno scenario rappresentativo generale, a titolo
esemplificativo, per una futura re-ingegnerizzazione della cartella clinica elet-
tronica e validazione sperimentale degli attributi di qualità mediante scenari,
al Capitolo 4.

14

Capitolo 1

Elementi di Architetture
Software

In questa sezione si introducono alcuni concetti fondamentali che riguar-
dano le architetture software, iniziando con una panoramica generale riguardo
elementi necessari a comprenderne lo scopo e il funzionamento, seguita da un
approfondimento riguardo le diverse tipologie di architetture che si sono susse-
guite negli anni, a partire da architetture tipo monolitico, fino ad architetture
distribuite basate sui microservizi e ad eventi, in modo da introdurre e fornire
la base per una migliore comprensione degli argomenti che verranno trattati
nei successivi capitoli, limitando la trattazione alle sole tecnologie che verranno
trattate nel caso di studio di AUSL della Romagna, ambito di analisi di questa
tesi.

1.1 Architetture software monolitiche

Le architetture monolitiche rappresentano il paradigma tradizionale nello
sviluppo di applicazioni software, dove tutte le funzionalità e i servizi sono
integrati e operano come una singola unità coesiva. In questo modello ar-
chitetturale, tutti i componenti dell’applicazione sono strettamente accoppiati
all’interno di una base di codice unificata, condividendo risorse comuni come
database, memoria e processi di esecuzione.

Le caratteristiche distintive delle architetture monolitiche includono la cen-
tralizzazione della logica applicativa in un singolo artefatto di cui fare il deploy,
la condivisione diretta di risorse tra componenti senza sovraccarico di rete, e
la gestione unificata del ciclo di vita dell’applicazione. Tutti i processi che
compongono il sistema sono eseguiti all’interno dello stesso spazio di indiriz-
zamento, permettendo comunicazioni dirette in memoria tra i diversi moduli
funzionali.

16

Questo approccio architetturale offre vantaggi significativi in termini di
semplicità di sviluppo e deployment, chiarezza dei processi di business attra-
verso un flusso end-to-end facilmente tracciabile, e ridotta complessità operati-
va dovuta all’assenza di comunicazioni di rete tra componenti. La validazione
locale risulta semplificata, in quanto è possibile eseguire e testare l’intero am-
biente applicativo su una singola macchina, facilitando il processo di sviluppo
e debug.

Tuttavia, le architetture monolitiche presentano limitazioni significative che
emergono con la crescita dimensionale del sistema e dei team di sviluppo.
La scalabilità è vincolata alla necessità di dimensionare l’intera applicazione
anche quando solo specifici moduli richiedono risorse aggiuntive, comportando
inefficienze nell’utilizzo delle risorse. L’evoluzione tecnologica risulta complessa
e la manutenibilità decresce progressivamente con l’aumento della complessità
del sistema [76].

Il forte accoppiamento tra componenti introduce rischi significativi per la
disponibilità del sistema, dove il malfunzionamento di un singolo modulo può
compromettere l’intero ecosistema applicativo [19]. Inoltre, la gestione di team
di sviluppo numerosi su una singola base di codice genera conflitti di integrazio-
ne e richiede coordinamento estensivo tra i diversi gruppi di lavoro, limitando
la capacità di sviluppo parallelo e indipendente delle funzionalità [72].

1.1.1 Architetture monolitiche modulari

Tra le possibili architetture di tipo monolitico, si riporta una soluzione chia-
mata ’modulare’ in quanto presenta le classiche caratteristiche di una architet-
tura monolitica ma mantiene una separazione modulare tra i vari componenti,
garantendo una maggiore flessibilità.

Il modello monolitico modulare è costituito da diversi componenti modulari
con un singolo database, come un’unità quantica unica (vd. Figura 1.1). Que-
sta architettura rappresenta un compromesso tra la semplicità del monolite tra-
dizionale e la necessità di organizzazione modulare che faciliti la manutenibilità
e l’evoluzione del sistema.

La caratteristica distintiva di questo approccio risiede nella separazione
logica dei domini all’interno della stessa unità di deployment. Ogni dominio
applicativo viene implementato come componente separato, mantenendo però
l’esecuzione all’interno dello stesso processo e la condivisione di un database
comune. Questa strutturazione consente di preservare i vantaggi operativi
del monolite, eliminando la complessità delle comunicazioni di rete, mentre
introduce un’organizzazione che riflette la struttura del business.

La separazione accurata tra domini e design dei dati risulta particolarmente
importante in questa architettura, poiché facilita potenziali migrazioni future

17

Figura 1.1: Architettura monolitica modulare

verso architetture distribuite. Mantenendo tabelle e asset di database logica-
mente separati per ciascun dominio, l’architettura prepara il terreno per una
possibile evoluzione verso microservizi senza richiedere una ristrutturazione
completa del sistema [72].

1.2 Architetture software distribuite

Le architetture distribuite rappresentano un paradigma fondamentale nel-
l’ingegneria del software moderno, dove i componenti del sistema sono distri-
buiti attraverso più calcolatori collegati in rete, comunicando e coordinandosi
mediante il passaggio di messaggi od eventi. Questo approccio si contrappo-
ne alle architetture monolitiche tradizionali, offrendo vantaggi significativi in
termini di scalabilità, resilienza e flessibilità tecnologica.

Le caratteristiche distintive delle architetture distribuite includono la de-
composizione funzionale, dove il sistema viene suddiviso in componenti distinti
che operano in modo autonomo, e la distribuzione fisica, con componenti che
risiedono su nodi diversi della rete. Questo paradigma introduce tuttavia an-
che nuove complessità, come la gestione della latenza e partizionamenti della
rete, la consistenza dei dati distribuiti, la disponibilità dei servizi, e la necessità
di meccanismi robusti per la gestione dei fallimenti del sistema.

Le architetture distribuite si sono evolute attraverso diversi paradigmi, dalle
Service Oriented Architectures (SOA) con i loro Enterprise Service Bus cen-

18

tralizzati, alle architetture a microservizi che privilegiano il disaccoppiamento
e la granularità fine, fino alle architetture event-driven che sfruttano eventi
asincroni per la coordinazione tra componenti. Ciascun approccio presenta
specifici vantaggi e compromessi che devono essere valutati in base ai requisiti
del dominio applicativo e ai vincoli operativi dell’organizzazione.

La scelta di un’architettura distribuita comporta inevitabilmente l’accet-
tazione di maggiore complessità operativa, come il deployment distribuito, in
cambio di benefici in termini di scalabilità, flessibilità tecnologica, e capacità
di evoluzione del sistema.

1.2.1 Architetture Orientate ai Servizi

Le architetture orientate ai servizi (in inglese, Service Oriented Architec-
tures, ’SOA’), rappresentano un modello in cui la logica del sistema viene
decomposta in diverse unità distinte, dette ’servizi’.

Un servizio rappresenta una componente software che è accessibile all’inter-
no della rete in cui si trova. Collettivamente, tutti i servizi che fanno parte della
stessa rete, compongono l’intera logica del sistema, utilizzando un approccio
distribuito sia dal punto di vista logico che spaziale.

Le caratteristiche chiave di queste architetture, è che permettono di otte-
nere:

• Indipendenza e autonomia tra i servizi: ciascuno di essi definisce
un proprio confine tecnico di cui ha pieno il controllo e permette alta
riusabilità, confinando in un unico servizio la logica che lo caratterizza.

• Eterogeneità: di linguaggi e tecnologie utilizzate.

• Interoperabilità: sfruttando standard e convenzioni condivise tra i vari
servizi mediante contratti, astraendo dalla logica sottostante.

Ogni servizio permette di essere trovato da altri servizi, ed espone un’in-
terfaccia che abilita la comunicazioni tra essi.

Topologia Guidata dall’Orchestratore

Questa topologia è caratterizzata dalla decomposizione tecnica in diversi
in servizi, per supportare la riutilizzabilità.

Sistemi che utilizzano architetture di tipo SOA sono composti da diversi
servizi distribuiti, che rendono il sistema complesso, per cui è necessario definire
un orchestratore che permetta di gestire la complessità del sistema.

I servizi sono separati in diversi ’layer’ che identificano diversi livelli in cui
un servizio si può trovare:

19

Figura 1.2: Topologia orientata all’orchestratore per architetture orientate ai
servizi

• Business services: sono servizi posizionati al livello più alto, definisco-
no il punto di ingresso alla logica del sistema, sono definiti dall’utente e
non contengono implementazioni ma solo interfacce per definire input e
output, che vengono implementate dai servizi di tipo ’enterprise services’.

• Enterprise services: contengono le implementazioni specifiche delle in-
terfacce dei ’business services’, permettendo di sviluppare soluzioni che
possono essere riutilizzate attraverso le medesime definizioni. Questo
approccio permette di generare una collezione di asset riutilizzabili nella
forma di enterprise services ma data la dinamicità del mondo reale, nono-
stante la possibilità di riutilizzare implementazioni già esistenti, rimane
la problematica di dover adattare o estendere queste soluzioni in base a
nuovi requisiti di dominio e tecnologie.

• Application services e infrastructure services: riguardano servizi
che espongono operazioni di supporto ad altri servizi (come il monito-
raggio, autenticazione e autorizzazione), e servizi che non richiedono di
essere riutilizzati, per cui tendono ad essere implementazioni puramente
concrete.

Business services ed enterprise services sono collegati tra loro mediante ’en-
terprise service bus’ (ESB) che svolge la funzione di orchestratore e permette

20

l’interoperabilità tra i servizi, fornendo un bus omogeneo pensato per connette-
re tra loro servizi mediante una API [42], questo è caratterizzato dalle funzioni
di:

• Orchestration engine: mette a disposizione funzionalità tipiche di un
orchestratore come la coordinazione per le transazioni, gli sviluppatori
devono solamente collegarsi al bus e specificare la destinazione, l’ESB si
occupa autonomamente di rilevare e spedire le comunicazioni al endpoint
corrispondente mediante i canali [9].

• Integration hub: funge da centro integrativo per permettere la co-
municazione tra servizi eterogenei. Il suo scopo è quello di facilitare
l’interoperabilità tra servizi diversi che altrimenti potrebbero non riu-
scire a comunicare tra loro a causa, ad esempio, della eterogeneità delle
strutture, formati o protocolli con cui sono rappresentate le informazioni.
L’ESB si occupa di mappare e trasformare questi dati in modo che ogni
servizio possa interpretarli correttamente. Ciascun servizio comunica con
gli altri mediante dei canali che sono qui definiti (comunicazione che può
essere punto-punto o punto-multipunto, quindi tra coppie di servizi o
broadcast) e la logica di traduzione e interpretazione dei dati è definita
per ciascun canale.

In questa architettura, tutte le richieste attraversano l’Enterprise Service
Bus, che agisce come intermediario per tutte le chiamate che vengono effettua-
te all’interno dell’architettura: un servizio inoltra una richiesta per messaggio
verso il servizio target mediante la API esposta dall’ESB, questa viene raccol-
ta dall’orchestratore, viene effettuata una traduzione attraverso l’integration
hub che effettua le operazioni di traduzione e routing, e il messaggio viene poi
inoltrato verso il servizio enterprise obiettivo [72]; in questo modo si permette
la comunicazione tra i processi rappresentanti le diverse applicazioni che com-
pongono il sistema, che possono essere invocate a seguito di eventi o consumer
esterni. Non esistono standard ufficiali che definiscono esattamente quali servi-
zi debbano essere implementati all’interno di un ESB, ma tipicamente vengono
forniti servizi riguardo il trasporto, eventi e mediazione tra servizi, in modo
da agevolare l’integrazione in sistemi complessi eterogenei che comunicano con
esso mediante adattatori.

1.2.2 Architetture a Microservizi

Le architetture a microservizi rappresentano un approccio architetturale
che struttura un’applicazione come una collezione di servizi distribuiti, carat-
terizzati da granularità fine, debolmente accoppiati e sviluppabili in modo il

21

Figura 1.3: Architettura a microservizi

più possibile indipendente dagli altri. Questo paradigma architetturale è emer-
so come evoluzione delle architetture orientate ai servizi (SOA), introducendo
principi più rigorosi di modularità e autonomia dei servizi (vd. Figura 1.3).

Tra le caratteristiche fondamentali si riporta principalmente la granula-
rità fine con cui è partizionato il sistema, in modo che ciascun servizio svolga
un’unica funzionalità in maniera autonoma rispetto agli altri, garantendo una
maggiore flessibilità nella progettazione e nell’evoluzione del sistema, consen-
tendo modifiche localizzate senza impatti significativi su altri componenti del
sistema. Ogni microservizio mantiene la propria base di dati, quindi mantie-
ne la propria persistenza senza condivisione diretta con altri servizi e gestisce
autonomamente il proprio ciclo di vita, dallo sviluppo al deployment. Questa
autonomia si estende alla scelta delle tecnologie, dei linguaggi di program-
mazione e degli stack tecnologici più appropriati per il dominio specifico del
servizio.

La comunicazione avviene esclusivamente attraverso interfacce di rete ben
definite, tipicamente utilizzando protocolli come HTTP/REST, messaggisti-
ca asincrona o gRPC. Questa caratteristica elimina la condivisione diretta di
risorse in memoria o database, rafforzando l’isolamento e l’indipendenza dei
servizi [72] [68].

Le architetture a microservizi traggono ispirazione dai principi del Domain-
Driven Design (DDD) [15], in particolare dal concetto di bounded context.
Ciascun microservizio dovrebbe idealmente rappresentare un bounded context

22

Figura 1.4: Bounded Contexts

distinto, con un modello di dominio coerente e ben definito (vd. Figura 1.4).
Questo approccio facilita:

• Coesione interna: elementi strettamente correlati dal punto di vista
funzionale rimangono all’interno dello stesso servizio

• Accoppiamento ridotto: minimizzazione delle dipendenze tra diversi
domini di business

• Evoluzione indipendente: possibilità di effettuare modifiche riguardo
il proprio contesto senza impatti esterni

• Linguaggio ubiquo: mantenimento di un vocabolario coerente all’in-
terno di ciascun contesto

L’integrazione tra DDD e architetture a microservizi offre un framework
robusto per la progettazione di sistemi distribuiti. Il DDD fornisce le basi
metodologiche per identificare i confini appropriati dei servizi, mentre le archi-
tetture a microservizi offrono l’infrastruttura tecnica per implementare questi
confini in modo efficace.

La chiave del successo risiede nell’applicazione rigorosa dei principi DDD
nella fase di design, seguita da un’implementazione pattern all’interno di ogni
microservizio. Questo approccio garantisce sistemi che non solo sono tecnica-
mente robusti, ma che riflettono accuratamente la complessità e l’evoluzione
del dominio che supportano.

23

1.2.3 Architetture ad Eventi

Le architetture ad eventi (Event-Driven Architecture, EDA) rappresentano
un paradigma architetturale che organizza l’applicazione attorno alla produ-
zione, rilevazione e consumo di eventi. Questo approccio si basa sul concetto
che le modifiche di stato nel sistema vengono rappresentate come eventi che
vengono propagati attraverso il sistema per notificare componenti interessati,
permettendo una reazione dinamica e asincrona ai cambiamenti.

Un evento rappresenta un cambiamento significativo nello stato del sistema
o un’azione che si è verificata in un determinato momento. Gli eventi sono
immutabili e contengono informazioni sufficienti per permettere ai consumatori
di comprendere cosa è accaduto e reagire di conseguenza.

La comunicazione publish-subscribe tipicamente adottata da architetture
ad eventi è una caratteristica fondamentale che distingue queste architetture
dai modelli tradizionali basati su richiesta-risposta, permettendo maggiore di-
saccoppiamento e abilitando la reazione ai cambiamenti notificati dagli altri
servizi, dove gli eventi sono generati da un produttore, che pubblica un ag-
giornamento ogni volta che si verifica un cambiamento di stato all’interno del
proprio dominio, che viene raccolto ed inoltrato da un intermediario verso i con-
sumatori, componenti che ricevono ed elaborano solamente gli aggiornamenti
a cui sono interessati [72].

1.3 Differenze tra le architetture descritte

Tutte le architetture descritte in precedenza presentano proprietà non-
funzionali uniche che rendono ciascuna di esse una valida soluzione a differenti
questioni architetturali, per cui non esiste una soluzione unica, ma a secon-
da delle caratteristiche e requisiti che devono essere garantiti, è necessario
selezionare la soluzione architetturale ottimale.

Architetture basate sui servizi, come SOA e MSA, e ad eventi (EDA), sono
pensate per sistemi di grandi dimensioni e sono molto utilizzate per l’implemen-
tazione di applicazioni enterprise e web-based che richiedono alta scalabilità e
facile manutenibilità, oltre a garantire incapsulamento, basso accoppiamento,
alta componibilità e riuso, caratteristiche che non sono generalmente garantite
da architetture monolitiche.

Le SOA sono efficiaci per sistemi enterprise complessi composti dall’etero-
geneità di applicazioni e servizi [42], per cui tende ad essere una delle soluzioni
più adottate da aziende dove c’è forte condivisione e dipendenza tra servizi
che utilizzano dati e protocolli di tipo diverso, per via dell’acquisizione in tem-
pi diversi delle varie tecnologie; architetture a microservizi sono più adatte
a sistemi di dimensione ridotta e ben partizionati, piuttosto che sistemi en-

24

terprise su larga scala e permettono maggiore modularità, riuso e scalabilità
rispetto alle altre, esponendo API che possono essere utilizzate da altri servi-
zi [73] e riguarda la creazione di componenti con funzionalità atomiche, che
possono essere esposte come servizi, i maggiori benefici di queste architetture
riguardano lo sviluppo e il deploy indipendente dai servizi che si appoggiano
ad esse, e favoriscono la scalabilità in maniera indipendente rispetto all’intero
ecosistema delle applicazioni; servizi progettati in questo modo facilitano la
comunicazione mediante API REST o Messaging Queues (MQ) [79]; inoltre
presentano basso accoppiamento, in modo tale da ridurre la dipendenza tra
i servizi e facilitare la modifica senza causare effetti a cascata su altri [79];
favoriscono il riuso, in quanto modulari, ma necessitano di capacità robuste in
termini di CI-CD per garantire la compatibilità tra i servizi ed implementare
correttamente architetture a microservizi che garantiscano le caratteristiche
sopra riportate [3].

1.3.1 Differenza tra Enterprise Service Bus e Message-
Oriented Middleware

Nell’ambito dell’integrazione di sistemi distribuiti, la scelta tra Enterprise
Service Bus (ESB) e Message-Oriented Middleware (MOM) rappresenta una
decisione architettuale cruciale che impatta significativamente sui requisiti non-
funzionali del sistema.

Entrambe le tecnologie offrono soluzioni per la comunicazione inter-servizio,
ma si differenziano sostanzialmente nell’approccio, nella complessità imple-
mentativa e nelle garanzie fornite:

• Enterprise Service Bus: tecnologia più complessa e costosa da imple-
mentare e mantenere rispetto ai message-oriented middleware, può essere
utilizzato come MOM, ma aggiunge anche altre funzionalità, agisce co-
me mezzo di comunicazione tra diverse applicazioni enterprise fornendo
un’integrazione tra i diversi servizi mediante l’uso di API (ogni servizio
che utilizza l’ESB, espone mediante esso una API che attraverso diversi
canali può essere utilizzata per la comunicazione e traduzione dei dati tra
i servizi). Permette la conversione tra diversi protocolli e trasformazione
dei dati tra diversi formati. Sono tipicamente utilizzati per integrazioni
complesse tra diversi sistemi e servizi ed è possibile utilizzare soluzioni
decentralizzate per evitare che diventi un ’single point of failure’ [21] [50].

Il principale svantaggio è dovuto al fatto che non comprende una logica
di rilevazione automatica del destinatario di un messaggio, ma il servizio
che utilizza un ESB deve comunicare mediante uno specifico canale per
inoltrare un messaggio ad un servizio in un certo formato, ed utilizzarne

25

un altro per altre tipologie di formati, meccanismo che non è automatiz-
zato dall’ESB ma ogni servizio deve selezionare autonomamente il canale
corrispondente.

La centralizzazione di ogni tipo di comunicazione tra servizi, rallenta la
capacità di evoluzione ed adattamento ai cambiamenti rispetto a nuove
tecnologie, che devono essere adattate ed implementate ad ogni nuovo
cambiamento. I vantaggi riguardano la traduzione dei dati da un formato
ad un altro per permettere l’interoperabilità tra servizi sia legacy che più
recenti [50].

• Message-Oriented Middleware: tecnologia più semplice rispetto ad
un ESB, abilita lo scambio di messaggi tra servizi di uno stesso siste-
ma, effettuando routing di messaggi tra una e più destinazioni in un
ambiente distribuito composto da piattaforme eterogenee; permette un
forte disaccoppiamento tra producer e consumer, che non necessitano di
connessioni dirette, per cui non è necessario che ciascun servizio conosca
la locazione degli altri, mantenendo quindi un livello di astrazione più
alto; i messaggi sono garantiti essere inviati nello stesso ordine in cui
sono ricevuti.

Alcune implementazioni allo stato dell’arte hanno architetture distribui-
te composte da diversi broker per cluster che garantiscono maggiore sca-
labilità e rapidità nell’invio di messaggi, oltre che facilitare la raccolta
ed elaborazione di log scambiati tra i servizi mediante propri database,
inoltre, considerando il caso di architetture distribuite, si evitano cen-
tralizzazioni che possono diventare colli di bottiglia e rallentare l’intero
sistema, non rivelandosi ’single point of failure’ e quindi permettendo
maggiore resilienza [43] [80].

Il principale svantaggio è la mancanza di traduzione da un formato ad
un altro dei messaggi, come può essere JSON a XML e viceversa, per cui
è necessario concordare a priori tra i diversi servizi un linguaggio comune
per lo scambio dei dati o una logica di traduzione dei dati incapsulata
all’interno di ogni servizio per poter continuare ad utilizzare il sistema
già esistente.

Questa tecnologia è una buona soluzione per architetture a microservizi
dove è necessaria alta disponibilità e scalabilità, e permette una maggiore
robustezza rispetto a soluzioni centralizzate. Considerando ’event bro-
kers’ è possibile utilizzare broker per scambio di eventi che mantengono
le informazioni scambiate tra i servizi all’interno di un proprio database
(a differenza di ’message brokers’ dove le comunicazioni tra i servizi sono
di tipo ’fire-and-forget’ dove le informazioni scambiate non sono mante-

26

nute), e che può essere eventualmente utilizzato come ’single source of
truth’ tra i servizi che ne fanno uso, in modo da poter richiedere nuova-
mente tutti gli eventi passati, con diverse applicazioni tra cui quelle di
riallineamento dei dati o monitoraggio e analisi della sequenza di eventi
scambiati.

