ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Scuola di Scienze

Corso di Laurea in Matematica

Model-Theoretic Stability

and its application to the
Szemerédi Regularity Lemma

Tesi di Laurea in Logica Matematica

Relatore: Presentata da:
Chiar.mo Prof. Alessandro Chiaradia
Martino Lupini

Anno Accademico 2024/2025



A te, Luca, mia fonte di determinazione



Introduction

In the field of mathematics, the development of its subjects or simply of its
theorems is rarely a linear process. Usually it requires the joint work of mul-
tiple people, which is often done in different places and especially in different
times, as the passage of the years greatly increases the possibility that a new,
and sometimes completely unrelated, branch of mathematics finds interest
in that specific topic. Furthermore, concepts that are originally created as
simple tools to be used in a proof can show themselves to have surprisingly
strong properties, which can then transform these tools into the foundations
of new branches and methods. This dissertation will show how this hap-
pens, as the following pages will describe two separate instances of successful
repurposing of what was initially treated as a stepping stone, necessary to
reach other results.

The first one, Stability Theory, greatly benefitted from the passage of time,
as the story of its foundation spans three decades, and is still benefitting
from it, as it is an active and diverse area of research.

The second one, the Regularity Lemma, was originally purposed by Endre
Szemerédi as part of the proof for his Regularity Theorem, but then got fur-
ther developed by the same author. The Lemma provides properties that are
valid for any class of simple graphs: the cost behind this generality is the
presence of some unavoidable caveats.

At the start of the last decade, Saharon Shelah, one of the main founders
of Stability Theory, managed to successfully apply his ideas to the ones of
Szemerédi in a joint paper with Maryanthe Malliaris, developing the Stable
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Regularity Lemma, which tackles one of the main drawbacks of the original

Lemma by restricting it to graphs that live in the realm of stability.

The structure of the dissertation will be the following: there will be a brief
introduction to the main concepts of Stability Theory, along with some basic
theorems that lead to stability. Then there will be a second quick introduc-
tion, this time to the Szemerédi Regularity Lemma, along with its historical
background. The Lemma, while very powerful, has some unavoidable short-
comings, one of which is the presence of exceptional pairs; in order to avoid
the obstacle, it becomes useful to work with just stable graphs: this simple
restriction opens up a variety of different Stable Regularity Lemmas. The
one that will be described, along with the process required to reach it, will be

the most basic version, which requires only to work under stable graph theory.

The chapter about Stable Theory takes its notation mainly from the Lec-
ture Notes of Artem Chernikov (see [1]), while the Stable Regularity Lemma
is from a paper written by Maryanthe Malliaris and Saharon Shelah (see [2]

and [3]), with some additional notation and definitions from [4] and [5].
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Chapter 1

Model-Theoretic Stability

The concept of stability originally emerged as a tool that Saharon Shelah used
to extend the work of Micheal Morley (and previously of Robert Vaught and
Jerzy Los$) on the number of possible models of a certain cardinality. More
precisely, if we let I7(k) be the number of models of a theory T (up to
isomorphism) that have cardinality x, Morley proved that if there is an un-
countable cardinal k£ and a theory T for which Ir(k) = 1, then Ip(\) = 1
for any other uncountable cardinal A. In addition, Morley conjectured that
Ir(k) is non-decreasing on uncountable cardinals for any countable theory T
Shelah, thanks to the studies that he did in order to prove Morley’s conjec-
ture, managed to show that first-order theories can be separated according
to some “dividing lines”: if a theory does not follow the rules dictated by
said lines, it can have as many models as possible, but if a theory follows
them, then the isomorphism type of its models can be described with some
invariants; for example, both sets and vector spaces have a single invariant,
which is their cardinality and dimension respectively.

One of the “dividing lines” identified by Shelah was stability, which with
the passage of time revealed itself to be widely applicable to larger contexts,

some of which are still an active area of research.
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1.1 Basic definitions of Model Theory

The following notation will be the one used in the dissertation:

e M = (M;L) is a first-order structure, where M is a set and £ =
{R1,Rs, ..., f1, f2,...} is the signature of the structure; furthermore,
each R; is a n;-ary relation for a certain n; € w (which means that
R, € M™), and each f; is a function f; : M™ — M for a certain
n; € w; in particular, if n, = 0, then f;, will be called a constant (and

the notation fj := ¢, will be used).

e A formula ¢(y1,...,y,), where every y; is a free variable, will be any
boolean combination of well-defined concatenations of relations and
functions from £, and L will be the set of all formulas; formulas with
parameters will be written as ¢(y, b), where y is a tuple of free variables
and b is a tuple of parameters from B C M, and L(B) will be the set of
all formulas with parameters from B; a formula without free variables

is called a sentence.

e M = p(a), also written as a = ¢(y), will mean that a satisfies ¢(y), or

equivalently that a is a solution of ¢(y); for any set of formulas ®(y),
the expression a = ®(y) will mean V(¢(y) € ®(y))(a = ©(y)).

e A theory T is any consistent set of sentences in a language L, and T is
said to be complete when for every L-sentence, either it is in 7" or its
negation is in 7'; Th(M) will be the theory of M, which is the set of

all sentences that are true in M.

