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Introduction

In the field of mathematics, the development of its subjects or simply of its

theorems is rarely a linear process. Usually it requires the joint work of mul-

tiple people, which is often done in different places and especially in different

times, as the passage of the years greatly increases the possibility that a new,

and sometimes completely unrelated, branch of mathematics finds interest

in that specific topic. Furthermore, concepts that are originally created as

simple tools to be used in a proof can show themselves to have surprisingly

strong properties, which can then transform these tools into the foundations

of new branches and methods. This dissertation will show how this hap-

pens, as the following pages will describe two separate instances of successful

repurposing of what was initially treated as a stepping stone, necessary to

reach other results.

The first one, Stability Theory, greatly benefitted from the passage of time,

as the story of its foundation spans three decades, and is still benefitting

from it, as it is an active and diverse area of research.

The second one, the Regularity Lemma, was originally purposed by Endre

Szemerédi as part of the proof for his Regularity Theorem, but then got fur-

ther developed by the same author. The Lemma provides properties that are

valid for any class of simple graphs: the cost behind this generality is the

presence of some unavoidable caveats.

At the start of the last decade, Saharon Shelah, one of the main founders

of Stability Theory, managed to successfully apply his ideas to the ones of

Szemerédi in a joint paper with Maryanthe Malliaris, developing the Stable
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Introduction ii

Regularity Lemma, which tackles one of the main drawbacks of the original

Lemma by restricting it to graphs that live in the realm of stability.

The structure of the dissertation will be the following: there will be a brief

introduction to the main concepts of Stability Theory, along with some basic

theorems that lead to stability. Then there will be a second quick introduc-

tion, this time to the Szemerédi Regularity Lemma, along with its historical

background. The Lemma, while very powerful, has some unavoidable short-

comings, one of which is the presence of exceptional pairs; in order to avoid

the obstacle, it becomes useful to work with just stable graphs: this simple

restriction opens up a variety of different Stable Regularity Lemmas. The

one that will be described, along with the process required to reach it, will be

the most basic version, which requires only to work under stable graph theory.

The chapter about Stable Theory takes its notation mainly from the Lec-

ture Notes of Artem Chernikov (see [1]), while the Stable Regularity Lemma

is from a paper written by Maryanthe Malliaris and Saharon Shelah (see [2]

and [3]), with some additional notation and definitions from [4] and [5].
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Chapter 1

Model-Theoretic Stability

The concept of stability originally emerged as a tool that Saharon Shelah used

to extend the work of Micheal Morley (and previously of Robert Vaught and

Jerzy  Loś) on the number of possible models of a certain cardinality. More

precisely, if we let IT (κ) be the number of models of a theory T (up to

isomorphism) that have cardinality κ, Morley proved that if there is an un-

countable cardinal κ and a theory T for which IT (κ) = 1, then IT (λ) = 1

for any other uncountable cardinal λ. In addition, Morley conjectured that

IT (κ) is non-decreasing on uncountable cardinals for any countable theory T .

Shelah, thanks to the studies that he did in order to prove Morley’s conjec-

ture, managed to show that first-order theories can be separated according

to some “dividing lines”: if a theory does not follow the rules dictated by

said lines, it can have as many models as possible, but if a theory follows

them, then the isomorphism type of its models can be described with some

invariants; for example, both sets and vector spaces have a single invariant,

which is their cardinality and dimension respectively.

One of the “dividing lines” identified by Shelah was stability, which with

the passage of time revealed itself to be widely applicable to larger contexts,

some of which are still an active area of research.
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1.1 Basic definitions of Model Theory 2

1.1 Basic definitions of Model Theory

The following notation will be the one used in the dissertation:

• M = ⟨M ;L⟩ is a first-order structure, where M is a set and L =

{R1, R2, . . . , f1, f2, . . .} is the signature of the structure; furthermore,

each Ri is a ni-ary relation for a certain ni ∈ ω (which means that

Ri ⊆ Mni), and each fj is a function fj : Mnj → M for a certain

nj ∈ ω; in particular, if nk = 0, then fk will be called a constant (and

the notation fk := ck will be used).

• A formula φ(y1, . . . , yn), where every yi is a free variable, will be any

boolean combination of well-defined concatenations of relations and

functions from L, and L will be the set of all formulas; formulas with

parameters will be written as φ(y, b), where y is a tuple of free variables

and b is a tuple of parameters from B ⊆M , and L(B) will be the set of

all formulas with parameters from B; a formula without free variables

is called a sentence.

• M |= φ(a), also written as a |= φ(y), will mean that a satisfies φ(y), or

equivalently that a is a solution of φ(y); for any set of formulas Φ(y),

the expression a |= Φ(y) will mean ∀(φ(y) ∈ Φ(y))(a |= φ(y)).

• A theory T is any consistent set of sentences in a language L, and T is

said to be complete when for every L-sentence, either it is in T or its

negation is in T ; Th(M) will be the theory of M, which is the set of

all sentences that are true in M.

In order to simplify reading and avoid excessive repetition, the following

writing conventions will be used:

• x and y, when used as dependent or independent variables (like in

φ(x)), are to be treated as tuples of variables.

• ∀(ψ(x))(φ(x)) will mean ∀x(ψ(x) → φ(x)), and ∀≥nx(φ(x)) will mean

that the length of the tuple x is at least n; the same is true for ∃.
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• If x is a tuple and M is the set of a model, then Mx will refer to the

tuples of length |x| (equivalently, Mx := M |x|).

• κ and λ will be cardinals, both finite or infinite.

Some theorems that will prove themselves useful are the following:

Theorem 1.1 (Compactness Theorem). For any language L and any set of

formulas Ψ in L, if every finite subset of Ψ is consistent, then Ψ is consistent.