1.3.2 Differenza tra le architetture SOA e MSA

La progettazione di sistemi enterprise moderni si trova spesso di fronte alla
scelta tra Architetture Orientate ai Servizi e Architetture a Microservizi, due
paradigmi che, pur condividendo filosofie simili di decomposizione funzionale,
presentano caratteristiche architetturali distintive.

Le differenze tra questi approcci si manifestano principalmente a livel-
lo di requisiti non-funzionali, influenzando aspetti cruciali come scalabilità,
manutenibilità e resilienza del sistema.

• Disaccoppiamento e modularità: entrambe le architetture offrono
un buon livello di indipendenza e disaccoppiamento tra i servizi, dove
però le architetture a microservizi mostrano un livello maggiore di essi.

Ciascuna architettura definisce un proprio confine tecnico di cui ha pie-
no controllo e permette alta riusabilità, mediante API, confinando in un
unico servizio la logica che lo caratterizza, questo rende i servizi tra loro
sufficientemente isolati da permettere la riduzione di effetti dovuti alla
dipendenza tra servizi, rendendo il sistema più solido rispetto ai cam-
biamenti, ed evitando malfunzionamenti a cascata dovuti tipicamente al
forte accoppiamento tra essi.

Entrambe le architetture hanno tra i principali obiettivi quello del riuti-
lizzo dei servizi, cioè identificare e unificare in un unico servizio tutte le
parti comuni a ciascuna divisione che componeva il precedente il siste-
ma, in modo da renderla autonoma e indipendente dalle altre e poterla
riutilizzare modularmente.

La sostanziale differenza tra esse è la granularità con cui viene effettuato
il partizionamento dei servizi: nelle architetture a microservizi la gra-
nularità è più fine, e questo garantisce diversi vantaggi tra cui quello
di ottenere una maggiore modularità e ridurre maggiormente l’accop-
piamento tra i servizi, in quanto ogni servizio rappresenta una singola
funzionalità e non un insieme di essi, per cui non è necessario dipendere
dall’intero servizio per richiedere solo una parte delle funzionalità che
offre, come invece accade nelle SOA, per cui ciascun cambiamento ha
una maggiore possibilità di causare malfunzionamenti in altri servizi a
cui dipende [72].

27

• Eterogeneità: essendo architetture distribuite con un confinamento
specifico dei servizi, è possibile l’utilizzo di diversi linguaggi e tecnologie
per ciascun servizio, pur garantendo l’interoperabilità tra essi.

• Interoperabilità: entrambe le architetture garantiscono l’interoperabi-
lità dei servizi sfruttando standard e convenzioni condivise tra di essi
mediante contratti che sono indipendenti dalla logica sottostante.

Utilizzare l’integration hub di un ESB permette inoltre la comunicazio-
ne tra servizi che utilizzano protocolli e standard di comunicazione e
scambio di dati differenti, garantendo una maggiore interoperabilità ma
aumentando la complessità del sistema, dove invece un broker permette
la comunicazione tra servizi che utilizzano lo stesso protocollo e rappre-
sentazione delle informazioni, ma essendo meno complesso permette di
ottenere prestazioni maggiori.

• Scalabilità: entrambe le architetture mostrano un ottimo livello di sca-
labilità, dove le MSA mostrano un livello leggermente superiore, dovuto
principalmente alla granularità più fine del partizionamento per cui è pos-
sibile aggiungere facilmente risorse al solo servizio in cui sono richieste,
anziché all’intero ecosistema delle applicazioni, rendendo più semplice la
scalabilità che è invece più limitata nel caso di SOA, in quanto la granu-
larità dei servizi è meno fine [3]; inoltre, utilizzare server con architetture
a microservizi permette di effettuare scaling orizzontale dove invece ar-
chitetture monolitiche permetterebbero solamente scaling verticale [81]
[37].

• Performance: a differenza di altre caratteristiche dove si mostra una
netta differenza tra queste due architetture, non c’è una sostanziale diffe-
renza nelle prestazioni in quanto entrambe condividono lo stesso princi-
pio di partizionamento in diversi servizi, con una architettura distribuita,
in cui i servizi comunicano tra loro per lo scambio di informazioni allo
stesso modo in entrambe i casi. La differenza sostanziale risiede nell’im-
plementazione e nelle risorse a disposizione dei singoli servizi, che può
permettere maggiori prestazioni in una maniera che è però indipendente
dall’architettura del sistema complessivo.

• Robustezza: architetture a microservizi mostrano una forte robustez-
za, se implementate in modo da poter governare correttamente eventuali
problematiche riguardo al partizionamento della rete e l’isolamento dagli
altri microservizi, in quanto ciascun microservizio contiene un proprio
database che non è condiviso con altri servizi e permette, mediante l’iso-
lamento dei dati, di garantire il corretto funzionamento nonostante even-

28

tuali malfunzionamenti di altri servizi [72]. Inoltre essendo la granularità
fine e fornendo ciascun servizio una funzionalità atomica rispetto a quan-
to accade nelle SOA che permette minor accoppiamento e dipendenza tra
servizi, il rischio di malfunzionamenti a cascata è ridotto.

29

Capitolo 2

Standard per l’Interoperabilità
nella Sanità Digitale

Prima di parlare delle architetture software utilizzate nel caso di studio di
AUSL Romagna, è necessario un approfondimento riguardo gli standard per
la codifica, rappresentazione e scambio di dati utilizzati in ambito sanitario.

Al momento della stesura di questo documento, gli standard utilizzati per
la codifica dei dati sono regolati a livello nazionale ed internazionale, per cui
è necessario seguire le regole l̀ı definite. Per quanto riguarda standard per la
persistenza e la condivisione di dati sanitari, negli ultimi anni, due di questi
hanno suscitato un certo interesse: HL7 FHIR e OpenEHR, e sono attualmente
utilizzati dalla maggior parte delle aziende di questo settore, motivo per cui ver-
ranno descritti e trattati più nel dettaglio nelle prossime sezioni, concludendo
con un confronto che mette in luce le differenze tra i due standard.

2.1 Standard nell’ambito informatico

Gli standard sono documenti che stabiliscono regole, linee guida o specifi-
che tecniche che garantiscono l’interoperabilità e la compatibilità tra diverse
tecnologie che possono essere utilizzate nei sistemi informatici.

Riguardo lo specifico ambito dell’informatica medica, i dati che sono presi
in considerazione sono sono denominati EHR (Electronic Health Record, in
italiano Fascicolo Sanitario Elettronico o Cartella Clinica Elettronica) ed è la
raccolta digitale e strutturata di tutte le informazioni cliniche di un paziente
prodotte e utilizzate nell’ambito del sistema sanitario.

Standard informatici per la rappresentazione comune di EHR, sono utiliz-
zati per garantire l’interoperabilità tra diverse tecnologie e servizi del sistema
informativo sanitario.

32

2.2 Standard per la codifica dei dati sanitari

Regole nazionali ed internazionali definiscono standard per la codifica dei
dati, in modo da avere una rappresentazione comune di essi:

• International Classification of Diseases (ICD): sistema internazio-
nale di classificazione delle malattie, interventi chirurgici e procedure
diagnostiche e terapeutiche

• Logical Observation Identifiers Names and Codes (LOINC):
standard internazionale di codifica e descrizione delle osservazioni cli-
niche e di laboratorio che permette di leggere ed interpretare dati pro-
venienti da sistemi operativi differenti, identificando univocamente gli
esami.

• Systematized Nomenclature of Medicine, Clinical Terms (SNO-
MED CT): dizionario multilingue di termini clinici standardizzati che
facilita lo scambio di informazioni rilevanti tra gli operatori sanitari

2.3 Standard per la condivisione e la persi-

stenza dei dati elettronici sanitari

Come anticipato in precedenza, gli standard attualmente più utilizzati dalle
aziende di questo settore, sono FHIR ed OpenEHR. Ciascuno di essi ha come
obiettivo quello di garantire l’interoperabilità tra i servizi del sistema informa-
tivo sanitario e permettere di raggiungerlo mediante approcci differenti; l’uno
definendo delle regole per la condivisione e il recupero di informazioni sanitarie
tra i diversi servizi del sistema informativo, e l’altro proponendo un modello
comune per la persistenza dei dati.

2.3.1 HL7 FHIR R5

Health Level Seven (HL7) [36] fa riferimento ad un insieme di standard e
framework pensati per facilitare lo scambio, l’integrazione, la condivisione e il
recupero di informazioni sanitarie in modo efficiente tra diverse applicazioni e
sistemi informativi, e si concentra sul livello 7, livello applicativo del modello
Open Systems Interconnection (OSI) [38].

Tra questi standard, figura lo standard FHIR [27], acronimo di Fast Heal-
thcare Interoperability Resources, standard di nuova generazione che permette
l’interoperabilità tra sistemi informativi sanitari e dispositivi biomedicali. In

33

questa trattazione si farà riferimento all’ultima versione rilasciata al momento
della stesura di questo documento, la release 5 (R5).

Lo standard FHIR è pensato per uno scambio sicuro di dati elettronici di
tipo sanitario (EHR), in modo flessibile e adattabile, in modo da poter essere
utilizzato per diverse tipologie di dispositivi e sistemi informativi, e per la
semplicità e rapidità di adottamento, comprensione e utilizzazione, con una
una filosofia fortemente orientata al dominio.

Combina le caratteristiche migliori e principali di diversi altri standard
che lo hanno preceduto con standard moderni web-based per permettere l’in-
tercomunicazione dei sistemi informatici, imponendo una definizione per la
rappresentazione dei dati ad esempio per API REST in JSON, e XML o RDF.

In questo elaborato ci è concentrati solamente su alcuni aspetti che sono
stati ritenuti rilevanti per il caso d’uso specifico di AUSL Romagna che verrà
affrontato in seguito, in quanto l’applicazione di questo standard non sempre
utilizza correttamente le regole di conformità definite dallo standard ed atte a
garantire l’interoperabilità tra i servizi del sistema informativo sanitario ete-
rogeneo considerato. Se applicate, permettono di sfruttare tutti i benefici di
interoperabilità, flessibilità e adattabilità che il modello mette a disposizione,
se applicato in modo più conservativo si rischia di ottenere l’effetto contrario.

Moduli

Il framework FHIR è composto di diversi moduli, ciascuno dei quali si
occupa di una specifica area del dominio, per cui il linguaggio ubiquo è già parte
del modello, ciascun modulo contiene un insieme di terminologie e un modello
specifico per come le informazioni devono essere codificate e sono visualizzabili
alla Figura 2.1. Con questo elaborato ci si concentrerà prevalentemente sui
primi due livelli.

Risorse

Il componente base del modello FHIR è la ’resource’ [30], ogni categoria
di dato disponibile nel settore sanitario può essere rappresentato come una
risorsa (e.g., battito cardiaco, procedure, farmaci, allergie, ecc...).

Le diverse tipologie di risorse sono raggruppate per livelli, ciascuno dei
quali contiene informazioni riguardo una specifica area del dominio, un elenco
delle risorse è visualizzabile alla Figura 2.2).

Ciascuna risorsa è composta da una serie di caratteristiche comuni, tra cui
identificatori, versioni FHIR di riferimento a cui la risorsa è conforme, etichette
di sicurezza che verificano l’autorizzazione a letture e scritture sulle risorse, i
dati che possono essere restituiti in base al ruolo di chi richiede la risorsa, e
’riferimenti’ ad altre risorse, che permettono di combinare risorse per formare

34

Figura 2.1: Moduli che compongono lo standard FHIR

Figura 2.2: Suddivisione in livelli delle risorse FHIR

35

Figura 2.3: Esempio di risorse FHIR correlate

casi d’uso specifici mediante una rete di informazioni di URL o URI (come
’uuid’ e ’oid’), senza cos̀ı deviare dalla struttura base definita dalla specifica
FHIR.

Per raggruppare un insieme di risorse tra loro correlate in una collezio-
ne, è possibile utilizzare la risorsa ’Bundle’, che è utilizzata come contenitore
di risorse, in modo da essere acceduto come un’unica risorsa formata da un
aggregato di esse (vd. Figura 2.4).

Per inserire vincoli e regole sugli elementi che compongono le singole risor-
se, sono previsti meccanismi denominati ’profili’, che consentono di adattare
le risorse standard ad esigenze specifiche senza deviare dalla struttura di ba-
se, adattando quelle generiche già esistenti a casi d’uso specifici, tramite le
’estensioni’.

L’aggiunta di restrizioni mediante i profili deve seguire una ’definizione
strutturale’ che definisce le regole da rispettare per effettuarlo. Alcuni vincoli
riguardano ad esempio la cardinalità degli elementi all’interno di una risorsa,
tipi di elementi permessi, elementi di cui si hanno riferimenti che devono es-
sere in linea con altri profili pre-esistenti e definizioni di codifiche del dato da
rispettare.

Regole di conformità

Applicazioni che seguono alcune regole riguardo framework per lo scambio
dei dati, sono dette conformi ad esse. Non è obbligatorio seguire queste regole,
ma le applicazioni conformi possono dichiarare che seguono le regole definite
nella documentazione e permettono una maggiore interoperabilità tra esse.

36

Figura 2.4: Esempio di Bundle di risorse FHIR

Figura 2.5: Regole di conformità

Essendo pensate per applicazioni di diversa natura, le regole definite per le
applicazioni non garantiscono comunque totale interoperabilità.

Le applicazioni possono dichiarare di essere conformi a diverse tipologie di
framework (vd. Figura 2.5):

• RESTful FHIR: riguardo la conformità alle regole sulle API REST.

• FHIR messaging: riguardo la conformità sullo scambio di messaggi tra
applicazioni.

• FHIR documents: riguardo la conformità sullo scambio di documenti
tra applicazioni.

Ciascuna di esse verrà spiegata nelle prossime sezioni più nel dettaglio. Per
confermare la conformità ad esse, è necessario pubblicare una dichiarazione
di capacità, ’CapabilityStatement’, e può anche contenere alcune informazioni
come profili da seguire per rappresentare bundle di risorse che rappresentano
casi d’uso specifici.

37

Figura 2.6: Struttura richieste e risposte HTTP standard su FHIR

RESTful FHIR

Anche se non obbligatorio, la specifica FHIR è progettata per essere usata
principalmente con interfacce RESTful. L’utilizzo di HTTPS è opzionale ma
per ragioni di sicurezza, è fortemente consigliato. Le transazioni FHIR seguo-
no un semplice pattern di request e response, e le modalità con cui questo può
avvenire sono riportate alla Figura 2.6.

Seguendo lo stile architetturale RESTful definito dalla specifica FHIR [34],
che impone un albero di navigazione di una certa tipologia in modo da rendere
una applicazione conforme a ’RESTful FHIR’, la API descrive le risorse come
un set di operazioni (chiamate ’interazioni’) su risorse dove le istanze per la
risorsa individuale sono gestite in collezioni in base al loro tipo.

Lato server si può scegliere quali interazioni rendere disponibili e quali tipi
di risorse supportano, e successivamente dichiarare quali interazioni e risorse
sono supportate. Un elenco dettagliato di tutte le possibili interazioni, e come
devono essere definite per essere conformi, è visualizzabile alla documentazione
riguardo lo stile RESTful definito nella specifica FHIR.

Le interazioni sono definite come:

VERB [base]/[type]/[id] ? format=[mime-type]

38

Un esempio è il seguente, dove si mostrano le interazioni read e vread
che permettono di effettuare la lettura di una risorsa (all’ultima versione
disponibile) e la lettura di una specifica versione di una risorsa rispettivamente.

GET http://server.org/patients/Patient/23424? pretty=true

GET

http://server.org/patients/Patient/23424/ history/1? pretty=true

Alcune opzioni che possono essere specificate riguardano ad esempio l’in-
clusione di tutte le risorse anziché riferimenti ad esse, utilizzando l’opzione
include:

GET /Patient/123? include=Patient:organization

In questo caso si richiede la risorsa paziente e invece del riferimento alla
risorsa organization, richiede esplicitamente anche quella risorsa per intero.

Come verrà mostrato alla sezione 4.4, se le richieste da parte del client non
richiedono le risorse complete (quindi non è stata inserita l’opzione include),
allora la risposta conterrà la risorsa Bundle con solamente la risorsa richiesta e
i riferimenti alle altre a cui è correlato; in caso contrario, un Bundle con tutte
le risorse richieste per intero.

Per garantire questo tipo di funzionamento, nel primo caso sarà sufficiente
inserire la risorsa nella risposta, mentre nel secondo sarà necessario effettuare
più richieste da parte del client in modo da ottenere per intero tutte le risorse
richieste.

L’API RESTful può essere estesa per supportare altre operazioni oltre al-
le classiche interazioni descritte in precedenza che seguono le azioni CRUD
(Create, Read, Update, Delete) sulle repository della risorsa considerata.
Queste funzionalità sono chiamate ’operations’, e forniscono alcune funzioni
simili al paradigma RPC dove le operazioni hanno parametri di input e out-
put, fornendo l’estensione Execute, e sono utilizzate nel caso in cui il server
ricopra un ruolo essenziale per l’elaborazione della risposta e non solo restituire
l’informazione richiesta, e si richieda una elaborazione di risorse non trasmesse
dalla richiesta, come ’side effects’ [29] [26].

FHIR messaging

Per scambiare messaggi tra i sistemi, è possibile utilizzare RESTful descrit-
to in precedenza, anche se non obbligatorio.

In FHIR un messaggio è inoltrato da una applicazione sorgente ad una
applicazione di destinazione quando avviene un evento, che solitamente corri-
spondono a cose che accadono nel mondo reale [28].

39

I messaggi devono essere formattati seguendo una specifica formattazione
descritta nella documentazione, e sono risorse di tipo Bundle che devono es-
sere definiti secondo regole specifiche per cui possono contenere riferimenti ad
altre risorse, in modo da ridurre la dimensione del payload delle richieste, ma
richiedono quindi un numero maggiore di messaggi per poter raccogliere tutte
le informazioni necessarie [28] [22].

Riguardo lo specifico caso d’uso RESTful, i messaggi sono rappresentati
dalla risorsa Bundle, dato che l’identità del messaggio è rappresentata dal-
l’identificativo del Bundle stesso. Un esempio di richiesta e risposta sono
visualizzabili ai collegamenti riportati in bibliografia [32][33].

Riguardo il capability statement per ’FHIR messaging’, questo deve con-
tenere una lista di tutti i messaggi di eventi supportati (sia come ricevitore
che come mittente) e per ciascun evento, un profilo che indica le risorse che
devono essere contenute all’interno del bundle (se mittente) o che è richiesto
siano contenute (se ricevitore), e ciascuna regola riguardo il contenuto informa-
tivo di ciascuna risorsa, in modo da esporre all’esterno dell’applicazione quali
richieste si aspetti di ricevere e quali risposte inoltrerà.

FHIR documents

La specifica FHIR definisce anche delle regole per lo scambio di documenti,
dove il contenuto da scambiare è contenuto all’interno della risorsa ’Composi-
tion’, una risorsa immutabile che definisce una struttura e contenuti necessari
per documenti definendo un proprio contesto e una attestazione clinica rela-
tiva a chi rilascia la dichiarazione. E’ definita come il primo elemento di un
Bundle formattato secondo regole specifiche visualizzabili alla documentazione
[24] [25].

Un documento rappresenta un insieme di informazioni immutabili che ri-
guardano una dichiarazione a proposito di informazioni di tipo sanitario, com-
prese osservazioni e servizi, ed è redatto da umani, organizzazioni e/o servizi
(in modo che chi effettui queste dichiarazioni sia tracciato). Le risorse di cui
si ha riferimento all’interno di Composition sono diverse, ed è necessario che
siano tutte presenti. Un esempio di documento è riportato alla Figura 2.7.

Archiviazione di dati FHIR

Non esiste uno standard o un approccio consigliato su come debbano essere
archiviate le risorse FHIR nei database. Generalmente sono salvate per intero
per come sono descritte nella documentazione, utilizzando le tecnologie a di-
sposizione come database relazionali SQL (ad esempio con supporto JSON), o
non relazionali NoSQL (e.g., MongoDB, Hadoop), nel formato più convenien-

40

Figura 2.7: Esempio di documento

te (e.g., JSON, RDF in formato Turtle, ecc...) [35], come anche riportato in
diversi casi d’uso specifici [82] [2]

Obiettivi rispetto ai principi non-funzionali

FHIR nasce per permettere una migliore interoperabilità nel settore sanita-
rio, garantendo che i sistemi possano scambiarsi dati con struttura e significato
precisi. L’obiettivo è quello di utilizzare modelli di dati espressivi insieme a me-
todi di scambio semplificati, affinché le informazioni possano essere comprese e
utilizzate da diversi sistemi in modo coerente [31]. Tra i principi architetturali
su cui si basa troviamo:

• Riutilizzo e Componibilità: è progettato per coprire la maggior parte
delle esigenze di interoperabilità con un basso numero di specifiche, con-
centrandosi sui requisiti comuni e generali. Questo significa che le risorse
a disposizione (ad esempio, ”paziente”, ”procedure”, ecc..) sono create
per soddisfare in modo generico le necessità più frequenti, evitando la
creazione di un numero eccessivo di risorse parzialmente sovrapposte o
ridondanti, e possono essere estese con vincoli mediante profili o formare
risorse più complesse mediante riferimenti, in modo da rimanere conformi
al modello base.

• Scalabilità: L’adozione dello stile REST per le API FHIR rende ogni
transazione ’stateless’, il che significa che ogni richiesta contiene tutte le
informazioni necessarie, riducendo l’uso della memoria, ed eliminando la
necessità di ’sticky sessions’ in un ambiente con più server, supportando
la scalabilità orizzontale.

41

• Performance: le risorse sono pensate per essere leggere, in modo da po-
ter essere scambiate rapidamente attraverso la rete, anche in transazioni
complesse che coinvolgono più sistemi, garantendo payload di dimensio-
ne più ridotta a fronte di un maggiore numero di richieste per ottenere
informazioni complete.