In order to simplify reading and avoid excessive repetition, the following

writing conventions will be used:

e r and y, when used as dependent or independent variables (like in

©(x)), are to be treated as tuples of variables.

o V((2))(p(z)) will mean V(v (z) — ¢(x)), and V="z(p(x)) will mean
that the length of the tuple x is at least n; the same is true for 4.
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o If x is a tuple and M is the set of a model, then M, will refer to the
tuples of length |z| (equivalently, M, := M=),

e r and A will be cardinals, both finite or infinite.
Some theorems that will prove themselves useful are the following:

Theorem 1.1 (Compactness Theorem). For any language L and any set of

formulas U in L, if every finite subset of U is consistent, then U is consistent.

Theorem 1.2 (Ramsey’s Theorem). For any k-coloring of subsets of N of
size m, there is some infinite subset I of N such that all subsets of I with n

elements have the same color.

There are many theorems that involve some variant of Ramsey’s Theorem;

in order to simplify this process, the arrow notation is introduced:

Definition 1.3 (Arrow notation, from [7]). The notation £ — (\)" will
mean the following: for any m-coloring of subsets of k of size n, there is
some subset u of k with order type X\ such that every subset of u with n

elements has the same color.

Remark. Using the arrow notation it is possible to rewrite Ramsey’s The-

orem in a more compacty way: V(n,k € w)(RXg — (No)}).
Ramsey’s Theorem is used to prove this last Theorem:

Theorem 1.4 (Erdds-Makkai Theorem). Let F C P(B) be a collection of
subsets of B, with w < |B| < |F|, then there are two sequences {b;}ic, C B
and {S;}icw € F such that one between V(i,j € w)(b; € S; > j < i) and
V(i,j €w)(b; € S; > 1 < j) is true.

1.2 Saturation and the monster model

From now on, any theory will be complete. Before introducing stability, it

would be useful to work in a model large enough to let us assume that every
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other model (of the same theory) is embedded in it. Here is the process to
do it:

Definition 1.5. Let M and N be two structures of the same language L:

e M and N are elementarly equivalent, also written as M = N, if
Th(M) = Th(N).

e A partial map f: M — N is elementary if for all a € Dom(f) and for
all ¢ € L it is true that (M |= p(a) < N E o(f(a)).

e M is an elementary substructure of N, also written as M < N, if the
embedding map v : M < N is elementary.

Definition 1.6 (Partial type). Let ®(z) = {¢(z)} be a collection of formulas
with parameters from a certain set A in a model M; then ®(z) is called a
partial type over A if each one of its finite subcollections has a common

solution in M.

The concept of type will be described with higher precision in the following
pages.

Definition 1.7 (Saturation and homogeneity). Given an infinite cardinal k

and a model M:

o M is k-saturated if for any set of parameters A in M with |A| < &,
every partial type ®(x) over A with |z| < k can be realized in M.

o M is saturated if it is | M|-saturated.

o M is k-homogenous if any partial elementary map from M to itself
with domain of cardinality smaller than k can be extended to an auto-

morphism of M.

Through the compactness theorem, it can be proved that for any theory
T and infinite cardinal x there is at least a k-saturated and x-homogenous
model over T. On the other hand, the existence of saturated models is not

guaranteed and heavily depends on the specifics of the set-theoretic assump-
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tions.

Consider the following commutative diagram of elementary embeddings:
M— N
@)
In the diagram, M, N and O are models of the same complete L-theory
T. Thanks to the completeness of the theory, the diagram can be realized
in a single model of the same theory, where the embeddings are treated

as inclusions between elementary submodels. In order to apply this line of

reasoning to every embedding, the following definition is given:

Definition 1.8 (Monster model). The monster model M is a model that
satisfies the previously discussed purpose and is k(M)-saturated and k(M)-
homogenous for a sufficiently large cardinal K(M). A cardinal X will be called
small if X < k(M). For any p(z) € L(M) and a € M, the expression = ¢(a)
will be used to denote Ml |= p(a). For any pair of sets of formulas ®(x) and
U(z), the expression ®(x) F W (x) will mean V(a € M)(E ®(a) = ¥(a)).

An immediate consequence of the definition is that every model of size at
most k(M) embeds elementarily into M. From now, unless differently stated,
expressions like “a model” or “a set of parameters” will mean “an elementary

submodel of M” and “a set of parameters in M”.

1.3 Stability

Definition 1.9 (Order property and stability). Given M =T and k € w:

e A formula ¢(x,y) has the k-order property if, fori < k, there are some
a; € M, and b; € M, for which it is true that M = ¢(a;,bj) <> i < j.

o A formula ¢(x,y) has the order property if it has the k-order property

for every k € w.

o A formula o(x,y) is stable if it does not have the order property (equiv-
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alently, there exists at least one k € w for which the formula does not

have the k-order property).
o A theory is stable if it implies the stability of all formulas.