Theorem 1.2 (Ramsey’s Theorem). For any k-coloring of subsets of N of

size n, there is some infinite subset I of N such that all subsets of I with n

elements have the same color.

There are many theorems that involve some variant of Ramsey’s Theorem;

in order to simplify this process, the arrow notation is introduced:

Definition 1.3 (Arrow notation, from [7]). The notation κ → (λ)nm will

mean the following: for any m-coloring of subsets of κ of size n, there is

some subset u of κ with order type λ such that every subset of u with n

elements has the same color.

Remark. Using the arrow notation it is possible to rewrite Ramsey’s The-

orem in a more compacty way: ∀(n, k ∈ ω)(ℵ0 → (ℵ0)
n
k).

Ramsey’s Theorem is used to prove this last Theorem:

Theorem 1.4 (Erdős-Makkai Theorem). Let F ⊆ P(B) be a collection of

subsets of B, with ω ≤ |B| < |F|, then there are two sequences {bi}i∈ω ⊆ B

and {Si}i∈ω ⊆ F such that one between ∀(i, j ∈ ω)(bi ∈ Sj ↔ j < i) and

∀(i, j ∈ ω)(bi ∈ Sj ↔ i < j) is true.

1.2 Saturation and the monster model

From now on, any theory will be complete. Before introducing stability, it

would be useful to work in a model large enough to let us assume that every
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other model (of the same theory) is embedded in it. Here is the process to

do it:

Definition 1.5. Let M and N be two structures of the same language L:

• M and N are elementarly equivalent, also written as M ≡ N , if

Th(M) = Th(N ).

• A partial map f : M → N is elementary if for all a ∈ Dom(f) and for

all φ ∈ L it is true that (M |= φ(a) ↔ N |= φ(f(a)).

• M is an elementary substructure of N , also written as M ≼ N , if the

embedding map ι : M ↪→ N is elementary.

Definition 1.6 (Partial type). Let Φ(x) = {φ(x)} be a collection of formulas

with parameters from a certain set A in a model M; then Φ(x) is called a

partial type over A if each one of its finite subcollections has a common

solution in M.

The concept of type will be described with higher precision in the following

pages.

Definition 1.7 (Saturation and homogeneity). Given an infinite cardinal κ

and a model M:

• M is κ-saturated if for any set of parameters A in M with |A| < κ,

every partial type Φ(x) over A with |x| < κ can be realized in M.

• M is saturated if it is |M|-saturated.

• M is κ-homogenous if any partial elementary map from M to itself

with domain of cardinality smaller than κ can be extended to an auto-

morphism of M.

Through the compactness theorem, it can be proved that for any theory

T and infinite cardinal κ there is at least a κ-saturated and κ-homogenous

model over T . On the other hand, the existence of saturated models is not

guaranteed and heavily depends on the specifics of the set-theoretic assump-
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tions.

Consider the following commutative diagram of elementary embeddings:

M N

O

In the diagram, M, N and O are models of the same complete L-theory

T . Thanks to the completeness of the theory, the diagram can be realized

in a single model of the same theory, where the embeddings are treated

as inclusions between elementary submodels. In order to apply this line of

reasoning to every embedding, the following definition is given:

Definition 1.8 (Monster model). The monster model M is a model that

satisfies the previously discussed purpose and is κ(M)-saturated and κ(M)-

homogenous for a sufficiently large cardinal κ(M). A cardinal λ will be called

small if λ < κ(M). For any φ(x) ∈ L(M) and a ∈ M, the expression |= φ(a)

will be used to denote M |= φ(a). For any pair of sets of formulas Φ(x) and

Ψ(x), the expression Φ(x) ⊢ Ψ(x) will mean ∀(a ∈ M)(|= Φ(a) →|= Ψ(a)).

An immediate consequence of the definition is that every model of size at

most κ(M) embeds elementarily into M. From now, unless differently stated,

expressions like “a model” or “a set of parameters” will mean “an elementary

submodel of M” and “a set of parameters in M”.

1.3 Stability

Definition 1.9 (Order property and stability). Given M |= T and k ∈ ω:

• A formula φ(x, y) has the k-order property if, for i < k, there are some

ai ∈Mx and bi ∈My for which it is true that M |= φ(ai, bj) ↔ i < j.

• A formula φ(x, y) has the order property if it has the k-order property

for every k ∈ ω.

• A formula φ(x, y) is stable if it does not have the order property (equiv-
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alently, there exists at least one k ∈ ω for which the formula does not

have the k-order property).

• A theory is stable if it implies the stability of all formulas.

When talking about stability, it is useful to take into consideration types, a

mathematical object that categorizes formulas. While the concept of partial

type has already been given (1.6), there is a high variety of types, each with

its own specific definition; the ones that will be used in this dissertation are

the following two:

Definition 1.10 (Complete type). Φ(x) is a complete type over A if it is a

partial type that contains either φ(x) or ¬φ(x), for every φ(x) ∈ L(A). For

b ∈ M, the complete type of b over A is defined as tp(b/A) = {φ(x) ∈ L(A) :

b |= φ(x)}.

Definition 1.11 (Complete φ-type). If φ(x, y) is a formula and A ⊆My is a

set of parameters, then a complete φ-type over A is a maximal and consistent

collection of formulas in the form φ(x, b) and ¬φ(x, b), with b ranging over

A. The space of all complete φ-types over A will be called Sφ(A).

An analogous definition to the one of complete φ-types holds for complete

∆-types, where ∆ is a set of formulas, in which the same properties have to

hold for all formulas in ∆.

In addition to types, in model theory there is a vast array of ranks that are

used to obtain orderings from which it is possible to deduce properties, and

types are not exempt from this process:

Definition 1.12 (Shelah’s local 2-rank). Let ∆ be a set of L-formulas and

θ(x) a partial type over M. The Shelah’s local 2-rank R∆(θ(x)) is inductively

defined on n ∈ ω using the following rules:

• If θ(x) is inconsistent, R∆(θ(x)) = −1.