• Usabilità: le risorse sono scambiate in formato XML o JSON che è
visualizzabile tramite browser, rendendo semplice la comprensione del
loro contenuto da chiunque.

2.3.2 OpenEHR

OpenEHR è un’organizzazione non-profit che pubblica standard per la rea-
lizzazione di piattaforme per la gestione di dati elettronici di tipo sanitario
(EHR) in modo uniforme, strutturando i dati in un formato standard, con un
focus sulla gestione e persistenza del dato, il reperimento e lo scambio di dati
sanitari nelle cartelle cliniche elettroniche (EHR), in modo da avere il paziente
al centro, il mantenimento di uno storico ed il supporto ai processi clinici [61].

I principi base su cui si fonda sono l’interazione con gli esperti del domi-
nio, per creare modelli che aderiscano alle esigenze piuttosto che usare modelli
sviluppati ad hoc da aziende informatiche, una personalizzazione efficace tra-
mite strumenti low-code, ed interoperabilità garantita a livello architetturale.
I contributi di OpenEHR sono di diverso tipo, organizzati secondo diversi
programmi.

Il principale riguarda la produzione di specifiche che permettano di unifor-
mare architetture, terminologia e processi legati alla gestione dei dati sanitari.
Altri contributi sono invece in campo clinico, con la raccolta di dataset e basi di
conoscenza legate al dominio medico, attività di formazione e disseminazione e
attività di sviluppo software per fornire implementazioni base degli standard.

In questa sezione si ci soffermerà principalmente sull’aspetto di persistenza
dei dati, in quanto scopo principale di questo standard, che è ottimizzato
per raggiungere l’interoperabilità riguardo l’archiviazione e l’interrogazione dei
dati sanitari.

Panoramica generale dal punto di vista architetturale

La specifica di OpenEHR è suddivisa in diversi componenti (vd. Figura 2.8)
[52]. Queste possono poi essere mappate sui specifici riferimenti tecnologici
come JSON ed XML che ne consentono l’uso diretto nello sviluppo

L’architettura è interamente basata sul concetto di avere diversi livelli di
modellazione:

42

openEHR Specification Components

ContentFormalisms Process & CDS

Archetypes...

Foundation types, Definitions, Identifiers...

Implementation Technol...

Conformance (CNF)

Representation...
Task Planning...

REST APIs

JSON schema

XSDs

BMMs

Query Language...
Reference Model RM

Platform Services, APIs...

Guidelines...

openEHR Terminolo...

Figura 2.8: Componenti della specifica OpenEHR

• Reference model (RM): il primo livello, è dato da un modello generico
e stabile da usare come riferimento

• Re-usable content element definitions: il secondo livello, definisce
degli ’archetipi’ che rappresentano definizioni di elementi riusabili.

• Context-specific data set definitions: il terzo livello, definizioni for-
mali per casi d’uso specifici, è dato dalla aggregazione di diversi archetipi
nella forma di ’template’.

Questo ha un impatto sul processo di software engineering e design del
sistema. Il cuore del sistema è infatti basato sul ’reference model’ che essendo
stabile permette di mantenere il sistema nel tempo, mentre gli esperti del domi-
nio producono archetipi e template che vengono poi utilizzati per la creazione
delle applicazioni e servizi che utilizzano la piattaforma di EHR [62].

A partire dal RM che contiene la struttura sulla rappresentazione dei dati,
si generano degli archetipi che contengono gli elementi base l̀ı contenuti, per
poter definire possibili dati specifici definiti dagli esperti del dominio in base
al contesto considerato.

Mediante template si possono formare aggregati di archetipi che possono
essere utilizzati come base per creare dati sanitari (EHR) che sono poi archi-
viati nei database [53] [56]. Per effettuare l’estrazione dei dati, si utilizza una
estensione del linguaggio d’interrogazione SQL denominata AQL (Archetype
Query Language) [54], (vd. Figura 2.9).

Il secondo principio alla base della specifica OpenEHR è la separazione
delle responsabilità, in domini complessi (come quelli sanitari), per gestire la
complessità è necessario suddividere le funzionalità in aree ampie e ben definite,

43

Figura 2.9: Modellazione multi-livello di dati su OpenEHR

creando un sistema di diversi servizi, il modello tipicamente più utilizzato, è
quello basato sulle SOA, per dividere le responsabilità di un complesso sistema
sanitario in un insieme di servizi che comunicano tra loro [55].

L’idea è che adottando un modello comune questi servizi possano collabo-
rare in modo più efficace, dalla scala locale a quella nazionale e in diverse fasi
del percorso clinico del paziente.

Gestione dei dati

Ogni record EHR ha una struttura dati complessa [60] che è riportata in
Figura 2.10 e comprende un oggetto che regola l’accesso alle informazioni,
controllando le impostazioni a riguardo, un oggetto contenente informazioni
di controllo e di stato del record e un contenitore di tutti i dati clinici e am-
ministrativi del record, a loro volta sono strutturate in sezioni gerarchiche che
possono contenere più osservazioni, azioni, istruzioni e informazioni ammini-
strative. Ciascuna osservazione può comprendere anche uno storico di eventi
correlati (vd. Figura 2.11) [65] [64].

Tutte le informazioni contenute in un EHR sono espresse come ’entries’.
Ciascuna di esse fa riferimento ad una qualunque singola informazione di tipo
clinico, può fare riferimento ad esempio al risultato di un referto o una valuta-
zione psichiatrica. Definiscono la semantica alla base del record per cui sono
elemento fondamentale di esso, sono pensate per essere personalizzate in base
al tipo di informazione che devono modellare, per cui possono essere modellate
con archetipi [59] [57].

Un aspetto importante di questo modello è il modo in cui le informazioni
cliniche sono espresse inequivocabilmente con una collocazione temporale che

44

Figura 2.10: Struttura dati OpenEHR

Figura 2.11: Composizione dati OpenEHR

45

Figura 2.12: Diagramma a stati finiti standard per le istruzioni (ISM)

riguarda se il EHR rappresenta ad esempio una diagnosi da verificare, una
misurazione, un fattore di rischio etc.. i diversi sottotipi del EHR comportano
una semantica chiara per questo elemento fondamentale nella gestione delle
basi di dati cliniche.

Questo è anche riportato nella gestione degli ’interventi’ come sopra-tipo
di qualunque prestazione medica. Lo stato di un intervento ha una forma
complessa che deve tenere conto di diversi fattori che possono variare lo stato
dell’intervento stesso in ogni momento (es: reazione ad un farmaco) e può fare
riferimento sia a interventi chirurgici che semplici prescrizioni.

Per modellare correttamente questo sistema è necessario quindi definire una
entità ’instruction’, composta da:

• Activity, che rappresenta gli interventi programmati.

• Action, riferita a quello che è effettivamente successo.

In questo modo è possibile modellare diversi interventi, sia semplici som-
ministrazioni di farmaci che terapie più complesse.

Lo stato di ogni intervento può essere modellato con un diagramma a stati
finiti, in modo da monitorare in ogni momento il suo stato, le attività sono gli
stati e le azioni gli archi (vd. Figura 2.12) [63].

Utilizzare una macchina a stati standard per le istruzioni (ISM) come quel-
la mostrata sopra, permette di definire stati e transizioni standardizzate per
ciascuna attività, indipendentemente dal dato clinico che si vuole modellare.
In questo modo è possibile effettuare una ricerca (query) riguardo gli stati che

46

Figura 2.13: Modello architetturale minimo OpenEHR

sono standardizzati, per trovare tutti gli interventi di un certo tipo in uno
specifico stato.

Modello Architetturale

Dal punto di vista architetturale OpenEHR identifica un ’sistema’ come un
repository logico di cui una organizzazione è responsabile, può quindi rappre-
sentare ad esempio sia il servizio sanitario regionale che un singolo ospedale.
Il sistema è quindi responsabile dei dati che sono l̀ı contenuti [58].

Un sistema EHR minimale è composto da:

• Un repository di EHR

• Un repository di archetipi e template

• Un repository di informazioni demografiche

• Una formalizzazione della terminologia (opzionale)

Archetipi e Template

A partire dal reference model, dove sono definiti concetti componibili di
base invarianti, si possono definire oggetti di dominio e definizioni nella forma
di archetipi e template. Gli archetipi sono separati dai dati e salvati in re-
pository a parte, ed il deploy è effettuato mediante template, che specificano
un set di archetipi da utilizzare per uno scopo specifico, solitamente un ’form’
[66].

47

Figura 2.14: Validazione dati su OpenEHR mediante archetipi e template

Gli archetipi sono pensati per essere riutilizzabili e componibili, mediante
template è possibile creare, combinando uno o più archetipi, definizioni di
contenuti (e.g., referto radiologico, lettera di dimissione ospedaliera, ecc...).

Vengono utilizzati per validare i dati, e salvare solamente le informazioni
effettivamente corrette sull’EHR.

1. L’utente richiede un form.

2. Essendo il form associato ad un template a runtime, questo viene estratto
dallo spazio dei template.

3. L’input fornito dall’utente causa chiamate nel layer application, che mo-
difica i dati del template.

4. Ogni tentativo di cambiamento dei dati viene controllato e validato in
base all’archetipo utilizzato.

5. I dati inseriti sono mantenuti e registrati solamente se considerati validi
rispetto agli archetipi del template.

Quanto descritto è rappresentato in Figura 2.14.

Gli archetipi vengono anche utilizzati come supporto alle query, con una
estensione di SQL: AQL (Archetype Query Language), che supporta la defi-
nizione di query basate sulla struttura degli archetipi. Essendo gli archetipi

48

generici e legati da una struttura gerarchica questo permette di specificare
query con grande flessibilità.

2.4 Differenze tra gli standard HL7 FHIR ed

OpenEHR

Gli standard sopra descritti pongono l’attenzione su aspetti differenti, FHIR
si concentra sullo scambio di dati sanitari, mentre OpenEHR mette il focus
sulla modellazione dei dati e la persistenza.

Entrambi utilizzano standard IT già esistenti e comunemente utilizzati,
come il protocollo HTTP per il layer di application e XML, JSON per la
formattazione dei dati, ed entrambi assumono transazioni di tipo stateless.

Di seguito una analisi e comparazione tra i due standard per mettere in luce
problematiche e soluzioni riguardo requisiti architetturali di interoperabilità ed
altro [39].

Entrambi gli standard sono stati definiti con l’intento di facilitare l’intero-
perabilità, la garantiscono in modi differenti:

Lo standard FHIR non richiede che il dato venga archiviato in un modo
specifico, ma necessita solo di un formato specifico per lo scambio di esso, per
cui la persitenza del dato può essere effettuata nel formato più appropriato
scelto dal servizio stesso, alcune applicazioni concrete dimostrano come si pos-
sano utilizzare database NoSQL per archiviare documenti e messaggi FHIR
come sono, garantendo maggiore flessibilità [2].

È inoltre pensato per essere compatibile con gli altri standard HL7, per cui
l’interoperabilità tra servizi che usano già standard HL7 è agevolata

Questo standard permette ad ogni servizio di comunicare con gli altri se-
guendo le regole di conformità definite nella documentazione, per cui è solo
necessaria una traduzione dei dati dal modello utilizzato internamente al ser-
vizio, a quello di scambio dei dati FHIR conforme a tutti i servizi, in modo
da garantire la corretta comunicazione tra servizi pre-esistenti provenienti da
diversi fornitori [28] [24].

Lo standard OpenEHR fornisce invece una soluzione per la persistenza del
dato, ogni sistema che usa OpenEHR è capace di interpretare e processare
dati di qualunque altro sistema che usa lo stesso standard e dovrebbe essere
possibile scambiare repository tra servizi senza effettuare alcuna modifica.

In questo modo l’interoperabilità è garantita solo se tutti i servizi utilizzano
OpenEHR e in tal caso non ci sarebbe nessuna necessità di traduzione dei dati
tra sistemi, anche se alcuni articoli hanno messo in evidenza che la semplicità
della struttura di archiviazione dei dati induce una logica di recupero dati

49

complessa che impatta negativamente sulle prestazioni riguardo il recupero
dei dati, che richiedono flessibilità [89].

Per quanto riguarda lo scambio dei dati, FHIR adotta una rappresentazione
meno stratificata dei dati rispetto all’organizzazione gerarchica di OpenEHR,
utilizzando un riferimento alle risorse piuttosto che includere l’intera risorsa
in ciascun messaggio, ed è sempre possibile una traduzione dall’uno all’altro
standard [39] abilitando di fatto anche l’uso parallelo di entrambi, in modo
complementare, permettendo perciò l’uso di uno e dell’altro in modo da supe-
rare le limitazioni di ciascuno e applicarli per i casi d’uso per cui sono stati
pensati; è quindi possibile utilizzare OpenEHR per la persistenza dei dati e
FHIR per il loro scambio, in modo da applicarli solamente laddove ottimizza-
ti [69] [1]. Inoltre, indipendentemente dallo standard, è possibile supportare
qualunque database, sia relazionale che NoSQL.

Diversi studi che hanno raccolto progetti e articoli riguardo l’uso di FHIR
per l’interoperabilità tra diverse applicazioni sanitarie, ha mostrato l’efficacia
di questo standard e maggiori prestazioni rispetto allo standard OpenEHR
[70] [44]. Altri studi hanno scelto di utilizzare lo standard HL7 FHIR per via
della sua semplice conversione ad altri formati di dati tipicamente utilizzati
nell’analisi dei dati sanitari [10].

Si conclude che entrambi gli standard possono essere utilizzati in maniera
efficace per ogni applicazione di tipo sanitario, adottando le risorse del modello
di riferimento in base al caso d’uso specifico mediante profili FHIR e arche-
tipi OpenEHR, ma lo standard FHIR presenta una complessità più ridotta,
soprattutto dovuta alla struttura dei messaggi che permettono di scambiare
riferimenti alle risorse, anziché le risorse per intero come invece accade in Ope-
nEHR, riducendo la dimensione del ’payload’ delle richieste HTTP a scapito
di un numero di richieste più alto per poter ottenere informazioni complete;
questo permette generalmente prestazioni migliori rispetto allo standard Ope-
nEHR, e semplifica la traduzione da questo standard ad altri, in modo da
poter utilizzare gli stessi dati per altri scopi. Lo standard OpenEHR ha una
strutturazione più adatta alla persistenza dei dati e la loro interrogazione, per
cui è più conveniente se applicato in questo ambito.

50

Capitolo 3

Architettura del sistema
informativo sanitario di AUSL
della Romagna

3.1 Stato dell’arte delle architetture per siste-

mi informativi sanitari

I sistemi informativi (S.I.) sono l’insieme dei flussi di informazione gestiti
all’interno di un’organizzazione, che acquisisce, elabora, conserva e produce
le informazioni di interesse che consentono all’organizzazione il perseguimento
dei propri scopi, dove massima importanza è data alle modalità con cui i dati
vengono interpretati (cioè trasformati in informazioni) e resi comprensibili,
chiari e univoci.

Per quanto riguarda la sanità, il sistema informativo sanitario (S.I.S.) ha la
funzione di gestire le informazioni utili alla misura e valutazione dei processi
gestionali e clinici, riguarda perciò la rilevazione, elaborazione e diffusione di
dati informativi riguardanti la condizione di salute dei pazienti, fattori che
determinano stati di malattia e rischio, e aspetti riguardo il funzionamento dei
sistemi e aspetti relazionali tra soggetti e sistema sanitario [90].

I primi sistemi informativi sanitari, nati intorno agli anni ’80 del seco-
lo scorso, si occupavano principalmente di aspetti amministrativi e contabili
delle strutture sanitarie, a questi è seguita l’adozione di sistemi per la regi-
strazione e rendicontazione della movimentazione dei pazienti all’interno della
struttura sanitaria (ADT), per registrare le presenze dei pazienti e il transito
tra i reparti. La gestione degli accessi ambulatoriali è stata affidata ai sistemi
di prenotazione CUP.

Alcune discipline con una naturale predisposizione per l’automazione e ge-

52

stione dei dati come la radiologia o settori che potevano beneficiare di una
integrazione dei processi interni come pronto soccorso e cardiologia, guidarono
la nascita dei primi sistemi dipartimentali, sistemi informatici nati per soddi-
sfare esigenze riguardo una specialità confinata (sistemi verticali). Questo ha
però causato la frammentazione dei sistemi informativi sanitari, che non ha
eguali in nessun altro ambito industriale o di servizi, problematica presente
ancora oggi come principale criticità strutturale del settore.

Alcuni approcci a sistemi monolitici sono stati fallimentare in quanto im-
possibilitati a soddisfare contemporaneamente tutte le discipline del settore
in un unico sistema. A queste hanno fatto seguito architetture distribuite con
partizionamento tecnico, dove il sistema è composto da diversi servizi, ciascuno
dei quali si occupa di una delle problematiche da affrontare. La problematica
principale è l’interoperabilità tra questi servizi che non erano più solamente am-
ministrativi e gestionali ma anche clinici, che riguardano il percorso sanitario
del paziente.

Per superare questa problematica alcune aziende hanno effettuato investi-
menti per l’adozione di sistemi come anagrafe contatti ’Master Patient Index’
(MPI): un database centralizzato che contiene tutti i dati anagrafici dei pa-
zienti, in modo da ridurre duplicazioni, disallineamenti e incoerenza nei dati
[40]; clinical data repository (CDR) ed enterprise service bus (ESB) adottan-
do di fatto architetture SOA per la necessità di integrare dati provenienti da
servizi acquisiti in momenti e con tecnologie differenti, da cui la necessità di
un orchestratore che permetta lo scambio e integrazione di dati in un sistema
distribuito di servizi come questo [48].

Come dichiarato da una recente riforma del ministero riguardo i sistemi
informativi sanitari allo stato dell’arte, essendo questi composti da servizi ete-
rogenei, dove applicazioni ’legacy’ e moderne devono interoperare, tipicamente
si utilizzano SOA con orchestratore centrale ESB e servizi più recenti utilizzano
lo standard FHIR per lo scambio dei dati, mentre la maggior parte dei servizi
è ancora implementato secondo architetture tradizionali monolitiche con alcu-
ni progetti in atto per effettuare una transizione verso architetture distribuite
moderne a microservizi [13].

Ogni sistema che gestisce o tratta informazioni sui pazienti possiede fre-
quentemente, ad esempio, una propria anagrafica, degli archivi sulle codifiche
e i dati strutturati, nonché una serie di archivi con i dati che l’applicazione
gestisce. In un’Azienda sanitaria sono dunque presenti sistemi diversi, prodot-
ti da diversi fornitori, molto eterogenei per architettura, tecnologie, funzioni.
La definizione e l’utilizzo di standard come HL7 FHIR consente lo scambio di
messaggi, per trasmettere dati dal sistema dove questi sono originati (produt-
tore) verso altri sistemi che li adoperano (utente). Un esempio sono i messaggi
ADT (Accettazione/Dimissione/Trasferimento), che il sistema di accettazione

53

ospedaliero invia a tutti i sistemi diagnostici e clinici per consentire loro di
aggiornare le proprie anagrafiche e agli utenti di selezionare un paziente senza
dovere reintrodurre i dati.

Uno dei limiti riscontrati però, che risulta essere comune ad ogni sistema
informativo sanitario considerato, riguarda l’approccio alla progettazione dei
servizi riguardo l’interoperabilità, che anche nel caso di applicazioni più recenti
basate su architetture a servizi e microservizi, continuano comunque ad essere
progettati in modo tradizionale, cioè come isole auto-consistenti, che possiedo-
no all’interno del loro database: un’anagrafe pazienti, una serie di tabelle con
le codifiche e archivi con dati operativi necessari, dove l’interoperabilità vie-
ne vista come problema esterno al servizio, da delegare ad uno strato esterno
dedicato ad esso [13].

3.2 Contesto e obiettivi strategici di AUSL

della Romagna

L’Azienda Unica Sanitaria Locale della Romagna (AUSL della Romagna)
gestisce un territorio esteso e densamente popolato, rendendone la sua gestione
un caso di studio interessante a livello nazionale.

Attualmente gli assistiti si aggirano attorno ad un milione e duecentomila
pazienti e l’area territoriale è suddivisa in 8 distretti con 7 presidi ospedalieri
di cui 4 ospedali maggiori, gestiti da un numero complessivo di circa 17000
dipendenti, tutti tra loro interconnessi mediante un sistema informativo che ha
la necessità di tenere conto dei requisiti dettati dalle complessità che derivano
da un sistema sanitario regionale diffuso su un vasto territorio eterogeneo come
quello della Romagna.

AUSL della Romagna ha un proprio comparto informatico e collabora con
più di 20 fornitori esterni che sono leader del settore sanitario informatico a li-
vello nazionale ed internazionale, ed è attualmente impegnata in un percorso di
transizione digitale, che mira al miglioramento dell’infrastruttura informatica
a supporto dei processi clinici e amministrativi, con l’obiettivo di efficientare
l’erogazione dei servizi, agevolare la comunicazione tra le strutture sanitarie e
i cittadini, e semplificare i sistemi di accesso alle cure.

Mira a raggiungere una maggiore dematerializzazione, e un conseguente
sviluppo in termini di servizi al cittadino e processi di ’connected care, che
riguardano la prevenzione, cura e successivo monitoraggio dei pazienti che
avvengono prima, durante e dopo l’accesso al sistema sanitario:

• attività di pre-cura: analisi e monitoraggio dei pazienti al di fuori della
struttura ospedaliera, con lo scopo di prevenire e rilevare anticipatamente
l’insorgere di problematiche legate alla salute del paziente.

54

• attività di cura: la fruizione di tutti i servizi sanitari come visite, esami,
ricoveri e terapie

• attività di post-cura: tutte le attività che il paziente svolge dopo la
cura effettuata nel sistema sanitario, presso il proprio domicilo

Il tutto deve essere supportato da un sistema informatico composto da un
insieme integrato di tecnologie, sistemi software, dispositivi smart ed indossa-
bili, record di dati e attori che collaborano tra loro, prendendo la forma di un
’ecosistema informatico’ in grado di interconnettere tutte queste tecnologie.

3.3 Sistema informativo di AUSL della Roma-

gna

La gestione dei Sistemi Informativi di un’azienda sanitaria è particolar-
mente complessa, e si compone di diversi sottosistemi interconnessi, spesso
eterogenei in quanto acquisiti nel tempo e in fasi differenti dell’espansione del-
le pratiche digitali nell’azienda da fornitori differenti. Ciononostante i servizi
devono essere ovviamente integrati, per dare luogo ad una visione coerente dei
dati relativi alle prestazioni effettuate dal servizio sanitario sia dal punto di
vista amministrativo che clinico.

