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Abstract
Light scalar fields are ubiquitous in beyond the Standard Model and string construc-
tions, but they naively induce unobserved fifth-forces. Axio-chameleon screening [1]
has recently been proposed as a promising mechanism to explain the absence of these
fifth-forces, and the goal of this thesis is to embed it in String Theory. In particular, a
good contender seems to be a D3/D3-brane moving on a warped deformed conifold
along both the radial and some angular directions. In the model presented here, the
Standard Model is assumed to live on the brane and the radial brane-position modulus
couples to it as a Quasi-Brans-Dicke scalar through the warp factor. This can be inter-
preted as a Quintessence field and the screening mechanism provides justification for
the lack of observable fifth-forces in solar-system experiments.
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Conventions
Metric signature: (−,+,+,+)

Fields mass dimension: [ϕ] = 0

Einstein-Hilbert action: SEH = +
M2

p

2

∫
dnx

√
−gnRn

Planck mass-length relation: Mp =
1
lp

String mass-length relation: Ms =
2π
ls

= 1√
α′

10D gravitational coupling: 2κ2 = (2π)7(α′)4
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1 INTRODUCTION

1 Introduction
The lack of observable evidence for fifth-forces is one of the main constraints in the for-
mulation of cosmological models involving additional scalar fields on top of the Stan-
dard Model (SM). Post-Newtonian tests of gravity performed within the solar system
rely on the observable L defined as

ϕext(r) = ϕ∞ − L

r
, (1)

where ϕext is the scalar field outside of a spherically symmetric astrophysical object, like
the Sun, with asymptotic value ϕ∞.

Screening mechanisms relax experimental constraints from unobserved fifth-forces
by introducing a matter-density dependence for some parameters of the field, such as
its mass or its coupling constant with the SM. In particular, the axio-chameleon mech-
anism described in [1] manages to reduce L by considering a saxion-axion couple inter-
acting through the generalized kinetic term

L ⊃ −
√
−gf

2

2
Gab(ϕ)∂µϕ

a∂µϕb , (2)

where f is a scale factor of mass dimension 1. This is a totally novel mechanism which
cannot be reduced to single-field screening due to the fact that the metric in (2) cannot
be diagonalized in general.

Taking the saxion to be a Quasi-Brans-Dicke (QBD) scalar has the additional merit
of automatically ensuring the validity of the Equivalence Principle, which stands on ex-
tremely firm experimental ground. One does so by coupling it to the Standard Model
only through a Weyl rescaling of the metric. The original paper assumes the rescaling
to be of the form

g̃µν = A2(ϕ)gµν = e2gϕgµν , (3)

where g is a constant. In this thesis, we broaden the discussion to generic Weyl factors.
In addition, we embed the axio-chameleon mechanism in String Theory. We imag-

ine the SM to live on a D3/ D3-brane moving on a warped deformed conifold on both
the radial and some angular directions. By taking the warp factor, which depends on
the radial direction, as our Weyl factor, we manage to couple the radial-position mod-
ulus to the SM as a QBD scalar. The angular coordinates, or combinations of them, are
assumed to act as axions, forming a saxion-axion pair and making the screening mech-
anism possible. To be more precise, by taking the 4D SM metric as the pull-back of the
10D Einstein-frame metric, we end up with a disformal transformation

g̃µν = A2(ϕ)gµν +B(ϕ)Gab(ϕ)∂µϕ
a∂νϕ

b . (4)
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1 INTRODUCTION

This can be effectively brought back to a conformal transformation for non-relativistic
matter only if the scalar fields are static, as we analyze.

The saxion-SM interaction generates a source term in the saxion equation of mo-
tion, which cannot be solved analytically in general. We approximate the Solar System
matter distribution with the Sun alone, assuming it to have uniform density, and use nu-
merical techniques to approximate the system total energy Etot. Finding it dependent
on the field integration parameter ϕs, we minimize it with respect to it and finally quan-
tify the amount of screening through the ratio L/L0, where L0 is the post-Newtonian
parameter without screening applied.