• If θ(x) is consistent, R∆(θ(x)) ≥ 0.

• If there are φ(x, y) ∈ ∆ and a ∈ My such that R∆(θ(x) ∧ φ(x, a)) ≥ n
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and R∆(θ(x) ∧ ¬φ(x, a)) ≥ n are both true, then R∆(θ(x)) ≥ n+ 1.

• If R∆(θ(x)) ≥ n and R∆(θ(x)) ̸≥ n+ 1, then R∆(θ(x)) = n.

• If R∆(θ(x)) ≥ n for all n ∈ ω, then R∆(θ(x)) = ∞.

Shelah’s local 2-rank can be generalized to the following rank:

Definition 1.13. For any type p, any set of formulas ∆ and finite cardinal

λ, the rank R(p,∆, λ) is inductively defined:

• If p is inconsistent, R(p,∆, λ) = −1.

• If p is consistent, R(p,∆, λ) ≥ 0.

• If δ is a limit ordinal and R(p,∆, λ) ≥ α for all α < δ, then

R(p,∆, λ) ≥ δ.

• If for all µ < λ and finite q ⊆ p there is a sequence of ∆-types {qi}i≤µ

such that for each i ̸= j there is at least a formula φ such that φ ∈ qi and

¬φ ∈ qj, and R(q∪ qi,∆, λ) ≥ α for all i ≤ µ, then R(p,∆, λ) ≥ α+ 1.

• If R(p,∆, λ) ≥ α and R(p,∆, λ) ̸≥ α + 1, then R(p,∆, λ) = α.

• If R(p,∆, λ) ≥ α for all α, then R(p,∆, λ) = ∞.

Remark. If R∆(p) ∈ ω, then R(p,∆, 2) = R∆(p).

Shelah’s local 2-rank represents a tool to quickly obtain a necessary and

sufficient condition for the stability of a formula. Before showing it, a theorem

about linear orders is needed:

Theorem 1.14. Let I be a linear order and φ(x, y) an unstable formula in a

(necessairly unstable) theory T , then there is a model M |= T and a sequence

{(ai, bi)}i∈I in M such that ∀(i, j ∈ I)(M |= φ(ai, bj) ↔ i < j).

Theorem 1.15. For any formula φ(x, y) the following are equivalent:

1. φ(x, y) is stable.
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2. Rφ(x = x) < ω, where x = (xi)i∈I is a tuple of variables, x = x means

(x1 = x1 ∧ . . . ∧ xi = xi ∧ . . .)i∈I and Rφ stands for R{φ}. Notice that

Rφ(x = x) < ω implies that Rφ(θ(x)) < ω for any partial type θ(x).

Idea of proof. [2 ⇒ 1] : assume that φ(x, y) is unstable, then it has the k-

order property for each k ∈ ω. Thanks to 1.14, there is a (ai, bi)i∈[0,1] such that

|= φ(ai, bj) ↔ i < j: this implies that both φ(x, b 1
2
) and ¬φ(x, b 1

2
) contain

dense subsequences of ai, thanks to which it is possible to increase Rφ(x = x).

This process can be reiterated, from which the absurd Rφ(x = x) = ∞ is

reached.

[1 ⇒ 2] : assume that Rφ(x = x) = ∞, then it is possible to build an

infinite tree of parameters B such that every infinite branch maintains the

consistency of the set of formulas necessary for the increasing of the rank:

this leads to |Sφ(B)| > |B|. This makes φ(x, y) unstable as it is possible to

obtain (through the Erdős-Makkai Theorem) the two infinite sequences of

parameters necessary to satisfy the requirements for instability.

As a last proof for this chapter, here is a necessary and sufficient condition

for the stability of a theory:

Theorem 1.16. For any complete theory T the following are equivalent:

1. T is stable.

2. There is no formula φ(z1, z2) ∈ L(M) and sequence {ci}i∈ω of tuples in

M such that (|= φ(ci, cj) ↔ i < j).

Proof. [1 ⇒ 2] Let φ(z1, z2) ∈ L(M) be a formula for which there is a se-

quence {ci}i∈ω of tuples in M such that (|= φ(ci, cj) ↔ i < j); then φ(z1, z2)

has the order property because {ci}i∈ω satisfies the definition.

[2 ⇒ 1] Assume T unstable, then there is a formula φ(z1, z2) ∈ L(M)

that has the order property, which means that there is at least a sequence

(ai, bj) that satisfies the k-order property definition for each k ∈ ω. Now let



1.3 Stability 9

ψ(x1y1, x2y2) := φ(x1, y2), then, if ci := aibi, the condition (|= ψ(ci, cj) ↔
i < j) is verified.

Finally, the following are two properties strictly related to stability, which

will be extensively used in the second chapter:

Definition 1.17 (Indiscernibility). Let I be a linear order, A a set of param-

eters (omitted if A = M) and {ai}i∈I a sequence of tuples, then that sequence

is said to be indiscernible over A if for all n ∈ ω and for all i0 < . . . < in and

j0 < . . . < jn from I, it is true that |= φ(ai0 , . . . , ain) ↔|= ψ(aj0 , . . . , ajn) for

all formulas φ, ψ ∈ L(A). It is possible to take in consideration just the for-

mulas from a specific set ∆: in this case we will talk about ∆-indiscernibility.

Additionaly, the sequence is totally indiscernible if it is indiscernible indipen-

dently from the order of the indices.

Definition 1.18 (Independence). A formula φ(x, y) has the independence

property if there are two infinite sequences {bi}i∈ω and {as}s⊆ω such that

(|= φ(as, bi) ↔ i ∈ s). A theory has the independence property if some of its

formulas have it, otherwise it has the dependence property.