In questa analisi ci si concentrerà sul sistema ospedaliero, come cuore della
complessità interna alla gestione dei sistemi informativi che riguardano la cura
dei pazienti all’interno delle strutture ospedaliere, lo storico delle prestazioni
e la gestione amministrativa delle strutture stesse.

Altri moduli del sistema informativo di AUSL Romagna, che non riguar-
dano il sistema informativo ospedaliero, come ad esempio: screening, CUP,
vaccinazioni e logistica, non verranno trattate in questa analisi.

Di seguito è riportata una mappa dei moduli principali che racchiudono la
complessità intrinseca del sistema ospedaliero e sono riportate le descrizioni
dei ruoli che tali sistemi ricoprono e dei flussi di informazione che li collegano
nello svolgersi dei diversi processi clinici.

3.3.1 Moduli del sistema informativo ospedaliero

Il sistema ospedaliero allo stato attuale, è composto da diversi moduli, tra
cui:

55

Figura 3.1: Macro elementi del informativo ospedaliero AUSL Romagna

Cartella clinica elettronica

La Cartella Clinica Elettronica (CCE) è il principale collegamento tra i
diversi servizi a supporto della gestione ospedaliera. È responsabile del man-
tenimento dei dati relativi ad un paziente e le prestazioni ricevute all’interno
dell’ospedale, indipendentemente dalla durata della permanenza.

Non esiste una unica CCE, ma esistono diversi formati di CCE a seconda
del tipo di prestazione erogata, nello specifico:

• CCE Ambulatoriale: gestisce le prestazioni ambulatoriali, che sono di
durata generalmente breve.

• CCE Degenza: gestisce gli accessi ospedalieri, con relative durate e
tempistiche, effettuati dai pazienti.

• CCE Specialistica: gestisce prestazioni di tipo ambulatoriale o spe-
cialistico per contesti tipicamente critici, tra cui cardiologia, oncologia,
terapia intensiva e rianimazione.

Pronto Soccorso

Per i pazienti che entrano tramite il percorso emergenziale del pronto
soccorso e che poi eventualmente passano negli altri reparti dell’ospedale.

Identity Management System

Riguarda la gestione degli utenti, monitora e permette di effettuare opera-
zioni sui vari sistemi in base all’utente.

56

Sistema Codifiche

Ogni visita e accesso è regolata a livello nazionale o internazionale e deve
essere codificata secondo le regole l̀ı definite.

Ammissione Dimissione Trasferimenti

Il sistema di Ammissione, Dimissione e Trasferimenti (ADT) è il sistema
che gestisce l’ingresso e uscita di un paziente nell’ospedale e tra i reparti. Ha
visione sui posti letto assegnabili e le liste di attesa. Collegata alla stessa CCE
possono esserci diversi passaggi di ADT, se il paziente si sposta tra diversi
reparti nel corso della degenza.

Le prese in carico sono legate ad un record ADT, che può averne anche
diverse nel corso di una singola ammissione, quando il paziente è ammesso
in un reparto, ma allo stesso tempo preso in carico in diversi altri settori
dell’ospedale per esami specifici.

Il registro svolge anche la funzione di garantire visibilità temporanea (li-
mitatamente alla presa in carico) dei dati sanitari contenuti nel Clinical Data
Repository relativi ad un dato paziente. Questo è essenziale per stabilire la
relazione di presa in carico tra paziente e medico, e permettere quindi al medi-
co di visualizzare la storia clinica del paziente quando viene visitato, per una
eventuale diagnosi più informata.

Sistemi Specifici per le Prestazioni

Diversi sotto-sistemi riguardano la fornitura di prestazioni specifiche all’in-
terno del sistema ospedaliero. Fanno parte di questo insieme di sotto-sistemi:

• Radiology Information System (RIS) per la parte di diagnostica
per immagini, combinato con il Picture Archiving and Communication
System (PACS). Recentemente sistemi Vendor Neutral Archive (VNA)
sono stati adottati per superare i vincoli dei sistemi PACS spesso legati
ai formati specifici di determinati macchinari.

• Laboratory Information System (LIS) per la richiesta delle analisi
di laboratorio e la gestione dei referti.

• Transfusion Information System (TIS) per tutto ciò che riguarda
le trasfusioni

• Anatomia Patologica (AP) per le richieste di analisi istologiche, che
riguardano lo studio di tessuti per la rilevazione di problematiche di
salute legate ad essi.

57

Tutti questi sistemi forniscono supporto ai laboratori specifici (ed integrazione
con i dispositivi medici utilizzati) e danno la possibilità di condividere il dato
digitale sui referti di esami che il paziente può subire durante una degenza.

L’interazione classica parte da una richiesta fatta dalla cartella clinica per
un esame, e successivamente la richiesta viene completata con il referto che
confluisce nella cartella clinica e poi nel clinical data repository, mentre le
copie originali rimangono nei singoli sistemi.

Clinical Data Repository

Rappresenta la base di dati strutturata dove confluiscono tutte le infor-
mazioni sulla storia clinica dei pazienti, in modo da mantenere i documenti
che sono stati prodotti da tutti gli altri sistemi. La sua visibilità è fortemen-
te controllata al fine di garantire la privacy dei pazienti in base ai consensi
definiti.

Dossier Sanitario Elettronico

È una vista, per paziente, sul Clinical Data Repository. Per abilitarlo i
pazienti devono dare il consenso all’inserimento dei dati nel dossier, e alla sua
condivisione con i medici, che possono consultarlo per investigare la storia
clinica del paziente quando hanno una presa in carico per quel paziente.

Fascicolo Sanitario Elettronico

Riguarda tutta la storia clinica del paziente, per i pazienti, che possono
condividerlo con i medici di base oppure con quelli specialistici.

Anagrafica Centrale - Enterprise Master Patient Index (eMPI)

L’anagrafica centrale contiene le informazioni anagrafiche di dettaglio di
pazienti e dipendenti. Ogni sotto-sistema ha la propria parte di anagrafica
locale che è sincronizzata con quella centrale, che viene consultata quando è
necessario reperire informazioni specifiche. Ogni anagrafica locale tiene una
copia dei dati anagrafici di tutti i pazienti che vedono di volta in volta.

3.4 Analisi dell’architettura allo stato attuale

I diversi moduli appena descritti, possono essere visti con una granula-
rità di un certo tipo, come differenti contesti funzionali che derivano dall’in-
sieme di funzionalità che devono essere garantite dal sistema informativo di
AUSL Romagna, devono tra loro comunicare e scambiarsi informazioni, per

58

cui l’architettura attualmente utilizzata per risolvere questo tipo di proble-
ma è l’architettura orientata ai servizi, che fa uso di un ESB per permettere
l’interoperabilità tra i vari moduli del sistema informativo (vd. Figura 3.2).

Ciascun modulo internamente utilizza una propria architettura, alcuni di
essi utilizzano architetture a microservizi ad eventi seguendo il domain dri-
ven design, ed espongono API REST verso l’ESB o sistemi informativi di
terze parti, utilizzando standard FHIR ed OpenEHR, altri sono in fase di
re-ingegnerizzazione per utilizzare questo tipo di architettura.

3.4.1 Utilizzo degli standard

Attualmente lo standard FHIR è spesso utilizzato solamente come modello
per la rappresentazione di concetti e informazioni sanitarie, senza sfruttare
appieno le sue potenzialità, soprattutto per quanto riguarda le proprietà non
funzionali di:

• Performance: in quanto non si utilizza sempre la funzione di riferimenti
delle risorse per limitare la dimensione dei payload delle richieste HTTP
dei client, rendendo più lento il tempo di risposta alle varie richieste. Il
motivo sembra essere la mancanza della possibilità di validazione della
latenza impiegata nell’elaborazione di richieste contenenti risorse com-
plete rispetto al caso di risorse FHIR che seguono le regole di conformità
e utilizzano collegamenti ad altre risorse richiedendo però un maggior
numero di richieste scambiate, per cui si tende ad ipotizzare che seguire
le regole di conformità possa essere svantaggioso in termini di performan-
ce, ma senza la possibilità, per la mancanza di pattern per la raccolta
di metriche e scenari di test, di dimostrare concretamente queste ipotesi,
per cui non è attualmente possibile verificare la correttezza ne di una ne
dell’altra opzione.

• Interoperabilità: tra i servizi dei sistema informativo sanitario, in
quanto l’utilizzo di questo standard non sempre segue sempre le regole
di conformità viste alla sezione 2.3.1, limitando fortemente l’interopera-
bilità tra i diversi servizi del sistema informativo, che è invece l’obiettivo
di queste regole. Il motivo sembra essere legato alla precedente questione
delle performance, in quanto si ipotizza che utilizzare lo standard FHIR
solo come modo per rappresentare informazioni sanitarie, senza seguire
le regole per l’interoperabilità, possa risultare più performante.

59

Figura 3.2: Schema C&C dell’architettura SOA attualmente in uso ad AUSL
della Romagna

60

3.4.2 Interoperabilità

Per alcuni servizi è utilizzato un ’anti-corruption layer’ (ACL), che dà la
possibilità ad ogni sistema di limitare le problematiche dovute alla differente
rappresentazione dei dati a causa della dipendenza tra i contesti dei diversi
servizi.

Ogni sistema ha necessariamente una propria codifica, utilizzando uno stra-
to di anti-corruzione gli altri possono comunque continuare a comunicare e
scambiarsi informazioni, dove possibile. Ma questo non è applicato a tutti i
servizi, rendendo più complessa l’interoperabilità con i sistemi legacy.

3.4.3 Monitoraggio e sicurezza

Due ulteriori elementi di monitor e sicurezza, effettuano controlli sull’ESB
e verificano rispettivamente il corretto funzionamento di esso in ogni momento,
in modo da non diventare il punto critico dell’intero sistema informativo, ed
un controllo sugli accessi, i documenti scambiati e il numero di informazioni
in transito, per rilevare o meno la presenza di attacchi informatici in atto.

3.4.4 Cartella clinica elettronica

La cartella clinica presenta un’architettura ’modular monolith’ con un par-
tizionamento tecnico che suddivide i diversi contesti in tre categorie: Ambula-
toriale, Degenza, Specialistica; dal punto di vista architetturale, per quello che
è nella versione consolidata del sistema, la CCE è un unico sistema informativo
che contiene una parte software più generica di Ambulatoriale e Degenza, più
altre cartelle cliniche software ulteriori (facenti parte della Specialistica), come
Cardiologia e Terapia Intensiva. Ciascuna di esse ha una ulteriore suddivisio-
ne funzionale a seconda del contesto, ma il sistema complessivo fa riferimento
ad un unico database condiviso e presenta quindi una architettura a singolo
quanto, che può limitare significativamente le performance [17].

Per alcuni casi, come quello di anagrafiche che sarà discusso in seguito, la
raccolta delle informazioni relative ai dati anagrafici dei pazienti attraversa la
cartella clinica elettronica, in quanto mezzo di comunicazione con il database
di ’eMPI’ oppure le informazioni sono richieste mediante viste su database.

Parlando in generale dello strumento software di CCE, questo è caratte-
rizzato da una architettura monolitica che utilizza un paradigma MVC dove
però non è sempre garantito il disaccoppiamento tra le tre parti di model,
view e controller, per cui si creano situazioni in cui sono presenti dipenden-
ze non necessarie tra i componenti che rendono più complessa l’evoluzione e
mantenimento del software stesso.

61

3.4.5 Integrazione tra CCE Ambulatoriale e gli altri
servizi

L’integrazione con gli altri sistemi avviene in diversi modi, in questo caso si
prende in considerazione la CCE Ambulatoriale, in quanto la CCE di Degenza
è equivalente ad essa con poche differenze a livello architetturale che saranno
esposte in seguito. L’integrazione avviene:

• Mediante API: come la comunicazione tra CCE Ambulatoriale con il
modulo di CUP, che è esterno al sistema informativo ospedaliero e per-
mette l’interrogazione riguardo tutta la parte ambulatoriale, in modo
da recuperare tutte le informazioni necessarie per la CCE Ambulatoria-
le mediante chiamate API REST o RESTful con richieste HTTP che
scambiano messaggi HL7, le più recenti supportano FHIR, i messaggi
scambiati sono diretti tra i due servizi o mediati da un ESB nel caso
in cui ci sia necessità di tradurre la codifica dei messaggi in un formato
differente.

• Viste su DB: alcuni sistemi comunicano con gli altri esponendo viste
materializzate che periodicamente sono lette dagli altri servizi in modo
da aggiornare i propri dati. Questo crea un accoppiamento più forte tra
i servizi, che hanno una maggiore dipendenza tra loro: le viste sui DB
possono essere modificate nel tempo e non essere più utilizzabili da alcuni
servizi, a differenza delle API che rimangono tali, eliminando dipendenze
di questo tipo e permettendo maggiore indipendenza, rendendo il sistema
più facilmente manutenibile ed evolvibile nel tempo.

La ragione dietro al fatto che ci siano queste diverse modalità sembra essere
principalmente dovuto alla semplicità di implementazione di una vista su un
database rispetto all’implementazione di una API, con lo svantaggio che una
API permette un disaccoppiamento più forte e una più bassa dipendenza con
le chiamate per la richiesta dei dati, in quanto le viste sui DB possono essere
modificate nel tempo e non essere più utilizzabili da alcuni servizi, mentre le
API rimangono tali, eliminando dipendenze di questo tipo.

3.4.6 Interazioni e scambio di eventi tra CCE Ambula-
toriale ed altri servizi

Le interazioni tra i servizi avvengono mediante eventi, messaggi che conten-
gono cambi di stato e che sono notificati al servizio che necessita di conoscerli.
Come per il caso precedente, anche qui si prende in considerazione solamente

62

la CCE Ambulatoriale, in quanto, a livello architetturale, la CCE di Degenza
è equivalente ad essa.

Prendendo in considerazione eventi ed interazioni tra CCE Ambulatoriale
ed il CUP, nel momento in cui un paziente prende un appuntamento, viene
generata una notifica in formato HL7 riguardo la prenotazione di un appun-
tamento, che è indirizzata verso la CCE mediante ESB. Nel momento in cui
il medico modifica lo stato della visita (es: a stato di erogazione), si genera
un evento di cambio di stato della prenotazione verso CUP; se la visita viene
modificata da parte del paziente, questo lo fa mediante il servizio CUP che
quindi genera un cambio di stato nella prenotazione che è raccolto dalla CCE.

Questa tipologia di comunicazioni mediante notifiche di cambiamenti di
stato all’interno del dominio dei servizi, è tipicamente adatta ad uno stile ar-
chitetturale ad eventi, dove diverse componenti del dominio presentano carat-
teristiche parzialmente sovrapposte ma con una visione differente delle stesse,
per cui l’adozione di una architettura puramente ad eventi, anziché a scambio
di messaggi contenenti informazioni modellate come eventi, risulterebbe più
vantaggiosa.

3.4.7 Dossier Sanitario

Riguardo altri servizi come il ’registro prese in carico’, questo ha il compito
di monitorare chi è preso in carico e per conto di chi. Quando un paziente
effettua, ad esempio, una visita cardiologica, viene emesso un referto che viene
inoltrato e mantenuto nel ’Clinical Data Repository’, se il paziente torna per
una visita cardiologica di controllo e ed è preso in carico da un altro medico, è
necessario che anche il secondo medico possa vedere il referto emesso dal primo;
questo è valido solamente se riguarda lo stesso reparto o unità operativa, in
questo caso ’cardiologia’; se la seconda visita è di un altro reparto, ad esempio
ortopedia, questo non vale, per cui il registro unico delle prese in carico (RUPC)
deve tenere traccia di chi può vedere quali documenti. Per questo, il registro
prese in carico si deve interfacciare al dossier sanitario perché deve tenere conto
del consenso del paziente che potrebbe non voler mostrare alcune informazioni
a specifiche persone o gruppi di persone, di cui il registro prese in carico deve
tenere traccia.

Quando un medico apre la cartella clinica, il sistema effettua una indagine
su tutti gli altri servizi e mostra al medico solamente quello che è autorizzato
a vedere; la visione o meno di un dato è discriminata dal consenso fornito
dal paziente nel proprio dossier sanitario riguardo la consultazione dei propri
documenti, se il medico è abilitato alla visione dei dati, il dossier sanitario dà
accesso alla CCE a quel documento, e la cartella clinica può recuperare il dato
dal servizio che lo contiene (tutti i documenti sono mantenuti sia dal servizio

63

che lo genera, sia dal CDR, questo perché per un obbligo di legge ogni servizio
è responsabile dei documenti che produce).

3.4.8 Anagrafiche locali e centralizzata

Essendo il sistema di cartella clinica composto da una architettura mono-
litica modulare a singolo quanto, l’unico database utilizzato risulta contenere
diverse tabelle di dati che aumentano significativamente il costo computazio-
nale delle query effettuate per il recupero dei dati: ipotesi che però non può
essere validata concretamente per l’attuale mancanza di pattern per la raccolta
di metriche, attui a identificare concretamente e dettagliatamente le criticità
del sistema informatico.

Ogni servizio del sistema informativo che necessita dei dati anagrafici dei
pazienti contiene un database di anagrafica locale, in modo che ogni servizio
possa continuare a funzionare anche in caso di malfunzionamenti nel servizio
della CCE di anagrafica centralizzato (Enterprise Master Patient Index, eMPI),
in modo che la CCE non diventi un collo di bottiglia (vd. Figura 3.2).

L’allineamento tra anagrafiche locali e centralizzata avviene mediante uno
scambio di richieste ad intervalli di tempo, per cui l’aggiornamento dei dati
anagrafici avviene periodicamente, creando situazioni dove i dati anagrafici
non sono garantiti essere sempre gli stessi in ogni parte del sistema informati-
vo. Inoltre, l’aggiornamento dei dati anagrafici in un servizio non corrisponde
sempre alla generazione di una notifica per l’allineamento di tutte le anagrafi-
che del sistema, per cui non è sempre garantita l’unicità del dato, con frequenti
disallineamenti dove i pazienti possono risultare avere dati anagrafici differenti
a seconda del servizio utilizzato.

3.4.9 CCE di Degenza

La parte di CCE per quanto riguarda la degenza funziona allo stesso modo,
a livello architetturale, della CCE Ambulatoriale, l’equivalente per la parte di
degenza del CUP in questo caso è il sistema di ammissione e dimissione (ADT),
dove la comunicazione avviene mediante API che si scambiano messaggi (tipi-
camente HL7), perché l’equivalente della visita ambulatoriale, è per la degenza
il ricovero, che necessita di processi amministrativi riguardo la dimissione, am-
missione ed il trasferimento di un paziente tra i vari reparti e ospedali, con gli
stessi meccanismi e le stesse interazioni con l’anagrafe che sono state descritte
in precedenza nella controparte ambulatoriale.

La differenza significativa tra le due CCE riguarda principalmente le fun-
zioni che offrono, in quanto la degenza deve tenere traccia delle terapie som-
ministrate, e deve comunicare con il servizio di farmacie riguardo eventuali

64

interazioni che la terapia può avere, tenendo aperta una sessione di ricovero
sia per medici che infermieri, entrambe le categorie di professionisti vedono lo
stesso ricovero ma da punti di vista molto diversi, dove il ricovero non può
essere modellato con lo stesso modello dei dati e le stesse informazioni, perché
lo stesso paziente e le stesse informazioni fanno parte di contesti differenti, lo
stesso paziente ricoverato è visto dagli infermieri solo come somministrazione
della terapia e pratiche cliniche, mentre dal medico come prescrizione e ana-
lisi di ciò che sta succedendo nel ricovero, quindi anche il modello di dati è
differente.

Effettuando una analisi dell’applicazione della cartella clinica, questa per-
mette gli utenti di selezionare il reparto che si intende interrogare, e per cia-
scuno di essi è possibile selezionare un paziente e verificare i dati a riguardo
mediante un partizionamento funzionale che separa in diverse categorie le pos-
sibili attività da monitorare o elaborare, come la funzionalità di ’Terapia’, per
monitorare l’andamento della terapia dei pazienti nello specifico reparto consi-
derato, ’Diario integrato’, per permettere ai medici di prendere nota di alcune
osservazioni sui pazienti in cura, ’Cartella infermieristica’ per il monitoraggio
di quello che sta succedendo al paziente, ed altre ancora.

Come per il caso precedente si segnala la criticità riguardo le performance,
la cui causa è però di difficile individuazione per la mancanza di pattern per
la raccolta di metriche, in grado di identificare e quantificare concretamente le
criticità del sistema.

3.4.10 Enterprise Service Bus

Una criticità dell’attuale sistema informativo di AUSL della Romagna è il
punto di centralizzazione dovuto dal ESB: questo è il mezzo di comunicazione
tra tutti i servizi, per cui può rivelarsi collo di bottiglia dell’intero sistema
informativo se non sono adottati specifici accorgimenti.

Attualmente questo presenta un’architettura distribuita dove i diversi ca-
nali sono servizi che svolgono la funzione atomica di conversione di formato dei
dati per permettere l’interoperabilità tra servizi moderni e legacy, dove però i
singoli canali possono rivelarsi punto critico per la comunicazione tra i servizi,
in quanto ogni comunicazione verso il servizio di cui il canale è responsabi-
le, deve attraversare questo, per cui ciascuno di essi può diventare punto di
centralizzazione per le comunicazioni con i servizi di cui è il gestore. Inoltre,
essendo tutte le comunicazioni tra i servizi mediate dal ESB, eventuali carichi
sostenuti possono presentare rallentamenti significativi, per cui può rivelarsi
problematico per le comunicazioni tra i servizi del sistema.

Una soluzione attualmente applicata da alcuni servizi, allo scopo di evi-
tare rallentamenti dovuti al forte carico che può interessare l’ESB, è quella

65

di utilizzare una comunicazione diretta tra i servizi, evitando completamente
quest’ultimo, soluzione che rende però la sua presenza, di fatto, non necessa-
ria, e che aumenta piuttosto la complessità del sistema, rendendo più difficile
tracciare le comunicazioni tra i servizi, con impatti significativi sull’evolvibilità
del sistema.