In Chapter 2, the reader finds a comprehensive summary of the effective Supergrav-
ity theory arising from type IIB String Theory. We focus in particular on the Einstein-
Hilbert (EH) and Dirac actions, highlighting the emergence of brane-position moduli
from compactification. We mention axions and their properties and conclude with an
introduction to conifold geometries. Chapter 3 consists of an overview on QBD theo-
ries, as well as on fifth-forces sourced by these. We also describe both single-field and
the axio-chameleon screening mechanisms. Chapter 4 presents original research, pro-
viding attempted embeddings of the axio-chameleon screening mechanism in String
Theory, using both closed-string and brane-position moduli. We focus mostly on the
latter, since it is far more promising. We believe this novel mechanism could be rel-
evant in cosmological models where one takes the radial modulus as a Quintessence
field. Therefore, we provide a short overview on Quintessence in the Appendix, to-
gether with a discussion on fictitious non-linear sigma models.
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2 TYPE IIB STRING THEORY

2 Type IIB String Theory
It is a well-known result that low-energy string theories effectively produce 10D super-
gravity theories. We start our discussion here, focusing in particular on the bosonic
sector of the type IIB theory (see [2] for an extensive review). In the Einstein frame, the
closed string effective action is

S =
1

2κ2

∫
d10X

√
−G

(
R10 −

|∂τ |2

2(Im(τ))2
− |G3|2

2Im(τ)
− |F̃5|2

4

)

− i

8κ2

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
,

(5)

where G and R10 are the 10D Einstein metric and Ricci scalar respectively,

τ ≡ C0 + ie−Φ (6)

is the axiodilaton,
G3 ≡ F3 − τH3 , (7)

F3 ≡ dC2 , (8)

H3 ≡ dB2 , (9)

F5 ≡ dC4 (10)

and
F̃5 ≡ F5 −

1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (11)

are fluxes, with F̃5 ≡ ⋆F̃5 to impose self-duality. TheC0,C2 andC4 are even-dimensional
forms coming from the R-R sector, which are characteristic of type IIB string theory,
while B2 comes from the NS-NS sector and is shared with type IIA. Finally,

2κ2 ≡ (2π)7(α′)4 . (12)

In (5) one can recognize the 10D Einstein-Hilbert term, which is going to be of ex-
treme relevance for us in the upcoming discussion. However, before that, let us briefly
recall that type IIB string theory also admits additional localized objects charged under
the R-R forms: D-branes. These are the loci where open strings end. A Dp-brane has p
spatial dimensions and is charged under Cp+1 via the Chern-Simons action

SCS = iµp

∫
Σp+1

∑
n

Cn ∧ eF , (13)
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2 TYPE IIB STRING THEORY

where Σp+1 is the Dp-brane worldvolume, µp is the brane charge and

Fab ≡ Bab + 2πα′Fab (14)

represents interactions with the closed string background. In (14), Bab is the pullback
of BMN on the brane worldvolume.

Together with (13), one must also consider the Dirac-Born-Infeld action

SDBI = −gsTp
∫
dp+1σe−Φ

√
−det(Gab + Fab) , (15)

where Tp is the brane tension,Gab is the pullback of the 10D metric on the brane world-
volume and Fab plays the same role as in (13). Neglecting fluxes, (15) simplifies into the
Dirac action. One can express µp and Tp through fundamental quantities using

µp = ±gsTp (16)

for a brane/anti-brane and

Tp =
1

(2π)pgs(α′)
p+1
2

=
2π

gsl
p+1
s

. (17)

In the end, the open string bosonic sector consists of the gauge field Aa associated to
the field strength Fab and scalar fields representing fluctuations of the brane position.

The EH and Dirac terms are going to be the object of our attention for the next two
sections. In particular, we are going to study their behavior under compactification,
splitting the 10D metric as [3]

ds210 = h−
1
2 (y)e2ω(x)gµνdx

µdxν + h
1
2 (y)V

1
3 (x)gmndy

mdyn , (18)

where h(y) is the warp factor, V is the dimensionless compactified volume, gmn is the
6D metric of the compact space defined such that∫

d6y
√
g6 = l6s (19)

and ω(x) represents some preserved rescale freedom and will be fixed once we go to
the 4D Einstein frame.