Both indiscernibility and independence quickly lead to stability or instability:

Theorem 1.19. A theory is stable if and only if it makes totally indiscernible

every indiscernible sequence.

Theorem 1.20 (Shelah). If a theory is independent, then it is unstable.

The reverse implication of the last theorem is not generally true, as there is

a second property, called the strict order property, which also implies insta-

bility. However, every unstable theory has either the independence property

or the strict order property.



Chapter 2

The Szemerédi Regularity

Lemma on Stable Graphs

As said in the introduction of the previous chapter, model-theoretic stability

can be used in combination with ideas from others fields of mathematics in

order to obtain new properties: one such field is Graph Theory.

The following pages will show how the restriction to stability related proper-

ties improves the result of what is known as the Szemerédi Regularity Lemma.

The story behind the Lemma is surprisingly similar to the one behind sta-

bility: originally used to prove a theorem about arithmetic progression, with

the passage of time it showed itself to be applicable to other fields, such as

algorithmic approximations (see [11] for an example), thanks to the works

of many important mathematicians such as Timothy Gowers, János Komlós

and Terence Tao.

10
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2.1 Basic definitions of Graph Theory

The concept of graph can be defined in various similar ways. In this disser-

tation we will follow the model-theoretic definition:

Definition 2.1 (Graph). A graph is a structure G = ⟨G;L⟩ whose signature

L = {=, RG} contains the equality relation and an irreflexive, symmetric

binary relation RG, which represents the property of being connected by an

edge (aRGb means that a and b are connected by an edge). The elements of G

are called vertices or nodes, and the cardinality of a graph, written as |G| or
more often as |G|, is defined as being the cardinality of the set of its vertices.

Usually, instead of G = ⟨G; {=, RG}⟩, the less convoluted notation G =

⟨G;RG⟩ will be used, with R := RG if it is clear from context.

A graph is called complete if ∀(x, y ∈ G)(x ̸= y → xRGy) (i.e.: each distinct

pair of vertices is connected by an edge) and empty if ∀(x, y ∈ G)(¬(xRGy))

(i.e.: the graph is edgeless). A graph is called bipartite if the set of its nodes

can be split into two sets such that no nodes in the same set are connected.

If A ⊆ G, the notation G(A) will refer to the restriction of the graph to the

nodes from A. Additionally, if A,B ⊆ G are such that A ∩B = ∅, then the

notation G(A,B) will refer to the bipartite subgraph with node set A ∪ B

and edges obtained through the rule that two nodes can be connected if and

only if they are connected in G and aren’t both in A or in B.

Definition 2.2 (Density). Let G be a graph and G the set of its verices,

then for all X, Y ⊆ G, the expression e(X, Y ) denotes the number of edges

between X and Y . If X ∩ Y = ∅ and both X and Y are nonempty, then the

following density is defined: d(X, Y ) = e(X,Y )
|X|·|Y | .

It is clear that d(X, Y ) ∈ [0, 1], with d(X, Y ) = 0 if and only if the bipartite

subgraph G(X, Y ) is empty and d(X, Y ) = 1 if and only if G(X, Y ) has the

highest possible amount of edges; also, if G is complete, then d(X, Y ) =

1, with the converse not being true, as the only edges that are taken in

consideration are the ones between X and Y .
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Example. Consider the graph G = ⟨G;R⟩, with G = X ∪ Y , where X =

{x1, x2, x3} and Y = {y1, y2, y3, y4}; let R be defined according to the follow-

ing picture:

x2

x3

x1

y4

y1

y3

y2

Because X, Y are disjoint, the graph G(X, Y ) exists:

x1 x2 x3

y1 y2 y3 y4

Furthermore, it is possible to evaluate the density:

d(X, Y ) =
e(X, Y )

|X| · |Y |
=

5

3 · 4
=

5

12

2.2 The Szemerédi Regularity Lemma

The following theorem is the reason behind the development of the Szemerédi

Regularity Lemma:

Theorem 2.3 (Szemerédi Regularity Theorem). Let A ⊆ N and

D∗(A) := lim sup
N→+∞

|A ∩ {1, . . . , N}|
N

;

if D∗(A) > 0, then for any integer k ≥ 3 it is possible to find an arithmetic

progression of length k located entirely in A.

The proof of this theorem is quite complex and makes use of a diverse set of

mathematical tools, one of which is graph theory, in particular the branch

about bipartite graphs. To be more precise, using Szemerédi’s words, “any
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large bipartite graph can be decomposed into nearly regular bipartite sub-

graphs” (directly from [10]). To better understand the meaning behind this,

it is necessary to introduce ε-regularity:

Definition 2.4 (ε-regularity). Given ε > 0, a graph G and A,B ⊆ G dis-

joint, then the pair (A,B) is said to be ε-regular if, for all X ⊆ A and Y ⊆ B

such that |X| > ε|A| and |Y | > ε|B|, it is true that |d(X, Y ) − d(A,B)| < ε.

The following is one of the many equivalent ways to write the Szemerédi

Regularity Lemma, more precisely the version published by Szemerédi in

1978, which is stronger than the one that he used to prove 2.3:

Theorem 2.5 (Szemerédi Regularity Lemma). For every ε ∈ [0, 1] and m ∈
ω, there are N = N(ε,m) and M = M(ε,m) such that for any finite graph

G of size |G| ≥ N , there exists a k ∈ ω and a partition G1 ∪ . . . ∪ Gk = G

that satisfies the following:

• m ≤ k ≤M .

• ||Gi| − |Gj|| ≤ 1 for all i, j ≤ k.

• All but at most ⌊εk2⌋ of the pairs (Gi, Gj) are ε-regular.