Una possibile soluzione per il caso di studio specifico preso in considerazione
con questo elaborato, è descritta al Capitolo 4, dove si è discussa una soluzione
generale che prevede l’utilizzo di un’architettura distribuita ad eventi che possa
garantire una maggiore robustezza e disponibilità alle funzionalità del ESB,
rendendolo inoltre unica fonte di verità dei messaggi scambiati dal sistema pur
mantenendo una architettura distribuita.

3.4.11 Identificazione delle criticità e validazione del-
l’architettura attuale e future

La principale criticità rilevata nel caso della cartella clinica elettronica, è
l’assenza di utilizzo di pattern per la raccolta di metriche, che sono essenziali
per la rilevazione e concretizzazione di criticità nel sistema. Per cui risulta
complesso, se non impossibile, l’identificazione delle cause delle problematiche
relative al servizio considerato, rendendo di fatto infattibile l’identificazione
di soluzioni architetturali concrete che possano garantire il superamento delle
principali problematiche del sistema, limitando fortemente ogni tipo di inter-
vento che possa essere effettuato per la risoluzione delle criticità identificate
da questa analisi e rendendo complessa l’evoluzione del servizio stesso.

66

Capitolo 4

Progettazione di un prototipo
architetturale esemplificativo
per la CCE e sistemi correlati di
AUSL della Romagna

Lo scopo di questo elaborato è quello di fornire un esempio di progettazione
di una architettura per la cartella clinica elettronica di AUSL della Romagna
che sia in linea con i requisiti non-funzionali generali forniti e mostri come
superare le criticità messe in luce alla sezione 3.4.

Non essendo in questo momento possibile la raccolta di metriche per la
validazione dell’architettura attuale ed eventuali proposte architetturali future
(dal punto di vista delle proprietà non-funzionali), il focus di questo elaborato è
stato quello di selezionare uno scenario rappresentativo della cartella clinica in
modo che possa essere preso d’esempio per mostrare come applicare pattern per
la raccolta di metriche, in modo da identificare e quantificare concretamente i
punti critici dell’architettura per le future validazioni.

Il risultato è l’implementazione di pattern per misurazione di attributi di
qualità, ricavati mediante test automatizzati che ricreano scenari verosimili,
che permettano di quantificare il grado con cui sono rispettati i requisiti non-
funzionali forniti, oltre alla possibilità di inserire limiti e vincoli da rispettare.

4.1 Selezione degli scenari

Essendo il sistema informativo sanitario di AUSL della Romagna comples-
so ed eterogeneo, non è stato possibile considerarlo nella sua interezza, per
cui è stato scelto come scenario rappresentativo una porzione della cartella

68

clinica elettronica che fosse sufficientemente generale, in modo da poter esse-
re studiato e analizzato per permettere di applicare gli stessi ragionamenti e
conclusioni anche per altri servizi della cartella clinica, declinandoli al caso
specifico considerato.

Lo scopo di questo elaborato è quello di mostrare un esempio di archi-
tettura per la cartella clinica elettronica che rispetti i requisiti non-funzionali
generali forniti e le linee guida per l’applicazione di pattern per la raccolta di
metriche (vd. sottosezione 4.3.3) per fornire una base a progettazioni future
con cui validare le proprie proposte architetturali ed identificare concretamen-
te i punti critici dell’architettura attuale, per permettere la progettazione di
soluzioni architetturali specifiche e poter dimostrare concretamente che siano
migliorative a livello di tutte le proprietà non-funzionali richieste.

4.2 Analisi

Come descritto nella sezione 3.4 riguardo l’analisi e criticità dell’attuale
sistema informativo sanitario di AUSL della Romagna, la cartella clinica pre-
senta una suddivisione in tre categorie: Ambulatoriale, Degenza, Specialistica;
dal punto di vista architetturale, per quello che è nella versione consolidata
del sistema, la CCE è un unico sistema informativo che contiene una parte
software più generica di Ambulatoriale e Degenza, più altre cartelle cliniche
software ulteriori come Cardiologia e Terapia Intensiva.

Per valutare la soluzione da proporre, è necessario conoscere i requisiti che
devono essere rispettati, soprattutto non-funzionali, riguardo proprietà che
permettono ad esempio una maggiore resilienza, scalabilità e robustezza che
l’architettura proposta deve rispettare.

4.2.1 Requisiti funzionali

Non essendo scopo di questo elaborato la definizione di nuove applicazio-
ni e funzionalità per il sistema informativo di AUSL della Romagna, non ci
si è concentrati sull’aspetto dei requisiti funzionali, che rimangono quelli già
garantiti dai servizi presi in considerazione in questo documento.

4.2.2 Requisiti non-funzionali

Il nuovo design architetturale per la cartella clinica elettronica deve essere
in grado di garantire maggiormente, rispetto alla situazione attuale, le seguenti
proprietà non-funzionali:

69

• Performance: attualmente la CCE presenta diversi rallentamenti dovu-
ti principalmente al fatto che sia composta da una architettura monoliti-
ca modulare con singolo database comune a tutti i moduli, in cui query
SQL complesse composte da diversi join impattano significativamente
sulle performance;

• Basso accoppiamento: è richiesto maggiore isolamento tra i servizi,
in modo da permettere l’utilizzo delle singole funzionalità della cartella
clinica elettronica in modo indipendente le une dalle altre;

• Robustezza: è richiesto che parti specifiche della cartella clinica possano
rispettare requisiti non funzionali specifici, come le funzioni relative alla
terapia, che ci si aspetta debbano subire carichi di lavoro più alti rispetto
ad altre funzionalità, per cui è richiesta un’alta disponibilità, maggiore
rispetto ad altre funzionalità dello stesso sistema; per cui è richiesta
una soluzione che possa garantire proprietà non-funzionali specifiche a
seconda del contesto.

Si aggiungono inoltre ulteriori necessità:

• è richiesta la proposta di soluzione per il tracciamento delle metriche,
validazione e identificazione delle criticità, del servizio di cartella clinica
elettronica, dal punto di vista architetturale;

• è richiesta una proposta di soluzione, a livello architetturale, che per-
metta di tracciare ed analizzare le interazioni degli utenti con la cartella
clinica elettronica;

4.2.3 Quality Attributes

Non essendo attualmente disponibile un sistema per la raccolta delle me-
triche, non è stato possibile quantificare il grado con cui sono garantite le varie
proprietà non funzionali fornite, per cui non è possibile effettuare valutazioni
in merito.

Per questo motivo, l’obiettivo di questo elaborato è diventato quello di
fornire un esempio su come ottenere questo tipo di misurazioni, piuttosto che
proporre una soluzione architetturale ad-hoc per questo caso di studio; in
quanto le informazioni attualmente consultabili risultano essere di carattere
generale e non adatte ad una soluzione concreta che possa effettivamente essere
migliorativa.

A seguito di questo elaborato sarà possibile misurare attributi di qua-
lità concreti, che mostrino il grado con cui sono attualmente rispettate le

70

proprietà non-funzionali dell’architettura attuale, inoltre, gli stessi test au-
tomatizzati possono essere usati per la validazione e comparazione di proposte
architetturali future (vd. sottosezione 4.3.3).

4.2.4 Dominio

Essendo la Cartella Clinica Elettronica di AUSL della Romagna composta
da diverse funzionalità, presenta un dominio complesso, composto principal-
mente dalle tre macro categorie di ’CCE Ambulatoriale’, ’CCE di Degenza’,
e ’CCE Specialistica’, ciascuna di esse presenta a sua volta una suddivisione
funzionale in base alle attività che devono essere svolte per ciascuna di esse.

A titolo esemplificativo, si riporta una parte di dominio della cartella clini-
ca elettronica che verrà presa in considerazione per questo progetto riguardo
terapia, diario clinico e anamnesi pregressa, scelti apposta in quanto suffi-
cientemente rappresentativi degli scenari che possono essere rilevati in questo
ambito.

Per quanto riguarda l’interazione tra la cartella clinica elettronica e servizi
terzi, si è presa in considerazione la questione che riguarda i dati anagrafici
dei pazienti, che sono contenuti nel ’eMPI’, con cui attualmente comunica la
cartella clinica elettronica, per cui i servizi terzi devono appoggiarsi ad essa;
ed il ’dossier sanitario’, che contiene documenti relativi alle informazioni del
paziente riguardo la sua storia clinica, informazioni generate durante eventi
sanitari come ricoveri, visite specialistiche e accessi al pronto soccorso.

Nonostante questo sia un unico sistema e il dominio presenti caratteristiche
comuni, a seconda del contesto a cui deve essere applicato, il ruolo e modello
di dati degli stessi oggetti del dominio, ha caratteristiche differenti, per cui
un partizionamento in diversi contesti renderebbe più modulare il sistema,
creando una specializzazione della cartella clinica sulla base dell’applicazione
che deve essere effettuata, utilizzando un modello di dati specifico a seconda
del contesto in cui si trovano; a differenza dell’architettura monolitica attuale
che utilizza lo stesso modello di dati per tutti i diversi contesti in cui può
essere applicata, senza effettuare disaccoppiamento tra i le diverse casistiche
in cui può essere utilizzata, che è invece richiesto da applicazioni con una
logica ’patient centered’, dove la logica del sistema ruota attorno alle specifiche
esigenze del paziente a seconda del contesto sanitario in cui si trova.

Considerando lo scenario rappresentativo considerato in questa analisi, si
sono rilevati diversi partizionamenti che separano le informazioni relative al
paziente a seconda del tipo di contesto, identificando funzionalità atomiche di
’terapia’, ’diario clinico’ e ’anamnesi pregressa’ dove, secondo la logica ’patient
centered’, ciascuno di questi servizi conterrà informazioni relative al paziente,
ma da un punto di vista differente a seconda del contesto in cui si trova, in

71

modo che ciascun servizio abbia una visione sul paziente incentrata solo sul
contesto a cui appartiene:

• Diario Clinico: contesto che rappresenta una funzionalità per prendere
note sui pazienti di volta in volta che fanno visite e danno indicazioni su
come sta andando il ricovero e lo stato del paziente, ogni volta che deve
essere somministrato un farmaco o definita una terapia è richiesto che
venga effettuato un controllo per accertare l’assenza di allergie o conflit-
ti con patologie pregresse. Inoltre, a seguito di un generico intervento,
questo deve essere notificato al servizio di anamnesi in quanto potrebbe
rendere non più compatibile la somministrazione farmacologica attual-
mente prescritta in terapia. Questo può essere ulteriormente partizionato
in due servizi di diario medico e infermieristico.

• Terapia: informazioni relative al paziente, riguardo la definizione e ag-
giornamento della terapia per il paziente, ogni volta che deve essere ef-
fettuata una somministrazione di un farmaco, deve essere verificato se
possa essere in conflitto con alcune allergie o patologie del paziente.

• Anamnesi pregressa: informazioni relative al paziente, riguardo even-
tuali allergie o patologie recenti, nel contesto attuale. Verifica l’eventuale
presenza di incompatibilità con i farmaci prescritti sul diario e terapia.

Inoltre, sempre considerando la precedente analisi del dominio per quanto
riguarda le interazioni tra cartella clinica elettronica e servizi terzi, la cartella
clinica elettronica deve poter accedere a tutte le informazioni relative alla storia
clinica del paziente, per verificare eventuali incompatibilità dei trattamenti di
terapia con le patologie del paziente, oltre ai dati anagrafici, necessari per il
rintracciamento del paziente:

• Dossier Sanitario: contenente le informazioni sul paziente relative alla
lettura di informazioni riguardo la storia pregressa del paziente, come
le patologie, deve poter comunicare alla cartella clinica elettronica even-
tuali nuove patologie per la sospensione delle terapie già pianificate non
più compatibili con le nuove patologie identificate. Inoltre, tutte le in-
formazioni lette devono essere verificate per controllare di essere in linea
con i requisiti sulla privacy dettati dal paziente prima di essere letti dal
personale;

• Dati anagrafici: informazioni sul paziente relative ai dati anagrafici,
come aggiunta o modifica di informazioni anagrafiche. Eventuali aggior-
namenti dei dati anagrafici devono essere notificati a tutti i servizi terzi,
in modo da essere sempre aggiornati all’ultima versione dei dati possibile.

72

4.3 Design

Le informazioni riportate in questa sezione sono solo a livello architettu-
rale, per cui sono agnostiche riguardo implementazioni e tecnologie specifiche.
Per altre informazioni più specifiche riguardo l’implementazione proposta per
questo caso di studi, si rimanda alla sezione 4.4.

Di seguito si riporta l’esempio architetturale proposto, da considerare co-
me scenario rappresentativo che possa essere utilizzato come riferimento per
l’effettiva progettazione di architetture per il caso specifico di AUSL della Ro-
magna. Non essendo possibile effettuare una raccolta di attributi di qualità
dall’architettura attuale, queste conclusioni sono da considerarsi come linee
guida per una futura implementazione concreta ed efficace di architetture che
sono generalmente valide per garantire i requisiti non-funzionali generali forniti
in questo caso di studio; per cui deve essere considerata solo come esempio da
cui declinare soluzioni concrete e validi per questo caso di studio concreto.

Data l’analisi effettuata in precedenza e le informazioni attualmente dispo-
nibili, si propone una soluzione architetturale distribuita e ad eventi per il caso
della cartella clinica elettronica e sistemi correlati.

4.3.1 Architettura per la Cartella Clinica Elettronica

La CCE potrebbe essere utilizzata come unico sistema, se sufficientemente
modulare dal punto di vista architetturale, perché necessita di caratteristiche
che permettano alle funzionalità della cartella clinica di essere il più possibile
indipendenti tra loro, in modo da ridurre l’accoppiamento.

Per questo motivo, per quanto riguarda l’architettura per la Cartella Clini-
ca Elettronica, si propone un’architettura a microservizi, che separi le diverse
funzionalità della cartella in più microservizi tra loro il più possibile indipen-
denti, in modo da aumentare il disaccoppiamento tra i vari servizi e permettere
l’utilizzo di ciascuna funzione in modo indipendente dalle altre.

Una transizione da una architettura monolitica ad una distribuita a micro-
servizi che separi nettamente diversi aspetti, è in linea con la proprietà non-
funzionale di garantire che le diverse funzionalità in cui è attualmente suddivisa
la cartella clinica possano continuare a funzionare in maniera indipendente l’u-
na dalle altre, quindi fare in modo che, ciascuna di queste funzionalità possa
continuare ad eseguire nonostante eventuali lavori di manutenzione o malfun-
zionamenti riguardanti alcuni servizi specifici, senza dipendere dagli altri, in
modo da ridurre l’accoppiamento tra i vari servizi e permettere che ciascuno
di essi possa continuare a funzionare autonomamente. Per questo motivo si
propone un partizionamento, che isoli il più possibile i vari contesti del dominio

73

Figura 4.1: Schema C&C di soluzione, esemplificativo, per la CCE

della cartella clinica, come quello mostrato in Figura 4.1, dove ciascuno delle
attuali suddivisioni farà parte di un microservizio a sé stante.

Inoltre, un’architettura a microservizi rispetterebbe il requisito non funzio-
nale di permettere che ciascun servizio della cartella clinica possa avere una
progettazione che garantisca requisiti non funzionali specifici, validi solamente
per il servizio considerato. Permettendo di intervenire in maniera indipen-
dente su proprietà come ’performance’ e ’scalabilità’, entrambe proprietà che
possono essere facilmente raggiunte applicando specifici pattern e utilizzando,
a livello di deployment, meccanismi di scaling orizzontale automatizzato, pro-
prietà che è perfettamente garantita da architetture a microservizi, a rispetto
di altre architetture che non sono in grado di garantire con la stessa efficacia.

Per quanto riguarda il requisito della maggiori prestazioni, non è stato pos-
sibile identificare e quantificare la fonte delle criticità, dati che possono essere
raccolti mediante pattern di metriche e validazione mediante scenari; per cui
si consiglia l’applicazione di pattern per miglioramento delle prestazioni, come
CQRS [74], che però sono efficaci solamente se è rilevata una forte asimmetria
tra il numero di richieste di lettura e scrittura, ed è tollerata una consistenza

74

di tipo ’eventual’.
Visti i requisiti non funzionali attuali per la CCE, le considerazioni effettua-

te nelle precedenti sezioni e una analisi della letteratura dove si prendevano in
considerazione tematiche relative alle architetture software e come sono state
utilizzate in aziende con caratteristiche simili ad AUSL Romagna, una archi-
tettura a microservizi potrebbe in grado di superare le maggiori limitazioni
transizioni da architetture monolitiche a microservizi per server FHIR hanno
mostrato netti miglioramenti in termini di proprietà non-funzionali, in linea
con il requisito di maggiore autonomia tra le funzionalità della CCE fornito
per questo caso di studio [67] [82] [8] [7] [81].

In architetture a microservizi come quella qui proposta a titolo esemplifica-
tivo (vd. Figura 4.1), ciascun servizio è il più possibile indipendente dagli altri,
ha una singola responsabilità e svolge una sola funzionalità atomica, per cui
è garantita la sua corretta funzione anche in caso di mancato funzionamento
di altri servizi: ciascun servizio ha una propria base informativa, necessaria
a garantire il proprio funzionamento, e la comunicazione con altri servizi per
il reperimento di ulteriori informazioni è effettuato mediante scambio di mes-
saggi (od eventi, nel caso di architetture ad eventi) e ciascun microservizio
espone una API, tipicamente REST secondo regole RESTful, con cui potersi
interfacciare con l’esterno (vd. sottosezione 1.2.2 e sottosezione 1.2.3).

Per questo caso di studio specifico, dopo una analisi del dominio (vd. sotto-
sezione 4.2.4), si riporta una soluzione di architettura a microservizi ad eventi
per cui ciascun microservizio ha una propria base informativa che garantisce il
proprio corretto funzionamento in modo indipendente dagli altri, e gli eventi
generati da altri servizi sono raccolti da ogni microservizio richiedente in modo
da aggiornare la propria base informativa ed eventualmente eseguire le ulterio-
ri operazioni necessarie. Questo avviene mediante Event Broker, che scambia
eventi tra i microservizi, seguendo le regole per l’interoperabilità in vigore per
lo standard considerato, in modo che ciascuno di essi sia sempre aggiornato sui
dati da cui dipende dagli altri per operare in maniera più autonoma possibile.

La scelta di utilizzare un’architettura ad eventi è dovuta al requisito non
funzionale di garantire basso accoppiamento e quindi maggiore autonomia dei
servizi, in modo che ciascuno di essi possa continuare ad eseguire le proprie
funzioni in maniera il più possibile indipendente dagli altri, e architetture ad
eventi permettono un maggior livello di indipendenza, mediante comunica-
zioni asincrone ’publish-subscribe’ di eventi rispetto a comunicazioni di tipo
’request-response’ a scambio di messaggi: dove l’elaborazione delle informazio-
ni può essere richiesta a servizi esterni per cui si forma un maggiore livello di
accoppiamento.

Inoltre, l’idea dell’utilizzo di un’architettura ad eventi è rafforzata dal pre-
cedente studio sul dominio, in cui si poteva individuare la possibilità di au-

75

Figura 4.2: Schema C&C per la CCE specifico riguardo gli eventi per la so-
spensione automatizzata delle terapie

76

tomatizzare il processo di identificazione di allergie ed incompatibilità con i
farmaci, a seguito dell’aggiornamento di esse da parte del servizio di anamnesi
e la sospensione immediata ed automatizzata delle terapie già pianificate nel
caso di rilevazione di nuove patologie identificate dal dossier sanitario per il
paziente (vd. Figura 4.2). Possibilità che può essere garantita da architettu-
re ad eventi, dove lo scopo è quello di poter garantire un’elaborazione delle
informazioni in tempo reale e in modo completamente asincrono, a fronte di
ogni cambiamento degli elementi di dominio (vd. sottosezione 1.2.3). Il tutto
seguendo una logica ’patient centered’ dove ogni servizio può essere notificato
di eventuali cambi di stato del paziente riguardo i contesti clinici considerati.

Esponendo tutti i servizi una API REST, rimane sempre possibile lo scam-
bio di informazioni di tipo ’richiesta-risposta’ tra i servizi, per cui lo scambio
di eventi asincrono rende questi reattivi, automatizzando alcuni processi che
attualmente vengono effettuati in maniera manuale, ma rimane sempre possi-
bile la richiesta di informazioni tra servizi per la raccolta di dati contenuti in
servizi terzi.

Per quanto riguarda le altre funzionalità della cartella clinica elettronica è
possibile ripetere gli stessi ragionamenti qui effettuati e applicarli allo stesso
modo a ciascuna di esse, creando per ognuna un servizio, e seguendo gli stessi
ragionamenti che hanno portato alla creazione di questi ma declinandoli al
contesto specifico.

4.3.2 Integrazione tra CCE e servizi esterni

Riguardo l’integrazione tra CCE e i servizi esterni, si propone una archi-
tettura ad eventi in cui i cambi di stato all’interno di un sistema generano
eventi che sono raccolti dal ESB e inoltrati mediante i rispettivi canali verso
il servizio richiedente.

Attualmente la comunicazione avviene per scambio di messaggi che notifi-
cano i cambiamenti di stato che avvengono tra i vari servizi (come se fossero
eventi), per cui si propone l’utilizzo di una architettura ad eventi (EDA, sotto-
sezione 1.2.3) in cui cambi di stato che avvengono già attualmente all’interno
della cartella clinica possono essere raccolti, mediante comunicazioni di tipo
publish-subscribe, dal middleware e inviato attraverso i canali utilizzati per le
comunicazioni tra servizi esterni ed inoltrati verso i sottoscritti.

Questo tipo di soluzione è rafforzata dal precedente studio sul dominio dove
si è identificata la possibilità di rappresentare come eventi i diversi cambi di
stato degli elementi che riguardavano lo scenario esemplificativo di anagrafiche
e dossier sanitario, dove la comunicazione tra la cartella clinica elettronica e i si-
stemi correlati viene utilizzata per lo scambio di informazioni sul cambiamento
di stato dei dati anagrafici e patologie, rispettivamente.

77

Figura 4.3: Schema C&C di soluzione per l’integrazione tra ESB e servizi terzi

78

Per utilizzare questo tipo di architetture evitando disallineamenti e du-
plicazioni dei dati scambiati tramite eventi e raccolti nei database dei servizi
considerati, è necessario definire una unica fonte di verità, cioè un database che
possa mantenere traccia di tutti gli eventi scambiati e permettere l’eventuale
riallineamento con i servizi. Inoltre, per questo caso di studi, essendo il siste-
ma di AUSL della Romagna complesso ed eterogeneo, è necessario garantire
l’interoperabilità tra i diversi sistemi.