2.1 The Einstein-Hilbert action
Let us start from the 10D EH action

SEH =
1

2κ2

∫
d10X

√
−GR10 ; (20)

5



2 TYPE IIB STRING THEORY

our goal is to express the volume element and the Ricci scalar in terms of their 4D
counterparts. We start from the former. From (18), one can write the 10D metric as

GMN =

(
h

1
2 e−2ωgµν 0

0 h−
1
2V− 1

3 gmn

)
. (21)

Using the determinant property

det
(
A 0
0 B

)
= det(A) det(B) (22)

we obtain

det(GMN) = det
(
h−

1
2 e2ωgµν

)
det
(
h

1
2V

1
3 gmn

)
=
(
h−

1
2 e2ω

)4
det(gµν)

(
h

1
2V

1
3

)6
det(gmn)

= he8ωV2det(gµν)det(gmn)

(23)

and finally √
−G = h

1
2 e4ωV√g6

√
−g4 . (24)

Moving on to the Ricci scalar, we can use the fact that it scales as the inverse metric to
write

R10 ∼ GMN =

(
h

1
2 e−2ωgµν 0

0 h−
1
2V− 1

3 gmn

)
(25)

and
R4 ∼ gµν . (26)

From the top-left element in (25), we deduce that

R10 ⊃ h
1
2 e−2ωR4 . (27)

Together, (24) and (27) give
√
−GR10 ⊃ he2ωV√g6

√
−g4R4 . (28)

Staring from (20), using (28) and splitting the integral along spacetime and compactified
coordinates gives

SEH ⊃ 1

2κ2

∫
d4x

√
−g4e2ω(x)

(
V
∫
d6y

√
g6h(y)

)
R4

=
M2

p

2

∫
d4x

√
−g4R4 .

(29)

6



2 TYPE IIB STRING THEORY

We used our conformal freedom to define

e2ω(x) ≡ V0
W l

6
s

V
∫
d6y

√
g6h(y)

=
V0
W

VW

, (30)

where VW is the warped dimensionless volume and we chose V0
W such that

M2
p =

V0
W l

6
s

κ2
=

4πV0
W

l2s
. (31)

2.2 The Dirac action

Looking now at the DBI action (15), we consider the specific case of a D3/D3-brane,
ignoring fluxes and assuming the dilaton Φ to be stabilized at its minimum, so that we
find the Dirac action

SD = −T3
∫
d4x
√
−g̃4 , (32)

where the brane tension T3 = 2π/(gsl
4
s) is evaluated using (17). Recall that in (32) g̃µν

is the pullback of GMN , i.e.

g̃µν =
∂XM

∂xµ
∂XN

∂xν
GMN = Gµν +

∂ym

∂xµ
∂yn

∂xν
Gmn

= h−
1
2 e2ωgµν + h

1
2V

1
3
∂ym

∂xµ
∂yn

∂xν
gmn ,

(33)

where we used the static gauge

XM = {xµ, ym} . (34)

(33) highlights how the the 4D warped metric g̃µν and the 4D unwarped metric gµν are
related by a disformal transformation, which differs from a conformal one because of
its second term.

Similarly to what we did for the EH term, we aim at expressing the volume element
in terms of gµν . Using the determinant properties

det(AB) = det(A) det(B) (35)

and
det(I + A) ⊃ 1 + TrA (36)

7



2 TYPE IIB STRING THEORY

we find that

det(g̃µν) = det
(
h−

1
2 e2ωgµa

(
δaν + he−2ωV

1
3 gab

∂ym

∂xb
∂yn

∂xν
gmn

))
⊃ det

(
h−

1
2 e2ωgµa

)(
1 + Tr

(
he−2ωV

1
3 gab

∂ym

∂xb
∂yn

∂xν
gmn

))
=
(
h−

1
2 e2ω

)4
det(gµa)

(
1 + he−2ωV

1
3 Tr
(
gab

∂ym

∂xb
∂yn

∂xν
gmn

))
= h−2e8ωdet(gµa)

(
1 + he−2ωV

1
3 gab

∂ym

∂xb
∂yn

∂xa
gmn

)
= h−2e8ωdet(gµν)

(
1 + he−2ωV

1
3 gmn∂µy

m∂µyn
)

(37)

and consequently√
−det(g̃µν) =

√
−det(gµν)h−1e4ω

(
1 + he−2ωV

1
3 gmn∂µy

m∂µyn
) 1

2

≃
√

−det(gµν)h−1e4ω
(
1 +

1

2
he−2ωV

1
3 gmn∂µy

m∂µyn
)

=
√
−det(gµν)

(
h−1e4ω +

1

2
e2ωV

1
3 gmn∂µy

m∂µyn
)

=
√
−det(gµν)

(
h−1

(
V0
W

VW

)2

+
1

2

V0
W

VW

V
1
3 gmn∂µy

m∂µyn

)
.