When talking about stability, it is useful to take into consideration types, a
mathematical object that categorizes formulas. While the concept of partial
type has already been given , there is a high variety of types, each with
its own specific definition; the ones that will be used in this dissertation are

the following two:

Definition 1.10 (Complete type). ®(x) is a complete type over A if it is a
partial type that contains either p(x) or —p(z), for every p(x) € L(A). For
b € M, the complete type of b over A is defined as tp(b/A) = {p(z) € L(A) :

b= p(x)}

Definition 1.11 (Complete ¢-type). If p(x,y) is a formula and A C M, is a
set of parameters, then a complete p-type over A is a maximal and consistent
collection of formulas in the form ¢(x,b) and —p(x,b), with b ranging over

A. The space of all complete @-types over A will be called S,(A).

An analogous definition to the one of complete p-types holds for complete
A-types, where A is a set of formulas, in which the same properties have to
hold for all formulas in A.

In addition to types, in model theory there is a vast array of ranks that are
used to obtain orderings from which it is possible to deduce properties, and

types are not exempt from this process:

Definition 1.12 (Shelah’s local 2-rank). Let A be a set of L-formulas and
0(z) a partial type over M. The Shelah’s local 2-rank Ra(0(x)) is inductively

defined on n € w using the following rules:
e [f0O(x) is inconsistent, Ra(0(x)) = —1.
o [f0O(x) is consistent, Ra(6(x)) > 0.

o If there are p(x,y) € A and a € M, such that Ra(0(x) A p(z,a)) > n
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and Ra(0(x) A —p(x,a)) > n are both true, then Ra(f(x)) > n + 1.
o If Ra(6(z)) > n and Ra(0(z)) 2 n+ 1, then Ra(0(z)) = n.
o [f Ra(0(x)) > n for all n € w, then Ra(6(x)) = oo.
Shelah’s local 2-rank can be generalized to the following rank:

Definition 1.13. For any type p, any set of formulas A and finite cardinal
A, the rank R(p, A, \) is inductively defined:

e [f p is inconsistent, R(p, A, \) = —1.
e If p is consistent, R(p, A, \) > 0.

o [f§ is a limit ordinal and R(p, A, \) > « for all a < §, then
R(p,AN) > 6.

o If for all ;4 < X\ and finite ¢ C p there is a sequence of A-types {q;}i<,
such that for each i # j there is at least a formula @ such that ¢ € q; and
- € qj, and R(qUq;, A, ) > « for all i < p, then R(p, A, \) > a+1.

e If R(p,A,\) >« and R(p, A, \) 2 a+ 1, then R(p, A, \) = a.
o If R(p, A, \) > « for all a, then R(p, A, \) = 0.
Remark. If RA(p) € w, then R(p,A,2) = Ra(p).

Shelah’s local 2-rank represents a tool to quickly obtain a necessary and
sufficient condition for the stability of a formula. Before showing it, a theorem

about linear orders is needed:

Theorem 1.14. Let I be a linear order and ¢(x,y) an unstable formula in a
(necessairly unstable) theory T, then there is a model M =T and a sequence
{(@i, b;) }ier in M such that V(1,5 € I)(M = ¢(a;,b;) <> 1 < j).

Theorem 1.15. For any formula ¢(x,y) the following are equivalent:

1. p(z,y) is stable.
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2. Ry(x =) <w, where x = (x;);es is a tuple of variables, v = x means
(x1r=z1AN... ANz =2; A..)ier and R, stands for Ry,y. Notice that
R,(x = ) < w implies that R,(0(x)) < w for any partial type §(x).

Idea of proof. [2 = 1] : assume that ¢(x,y) is unstable, then it has the k-
order property for each k € w. Thanks to there is a (a;, b;)icjo,1) such that
= ¢(ai,bj) ¢+ @ < j: this implies that both go(x,b%) and —mp(x,b%) contain
dense subsequences of a;, thanks to which it is possible to increase R, (x = x).
This process can be reiterated, from which the absurd R,(x = x) = oo is
reached.

[1 = 2] : assume that R,(z = x) = oo, then it is possible to build an
infinite tree of parameters B such that every infinite branch maintains the
consistency of the set of formulas necessary for the increasing of the rank:
this leads to |S,(B)| > |B|. This makes ¢(z,y) unstable as it is possible to
obtain (through the Erdés-Makkai Theorem) the two infinite sequences of

parameters necessary to satisfy the requirements for instability. [

As a last proof for this chapter, here is a necessary and sufficient condition

for the stability of a theory:
Theorem 1.16. For any complete theory T the following are equivalent:
1. T 1s stable.

2. There is no formula ¢(z1,22) € L(M) and sequence {c;}ic., of tuples in
M such that (= ¢(ci, ;) <> i < j).

Proof. [1 = 2] Let ¢(21,22) € L(M) be a formula for which there is a se-
quence {¢; }ie, of tuples in M such that (= (¢, ¢;) <> @ < j); then (21, 22)
has the order property because {c; }ic,, satisfies the definition.