Per mantenere l’interoperabilità tra i servizi già presenti e rendere il ESB
l’unica fonte di verità al posto del ’eMPI’, si suggerisce una architettura per
ESB decentralizzata in cui si utilizza un middleware di tipo ’Event Broker’ de-
centralizzato e i vari servizi che effettuano la traduzione da un formato ad un
altro (già presenti nel ESB), consumerebbero mediante sottoscrizione gli eventi
generati dal broker in modo da inoltrarli al sistema a cui sono associati e con-
vertiti nel formato atteso. Prendendo nello specifico il caso dei disallineamenti
tra le anagrafiche dei vari servizi, sarebbe possibile riallinearli richiedendo tutti
gli eventi di creazione o aggiornamento di esse che sono stati scambiati median-
te event broker da uno specifico istante di tempo in poi, in modo da rendere
il ’event store’ l’unica fonte di verità e garantire la consistenza dei dati tra i
diversi servizi [6], questo è mostrato in Figura 4.3) dove è riportato un generi-
co design per l’interoperabilità tra servizi. In questo modo è possibile ridurre
l’effetto di collo di bottiglia che in attualmente si crea nel servizio di cartella
clinica, che è l’unico servizio che può accedere alle informazioni contenute nel
’eMPI’, in quanto tutte le comunicazioni per quanto riguarda le informazioni
anagrafiche sono contenute in una differente fonte di verità, che non è più ac-
cessibile solamente via cartella clinica elettronica o viste su database, ma da
qualunque servizio necessiti di queste informazioni, comunicandole al broker.

Un approccio mediante ’event broker’ decentralizzato e microservizi per i
canali responsabili di effettuare conversioni di formato, permette una maggio-
re disponibilità del servizio di ESB, evitando centralizzazioni che lo rendono
collo di bottiglia dell’intero sistema informativo, in quanto l’utilizzo di repliche
per le partizioni dei dati contenuti nel ’event broker’ garantisce alta disponi-
bilità e robustezza, mentre l’utilizzo di microservizi, contenenti funzionalità
atomiche di conversione di formato dei dati abilita la possibilità di scalare
orizzontalmente, per permettere alta disponibilità e resilienza anche a fronte
di un grande numero di richieste, evitando rallentamenti che, dato il ruolo del
ESB di mediatore tra tutti i servizi del sistema informativo, impatterebbero
sull’interezza del sistema.

79

Integrazione specifica tra CCE e gli altri servizi

Considerando quanto mostrato precedentemente in maniera più generale
alla Figura 4.3 e Figura 4.1, l’interazione nello specifico tra cartella clinica
elettronica e il ESB avverrebbe come riportato in Figura 4.4, dove le comuni-
cazioni tra i microservizi della cartella clinica avverrebbero mediante broker,
e quelle con gli altri sistemi mediante ESB attraverso il servizio di conversione
apposito per il sistema di cartella clinica e mediante sistema di trasmissione
dati REST via API Gateway per l’autenticazione.

Ciascun microservizio è un server autonomo per cui i dati contenuti in
ciascun database sono necessari al solo funzionamento del microservizio stesso,
la comunicazione tra essi avviene mediante broker, mentre le comunicazioni con
sistemi esterni o l’utente avviene mediante ESB ed API REST.

4.3.3 Pattern per la raccolta di metriche e validazione
delle architetture

I pattern per la raccolta di metriche sono utilizzati per la rilevazione di dati
tra cui metriche a livello infrastrutturale, come la CPU, memoria, utilizzo del
disco, fino ad applicazioni ad un livello di astrazione più alto, come il numero di
richieste ricevute dai servizi, la latenza in risposta ad esse, il tipo di richieste
ricevute (lettura o scrittura) e sono raccolte da un servizio di metriche che
elabora le informazioni ricevute e fornisce degli strumenti per la visualizzazione
in tempo reale dell’evoluzione del sistema e notifica di eventuali criticità.

Il modello riportato in Figura 4.5 è definito ’pull model’, ed è un modello
dove le metriche sono raccolte dai singoli servizi, che espongono una API,
utilizzata dal servizio di elaborazione delle metriche per la raccolta e analisi
periodica delle informazioni rilevate dai singoli servizi.

Le metriche sono dati identificabili attraverso un ’nome’ che rappresenta il
tipo di informazione che si sta tracciando, un ’valore’ che indica la quantità
misurata e l’istante di tempo in cui la misurazione è stata effettuata.

Una volta raccolte possono essere richieste dai client, e a seconda della
tecnologia considerata, si possono visualizzare grafici ed effettuare query che
monitorano i dati in tempo reale, fornendo anche eventuali funzionalità di
notifica di eventi critici.

Questi pattern possono anche essere utilizzati per la validazione delle ar-
chitetture software, per la rilevazione e concretizzazione di attributi di qua-
lità, ricreando scenari di test automatici e verosimili con cui monitorare il
comportamento dell’architettura a fronte di uno stimolo esterno.

Sono disponibili diversi tipi di scenari per la rilevazione di attributi di
qualità, tra cui scenari per la validazione della ’disponibilità’, ’sicurezza’, ’u-

80

Figura 4.4: Schema C&C di soluzione specifico tra CCE e ESB

81

Figura 4.5: Schema C&C di pattern per la raccolta di metriche

sabilità’ e ’performance’ [5], ma a livello generale, gli step per la creazione
degli scenari prevedono l’identificazione di una ’sorgente’, fonte dello ’stimo-
lo’ che è raccolto dal componente o sistema considerato per il test, che causa
una ’risposta’ misurabile e visualizzabile mediante metriche. In questo modo è
possibile verificare punti critici dell’architettura in maniera precisa, concretiz-
zabile e ripetibile. I risultati cos̀ı ottenuti possono essere utilizzati per validare
e comparare le proposte architetturali con quelle attuali, a livello di attributi
di qualità garantiti. Inoltre, possono essere anche definiti limiti e vincoli sulla
quantità tollerabile dei valori misurati.

Un esempio di utilizzo è quello della valutazione delle prestazioni, in cui
si può creare uno scenario che simula una situazione reale con cui valutare il
comportamento del sistema a fronte di un numero molto alto di richieste rice-
vute in un breve intervallo di tempo, misurando il numero di richieste ricevuto,
quelle che sono fallite o che hanno avuto successo e la latenza impiegata, in se-
guito alla misurazione è possibile trarre conclusioni come ad esempio valutare
il 95° percentile di latenza di risposta alle richieste o imporre un vincolo sulla
quantità massima tollerabile.

82

Figura 4.6: Esempio di pattern per la raccolta di log generico

4.3.4 Pattern per la raccolta di log e tracciamento delle
interazioni dell’utente

Per quanto riguarda il requisito del tracciamento delle interazioni dell’uten-
te con la cartella clinica elettronica per effettuare elaborazioni e analisi degli
intenti, si propone una soluzione che utilizza pattern per la raccolta di log
[74], per effettuare audit logging, in modo che ciascuna interazione degli utenti
possa essere tracciata tramite log (di cui un campo debba obbligatoriamente
essere l’identificativo dell’utente), e ciascuno di essi venga raccolto da un ser-
vizio di centralizzazione che effettui l’aggregazione di ciascuno di essi e possa
inoltrare i dati strutturati ad un ulteriore servizio che possa essere interrogato
per una successiva fase di analisi ed elaborazione degli intenti.

Ciascun servizio raccoglie tutte le informazioni inoltrate su standard output
e le inoltra ad un servizio di aggregazione, che raccoglie tutti i dati, li trasforma
e inoltra i dati strutturati ad un servizio che permette l’interrogazione di essi
per effettuare un’analisi ed elaborazione delle informazioni. Le richieste per
l’elaborazione delle informazioni possono avvenire via interfaccia grafica, per
cui sono di semplice utilizzo e comprensione (vd. Figura 4.6).

Questa analisi è ad un livello di astrazione architetturale per cui indipen-
dente dalle tecnologie utilizzate, ma in letteratura è possibile trovare esempi di
applicazioni concrete di questi pattern in ambito sanitario [4], che utilizzano
lo stack di tecnologie open source ’ELK’ [75] per l’implementazione di que-
sti pattern, mostrando performance maggiori rispetto a soluzioni commerciali

83

Figura 4.7: Esempio di pattern CQRS generico

[84].
Alternativamente, è possibile applicare pattern come ’event sourcing’, che

permettono di tracciare la variazione di stato negli oggetti di dominio, asso-
ciando a ciascun evento un istante di tempo, in modo da poter essere raccolti
(ad esempio mediante event broker), e visualizzati nello stesso ordine in cui
sono stati generati, con lo scopo di ricreare l’intera sequenza di eventi, in or-
dine cronologico, per effettuare, tra le possibili applicazioni, anche un’analisi
degli intenti [74].

4.3.5 Pattern per l’incremento delle performance

Si riporta di seguito un pattern per l’incremento delle performance che può
essere applicato efficacemente se sono rispettati diversi requisiti:

Nel caso in cui il numero di richieste nei servizi fosse elevato, si identificasse
questo come punto critico per l’incremento della latenza e conseguenti rallen-
tamenti del sistema, si rilevasse una significativa asimmetria tra il numero di
richieste di lettura e scrittura, con le prime molto maggiori delle seconde, e fos-
se considerata tollerabile una consistenza di tipo ’eventual’: sarebbe possibile
applicare il pattern CQRS dove necessario (vd. Figura 4.7), pattern pensato
per incrementare le performance dei servizi che consiste nella separazione in
due parti dei tipi di operazioni che possono essere effettuate (command, query)

84

e gestirle da due differenti servizi con database ottimizzati rispettivamente uno
per letture (query) e l’altro per le scritture (write).

I dati contenuti in entrambi i database saranno mantenuti allineati me-
diante uno scambio di eventi che porterà i dati relativi alla scrittura verso
la controparte utilizzata per la lettura, riducendo la latenza per le richieste
di lettura ma garantendo una consistenza di tipo ’eventual’, dove non neces-
sariamente le letture effettuate dopo una scrittura sullo stesso dato saranno
consistenti, ma è garantito che prima o poi lo diventeranno [74].

4.4 Implementazione

Un prototipo di Cartella Clinica Elettronica è stato sviluppato per validare
la soluzione architetturale proposta e fornire delle linee guida per l’implemen-
tazione complessiva della stessa. Il progetto è visualizzabile al link in biografia
[16].

Di seguito una discussione sull’implementazione del servizio di terapia nel
prototipo della Cartella Clinica Elettronica.

L’architettura utilizzata per l’implementazione del servizio è di tipo ’laye-
red’ [72], composta da 3 layers (’Domain’, ’Application’ e ’Infrastructure’),
utilizzando una ’hexagonal architecture’, dove sono state definite interfacce
come connettori utilizzati per l’implementazione di adattatori per lo scambio
di informazioni tra le parti della struttura del servizio [11]. Il rispetto delle
dipendenze tra i vari strati dell’architettura sono stati verificati mediante test
unitari delle dipendenze tra le parti.

I servizi sono stati implementati secondo Domain Driven Design, dove sono
stati definiti gli elementi del dominio ed oggetti per la loro elaborazione per
ciascuno di essi. Prendendo in considerazione il servizio di terapia, questo
ha come elementi del suo dominio la pianificazione delle terapie ed eventuali
conflitti con esse, queste sono state modellate mediante le risorse FHIR di
’CarePlan’ e ’AllergyIntolerance’, risorse che hanno riferimenti ad altre, come
’Patient’, che identifica univocamente all’interno del sistema il paziente che si
sta prendendo in considerazione.

Questo servizio deve permettere la lettura e scrittura di terapie per i pro-
pri pazienti, esponendo API per effettuare le operazioni, per cui sono esposti,
secondo le regole RESTful definite nella documentazione FHIR [23] [34] e de-
scritte alla sezione 2.3.1, diversi endpoint che permettono l’esecuzione di ogni
operazione necessaria ad effettuare le elaborazioni richieste. Alla Figura 4.8 il
diagramma delle sequenze per quanto riguarda la lettura di terapie, la scrittura
avviene in modo analogo.

85

Figura 4.8: Diagramma delle sequenze per la lettura dei piani di terapia

86

Figura 4.9: Diagramma delle sequenze per la sospensione di una terapia a
fronte della rilevazione di un evento di conflitto con una nuova patologia

87

Lo scambio di eventi tra i servizi avviene tramite ’event broker’, come
definito in fase di design alla sezione 4.3, alla Figura 4.9 un esempio di come
avviene l’elaborazione di un evento da parte del servizio di terapia una volta
raccolto un evento di rilevazione di una nuova allergia da parte del servizio di
’anamnesi-pregressa’.

Una volta rilevata un’allergia, il servizio di ’anamnesi-pregressa’ pubblica
un evento che è raccolto dal ’event broker’, archiviato sul suo database e inol-
trato ai sottoscritti, tra cui il servizio di ’terapia’ preso in considerazione per
questa analisi.

Una volta raccolto l’evento, viene verificata o meno la presenza di conflitti
con le terapie attualmente pianificate, ed in caso di rilevamento, il campo
relativo allo stato della terapia viene aggiornato in modo da identificare la
terapia come ’sospesa’ a causa delle nuove patologie identificate nel paziente.

Questo genera a sua volta un evento, pubblicato dal servizio di terapia, per
notificare che un piano di terapia che era prima pianificata ha cambiato stato
ed è stata sospesa, in modo da poter essere raccolta da altri servizi ed agire in
modo reattivo a questo cambiamento per generare ulteriori elaborazioni in altre
parti del sistema informativo, come può essere un servizio per la gestione degli
aspetti amministrativi ed eventuali rimborsi automatici per i pazienti, oppure
il servizio di CUP per la riprogrammazione automatizzata di visite e controlli
legati ai nuovi cambiamenti causati dalla sospensione della terapia e dalla
rilevazione delle patologie, automatizzando diversi processi, non solo all’interno
della cartella clinica elettronica, ma relativi al sistema informativo nel suo
complesso, riducendo i tempi di attesa, eliminando l’eventuale errore umano e
semplificando operazioni che vengono attualmente effettuate manualmente.

Questi servizi sono stati descritti in questa sezione in quanto esemplificativi
dell’interezza del prototipo, gli stessi ragionamenti e meccanismi mostrati in
questi esempi sono stati applicati anche negli altri servizi, allo stesso modo di
come sono stati descritti in questa sezione, ed ulteriori servizi possono essere
implementati secondo queste linee guida generali.

4.4.1 Esempio di raccolta delle metriche e monitoraggio
del sistema complessivo

La raccolta di metriche del sistema permette di effettuare query per l’a-
nalisi delle informazioni, come può essere la latenza media o al 95° percentile
Figura 4.10, per verificare il tempo di risposta di ciascun servizio a fronte delle
richieste ricevute, oppure rilevare il numero di richieste che hanno avuto suc-
cesso o sono fallite Figura 4.11, ed il numero di richieste di lettura e scrittura
entro un certo intervallo di tempo Figura 4.12 Figura 4.13, in modo da valu-
tare l’efficacia dell’applicazione di pattern come CQRS [74] a specifici servizi;

88

inoltre, possono essere utilizzati per notificare eventuali anomalie rilevate dal
sistema.

4.4.2 Tecnologie utilizzate

Sono state utilizzate diverse tecnologie per l’implementazione del prototipo,
di seguito un elenco e motivazioni che hanno portato alla scelta delle principali:

• Kotlin / Java: linguaggi della JVM (versione utilizzata: 21), la scelta
di utilizzare questi linguaggi è stata soprattutto per la grande quantità
di librerie e framework disponibili per questa piattaforma, e per poter
utilizzare la libreria ’Hapi’ [88] che implementa lo standard FHIR per la
JVM. Un’altra possibile opzione è ’Go’ [18], linguaggio che permette di
raggiungere tipicamente performance molto più alte rispetto ai linguaggi
della JVM con un impatto sulle risorse molto più ridotto, utilizzato di
frequente per lo sviluppo di microservizi, anche in ambito sanitario, co-
me dimostrato nei precedenti capitoli dopo un’approfondita analisi della
letteratura; ma attualmente non gode dello stesso supporto riguardo li-
brerie e framework open source di libero utilizzo come invece accade nel
caso della JVM, per cui si è preferito utilizzare quella piattaforma.

• Hapi: implementazione per la JVM dello standard FHIR [88] [87];

• Vert.x: framework per la JVM utilizzato per lo sviluppo dei server per
quanto riguarda i microservizi ed API-Gateway [14].

• Prometheus: tecnologia open source utilizzata per effettuare il moni-
toraggio dei sistemi e valutazione mediante metriche. Assieme ad altre
tecnologie come ’Grafana’ [20], con cui può collaborare, sono tra le più
utilizzate nelle architetture per quanto riguarda i pattern di osservabilità
[47], anche in ambito sanitario [86]. È possibile monitorare in tempo rea-
le diverse informazioni, tra cui il numero di richieste effettuate, quante
hanno dato esito positivo o negativo, e monitorarne il tipo, ad esempio
per tracciare il numero di richieste di lettura o scrittura che vengono
effettuate verso il servizio considerato, per valutare o meno criticità e
possibili soluzioni mirate, oppure la validazione e concretizzazione me-
diante scenari di attributi di qualità; Inoltre in letteratura è possibile
trovare articoli che dimostrano come utilizzare questa tecnologia per la
rilevazione automatica e preventiva di anomalie [49].

• Kubernetes: tecnologia open source inizialmente sviluppata da Google,
utilizzata per i deploy; molto efficace riguardo i microservizi, per via
le sue funzionalità come ’autoscale’, che permette di effettuare scaling

89

Figura 4.10: Esempio di tracciamento del 95° percentile del tempo richiesto
dai servizi ad elaborare ogni richiesta ricevuta negli ultimi 5 minuti, via

prometheus GUI

90

Figura 4.11: Esempio di tracciamento del rapporto tra numero di richieste di
lettura che hanno avuto successo rispetto al totale, via prometheus GUI

91

Figura 4.12: Esempio di tracciamento del rapporto tra numero di richieste di
lettura rispetto al totale per ciascun servizio, via prometheus GUI

92

Figura 4.13: Esempio di tracciamento del rapporto tra numero di richieste di
lettura rispetto al totale per ciascun servizio negli ultimi 5 minuti, via

prometheus GUI

93

orizzontale automatico in base all’utilizzo delle risorse, capacità chiave
che migliora la robustezza e disponibilità dei microservizi [45] e che non
può essere garantita da architetture con granularità più alte o di diverso
tipo.

• Kafka: tecnologia inizialmente sviluppata da Linkedin, poi diventata
open source, molto utilizzata soprattutto in architetture a microservi-
zi, anche in ambito sanitario [77], per mantenere una copia di tutti i
messaggi scambiati tra i microservizi e su richiesta ripescarli in qualsiasi
momento in modo da eventualmente riallineare database oppure anche
solo analizzare in maniera sequenziale i dati che sono scambiati tra i
servizi [43] [80].

• JUnit 5: tecnologia utilizzata per effettuare test automatici e ripetibili
[41].

• Mockk: tecnologia utilizzata per effettuare test integrativi mediante test
double [51].

Altre tecnologie prese in considerazione sono state:

• Synthea: strumento per la generazione di dati sanitari sintetici in FHIR
[85], utilizzabili per scopi di testing e validazione; in questo prototipo
non è stata utilizzata in quanto genera solamente risorse ’Patient’ che
per questo prototipo non sono state utilizzate per intero ma solamente
come riferimenti inseriti in altri tipi di risorse, ma considerando diffe-
renti scenari di utilizzo della cartella clinica elettronica rispetto a quelli
considerati in questo caso di studio, può rivelarsi efficace.

• Gatling: tecnologia sviluppata in ’Scala’ [78], utilizzando framework
’Akka’ [46], per effettuare test non funzionali di valutazione del compor-
tamento di un sistema a fronte della ricezione di un grande numero di
richieste da un numero variabile di client [83] [12], permette anche la
generazione di report per mostrare il risultato dei test una volta comple-
tati, ma per questo progetto è stato utilizzato ’Prometheus’ per cui non
è stato necessario.

4.5 Validazione della soluzione proposta

La validazione della soluzione proposta è avvenuta mediante test ripetibili
che ricreano situazioni verosimili, definendo un ambiente di esecuzione che
replica scenari reali, in modo da verificare il comportamento del sistema a

94

fronte di situazioni critiche, per valutarne performance e limiti, come spiegato
in sottosezione 4.3.3.

4.5.1 Testing e valutazioni sperimentali

Per effettuare testing di validazione riguardo i requisiti non-funzionali, i
limiti dell’architettura proposta e una comparazione con le precedenti archi-
tetture, è possibile definire dei ’quality attribute scenarios’ [5], scenari ripeti-
bili che permettono di creare un ambiente specifico dove misurare, e valutare
mediante metriche, il comportamento del sistema a seguito di alcuni stimoli
esterni.

Sono stati creati scenari di test in cui misurare, mediante attributi di qua-
lità, le proprietà non funzionali garantite, come il tempo di risposta dei sistemi
in funzione di un numero di richieste crescente, misurato sia come media che
95° percentile, o la disponibilità dei servizi a fronte di un fallimento simula-
to, per valutare il tempo di recupero del servizio in seguito ad una situazione
critica, questo per simulare uno scenario in cui si ha urgenza di utilizzare un
servizio, che può essere ad esempio ’terapia’, ma che per un fallimento non è
disponibile, e si ha la necessità che torni operativo autonomamente entro un
lasso di tempo il più breve possibile.

Il prototipo sviluppato è predisposto per effettuare i test su ogni servizio,
avviando ad ogni test tutti i servizi del sistema, il monitoraggio dei risultati
può essere effettuato su ciascun servizio individualmente, in modo da valutare
proprietà e necessità specifiche per ciascuno, ed identificare criticità e possi-
bilità di miglioramento adatte a ciascun servizio. Nei test riportati di seguito
si riportano scenari relativi al solo servizio di ’terapia’, in quanto le proprietà
non-funzionali richieste da questo servizio sono più restrittive rispetto agli al-
tri, e richiede di poter gestire carichi di lavoro più alti rispetto alla media,
mantenendo un’alta robustezza e disponibilità, resilienza e tempi di elabora-
zione delle richieste ridotta, ma l’interfaccia grafica utilizzata è predisposta per
la visione dei risultati di ciascun servizio del sistema.