(38)

It follows that (32) can be rewritten as (see also [4][5])

SD = − 2π

gsl4s

∫
d4x
√

−det(gµν)

(
h−1

(
V0
W

VW

)2

+
1

2

V0
W

VW

V
1
3 gmn∂µy

m∂µyn

)
. (39)

Interestingly, the compactified coordinates ym have assumed the role of scalar fields,
which are referred to as brane-position moduli. In (39), we can recognize both a poten-
tial and a generalized kinetic term, where the fields are coupled through the unwarped
6D metric gmn. It is this last term that is going to be responsible for the interesting phe-
nomenology we are analyzing in Chapter 4; therefore, we drop the potential from now
on.

2.3 Interactions with the Standard Model
Although one need intersecting stacks of branes for non-abelian gauge symmetries to
emerge, assuming the Standard Model to live on a D3/D3-brane is a common simplifi-
cation [6] (see [7] for a model where Dark Matter lives on the D-brane). Following this

8



2 TYPE IIB STRING THEORY

toy model ourselves, we can infer relevant information on the interaction between the
well-known SM fields and the brane-position moduli.

Let us start by observing that Poincaré invariance forces the brane to be space-
time filling, since the opposite would create a distinction among the spacetime coordi-
nates. It follows that the brane lives on the Calabi-Yau as a dimensionless point. Higher-
dimensional branes would, instead, have spare dimensions to wrap around cycles of the
compact manifold.

A SM localized on the brane will feel the pullback metric evaluated at that point,
introducing a dependence on the brane-position moduli through (33). In symbols

SSM = SSM(g̃µν , ψ) , (40)

where we use ψ to represent the usual SM fields. As we have already stated, (33) is
a disformal transformation relating g̃µν and gµν . While interesting considerations can
be made even in this general case [8], here we decide to take the non-relativistic limit,
where (33) can effectively be reduced to a conformal transformation

g̃µν = h−
1
2 e2ωgµν (41)

when studying the coupling of static scalars to the SM [9].
Let us see how in a simplified example. While a conformal relation couples the SM

to the scalars (as we will see in details at the beginning of Chapter 3), a purely disformal
one couples it to the moduli derivative. For instance, considering

g̃µν = gµν +
2

M2
∂µϕ∂νϕ , (42)

where we are focusing solely in the non-conformal term, causes a term in the lagrangian
of the type [9]

S =
1

M2

∫
d4x

√
−g∂µϕ∂νϕT µν , (43)

where T µν is the SM energy-momentum tensor built from gµν . Recalling that for non-
relativistic matter the only non-vanishing tensor element is T 00 = ρ, it is easy to see
that (43) is null for a static field, i.e. ∂0ϕ = 0.

2.4 Axions
Among the fields produced by compactification, axions are of particular interest. These
are pseudo-scalars enjoying either continuous or discrete shift symmetry

a 7→ a+ const. (44)

Because of this, they can interact with the SM only through terms like∂µa, exp(ia/a0)or
cos(a/a0). This has the effect of protecting their mass from UV effects. Moreover, being
pseudo-scalars they evade constraints regarding spin-independent fifth-forces [10].