[2 = 1] Assume T unstable, then there is a formula ¢(z1,29) € L(M)
that has the order property, which means that there is at least a sequence

(a;, b;) that satisfies the k-order property definition for each k € w. Now let
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Y(191, T2y2) = p(x1,y2), then, if ¢; := a;b;, the condition (= ¥ (c;, ¢;) <
i < j) is verified. O

Finally, the following are two properties strictly related to stability, which

will be extensively used in the second chapter:

Definition 1.17 (Indiscernibility). Let I be a linear order, A a set of param-
eters (omitted if A = M) and {a;}ic; a sequence of tuples, then that sequence
is said to be indiscernible over A if for alln € w and for allig < ... < i, and
Jo < ... < [Jn from I, it is true that |= @(aiy, ..., a;,) <= Y(aj, ..., a;,) for
all formulas o, € L(A). It is possible to take in consideration just the for-
mulas from a specific set A: in this case we will talk about A-indiscernibility.
Additionaly, the sequence is totally indiscernible if it is indiscernible indipen-

dently from the order of the indices.

Definition 1.18 (Independence). A formula ¢(x,y) has the independence
property if there are two infinite sequences {b;}ic, and {as}sc., such that
(E plas, b)) <» i € s). A theory has the independence property if some of its

formulas have it, otherwise it has the dependence property.
Both indiscernibility and independence quickly lead to stability or instability:

Theorem 1.19. A theory is stable if and only if it makes totally indiscernible

every indiscernible sequence.
Theorem 1.20 (Shelah). If a theory is independent, then it is unstable.

The reverse implication of the last theorem is not generally true, as there is
a second property, called the strict order property, which also implies insta-
bility. However, every unstable theory has either the independence property

or the strict order property.



Chapter 2

The Szemerédi Regularity
Lemma on Stable Graphs

As said in the introduction of the previous chapter, model-theoretic stability
can be used in combination with ideas from others fields of mathematics in
order to obtain new properties: one such field is Graph Theory.

The following pages will show how the restriction to stability related proper-
ties improves the result of what is known as the Szemerédi Regularity Lemma.
The story behind the Lemma is surprisingly similar to the one behind sta-
bility: originally used to prove a theorem about arithmetic progression, with
the passage of time it showed itself to be applicable to other fields, such as
algorithmic approximations (see [II] for an example), thanks to the works
of many important mathematicians such as Timothy Gowers, Janos Komlds

and Terence Tao.

10
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2.1 Basic definitions of Graph Theory

The concept of graph can be defined in various similar ways. In this disser-

tation we will follow the model-theoretic definition:

Definition 2.1 (Graph). A graph is a structure G = (G; L) whose signature
L = {=,Rg} contains the equality relation and an irreflexive, symmetric
binary relation Rq, which represents the property of being connected by an
edge (aRgb means that a and b are connected by an edge). The elements of G
are called vertices or nodes, and the cardinality of a graph, written as |G| or

more often as |G|, is defined as being the cardinality of the set of its vertices.

Usually, instead of G = (G;{=, Rg}), the less convoluted notation G =
(G; Rg) will be used, with R := Rg if it is clear from context.

A graph is called complete if V(z,y € G)(z # y — xRgy) (i.e.: each distinct
pair of vertices is connected by an edge) and empty if V(z,y € G)(—(xRgy))
(i.e.: the graph is edgeless). A graph is called bipartite if the set of its nodes
can be split into two sets such that no nodes in the same set are connected.
If A C G, the notation G(A) will refer to the restriction of the graph to the
nodes from A. Additionally, if A, B C G are such that AN B = &, then the
notation G(A, B) will refer to the bipartite subgraph with node set AU B
and edges obtained through the rule that two nodes can be connected if and

only if they are connected in G and aren’t both in A or in B.

Definition 2.2 (Density). Let G be a graph and G the set of its verices,
then for all XY C G, the expression e(X,Y) denotes the number of edges
between X and Y. If X NY = & and both X and Y are nonempty, then the

following density is defined: d(X,Y) = %

It is clear that d(X,Y") € [0,1], with d(X,Y") = 0 if and only if the bipartite
subgraph G(X,Y) is empty and d(X,Y) = 1 if and only if G(X,Y") has the
highest possible amount of edges; also, if G is complete, then d(X,Y) =
1, with the converse not being true, as the only edges that are taken in

consideration are the ones between X and Y.
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Example. Consider the graph G = (G; R), with G = X UY, where X =
{z1, 29,23} and Y = {y1, y2, Y3, ys}; let R be defined according to the follow-

ing picture:

Because X,Y are disjoint, the graph G(X,Y) exists:

Furthermore, it is possible to evaluate the density:

eX,Y) 5 5
d(X,Y) = =2 =2
XY =y "534 1

2.2 The Szemerédi Regularity Lemma

The following theorem is the reason behind the development of the Szemerédi

Regularity Lemma:

Theorem 2.3 (Szemerédi Regularity Theorem). Let A C N and

An{l, ... N
D*(A) = ljivmiup| {J,V ’ }l,
—+400

if D*(A) > 0, then for any integer k > 3 it is possible to find an arithmetic

progression of length k located entirely in A.

The proof of this theorem is quite complex and makes use of a diverse set of
mathematical tools, one of which is graph theory, in particular the branch

about bipartite graphs. To be more precise, using Szemerédi’s words, “any
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large bipartite graph can be decomposed into nearly regular bipartite sub-
graphs” (directly from [I0]). To better understand the meaning behind this,

it is necessary to introduce e-regularity:

Definition 2.4 (e-regularity). Given ¢ > 0, a graph G and A, B C G dis-
joint, then the pair (A, B) is said to be e-reqular if, for all X C A andY C B
such that | X| > e|A| and |Y| > €|B|, it is true that |d(X,Y) — d(A, B)| < e.