Remark. The base form of the Szemerédi Regularity Lemma has some lim-

itations, the main two being:

• The size of the partition is very large (proved in [8]), with the lower

bound being a tower of 2s with height proportional to log(ε−1) and the

upper bound being a tower of 2s with height proportional to ε−5.

• The condition of ε-regularity is not universal, as there can be up to

⌊εk2⌋ pairs that do not have it: these are called irregular pairs.

The presence of irregular pairs is necessary if we want to cover every possible

graph: an example of graph that needs them is the n-half-graph, defined as

Hn := ⟨{a1, . . . , an} ∪ {b1, . . . , bn}︸ ︷︷ ︸
H=Hn

; {(ai, bj), (bj, ai) : i ≤ j}︸ ︷︷ ︸
R=RH

⟩.
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In other words, a n-half-graph is a graph whose nodes can be partitioned

into two (numbered) empty subgraphs of equal size, both of which can be

represented as a sequence in such a way that a node from the first partition

set is connected to a node from the second partition set if and only if the

index of the first node is lesser or equal than the index of the second node.

Example. The following is the visualization of H3:

a1 a2 a3

b1 b2 b3

In order to avoid these obstacles, it becomes useful to develop more specific

variants of the Lemma, trading the generality of the original one for stronger

properties.

2.3 Stable Graphs

From now on, ζ = ζ(x, y) will be used to refer to the formula xRy, with R

being the edge relation of the graph that is being taken into consideration.

In order to apply Stability Theory to graphs, the following definition is in-

troduced:

Definition 2.6 (Non-k-order property). Let G be a graph and R = RG the

binary relation that defines the edges. The graph has the non-k-order property

if, for each i < k, there is no pair ai, bi ∈ G that satisfies ((i < j < k) →
((aiRbj) ∧ ¬(ajRbi))). If such configuration exists, then the graph is said to

have the k-order property.

An immediate consequence of this definition is that if a graph G has the

k-order property for all k, then ζ has the order property, making ζ unstable.

Also, notice how, for each n, ζ has the (n+1)-order property in the half-graph

Hn: this means that the theory of half-graph is unstable. This is the main
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reason behind the choice to work in stable conditions, as that eliminates half-

graphs, which are one of the major classes of graphs that make exceptional

pairs unavoidable in the Szemerédi Regularity Lemma.

From this point onwards, unless differently stated, we will consider G as

being a graph with edge relation R and the non-k∗-order property, for a

certain k∗ ∈ ω, which means that it makes ζ stable.

Definition 2.7. ∆k = {x0Rx1} ∪ {φi
k,m : m ≤ k ∧ i ∈ {1, 2}}, where:

φ1
k,m = φ1

k,m(x0, . . . , xk−1) = ∃y

(∧
ℓ<m

(xℓRy)

)

φ2
k,m = φ2

k,m(x0, . . . , xk−1) = ∃y

( ∧
m≤ℓ<k

(xℓRy)

)

Example. ∆2 = {x0Rx1, φ1
2,0, φ

1
2,1, φ

1
2,2, φ

2
2,0, φ

2
2,1, φ

2
2,2}, with:

φ1
2,0 = ∃y φ2

2,0 = ∃y(x0Ry ∧ x1Ry ∧ x2Ry)

φ1
2,1 = ∃y(x0Ry) φ2

2,1 = ∃y(x1Ry ∧ x2Ry)

φ1
2,2 = ∃y(x0Ry ∧ x1Ry) φ2

2,2 = ∃y(x2Ry)

∆k will be the set over which the indiscernibility property will be required.

The following is a sufficient condition for the k-order property that will show

itself to be very useful for building proofs by contradiction:

Theorem 2.8. Let H be a finite graph and A = ⟨ai : i < α⟩ be a ∆k-

indiscernible sequence in H, with α > 2k. If there is a vertex b ∈ H and a

sequence of indices i0 < . . . < i2k−1 < α for which it is true that bRHaiℓ for

all 0 ≤ ℓ ≤ k − 1 and ¬bRHaiℓ for all k ≤ ℓ < 2k, then H has the k-order

property.

Proof. For all m ∈ {0, . . . , k − 1}, let c = (cj)0≤j≤k−1, with cj = am+i;

then the existence of b guarantees the truth in H of φ1
k,m(c). This holds for

every increasing subsequence of k elements from A, from which the k-order

property is obtained.
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Theorem 2.9. Let ⟨ai : i < m⟩ be a ∆k∗-indiscernible sequence in a graph

G with m ≥ 4k∗; for b ∈ G, let X = {i : aiRb} and Y = {i : ¬(aiRb)}, then
one between X and Y has cardinality less than 2k∗.

Proof. By contradiction, suppose |X|, |Y | ≥ 2k∗. By defining i1 to be the kth∗

element of X and i2 to be the kth∗ element of Y , three options are possible:

1. i1 = i2, which is impossible given the definitions of X and Y .

2. i1 < i2, which is impossible because, from the hypothesis, there would

be a subsequence aj1 < . . . < aj2k∗ ≤ am that satisfies both {j1 < . . . <

jk∗ = i1} ⊆ X and {i2 = jk∗+1 < . . . < j2k∗} ⊆ Y . This would satisfy

2.8, making G have the k∗-order property, which is absurd.

3. i1 > i2, which is impossible through the same reasoning of the previous

option, obtained by replacing R with ¬R.

Thus the pair (i1, i2) cannot exist.

The theorem roughly states that each ∆k∗-indiscernible sequence with at

least 4k∗ elements can be split into two sets, defined according to X and Y ,

of which one is “small” (has cardinality less than 2k∗) and the other one is

“large” (has cardinality more than 2k∗).