9



2 TYPE IIB STRING THEORY

Closed string axions are well-suited to exemplify the previous points in more details.
They arise from the integration of p-forms over p-cycles of the compact space, i.e.

bI =
1

α′

∫
ΣI

2

B2 , (45)

cI =
1

α′

∫
ΣI

2

C2 , (46)

θI =
1

(α′)2

∫
ΣI

4

C4 , (47)

where we KK-expand the 10D p-forms into 4D 0-forms as

B2 = B2(x) + bI(x)ωI , (48)

C2 = C2(x) + cI(x)ωI , (49)

C4 = θI(x)ω̃I . (50)

The ωI and ω̃I are a basis of harmonic forms for the Dolbeault cohomology groupsH1,1

and H2,2 respectively, normalized such that∫
ΣI

2

ωJ = α′δJI , (51)

∫
ΣI

4

ω̃J = (α′)2δJI . (52)

For vanishing fluxes background values, the action (5) depends on the p-forms only
through their field strengths. It follows that the gauge invariance of the 10D p-forms
translates into a 4D axion continuous shift symmetry. This is preserved to all orders
in perturbation theory, but is broken into a discrete symmetry spontaneously by non-
perturbative effects inα′ or gs and explicitly by D-branes. Identifying open string axions
is not as trivial. We will present a qualitative argument in Chapter 4.

2.5 Conifolds
While the compact CY3 metrics are only known numerically, we are allowed to approx-
imate a local region with a non-compact Calabi-Yau conifold [11][5], the metric of which
is better known.

A conifold can be thought of as the locus in C4 defined by

4∑
A=1

(zA)2 = 0 , (53)

10



2 TYPE IIB STRING THEORY

Figure 1: The singularity at the tip is avoided in the deformed and resolved conifold,
where one imposes a finite minimum radius for S3 and S2 respectively. Figure from
[12].

with zA complex coordinates of C4. Alternatively, it consists of a radial direction and
an Einstein manifold for base, where with this label we indicate manifolds such that
Rab ∝ gab. For the 1+5-dimensional case we are interested in, the base manifold is the
fibration of S2 over S3, or equivalently the coset space

T 1,1 = [SU(2)× SU(2)]/U(1) (54)

with isometry group SU(2)× SU(2)× U(1) and metric

dΩ2
T 1,1 ≡

1

9

(
dψ +

2∑
i=1

cosθidϕi

)2

+
1

6

2∑
i=1

(
dθ2i + sin2θidϕ

2
i

)
, (55)

where θi ∈ [0, π], ϕi ∈ [0, 2π] and ψi ∈ [0, 4π]. The full conifold metric can be written
as

ds2 = dr2 + r2dΩ2
T 1,1 . (56)

From (56), one can notice that the conifold presents a singularity at r = 0. This
corresponds to both S2 and S3 shrinking to a point at the tip. To avoid the singularity,
it is enough to impose one of the spheres to not shrink completely. Depending on our
choice, we obtain either the resolved [13] or deformed conifold [3] (see Fig. 1). In String
Theory, one tends to prefer the deformed conifold, since the parameter ϵ responsible
for smoothing out the tip can be interpreted as a complex structure modulus.

11



2 TYPE IIB STRING THEORY

By adding branes on the manifold, one warps the metric. This effect is represented
by the appearance of a warp factor h(y) in the metric. The most well-know solution is
the Klebanov-Strassler geometry [14], obtained from a deformed conifold by consider-
ing the backreaction of a stack of D3-branes at the tip and D5-branes wrapped around
the collapsed S2. Far from the tip (or equivalently for small enough ϵ), the KS metric
reduces to that of a warped singular conifold [15][3]

ds2 =

(
1 +

L4

r4

) 1
2 (
dr2 + r2dΩ2

T 1,1

)
, L4 =

27π

4
gsN(α′)2 , (57)

where N is the number of stacked D3-branes. Apart from the numerical coefficient in
L, one can appreciate the similarity to the warping induced on the simpler geometry
AdS5 × S5, often used in the context of AdS/CFT duality1 [17][16].

In (57) the warping is sourced by a stack of D-branes at the tip. However, since the
warp factor ultimately comes from the 6D Laplace equation [13][18]

∇2h(y) = 0 , (58)

one can invoke the Superposition Principle for linear differential equations to generalize
(58) into what is known as the multi-center solution [19][6]

h(y) = 1 +
Lα

|y− yα|4
, (59)

representing the warping for multiple parallel and similarly-oriented branes centered
at yα.

1The volume modulus V does not appear in [16] because of a different choice of Weyl factor in (18).

