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Abstract

Gravitational waves have emerged as a robust cosmological probe in an era where
precision measurements increasingly challenge the completeness of the standard �CDM
model. Future detectors upgrades will lead to a significant growth in the number of
detections, with catalogs expected to reach orders of 10

5 events. These advances will
enable tighter constraints on both cosmological parameters (e.g., the Hubble constant)
and on the population properties of compact binaries. While such large data sets
promise unprecedented statistical power, they also raise practical challenges: analyzing
entire catalogs may become computationally prohibitive, and the information content
of individual events may not be uniformly distributed. This thesis investigates how
event selection strategies can optimize the extraction of information from large GW
catalogs. Using simulated dark siren datasets derived from the MICE galaxy simulation
with spectroscopic redshift uncertainties, cosmological and astrophysical parameters are
inferred within a hierarchical Bayesian framework implemented in the CHIMERA pipeline.
The analysis focuses on the impact of progressively stricter SNR thresholds, examining
how constraints on cosmology and binary population parameters evolve as the event
sample is reduced. Correlation studies and principal component analysis are employed to
identify the dominant factors governing the informativeness of GW events. The analysis
highlights how catalog subsampling can balance accuracy and computational demands,
outlining strategies that will be increasingly important in the era of third–generation
detectors.
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Introduction

Cosmology has entered an era of precision, where the standard �CDM framework
continues to provide an excellent description of most observations. The foundations
of this model rest on the discovery that the Universe is expanding, first established
through Hubble’s observation of the linear relation between distance and recessional
velocities, and, later, on measurements of distant Type Ia supernovae, that revealed that
the expansion is accelerating. Together with measurements of the cosmic microwave
background anisotropies and the large–scale distribution of galaxies, these observations
established the �CDM model as the standard cosmological framework. The model
assumes a spatially flat Universe dominated by cold dark matter and a cosmological
constant (�), with baryons and radiation contributing only a minor fraction of the total
energy density. This framework has proven remarkably successful, providing a consistent
description of a wide range of cosmological probes, from the early Universe to late–time
structure formation. At the same time, as measurements become increasingly precise,
some tensions have emerged. The most debated is the discrepancy between estimates of
the Hubble constant, H0, inferred from the early Universe and from the local Universe.
This so-called Hubble tension may point to new physics or to unaccounted systematics,
but in either case it underlines the importance of developing independent probes of the
cosmic expansion history (Verde, Treu and Riess (2019); Abdalla et al. (2022); Moresco
et al. (2022)).

Gravitational waves represent one of the most promising probes in this context. Sources
of GWs such as compact binary coalescences act as standard sirens, providing direct
measurements of the luminosity distance without the need for external calibration.
When combined with redshift information, they can be used to constrain H0 and other
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cosmological parameters (Schutz (1986)). Since the first detection of gravitational
waves in 2015, the continuous improvement of the global network of detectors, with
Advanced LIGO and Virgo upgrades, the addition of KAGRA, and future prospects
like LIGO–India, has led to steadily increasing sensitivities and growing catalogs of
events, with the most recent release (GWTC–4.0, Collaboration, Virgo Collaboration
and KAGRA Collaboration (2025)) already including more than 200 candidates. Looking
ahead, the advent of third–generation observatories such as the Einstein Telescope and
Cosmic Explorer will bring an unprecedented number of observations, enhancing the
role of GWs as precision tool for cosmology. This wealth of data promises extraordinary
opportunities, but also raises new challenges related to data analysis, computational
feasibility, and the identification of the most informative events. In particular, it will
become crucial to assess whether every event contributes equally to parameter inference
or whether a smaller subset carries most of the constraining power.

The central question of this work is therefore to explore the information content in
GW; the goal is to derive strategies for optimizing the standard sirens analysis from
a computation point of view, maximizing, at the same time, the scientific return in
terms of robustness and accuracy of the constraints. This work is framed within this
perspective, aiming to explore how gravitational waves detections can be used most
effectively to extract cosmological and astrophysical information. Particular attention
is given to the role of event selection and to the balance between scientific accuracy
and computational feasibility in the era of large catalogs. We will base our analysis
on specific GW simulations aimed at forecasting the behavior for the next O5 LVK
observing run, to provide suggestions to optimize the analysis, also in view of the next
generation third-generation GW detectors.

The thesis is organized as follows.

• Chapter 1 provides the theoretical background, introducing the cosmological frame-
work, the fundamentals of general relativity and gravitational waves, and their use as
standard sirens.

• Chapter 2 describes the methodology, presenting the hierarchical Bayesian framework,
the models for the binary black hole population, and the CHIMERA pipeline.

• Chapter 3 introduces the simulated GW and galaxy catalogs and includes a detailed
statistical analysis of their properties, with particular attention to correlation studies
and dimensionality reduction.

vi



0. INTRODUCTION

• Chapter 4 presents the main results of the inference, examining both individual
and combined constraints, the effect of SNR-based event selection, and the trade-off
between accuracy and computational efficiency.

• Chapter 5 summarize the main results of our analysis, presenting also potential future
developments.
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1
Introduction to GWs

For nearly a century, Gravitational Waves (GW) were a theoretical prediction of General
Relativity: subtle ripples of space-time produced by accelerating masses with a time-
varying quadrupole moment. Their existence was firmly established only in 2015, with
the first direct detection by the LIGO interferometers. This marked the beginning of
gravitational wave astronomy and opened a new observational window onto the Universe.

Beyond confirming a key aspect of Einstein’s theory, GW have quickly emerged as a
promising tool for cosmology. In particular, signals from Compact Binary Coalescence
(CBC) carry direct information on their distance, and can therefor be used as standard
sirens.

This chapter provides the theoretical background: we first outline the cosmological
framework and the observational tension surrounding the Hubble constant, then review
the physics of gravitational waves and their detection, and finally introduce their role as
cosmological probes.

1



The Cosmological Framework

1.1 The Cosmological Framework

Over the last century, numerous models have been developed to describe the large-scale
properties and evolution of the Universe. The current adopted as Standard Cosmological
Model is the � Cold Dark Matter (�CDM).

This model is built upon two primary assumptions:

General Relativity governs gravitational interactions. The evolution of space-time is
described by Einstein’s field equations, which relate the curvature of the Universe
to its matter-energy content.

Cosmological Principle assumes that, on sufficiently large scales, the Universe looks
the same in all directions and at all locations, so it is homogeneous and isotropic.

This involves a combination of energy components: baryonic matter, radiation, Cold
Dark Matter (CDM), and a cosmological constant (�), interpreted as dark energy and
introduced in the model to explain the accelerated expansion of the Universe which is
assessed by observations.

1.1.1 The FLRW Metric and the Expanding Universe

A central consequence of general relativity applied to a homogeneous and isotropic
Universe is the possibility for a non static universe. This was confirmed in 1929, when
Edwin Hubble demonstrated through observations of distant galaxies that their spectral
lines were systematically redshifted, indicating that galaxies are receding from us, as
effect of the expansion of the Universe.

The velocity of recession was found to be proportional to their distance, a relationship
now known as the Hubble-Lemaître Law:

v = H0 · d (1.1)

where v is the recession velocity, d the proper distance to the galaxy, and H0 the Hubble
constant, representing the present-day expansion rate of the Universe.
This discovery provided the first direct observational evidence of cosmic expansion,
replacing the notion of a static universe with a dynamic one.
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1. INTRODUCTION TO GWS

Under the assumption of cosmological principle, the space-time metric can be written as
Friedmann Lemaître Robertson Walker (FLRW) metric:

ds
2

= c
2
dt

2 ≠ a
2
(t)

C
dr

2

1 ≠ kr2 + r
2
(d◊

2
+ sin

2
◊ d„

2
)

D

(1.2)

where ds
2 is the spacetime interval, c is the speed of light, a(t) is the scale factor,

describing how distances between cosmic objects evolve with cosmic time as effect of the
expansion, „ and ◊ are the spherical coordinates and k is the cosmological parameter,
describing the curvature of the geometry of space: k = 0 for a flat Universe, k > 0 for a
closed Universe, and k < 0 for an open Universe.
The coordinates (r, ◊, „), called comoving coordinates, are fixed with respect to the
expansion. The relation between physical and comoving distances is given by:

dp = a(t)dc (1.3)

1.1.2 Elements of General Relativity

General Relativity (GR), proposed by Albert Einstein in 1915, revolutionized our
understanding of gravity. Rather than interpreting gravity as a force acting at a distance
as in Newtonian physics, GR interprets it as the effect of spacetime curvature induced
by energy and momentum. Massive bodies cause spacetime to bend, and particles and
light rays follow paths dictated by this curvature. In GR, spacetime is described as
a four-dimensional differentiable manifold with a metric tensor gµ‹ , which defines the
infinitesimal interval between two nearby events in this spacetime:

ds
2

= gµ‹dx
µ
dx

‹ (1.4)

Using natural units where the speed of light c = 1, the metric can be written in mixed
form:

ds
2

= g00dt
2

+ 2g0idt dx
i
+ gijdx

i
dx

j (1.5)

where g00 corresponds to the time-time component, gij to space-space component, and
g0i to the mixed space-time component. The metric fully determines the causal and
geometric structure of spacetime. In General Relativity, its form is constrained by
Einstein’s Field Equations, which relate spacetime curvature to the stress–energy tensor
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Tµ‹ and to the cosmological constant �:

Rµ‹ ≠ 1

2
gµ‹R ≠ gµ‹� =

8fiG

c4 Tµ‹ (1.6)

where Rµ‹ is the Ricci tensor and together with the Ricci scalar R provide the description
of the curvature of spacetime.

1.1.3 Friedmann Equations

Applying Einstein’s field equations (1.6) to the FLRW metric under the perfect fluid
approximation we get the Friedmann equations, which provide a description of the
evolution in time of the scale factor a(t). These equations are:

3
ȧ

a

42
=

8fiG

3
fl +

�

3
≠ k

a2 (1.7a)

ä

a
= ≠4fiG

3
(fl + 3p) +

�

3
(1.7b)

where fl is the total energy density, p is the pressure of the cosmic fluid and we indicate
with the dot the time derivatives.

Two crucial cosmological parameters emerge from these equations:

The Hubble constant H0, defined as H0 =
ȧ

a
at the present time, quantifies the

current expansion rate of the Universe.

The density parameter �, which describes the contribution of different components
to the total energy density of the Universe. From the definition of the critical
density derived by equating to zero Eq. (1.7a), while neglecting the cosmological
component,

flcrit =
3H

2
0

8fiG
(1.8)

we can write the density parameters for different components as:

�i =
fli

flc
(1.9)

Taking the sum of the densities of various components we can write the total
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1. INTRODUCTION TO GWS

energy density of the universe:

�T OT =

ÿ
�i = �m + �r + �� + �k = 1 (1.10)

where �m matter density, �r is the radiation density, dark �� is the cosmological
component density and �k represents the contribution of spatial curvature.

1.1.4 Equation of State and Cosmological Components

Friedmann equations are complemented by a third equation which is the Equation of
State, determining the balance between density and pressure in a closed system with
different fluid components. The standard form for Equation of State is:

p(t) = w(t)fl(t) (1.11)

In general wi(t) is taken as function of time, but in a given cosmological epoch it can be
approximated with a constant value, wi, depending on the dominant component of the
epoch. With this assumption of a constant wi, we can write the evolution of the energy
density as

fli(z) = fli,0(1 + z)
3(1+wi) (1.12)

in which each component results with a different fli determined by the different w value:

Radiation (photons and relativistic particles): flr Ã a
≠4 , w = 1/3

Matter (baryonic and cold dark matter): flm Ã a
≠3 , w = 0

Dark Energy (cosmological constant): fl� = constant , w = ≠1

By combining Friedmann equations with 1.10 and 1.12 we can express the expansion
rate in terms of redshift evolution of its main components:

H(z) = H0
Ë
�r(1 + z)

4
+ �m(1 + z)

3
+ ��

È1/2
(1.13)
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The Cosmological Framework

1.1.5 Luminosity Distance

With the definition of the Hubble parameter, we can introduce the definition of comoving
distance for the �CDM model:

dc(z) = c

⁄ z

0

dz
Õ

H(zÕ)
=

c

H0

⁄ z

0

dz
Õ


�R(1 + zÕ)4 + �M (1 + z)3 + ��

(1.14)

which is related to the physical distance through the scale factor: dphys = a(z)dc(z).
From the definition of comoving distance, two fundamental quantities can be defined:
the angular diameter distance and the luminosity distance. Recalling the expression
of the scale factor a as a function of redshift, a = 1/(1 + z), we can insert it in the
expression relating dphys and dcom to get:

dA(z) =
c

1 + z

⁄ z

0

dz
Õ

H(zÕ)
(1.15)

which is the angular diameter distance.

We can also derive another distance definition, which is the one for luminosity distance,
which is the quantity derived from the measured flux of a source while knowing its
intrinsic luminosity:

F =
L

4fid
2
L

. (1.16)

In terms of Hubble parameter we can express the luminosity distance as:

dL(z) = c(1 + z)

⁄ z

0

dz
Õ

H(zÕ)
. (1.17)

In the local universe (low redshift) this simplifies to:

dL(z) ¥ cz

H0
(1.18)

which tells us that with a measure of luminosity distance combined with redshift
information we get a measurement of H0. The role of GW in this framework enters
because the amplitude of a GW signal from a CBC encodes a direct information on the
luminosity distance of the source. For this reason, GW are referred as standard sirens
(Sec. 1.3).
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1. INTRODUCTION TO GWS

1.1.6 The Hubble tension

The expansion rate of the Universe, quantified by the Hubble constant H0, can be
measured in different ways depending on the cosmic epoch and on the distance tracers
used. Over the past two decades, the rapid progress of observational cosmology has led to
percent-level measurements of H0, opening the era of so-called precision cosmology. But,
instead of converging to a single value, different approaches have revealed a persistent
discrepancy known as the Hubble tension.

A first family of methods relies on standard candles, astrophysical objects whose absolute
luminosity is known. At short distances, Cepheid variables and RR Lyrae stars provide
accurate distance estimates, while detached eclipsing binaries have fixed the distance
to the Large Magellanic Cloud with high precision. At larger scales, stars at the Tip
of the Red Giant Branch (TRGB) offer an additional standard candle, and Type Ia
supernovae extend the ladder to cosmological distances (Moresco et al. (2022)). These
distance-ladder techniques yield values of H0 in the range ≥ 70–73 km s≠1Mpc≠1, with
the most precise Cepheid-calibrated ladder reporting H0 = 73.0 ± 1.0 km s≠1Mpc≠1

(Riess et al. (2022)).

Complementary to candles are standard rulers, physical scales from early-universe
physics. The most important are Baryon Acoustic Oscillations (BAO), coherent density
fluctuations visible in the large-scale galaxy distribution, and the Cosmic Microwave
Background (CMB), the relic radiation from recombination. Within �CDM model,
these probes give consistent results, with CMB reporting H0 = 67.4 ± 0.5 km s≠1

Mpc
≠1

(Aghanim et al. (2020)) and BAO producing similar values around 67-68 km s≠1
Mpc

≠1

(Schöneberg et al. (2022)).

The discrepancy between early-universe (CMB, BAO) and late-universe probes has now
reached the level of ≥ 5‡. While it could in principle reflect statistical fluctuations or
systematics uncertainties arising from different methods, independent probes consistently
converge to lower values in the early universe and higher ones locally. This clear
separation between the two families of measurements makes it unlikely that the tension
arises from a single methodological bias, and instead suggests the possibility of new
physics beyond �CDM (Verde, Treu and Riess (2019); Abdalla et al. (2022)). In
this context, GW observations provide a crucial, entirely independent way to measure
cosmological distances (see Sec. 1.3).
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Fundamentals of Gravitational Waves

1.2 Fundamentals of Gravitational Waves

In Einstein’s theory of GR, accelerated masses with a time-varying quadrupole moment
generate ripples in the curvature of spacetime, known as Gravitational Waves. These
waves propagate at the speed of light and carry energy, angular momentum, and
information about their sources. In the weak-field, far-zone limit, the metric perturbation
can be written as:

gµ‹ = ÷µ‹ + hµ‹ , |hµ‹ | π 1 (1.19)

The perturbation hµ‹ satisfies the linearized Einstein equations. By imposing the Lorentz
gauge condition

ˆ
µ
h̄µ‹ = 0, h̄µ‹ = hµ‹ ≠ 1

2÷µ‹h, (1.20)

the equations reduce to simple wave equations in vacuum,

⇤h̄µ‹ = 0, (1.21)

whose solutions are plane waves traveling at the speed of light.

An additional gauge freedom can be exploited by performing the transformation

h
Õ
µ‹ = hµ‹ ≠ ˆµ›‹ ≠ ˆ‹›µ, ⇤›µ = 0, (1.22)

which allows us to choose the so-called transverse-traceless (TT) gauge. In this gauge,
non-physical degrees of freedom are eliminated and only two independent components
remain, corresponding to the two physical GW polarizations.

For a wave propagating along the z-axis, the metric perturbation takes the form

A
T T
µ‹ =

Q

ccccca

0 0 0 0

0 h+ h◊ 0

0 h◊ ≠h+ 0

0 0 0 0

R

dddddb
, (1.23)

A
T T
µ‹ = h+e

µ‹
+ + h◊e

µ‹
◊ (1.24)

with e
µ‹
+ and e

µ‹
◊ defined as:
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1. INTRODUCTION TO GWS

Figure 1.1: Deformation of a ring of test masses as effect of the h+ and h◊
polarization.(Image Credits: Antelis and Moreno (2017))

e
µ‹
+ =

Q

ccccca

0 0 0 0

0 1 0 0

0 0 ≠1 0

0 0 0 0

R

dddddb
, e

µ‹
◊ =

Q

ccccca

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

R

dddddb
. (1.25)

Here h+ and h◊ are the plus and cross polarizations. As the name suggests, the per-
turbation is transverse (no components along the propagation direction) and traceless
(hµ

µ = 0). These two polarizations represent the physical degrees of freedom of grav-
itational radiation. When passing through a ring of free test particles, they produce
characteristic quadrupolar distortions: the h+ polarization stretches space in one direc-
tion while compressing it in the orthogonal one, whereas h◊ produces a similar effect
rotated by 45

¶ (Fig. 1.1). This provides the theoretical foundation for the interferometric
detection of GWs.