The following is one of the many equivalent ways to write the Szemerédi
Regularity Lemma, more precisely the version published by Szemerédi in

1978, which is stronger than the one that he used to prove [2.3

Theorem 2.5 (Szemerédi Regularity Lemma). For every ¢ € [0,1] and m €
w, there are N = N(e,m) and M = M(e,m) such that for any finite graph
G of size |G| > N, there exists a k € w and a partition Gy U ... UGy = G
that satisfies the following:

e m< k<M.
o 1G]~ Gyl <1 for alli,j < k.
o All but at most |ek?] of the pairs (G;, G;) are e-reqular.

Remark. The base form of the Szemerédi Regularity Lemma has some lim-

itations, the main two being:

e The size of the partition is very large (proved in [§]), with the lower
bound being a tower of 2s with height proportional to log(¢!) and the

upper bound being a tower of 2s with height proportional to 75.

e The condition of e-regularity is not universal, as there can be up to

|ek?] pairs that do not have it: these are called irregular pairs.

The presence of irregular pairs is necessary if we want to cover every possible

graph: an example of graph that needs them is the n-half-graph, defined as

Hn = <\{(11, ce ,CLn} U {bl, ce ,bnl;i(ai,bj), (bj,ai) 11 S ‘7}4>
H;an R:‘%H
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In other words, a n-half-graph is a graph whose nodes can be partitioned
into two (numbered) empty subgraphs of equal size, both of which can be
represented as a sequence in such a way that a node from the first partition
set is connected to a node from the second partition set if and only if the

index of the first node is lesser or equal than the index of the second node.

Example. The following is the visualization of Hs:

OYONO®
@\@\@

In order to avoid these obstacles, it becomes useful to develop more specific
variants of the Lemma, trading the generality of the original one for stronger

properties.

2.3 Stable Graphs

From now on, { = {(x,y) will be used to refer to the formula xRy, with R
being the edge relation of the graph that is being taken into consideration.
In order to apply Stability Theory to graphs, the following definition is in-

troduced:

Definition 2.6 (Non-k-order property). Let G be a graph and R = Rg the
binary relation that defines the edges. The graph has the non-k-order property
if, for each i < k, there is no pair a;,b; € G that satisfies ((i < j < k) —
((a;Rbj) N —(ajRb;))). If such configuration exists, then the graph is said to
have the k-order property.

An immediate consequence of this definition is that if a graph G has the
k-order property for all k£, then ( has the order property, making ¢ unstable.
Also, notice how, for each n, ¢ has the (n+1)-order property in the half-graph
‘H,: this means that the theory of half-graph is unstable. This is the main
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reason behind the choice to work in stable conditions, as that eliminates half-
graphs, which are one of the major classes of graphs that make exceptional
pairs unavoidable in the Szemerédi Regularity Lemma.

From this point onwards, unless differently stated, we will consider G as
being a graph with edge relation R and the non-k,-order property, for a

certain k, € w, which means that it makes ( stable.

Definition 2.7. Ay = {zoRx1} U {y},, : m < kAi € {1,2}}, where:

Sollc,m - Spllc,m(l‘[)) cee 71:/6—1) = Eiy (/\ (l’gRy))

l<m

sz,m = Splz,m(an s 73:]6—1) = Ely ( /\ (33@R@/)>

m<l<k

Example. A; = {zoRz1, 90%,0’ @%m ‘P%,Qa P30, P31, P30}, With:

P30 =y ©30 = Jy(zoRy A 1Ry A z2Ry)
¢31 = Fy(zoRy) ¢35, = Jy(z1Ry A x5 Ry)
¢35 = Jy(roRy Az, Ry) 035 = Jy(z2Ry)

Ay will be the set over which the indiscernibility property will be required.
The following is a sufficient condition for the k-order property that will show

itself to be very useful for building proofs by contradiction:

Theorem 2.8. Let H be a finite graph and A = (a; : 1 < «a) be a Ag-
indiscernible sequence in H, with o > 2k. If there is a vertex b € H and a
sequence of indices 19 < ... < igp_1 < « for which it is true that bRya;, for

all0 <l < k-1 and ~bRya;, for all k < { < 2k, then H has the k-order
property.

Proof. For all m € {0,...,k — 1}, let ¢ = (¢j)o<j<k—1, With ¢; = ami;
then the existence of b guarantees the truth in H of ¢, (c). This holds for
every increasing subsequence of k elements from A, from which the k-order

property is obtained. O
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Theorem 2.9. Let (a; : i < m) be a A, -indiscernible sequence in a graph
G with m > 4k,; forb e G, let X = {i : a;Rb} and Y = {i : =(a;Rb)}, then

one between X and 'Y has cardinality less than 2k,.

Proof. By contradiction, suppose |X|, [Y'| > 2k.. By defining 4; to be the k®

element of X and iy to be the k" element of Y, three options are possible:
1. iy = iy, which is impossible given the definitions of X and Y.