12



3 SCREENING MECHANISMS

3 Screening Mechanisms
When introducing new scalars on top of the SM, these often result in new interactions
among matter particles, causing modifications to their equation of motion that we col-
lect under the name of fifth-forces. However, experiments have not been able to detect
these forces so far. For instance, one could hope to observe modifications to GR in the
motion of macroscopical objects both on Earth and in the Solar System. The absence
of such deviations causes tension between these type of beyond-SM theories and ex-
periments.

Screening mechanisms aim to resolve this tension by introducing a matter-density
dependence in the intensity of fifth-forces. More precisely, they manage to suppress
fifth-forces in high-density environments, like the Solar System, while keeping them
relevant on the cosmological scale.

In this chapter, we focus on (Quasi-)Brans-Dicke theories and describe the associ-
ated fifth-forces. Then we describe the working of single-field and (most importantly
for us) two-field screening mechanisms.

3.1 (Quasi-)Brans-Dicke Scalars and the Equivalence Principle
BD theories (see [20] for the original paper and [21][22][23] for more recent reviews
and cosmological applications) are a subclass of scalar-tensor theories. Their action
was first expressed as

S =
M2

p

2

∫
d4x
√

−g̃
(
χR̃− ω

χ
g̃µν∂µχ∂νχ

)
+ SSM(g̃µν) , (60)

where a non-minimal coupling is introduced between the Ricci scalar and a new scalar
field.

Nowadays, we recognize this as a Jordan-frame action. To go to the Einstein frame,
one introduces the Einstein metric through the Weyl rescaling

g̃µν =
1

χ
gµν . (61)

It follows that
g̃µν = χgµν (62)

and√
−det(g̃µν) =

√
−det

(
1

χ
gµν

)
=

√
− 1

χ4
det (gµν) =

1

χ2

√
−det (gµν) . (63)
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3 SCREENING MECHANISMS

The Ricci scalar is also affected by the change of metric. To see that, let us recall that
for a Weyl rescaling

g̃MN = e2αgMN (64)

the Ricci scalars enjoy the relation [2]

e2αR̃ = R− 2(D − 1)∇2α− (D − 2)(D − 1)gMN∂Mα∂Nα (65)

with ∇ evaluated from gMN . To go back to our case, we just need to apply the substi-
tutions

α = −1

2
lnχ, D = 4 (66)

and we obtain

R̃ = χR + 3χ2□(lnχ)− 3

2
χgµν∂µ(lnχ)∂ν(lnχ) . (67)

The action has now become

S =
M2

p

2

∫
d4x

√
−g
(
R + 3□(lnχ)− gµν

(
3

2
∂µ(lnχ)∂ν(lnχ) +

ω

χ2
∂µχ∂νχ

))
+

+ SSM

(
1

χ
gµν

)
=
M2

p

2

∫
d4x

√
−g
(
R−

(
3

2
+ ω

)
gµν∂µ(lnχ)∂ν(lnχ)

)
+ SSM

(
1

χ
gµν

)
,

(68)

where in the last step we canceled the total derivative. The field redefinition

ϕ ≡
√
ω +

3

2
lnχ→ χ = e

1√
ω+3

2

ϕ

(69)

gives us the action in canonical form

S =
M2

p

2

∫
d4x

√
−g (R− gµν∂µϕ∂νϕ) + SSM

(
e
− 1√

ω+3
2

ϕ

gµν

)
. (70)

Looking at this Einstein-frame action, we can interpret the BD theory as the addition
of a new scalar χ with conformal coupling to matter of the form

g̃µν = e2gϕgµν . (71)

As we will see, (71) has the perk of giving a constant scalar-SM coupling g. When gen-
eralizing to QBD theories [24], we assume a more generic Weyl factor

g̃µν = A2(ϕ)gµν (72)

14



3 SCREENING MECHANISMS

and consequently an Einstein-frame action

S =
M2

p

2

∫
d4x

√
−g (R− ∂µϕ∂

µϕ) + SSM
(
A2(ϕ)gµν

)
. (73)

The reason people are interested in BD and QBD theories is because they automat-
ically satisfy the Equivalence Principle [24]

∇̃νT̃
µν = 0 . (74)