Non essendo attualmente disponibile un sistema di raccolta di metriche
per la Cartella Clinica Elettronica in uso ad AUSL della Romagna, non è stato
possibile effettuare un paragone tra la soluzione architetturale qui proposta
e quella attualmente utilizzata, per cui i risultati e grafici mostrati sono solo
relativi ai risultati ottenuti da questa proposta architetturale.

I valori esatti dei risultati dei test possono variare a seconda della macchina
utilizzata per effettuarli, per cui si riportano di seguito le caratteristiche del
computer e la versione del software utilizzato per effettuare queste validazioni,
in modo da renderle perfettamente ripetibili:

95

• Processore: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, 2208 Mhz,
6 core, 12 processori logici

• Memoria: RAM 16,0 GB

• Versione Prototipo CCE: la versione del prototipo di CCE implemen-
tato per questo elaborato ed utilizzato per i test è stata la: v1.7.2.

Definizione e validazione mediante uno scenario di carico sostenuto
crescente

La tecnologia utilizzata per effettuare il deployment dei servizi per il test
è stata ’kubernetes’, in quanto permette di definire un ’horizontal pod auto-
scaler’ in grado di effettuare scaling di tipo orizzontale per i pod considerati,
ed essendo necessario per il servizio di terapia ricreare uno scenario di carico
sostenuto, per garantire un’alta disponibilità del servizio si è utilizzata questa
funzionalità in modo da valutare il comportamento del sistema a fronte di un
grande numero di richieste.

Al Codice 4.1, il file di configurazione utilizzato per definire l’autoscaler
relativo al servizio di terapia utilizzato per i test.

Il test definito prevede la creazione di uno scenario dove il sistema riceve un
grande numero di richieste concorrentemente, provenienti da diversi utenti, ad
intervalli regolari di 30 secondi, con un numero di richieste crescente, partendo
da 50 e raggiungendo le 500 richieste, incrementando ogni volta il numero di
richieste di 50 rispetto al caso precedente.

La scelta di effettuare test di questo tipo è stata intrapresa dopo un’a-
nalisi della letteratura dove sono stati effettuati test simili per la validazione
di architetture a microservizi, utilizzando lo standard FHIR [81]. Intervalli di
tempo di 30 secondi tra i gruppi di richieste sono stati definiti per dare modo al
sistema di rispondere a tutte le richieste prima di inoltrarne un nuovo gruppo;
l’utilizzo di un numero crescente di richieste è stato effettuato per mostrare il
comportamento del sistema a fronte di diverse tipologie di carico e mostrare
l’efficacia di proprietà come la scalabilità orizzontale che viene applicata auto-
nomamente al superamento di una certa soglia di utilizzo delle risorse dedicate
al sistema.

I risultati ottenuti sono stati raccolti dal servizio di metriche relativo ai
dati sui pod di ’kubernetes’ e relativo ai servizi mediante ’Prometheus’. Lo
scopo è quello di valutare il comportamento del sistema a fronte di ciascun
picco di richieste.

Opzionalmente è possibile definire il test come test automatizzato e ripeti-
bile, ricreando uno scenario ed eseguendo i pod necessari a valutarlo, oltre che
aggiungere vincoli per il suo superamento, come riportato al Codice 4.2, dove,

96

terapia-hpa.yaml (horizontal pod autoscaler for 'terapia')

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

name: terapia-hpa

namespace: monitoring-app

spec:

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: terapia

minReplicas: 1 # minimum num. of replicas to scale down to

maxReplicas: 20 # maximum num. of replicas to scale up to

metrics:

scale based on CPU utilization

- type: Resource

resource:

name: cpu

target:

type: Utilization

2/3 of provided % CPU is required to scale up

averageUtilization: 66

Codice 4.1: File ’yaml’ di configurazione ’kubernetes’ per la realizzazione di
un ’horizontal pod autoscaler’ relativo al servizio di ’terapia’, per la creazione

dello scenario di validazione

97

@Test

@DisplayName("Escalating spike load test")

@Timeout(30 * 60) // 30 minutes timeout

fun performanceEvaluationSustainedAverageLoad() {

setUpEnvironment(k8sFiles)

val results = escalatingSpikeTest(

// number of iterations and requests multiplier

10, 50,

// endpoints and data to be sent

"/CarePlan", carePlanTest, "/CarePlan/002"

)

// Log the results

results.logSummary()

// Optional constraints can be added here to pass the

// test. All data is fetched through Prometheus's API.

assertAll(

{ assertTrue(

results.p95ResponseTime < 2500,

"95th percentile response time must be < 2500 ms"

)

},

{ assertTrue(

results.replicaNumber > 1,

"Should have scaled horizontally"

)

},

)

}

Codice 4.2: Test con carico crescente nel tempo

98

dopo un’iniziale richiesta di POST, contenente i dati relativi ad un ’CarePlan’
di esempio (piano di terapia definito come risorsa FHIR), sono stati effettuati
10 gruppi di richieste di lettura GET sulla stessa risorsa, ad intervalli regolari
di 30 secondi dove ciascun gruppo di richieste di lettura era di 50 richieste
superiore al precedente, partendo da 50 e raggiungendo il valore finale di 500.

I risultati possono essere raccolti tramite la API esposta da Prometheus,
effettuando query utilizzando il linguaggio di interrogazione definito da Pro-
metheus stesso, e i risultati possono essere raccolti ed elaborati dal linguaggio
utilizzato per i test. In questo caso il test è considerato superato se il tempo
di risposta al 95° percentile di tutte le richieste inviate non ha superato i 2500
millisecondi e il servizio di terapia ha effettuato scaling di tipo orizzontale, in
modo da verificare la corretta generazione di repliche e ’load balancing’ tra
esse simulando uno scenario reale in cui il servizio di terapia riceve un grande
numero concorrente di richieste da gestire, mantenendo comunque un’alta di-
sponibilità e tempi di risposta ridotti. È possibile definire altri vincoli, relativi
ad esempio al numero di richieste che hanno avuto risposta positiva, definendo
ulteriori query da inoltrare al endpoint di Prometheus.

Per monitorare il comportamento del sistema durante il test, è possibile vi-
sualizzare tramite interfaccia grafica i dati raccolti da ’Prometheus’. I risultati
ottenuti dalla macchina utilizzata per effettuare i test sono discussi di seguito.

Al termine del test il servizio di terapia ha effettuato scaling orizzontale
fino a raggiungere 6 repliche, per far fronte al numero sempre crescente di
richieste. Questo ha permesso di ridurre gradualmente la latenza media (vd.
Figura 4.14), nonostante il numero sempre crescente di elaborazioni da esegui-
re. La latenza media è passata dal valore iniziale di 1.2 secondi, per far fronte
a 50 richieste di lettura e utilizzando un singolo pod, ad un valore finale di 0.2
secondi, per far fronte a 500 richieste di lettura e utilizzando 6 pod.

Il valore di latenza al 95° percentile (vd. Figura 4.15), misurato ad ogni
intervallo di 30 secondi dove veniva inoltrato un nuovo gruppo di richieste, è
passato dai 2000 millisecondi iniziali, per far fronte a 50 richieste di lettura ed
utilizzando un singolo pod, ad un valore finale di circa 1000 millisecondi per
far fronte a 500 richieste di lettura ed utilizzando 6 pod di replica.

Definizione e validazione del tempo di recupero mediante uno sce-
nario di fallimento di un servizio

Un altro test definito per valutare la resilienza dei servizi, è quello del
fallimento di un servizio, considerando il caso in cui non sia stato fatto scaling
orizzontale, e quindi sia presente un singolo pod, è possibile valutare il tempo
necessario al servizio a tornare in funzione autonomamente.

99

Figura 4.14: Validazione: latenza media, calcolata ogni 30 secondi, a fronte
di un numero crescente di richieste da 50 a 500

100

Figura 4.15: Validazione: latenza al 95° percentile, calcolata ogni 30 secondi,
a fronte di un numero crescente di richieste da 50 a 500

101

Questo scenario è pensato per simulare il caso in cui un paziente necessiti
di un trattamento urgente e il servizio smetta improvvisamente di funzionare
a causa un fallimento, il servizio deve tornare operativo entro il minor tem-
po possibile, per permettere al personale di intervenire il prima possibile sul
paziente che necessita urgentemente di trattamenti.

Il test è automatizzato e consiste nell’inizializzazione dei servizi del sistema,
generando diversi pod, e mandando continuamente segnali di ’health check’ per
controllare se i servizi sono correttamente in funzione. È possibile definire un
intervallo di tempo entro il quale periodicamente inoltrare richieste di ’health
check’, per questo test è stato utilizzato un intervallo di 1000 millisecondi, per
cui, ad ogni secondo, ci viene verificato o meno se il servizio considerato è in
funzione.

@Test

@DisplayName("Test recovery time for 'terapia' service")

@Timeout(30 * 60) // 30 minutes timeout

fun testTerapiaRecoveryTimeUponFailingWithSinglePod() {

val result = executeRecoveryTestWithSingleFailure(

testName = "Terapia Pod Failure",

initialReplicas = 1,

testDurationSeconds = 90,

healthCheckIntervalMs = 1000,

failureDelaySeconds = 15,

healthCheckEndpoint = healthEndpoint,

serviceToKill = "terapia",

host = "http://localhost:31082",

)

result.logSummary()

// should recover within 15000 milliseconds on average

result.assertAverageRecoveryTime(15000)

}

Codice 4.3: Test per valutare il tempo impiegato da un servizio a tornare
operativo dopo un fallimento

Un servizio viene interrotto improvvisamente dopo 15 secondi dall’inizio
del test, come nel caso riportato al Codice 4.3, dove il servizio di ’terapia’
viene interrotto per valutare il tempo impiegato a tornare operativo; ma è
stato effettuato un test per ciascun servizio del sistema.

102

Il pod del servizio di terapia è reattivo, ed impostato per tornare operativo
non appena viene interrotto, per cui viene immediatamente ripristinato e non
appena pronto ad elaborare le richieste ricomincia a rispondere correttamente
ai segnali di ’health check’. Intanto viene misurato il tempo trascorso dall’ulti-
mo segnale di ’health check’ che ha avuto successo prima del primo fallimento,
fino al primo successo dopo che il servizio è tornato operativo, in modo valu-
tare con una sensibilità di ± 1000 millisecondi il tempo impiegato dal servizio
a tornare operativo.

09:27:46.632 INFO = TEST SUMMARY FOR 'Terapia Pod Failure' =

09:27:46.642 INFO Test duration: 89 seconds

09:27:46.645 INFO Total health checks: 88

09:27:46.646 INFO Successful health checks: 79

09:27:46.652 INFO Average failure duration: 9,11s

09:27:46.655 INFO ==

Codice 4.4: Risultato del test utilizzato per valutare il tempo impiegato da
un servizio a tornare operativo dopo un fallimento

Il risultato è stato di circa 9 secondi, per cui è possibile garantire, consi-
derando la macchina utilizzata per effettuare questi test, che il servizio torni
operativo autonomamente entro questa quantità di tempo, come mostrato dai
log al Codice 4.4.

Valori di tempo molto ridotti, come quello qui ottenuto, non è possibile
garantirli con architetture monolitiche, in quanto essendo il sistema una singola
unità di cui viene effettuato il deploy, il tempo necessario per permettere al
servizio di tornare operativo è di gran lunga superiore rispetto al caso dei
microservizi dove ogni servizio rappresenta una singola unità funzionale del
sistema; inoltre, in caso di guasti, non verrebbe interessato l’intero sistema ma
solamente il microservizio considerato, permettendo a tutte le altre funzionalità
del sistema di restare operative.

Inoltre, il broker utilizzato per lo scambio di eventi tra i servizi garanti-
sce che gli eventi pubblicati mentre i servizi non erano in funzione vengano
recuperati una volta tornati operativi, quindi garantendo un’alta tolleranza ai
guasti.

Simulazione di attacchi DOS e DDOS per l’identificazione del carico
massimo gestibile

Test come quelli utilizzati per effettuare questa validazione possono essere
inoltre utilizzati, per scopi difensivi, per simulare attacchi di tipo ’denial of ser-

103

vice’ o ’distributed denial of service’ (DOS o DDOS), che inoltrano un grande
numero di richieste al servizio target con lo scopo di impedirgli di elaborare
correttamente tutte le richieste, e renderlo inaccessibile.

Effettuando simulazioni come quella qui riportata è possibile valutare quale
sia il punto di rottura del sistema, punto oltre il quale il servizio non riesce più
a reggere correttamente il carico di richieste ricevuto.

Monitoraggio in contesti reali

Le stesse tecnologie utilizzate per effettuare questa validazione possono
essere utilizzate anche in contesti reali, quindi monitorando in tempo reale l’e-
voluzione dei microservizi del sistema e permettendo l’interrogazione mediante
query degli stessi, mostrando grafici in tempo reale della situazione del sistema
complessivo con scopo di monitoraggio (compresi malfunzionamenti e notifica
di anomalie).

4.6 Analisi dell’architettura proposta

Considerando il caso di studio di questo elaborato, si riportano diverse
proprietà non-funzionali che sarebbero maggiormente garantite nel caso di
transizione a questo tipo di architettura per la cartella clinica elettronica:

• Modularità: una architettura di questo tipo permetterebbe una mag-
giore flessibilità al cambiamento e modularità, per cui è necessario che
i servizi siano costruiti come blocchi modulari, sotto forma di API per
permettere la comunicazione tra i vari servizi garantendo un maggiore
disaccoppiamento tra essi [3]. È possibile utilizzare le regole di con-
formità FHIR riguardo architettura RESTful in modo da garantire che
ogni servizio utilizzi una struttura conforme allo standard e definita in
modo comune agli altri [23]. Questo rispetta il requisito mostrano in
precedenza di maggiore autonomia tra le varie funzionalità della cartella
clinica.

• Scalabilità: utilizzare una architettura a microservizi, piuttosto che una
monolitica, permetterebbe una maggiore scalabilità, in quanto essendo
i servizi definiti con un livello granularità fine e modulare, è possibile
aggiungere facilmente risorse al solo servizio in cui sono richieste, an-
ziché all’intero ecosistema delle applicazioni, rendendo più semplice la
scalabilità verticale che è invece più limitata nel caso dell’architettura
monolitica attuale [3] (vd. Figura 3.2); utilizzare server con architettu-
re a microservizi permetterebbe inoltre di effettuare scaling orizzontale

104

dove invece non sarebbe possibile applicarlo con la stessa efficacia per ar-
chitetture monolitiche [81] [82], per cui se necessario è possibile adottare
meccanismi di ’load balancing’ e ’horizontal scaling’ per distribuire le ri-
chieste in maniera uniforme tra questi servizi, inoltre è sempre possibile
effettuare ’vertical scaling’ per assegnare un maggior numero di risorse
al servizio, quando necessario [82].

• Disaccoppiamento: questo tipo di architetture permette una riduzione
dell’accoppiamento tra le varie funzionalità proposte, dopo aver effettua-
to un’analisi del dominio per lo scenario rappresentativo considerato,
sono state individuate diverse funzionalità atomiche della cartella clini-
ca che sono il più possibile isolate tra loro, in modo da garantire che le
singole funzionalità della cartella clinica possano continuare ad operare
anche in caso di partizionamenti della rete.

Le principali limitazioni riguardano il ruolo del API Gateway e broker che
possono diventare eventuali colli di bottiglia, in quanto tutte le comunicazioni
tra servizi devono attraversare questi, inoltre alcuni servizi necessitano di re-
quisiti non funzionali specifici, come la robustezza, e ci si aspetta che alcuni
di essi avranno un numero di richieste più alto rispetto agli altri servizi ed
asimmetrico (in termini di differenza tra letture e scritture).

Per mantenere una alta disponibilità del servizio di API Gateway è ne-
cessario applicare meccanismi di ’scaling’ e ’load balancing’, requisiti che si
possono ottenere facilmente utilizzando strumenti di deploy che permettono
di ottenere queste proprietà automaticamente, mentre per quanto riguarda il
broker è possibile considerare l’utilizzo di broker decentralizzati.

Inoltre, l’utilizzo di soluzioni distribuite non permettono di raggiungere
performance superiori rispetto a quelle monolitiche, dove l’intero sistema ha
un deploy su un singolo nodo come un’unica unità, in quanto nelle architetture
distribuite, utilizzando diversi nodi dove la memoria tra i sistemi non è con-
divisa, è necessario scambiare informazioni tra sistemi localizzati in differenti
punti dello spazio, per cui la latenza dovuta alla rete è logicamente superiore
rispetto alle comunicazioni intra-processo.

Eventualmente, se il carico da gestire da parte dei singoli servizi fosse par-
ticolarmente elevato e si rilevasse una significativa asimmetria tra il numero
di richieste di lettura e scrittura, con le prime molto maggiori delle secon-
de, se fosse considerata tollerabile una consistenza di tipo ’eventual’ sarebbe
possibile applicare il pattern CQRS descritto in sottosezione 4.3.5. Pattern
pensato per essere applicato ai singoli servizi dell’architettura, permettendo
quindi l’aggiunta di proprietà non funzionali specifiche a seconda del servizio
considerato, in modo da intervenire in maniera isolata sulle singole funzionalità
che le necessitano, lasciando le altre invariate.

105

Nello specifico, questo pattern permette di incrementare le performance
effettuando una separazione delle operazioni in modo da essere gestite da due
differenti servizi, che si occupano ciascuno di una parte delle operazioni com-
plessive del servizio di partenza. Pattern che si è rivelato efficace in casi d’uso
concreti sempre in ambito sanitario [71].

106

Conclusioni

L’obiettivo di questo di questo elaborato è quello di effettuare un’analisi
dello stato dell’arte delle architetture software in ambito sanitario ed indivi-
duare criticità e margini di miglioramento per il caso di AUSL della Romagna,
dove sono state proposte soluzioni architetturali distribuite a microservizi e ad
eventi per superare le principali limitazioni attuali e riportare allo stato del-
l’arte il sistema informativo sanitario utilizzato. Al fine di validare le soluzioni
proposte, è stato implementato un prototipo di cartella clinica elettronica,
con cui si è dimostrata l’effettiva efficacia delle soluzioni architetturali forni-
te riguardo i requisiti non funzionali moderni, mediante test automatizzati e
ripetibili per la misurazione concreta degli attributi di qualità garantiti.

Il presente lavoro si colloca in un contesto in cui la digitalizzazione sanitaria
sta attraversando una fase di trasformazione profonda, la soluzione proposta è
in linea con le architetture allo stato dell’arte e il moderno approccio ’patient-
centered’ dove la logica del sistema ruota attorno alle specifiche esigenze del
paziente a seconda del contesto sanitario in cui si trova, e presenta una base
per l’automatizzazione di diversi processi che vengono attualmente eseguiti in
maniera manuale, come la rilevazione e sospensione automatica di terapie già
pianificate a seguito dell’identificazione di incompatibilità con eventuali nuo-
ve patologie rilevate nel paziente, per cui molteplici possibili sviluppi futuri
riguardano la possibilità di permettere, ai diversi componenti del sistema in-
formativo di AUSL della Romagna, la raccolta di eventi generati da altri, allo
scopo di automatizzare diversi processi sulla base di quanto mostrato in questo
elaborato.

108

Ringraziamenti

Ringrazio il professor Alessandro Ricci ed i dottori Samuele Burattini ed
Angelo Croatti per il supporto costante e per essermi sempre stati vicini in
questa esperienza di tesi.

Bibliografia

[1] Eneimi Allwell-Brown. A comparative analysis of hl7 fhir and openehr for
electronic aggregation, exchange and reuse of patient data in acute care.
Tukholma: Karolinska Institutet. Viitattu, 30:2020, 2016.

[2] Amira Rezk Aya Gamal, Sherif Barakat. Standardized electronic health
record data modeling and persistence: A comparative review. Journal of
Biomedical Informatics, Volume 114, 2021.

[3] Prasenjit Banerjee. System integration, from middleware to apis. In-
ternational Journal of Computer Trends and Technology, 72:46–52, 03
2024.

[4] Itamir Barroca Filho, Silvio Costa Sampaio, João Carlos A Tenório, Ed-
valdo Vasconcelos de C Filho, Matheus Estevam de C Pessoa, Ramon S
Malaquias, and Pedro Arthur Fernades. Development of a health dash-
board for an electronic health record system. In 2020 20th Internatio-
nal Conference on Computational Science and Its Applications (ICCSA),
pages 16–22. IEEE, 2020.

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, Boston, MA, 4 edition, 2022.

[6] Ali Bayramcavus, M Cagri Kaya, and Ali H Dogru. Interoperability of
microservice-based systems. In 2021 13th International Conference on
Electrical and Electronics Engineering (ELECO), pages 594–598. IEEE,
2021.

[7] Giovani Nı́colas Bettoni, Thafarel Camargo Lobo, Cećılia Dias Flores,
Bruno Gomes Tavares dos Santos, and Filipe Santana Da Silva. Appli-
cation of hl7 fhir in a microservice architecture for patient navigation on
registration and appointments. In 2021 IEEE/ACM 3rd International
Workshop on Software Engineering for Healthcare (SEH), pages 44–51.
IEEE, 2021.

112

[8] Huriviades Calderon-Gomez, Luis Mendoza-Pitti, Miguel Vargas-
Lombardo, Jose Manuel Gomez-Pulido, Jose Luis Castillo-Sequera, Jo-
se Sanz-Moreno, and Gloria Sencion. Telemonitoring system for infec-
tious disease prediction in elderly people based on a novel microservice
architecture. IEEE access, 8:118340–118354, 2020.

[9] D.A. Chappell. Enterprise Service Bus. O’Reilly Series. O’Reilly Media,
Incorporated, 2004.

[10] Mario Ciampi, Mario Sicuranza, and Stefano Silvestri. A privacy-
preserving and standard-based architecture for secondary use of clinical
data. Information, 13(2), 2022.

[11] Alistair Cockburn. Hexagonal architecture (ports and adapters), 2005.
Accessed: 2025-09-15.

[12] Gatling Corp. Gatling: Load testing designed for devops and ci/cd, 2025.