2. 11 < 13, which is impossible because, from the hypothesis, there would
be a subsequence a;, < ... < aj, < a, that satisfies both {j; < ... <
Jr, = i1y € X and {is = jr, 11 < ... < jor, } € Y. This would satisfy
2.8 making G have the k,-order property, which is absurd.

3. 11 > 19, which is impossible through the same reasoning of the previous

option, obtained by replacing R with —R.
Thus the pair (i1, i) cannot exist. O
The theorem roughly states that each Ay, -indiscernible sequence with at
least 4k, elements can be split into two sets, defined according to X and Y,

of which one is “small” (has cardinality less than 2k,) and the other one is

“large” (has cardinality more than 2k,).
Theorem 2.10. Let A = {a;}ics, and B = {b;}j<s, be Ay, -indiscernible
sequences, with sy > 2k, and sy > (2k.)%. By defining:

U= {Z < 81 E'ZZk* (j < 32)(aiji)}

then either |U| < 2k, or |U| > s1 — 2k,.

Proof. Suppose 2k, < |U| < s; — 2k,. By defining i, i» to be the k! element
of U and the k* element of V := {0, ..., s;—1}\U respectively, three options

are possible:

1. 71 = 1o, which is impossible given the definitions of ¢; and 5.
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2. 41 < ig; in this case there are {jo < ... < jg,_1} from U and {ji, <
oo < Jok,—1} from V such that ji, 1 < iy < iy < jg, and jor, 1 < $1.
Because sy > 4k? > 4k,, thanks to it can be said that, for each a;,,
with ¢ < 2k,, the set B can be partitioned into two sets, one larger
than the other. Let:

W, = {Z < S§9: a'ngbi <~ ((322k*i < SQ)(ﬂCLjZRbi))}

be the smaller set, which has in fact cardinality |W,| < 2k,. By defining
Z to be the union of all the W), the following holds:

Jw

0<2k
Let now n € {0,...,s9—1}\ Z, then it is true that (0 </ < k,—1) —
(bpRay) and (k. < ¢ < 2k,) — (—b,Ray). But then would imply
that G has the k,-order property, which is absurd.

7] = < (2k.)* < |B|

3. 11 > 19, which is impossible through the same reasoning of the previous

option, obtained by replacing R with —R.

Thus the pair (i1, i) cannot exist. O

Definition 2.11 (From [6]). Given a set of formulas I' and ny,ny finite
ordinals, the expression ny — (n2)r has the following meaning: for any
{a;}icn, sequence of elements of G, there is a T'-indiscernible subsequence

{ai, }j<ny, € {ai}icn, that is not constant.

The definition can be expanded to include any cardinal n; and any ordinal
ng, as well as any theory 7" and any tuple length ¢(a;) (in our case, ' = Th(G)
and {(a;) = 1).

Theorem 2.12. Using the notation introduced in[I.3:

<n1 — (HZ)S\*A;C*\) = (m — (nz)Ak*)

k.
2|Ak*|

subsets of ny of size k,, there is some subset u of n; with order type ny such

Proof. Remember that n; — (n2) means that for any 2/4#|-coloring of
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that every subset of u with k, elements has the same color; the aim is to
show that every sequence {a;};<,, C G has a nonconstant Ay, -indiscernible
subsequence {a;, }j<n,. Consider all the possible increasing subsequences of
ny that have k, elements, and color them in such a way that two subsequences
{i1,...,ix,} and {J1, ..., jr. } have the same color if and only if the property
(G E (@, .. a, ) < G = v(aj;,...,a;_ )) holds for the same subset of
formulas from Ay ; notice that there are exactly 2/%#| possible colorings.
u C nq, with u being the one described at the start of the proof, will be the
set of (less than 1y + 1) indices from which the Ay, -indiscernible subsequence

can be obtained. O]

Definition 2.13 (Tree Order). Remember that the natural partial order on
“Zw (which is the set of all the tuples of natural numbers which have finite
length) is given by v < p < v is an iniltial segment of p (for example,
(3,7,2) < (3,7,2,8), but (3,7,2) £ (3,7,5,8)). Given a finite set of vertices
S, a tree order on S is a partial order which is order-isomorphic to some

downward closed subset of “~w under the natural partial order.

Theorem 2.14. Let A be a set of formulas closed under variable cycling
and k € w such that each formula in A has at most k free variables. If there
is a ko € w for which every formula p(xq,...,x5_1) € A is such that ev-
ery partition of its free variables in the form {{xo,..., 2}, {Tps1,. .., Tp_1}}
makes (L1, ..., %0 Tos1,- .., Tk_1) have the non-ke-order property, then the

following are true:

1. There is a r € w such that for every A subset of G with at least 2
elements, |Sa(A)| < |A]".

2. For each A = {a;}icn € G there is a u C n such that {a;}ic, is A-
indiscernible and |u] > f*(n), with f(z) = ‘% Tk with ot k =
r(A),t(A), k(A) constants; in particular, r is the constant from the

previous statement, t is the R-rank of A and k is the one from the

hypothesis.
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8. ny — (ng)a,, for any ny > (eng) @™ with ¢ = ¢(Ag,) constant and

r,t computed for Ay, .