For a binary system with component masses m1 and m2 in a quasi-circular orbit, the
two polarizations observed at distance r are

h+(t) =
4

r

3
GM

c2

45/3 3
fifGW

c

42/3
1 + cos

2
ÿ

2
cos(2fifGWt) , (1.26a)

h◊(t) =
4

r

3
GM

c2

45/3 3
fifGW

c

42/3
cos ÿ sin(2fifGWt) , (1.26b)

9



Fundamentals of Gravitational Waves

where ÿ is the inclination of the orbital plane relative to the line of sight, and the GW
frequency is related to the orbital frequency by fGW = 2forb. The chirp mass is defined
as

M =
(m1m2)

3/5

(m1 + m2)1/5 , (1.27)

and governs the amplitude and phase evolution of the signal.

Since the orbit shrinks due to GW emission, both the amplitude and frequency increase
with time. Introducing the phase

�(t) = 2fi

⁄ t

t0
fGW(t

Õ
) dt

Õ
, (1.28)

the polarizations can be rewritten as

h+(t) =
4

r

3
GM

c2

45/3 3
fifGW

c

42/3
1 + cos

2
ÿ

2
cos �(t), (1.29a)

h◊(t) =
4

r

3
GM

c2

45/3 3
fifGW

c

42/3
cos ÿ sin �(t). (1.29b)

Close to merger, it is convenient to express the waveform in terms of the time to
coalescence · = tcoal ≠ t, which makes explicit that both frequency and amplitude
increase as · æ 0.

1.2.1 Sources of GW

GW can be generated by a wide range of astrophysical and cosmological processes.
Depending on their morphology in the detector, signals are usually classified into four
categories (Maggiore (2008); Tamanini et al. (to be published)):

• Burst signals are short-lived transients produced by violent, poorly modeled phe-
nomena such as core-collapse supernovae or non-linear instabilities in neutron stars.
Their unpredictable waveform makes them difficult to detect and identify, but they
remain a promising probe of extreme astrophysics.

• Continuous waves (CWs) are nearly monochromatic and long-lasting signals. They
are expected mainly from rapidly rotating, non-axisymmetric neutron stars with
small surface deformations, or from compact binaries in very wide orbits. Their phase
stability requires long integration times to reach detectable signal-to-noise ratios.
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1. INTRODUCTION TO GWS

• Stochastic backgrounds consist of an incoherent superposition of many unresolved
sources or random processes. An astrophysical background may arise from compact
binaries too faint or too numerous to be distinguished individually, such as the
Galactic population of double white dwarfs (important for the low-frequency band of
LISA) or supermassive black-hole binaries driving a nanohertz background, recently
hinted at by Pulsar Timing Arrays (PTA). Cosmological stochastic backgrounds could
originate in the early Universe, for example from first-order phase transitions, cosmic
strings, or inflationary quantum fluctuations.

• Inspiral signals, or CBC, are transient chirping signals produced during the final
inspiral, merger, and ringdown of compact objects. They are the primary sources
for current ground-based interferometers, operating in the ≥10–1000 Hz band, and
so far the only class of sources directly detected. Depending on the nature of the
components, CBCs are divided into:
– Binary Neutron Star (BNS) mergers, such as GW170817, which produce both

gravitational and electromagnetic counterparts (short GRBs, kilonovae, afterglows)
and are therefore of particular importance for multi-messenger astronomy and
cosmology.

– Neutron Star-Black Hole (NSBH) coalescences, potentially accompanied by electro-
magnetic emission.

– Binary Black Holes (BBH) mergers, which dominate the population of observed
GW events. They do not produce electromagnetic signals, but provide crucial
information on the mass and spin distribution of the black holes population.

1.2.2 GW detection

Ground-based interferometric GW detectors share the same basic layout: a power–re-
cycled Michelson interferometer with Fabry–Perot arm cavities. A stabilized laser is
split at a beam splitter and sent along two orthogonal, kilometer-scale arms, at the
ends of which suspended mirrors act as test masses. The beams are reflected back
and recombined at the splitter, with the interference pattern read out at the output
photodetector (Maggiore (2008)). In the absence of a signal the output is kept at
destructive interference, while the passage of a GW produces a differential change in the
optical path (”L ƒ hL), leading to a measurable power variation. For a typical strain
h ≥ 10

≠21 and detector’s arms lenght L ≥ 4 km, this corresponds to ”L ≥ 4 ◊ 10
≠18

m.
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Figure 1.2: Characteristic strain as a function of frequency for selected GW
detectors and source types. (Credits: Moore, Cole and Berry (2015))

To enhance their response, interferometers employ Fabry–Perot arm cavities, which in-
crease the effective optical path by multiple reflections, and power recycling, which boosts
the circulating laser power and reduces photon shot noise. Modern instruments also
feature elaborate seismic isolation and operate in high vacuum to suppress environmental
disturbances.

The sensitivity of detectors is limited by various noise sources, each dominant in a
different frequency band. At low frequency (. 10 Hz) displacement noise from seismic
motion, Newtonian gravity gradients, and suspension thermal fluctuations is the main
limitation. Those produce a physical motion of the detector’s components, resulting as
a false GW strain. At higher frequencies, sensitivity is limited by quantum optical noise.
Photon shot noise, due to random photon arrivals, dominates above a few hundred hertz,
while radiation-pressure noise, caused by power fluctuations pushing on the mirrors, is
most relevant at tens of hertz. These two effects define the standard quantum limit, and
are mitigated with squeezed vacuum injection, power and signal recycling, and heavier
test masses. Technical noise from the laser, electronics, or scattered light is also present
but kept below the fundamental noise terms. As a result, current detectors achieve
broadband strain sensitivities of order 10

≠23
Hz

≠1/2, with optimal performance between
≥ 30 Hz and a few kHz, where stellar-mass compact binaries emitt most strongly.
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The current global network of ground-based interferometric detectors is composed of
the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors in the
United States (Hanford and Livingston), Virgo in Italy, and Kamioka Gravitational Wave
Detector (KAGRA) in Japan; a fifth site in India (LIGO–India) is under construction
and will join in the coming years.

Since 2015 the LIGO-Virgo-KAGRA (LVK) collaboration has organized its observing
campaigns in runs of increasing sensitivity and duration. The first direct detection,
GW150914, occurred during O1 (2015–2016), marking the discovery of binary black
hole mergers. In O2 (2016–2017) Virgo joined the network, and the joint observation of
GW170817, a binary neutron star inspiral with rich electromagnetic follow-up, opened
the era of multi-messenger astronomy. The subsequent O3 run (2019–2020) greatly
expanded the catalog, with nearly ninety confirmed events including the first neutron
star–black hole mergers and unusual massive BBH systems such as GW190521. The
ongoing O4 run (2023–2025) operates with improved sensitivities and a growing number
of candidate events, with Virgo and KAGRA intermittently joining the network.

The fifth observing run (O5) is planned to start around the late 2027 and will be longer
and more sensitive. With upgraded instruments (LIGO A+, Advanced Virgo+, and
KAGRA improvements) the network will extend its reach for compact binary mergers,
increasing both the number of detections and the accuracy of source localization. In
this phase the construction of LIGO–India will add a new site to the network, further
enhancing sky coverage and opening the way for even more precise multi-messenger
observations.

Looking ahead, third-generation ground detectors aim for about one order of magnitude
improvement in broadband strain sensitivity and to access the frequency region below
10Hz. The core strategy is to build underground (as planned for the Einstein Telescope
(ET)) which strongly reduces micro-seismic, which mainly propagate on the surface,
and external disturbances (wind, temperature, scattered light). Underground siting
also enables stable cryogenic setting, allowing for a mitigation of thermal noise in the
≥10–100 Hz band. In addition, improved optics and readout (optimized recycling and
frequency-dependent squeezing with heavier test masses) keep quantum noise under
control while maintaining stable interferometer operation (Punturo et al. (2010)).

The overall evolution of the detector network and the corresponding growth of the GW
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Figure 1.3: Number of detected mergers expected from binary black holes (black),
black hole-neutron stars (teal), and binary neutron stars (orange) systems for
different Observing runs. (Credits: Broekgaarden, Banagiri and Payne (2024))

catalogs expected from current and future observing runs, including third–generation
observatories such as ET and CE, is summarized in Fig. 1.3.

1.3 Gravitational Waves as Cosmological Tools

The possibility of using GW as distance indicators was first proposed by Schutz (1986),
who realized that Compact Binary Coalescence provide a direct measurement of their
luminosity distance. Unlike electromagnetic probes, which rely on complex astrophysical
modeling and calibration steps, the amplitude of GW signal directly encode dL. This
property makes GW sources standard sirens.

In the cosmological context, this property is of particular relevance to the current
discrepancy between early and late Universe determinations of H0, known as Hubble
Tension (see Sec. 1.1.6). Gravitational waves provide an entirely independent probe:
by combining the luminosity distance extracted from a GW signal with an external
measurement of the source redshift, it is possible to directly test the distance–redshift
relation and constrain cosmological parameters. In this way, GW standard sirens
represent a powerful probe.

14
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For Compact Binary Coalescence at cosmological distances, the strain (Eq. (1.29)) is
modified by the expansion of the Universe: the emitted frequency is redshifted, the
source-frame chirp mass is replaced by its redshifted value, and the proper distance r is
replaced by the luminosity distance dL:

fobs =
fsrc

1 + z
, Mobs = (1 + z) Msrc (1.30)

With these modifications, the observed polarizations become

h+(t) =
4

dL

3
GMobs

c2

45/3 3
fifobs(t)

c

42/3
1 + cos

2
ÿ

2
cos �(t), (1.31)

h◊(t) =
4

dL

3
GMobs

c2

45/3 3
fifobs(t)

c

42/3
cos ÿ sin �(t). (1.32)

The interferometric detectors measure a linear combination of h+ and h◊, weighted by
their antenna response functions F+ and F◊:

h(t) = h+(t)F+(◊, „) + h◊(t)F◊(◊, „) (1.33)

where ◊ and „ are the angles defining the direction of propagation of the GW. From the
observed waveform, different pieces of information can be extracted. The amplitudes of h+

and h◊ encode the inclination angle ÿ of the binary. The frequency evolution of the signal
determines the redshifted chirp mass Mobs. Finally, the overall amplitude of the strain
provides a direct measurement of the luminosity distance dL. Putting these together,
one obtains a self-consistent measurement of dL. If an independent determination of
the source redshift z is available, this yields a point on the distance–redshift relation,
making compact binaries standard sirens.

1.3.1 Standard Sirens

One of the key challenges in gravitational wave cosmology is the degeneracy between
mass and redshift. Without an independent redshift measurement, it is not possible to
recover the source-frame chirp mass, and thus the true component masses that generated
the GW signal. Separate approaches have been developed for this purpose, leading to
the distinction between bright, dark, and spectral sirens.

Bright Sirens: In this case, the redshift information is provided by the direct obser-
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vation of an electromagnetic counterpart to the GW event. Radiation produced
by the merger can be observed across the electromagnetic spectrum, enabling a
spectroscopic measurement of the host galaxy redshift from spectral line shifts.
This method is feasible when at least one of the binary components is a neutron
star, as in BNS or NSBH systems, where electromagnetic emission is expected.
For BBH mergers, no light escapes and thus no direct counterpart can be observed.
To date, only one confirmed bright siren has been detected: GW170817.

Dark Sirens: When no electromagnetic counterpart is observed, redshift information
can be obtained from statistical association of the GW event to its host galaxy.
The idea is to combine the GW localization volume with galaxy catalogs: by
overlapping the 3D sky localization region of the event with cataloged galaxies,
one can infer a probabilistic association between the GW source and potential
hosts galaxies enclosed in the localization volume. This approach has been widely
applied to BBH systems, where no EM signal is expected.

Spectral Sirens: This method relies on the statistical properties of the GW source
population itself. For example, compact objects are expected to follow specific mass
distributions. Since the observed chirp mass is redshifted, Mobs = (1 + z) Msrc,
population features in the intrinsic mass distribution appear shifted in the observed
distribution. By comparing the observed distribution of redshifted masses with
astrophysical models, it is possible to statistically infer the redshift of events, and
hence extract cosmological information even without direct host identification.

In this context, the present work is focuses to the use of dark sirens as cosmological probes.
The analysis is performed within the hierarchical Bayesian inference formalism, which
provides a consistent way to connect event-level parameters measured from GW signals
with population properties and cosmological parameters. Using simulated catalogs, the
work evaluates how sample selection influences the precision of cosmological inference
and examines the impact of Signal to Noise Ratio (SNR) cuts on GW parameters. A
central question is whether the cosmological information is evenly distributed across
the full set of detected events, or whether specific subsets of events carry most of
the constraining power. This becomes critical in view of the expected growth in the
number of detections. So far, with the limited number of detections in O3 and O4,
all events above threshold could be analyzed. This will no longer be possible with O5
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and, especially, with third generation detectors, like the ET, which will deliver up to
10

5 events (Branchesi et al. (2023)). In such a large data volume regime, it becomes
essential to determine which events carry the greatest cosmological and astrophysical
information. By addressing this, the thesis contributes to defining strategies that will
allow gravitational-wave cosmology to fully exploit their crucial role in cosmology.
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2
Statistical Framework

Extracting cosmological information from GW observations requires a statistical frame-
work that links the properties of individual events to the characteristics of the overall
population. This is achieved using Hierarchical Bayesian Inference, a powerful method
that enables the joint estimation of both event-level parameters and population-level
hyperparameters describing astrophysical and cosmological distributions. The framework
naturally incorporates measurement uncertainties, selection effects, and observational
biases.
In this work, we perform hierarchical inference using CHIMERA, a dedicated pipeline that
combines GW data with galaxy catalogs, enabling population and cosmological studies
in a fully self-consistent way.

2.1 Hierarchical Bayesian Inference

Bayesian inference has become a fundamental tool in modern astrophysics, particularly
in GW astronomy (Thrane and Talbot (2019)). Its power lies in the ability to incorporate
prior knowledge, account for observational uncertainties, and update model probabilities
as new data become available.
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In the context of dark sirens, Bayesian methods provide a rigorous framework for inferring
both the physical properties of individual sources and the underlying cosmological
parameters. This is achieved by combining GW data with external astrophysical
informations, such as galaxy catalogs. The approach becomes especially powerful when
multiple events are analyzed jointly, enabling population-level inference through a
hierarchical modeling structure.

This hierarchical approach is particularly powerful when dealing with complex models
involving multiple layers of parameters. This is the case of GW cosmology, where we
are not only interested in the properties of a single source, but also in the population
properties that describe the entire ensemble of detected events. In this context, we
distinguish between two levels of parameters:

• Event-level parameters ✓i: these describe the astrophysical and geometrical
properties of the i-th source. For each detected event they are not observed, but
inferred probabilistically from the noisy detector data (see Sec. 2.1.1).

• Hyperparameters �: These describe the statistical properties of the entire source
population and are organized into three groups: �c, the cosmological parameters, which
enter through the distance–redshift relation; �m, the mass distribution parameters,
which control the intrinsic binary mass spectrum; and �z, the redshift evolution
parameters, which model the merger rate density as a function of cosmic time. The
entire set of hyperparameters is summarized in Tab. 2.1, while a detailed description of
population models for mass and merger rate distributions and related hyperparameters
can be found in Sec. 2.2.

It is important to note that the event-level parameters ✓i are not directly accessible
through observations. Gravitational wave detectors instead yield data products di, such
as strain time series, from which information on ✓i must be inferred. The statistical
connection between the hyperparameters � and the measured data di is therefore
mediated by the parameters ✓i, following the hierarchical structure

di ≠æ ✓i ≠æ �

This structure is known as hierarchical because it connects observed data (di) to
population-level parameters (�) through intermediate variables (✓i).
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Parameter Description Fiducial value

�c
H0 Hubble constant [Mpc s

≠1
km

≠1
] 70.0

�m Matter Energy density 0.25

�z

“ Slope at z < zp 2.7

zp z at the peak 2

Ÿ Slope at z > zp 3

�m

– Spectral index for the primary power law 3.4

— Spectral index for the secondary power law 1.1

”m Smoothing parameter [M§] 4.8

mlow Minimum mass value [M§] 5.1

mhigh Maximum mass value [M§] 87.0

µg Mean of the Gaussian peak [M§] 34.0

‡g Standard deviation of the Gaussian peak [M§] 3.6

⁄g Strength of the Gaussian peak 0.039

Table 2.1: Hyperparameters adopted, grouped according to their role in describ-
ing the cosmology (�c), the merger–rate redshift evolution (�z), and the mass
distribution (�m). The fiducial value for each parameter is reported as reference.

2.1.1 Parameter Estimation

The data collected by a GW detector are a time series of strain s(t) produced by a
combination of the true GW signal h(t) and detector noise:

s(t) = h(t) + n(t). (2.1)

The role of parameter estimation is to disentangle the two and determine which sets of
parameters ✓ are most consistent with the observed strain.

The parameters can be grouped into two categories: Intrinsic parameters describe the
source in its own rest frame, such as the component masses (m1, m2), spins (�1,�2),
and, for neutron stars tidal deformabilities (�1, �2). They determine the dynamics of
the binary and thus the detailed evolution of the gravitational waveform. Extrinsic
parameters specify how the source is seen by the detector, including the luminosity
distance dL, sky position (RA, dec), orbital inclination ÿ, polarization angle Â and
coalescing phase and time „c and tc. They affect the amplitude, orientation, and
modulation of the observed signal.