[13] Ministero della Salute, Consiglio Superiore di Sanità, Sessione LII (2019-
2022) Sezione I, Prof. Bruno Dallapiccola, Dr. Stefano Moriconi, Grup-
po di lavoro “Proposta per lo schema di Riforma dei Sistemi Informati-
vi Sanitari”, Prof. Paolo Vineis, Prof. Franco Locatelli, Dott. Giovanni
Leonardi, Prof.ssa Paola Di Giulio, Prof. Claudio Cobelli, Dott. Luca De
Angelis, Prof. Giancarlo Blangiardo, Dott.ssa Lucia Bisceglia, Dott. Clau-
dio Caccia, Giorgio Cangioli, Prof.ssa Flavia Carle, Prof. Andrea Cavalli,
Prof.ssa Giusella Finocchiaro, Dott. Danilo Fusco, Dott.ssa Enrica Mas-
sella Ducci Teri, Prof. Gianluca Mazzini, Dott.ssa Serena Battilomo, and
Dott.ssa Claudia Biffoli. CSS Sezione I – Proposta per lo schema di Rifor-
ma dei Sistemi Informativi Sanitari. Rapporto tecnico, Ministero della Sa-
lute, Consiglio Superiore di Sanità, Roma, 2022. Coordinatori: Prof. Paolo
Vineis, Prof. Franco Locatelli. Segretario: Dr. Stefano Moriconi.

[14] Eclipse Foundation. Eclipse vert.x, 2025.

[15] Evans. Domain-driven design: Tacking complexity in the heart of
software. Addison-Wesley Professional:, 01 2004.

[16] Marco Fontana. Ausl romagna microservizi cce propo-
sta di progetto. https://github.com/MarcoFontana48/

AUSL-Romagna-microservizi-CCE-proposta-di-progetto, 2025.

[17] Neal Ford, Rebecca Parsons, Patrick Kua, and Pramod Sadalage. Building
evolutionary architectures. ” O’Reilly Media, Inc.”, 2022.

[18] Google LLC. The go programming language (golang), 2025.

113

https://github.com/MarcoFontana48/AUSL-Romagna-microservizi-CCE-proposta-di-progetto
https://github.com/MarcoFontana48/AUSL-Romagna-microservizi-CCE-proposta-di-progetto

[19] Konrad Gos and Wojciech Zabierowski. The comparison of microservice
and monolithic architecture. pages 150–153, 04 2020.

[20] Grafana Labs. Grafana: The open observability platform, 2025.

[21] Richard Hill, Dharmendra Shadija, and Mehran Rezai. Enabling com-
munity health care with microservices. In Proceedings of the 15th IEEE
International Symposium on Parallel and Distributed Processing with Ap-
plications (ISPA) and the 16th IEEE International Conference on Ubiqui-
tous Computing and Communications (IUCC), pages 1444–1450. IEEE,
2018.

[22] HL7 International. Fhir: Bundle resource type. https://www.hl7.org/

fhir/bundle.html, 2023. Consultato ad aprile 2025.

[23] HL7 International. Fhir: Conformance. https://build.fhir.org/

conformance-rules.html, 2023. Consultato ad aprile 2025.

[24] HL7 International. Fhir: documents. https://build.fhir.org/

documents.html, 2023. Consultato ad aprile 2025.

[25] HL7 International. Fhir: documents, content. https://build.fhir.

org/documents.html#content, 2023. Consultato ad aprile 2025.

[26] HL7 International. Fhir: esecuzione di operazioni. https://build.fhir.
org/operations.html#executing, 2023. Consultato ad aprile 2025.

[27] HL7 International. Fhir: Fast healthcare interoperability resources.
https://www.hl7.org/fhir/, 2023. Consultato ad aprile 2025.

[28] HL7 International. Fhir: messaging. https://build.fhir.org/

messaging.html, 2023. Consultato ad aprile 2025.

[29] HL7 International. Fhir: Operationdefinition. https://build.fhir.

org/operationdefinition.html, 2023. Consultato ad aprile 2025.

[30] HL7 International. Fhir: Overview. https://www.hl7.org/fhir/

overview.html, 2023. Consultato ad aprile 2025.

[31] HL7 International. Fhir: Overview for sofware architects. https://www.
hl7.org/fhir/overview-arch.html, 2023. Consultato ad aprile 2025.

[32] HL7 International. Fhir: request message example. https://build.

fhir.org/message-request-link.json.html, 2023. Consultato ad
aprile 2025.

114

https://www.hl7.org/fhir/bundle.html
https://www.hl7.org/fhir/bundle.html
https://build.fhir.org/conformance-rules.html
https://build.fhir.org/conformance-rules.html
https://build.fhir.org/documents.html
https://build.fhir.org/documents.html
https://build.fhir.org/documents.html#content
https://build.fhir.org/documents.html#content
https://build.fhir.org/operations.html#executing
https://build.fhir.org/operations.html#executing
https://www.hl7.org/fhir/
https://build.fhir.org/messaging.html
https://build.fhir.org/messaging.html
https://build.fhir.org/operationdefinition.html
https://build.fhir.org/operationdefinition.html
https://www.hl7.org/fhir/overview.html
https://www.hl7.org/fhir/overview.html
https://www.hl7.org/fhir/overview-arch.html
https://www.hl7.org/fhir/overview-arch.html
https://build.fhir.org/message-request-link.json.html
https://build.fhir.org/message-request-link.json.html

[33] HL7 International. Fhir: response message example. https://build.

fhir.org/message-response-link.json.html, 2023. Consultato ad
aprile 2025.

[34] HL7 International. Fhir: Restful api. https://build.fhir.org/http.

html, 2023. Consultato ad aprile 2025.

[35] HL7 International. Fhir: storage. https://build.fhir.org/storage.

html, 2023. Consultato ad aprile 2025.

[36] HL7 International. Homepage di hl7 international. https://www.hl7.

org/, 2023. Consultato ad aprile 2025.

[37] Marek Horváth, Vladyslav Sakhnenko, and Filip Gurbál’. Comparison of
scalability and performance in microservices and monolithic architectu-
res. 2024 IEEE 17th International Scientific Conference on Informatics
(Informatics), pages 82–87, 2024.

[38] International Organization for Standardization. Iso standard 20269.
https://www.iso.org/standard/20269.html, 1994. Consultato ad
aprile 2025.

[39] D. Wanta M. Midura J. Kryszyn, W. Smolik and P. Wróblewski. Compari-
son of openehr and hl7 fhir standards. International Journal of Electronics
and Telecommunications, vol. 69, Art. no. 1, 2023.

[40] W. G Prabath Jayatissa, Vajira H W Dissanayake, and Roshan
Hewapathirane. Review on master patient index, 2018.

[41] JUnit Team. JUnit 5: The next generation of JUnit, 2024. Version 5.x.

[42] Dipanker Jyoti and Jonathan A. Hutcherson. Salesforce integration ar-
chitecture. In Salesforce Architect’s Handbook, pages 185–221. Apress,
Berkeley, CA, 2021.

[43] Narkhede N. Kreps, J. and J. Rao. Kafka: A distributed messaging system
for log processing. 2011.

[44] Jacek Kryszyn, Waldemar T Smolik, Damian Wanta, Mateusz Midu-
ra, and Przemys law Wróblewski. Comparison of openehr and hl7 fhir
standards. International Journal of Electronics and Telecommunications,
pages 47–52, 2023.

[45] Kubernetes Authors. Kubernetes: Production-grade container or-
chestration. https://kubernetes.io, 2025. Consultato a maggio
2025.

115

https://build.fhir.org/message-response-link.json.html
https://build.fhir.org/message-response-link.json.html
https://build.fhir.org/http.html
https://build.fhir.org/http.html
https://build.fhir.org/storage.html
https://build.fhir.org/storage.html
https://www.hl7.org/
https://www.hl7.org/
https://www.iso.org/standard/20269.html
https://kubernetes.io

[46] Lightbend, Inc. Akka: Build powerful reactive, concurrent, distributed
systems, 2025.

[47] Bhanuprakash Madupati. Observability in microservices architectures:
Leveraging logging, metrics, and distributed tracing in large-scale systems.
European Journal of Advances in Engineering and Technology, 10(11):24–
31, 2023.

[48] Vice Presidente AISIS (Associazione Italiana Sistemi Informativi in Sa-
nità) membro Comitato Scientifico ASSD Marco Foracchia, CIO AUSL
Reggio Emilia. Sistemi informativi sanitari: una evoluzione verso l’esterno
del recinto... 2022.

[49] Octavian Mart, Catalin Negru, Florin Pop, and Aniello Castiglione. Ob-
servability in kubernetes cluster: Automatic anomalies detection using
prometheus. In 2020 IEEE 22nd International Conference on High
Performance Computing and Communications; IEEE 18th International
Conference on Smart City; IEEE 6th International Conference on Da-
ta Science and Systems (HPCC/SmartCity/DSS), pages 565–570. IEEE,
2020.

[50] N. Mateus-Coelho, Maria Cruz-Cunha, and L. Gonzaga. Secu-
rity in microservices architectures. Procedia Computer Science,
181(2019):1225–1236, 2021.

[51] MockK Team. Mockk: mocking library for Kotlin, 2024. Version 1.13.x.

[52] OpenEHR. Openehr: Architecture overview. https://specifications.
openehr.org/releases/BASE/development/architecture_overview.

html, 2021. Consultato ad aprile 2025.

[53] OpenEHR. Openehr: Archetypes and templates. https://

specifications.openehr.org/releases/1.0.1/html/architecture/

overview/Output/archetyping.html, 2024. Consultato ad aprile 2025.

[54] OpenEHR. Openehr: Archetypes query language. https:

//specifications.openehr.org/releases/QUERY/latest/AQL.html,
2024. Consultato ad aprile 2025.

[55] OpenEHR. Openehr: Archetypes query language. https:

//specifications.openehr.org/releases/BASE/latest/

architecture_overview.html#_separation_of_responsibilities,
2024. Consultato ad aprile 2025.

116

https://specifications.openehr.org/releases/BASE/development/architecture_overview.html
https://specifications.openehr.org/releases/BASE/development/architecture_overview.html
https://specifications.openehr.org/releases/BASE/development/architecture_overview.html
https://specifications.openehr.org/releases/1.0.1/html/architecture/overview/Output/archetyping.html
https://specifications.openehr.org/releases/1.0.1/html/architecture/overview/Output/archetyping.html
https://specifications.openehr.org/releases/1.0.1/html/architecture/overview/Output/archetyping.html
https://specifications.openehr.org/releases/QUERY/latest/AQL.html
https://specifications.openehr.org/releases/QUERY/latest/AQL.html
https://specifications.openehr.org/releases/BASE/latest/architecture_overview.html#_separation_of_responsibilities
https://specifications.openehr.org/releases/BASE/latest/architecture_overview.html#_separation_of_responsibilities
https://specifications.openehr.org/releases/BASE/latest/architecture_overview.html#_separation_of_responsibilities

[56] OpenEHR. Openehr: Architecture overview. https://specifications.
openehr.org/releases/AM/latest/Overview.html#_archetype_

technology_overview, 2024. Consultato ad aprile 2025.

[57] OpenEHR. Openehr: Compositions. https://specifications.

openehr.org/releases/RM/latest/ehr.html#_compositions, 2024.
Consultato ad aprile 2025.

[58] OpenEHR. Openehr: Design. https://specifications.openehr.

org/releases/BASE/Release-1.0.3/architecture_overview.html#

_design_of_the_openehr_ehr, 2024. Consultato ad aprile 2025.

[59] OpenEHR. Openehr: Entry. https://specifications.openehr.org/

releases/RM/latest/ehr.html#_entry_package, 2024. Consultato ad
aprile 2025.

[60] OpenEHR. Openehr: Folder structure example. https:

//specifications.openehr.org/releases/CNF/development/

platform_test_schedule.html#_tests_of_reference_folder_

structure, 2024. Consultato ad aprile 2025.

[61] OpenEHR. Openehr: Home. https://openehr.ch/, 2024. Consultato
ad aprile 2025.

[62] OpenEHR. Openehr: Information model (rm). https:

//specifications.openehr.org/releases/RM/Release-1.1.0/

ehr.html#_the_ehr_information_model, 2024. Consultato ad aprile
2025.

[63] OpenEHR. Openehr: Instruction state machine. https:

//specifications.openehr.org/releases/RM/latest/ehr.html#

_the_standard_instruction_state_machine_ism, 2024. Consultato
ad aprile 2025.

[64] OpenEHR. Openehr: the ehr. https://specifications.openehr.org/
releases/BASE/Release-1.0.3/architecture_overview.html#_the_

ehr, 2024. Consultato ad aprile 2025.

[65] OpenEHR. Openehr: the ehr package information model.
https://specifications.openehr.org/releases/RM/latest/ehr.

html#_ehr_package, 2024. Consultato ad aprile 2025.

[66] OpenEHR. Openehr: Validation. https://specifications.openehr.

org/releases/BASE/Release-1.0.3/architecture_overview.html#

_validation_during_data_capture, 2024. Consultato ad aprile 2025.

117

https://specifications.openehr.org/releases/AM/latest/Overview.html#_archetype_technology_overview
https://specifications.openehr.org/releases/AM/latest/Overview.html#_archetype_technology_overview
https://specifications.openehr.org/releases/AM/latest/Overview.html#_archetype_technology_overview
https://specifications.openehr.org/releases/RM/latest/ehr.html#_compositions
https://specifications.openehr.org/releases/RM/latest/ehr.html#_compositions
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_design_of_the_openehr_ehr
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_design_of_the_openehr_ehr
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_design_of_the_openehr_ehr
https://specifications.openehr.org/releases/RM/latest/ehr.html#_entry_package
https://specifications.openehr.org/releases/RM/latest/ehr.html#_entry_package
https://specifications.openehr.org/releases/CNF/development/platform_test_schedule.html#_tests_of_reference_folder_structure
https://specifications.openehr.org/releases/CNF/development/platform_test_schedule.html#_tests_of_reference_folder_structure
https://specifications.openehr.org/releases/CNF/development/platform_test_schedule.html#_tests_of_reference_folder_structure
https://specifications.openehr.org/releases/CNF/development/platform_test_schedule.html#_tests_of_reference_folder_structure
https://openehr.ch/
https://specifications.openehr.org/releases/RM/Release-1.1.0/ehr.html#_the_ehr_information_model
https://specifications.openehr.org/releases/RM/Release-1.1.0/ehr.html#_the_ehr_information_model
https://specifications.openehr.org/releases/RM/Release-1.1.0/ehr.html#_the_ehr_information_model
https://specifications.openehr.org/releases/RM/latest/ehr.html#_the_standard_instruction_state_machine_ism
https://specifications.openehr.org/releases/RM/latest/ehr.html#_the_standard_instruction_state_machine_ism
https://specifications.openehr.org/releases/RM/latest/ehr.html#_the_standard_instruction_state_machine_ism
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_the_ehr
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_the_ehr
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_the_ehr
https://specifications.openehr.org/releases/RM/latest/ehr.html#_ehr_package
https://specifications.openehr.org/releases/RM/latest/ehr.html#_ehr_package
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_validation_during_data_capture
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_validation_during_data_capture
https://specifications.openehr.org/releases/BASE/Release-1.0.3/architecture_overview.html#_validation_during_data_capture

[67] Kofi Osei-Tutu and Yeong-Tae Song. A microservices enterprise archi-
tecture for healthcare information exchange (hie) in developing countries.
In 2021 10th International Congress on Advanced Applied Informatics
(IIAI-AAI), pages 762–767, 2021.

[68] Gunjan Pathak and Monika Singh. A review of cloud microservices
architecture for modern applications. In 2023 World Conference on
Communication & Computing (WCONF), pages 1–7. IEEE, 2023.

[69] Miguel Pedrera-Jiménez, Noelia Garćıa-Barrio, Santiago Frid, David Mo-
ner, Diego Boscá-Tomás, Raimundo Lozano-Rub́ı, Dipak Kalra, Thomas
Beale, Adolfo Muñoz-Carrero, and Pablo Serrano-Balazote. Can ope-
nehr, iso 13606, and hl7 fhir work together? an agnostic approach for
the selection and application of electronic health record standards to the
next-generation health data spaces. J Med Internet Res, 25:e48702, Dec
2023.

[70] Nuno Pimenta, António Chaves, Regina Sousa, António Abelha, and Hu-
go Peixoto. Interoperability of clinical data through fhir: A review. Proce-
dia Computer Science, 220:856–861, 2023. The 14th International Confe-
rence on Ambient Systems, Networks and Technologies Networks (ANT)
and The 6th International Conference on Emerging Data and Industry
4.0 (EDI40).

[71] Petar Rajkovic. Using cqrs pattern for improving performances in medical
information systems. 2013.

[72] M. Richards and N. Ford. Fundamentals of Software Architecture: An
Engineering Approach. O’Reilly Media, 2020.

[73] Mark Richards. Microservices vs. Service-Oriented Architecture. O’Reilly
Media, Sebastopol, CA, 2016.

[74] Chris Richardson. Microservices patterns: with examples in Java. Simon
and Schuster, 2018.

[75] Gurpreet S Sachdeva. Practical elk stack. Practical ELK Stack. Apress,
2017.

[76] Nada Salaheddin and Nuredin Ahmed. Microservices vs. monolithic ar-
chitectures [the differential structure between two architectures]. MINAR
International Journal of Applied Sciences and Technology, 4:484–490, 10
2022.

118

[77] Rui Fernando Carvas dos Santos. Microservices architectures in healthcare
with Apache Kafka. PhD thesis, 2022.

[78] Scala Center. The scala programming language, 2025.

[79] Dharmendra Shadija, Mehran Rezai, and Richard Hill. Towards an
understanding of microservices, 2017. Consultato a maggio 2025.

[80] Gwen Shapira, Todd Palino, Rajini Sivaram, and Krit Petty. Kafka:
The Definitive Guide: Real-Time Data and Stream Processing at Scale.
O’Reilly Media, Sebastopol, CA, 2 edition, 2021.

[81] Fahim Shariar Shoumik, Md. Ibna Masum Millat Talukder, Ahmed Imtiaz
Jami, Neeaz Wahed Protik, and Md. Moinul Hoque. Scalable micro-
service based approach to fhir server with golang and no-sql. In 2017
20th International Conference of Computer and Information Technology
(ICCIT), pages 1–6, Dhaka, Bangladesh, 2017. IEEE.

[82] Fahim Shariar Shoumik, Md Ibna Masum Millat Talukder, Ahmed Imtiaz
Jami, Neeaz Wahed Protik, and Md Moinul Hoque. Scalable micro-service
based approach to fhir server with golang and no-sql. In 2017 20th Inter-
national Conference of Computer and Information Technology (ICCIT),
pages 1–6. IEEE, 2017.

[83] Siddhant Shrivastava and S Prapulla. Comprehensive review of load
testing tools. International Research Journal of Engineering and
Technology, 7(3392-3395):43, 2020.

[84] Sung Jun Son and Youngmi Kwon. Performance of elk stack and commer-
cial system in security log analysis. In 2017 IEEE 13th Malaysia inter-
national conference on communications (MICC), pages 187–190. IEEE,
2017.

[85] Synthea Team. Synthea: Synthetic patient generation. https://

synthetichealth.github.io/synthea/#home. Consultato a luglio 2025.

[86] James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

[87] University Health Network. Hapi fhir - java api for hl7 fhir clients and ser-
vers. https://github.com/hapifhir/hapi-fhir. Consultato ad aprile
2025.

[88] University Health Network. Hapi fhir website. https://hapifhir.io/.
Consultato ad aprile 2025.

119

https://synthetichealth.github.io/synthea/#home
https://synthetichealth.github.io/synthea/#home
https://github.com/hapifhir/hapi-fhir
https://hapifhir.io/

[89] Min L. Wang R. Wang, L. Archetype relational mapping - a practical
openehr persistence solution. BMC Med Inform Decis Mak 15, 88, 2015.

[90] M. Zagra and W. Mazzucco. Sistema informativo sanitario (sis). In
F. Vitale and M. Zagra, editors, Igiene, Epidemiologia ed Organizzazione
Sanitaria orientati per problemi, pages 373–382. 2012.

120

	Introduzione
	Elementi di Architetture Software
	Architetture software monolitiche
	Architetture monolitiche modulari

	Architetture software distribuite
	Architetture Orientate ai Servizi
	Architetture a Microservizi
	Architetture ad Eventi

	Differenze tra le architetture descritte
	Differenza tra Enterprise Service Bus e Message-Oriented Middleware
	Differenza tra le architetture SOA e MSA

	Standard per l'Interoperabilità nella Sanità Digitale
	Standard nell'ambito informatico
	Standard per la codifica dei dati sanitari
	Standard per la condivisione e la persistenza dei dati elettronici sanitari
	HL7 FHIR R5
	OpenEHR

	Differenze tra gli standard HL7 FHIR ed OpenEHR

	Architettura del sistema informativo sanitario di AUSL della Romagna
	Stato dell'arte delle architetture per sistemi informativi sanitari
	Contesto e obiettivi strategici di AUSL della Romagna
	Sistema informativo di AUSL della Romagna
	Moduli del sistema informativo ospedaliero

	Analisi dell'architettura allo stato attuale
	Utilizzo degli standard
	Interoperabilità
	Monitoraggio e sicurezza
	Cartella clinica elettronica
	Integrazione tra CCE Ambulatoriale e gli altri servizi
	Interazioni e scambio di eventi tra CCE Ambulatoriale ed altri servizi
	Dossier Sanitario
	Anagrafiche locali e centralizzata
	CCE di Degenza
	Enterprise Service Bus
	Identificazione delle criticità e validazione dell'architettura attuale e future

	Progettazione di un prototipo architetturale esemplificativo per la CCE e sistemi correlati di AUSL della Romagna
	Selezione degli scenari
	Analisi
	Requisiti funzionali
	Requisiti non-funzionali
	Quality Attributes
	Dominio

	Design
	Architettura per la Cartella Clinica Elettronica
	Integrazione tra CCE e servizi esterni
	Pattern per la raccolta di metriche e validazione delle architetture
	Pattern per la raccolta di log e tracciamento delle interazioni dell'utente
	Pattern per l'incremento delle performance

	Implementazione
	Esempio di raccolta delle metriche e monitoraggio del sistema complessivo
	Tecnologie utilizzate

	Validazione della soluzione proposta
	Testing e valutazioni sperimentali

	Analisi dell'architettura proposta

	Conclusioni