Theorem 2.10. Let A = {ai}i<s1 and B = {bj}j<s2 be ∆k∗-indiscernible

sequences, with s1 ≥ 2k∗ and s2 ≥ (2k∗)
2. By defining:

U = {i < s1 : ∃≥2k∗(j < s2)(ajRbi)}

then either |U | ≤ 2k∗ or |U | ≥ s1 − 2k∗.

Proof. Suppose 2k∗ < |U | < s1−2k∗. By defining i1, i2 to be the kth∗ element

of U and the kth∗ element of V := {0, . . . , s1−1}\U respectively, three options

are possible:

1. i1 = i2, which is impossible given the definitions of i1 and i2.
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2. i1 < i2; in this case there are {j0 < . . . < jk∗−1} from U and {jk∗ <
. . . < j2k∗−1} from V such that jk∗−1 ≤ i1 < i2 ≤ jk∗ and j2k∗−1 < s1.

Because s2 > 4k2∗ ≥ 4k∗, thanks to 2.9 it can be said that, for each ajℓ ,

with ℓ < 2k∗, the set B can be partitioned into two sets, one larger

than the other. Let:

Wℓ = {i < s2 : ajℓRbi ↔ ((∃≥2k∗i < s2)(¬ajℓRbi))}

be the smaller set, which has in fact cardinality |Wℓ| < 2k∗. By defining

Z to be the union of all the Wℓ, the following holds:

|Z| =

∣∣∣∣∣ ⋃
ℓ<2k∗

Wℓ

∣∣∣∣∣ ≤ (2k∗)
2 < |B|

Let now n ∈ {0, . . . , s2− 1} \Z, then it is true that (0 ≤ ℓ ≤ k∗− 1) →
(bnRaℓ) and (k∗ ≤ ℓ < 2k∗) → (¬bnRaℓ). But then 2.8 would imply

that G has the k∗-order property, which is absurd.

3. i1 > i2, which is impossible through the same reasoning of the previous

option, obtained by replacing R with ¬R.

Thus the pair (i1, i2) cannot exist.

Definition 2.11 (From [6]). Given a set of formulas Γ and n1, n2 finite

ordinals, the expression n1 → (n2)Γ has the following meaning: for any

{ai}i<n1 sequence of elements of G, there is a Γ-indiscernible subsequence

{aij}j<n2 ⊆ {ai}i<n1 that is not constant.

The definition can be expanded to include any cardinal n1 and any ordinal

n2, as well as any theory T and any tuple length ℓ(ai) (in our case, T = Th(G)

and ℓ(ai) = 1).

Theorem 2.12. Using the notation introduced in 1.3:(
n1 → (n2)

k∗

2|∆k∗ |

)
⇒
(
n1 → (n2)∆k∗

)
Proof. Remember that n1 → (n2)

k∗

2|∆k∗ | means that for any 2|∆k∗ |-coloring of

subsets of n1 of size k∗, there is some subset u of n1 with order type n2 such



2.3 Stable Graphs 18

that every subset of u with k∗ elements has the same color; the aim is to

show that every sequence {ai}i<n1 ⊆ G has a nonconstant ∆k∗-indiscernible

subsequence {aij}j<n1 . Consider all the possible increasing subsequences of

n1 that have k∗ elements, and color them in such a way that two subsequences

{i1, . . . , ik∗} and {j1, . . . , jk∗} have the same color if and only if the property

(G |= γ(ai1 , . . . , aik∗ ) ↔ G |= γ(aj1 , . . . , ajk∗ )) holds for the same subset of

formulas from ∆k∗ ; notice that there are exactly 2|∆k∗ | possible colorings.

u ⊆ n1, with u being the one described at the start of the proof, will be the

set of (less than n2+1) indices from which the ∆k∗-indiscernible subsequence

can be obtained.

Definition 2.13 (Tree Order). Remember that the natural partial order on
ω>ω (which is the set of all the tuples of natural numbers which have finite

length) is given by ν ≤ ρ ↔ ν is an initial segment of ρ (for example,

(3, 7, 2) ≤ (3, 7, 2, 8), but (3, 7, 2) ̸≤ (3, 7, 5, 8)). Given a finite set of vertices

S, a tree order on S is a partial order which is order-isomorphic to some

downward closed subset of ω>ω under the natural partial order.

Theorem 2.14. Let ∆ be a set of formulas closed under variable cycling

and k ∈ ω such that each formula in ∆ has at most k free variables. If there

is a k2 ∈ ω for which every formula φ(x1, . . . , xk−1) ∈ ∆ is such that ev-

ery partition of its free variables in the form {{x0, . . . , xℓ}, {xℓ+1, . . . , xk−1}}
makes φ(x1, . . . , xℓ;xℓ+1, . . . , xk−1) have the non-k2-order property, then the

following are true:

1. There is a r ∈ ω such that for every A subset of G with at least 2

elements, |S∆(A)| ≤ |A|r.

2. For each A = {ai}i<n ⊆ G there is a u ⊆ n such that {ai}i∈u is ∆-

indiscernible and |u| ≥ fk(n), with f(x) =
∣∣∣x
t

∣∣∣ 1
tr+t+1 − k, with r, t, k =

r(∆), t(∆), k(∆) constants; in particular, r is the constant from the

previous statement, t is the R-rank of ∆ and k is the one from the

hypothesis.
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3. n1 → (n2)∆k∗
for any n1 > (cn2)

(2tr)k∗ , with c = c(∆k∗) constant and

r, t computed for ∆k∗.

Idea of proof. The more combinatorial passages of the proofs will be highly

summarized, with major attention being given to the model-theoretic parts:

1. Thanks to [9](4.10(4)), we know that if for every n ∈ ω there is a

finite set A with |A| ≥ 2 such that |Sm
φ (A)| ≥ |A|n, then φ(x, y) has

the independence property. By remembering 1.20, we get that φ(x, y)

must be dependent, because its independence would imply instability.

The negation of the previous implications gives us the first thesis.