That is, the stress-energy tensor

T̃ µν =
2√
−g̃

(
δSSM

δg̃µν

)
(75)

is conserved. Notice that (74) is not true for T µν defined through gµν . We can prove
(74) starting from the diffeomorphism invariance of SSM, i.e

δvSSM =

∫
d4x

δSSM

δg̃µν
δvg̃µν +

δSSM

δΨ
δvΨ ≡ 0 . (76)

The second term vanishes when the SM equations of motions are satisfied. We are left
with

δSSM

δg̃µν
δvg̃µν =

√
−g̃
2

T̃ µν
(
∇̃µvν + ∇̃νvµ

)
=

√
−gT µν∇̃µvν ≡ 0 . (77)

Integrating by parts gives (74).
Let us see how the scalar-SM interaction expressed through SSM modifies the scalar

equation of motion by applying the Variational Principle. We find

1√
−g

δSSM(A2(ϕ)gµν)

δϕ
=

1√
−g

δSSM

δ(A2gµν)

∂(A2gµν)

∂ϕ
=

1√
−g

1

A2

δSSM

δgµν
gµν

∂(A2)

∂ϕ

= gµν
1√
−g

1

A2

δSSM

δgµν
2A

∂A

∂ϕ
= gµν

2√
−g

δSSM

δgµν

1

A

∂A

∂ϕ

= gµνT
µν∂ϕlnA = ∂ϕlnA T .

(78)

That is, ϕ couples to the trace of the SM energy-momentum tensor through

g(ϕ) = ∂ϕlnA . (79)

Notice how for (71), this gives g = const. as we claimed.
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3.2 Fifth-forces from Scalar Fields
Let us now study in details how QBD theories source fifth-forces (we elaborate on the
review in [25]). From (74) we know that SM-matter (approximated as dust) moves along
geodesics in the Jordan frame. In the Newtonian limit, the geodesic equation is

ẍi + Γ̃i
00 = ẍi + Γi

00 + g(ϕ)∂iϕ = 0 , (80)

where Γ̃i
00 andΓi

00 are Christoffel symbols of the Jordan and Einstein metric respectively
related through (72). The same way one interprets Γi

00 as the Newtonian force,

F5 ≡ −g(ϕ)∇ϕ (81)

represents a new fifth-force2.
We have already shown in (78) how interaction with the SM results in an additional

term in the scalar equation of motion. In general, one has something like

□(ϕ) =
1

M2
p

dV (ϕ)

dϕ
+

1

M2
p

g(ϕ)ρ =
1

M2
p

dVeff(ϕ)

dϕ
, (82)

where we defined the effective potential

Veff(ϕ) ≡ V (ϕ) + ρlnA(ϕ) . (83)

As usual, one finds the field mass through

m2
eff(ϕ) =

1

M2
p

V ′′
eff(ϕ) . (84)

Notice how both the coupling g and the mass meff are functions of the field ϕ. To
fix these, one imagines the field to be around a minimum of Veff, in order to perform a
background-perturbation split

ϕ = ϕ0 + δϕ , (85)

where ϕ0 is the field evaluated at the minimum. For now we assume, as most research
does, ϕ0 to be spatially uniform (although this is not going to be the case for our model
in Chapter 4). Close to its minimum, we can approximate the effective potential to

V (ϕ) ≃
M2

p

2
m2

eff(ϕ0)(δϕ)
2 . (86)

2Notice that F5 is missing the mass of the moving particle to be an actual force, so it has the mass
dimension of an acceleration, i.e 1. For this same reason, when we later write F5(r) = −∂rV (r), we use
V as a potential and not as the potential energy density as we do in the rest of the thesis.
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3 SCREENING MECHANISMS

Finally, we obtain from (82) the static equation of motion with a source for a massive
scalar (

∇2 −m2
eff(ϕ0)

)
δϕ =

1

M2
p

g(ϕ0)ρ(r) , (87)

which is solved by

δϕ = − 1

M2
p

g(ϕ0)

4π

f(M,R)

r
e−meffr (88)

if we assume the source to be spherically symmetric. Here f(M,R) is a function of the
source mass and radius. Notice that we expect it to have mass dimension 1. From now
on, we drop the delta in δϕ to lighten the notation.