From the detector point of view, none of these parameters are observed directly. Para-
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meter estimation proceeds by comparing waveform templates with the observed strain
s(t), and by inferring which values of ✓ allow the model to reproduce the data most
consistently. In practice, one considers a family of possible waveforms templates, denoted
as h(t;✓), where ✓ = ◊1, . . . , ◊N represents the collection of both intrinsic and extrinsic
parameters to be inferred, and evaluates how well each template matches the data.
Combining this likelihood with prior information yields a posterior distribution for each
parameter: a probability distribution describing which values of ✓ are supported by the
data (Christensen and Meyer (2022); Maggiore (2008)).

The result of parameter estimation for one event is not a single best-fit value, but a set of
correlated probability distributions for all parameters. These posteriors encapsulate the
information that will be combined across many events in hierarchical Bayesian inference,
allowing us to connect the noisy strain data to population properties and cosmological
parameters.

2.1.2 Bayes Theorem

Within this framework, Bayes Theorem relates the posterior distribution of the hyper-
parameters to the likelihood of the data and prior information. Considering a population
of Nev GW events, each characterized by source-frame parameters ✓i drawn from a
population distribution ppop(✓|�), the posterior on � reads:

p(� | {di}) =
L({di} |�) fi(�)

p({di})
, (2.2)

where fi(�) is the prior distribution reflecting our knowledge or assumptions about �

before observing the data. L({di} |�) is the likelihood, which quantifies the probability of
the data given the model parameters. The denominator p({di}), known as the evidence,
acts as a normalization factor obtained by integrating the likelihood over all possible
values of ✓.
In practice, the posterior is the main quantity of interest, as it encapsulates what can be
inferred about the parameters after incorporating the data. The likelihood measures
how well a given model explains the observations, while the prior allows us to include
external information or theoretical expectations.
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2.1.3 Likelihood and Selection Effects

The likelihood function is the core element of Bayesian inference, quantifying how prob-
able it is to observe the data given a specific set of parameters.

Considering our set of Nev observed events {di}, for each event, we can define a likelihood
that depends on the event-level parameters ✓i and the population-level hyperparameters
�. Assuming statistical independence between events, the hyper-likelihood can be written
as the product of the likelihoods for each individual event:

L({di}|�) =

NevŸ

i=1

⁄
p(di|✓i) ppop(✓i|�) d✓i (2.3)

Here, p(di|✓i) is the event-level likelihood, while ppop(✓i|�) is the population model
defined by the hyperparameters � (see Sec. 2.2).

However, not all sources in the astrophysical population are equally likely to be detected.
The detectability of an event depends on source properties such as luminosity distance,
binary orientation, and sky position, as well as on the sensitivity of the detector network.
For binary black holes, the sensitive volume of a detector is strongly influenced by
the component masses (Talbot and Thrane (2018)). More massive binaries generate
higher-amplitude signals and are thus detectable at larger distances, but they also merge
at lower frequencies and spend less time in the detector band. Moreover, cosmological
redshift shifts the signal to lower frequencies and makes distant systems appear more
massive in the detector frame.

This interplay between source properties and detector sensitivity results in an observed
population that is biased with respect to the true astrophysical distribution. Such effects
can be described through the detection probability, Pdet(✓), which gives the probability
that a source with parameters ✓ is observed:

Pdet(✓) =

⁄

dœdet
p(dÕ|✓) ddÕ

. (2.4)

Taking this into account, the hyper-likelihood takes the form (Mandel, Farr and
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Gair (2019); Vitale et al. (2021)):

L({di}|�) =

NevŸ

i=1

s
p(di|✓Õ

) ppop(✓
Õ|�i)s

dœdet ddÕ s
p(dÕ|✓Õ)ppop(✓Õ|�)d✓Õ (2.5)

It is useful to factor out the detection probability from the likelihood by introducing the
selection function:

›(�) =

⁄
Pdet(✓

Õ
) ppop(✓

Õ|�) d✓
Õ
, (2.6)

which represents the fraction of sources from the underlying population that would be
detected for a given �. The corrected hyper-likelihood, properly accounting for selection
effects, is then:

L({di}|�) Ã 1

›(�)Nev

NevŸ

i=1

⁄
p(di|✓i) ppop(✓i|�) d✓i. (2.7)

This normalization ensures that the inferred population parameters are not biased
by the preferential detection of intrinsically louder or closer events. Neglecting the
selection function ›(�) would lead to biased inferences on the underlying population and
cosmological parameters, as more easily detectable events would be overrepresented in
the posterior.

If, in addition, we wish to include information on the total number of detections, Nev

can be modeled as a Poisson process with expected value Nexp(⁄) = Nev›(⁄), where
Nexp is the number of expected events during the observation period, including also
undetectable signals. In this case, the likelihood accounts for the additional Poisson
term:

e
≠Nexp(Nexp)

Nev (2.8)

Without the Poisson term the likelihood is scale–free: it allows inference on the shape of
the population but not on the number of events.

2.1.4 Full Posterior

The full posterior over the hyperparameters, given the data from all events {di}, is
proportional to the product of the likelihood and the prior:

p(� | {di}) Ã L({di} | �) ◊ fi(�) (2.9)
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Including Eq. (2.7) and 2.8, the full expression is written as:

p(�|{di}) Ã e
≠Nexp(Nexp)

Nev fi(�)

›(�)Nev

NevŸ

i=1

⁄
p(di|✓i,�) ppop(✓i|�) d✓i (2.10)

which includes, the population model ppop(◊i|�), which defines how the event-level
parameters are distributed across the population; the selection function ›(�), which
accounts for detection biases and is essential to ensure unbiased inference. Nexp(�) is the
expected number of detections under �, and fi(�) is the prior over the hyperparameters

To perform this analysis, we use the CHIMERA code, which is designed to handle large
populations of GW events and their connection to galaxy catalogs. Combined Hierarchical
Inference Model for Electromagnetic and gRavitational Wave Analysis CHIMERA computes
the full posterior distribution over cosmological and population parameters by sampling
the GW event posteriors, modeling the redshift prior informed by catalogs, incorporating
the selection function, and efficiently evaluating the joint likelihood. A more detailed
explanation can be found in Sec. 2.4.

2.2 Population Models

The population probability distribution ppop(✓|�) describes how the event-level paramet-
ers ✓ of gravitational wave sources are distributed within the astrophysical population
described by a set of hyperparameters �. We adopt a factorized form:

ppop(✓|�) = p(m1, m2|�m) p(z, �̂|�z,�c), (2.11)

where p(m1, m2|�m) models the mass distribution of the binary components, and
p(z, �̂|�z,�c) represents the redshift and localization distribution, which incorporates
cosmological parameters �c and redshift-evolution parameters �z.

This factorization assumes that the binary mass distribution is independent of redshift,
which is a common approximation known as a stationary mass function. Although
several studies have reported possible mass–redshift trends suggesting an evolution
toward higher primary masses at larger redshifts (Gennari et al. (2025)), these effects
are expected to become significant at redshifts higher than those reached by our current
detector network. Within the redshift range probed by our catalogs, the stationary
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approximation is therefore correct.

2.2.1 Mass distribution

The mass term can be separated into the distribution of the primary and secondary
component masses:

p(m1, m2|�m) = p(m1|�m) p(m2|m1,�m), (2.12)

with the condition that m1 Ø m2. This decomposition allows for flexible modeling of
the primary mass spectrum and of the mass ratio m1/m2 distribution.

A variety of models have been proposed for the primary mass distribution p(m1|�m),
motivated by both population-synthesis predictions and observational constraints (Talbot
and Thrane (2018); Roy, Son and Farr (2025)). The most widely used is the Power Law
+ Peak (PLP) model, described as

p(m1|–, ”m, mlow, mhigh, µg, ‡g, ⁄g) Ã [(1 ≠ ⁄g)P(m1) + ⁄gG(m1)]S(m1) (2.13)

which combines:

• a truncated power-law P(m1; –), with slope – and bounds (mlow, mhigh), describing
the bulk of the distribution;

• a Gaussian peak G(m1; µg, ‡g) representing an excess of sources at m1 ≥ 30≠40 M§,
potentially linked to pair-instability supernova physics (Talbot and Thrane (2018));

• a smoothing function S(m1; ”m) to avoid a sharp cut-off at the lower edge of the mass
distribution.

The relative contribution of the power-law and Gaussian components is set by a weighting
expressed by ⁄g. In Fig. 2.1a is reported the p(m1) mass distribution, which follows the
PLP.

The secondary mass distribution p(m2|m1,�m) follows a power law with spectral index
— inside the mass range [mlow, m1].

For BNS systems, the current number of detections is too small to robustly constrain
the mass function, and a uniform distribution in a plausible mass range is often assumed
as a practical choice.
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2.2.2 Merger Rate distribution

The term p(z, �̂|�z,�c) in the population function describes the redshift and sky localiz-
ation distribution of the sources. It can be factorized into two components:

p(z, �̂|�z,�c) =
pgal(z, �̂|�c)prate(z|�z)

s
pgal(z

Õ, �̂Õ|�c)prate(zÕ|�z)dzÕd�̂Õ
. (2.14)

Here, pgal(z, �̂|�c) represents the probability of finding a host galaxy at a given redshift
and sky location, given the cosmological model �c, while prate(z|�z) models the intrinsic
merger rate density as a function of redshift, parametrized by �z.

The galaxy term pgal encodes the distribution of potential host galaxies and describes
the probability of having an host galaxy at a given redshift z and sky localization �.
The merger rate term prate describes how the rate of compact binary coalescences evolves
with cosmic time. In the source frame, this evolution is often expressed as Â(z|�z), while
in the detector frame the observed rate is reduced by a factor (1 + z) due to cosmological
redshift:

prate(z|�z) Ã Â(z|�z)

1 + z
. (2.15)

Several parametrizations can be adopted for Â(z), ranging from simple power-laws to
more physically motivated models. In this work, we employ the Madau–Dickinson form
(Madau and Dickinson (2014)), widely used to model star formation histories:

Â(z|�z) Ã (1 + z)
“

1 +

Ë
1+z
1+zp

È“+Ÿ , (2.16)

where “ is the slope which controls the rise of the rate at low redshift, Ÿ sets slope of
the decline at high redshift and zp is the redshift at which the rate peaks.

This parametrization captures the general behavior expected for compact binary popula-
tions formed from stellar progenitors: an initial rise tracing the cosmic star formation
rate, followed by a decline at high redshift. Fig. 2.1b shows the Madau–Dickinson merger
rate model over the redshift range 0 Æ z Æ 10.
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(a) (b)

Figure 2.1: Assumed population models used in the analysis. Left (2.1a): Power-
Law plus Peak mass function for the primary mass. Right (2.1b): Madau–Dickinson
CBC rate model shown as a function of redshift in the range 0 to 10.

2.3 Catalog Completeness

In dark sirens cosmology, the redshift prior used for the association between GW
events and potential host galaxies is derived from an external galaxy catalog. The
underlying assumption is that compact binary mergers occur within galaxies, and that
the distribution of these galaxies traces the distribution of possible GW hosts. In
the idealised case of a complete galaxy catalog (one containing all galaxies that could
plausibly host a GW event) the probability of finding a host with properties G (stellar
mass, luminosity) at redshift z and sky position �̂ is given directly by the catalog:

pgal(z, �̂, G|�c) = pcat(z, �̂, G|�c). (2.17)

This quantity can be computed as a weighted sum over all galaxies g in the catalog:

pcat(z, �̂, G|�c) =

q
g wg p(z|z̃g,�c) ”(�̂ ≠ �̂g)

q
g wg

, (2.18)

where the weights, wg, encode the relative probability that galaxy g hosts the event, z̃g is
its measured redshift, and ” is a Dirac delta function enforcing its sky localization. The
term p(z|z̃g,�c) represents the galaxy’s redshift posterior, obtained from the measured
value z̃g and its uncertainty ‡z̃,g, combined with a prior pbkg(z|�c) describing the
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background galaxy distribution. Assuming Gaussian measurement errors, we have:

p(z|z̃g,�c) =
N(z; z̃g, ‡

2
z̃,g) pbkg(z|�c)s

N(zÕ; z̃g, ‡
2
z̃,g) pbkg(zÕ|�c) dzÕ , (2.19)

where N(z; µ, ‡
2
) is the Gaussian probability density function.

However, no realistic galaxy catalog is perfectly complete. Observational limitations,
such as finite magnitude limits, incomplete sky coverage, and spectroscopic targeting
biases, imply that some fraction of true host galaxies are missing from the catalog. This
incompleteness grows with redshift due to the Malmquist bias, whereby intrinsically faint
galaxies become undetectable. Ignoring this effect would bias cosmological inference, as
the redshift prior would under-represent hosts at higher z.

We quantify completeness in a region S, defined by a range in redshift and sky position,
for galaxies with properties G as:

Pcomp(S, G) =
Ncat(S, G)

Ngal(S, G)
, (2.20)

where Ncat is the number of catalogued galaxies in S and Ngal the total number physically
present. The latter can be modeled from a reference comoving number density n̄gal(G),
assumed constant over S, such that:

Pcomp(S, G) =
Ncat(S, G)

n̄gal(G) Vc(S)
, (2.21)

with Vc(S) the comoving volume of S for the assumed cosmology.

When completeness is below unity, the galaxy probability is decomposed into a contribu-
tion from catalogued galaxies and a term pmiss describing the missing ones:

pgal(z, �̂, G|�c) = fR pcat(z, �̂, G|�c) + (1 ≠ fR) pmiss(z, �̂, G|�c), (2.22)

where
fR =

⁄
Pcomp(z, �̂, G) pbkg(z|�c, G) dz (2.23)

is the fraction of hosts expected to be present in the catalog, which depend on the
completeness function Pcomp and the background dirstibution pbkg. fR acts, in the
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definition of pgal as a weight for the two terms, pcat and pmiss.

Several prescriptions exist for modeling pmiss: in the homogeneous completion model,
the missing galaxies are distributed uniformly within each region S, with number
density nmiss = n̄gal(G) [1 ≠ Pcomp(S, G)]. This yields an unbiased mean density but
preserves the variance present in the catalog. In the multiplicative completion model,
the missing galaxies trace the overdensity field, with an enhancement factor b(S, G) =

[1 ≠ Pcomp(S, G)]/Pcomp(S, G), which increases the variance by 1/P
2
comp. In this work,

following most current standard siren analyses, we adopt the homogeneous completion
scheme, and we therefore define pmiss as:

pmiss(z, �̂, G|�) =
1 ≠ Pcomp(z, �̂, G)

1 ≠ fR
pbkg(z|�, G). (2.24)

The background distribution of galaxies which enter in Eqs.2.19, 2.23 and 2.24, is defined
as follows:

pbkg(z|�c, G) Ã n̄gal(z, G)
dV

dz
(z|�c) (2.25)

where the term dV/dz include the cosmological dependence on H0 and �m, and n̄gal(z, G)

is the theoretical galaxy density distribution in redshift:

n̄gal(z, G) =

⁄ Mmax(z)

Mmin(z)
�(M, z)w(M, z)dM. (2.26)

Here, �(M, z) is the Shechter mass function, Mmin(z) and Mmax(z) are the lower and
upper edges of the mass range for BBH hosts, and w(M, z) is the weight associated to
each galaxy which we take to be proportional to stellar mass. This choice assigns each
galaxy a probability to host a BBH proportional to its stellar mass, and is motivated by
theoretical studies indicating that, in the local Universe, BBH mergers preferentially
occur in high mass and metal rich galaxies (Artale et al. (2020)).

Overall, completeness modeling enters directly into the construction of the redshift prior
for GW–galaxy association:

p(z, �̂, G|�c,�z) Ã pgal(z, �̂, G|�c)
Â(z|�z)

1 + z
, (2.27)

where Â(z|�z) is the source-frame merger rate evolution, and the factor (1+z)
≠1 converts

to the detector frame. By correctly accounting for catalog incompleteness, this prior
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remains an unbiased tracer of the true host distribution, ensuring reliable inference on
H0 and other cosmological parameters.

2.4 CHIMERA

The Combined Hierarchical Inference Model for Electromagnetic and gRavitational
Wave Analysis (CHIMERA) is a Python code that implements the hierarchical Bayesian
formalism described in the previous sections for joint population and cosmological
inference using GW events and galaxy catalogs (Borghi, Mancarella et al. (2024);
Tagliazucchi et al. (2025); Borghi, Moresco et al. (2025)). The pipeline is fully built in
JAX framework (Bradbury et al. (2018)), which enables accelerated array computations
for high performance numerical computing. These feature is essential to evaluate high-
dimensional hyperparameter spaces efficiently and to sustain the increased data volumes
expected from next generation GW detectors and wide-field galaxy surveys.

Different pipelines have been released to perform astrophysical and cosmological inference
with GW, like MGCosmoPop (Mancarella, Genoud-Prachex and Maggiore (2022)) and
GWPopulation (Talbot, Smith et al. (2019)) especially designed for spectral sirens method,
and DarkSirensStat (Finke et al. (2021)) and cosmolisa (Laghi et al. (2021)) for the
dark sirens method. Recently, unified codes able to apply Bayesian framework to different
methods have been developed, like icarogw (Mastrogiovanni et al. (2023)), GWCOSMO
(Gray et al. (2023)) and CHIMERA (first introduced in Borghi, Mancarella et al. (2024)
and further optimized in Tagliazucchi et al. (2025)).

Kernel Density Estimate (KDE): For each GW event i, Combined Hierarchical
Inference Model for Electromagnetic and gRavitational Wave Analysis (CHIMERA) replaces
the analytic likelihood in the full posterior (Eq. (2.10)) with a Kernel Density Estimate
(KDE):

p(d
GW |⁄) Ã 1

›(�)Nev

NevŸ

i=1

⁄ ⁄
KGW

i (z, �̂|�c,�m)
pgal(z, �̂|�c) prate(z|�c)s

pgal(z, �̂|�c) prate(z|�c)dzd�̂
dzd�̂

(2.28)
The key object is the GW kernel, KGW,i(z, �̂ |�c,�m), which represents the marginaliz-
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ation over the mass probability of the GW posterior.