2. Suppose that every φ ∈ ∆ has exactly k free variables x0, . . . , xk−1 (this

is done by adding dummy variables if necessary). It will be proven by

induction on m ≤ k that there is an um ⊆ n such that:

• |um+1| ≥ f(n) for f(x) =
∣∣∣x
t

∣∣∣ 1
tr+t+1 − k with a specific r and t

• for every φ ∈ ∆, i0 < . . . < ik−1 and j0 < . . . < jk−1, both from

um, if (ℓ < k − m → iℓ = jℓ) for each ℓ, then it is true that

φ(ai0 , . . . , aik−1
) = φ(aj0 , . . . , ajk−1

)

The base case m = 0 is trivially verified by u0 = n.

For the inductive case, let um be given, and define ℓm = |um| and

∆m = {φ(x0, . . . , x1, aℓm−m, . . . , aℓm−1)}φ∈∆.

Let Wℓ ⊆ um \
⋃
j<ℓ

Wj be a set and <ℓ a tree order (2.13) on the set

W≤ℓ :=
⋃
j≤ℓ

Wj, both inductively defined for ℓ < ℓm such that:

• i <ℓ j → aj, ai realize the same ∆-type over the sequence {ak}k<ℓi

• i ̸<ℓ j ̸<ℓ i→ aj, ai realize two different ∆-types over the sequence

{ak}k<ℓi ∩ {ak}k<ℓj

A type tree is defined as W∗ = (um, <∗), where <∗=
⋃
ℓ

<ℓ and W∗

satisfies the properties described above.
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It can be proved that any maximal subset linearly ordered by <∗ (equiv-

alently, any branch through a type tree) satisfies the inductive hypoth-

esis on indiscernibility.

The next step is to find a lower bound on the length of any branch:

this is done by assuming that a type tree with |um| nodes is maximally

branching, and then finding a certain height h that bounds said tree.

Let t = R(x = x,∆, 2) be the stability rank from 1.13: as a consequence

of its definition, it is impossible to embed t+12 in W∗. For each s ≤ t,

let Ss = {i ∈ W∗ : s2 is embeddable in the tree above i, but not s+12}.

Notice that ((i1 ∈ S1 ∧ i2 ∈ S2 ∧ i1 ≤∗ i2) → s1 ≥ s2) is true and that

{Ss}s≤t is a partition of W∗: thanks to these properties, it is possible

to assign a distinct value from 0 to t to any node in W∗: let it be called

the ∗-rank of the node.

Thanks to conclusion (1) of the theorem, each node in the type tree

found at height h has at most (h + m)r immediate successors, where

m is the inductive value and r is the constant obtained from conclu-

sion (1). In order to have the shortest tree possible there must be

maximal branching. By assuming maximal branching and through

a series of combinatorial passages, the number of nodes in a tree of

height h reveals itself to be bounded by t(h + m)tr+t+1, and if h is

such that t(h + m)tr+t+1 ≤ |um|, then no type tree of height h can

exhaust the nodes of um. By solving for h, the last condition becomes

h <
∣∣∣um
t

∣∣∣ 1
tr+t+1 − m; in order to generalize, let f(x) =

∣∣∣x
t

∣∣∣ 1
tr+t+1 − k:

this way, h < f(|um|) is verified, concluding the inductive step.

Finally, u is obtained by defining u := uk.

3. Let g(x) = x
1

2tr ; by assuming r ≥ 2, eventually fk(x) ≥ gk(x): this is

a simpler (but less accurate) bound that, combined with the specific

definition of ∆k∗ , permits some final combinatorial steps, which lead

directly to the last thesis.
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Clause 3 of 2.14 will be useful to quickly obtain n1 → (n2)∆k∗
in a future

proof; this could also be done using Ramsey’s theorem, but it would not

explicitly convey any information about the size of the numbers, which is

one of the aspects that should always be tracked in Graph Theory.

Before the next theorem, one of the most important ones of the chapter, it

is useful to introduce the notation of the truth value:

Definition 2.15 (Truth value). A truth value, written t, is an element of

{0, 1}, where 0 is identified as false and 1 as true. In this dissertation,

t = t(X, Y ), where X, Y ⊆ G. Furtermore, the expression xRy ≡ t will

mean xRy ↔ t = 1.

2.4 The Stable Regularity Lemma

Theorem 2.16. Let G be a finite graph with the non-k∗-order property, A ⊆
G such that |A| = n and n1, n2 such that n > n1n2 and n2 > (2k∗)

2 and

n1 → (n2)∆k∗
, then there are A,m1,m2 that satify the following:

1. A = ⟨Ai : i < m1⟩ is a partition of A.

2. n = n2m1 +m2 and m2 < n1 ≤ m1.

3. For all i, |Ai| ∈ {n2, n2 + 1}.

4. With the possible omission of an element, each Ai is either a complete

or an empty graph.

5. For every i ̸= j < m1, with the possible omission of an element of Ai

and Aj respecively, there is a truth value t(AiAj) ∈ {0, 1} that satisfies

aRb ≡ t(Ai, Aj) for all but at most 2k∗ elements a ∈ Ai and for all but

at most 2k∗ elements b ∈ Aj.

Proof. Let m1 be such that n2m1 ≤ n ≤ n2m1+n1, from which m1 ≥ n1, and

let <∗ be a generic linear order on A; by using the hypothesis n1 → (n2)∆k∗
,

let {A′
ℓ}ℓ<m1 be a collection of disjoint subsets of A, each one of size n2, such
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that, for each ℓ, the sequence {aℓ,i}i<n2 , listed following the increasing order

obtained from <∗, is ∆k∗-indiscernible. Claim (4) is then obtained thanks

to the fact that {xRy} ⊂ ∆k∗ and R is symmetric. Let Λ be the union of

all the A′
ℓ, from which |Λ| = n2m1 ≤ n = |A|; let A \ Λ = {a∗i }i<m2 be

the list of the elements of A which are not found in any A′
ℓ. Remembering

that m2 < m1, for each ℓ < m1 let Aℓ = A′
ℓ ∪ {a∗ℓ} if a∗ℓ is well-defined, and

Aℓ = A′
ℓ otherwise. This proves all but the last point of the theorem.