Idea of proof. The more combinatorial passages of the proofs will be highly

summarized, with major attention being given to the model-theoretic parts:

1. Thanks to [9](4.10(4)), we know that if for every n € w there is a
finite set A with [A] > 2 such that |S7'(A)[ > |A[", then ¢(x,y) has
the independence property. By remembering m we get that o(z,y)
must be dependent, because its independence would imply instability.

The negation of the previous implications gives us the first thesis.

2. Suppose that every ¢ € A has exactly k free variables xy, . .., z;_1 (this
is done by adding dummy variables if necessary). It will be proven by

induction on m < k that there is an u,,, C n such that:

1
tr+t+1

o |upmyi1| > f(n) for f(z) = ‘% — k with a specific r and ¢

o for every ¢ € A, ip < ... < ix_q and jy < ... < Jr_1, both from

U, if (0 < k—m — i, = jy) for each ¢, then it is true that
So(aiov s 7aik—1> - @(ajov s 7ajk—1)

The base case m = 0 is trivially verified by uy = n.

For the inductive case, let u,, be given, and define ¢,, = |u,,| and
A™ = {p(T0, ..+, X1, Gty iy - - > A1) FpeA-
Let Wy C uyy, \ U W; be a set and <, a tree order (2.13|) on the set
j<t
Wey = U W;, both inductively defined for ¢ < £, such that:
J<t

e | <y j — aj,aq; realize the same A-type over the sequence {ay}i<,i

o i £, J £i 1 — aj,a, realize two different A-types over the sequence

{ar}repi N {artie,s
A type tree is defined as W, = (u, <), where <,= U <, and W,
¢

satisfies the properties described above.
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It can be proved that any maximal subset linearly ordered by <, (equiv-
alently, any branch through a type tree) satisfies the inductive hypoth-
esis on indiscernibility.

The next step is to find a lower bound on the length of any branch:
this is done by assuming that a type tree with |u,,| nodes is maximally
branching, and then finding a certain height h that bounds said tree.
Let t = R(x = x, A, 2) be the stability rank from[I.13} as a consequence
of its definition, it is impossible to embed *!2 in W,. For each s < t,
let S* = {i € W, : °2 is embeddable in the tree above 4, but not *7'2}.
Notice that ((iy € ST Aiy € S Ay <, iy) — 51 > s9) is true and that
{S°}s<: is a partition of W,: thanks to these properties, it is possible
to assign a distinct value from 0 to ¢ to any node in W,: let it be called
the x-rank of the node.

Thanks to conclusion (1) of the theorem, each node in the type tree
found at height h has at most (h + m)" immediate successors, where
m is the inductive value and r is the constant obtained from conclu-
sion (1). In order to have the shortest tree possible there must be
maximal branching. By assuming maximal branching and through
a series of combinatorial passages, the number of nodes in a tree of
height h reveals itself to be bounded by t(h + m)" ™1 and if & is
such that ¢(h + m)" T+ < |u,,|, then no type tree of height h can

exhaust the nodes of u,,. By solving for h, the last condition becomes
x

1
tr+t+1

— k:

1
tr+t+1

u
h < |2 — m; in order to generalize, let f(x) =

this way, h < f(|uy,]|) is verified, concluding the inductive step.
Finally, u is obtained by defining u := uy.

. Let g(z) = x2; by assuming r > 2, eventually fE(x) > g%(x): this is
a simpler (but less accurate) bound that, combined with the specific
definition of Aj,, permits some final combinatorial steps, which lead
directly to the last thesis.
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Clause 3 of will be useful to quickly obtain n; — (ng)a,. in a future
proof; this could also be done using Ramsey’s theorem, but it would not
explicitly convey any information about the size of the numbers, which is
one of the aspects that should always be tracked in Graph Theory.

Before the next theorem, one of the most important ones of the chapter, it

is useful to introduce the notation of the truth value:

Definition 2.15 (Truth value). A truth value, written t, is an element of
{0,1}, where 0 is identified as false and 1 as true. In this dissertation,
t = t(X,Y), where XY C G. Furtermore, the expression xRy = t will
mean tRy <>t =1.

2.4 The Stable Regularity Lemma

Theorem 2.16. Let G be a finite graph with the non-k,.-order property, A C
G such that |A] = n and ny,ny such that n > niny and ny > (2k,)* and

n, — (ng)Ak*, then there are A, my, mo that satify the following:

1. A= (A; i <my) is a partition of A.
2. n=nami+mo and my < ny < my.
3. For all i, |A;| € {na,ne + 1}.

4. With the possible omission of an element, each A; is either a complete

or an empty graph.

5. For every i # j < my, with the possible omission of an element of A;
and A; respecively, there is a truth value t(A;A;) € {0,1} that satisfies
aRb = t(A;, A;) for all but at most 2k, elements a € A; and for all but
at most 2k, elements b € A;.