KGW
i (z, �̂|�c,�m) =

⁄ ⁄
p(✓i|dGW

i ,�c)

fi(✓det)

----
d✓i

d✓det

---- p(m1, m2|�m) dm1 dm2 (2.29)

The KDEs are integrated over Healpix pixels of equal size used to divide the localization
area of the GW event. CHIMERA provides three evaluation modes of increasing efficiency:

(1) Full 3D KDE in (RA, Dec, z) space, by dividing the localization area of each event
in Npix pixels and evaluating in each pixel the KDE across the whole discretized
redshift range;

(2) Many–1D method, in which the 3D posterior is marginalized into a 1D KDE in
redshift for each pixel;

(3) Single–1D approximation, collapsing the GW posterior into a single redshift distri-
bution.

The second approach is adopted in this work, as it provides an optimal balance between
accuracy and computational cost.

Pixelization: Each GW event is pixelized with an adaptive procedure that chooses the
best nside value, defining the number of pixels per side, on the basis of the localization
area of the event. This procedure ensures that the number of pixels is mantained
homogeneous across events with different localization areas. With this pixelization, the
angular integral over d� (Eq. (2.28)) is evaluated as a discrete sum of pixel contributions.

Selection Bias Term: The selection bias term, accounting for the correction to
selection effects, is implemented in the code using the injections method: a set of Ninj

simulated events describing an entire population of GW events is generated to test the
effect of selection and to reflect the same bias on our data. CHIMERA solves selection
term › integral in Eq. (2.6) with Monte Carlo, summing over GW injections:

›(�) ¥ 1

Ninj

Ndetÿ

j=1

ppop(◊j |⁄)

pdraw(◊j)
=

1

Ninj

Ndetÿ

j=1
sj (2.30)

where Ninj is the number of generated injections, Ndet the detected subset, and pdraw is
the probability distribution function from which the injections are extracted. To ensure
numerical stability we introduce the effective number of injections (Farr et al. (2019)),
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and require it to be larger than 5Nev

N
inj
e� =

S

U
Ndetÿ

j=0
sj

T

V
2

◊

S

WU
Ndetÿ

j=0
s

2
j ≠ 1

Ninj

Q

a
Ndetÿ

j=0
sj

R

b
2T

XV

≠1

> 5 Nev (2.31)

This ensures, when N
inj
e� is large enough, that this Monte Carlo integral is a good

approximation of the analytical one (Eq. (2.6)).

Galaxy terms: The catalog term pcat is pre-computed once and then stored for later
use. This is a crucial strategy to avoid large computational costs. The completeness
is accounted, following the method applyed in Finke et al. (2021), applying a number
of masks Nmask to group together healpix pixels with the implementation of k-means
clustering method∗. Within each mask, the completeness is evaluated by comparing the
observed galaxies to the theoretical background distribution for each redshift bin. Also
this term can be computed at the beginning and stored. The background distribution is
computed by integrating the Schechter stellar–mass function over the host–mass range.
Since this integral is recomputed at each likelihood evaluation, employing Just-In-Time
(JIT) optimization is essential to improve efficiency of the pipeline.

Population models: CHIMERA provides a modular library of population models,
covering the main astrophysical and cosmological components relevant for GW population
inference.

The models currently included are:

• Mass distributions (mass.py): Truncated Power Law, Broken Power Law, Power Law
+ Peak, and Power Law + Two Peaks. These parameterizations span from simple
monotonic behaviors to more structured distributions capturing an increasing number
of features to better reproduce the empirical mass distribution.

• Rate evolutions (rate.py): power-law (PL) and Madau–Dickinson model. The latter
describes the cosmic rise and fall of the progenitor formation rate and is widely
adopted in BBH studies.

∗ K-means is an iterative imaging method: starting from a chosen number of clusters, it alternates
between assigning each point to the nearest centroid and updating centroids to the mean of their
assigned points, minimizing within cluster variance.
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• Cosmological models (cosmo.py): flat �CDM, flat �CDM with modified-gravity, and
w0waCDM.

34



3
Exploring the Information Content in GW

and Galaxy Data

The analysis presented in this thesis relies on two primary sources of information:
gravitational wave signals from binary black hole mergers and the distribution of their
potential host galaxies. Both datasets are essential and complementary: gravitational
waves trace the distribution of compact binary mergers, while galaxy catalogs encode
the underlying matter distribution. Their combination enables the use of gravitational
waves as dark sirens as presented in Chapter 1 and 2, allowing cosmological parameters
to be statistically inferred in the absence of electromagnetic counterparts.

The following sections describe the methods used to construct the galaxy catalogs
derived from the MICE simulation performed in Borghi, Mancarella et al. (2024); Borghi,
Moresco et al. (2025). These catalogs provide a realistic population of potential host
galaxies for simulated GW events.

Building on this foundation, the central goal of this chapter is to explore the statistical
relations among the main parameters that characterize GW detections in the two catalogs.
Correlations are examined through different statistical methodologies and, on this basis,
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a series of sub–catalogs defined by progressively higher thresholds in SNR are constructed.
This strategy allows the distribution of information across the population of events to be
mapped and provides the basis for Chapter 4, where the impact of such event selections
on the accuracy of cosmological and astrophysical parameter estimation is quantified.

3.1 Catalogs Generation

3.1.1 Galaxy catalogs

The mock galaxy catalogs used in this work are constructed from the MareNostrum
Instituto de Cièncias de l’Espacio (MICE) Grand Challenge v2 light-cone simulation
(Carretero et al. (2014), Fosalba, Gaztanaga et al. (2013), Crocce et al. (2015), Fosalba,
Crocce et al. (2015)). This simulation provides a synthetic galaxy distribution over
≥ 5157 deg

2, reaching a redshift of z ≥ 1.4, and including galaxies down to an apparent
magnitude i < 24. It covers one octant of the sky (see Fig. 3.1.1), corresponding to the
angular ranges 0 Æ ra Æ fi/2 , 0 Æ dec Æ fi/2, and assumes a flat �CDM cosmology
with H0 = 70 km s≠1

Mpc
≠1, �m = 0.25, and �� = 0.75.

Galaxy properties in the simulation are assigned using a combination of Halo Occupation
Distribution (HOD) and SubHalo Abundance Matching (SHAM) techniques. This
approach starts from an N-body dark matter simulation, where Dark Matter (DM) halos
are identified and used as seeds to place galaxies. All halos are populated with one
central galaxy and a number of satellite galaxies derived from an HOD that specifies
their mean abundance as a function of halo mass. A luminosity is then assigned to
the central galaxy through a halo mass–luminosity relation derived via SHAM (Crocce
et al. (2015)).

The combination of large cosmological volume and fine mass resolution in the simulation
allows for accurate modeling of structure formation across all relevant scales, from the
linear Gaussian regime to the highly non-linear, ensuring that the resulting galaxy
catalog reproduces observed distributions and clustering properties (Fosalba, Crocce
et al. (2015)).
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Figure 3.1.1: Galaxy distribution of the mock galaxy catalog covering one sky
octant; the color scale indicates the relative number of galaxies per pixel.

From the original MICE mock, two distinct galaxy catalogs are extracted:

Uniform in Comoving Volume (UCV) catalog is obtained by subsampling the
full MICEv2 catalog to reproduce a distribution uniform in comoving volume.
Specifically, galaxies are extracted with probability p(z) Ã dVc

dz , where dVc/dz is
the differential comoving volume element. This procedure, implemented in (Borghi,
Mancarella et al. (2024)), ensures that the catalog provides a homogeneous sampling
across cosmic volume.

To mimic a population of potential host galaxies for compact binary mergers while
maintaining computational efficiency, a stellar–mass threshold of log10(Mı/M§) >

10.5 is applied, thereby restricting the sample to massive galaxies. This choice
is motivated by both theoretical and observational arguments: binary black hole
merger rates are expected to trace stellar mass, with more massive galaxies being
preferential hosts. The resulting catalog contains approximately 1.6 ◊ 10

6 galaxies
above the adopted stellar–mass threshold.

Full MICE catalog is built starting from the MICEv2 light–cone simulation. To
obtain a parent galaxy catalog suitable for cosmological inference, the stellar–mass
distribution of MICE is modeled with an evolving double–Schechter function, en-
suring a smooth parametric description of the redshift distribution. This approach
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Figure 3.1.2: Redshift distribution of the galaxies in the two catalogs: UCV
with p(z) Ã dV/dz and Full MICE with p(z) Ã

s
�(M, z) dM .

is the one introduced in Borghi, Moresco et al. (2025), offering a realistic represent-
ation of an observed galaxy catalog. Following the same approach, the stellar–mass
completeness limit is determined as a function of redshift, and all galaxies below
this evolving threshold are discarded. The observed stellar mass functions in each
redshift slice are then fitted with the parametric double–Schechter model. The
resulting catalog contains about 335 million galaxies, corresponding to roughly
two–thirds of the full MICEv2 sample. To assign merger hosts, each galaxy is
weighted according to its stellar mass. They consider three prescriptions: a uniform
weighting Ã M

0
ı , a linear weighting Ã Mı, and a quadratic weighting Ã M

2
ı . These

weightings progressively enhance the preference for massive galaxies as potential
hosts: while the uniform case treats all galaxies equally, the linear and quadratic
weightings increasingly emphasize high mass systems, reducing the contribution
of low mass galaxies. In the following analysis the linear weighting scheme is
adopted, which is motivated by theoretical predictions that binary merger rates
scale approximately with stellar mass (Artale et al. (2020)). The consequences of
adopting wrong weighting prescriptions, and the impact of these assumptions in
the cosmological constraints, will be investigated in detail in Sec. 4.4.

Although both catalogs originate from the same MICEv2 light–cone, they differ substan-
tially in construction and number density. The Full MICE catalog retains the complete
galaxy population above the imposed mass and magnitude limits, yielding ≥ 3.3 ◊ 10

8

objects, whereas the UCV catalog is diluted to ≥ 1.6 ◊ 10
6 galaxies to reproduce a
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uniform distribution in comoving volume. This disparity of more than two orders of
magnitude in galaxy counts has a direct impact on their use for GW host association:
localization volumes that in the UCV case contain only a few possible hosts typically
enclose thousands of galaxies when the Full MICE catalog is adopted. The consequences
of this difference will be further explored in Sec. 3.3, where we investigate how the
number of galaxies per localization volume scales with the SNR of the events, and in
Chapter 4, where we assess its impact on the inference of cosmological parameters.

Different redshift uncertainties might be associated with galaxies in both catalogs; in
this work, we considered the case of a spectroscopic survey, with ‡z = 0.001(1 + z).

3.1.2 GW catalogs

For each galaxy catalog, we extracted a corresponding set of GW events by associating
compact binary coalescences to potential host galaxies. Each GW catalog contains 1000

events, with 5000 posterior samples per event, emulating the typical output of the LVK
parameter estimation pipeline.

The GW catalogs are generated by modeling both the astrophysical source population
and the observational selection effects of Observing run 5 (O5) for the LVK detector
network. We assume that the BBH merger rate follows a Madau–Dickinson redshift
evolution (Fig. 2.1b). For the BBH primary mass distribution, we adopt a PLP model
(Fig. 2.1a), which captures both a power-law tail and a Gaussian peak at ≥ 35 M§.

The GW signals are simulated using GWFAST (Iacovelli et al. (2022)), assuming quasi–cir-
cular, non–precessing BBHs. As introduced in Sec. 2.1.1, each waveform is characterized
in the detector frame by

✓
det

= {Mc, ÷, dL, –, ”, ÿ, ‰1,z, ‰2,z, Â, tc, „c}, (3.1)

where Mc is the chirp mass, ÷ the symmetric mass ratio, dL the luminosity distance,
(–, ”) the sky coordinates, ÿ the inclination angle, ‰1,z, ‰2,z the aligned spin components,
Â the polarization, and (tc, „c) the coalescence time and phase.

For each source, the matched–filtered SNR is computed with the IMRPhenomHM wave-
form model (London et al. (2018); Kalaghatgi, Hannam and Raymond (2020)), which
represents a full inspiral-merger-ringdown waveform model that includes higher–order
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modes for an accurate description of signals from BBH. The matched filter SNR for a
single detector is computed as:

SNR
2
i = 4

⁄ fmax

fmin

|h̃i(f)|2

Sn,i(f)
df (3.2)

where h̃i(f) is the GW strain in the Fourier domain for the i
th detector and Sn,i(f)

is the noise spectral density of the i
th detector. For a network, composed of multiple

detectors, SNR is defined as the sum in quadrature of the SNRs of single detectors:

SNR
2

=

ÿ

i

SNR
2
i (3.3)

In our analysis, following the work by Borghi, Moresco et al. (2025), we adopt the O5
detector network configuration, consisting of the two LIGO instruments, Virgo, KAGRA,
and LIGO–India, with a low–frequency cutoff of 10 Hz, and a 100% duty cycle. Only
events with SNR > 25 are retained, yielding catalogs of Nev = 1000 detections.

Posterior distributions are generated using the Fisher Information Matrix (FIM) ap-
proximation, valid for high SNR detections. In the case of high SNR and Gaussian
noise, the inverse of the FIM gives the covariance of the Bayesian posterior probability
distribution of the true waveform parameters. For each event, 5000 samples are drawn
from a multivariate Gaussian with covariance given by the inverse FIM, imposing priors
consistent with the simulated distributions.

Finally, to estimate the GW selection effects, dedicated injection sets have been generated
with GWFAST, adopting the same assumptions and SNR Ø 25 threshold as for the catalogs.
These injections cover the same sky area and extend in luminosity distance up to the
detector horizon. The injection set contains ≥ 2 ◊ 10

7 simulated sources, of which about
10

6 are detected, and is used to compute the selection bias term entering the likelihood
(see Chapter 2).
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3.2 Data Analysis and Characterization

I performed a preliminary exploratory analysis to investigate the mutual relationships
between key parameters in the dataset. The parameters considered include the network
SNR, luminosity distance (dL), component masses (m1, m2), sky localisation area (�),
distance uncertainty (�dL), localisation volume (Vloc), and the estimated number of
galaxies within the localisation volume (Ngal,vol). Most of these quantities were provided
directly in the GW event catalogs, while I derived the others from the posterior samples.

I derived the luminosity distance uncertainty, �dL, as the 90% credible interval of the
posterior distribution of dL, computed as the difference between the 95

¶ and the 5
¶

percentiles: �dL = d
95¶
L ≠ d

5¶
L .

The sky localization area, �, is computed with the compute_localization_areas
CHIMERA routine. Starting from the „ and ◊ localization angles, the method estimates
the 90% credible region on the sphere and reports its size in square degrees.

The localization volume, Vloc, is obtained with compute_localization_volumes by
combining the 90% sky region with the central 90% credible interval in luminosity
distance. We adopt a flat �CDM cosmology with H0 = 70 km s

≠1
Mpc

≠1 and �m = 0.25

to convert distances to redshift and comoving volume; the resulting Vloc is expressed in
Gpc

3.

Finally, the number of galaxies within the localization volume, Ngal,vol, is derived by
intersecting Vloc with the pixelated galaxy distribution from the chosen catalog. For each
event, galaxies were counted in the sky pixels overlapping the GW localization, and only
those within the redshift range defined by the GW distance posterior were retained. The
computation was carried out with the CHIMERA pixelated catalog tools, which allow an
efficient match between GW posteriors and galaxy distributions. The resulting Ngal,vol
thus represents the expected number of potential host galaxies consistent with the GW
localization at 90% credibility.

The derived set of parameters provides a consistent basis for the analysis presented
in the following sections. In Sec. 3.2.1 the mutual correlations each parameters pair
are investigated, highlighting the main statistical dependencies in the catalogs. The
impact of the assumed cosmology on derived quantities such as Vloc and Ngal,vol is
then assessed in Sec. 3.2.2. A Principal Component Analysis (PCA) is introduced in
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Sec. 3.2.3 to identify the dominant drivers of variance. Finally, in Sec. 3.3 the results
of this preliminary analysis are used to construct a set of sub–catalogs, selected with
progressively higher SNR thresholds, which will serve as the basis for the inference
studies presented in Chapter 4.

3.2.1 Analysis of the Correlations

To verify the potential correlations between each of the parameters described above, a
corner plot is generated (Fig. 3.2.1), displaying projections of the pairwise distributions.
Each off–diagonal panel shows the scatter plot between two parameters, allowing a direct
visual inspection of their distribution and the possible presence of correlations or degen-
eracies. The diagonal panels display the corresponding one–dimensional distributions,
providing information on the spread of each parameter.

A complementary quantitative assessment is obtained through the computation of the
Spearman correlation coefficient fl for each parameters pair (Fig. 3.2.2) which, ranging
from ≠1 (perfect negative correlation) to +1 (perfect positive correlation), provides a
measure of correlation, particularly suitable for parameters whose relationships may not
be strictly linear.

In Fig. 3.2.2, the lower triangle of the matrix reports the Spearman correlation coefficients
obtained for the UCV galaxy catalog, while the upper triangle shows the difference
between the UCV coefficients and those computed with the Full MICE catalog. This
arrangement was designed to highlight any significant differences in correlation trends
between the two catalogs. The comparison reveals that, for most parameter pairs, the
differences between correlations in the two catalogs are negligible, indicating that the
correlation structure is largely independent of the chosen catalog. The only notable
variations arise in the correlations involving Ngal,vol, which are affected by the intrinsic
differences in galaxy number density between UCV and Full MICE. This behavior is
expected, as the Full MICE catalog contains about two orders of magnitude more galaxies
than UCV. This difference in number density leads to a systematic rescaling of Ngal,vol
and, consequently, of its correlations with the other parameters.
On this basis, the following analysis on the correlations can be treated as independent
of the considered catalog.

The combined use of the corner plot (Fig. 3.2.1) and the Spearman correlation matrix
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(Fig. 3.2.2) provides both a qualitative and quantitative understanding of the depend-
encies in the dataset, enabling the identification of physically motivated trends. The
analysis of the main correlations identified are reported in the following discussion.