For the final passage, it may be necessary to remove the points that have

been added in the previous passage; after doing that, 2.8 can be applied to

any pair (Ai, Aj), which states that either all but at most 2k∗ points of Ai are

connected to all but at most 2k∗ points of Aj or all but at most 2k∗ points

of Ai are not connected to all but at most 2k∗ points of Aj, from which it is

possible to obtain the desired truth value t(Ai, Aj).

Proofs 2.14 and 2.16 quickly lead to the following regularity lemma for stable

graphs:

Theorem 2.17. Let k∗, n2 ∈ ω such that n2 > (2k∗)
2, then there is a N =

N(n2, k∗) such that any finite graph G with |G| > N and with the non-k∗-

order property (and thus stable) admits a partition G = ⟨Gi⟩ that satisfies

the following:

1. |Gi| ∈ {n2, n2 + 1} for all Gi ∈ G.

2. With the possible omission of an element, every Gi is either a complete

or empty graph.

3. For any pair Gi, Gj ∈ G, with the possible omission of an element for

each, there is a truth value t(Gi, Gj) ∈ {0, 1} such that aRb ≡ t(Gi, Gj)

for all but at most 2k∗ elements a ∈ Gi and for all but at most 2k∗

elements b ∈ Gj.

Proof. Any graph G from the hypothesis will satisfy the conditions needed for

applying 2.16 with A = G as long as both the inequality chain |G| > n1n2 >
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n1(2k∗)
2 and n1 → (n2)∆k∗

hold for a certain n1; in order to do this, assuming

|G| > N ≥ n1n2, with n1 > (cn2)
(2tr)k∗ , where c, t, r are computed following

2.14 with the assumption that ∆ = ∆k∗ , is sufficient, because n1 → (n2)∆k∗

is obtained thanks to clause 3 of 2.14.

Remark. This theorem surpasses the general Szemerédi Regularity Lemma

in terms of regularity, mainly thanks to the last clause, which is stronger than

ε-regularity for the following reasons (all the notation used is from 2.16):

• It is valid for every possible pair, which means that there are no excep-

tional pairs.

• It is hereditary for any Ci ⊆ Ai, as long as |Ci| ≥ (2k∗)
2 (simply reapply

the theorem).

•
|{(a, b) ∈ Ai × Aj : (aRb) ≡ ¬ti,j}|

|Ai||Aj|
≤ (2k∗ + 1)2

|Ai||Aj|
<

16k3∗
|Ai||Aj|

≤

≤ 2k∗(|Ai| + |Aj|)
|Ai||Aj|

=
2k∗
|Ai|

+
2k∗
|Aj|

, which means that the density of the

nodes that do not follow the truth value described in the last clause is

small.

• For large enough |Ai| and |Aj|, it is true that ti,j = tj,i.

• It is possible to omit exceptional points by excluding at most m2 points

from the partition.
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2.5 Other Stable Regularity Lemmas

By modifying the restrictions imposed on the types of graphs that are taken

in consideration, the Regularity Lemma that emerges can highly vary. Re-

maining in the realm of stable graphs, two examples of other possible Stable

Regularity Lemmas are:

k-edge Stable Regularity Lemma

Definition 2.18 (k-edge stability). Let k ∈ ω; a graph G is said to be k-edge

stable if there are no pairs of separated subsets of vertices {a1, . . . , ak} and

{b1, . . . , bk} such that aiRbj ↔ i < j. In other words, the graph does not

contain subgraphs that are k-half-graphs.

Remark. The collection of k-edge stable graphs excludes more than just

bipartite half-graphs.

Theorem 2.19 (k-edge Stable Regularity Lemma). Let k ∈ ω and ε > 0,

then there is a N = N(k, ε) ∈ ω such that any sufficiently large k-edge stable

graph admits a partition {Ai}1≤i≤ℓ, with ℓ ≤ N , such that:

• ||Ai| − |Aj|| ≤ 1 for all i, j.

• all pairs (Ai, Aj) are ε-regular, with density either greater than 1 − ε

or lesser than ε.

• N <

(
4

ε

)2k+3−7

.

Stable Excellent Regularity Lemma

Definition 2.20 (ε-good). A set of nodes A ⊆ G is said to be ε-good if for

any b ∈ G one between |{a ∈ A : bRa}| < ε|A| and |{a ∈ A : ¬(bRa)}| < ε|A|
is true.

Definition 2.21 (ε-excellent). A set of nodes A ⊆ G is said to be ε-excellent

if for any ε-good B ⊆ G, one between |{a ∈ A : t(a,B) = 1}| < ε|A| and
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|{a ∈ A : t(a,B) = 0}| < ε|A| is true (where t(a,B) := t({a}, B)).

Theorem 2.22 (Stable Excellent Regularity Lemma). Let k ≥ 1 and ε > 0,

then there is a N = N(k, ε) such that any sufficiently large k-edge stable

graph admits a partition {Ai}1≤i≤ℓ, with ℓ ≤ N , such that:

• ||Ai| − |Aj|| ≤ 1 for all i, j.

• Every Ai is ε-excellent.

• For each pair (Ai, Aj) there is a truth value t = t(Ai, Aj) such that

aRb ≡ t for all but at most ⌊ε|Ai|⌋ nodes a ∈ Ai and all but at most

⌊ε|Aj|⌋ nodes b ∈ Aj.
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