Proof. Let my be such that nom;, < n < ngmq+nq, from which m; > nq, and
let <, be a generic linear order on A; by using the hypothesis n; — (n2)a,_,

let {A}}r<m, be a collection of disjoint subsets of A, each one of size ny, such
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that, for each ¢, the sequence {ag;}i<n,, listed following the increasing order
obtained from <, is A, -indiscernible. Claim (4) is then obtained thanks
to the fact that {xRy} C A, and R is symmetric. Let A be the union of
all the Aj, from which |[A| = nomy < n = |A|; let A\ A = {af}icm, be
the list of the elements of A which are not found in any Aj,. Remembering
that my < my, for each £ < my let A, = A, U{a;} if a) is well-defined, and
A, = Aj otherwise. This proves all but the last point of the theorem.

For the final passage, it may be necessary to remove the points that have
been added in the previous passage; after doing that, can be applied to
any pair (A4;, A;), which states that either all but at most 2k, points of A; are
connected to all but at most 2k, points of A; or all but at most 2k, points
of A; are not connected to all but at most 2k, points of A;, from which it is
possible to obtain the desired truth value t(A4;, A;). O

Proofs and quickly lead to the following regularity lemma for stable
graphs:

Theorem 2.17. Let k,,ny € w such that ny > (2k,)?, then there is a N =
N(ng, ki) such that any finite graph G with |G| > N and with the non-k,-
order property (and thus stable) admits a partition G = (G;) that satisfies
the following:

1. |Gy| € {ng,na + 1} for all G; € G.

2. With the possible omission of an element, every G; is either a complete

or empty graph.

3. For any pair G;,G; € G, with the possible omission of an element for
each, there is a truth value t(G;, G;) € {0, 1} such that aRb = t(G;, G;)
for all but at most 2k, elements a € G; and for all but at most 2k,
elements b € Gj.

Proof. Any graph G from the hypothesis will satisfy the conditions needed for
applying with A = G as long as both the inequality chain |G| > niny >
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ny(2k,)? and ny — (n2)a,. hold for a certain ny; in order to do this, assuming

|G| > N > nyng, with ny > (cnz)(z“”)k*, where ¢, t,r are computed following
with the assumption that A = Ay, is sufficient, because n; — (n2)a,.
is obtained thanks to clause 3 of R.14l O

Remark. This theorem surpasses the general Szemerédi Regularity Lemma

in terms of regularity, mainly thanks to the last clause, which is stronger than

e-regularity for the following reasons (all the notation used is from [2.16)):

It is valid for every possible pair, which means that there are no excep-

tional pairs.

It is hereditary for any C; C A;, as long as |C;| > (2k,)? (simply reapply
the theorem).

{(a,b) € A; x A; : (aRb) = —t; ; }| < (2k. + 1)2 - 16k3
(A |’;14i|‘)|Aj’ e o = A Ay | Al [ A5 —
< = + , which means that the density of the
| Ail|A;] |Ail 4] o .
nodes that do not follow the truth value described in the last clause is

small.
For large enough |A4;| and |A;], it is true that t;; = t;,.

It is possible to omit exceptional points by excluding at most ms points

from the partition.
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2.5 Other Stable Regularity Lemmas

By modifying the restrictions imposed on the types of graphs that are taken
in consideration, the Regularity Lemma that emerges can highly vary. Re-
maining in the realm of stable graphs, two examples of other possible Stable

Regularity Lemmas are:

k-edge Stable Regularity Lemma

Definition 2.18 (k-edge stability). Let k € w; a graph G is said to be k-edge
stable if there are no pairs of separated subsets of vertices {ay,...,a;} and
{b1,..., bk} such that a;Rb; <> i < j. In other words, the graph does not
contain subgraphs that are k-half-graphs.

Remark. The collection of k-edge stable graphs excludes more than just

bipartite half-graphs.

Theorem 2.19 (k-edge Stable Regularity Lemma). Let k € w and € > 0,
then there is a N = N(k,e) € w such that any sufficiently large k-edge stable
graph admits a partition {A;}1<i<e, with £ < N, such that:

o [|[A;| —|Ajll <1 foralli,y.

o all pairs (A;, A;) are e-reqular, with density either greater than 1 — ¢

or lesser than €.

()

Stable Excellent Regularity Lemma

2k+3_7

Definition 2.20 (e-good). A set of nodes A C G is said to be e-good if for
any b € G one between |[{a € A : bRa}| < e|A| and |[{a € A: =(bRa)}| < ¢|A|

1S true.

Definition 2.21 (e-excellent). A set of nodes A C G is said to be e-excellent
if for any e-good B C G, one between |[{a € A : t(a,B) = 1}| < ¢|A| and
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{a € A:t(a,B) =0}| <e|A| is true (where t(a, B) := t({a}, B)).

Theorem 2.22 (Stable Excellent Regularity Lemma). Let k > 1 and € > 0,
then there is a N = N(k,e) such that any sufficiently large k-edge stable
graph admits a partition {A;}1<i<e, with € < N, such that:

o [|A;)| —|Ajll <1 foralli,y.
e Fvery A; is e-excellent.

o For each pair (A;, A;) there is a truth value t = t(A;, A;) such that
aRb =t for all but at most |e|A;|] nodes a € A; and all but at most
le|A;]] nodes b € A;.
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