Signal–to–Noise Ratio - SNR

The SNR exhibits a remarkably consistent behaviour across the correlation matrix: it
is the only parameter with exclusively negative Spearman coefficients with respect to
all other variables. This systematic anti–correlation pattern (fl UCV < 0 in all cases)
underscores its role as a primary driver of observational precision. Strongest correla-
tions are observed with luminosity distance dL (fl UCV ¥ ≠0.40), distance uncertainty
�dL (fl UCV ¥ ≠0.59), localization area � (fl UCV ¥ ≠0.53), and localization volume
Vloc (fl UCV ¥ ≠0.54). These trends are physically well–motivated: sources at closer
distances yield higher strain amplitudes, leading to higher SNR and reduced parameter
uncertainties (Abbott et al. (2021)). Higher SNR also enhances triangulation accuracy
across the detector network, having an impact on the smaller both angular and volu-
metric localization regions. This directly reduces the number of potential host galaxies,
producing a clear anti–correlation with Ngal,vol (fl UCV ¥ ≠0.54).

Luminosity Distance and Binary Masses - dL, m1, m2

In contrast to SNR, the luminosity distance dL displays uniformly positive correlations
with all other parameters (except SNR), with fl UCV > 0.8. This strong, monotonic
behaviour indicates that increasing dL systematically degrades localisation precision and
increases volumetric measures, while also modifying the observed population properties.
A particularly strong positive correlation is found between dL and the component masses
m1 and m2 (both fl UCV ¥ 0.8), a direct consequence of the GW selection function:
at larger distances, only more massive binaries, producing intrinsically louder signals,
remain detectable. Lower–mass systems fall below the sensitivity threshold, introducing
a population bias.

Sky Localization Parameters - �, Vloc

The angular localization area � and the localization volume Vloc are almost perfectly
correlated (fl UCV > 0.92), reflecting their geometric relationship: the volume is obtained
by combining the angular extent with the line–of–sight distance uncertainty. Both
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parameters strongly increase with dL, as faint and distant events suffer from larger
distance uncertainties. These localization metrics also correlate positively with Ngal,vol
(fl UCV ¥ 0.9), driven by the trivial scaling: larger localization volumes contain more
galaxies, assuming a roughly homogeneous galaxy distribution at the scales considered.

Number of Galaxies in Localisation Volume - Ngal,vol

Ngal,vol follows the general trend of positive correlations with all parameters except SNR,
for which the relationship is negative. The anti–correlation with SNR reflects the fact
that higher SNR events are more precisely localised, hence enclosing fewer potential
hosts. However, at low SNR, the correlation weakens and the scatter increases. While
Ngal,vol decreases systematically with increasing SNR, the relationship is not strictly
monotonic for low–SNR events. In some cases, low–SNR detections correspond to small
Ngal,vol due to either fortuitously narrow localization or the event being located in a low
density region of galaxy distribution.

Pixelization Parameters - nside, npix

The Healpix resolution parameter nside displays a strong anti–correlation with the
localization area �, in line with the adaptive pixelization scheme implemented in the
pipeline discussed in Sec. 2.4. By design, events with larger � are assigned lower angular
resolutions (lower nside), thereby keeping the number of pixels within computationally
manageable limits while preserving sufficient angular detail for smaller–area events.

The total number of pixels per event, npix, does not exhibit any significant correlation
with SNR or with the astrophysical source parameters, as expected. This behaviour
reflects the pixelization strategy: a target average npix is defined prior to the process, and
the algorithm then selects the optimal nside for each event to achieve a close match to
this target while adapting to the event’s localization geometry. This is further confirmed
by the discrete nature of the npix distribution, clearly visible in its histogram, which
shows peaks at preferred values (with a dominant mode at npix ¥ 15) corresponding to
the selected target configurations. In the scatter plots against other parameters, npix

values appear uniformly distributed across the plane, confirming the independence of
pixel count from SNR and other physical quantities. Together, these results validate
that the adaptive pixelization achieves the intended balance between resolution and
computational efficiency without introducing systematic biases in the spatial sampling.
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Figure 3.2.1: Matrix of scatter plots of the key GW parameters. Diagonal
panels report the one-dimensional distributions of each variable, while off-diagonal
panels show pairwise scatter plots. Both axes across the entire grid are shown in
log10 scale. The parameters include the signal-to-noise ratio (SNR), the median
luminosity distance (dL), the component detector-frame masses (m1, m2), the
sky localization area (�), the uncertainty on the luminosity distance (�dL), the
localized comoving volume (Vloc), the number of galaxies within this volume
(Ngal,vol), the HEALPix resolution parameter (nside), and the number of pixels in
the localization map (npixel).
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Figure 3.2.2: Spearman Matrix resulting from the analysis of correlations between
parameters in Fig. 3.2.1. The matrix is divided into the upper and lower corners
with respect to the diagonal. Lower: Spearman coefficients between the various
parameters for the UCV catalog; Upper: Difference between the values of the
coefficients in the UCV and Full MICE catalogs.

The joint use of scatter plot visualization and correlation coefficients allows the tar-
geting of physically meaningful relationships. This diagnostic is essential for correctly
interpreting parameter dependencies in hierarchical inference and assessing potential
degeneracies in the hyperparameter space explored in later chapters.

3.2.2 Effect of Cosmology on Vloc and Ngal,vol

The estimation of the localization volume Vloc for a GW event, and consequently the
number of galaxies within this volume Ngal,vol, is significantly dependent on the adopted
cosmological model. The localization volume is defined by the joint uncertainty in the
event’s sky position (RA, Dec) and distance, the latter obtained from the luminosity
distance–redshift relation, which depends on the assumed cosmology. Changes in
cosmological parameters, especially in the Hubble constant H0, directly modify the
inferred redshift and, consequently, the associated comoving volumes.

To investigate the effect of varying cosmological assumptions on localization volumes
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Figure 3.2.3: Histograms of localization volumes Vloc for gravitational wave
events, showing the minimum, median, and maximum volume estimates across
different cosmological assumptions on the Hubble constant H0. The three panels
compare distributions obtained with a fiducial fixed value H0 = 70 km s

≠1
Mpc

≠1

(dashed line) against two ranges of H0: a narrow interval [60, 80] (orange) and a
wide interval [30, 140] (blue).

and galaxy counts, tests were conducted by varying the prior ranges of H0. Three
configurations for H0 were considered:

Wide Range: H0 œ [30, 140] km s
≠1

Mpc
≠1, representing a highly uninformative cos-

mological prior, reflecting a large uncertainty in the cosmological model.

Narrow Range: H0 œ [60, 80] km s
≠1

Mpc
≠1, a more constrained range consistent with

current tension between early and late-Universe measurements.

Fiducial Value: H0 = 70 km s
≠1

Mpc
≠1, fixed value representing the standard assump-

tion.

For each event and each H0 configuration, the localization volume (Vloc) and the number
of galaxies within this volume (Ngal,vol) are recalculated. After calculating Vloc and
Ngal,vol for each scenario, histograms are generated (Fig. 3.2.3 and 3.2.4) to compare
the differences between the various cosmological assumptions.

As illustrated in Fig. 3.2.4, by allowing H0 to vary freely within each considered range,
multiple realizations of localization volumes Vloc are generated. For each GW event, the
minimum, median, and maximum values of Vloc are selected, while keeping track of the
corresponding H0 values.
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Figure 3.2.4: Histograms of localization volumes Vloc for gravitational wave
events comparing two cosmological parameter ranges for the Hubble constant H0:
a narrow range [60, 80] (left panel) and a wide range [30, 140] (right panel). Within
each panel, the minimum, median, and maximum volume estimates are shown
with distinct line styles. The fiducial case with fixed H0 = 70 km s

≠1
Mpc

≠1 is
overlaid as a dash-dot line.

The analysis shows that for all events, the minimum localization volume always cor-
responds exactly to the upper bound of the H0 range (80 km s

≠1
Mpc

≠1 for the narrow
range, 140 km s

≠1
Mpc

≠1 for the wide range), reflecting the fact that larger H0 values
reduce inferred distances for a fixed redshift, thereby shrinking the comoving volume.
Conversely, the maximum Vloc corresponds to the minimum allowed H0, where smaller
expansion rates imply larger distances and hence larger volumes The median Vloc in the
narrow range closely aligns with the fiducial H0 = 70 km s

≠1
Mpc

≠1, whereas in the wide
range it is biased toward slightly higher values (H0 ¥ 84 km s

≠1
Mpc

≠1). This consistent
behavior across all events underlines the strong dependence of localization volumes on
the chosen H0 within the given ranges.

Since Ngal,vol is strongly correlated with the localization volume, its dependence on H0

mirrors that of Vloc. As seen before, for fixed luminosity distance posteriors, increasing
H0 maps the same dL to lower redshift, which reduces both Vloc and Ngal,vol. Figure 3.2.5
shows this behavior for both catalogs: the trend with H0 is the same, while the overall
normalization differs because Full MICE has a higher galaxy number density than UCV.
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Figure 3.2.5: Distribution of the number of galaxies within the localization
volumes Ngal,vol for different assumptions on the Hubble constant H0. Each
histogram corresponds to one of the three cosmological assumptions considered:
the fiducial value H0 = 70 km s

≠1
Mpc

≠1, narrow range [60, 80], and wide range
[30, 140]. Left: UCV catalog, Right: Full MICE catalog.

3.2.3 Principal Component Anlysis

To further explore correlations among the key parameters involved in the cosmological
and astrophysical parameters inference, we perform a PCA on a selected subset of
variables.

PCA is a classical dimensionality–reduction technique originally introduced in Pear-
son (1901) and further formalized in Hotelling (1933). Its central idea is to represent a
dataset with a new set of orthogonal variables, the principal components (PCs), which
are linear combinations of the original variables and capture the directions of maximum
variance in the data. Intuitively, PCA provides a low–dimensional representation of the
data in which the main patterns of correlation are preserved, while redundant variance
is compressed into higher order components.

Formally, let X œ Rn◊p be the data matrix with n observations and p variables. Since
variance depends on measurement scale, all variables are first standardized to a zero
mean and unit variance so that each variable contributes equally to the analysis

zij =
xij ≠ µj

‡j
(3.4)
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where x̄j and ‡j denote the mean and standard deviation of the j-th variable, and Z

is the obtained standardized matrix . This step is essential because PCA is based on
variance maximization, and variances are sensitive to the units of measurement of the
variables. Without standardization, variables with larger scales would dominate the first
components and bias interpretation (Jolliffe and Cadima (2016)).

The covariance matrix of Z (which coincides with the correlation matrix in the case of
standardized components) is then:

C =
1

n ≠ 1
Z

€
Z. (3.5)

PCA relies on the eigendecomposition of the covariance matrix C,

C vk = ⁄k vk, k = 1, . . . , p, (3.6)

yielding orthonormal eigenvectors vk and eigenvalues ⁄k. The k-th principal component
for all observations is obtained by projecting the standardized data onto vk

PCk = Z vk. (3.7)

By construction, successive components are uncorrelated and explain decreasing frac-
tions of the total variance. The eigenvectors vk provide the coefficients (weights) that
define each PC as a linear combination of the standardized variables, while the eigen-
values quantify the variance explained by each component, with Var(PCk) = ⁄k. The
explained–variance ratio (EVR) of component k is

EVRk =
⁄kqp

j=1 ⁄j
, (3.8)

which represents the fraction of total variance captured by that component. Inspecting
the EVR (and its cumulative sum) provide a standard criterion to determine how many
PCs to retain in the analysis.

In the context of this thesis, PCA is used as a diagnostic tool to identify which parameters
dominate the variance of the dataset and to investigate inter–parameter correlations.
The variables included are the SNR, the luminosity distance dL and its uncertainty �dL,
the primary mass m1, the localization area �, the localization volume Vloc, and the

50
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Figure 3.2.6: Cumulative explained variance as a function of the number of
principal components. The plots show how the addition of each principal compon-
ent contributes to the total variance of the dataset. The first three components
account for nearly 90% of the total variance.

number of galaxies within the localization volume Ngal,vol. We consider only the first
three principal components based on cumulative explained variance (Fig. 3.2.6), since
together they account for nearly 90% of the total variance (65.9%, 14.9%, and 9.7%),
providing a compact, lower–dimensional representation that is useful for visual inspection
and further correlation studies. The analysis is implemented using the scikit-learn
package (Pedregosa et al. (2018)).

To visualize the PCA results, Fig. 3.2.7 shows a correlation biplot of the first three
principal components, providing an intuitive geometric view of how variables relate to
one another and to PCs. Each panel displays the data projected onto a pair of PC
axes (PC1–PC2, PC2–PC3, PC1–PC3), while colored arrows depict, for each original
(standardized) variable, its loadings (L) on the displayed PCs:

Lk = vk ·


⁄k (3.9)

This quantifies the correlations between the standardized variable and the principal
components. In a correlation biplot, the cosine of the angle between two arrows ap-
proximates the correlation between the corresponding variables within the displayed PC
plane: arrows in similar directions (small angles) indicate positive association; arrows
in opposite directions (angles near 180

¶) indicate negative association; orthogonal ar-
rows indicate weak association. For instance, in our case the vectors associated with
Vloc, �, and Ngal,vol are nearly parallel, reflecting strong mutual correlations driven by
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Figure 3.2.7: Correlation biplot of the first three PCs from a PCA on standardized
variables. Each panel shows observation scores and variable arrows equal to the
loadings (Ljk). Arrow orientation encodes the sign of association; arrow length
reflects the magnitude of the loadings in the displayed plane.

localization accuracy and distance. Likewise, the loading of a variable on PCk equals its
correlation with that PC and is given by the coordinate of the arrow along the PCk axis.∗

The length l of each arrow in a given panel reflects how well the variable is represented
by that 2D PC subspace, and is obtained combining the loadings of the two PCs as:
ÎlÎ =

Ò
L2

a + L
2
b . Longer arrows therefore indicate stronger associations with the shown

PCs. This is consistent with the interpretation of loadings as correlations between
standardized variables and the principal components (Jolliffe and Cadima (2016)).

To complement the geometric view and quantify how each PC is composed, we also
inspect the eigenvector coefficients (weights). The three PC are defined with a linear
combination of the standardized variables, each accounted for in the PC with a weight
provided by the eigenvector components. So, the functional definition of the three PC
can be written as follows:

PC1 = ≠0.17 SNR + 0.41 dL + 0.37 �dL + 0.36 m1 + 0.42 � + 0.41 Vloc + 0.43 Ngal,vol

PC2 = 0.85 SNR + ≠0.11 dL ≠ 0.33 �dL + 0.22 m1 + 0.15 � + 0.22 Vloc + 0.18 Ngal,vol

PC3 = 0.19 SNR + 0.45 dL + 0.16 �dL + 0.61 m1 ≠ 0.29 � ≠ 0.41 Vloc ≠ 0.33 Ngal,vol

(3.10)
where all variables have been standardized (zero mean and unit variance) before entering
the principal component. Fig. 3.2.8 reports a heatmap of the weights associated with
the initial variables for the first three PCs. Here, the color encodes the signed weight
wkj of the j-th variable in PCk (rows sum of squares equal 1), which tells how much
∗ Because the figure shows a 2D subspace, both angles and lengths summarize contributions restricted

to the chosen pair of PCs. Contributions along omitted PCs are not visible.
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Figure 3.2.8: Heatmap of eigenvector coefficients (component weights) for the
first three PCs. The color scale encodes the strength and sign of the correlation
between each standardized variable and the PCs, with darker shades indicating
stronger contributions.

each variable enters the linear combination defining that PC.

In addition, a distance biplot is provided in Fig. 3.2.9, showing how the original variables
project onto the space of the principal components. This representation offers a geometric
visualization of the weights: the projection length along a given PC axis reflects its
relative importance in that component. It should be noted, however, that in the generated
biplot the vectors are rescaled for visualization purposes; therefore, they do not provide
direct numerical information on the weights, which is instead reported in the heatmap
(Fig. 3.2.8). Taken together, the correlation biplot, the distance biplot, and the weight
heatmap provide complementary perspectives: the former emphasizes orientations and
correlations among variables, the second illustrates how variables are included in the
PCs, and the latter reports the exact coefficients that define each component.

Analysing the heatmap in Fig. 3.2.8, it is evident that the SNR exhibits the strongest
association with PC2, with a coefficient of 0.85. This suggest that PC2 is primarly
driven by the SNR, meaning that it alone captures the majority of the variance in the
dataset.
Other parameters also play a significant role in shaping the variance of the dataset. The
primary mass m1 has a notable weight coefficient of 0.61 in the third principal component
(PC3), suggesting it contributes meaningfully to the third direction of variance, even
though it is not as influential as SNR in PC2. Additionally we observe that parameters
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Figure 3.2.9: Distance biplot of the first three PCs from a PCA on standardized
variables. Each panel shows a 2D projection of the dataset in the plane of two
principal components. Points are projections of the observations onto PC planes;
Arrows represent the PCA eigenvector coefficients (weights) of the standardized
variables. This scaling emphasizes the composition of each PC; arrow lengths is
proportional to the magnitude of the weights in the displayed PC plane.

related to the spatial localization of the event, such as dL, �, Vloc, and Ngal,vol, are
strongly associated with the first principal component (PC1), with similar coefficients
(around 0.4), consistent with their mutual correlations. The primary mass m1 contributes
most to PC3 (coefficient ¥ 0.61), pointing to a distinct third direction of variation.
Overall, PC1 explains the largest share of total variance (65.9%), followed by PC2 and
PC3 (14.9% and 9.7%), so while SNR strongly drives PC2, PC1 remains the dominant
source of explained variance in the dataset.

Taken together, our PCA results reveal two dominant and largely orthogonal sources of
variability: a localization–driven axis (PC1) and a signal–strength axis (PC2) dominated
by SNR. This orthogonality indicates that, to first order, variation associated with SNR
is independent of localization effects. In addition, in the PC1–PC3 correlation biplot
the SNR arrow points nearly opposite to the localization variables (dL, �, Vloc, Ngal,vol),
indicating a residual negative association in that subspace.
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3.3 Extraction of Optimal GW Samples

The analyses of correlations and principal components presented in the previous sections
clearly identified the SNR as the dominant factor driving measurement uncertainties
and localization properties. In particular, SNR was shown to correlate negatively with
luminosity distance and localization area, and to align in the PCA representation with
the direction of variance of PC2. These results motivate a more systematic investigation
of how the quality of the detected signals, as traced by their SNR, propagates into
cosmological inference.

To this end, we performed a subsampling of the catalogs by imposing successive SNR
thresholds. Four cuts were applied, corresponding to SNR Ø 25, SNR Ø 35, SNR Ø 50,
and SNR Ø 70. Selecting events by SNR is standard practice in GW analyses: current
observational catalogs typically adopt a network threshold around SNR ≥ 12 to discard
bad detections and ensure basic parameter estimation quality, while forecasts for O5
detectors often assume higher cuts (SNRØ25) to secure cleaner samples and manageable
computational loads. However, the choice of a specific SNR threshold is rarely based on
quantitative evidence about its impact on cosmological and population inferences. The
analysis carried out here addresses precisely this gap by selecting four cuts from 25 to
70 and measuring how gains in data quality (via SNR) trade off against losses in sample
size for the parameter inference.

The immediate effect of increasing the SNR threshold is a progressive reduction in
number of retained GW events: the total number of events drops from Nev = 1000 at
SNR Ø 25 to only a few tens at SNR Ø 70 (see Tab. 4.1).

This reduction is not merely a loss of statistics; it also reshapes the sample in a
systematic way. Because SNR is tightly correlated with several GW observables and
source properties, imposing an SNR cut selects not only fewer events but also a different
region of parameter space. Imposing a higher SNR threshold preferentially keeps nearby
and typically higher–mass binaries. The selected sample is therefore less representative of
the underlying population, which can bias or weaken constraints on quantities describing
the mass distribution and the redshift evolution of the merger rate.

The redshift distribution (Fig. 3.3.1) becomes increasingly skewed toward the local
Universe as the SNR threshold rises. Since high-SNR detections are dominated by strong
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Figure 3.3.1: Redshift distributions for UCV (left) and Full MICE (right) at
different SNR cuts.

signals, the selected events tend to lie at smaller luminosity distances, in line with the
strong anti–correlation between SNR and dL evidenced by the Spearman analysis. As a
consequence, the sampled redshift range is progressively truncated at high z values, and
the characteristic Madau–Dickinson behaviour (2.1b) mapped by the full population
(initial rise, peak, and high z decline) is no longer visible at high cuts in SNR. This makes
it increasingly difficult to characterize the merger rate density Â(z) (see Sec. 2.2), since
the restricted redshift coverage does not properly capture the peak and the subsequent
decline of the distribution. For the most stringent cut (SNR Ø 70), the ascending branch
and the peak are not observed from the considered subsample. This loss of dynamic
range reduces sensitivity to the merger-rate evolution hyperparameters �z and will have
an impact on the inferences (see Chapter 4).

The primary–mass distribution (see Fig. 3.3.2) does not shift systematically with increas-
ing SNR. Instead, the high SNR subsamples retain a relatively uniform distribution even
on a truncated mass range, with a preference for intermediate-mass systems. Importantly,
the characteristic peak around 35 M§ in the intrinsic mass function remains clearly
visible even at the most stringent SNR cuts, in a coherent framework in which stringent
cuts well represent intermediate mass population while suffer at the extremes of the
whole mass distribution. This persistence indicates that, although the number of events
is reduced and the statistical power weakened, the high SNR subsets still preserve the
main features of the underlying population, maintaining a degree of representativity,
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Figure 3.3.2: Mass distributions for UCV (left) and Full MICE (righ) at different
SNR cuts.

especially for the peak.

The effect of these cuts is illustrated in Fig. 3.3.4 and 3.3.5, where scatter–plot matrices
show the parameter space distribution of events in each SNR subsample. As anticipated
from the correlation analysis, high SNR events cluster at shorter distances, with smaller
fractional uncertainties in dL and smaller �, thereby occupying the most informative
regions of parameter space. A quantitative summary of these trends is provided in
Tab. 3.1, which reports the mean values of �dL, �, Vloc, and Ngal,vol for each cut. For
the UCV catalog, already at SNR Ø 35 the typical sky localization improves by more
than a factor of two compared to the baseline (SNR Ø 25), while the average localization

Catalog SNR Nev È�dLÍ [Gpc] È�Í [deg2] ÈVlocÍ [Gpc3] ÈNgal,volÍ

UCV

Ø 25 1000 0.8 3.7 4.09 ◊ 10
≠3

5.90 ◊ 10
2

Ø 35 347 0.4 1.7 7.11 ◊ 10
≠4

1.13 ◊ 10
2

Ø 50 113 0.2 0.9 1.28 ◊ 10
≠4

21.0

Ø 70 27 0.1 0.3 7.07 ◊ 10
≠6

2.4

Full MICE

Ø 25 1000 0.8 3.1 2.89 ◊ 10
≠3

1.2 ◊ 10
5

Ø 35 381 0.4 1.6 7.67 ◊ 10
≠4

3.9 ◊ 10
4

Ø 50 122 0.2 0.7 9.75 ◊ 10
≠5

8.4 ◊ 10
3

Ø 70 36 0.1 0.3 6.76 ◊ 10
≠6

1.3 ◊ 10
3

Table 3.1: Mean Values of �dL, �, Vloc and Ngal,vol parameters at different SNR
selection.
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Figure 3.3.3: Mean number of galaxies within the localization volume, ÈNgal,volÍ,
for different SNR thresholds. For each threshold, the UCV (left bar) and Full
MICE (right bar) catalogs are shown side by side to facilitate comparison.

volume decreases by nearly an order of magnitude. At the most stringent threshold
(SNR Ø 70), the localization volume reaches Vloc ≥ 10

≠6 Gpc3, enclosing on average
fewer than three galaxies and approaching the bright–siren regime. The Full MICE
catalog exhibits qualitatively similar improvements, but due to its higher galaxy density,
the mean number of galaxies per volume is of order 10

3 even in the highest SNR subset,
precluding unique host identification.

This effect is clearly visible in Fig. 3.3.3, where the average value of Ngal,vol is plotted as
a function of the applied SNR cuts for both catalogs. The comparison highlights that,
while for UCV the mean number of galaxies decreases rapidly and approaches unity at
the highest SNR threshold, the values for the Full MICE catalog remain systematically
larger by nearly two orders of magnitude across the entire range. This systematic offset
reflects the intrinsic difference in galaxy density between the two catalogs and illustrates
why, even after stringent SNR cuts, unique host identification remains feasible only in
the idealized UCV case.

Overall, the SNR sampling highlights two complementary aspects. On the one hand,
higher thresholds systematically improve distance and sky localization, thereby affect-
ing parameter constraints. On the other hand, stricter cuts reduce the sample size,
while biasing the selection toward nearby and more massive systems, which limits how
representative the sample is of the underlying astrophysical population.
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Figure 3.3.4: Corner plot showing all the pairwise scatter plots between para-
meters for UCV catalog, colored by different SNR thresholds: 25, 35, 50, and 70.
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Figure 3.3.5: Corner plot showing all the pairwise scatter plots between para-
meters for Full MICE catalog, colored by different SNR thresholds: 25, 35, 50, and
70.

60



3. EXPLORING THE INFORMATION CONTENT IN GW AND GALAXY DATA

In what follows, both the UCV and Full MICE GW catalogs are used as starting
point to generate different subsets of events by applying progressively stricter cuts
on the SNR (SNR Ø 25, 35, 50, and 70). The central goal is to determine which
events contribute most to the extraction of cosmological and astrophysical information.
These two aspects rely on different requirements. Astrophysical inference benefits from
large and representative samples, covering the full distribution of binary parameters,
so as to capture the global properties of the underlying population. Cosmological
inference, instead, is primarily driven by events that are well localized in distance and
sky position, since these provide the tightest constraints when matched with galaxy
catalogs. Distinguishing between these complementary needs allows us to assess how event
selection based on SNR impacts the balance between astrophysical and cosmological
inference. In Chapter 4 we explore whether carefully selected subsets can provide
constraints analogous to those from the entire catalog, yet with a significant reduction
in computational cost. This second point is practical and particularly crucial for the
analysis with future GW detectors. Analyzing a complete catalog makes full use of the
information but requires substantial computational resources and wall time. Establishing
that a strategically chosen subsample based on a clear and repeatable criterion, such
as SNR, preserves most of the cosmological and astrophysical information could have a
significant impact on the analyses of current and future datasets.
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4
Results

After characterizing the GW and galaxy catalogs in terms of their statistical properties
and correlations (Chapter 3), we now turn to the inference of cosmological and astro-
physical population hyperparameters. The hierarchical Bayesian framework described in
Chapter 2, and implemented through the CHIMERA pipeline, is here applied to the mock
data sets presented in Sec. 3.1.

The inference is carried out on a representative set of parameters that describe both
the cosmological model and the properties of the Binary Black Holes (BBH) population.
The input GW catalog is analyzed using multiple SNR cuts, motivated by the analysis
in Sec. 3.3, where we studied the correlation between the SNR and the main observables
of the detected sources.

The introduction of SNR cuts serves a dual purpose: it allows us to quantify how much
selection effects compromise the accuracy and precision of the inferred parameters, and,
at the same time, it tests whether limiting the analysis to higher SNR detections can
preserve most of the available information while reducing the computational cost. This
perspective allows us to address a central question of the work: how much cosmological
and astrophysical information is contained in the full event set, and whether a suitably
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chosen SNR threshold can preserve accuracy without including a large number of low
information events.

In the following, we first discuss the posterior distributions obtained for single and
combined events, then present a set of targeted studies addressing the impact of SNR
cuts on parameter accuracy, the computational scaling with the number of events, and
the consequences of possible mismatches in the host–galaxy weighting schemes.

4.1 Astrophysical and Cosmological Constraints

In the context of hierarchical Bayesian inference, a one–dimensional (1D) posterior is
obtained by fixing all hyperparameters to their fiducial values except one, which is varied
over a grid. It represents first–order evaluations, providing a direct indication of how the
data constrain each parameter individually. The full set of hyperparameters considered
in this work was introduced in Chapter 2 and summarized in Tab. 2.1. In the present
analysis, however, we restrict our attention to four parameters that capture the main
cosmological and astrophysical information: the Hubble constant H0, the mean µg and
standard deviation ‡g of the Gaussian peak in the Black Hole (BH) mass distribution,
and the peak redshift zp of the merger rate evolution.

We distinguish between two complementary applications. First, we compute 1D pos-
teriors for H0 at the level of individual GW events. This step allows us to evaluate
how informative single detections can be, and to investigate correlations between the
sharpness of the posterior and basic event properties. By isolating the contribution of
individual events, we aim to identify which ones carried the most statistical weight in the
combined inference. Second, we move to the combined inference, where 1D posteriors
are obtained by combining the contributions of multiple events. We focus on the four
key hyperparameters (H0, µg, ‡g, zp) and apply various SNR thresholds to the GW
catalogs (as presented in Sec. 3.3).

4.1.1 Results on Individual Events

We first evaluate the constraining power of single GW events by computing individul
1D posteriors for the Hubble constant H0. The goal of this analysis is to investigate how
constraining each single event is in the overall estimation of H0.
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Figure 4.1.1: Log-likelihood (top panel), bias term (central panel), and posterior
distribution (bottom panel) for the Hubble constant H0 for individual GW events.
Each curve is computed on a uniform grid spanning 20–200 and is colored by the
number of galaxies within the localization volume Ngal,vol

The results are shown in Fig. 4.1.1, where the three panels report, for each of the 1000

simulated detections of each catalog, the likelihood, the bias term, and the posterior
distribution of H0. Each curve is computed on a uniform grid spanning H0 œ [20, 200]

and is colored by the number of galaxies within the localization volume, Ngal,vol.

Starting from the likelihoods (top panel), the two catalogs display different behaviors.
In UCV, several events fall in the bright sirens regime for which localization volumes
contain only a few galaxies and allow association with a single host galaxy. In this
case, the likelihoods are sharply peaked and centered close to the fiducial value H0 ƒ
70 km s

≠1
Mpc

≠1, already providing informative constraints. In contrast, no event in the
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Full MICE catalog reaches the bright sirens regime, since even for the best localized
events, the number of galaxies remains at least Ngal,vol ≥ 10

2–10
3. Consequently, the

likelihoods are smooth, broad, and essentially featureless, reflecting the dilution of
information over a much larger galaxy population.

The bias term (central panel) further highlights the contrast between the two cases. In
UCV, it is nearly flat across the entire H0 range, indicating that it has little effect on
the final inference. In Full MICE, instead, the bias grows steadily with H0, ranging
from ≥ ≠6 at low values to nearly zero at high values. These differences are directly
mirrored in the posteriors (bottom panel). For UCV, the posteriors closely reproduce
the likelihoods: sharp peaks are preserved, and the events that fall in the bright sirens
regime remain strongly informative even after the bias correction is applied. In other
words, when only a few galaxies are compatible with a GW localization, the likelihood
already contains essentially all the constraining power, and the bias term is almost
negligible.

In Full MICE, instead, the bias term becomes essential. Without it, the likelihoods
are broad, smooth, and uninformative, reflecting the large number of potential host
galaxies. Once the bias correction is introduced, however, the resulting posteriors sharpen
significantly, with peaks emerging around the fiducial value H0 ƒ 70 km s

≠1
Mpc

≠1. This
demonstrates that, in dense catalogs such as Full MICE, the bias acts as the key
ingredient that compensates for the large number of possible hosts and allows individual
events to contribute to the global inference.

4.1.2 Combined Analysis

After evaluating the individual contribution of GW events to the estimation of the
Hubble constant, we extend the analysis to the combined GW event inference on four
the four hyperparameters, H0, µg, ‡g and zp, under different SNR selections, specifically
SNR Ø 25, 35, 50, 70.

The combined 1D posteriors for the four hyperparameters are shown in Fig. 4.1.2. Each
row corresponds to one parameter, while the columns represent increasing thresholds in
SNR. For each case, the posteriors obtained with the UCV and Full MICE catalogs are
plotted together, allowing for a direct comparison of the two catalogs under the same
selection.
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Figure 4.1.2: Grid of 1D posterior distributions for the four hyperparameters
(H0, µg, ‡g, zp) obtained from the combined inference on GW events. Each row
corresponds to a different parameter, while each column corresponds to a different
SNR threshold. For each panel, posteriors from the two galaxy UCV (shaded) and
Full MICE (contour) catalogs are shown for direct comparison.

A first general trend can be immediately noticed. When the SNR cut is progressively
increased, the number of events contributing to the inference decreases, leading to
broader and less peaked posteriors. It is interesting to note that the transition from
SNR Ø 25 to SNR Ø 35 reduces the event sample size by about a factor of three, but the
posteriors remain stable in both catalogs. This indicates that a moderate SNR cut can
reduce the dataset size, and thus the computational cost, without significantly degrading
the accuracy of the inference (further details in Sec. 4.2 and 4.3).
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The behavior of the redshift evolution parameter zp under different SNR selections
highlights the limitations introduced by the restricted sampling of the source population.
For the UCV catalog, the posterior distributions remain defined at all thresholds, but
they become progressively broader and the peak shifts toward lower redshift values as
the cut increases. This systematic trend is consistent with the expected effect of selecting
only nearby, high-SNR events, which reduces sensitivity to the high-redshift portion of
the merger population. In the case of the Full MICE catalog, the constraints degrade
much more rapidly. For the samples with SNR Ø 50 and 70, the posterior can only
provide, as expected, a lower limit on zp. As a result, information on the location of the
merger rate peak is effectively inaccessible once the catalog is restricted to high SNR
detections.

The mass distribution parameters µg and ‡g show a different trend. Since they trace the
intrinsic BH mass spectrum rather than the redshift distribution, the main limitation is
the reduced number of detections at higher thresholds. Their posteriors remain visible
up to SNR Ø 70, but progressively broaden and flatten, with ‡g in particular showing a
significant increase of the associated uncertainty.
The Hubble constant H0 is the most robust: both catalogs yield stable, narrow posteriors
across all thresholds, with only a mild degradation at the most restrictive cuts.

In summary, the combined analysis highlights two complementary effects of SNR cuts.
On the one hand, moderate thresholds can reduce the dataset size with little impact
on the constraints, thereby improving computational efficiency. On the other hand,
very aggressive cuts compromise the coverage of the population (as in the case of zp) or
strongly limit the available statistics (as for µg and ‡g), leading to loss of constraining
power.

4.2 Accuracy Analysis

In addition to the visual inspection of the posterior grids, we extracted the 68% and
90% credible intervals for each parameter and reported them in the error-bar plots of
Fig. 4.2.1. A quantitative summary of the 68% fractional uncertainties is provided in
Tab. 4.1, where we report the ratio between the posterior width and the median value for
each parameter and selection threshold. We also include the peak value of the posteriors
and their bias with respect to the fiducial value. The behavior of the four parameters,
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Figure 4.2.1: Bar plots displaying the 68% (dark bars) and 90% (light bars)
credible intervals of the posterior distributions for each parameter. The fiducial
value (dotted line) is indicated as a reference to assess potential biases.

considering the various SNR cuts, reveals trends in terms of both precision and bias
with respect to the fiducial values (H0 = 70, µg = 34, ‡g = 3.6, zp = 2). The trends
highlighted by these results are discussed in the following.

H0: Both catalogs yield stable constraints on the Hubble constant across all SNR
cuts. For UCV the relative uncertainty increases only from 0.7% (SNR Ø 25,
Nev = 1000) to 1.4% (SNRØ 70, Nev = 27). The posterior peak remains essentially
unbiased, with deviations of at most ≥ 0.4% from the fiducial. Full MICE follows a
similar trend, with uncertainties rising from 1.1% to 2.0% and peak values slightly
shifted downward, with a bias of about 1% in the most extreme case (SNR Ø 70).
Overall, even when the number of events decreases by more than 95%, H0 remains
robustly constrained at the sub–percent (UCV) or percent (Full MICE) level, with
negligible bias. This is a remarkable result, as the Full MICE catalog is much
more realistic and densely populated, yet it still achieves constraints comparable
to those obtained with UCV.

µg: The mean of the Gaussian peak in the BH mass distribution, µg, is also robust
against SNR cutting. In UCV, inferred values remain clustered around the fiducial
34, with modest deviations of 3–4% and uncertainties growing from 1.4% to 6.6%
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Catalog SNR Nev
H0 µg �g zp

med bias% �% med bias% �% med bias% �% med bias% �%

UCV

Ø 25 1000 70.3 +0.4 0.7 34.1 +0.3 1.4 3.6 0.0 10.8 1.7 ≠13 73.3

Ø 35 347 70.3 +0.4 0.7 34.4 +1.0 2.4 3.9 +8.1 19.9 1.3 ≠37, 5 101.9

Ø 50 113 70.2 +0.3 0.9 35.5 +4.4 3.9 4.6 +26.9 28.5 4.0 +100 88.5

Ø 70 27 70.3 +0.4 1.4 35.1 +3.2 7.0 3.7 +2.8 54.6 4.0 +100 103.5

Full
MICE

Ø 25 1000 70.1 +0.3 1.0 33.6 ≠1.1 1.4 3.4 ≠5.4 11.4 1.2 ≠41, 5 51.6

Ø 35 381 70.4 +0.6 1.1 33.6 ≠1.1 2.3 3.7 +2.7 15.7 3.2 +59.5 73.9

Ø 50 122 69.9 ≠0.1 1.5 33.3 ≠2.0 4.1 3.0 ≠16.2 35.3 0.0 ≠100 -
Ø 70 36 69.2 ≠1.2 2.1 32.3 ≠5.1 6.6 2.9 ≠18.9 38.6 0.0 ≠100 -

Table 4.1: Inference summary: medians, biases, and 1� uncertainty, for the four
parameters H0, µg, ‡g, and zp as a function of the SNR threshold, reported for
both catalogs (UCV and Full MICE). For each threshold, we also list the number
of retained events. For every parameter the table provides: (med) the posterior
median; (bias %) the fractional bias, defined as 100 ◊ (med ≠ fiducial)/fiducial;
and (�%) the fractional 1‡ uncertainty, defined as 100 ◊ (‡68/med) where ‡68 is
the half-width of the 68% credible interval.

as the event count drops. Full MICE produces a similar pattern, with posteriors
that broaden at higher thresholds and central estimates that fall slightly below
the fiducial, the largest offset being about 5%. In this case, contrary to the
H0 constraints, which are driven by higher SNR well-localized events, precisely
constraining the astrophysical population requires a larger sample of events. As
expected, no significant differences emerge between the two catalogs, since the
inference of population parameters is mainly governed by the overall number of
detections.

�g: The width of the Gaussian peak, ‡g, shows a much stronger sensitivity to the
number of chosen events. In UCV, the posterior peak remains close to the fiducial
3.6 at low thresholds, but then drifts upward, reaching 4.6 (with a bias of +27%)
at SNR Ø 50. At the highest cut, SNR Ø 70, the peak falls back to 3.7 (+3%),
but the fractional uncertainty grows steeply, from 11% at SNRØ 25 to more than
50% at SNRØ 70. In Full MICE, the trend is somewhat different: the degradation
is accompanied by a systematic downward shift up to the highest cut where the
peak value drops to ≥ 2.9, nearly 18% below the fiducial.

zp: The redshift–evolution parameter, zp, is by far the most fragile of the set. In UCV,
even at SNRØ 25 the fractional uncertainty already exceeds 70%, indicating that
the parameter is only very weakly constrained. As the threshold increases, the
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situation degrades: the posterior peak fluctuates widely, dropping to 1.3 (≠38%

bias) at SNR Ø 35 and rising to 4.0 (+100% bias) at higher cuts. Although the
posteriors remain technically defined, their widths are always larger than the signal,
so the estimates carry little statistical weight and are strongly affected by the
removal of high–redshift events. In Full MICE, the situation is even more severe.
At SNRØ 25 the uncertainty is already ≥ 50%, and by SNRØ 35 the posterior peak
has shifted to 3.2 (+60% bias). Beyond SNRØ 50, the distributions effectively
collapse to zp ƒ 0, corresponding to a complete loss of constraining power. These
results confirm that zp is poorly measurable in both catalogs: even under the most
inclusive selection, its uncertainty is too large to provide meaningful information,
and discarding low–SNR events makes the estimates essentially unconstrained.

It is worth noting that, in some cases, the bar plots of Fig. 4.2.1 appear to show biases
that fall outside the 1‡ credible interval for some parameters. Such shifts can be
explained as the manifestation of residual systematics inherent in the construction of the
simulated catalogs. A first possible source of bias lies in the extraction of the catalogs
themselves: here we analyze one realization of the simulated detections, but in principle
the procedure should be repeated over many independent realizations (possibly also
varying the cosmology) to fully capture statistical fluctuations. A second effect comes
from the injections used to reproduce the population and recover selection effects. Since
the true distribution is logarithmic in mass, with many low–mass and fewer high–mass
binaries, a finite sample of injected events may not uniformly represent the underlying
mass function, unless the injection strategy is specifically designed to do so. Finally, for
each GW event the posterior samples used in the analysis are finite, and if they do not
map the posterior surface densely enough, they can also introduce small biases in the
recovered parameters. Taken together, these considerations suggest that the modest
deviations seen in the plots do not point to fundamental issues, but rather reflect the
limitations of working with finite realizations of simulated data.

To further explore the origin of the trends discussed above, we analyse how the relative
parameter uncertainties scale with the average properties of the GW measurements in
each subsample. For every set of events defined by an SNR threshold, we compute the
mean luminosity distance error (È�dLÍ), the mean sky–localization area (È�locÍ), the
mean localization volume (ÈVlocÍ), and the mean number of galaxies within that volume
(ÈNgal,volÍ). The fractional uncertainties on the inferred parameters are then plotted
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Figure 4.2.2: Fractional parameter uncertainties as a function of average GW
measurement properties: luminosity distance uncertainty (È�dLÍ), sky–localization
area (È�locÍ), localization volume (ÈVlocÍ), and average number of galaxies per
volume (ÈNgal,volÍ). Best–fit trends are shown for both catalogs, and the marker
sizes are scaled to reflect the decreasing number of events at higher SNR thresholds.
Note that the ÈVlocÍ and ÈNgal,volÍ panels are plotted with log–log axes, whereas
the È�dLÍ and È�locÍ panels use a linear x–axis. The apparent linear behavior in
the last two panels is therefore a consequence of the plotting scale.

against these quantities, and linear relations are fitted to the resulting points. The zp

parameter is not included in this analysis, because of its large statistical uncertainty
and unstable posterior peaks. From the fits we extract both the slope, which quantifies
how quickly the uncertainty grows as the GW measurement becomes less accurate, and
the normalization, which encodes the absolute level of accuracy achieved at each GW
localization level.

The fitted relations, shown in Fig. 4.2.2 and summarized in Tab. 4.2, reveal two distinct
regimes. When uncertainties are plotted against È�dLÍ, È�locÍ or ÈVlocÍ, the slopes and
normalizations are very similar in UCV and Full MICE. This indicates that the scaling
of uncertainties with GW localization accuracy is primarily governed by the SNR cut,
through its effect on selecting overall closer events with a better localization, and on the
number of retained detections, and is therefore independent of the galaxy catalog. To
make this clearer, the points are plotted with marker sizes proportional to the number of
events at each SNR threshold. This shows directly that the slope of the relation is linked
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Catalog Mean val. H0 µg �g

slope (m) norm (A) slope (m) norm (A) slope (m) norm (A)

UCV

È�dLÍ ≠0.35 0.006 ≠0.809 0.013 ≠0.798 0.100

È�locÍ ≠0.287 0.009 ≠0.648 0.034 ≠0.641 0.265

ÈVlocÍ ≠0.113 0.003 ≠0.252 0.004 ≠0.249 0.030

ÈNgal,volÍ ≠0.128 0.014 ≠0.290 0.092 ≠0.286 0.704

Full
MICE

È�dLÍ ≠0.415 0.009 ≠0.890 0.011 ≠0.778 0.095

È�locÍ ≠0.322 0.014 ≠0.688 0.030 ≠0.603 0.226

ÈVlocÍ ≠0.112 0.005 ≠0.258 0.003 ≠0.224 0.033

ÈNgal,volÍ ≠0.235 0.100 ≠0.499 2.006 ≠0.435 8.806

Table 4.2: Best–fit slope (m) and normalization (A) parameters from the scaling
relations of fractional uncertainties with GW measurement properties, for both
the UCV and Full MICE catalogs.

to sample size: as the SNR cut becomes more restrictive, both catalogs lose events at a
similar rate, and the reduced statistics broaden the posteriors in the same way.

A different behavior emerges when using the mean number of galaxies per localization
volume, ÈNgal,volÍ. In this case, Full MICE shows both steeper slopes and significantly
larger normalizations compared to UCV. This is due to a higher density of potential
hosts which not only shifts the uncertainty level upward, but produces a steeper trend
of uncertainty as ÈNgal,volÍ increases.
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4.3 Computational Time Analysis

To quantify the computational cost of the hierarchical Bayesian inference, we measure the
runtime required to evaluate 1D posteriors under different SNR thresholds. The analysis
is performed on the posterior of H0, chosen because it remains tightly constrained even
at high SNR thresholds. Focusing on this parameter provides a stable reference to
evaluate how computation time scales with the number of events, and allows us to later
compare these gains in efficiency with the corresponding loss in accuracy, as discussed in
the trade–off analysis of Sec. 4.5.

The results in Fig. 4.3.1 and Tab. 4.3 are presented in a fractional form: we report
the ratio between the runtime at a given SNR cut and the runtime at the baseline
selection SNR Ø 25. This quantity can be interpreted as the inverse of a fractional gain
in efficiency, with values closer to zero corresponding to shorter execution times.

Despite the large difference in size between the two catalogs, the computational times turn
out to be very similar. This is explained by the structure of the pipeline: all galaxy–related

Figure 4.3.1: Relative computational time for the 1D posterior analyses as a
function of the number of events included after different SNR cuts. Times are
normalized to the baseline case SNRthr Ø 25, such that the curves represent the
fractional gain with respect to the maximum runtime. Results are shown for both
catalogs: UCV (dark purple) and Full MICE (light blue).
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Catalog SNR Nev tc/tc,max

UCV

Ø 25 1000 1.00

Ø 35 347 0.39

Ø 50 113 0.15

Ø 70 27 0.06

Full
MICE

Ø 25 1000 1.00

Ø 35 381 0.40

Ø 50 122 0.13

Ø 70 36 0.05

Table 4.3: Fractional 1D runtimes as a function of the SNR threshold for the
two catalogs (UCV and Full MICE). For each cut, we list the number of retained
events Nev and the relative wall time tc/tc,max, normalized to the baseline selection
SNRthr Ø 25. Values below unity indicate faster runs.

operations, such as pixelization, completeness corrections, and the interpolation of the
background distribution, are performed once in a pre-processing stage and stored. As
a result, the runtime during inference is driven almost entirely by the number of GW
events (Nev), rather than by the size of the galaxy catalog.

The trend is clearly visible in Fig. 4.3.1: already at SNR Ø 35 the computational cost
drops to ≥ 40% with respect to the baseline. At SNR Ø 70, run times correspond to
only ≥ 5%–6% of the initial.

The analysis of runtimes for the 1D posterior of H0 can also be used as a reference to
forecast the performance of future detectors such as ET, which is expected to deliver
samples of order 10

5 events (Branchesi et al. (2023)). We perform an extrapolation of
the measured times to larger event counts to obtain estimates of computational costs as
the number of GW events increases. Our extrapolation is therefore explicitly constructed
to bridge that gap: starting from the Nev = 1000 case and using the fitted slope, we
evaluate the model at Nev = 10

5.

The scaling of the time with the number of events is modeled with a simple linear relation
which model the wall time T as a function of the number of processed events Nev:

T (Nev) ƒ c Nev. (4.1)

A small departure from perfect linearity is visible at the lowest Nev. This is expected
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Figure 4.3.2: Projected MCMC CPU time (single core) as a function of the
number of events. Points show the measured timings at SNRthr œ {25, 35, 50, 70}
for the two catalogs, converted to MCMC–equivalent hours by rescaling the
1D timings. Solid and dashed curves are least–squares fits constrained through
the origin, estimated separately for each catalog and used to extrapolate up to
M = 10

5.

because the fit does not include an intercept, so fixed independent setup times produce
a residual that is only visible when Nev is small and becomes negligible at larger sizes.
With this caveat in mind, the linear model captures the trend very well once Nev is
higher, with excellent agreement for both catalogs, confirming that the total runtime is
almost entirely determined by the number of GW events.

To extend the forecast from 1D timings to a full multi-parameter Monte Carlo Markov
Chain (MCMC), we apply a single multiplicative conversion that maps the iteration
budget used in the 1Ds to the workload required by a reliable MCMC run. In our
1D analysis we evaluated a single-parameter posterior with 500 steps. For a realistic
MCMC configuration we assume 20 000 steps per walker and 50 walkers. This leads to
the conversion factor

FMCMC =
20 000

500
◊ 50 ¥ 2 000. (4.2)

The resulting MCMC times should be read as order-of-magnitude forecasts at the ET
scale, calibrated on a single-CPU run. Actual times depend on coding and analysis
choices, particularly the iteration budget (number of steps and walkers) and the available
computational resources (GPUs or multi-CPU parallelism), which mainly act by rescaling
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the overall normalization of the timing curves.

Given this setup, and with the understanding that the calculation provides an indicative
estimate rather than a precise timing, evaluating the linear fit at Nev = 10

5 and then
translating the 1D timings into MCMC terms yields total runtimes of order 8 ◊ 10

4

hours in the baseline configuration without additional cuts (SNR Ø 25): specifically, we
obtain ≥ 7.7 ◊ 10

4 hours for UCV and ≥ 8.5 ◊ 10
4 hours for Full MICE. Raising the

threshold to SNR Ø 35 reduces the expected cost to ≥ 3 ◊ 10
4 hours, and a stricter

selection at SNR Ø 50 brings runtimes down to around 10
4 hours, that is about one

order of magnitude below the no-cut configuration. Pushing the threshold to SNR Ø 70,
we reach a computational time of ≥ (2.3–2.6) ◊ 10

3 hours, approximately 3% of the
baseline, corresponding to a speed-up of the order of thirty to forty times. These results
are summarized by the projection curves in Fig. 4.3.2.

In summary, this analysis shows that computational time scales almost linearly with
the number of events. Applying selection cuts that reduce the event sample allows to
control wall time, with increasingly stringent thresholds yielding substantial time savings.
In Sec. 4.5, we assess the trade-off between the loss of statistical accuracy induced by
discarding low–SNR events and the gain in computational efficiency, with the goal of
identifying where the reduction in cost outweighs the loss in precision.

4.4 Assessing Systematic effects

A final test was performed to assess the impact of mismodeling the dependence of merger
rates on host galaxy stellar mass. Throughout the analysis, the Full MICE GW events
were generated assuming the linear weighting proportional to the stellar mass: p Ã Mı.

To evaluate the robustness of this assumption, we repeat the analysis using wrong
background galaxy distributions with different weighting prescriptions: a uniform distri-
bution (p Ã M

0
ı ), where all galaxies are equally weighted, and a quadratic distribution

(p Ã M
2
ı ), where massive galaxies are preferentially selected. This wrongly assumed

weighting affects the analysis since it enters into the redshift distribution of the galaxies,
which is used to compute the completeness function and the background distribution
(Eq. (2.26)). In all cases, the GW catalog used for inference remains fixed with the
one extracted with the fiducial p Ã Mı weighting. This setup allows us to quantify the
biases that arise if the true mass dependence of merger rates deviates from the linear
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Figure 4.4.1: Posterior distributions obtained using the same mock GW events
while varying the host–galaxy weighting. The fiducial weighting (p Ã Mı) is
contrasted with two mismatched “truth” scenarios: uniform (M0

ı ) and quadratic
(M2

ı ). In all cases, the inference is performed with the fiducial weighting (p Ã Mı).

model assumed in the analysis. The results are shown in Fig. 4.4.1, where posterior
distributions obtained from the ”true” fiducial linear mock are compared with those
derived from the wrong uniform and quadratic mocks. The comparison shows that some
parameters remain robust against weighting mismatches, while others exhibit significant
biases or loss of constraining power. In particular, the uniform case tends to dilute the
information by giving equal weight to all galaxies, whereas the quadratic case emphasizes
massive galaxies.

The fiducial linear weighting (Ã Mı) yields sub–percent uncertainties at low thresholds
(0.97% at SNRthr Ø 25) and grows to about 2.1% at SNRthr Ø 70. The uniform case
(Ã M

0
ı ) systematically degrades the precision, with uncertainties from 1.08% at baseline

to 2.2% at the highest cut. In contrast, the quadratic weighting (Ã M
2
ı ) delivers the

tightest constraints, from 0.97% at baseline to 1.73% at SNRthr Ø 70. Importantly, the
bias on H0 remains negligible in all cases, always ≥ 1% or below, relative to the fiducial
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Weighting SNR
H0 µg �g

med bias% �% med bias% �% med bias% �%

Ã M
0

Ø 25 70.3 +0.4 1.1 34.4 +1.2 1.3 3.5 ≠2.7 10.8

Ø 35 70.6 +0.8 1.2 33.2 +0.7 2.2 3.8 +5.4 17.8

Ø 50 69.9 ≠0.1 1.5 33.5 ≠1.5 3.6 3.1 ≠13.5 34.2

Ø 70 69.3 ≠1.1 2.2 32.1 ≠5.5 6.1 2.9 ≠18.9 41.8

Ã M

(true)

Ø 25 70.1 +0.3 1.0 33.6 ≠1.1 1.4 3.4 ≠5.4 11.4

Ø 35 70.4 +0.6 1.1 33.6 ≠1.1 2.3 3.7 +2.7 15.7

Ø 50 69.9 ≠0.1 1.5 33.3 ≠2.0 4.1 3.0 ≠16.2 35.3

Ø 70 69.2 ≠1.2 2.1 32.3 ≠5.1 6.6 2.9 ≠18.9 38.6

Ã M
2

Ø 25 70.0 +0.0 1.0 33.6 ≠1.1 1.4 3.4 ≠5.4 11.4

Ø 35 70.3 +0.5 1.1 33.6 ≠1.1 2.3 3.7 +2.7 15.7

Ø 50 69.9 ≠0.1 1.3 33.2 ≠2.4 4.1 2.9 ≠18.9 35.3

Ø 70 69.3 ≠1.0 1.7 32.3 ≠5.1 6.6 2.9 ≠18.9 41.8

Table 4.4: Posterior summaries for the three parameters H0, µg, and ‡g as a
function of the SNR threshold and of the host–galaxy weighting adopted (uniform
M

0
ı , linear Mı, quadratic M

2
ı ). The label “true” marks the matching with

the weighting used to generate the mock GW catalogs. For each parameter
we report: med, the posterior central value (median); bias %, defined as 100 ◊
(med ≠ fiducial)/fiducial; and �%, the fractional 1‡ uncertainty, computed as
100 ◊ (‡68/med), where ‡68 denotes the half–width of the 68% credible interval.

value of 70.

This improvement can be traced back to the fact that giving stronger weight to massive
galaxies reduces the effective number of candidate hosts. As a result, the catalog
distribution becomes less diluted by the large population of low–mass galaxies, and the
inference gains precision without introducing detectable biases. Conversely, the uniform
weighting tends to broaden the posteriors, since low–mass galaxies are over–represented,
thereby weakening the statistical contrast between true hosts and background galaxies.

The situation is different for the population parameters. For µg, uncertainties lie
between ≥ 1.3% and ≥ 6.6% depending on the SNR cut, with modest differences
between weighting schemes. Biases are generally small at low thresholds (. 1% at
SNR Ø 25) but grow to ≥ ≠5% at SNR Ø 70, indicating a mild systematic drift
towards lower values as the event sample shrinks. For ‡g, the spread is larger: fractional
uncertainties increase from ≥ 11% at baseline to 38–42% at the highest thresholds, and
the posterior peaks exhibit biases up to ≥ ≠19% relative to the fiducial 3.6.
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Taken together, these tests indicate that the analysis is robust to moderate mismodeling
of the host–galaxy weighting: biases remain negligible, yet the choice of weighting does
control statistical efficiency, particularly for H0 parameter. The scheme that upweights
massive hosts (Ã M

2
ı ) delivers the tightest posteriors even though it does not match

the linear prescription used to generate the GW mocks. We interpret this behavior as
the concentration of probability onto a smaller subset of high–mass galaxies, effectively
transforming an almost uniform candidate catalog into one with a few prominent peaks.
This concentration reduces host–association ambiguity and increases the information
carried by each event, thereby strengthening cosmological and astrophysical constraints.

4.5 Trade-off Analysis

The previous sections have shown separately how accuracy of the inferred hyperparamet-
ers and computational time scale with the choice of SNR threshold, and the consequent
reduction of the number of events.

From the accuracy side, we have seen that H0 remains robust up to very aggressive cuts,
with uncertainties staying at the sub–percent or percent level even when the number of
events is reduced by more than an order of magnitude. The mass–distribution parameters
show a moderate degradation: µg is relatively stable, while ‡g broadens substantially
at higher thresholds. The redshift evolution parameter zp is the most fragile, retaining
only weak constraints in UCV and becoming essentially unconstrained in Full MICE
beyond SNRØ 50. This confirms that H0 is the most robust parameter, while population
parameters are more sensitive to the size and coverage of the sample.

From the computational side, the cost of the inference scales nearly linearly with the
number of GW events and is independent of the galaxy catalog. Moderate cuts such as
SNRØ 35 already reduce the runtime by a factor of ≥ 2.6, while more aggressive cuts
produce strong speed–ups, reaching ≥ 20◊ at SNRØ 70. These results were obtained
from the H0 1D computation, but are representative for all parameters since the scaling
is controlled almost entirely by the number of events.

We now combine these two perspectives to identify the most effective trade–off between
retaining cosmological information and reducing runtime. In what follows, the accuracy-
time trade-off is quantified using the uncertainty and bias of H0, since H0 is the most
robustly constrained parameter across all thresholds. Table 4.5 summarizes the combined
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Figure 4.5.1: Effect of the SNR threshold on H0 accuracy (dashed) and com-
putational time (solid) for the UCV and Full MICE catalogs. Both curves show
percentage changes relative to the baseline case SNRthr Ø 25: positive values
indicate increased H0 uncertainty (loss of accuracy), while negative values indicate
reduced runtime (gain in efficiency). This representation highlights the balance
between information loss on H0 and computational savings at different thresholds.

trends, while Fig. 4.5.1 provides a visual representation. A clear pattern emerges: at
SNR Ø 35, the number of events is reduced to about one–third of the baseline (347 out
of 1000 for UCV, 381 for Full MICE). This cut shortens the runtime by about 60%,
while the uncertainty on H0 grows only modestly, by ≥ 6–9%. Moving to SNR Ø 50

reduces the runtime by another factor ≥ 2, but at the cost of a +34–38% increase in
H0 uncertainty. At the most extreme cut, SNRØ 70, the runtime shrinks by more than
90%, while uncertainties nearly double.

Taken together, these results show that the optimal balance is achieved at SNRØ 35.
In this regime the catalog size is reduced by roughly two–thirds, bringing substantial
computational savings while preserving the relevant cosmological information. This
compromise is particularly appealing in the context of third–generation detectors such
as the ET, where analyzing the entire set of ≥ 10

5 expected events would require larger
computational resources and times. In such scenarios, a moderate SNR cut can ensure
that the analysis remains both computationally feasible and scientifically robust.

A further point concerns the comparison between the two galaxy catalogs. Despite Full
MICE being much larger in galaxy count (about two orders of magnitude more objects
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Catalog SNR Nev func, H0 ftc

UCV

Ø 25 1000 0 % 0%

Ø 35 347 +9% ≠61%

Ø 50 113 +34% ≠85%

Ø 70 27 +101% ≠94%

Full MICE

Ø 25 1000 0% 0%

Ø 35 381 +6% ≠60%

Ø 50 122 +38% ≠87%

Ø 70 36 +88% ≠95%

Table 4.5: Trade-off analysis between accuracy and computational cost, expressed
as percent changes with respect to the baseline case SNRthr Ø 25. Positive values
indicate increased uncertainty (worse accuracy), while negative values indicate
reduced computational time (improved efficiency).

than UCV), the H0 constraints are remarkably similar: they remain unbiased and at
the percent level in both cases. This behavior is explained by the host–galaxy weighting
adopted in Full MICE catalog, proportional to the stellar mass. By concentrating
probability on a smaller subset of massive galaxies, the weighting effectively turns
a uniform catalog of possible hosts into one with a few high–probability peaks. In
other words, even though Full MICE contains many more galaxies, the mass weighting
prevents a dilution of the inference and leads to accuracy that is comparable to UCV.
This outcome is far from trivial: without an informative weighting, one would expect the
larger catalog to degrade constraints simply by adding many low–probability candidates.
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5
Conclusions

The rapid progress of observational cosmology has led to increasingly precise measure-
ments of the Hubble constant, but also to the emergence of a persistent discrepancy
between determinations obtained in the local and early Universe. This so called Hubble
tension opens to the possibility of new physics beyond the standard �CDM framework
(Verde, Treu and Riess (2019); Abdalla et al. (2022)). In this context, gravitational
waves represent a key independent cosmological probe. Their role is expected to become
increasingly central with the development of new generations of detectors, which will
achieve unprecedented sensitivities and thereby enable tighter constraints on cosmological
parameters. At the same time, these instruments will deliver a dramatic increase in the
number of detections, with third-generation observatories such as the Einstein Telescope
expected to observe up to 10

5 events (Branchesi et al. (2023); Abac et al. (2025)). In
this perspective, it becomes crucial to understand how cosmological and astrophysical
information is distributed across the detected population. While it is often assumed that
precise sky localization is most relevant for cosmological inference, and that astrophysical
population studies benefit mainly from large event volumes, in practice so far event
selection has typically relied on naive SNR cuts, applied just to discard poorly measured
events and retain only robust detections, to maximize the already low statistics available
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at the moment. However, the impact of such selection on the cosmological constraining
power of GW samples has never been systematically investigated. This work focuses on
assessing how the selection of subsets of events can optimize the inference of cosmological
and astrophysical parameters, aiming to achieve robust constraints while simultaneously
reducing the number of events and the associated computational cost.

The analysis is based on simulated dark siren catalogs extracted from the MICE simula-
tion. Two cases are considered: a diluted catalog UCV, containing ≥ 1.6 ◊ 10

6 massive
galaxies (Borghi, Mancarella et al. (2024)), and a much denser Full MICE catalog with
≥ 3.3 ◊ 10

8 galaxies (Borghi, Moresco et al. (2025)), offering a realistic representation of
future surveys. Both assume a spectroscopic redshift precision of ‡z = 0.001(1 + z). The
cosmological and astrophysical information is inferred within a hierarchical Bayesian
framework, which naturally incorporates selection effects, enabling a robust estimation of
cosmological parameters, the mass distribution of BBH, and the redshift evolution of the
merger rate. The entire inference is implemented through CHIMERA (Borghi, Mancarella
et al. (2024); Tagliazucchi et al. (2025); Borghi, Moresco et al. (2025)), a dedicated
pipeline designed for efficient evaluation of high-dimensional parameter spaces and for
the combined use of GW and galaxy catalogs. Before addressing parameter inference, a
preliminary analysis of the simulated catalogs is performed. We study the correlations
among the parameters and perform a PCA to provide a first insight into the dependencies
among source properties and guide the interpretation of the results obtained from the
full Bayesian inference.

The key element of the analysis are the detection thresholds. A sequence of progressively
more selective cuts on the SNR is applied, with thresholds at 25, 35, 50, and 70.
This strategy allows us to study how the accuracy of the inferred parameters and the
computational cost of the analysis scale with the size and quality of the event sample.
From this framework, several main results emerge:

• The difference of more than two orders of magnitude in number density of galaxies
between the UCV and Full MICE catalog, has a direct impact on host association, with
localization regions that in UCV may contain only few galaxies but that in Full MICE
typically enclose hundreds to thousands. Applying SNR cuts further modifies these
characteristics. The number of GW events decreases from Nev = 1000 at SNR Ø 25

to only a few tens at SNR Ø 70 (27 for UCV, 36 for Full MICE), while the sampled
redshift range contracts from zmax ≥ 1.4 to zmax . 0.4. In UCV, high–SNR events are
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localized in volumes of the order of ≥ 10
≠6

Gpc
3, often containing a few galaxies and

approaching the bright–siren regime. In Full MICE, although the same cuts reduce
Vloc by similar factors, the higher galaxy density means that even the best–localized
events still contain ≥ 10

3 possible hosts, preventing unique identification.

• From the correlation analysis the SNR emerge as a dominant factor, showing cor-
relations with all other observables. Selecting events with higher SNR naturally
favors events that are better localized on the sky and associated with fewer potential
host galaxies, thereby enhancing their cosmological constraining power. At the same
time, however, SNR also correlates with luminosity distance and component masses,
meaning that such a selection preferentially retains nearby systems and biases the
sample toward a less representative subset in terms of mass and redshift distributions.

• The Principal Component Analysis (PCA) provides a complementary view of the
parameter space. It shows that most of the variance is captured by two orthogonal
components: one dominated by localization-related properties, such as localization
area, localization volume, and number of galaxies in localization volume, and the
other by signal strength through the SNR. Together, these two components explain
more than 80% of the overall variance, confirming that localization and SNR are
the two principal axes of variability that determine the information content of GW
events.

• The combined inference over multiple events yields excellent results for the Hubble
constant H0, which is recovered with high precision in both UCV and Full MICE
catalogs, with uncertainties that remain at the sub–percent to percent level even under
the most restrictive SNR cuts. Remarkably, the two catalogs provide very similar
uncertainties on the constrained parameters, despite the Full MICE catalog containing
about 200 times more galaxies, thanks to the stellar–mass host weighting, which
concentrates prior probability on massive galaxies, reducing the effective number of
possible hosts. A similar scaling of uncertainties is observed for the astrophysical
parameters describing the BBH population, confirming the consistency of the frame-
work across very different galaxy densities. The sensitivity to population parameters,
however, depends more strongly on the distribution of the selected events across
the relevant ranges. While the mean of the BH mass distribution, µg, remains well
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constrained, its width ‡g becomes increasingly uncertain when only a small number of
events is retained. The redshift–evolution parameter zp is the most affected: excluding
low–SNR events preferentially excludes distant sources, leading to a rapid loss of
information on the high–redshift tail of the merger population. These results indicate,
as expected, that robust inference on population parameters requires a larger and
more representative sample covering the full astrophysical parameter space, which
is not guaranteed at high SNR cuts. By contrast, the inference of H0 can rely on a
smaller subset of well–localized events and still achieve percent–level precision.

• The analysis of computational time highlights the practical advantage of event se-
lection. Thanks to the fact that galaxy terms are pre–computed, the runtime of
the inference scales almost linearly with the number of events. Focusing on the
posterior of H0 as a stable reference, event selection shows substantial reductions in
execution time: at SNR Ø 35 it drops to ≥ 40% of the baseline, reaching ≥ 5 ≠ 6% at
SNR Ø 70. Importantly, moderate thresholds achieve these savings with only minor
loss of cosmological information. Extrapolating these trends to third–generation
detectors with catalogs of order 10

5 events, shows that the difference between full
catalogs and high–SNR selections corresponds to a reduction in MCMC runtimes
from ≥ 10

5 to ≥ 10
3 hours. These results emphasize that efficient selection strategies

will be crucial to balance computational efficiency with scientific accuracy in the era
of third–generation GW detectors.

• The tests on wrong host–galaxy weighting schemes in the Full MICE catalog, per-
formed to probe potential systematics, shows that cosmological constraints remain
largely unaffected: H0 is consistently recovered with negligible bias across all pre-
scriptions. In contrast, population parameters display a higher sensitivity, with
uncertainties growing and mild systematic shifts emerging, especially for ‡g. These
results emphasize that, in realistic dense catalogs, an accurate treatment of host–galaxy
weighting is essential to fully exploit the cosmological and astrophysical information
carried by GW events.

• The trade–off analysis quantifies the balance between accuracy and computational
efficiency. At SNR Ø 35, the number of events is reduced by about two–thirds (from
1000 to ≥ 350), reducing the runtime by ≥ 60% while increasing the H0 uncertainty
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by less than 10%. At SNR Ø 50, uncertainties grow by ≥ 35% while runtime shrinks
by more than 85%, and at SNR Ø 70 the computational cost is reduced by ≥ 95%

but with uncertainties nearly doubling. This establishes SNR Ø 35 as an effective
compromise, preserving accuracy while delivering substantial efficiency gains. The
trade–off analysis introduced here represents a crucial step in quantifying the balance
between accuracy and computational cost, and it will be increasingly important
given the large data volumes and demanding analyses expected from next–generation
detectors.

5.1 Future Prospects

The results presented in this work demonstrate the potential of event selection strategies
to balance accuracy and computational feasibility in gravitational–wave cosmology. At
the same time, they highlight several directions in which the analysis can be extended
and refined.

A natural next step is to replace the simplified 1D posterior analysis with a full MCMC
inference, where all cosmological and astrophysical parameters are jointly varied and
marginalized over. This would enable a complete assessment of parameter degeneracies
and biases, and provide more realistic estimates of the constraining power of GW
catalogs. In particular, this approach is required to fully exploit the correlations between
cosmological parameters and population parameters, which were only partially captured
in the present framework.

Another promising prospect is to explore alternative event–selection criteria beyond the
SNR. The correlation analysis carried out in this thesis suggests that parameters such
as the number of galaxies within the localization volume, Ngal,vol, may provide a more
robust way to explore the actual informativeness of individual events. Selecting a small
set of “golden’’ events with very few potential hosts could yield constraints comparable
to much larger samples, while drastically reducing the computational cost. However,
this strategy would imply the need to evaluate the full posterior consistently and to
carefully account for selection effects and potential biases. A systematic investigation
of such criteria would complement SNR cuts and provide a clearer picture of how to
optimize GW datasets for cosmological inference.

A further natural extension will be the application of this framework to real data. The
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LVK Collaboration has recently released version 4.0 of the Gravitational-Wave Transient
Catalog (GWTC–4.0), containing more than an hundred of new significant GW events
from the first part of the O4 observing run (O4a, May 2023 – January 2024). This
dataset represents the most comprehensive sample of GW detections to date. It includes
several particularly interesting events, such as the most massive binary black hole merger
observed so far. Extending the present analysis to GWTC–4.0 will allow one to test the
robustness of the methodology on real detections, validate the impact of event–selection
strategies under realistic noise and catalog incompleteness, and understand how current
samples can already inform cosmological and astrophysical population studies.

Finally, while the present work focused on spectroscopic redshift uncertainties, motivated
by future large–scale surveys such as Wide-field Spectroscopic Telescope (WST) (Mainieri
et al. (2024)) which will be developed in parallel to future GW detectors, it will be
also important to assess the impact of photometric galaxy catalogs. In the near future,
photometric surveys are expected to play a major role thanks to their wide coverage
and depth, although the lower redshift precision compared to spectroscopic surveys may
limit their constraining power. Repeating the analysis with photometric errors would
provide valuable insight into how redshift precision affects cosmological and population
inference, and would help clarify the trade–offs between completeness and accuracy in
realistic survey scenarios.
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