Let us obtain (88) explicitly, momentarily sendingmeff intom again for ease of read-
ability. We start from the Fourier expansions of the field and the source density

ϕ(x) =
1

(2π)3

∫
d3keik·xϕ̃(k) , (89)

ρ(r) =
1

(2π)3

∫
d3keik·xρ̃(k) . (90)

Since ρ(r) has spherical symmetry, we can express its Fourier transform as [26]

ρ̃(k) = (2π)
n
2 k

2−n
2

∫ +∞

0

drr
n
2 ρ(r)Jn−2

2
(kr) , (91)

where we are using the first order ordinary Bessel functions [26]

Jm(x) =
(x
2

)m +∞∑
l=0

(−1)l
(
x
2

)2l
l!Γ(m+ l + 1)

. (92)

For us the number of dimensions n = 3, so it is relevant to point out the special result

J 1
2
(x) =

√
2

πx
sinx . (93)

Using (93), we simplify (91) into

ρ̃(k) = 4π

∫ +∞

0

drr2
sin(kr)
kr

ρ(r) , (94)

from which it is easy to see that ρ̃ dependent just on the modulus k, is even and has
no poles. Although it seems like (94) could give problems regarding convergence, these
are avoided if one considers a finite-size source, i.e ρ(r) = 0 for r > R. It is instructive
(and a good quality check) to consider the point-source case, i.e

ρ(r) =Mδ3(x) =M
δ(r)

4πr2
, x, r = 0 , (95)
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where we used ∫
d3xδ3(x) =

∫ +∞

0

drr2
∫ π

0

dθsinθ
∫ 2π

0

dφδ3(x)

=

∫ +∞

0

dr4πr2δ3(x) ≡
∫ +∞

0

drδ(r) ,

(96)

which implies

δ3(x) =
δ(r)

4πr2
. (97)

Plugging (95) into (94) results in ρ̃ = M . We can finally apply (89) and (90) to (87) to
obtain the momentum-space equation of motion

−(k2 +m2)ϕ̃(k) =
1

M2
p

gρ̃(k) . (98)

Isolating ϕ̃ gives us the propagator

ϕ̃(k) = − 1

M2
p

gρ̃(k)

k2 +m2
. (99)

From here, all that is left to do is evaluate (89), resulting in

ϕ(r) = − 1

M2
p

g

(2π)3

∫
d3keik·x

ρ̃(k)

k2 +m2

= − 1

M2
p

g

(2π)3

∫ +∞

0

dkk2
∫ π

0

dθsinθ
∫ 2π

0

dφeikrcosθ ρ̃(k)

k2 +m2

= − 1

M2
p

g

(2π)2

∫ +∞

0

dkk2
ρ̃(k)

k2 +m2

∫ 1

−1

d(cosθ)eikrcosθ

= − 1

M2
p

g

(2π)2

∫ +∞

0

dkk2
ρ̃(k)

k2 +m2

1

ikr

(
eikr − e−ikr

)
= − 1

M2
p

g

(2π)2ir

∫ +∞

−∞
dkk

ρ̃(k)

k2 +m2
eikr

= − 1

M2
p

g

(2π)2ir
2πiRes

[
kρ̃(k)

k2 +m2
eikr
]
k=im

= − 1

M2
p

g

4π

ρ̃(im)e−mr

r

(100)

as we claimed. Notice that from (94)

ρ̃(im) = 4π

∫ +∞

0

drr2
ei(im)r − e−i(im)r

2i(im)r
ρ(r) = 4π

∫ +∞

0

drr2
emr − e−mr

2mr
ρ(r)

= 4π

∫ +∞

0

drr2
sinh(mr)
mr

ρ(r) ∈ R .

(101)
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P2

Figure 2: Feynman diagram of a scalar exchange t-channel.

Now that we have proven (88), we can use it in (81) to find

F5(r) = −g(ϕ0)∂rϕ = − 1

M2
p

g2(ϕ0)f(M,R)e−meff(ϕ0)r

4πr2
(1 +meff(ϕ0)r) . (102)

To find the associated potential, we use

F5(r) = −∂rV (r) , (103)

which gives [27]

V (r) = g(ϕ0)ϕ(r) = − 1

M2
p

g2(ϕ0)

4π

f(M,R)e−meff(ϕ0)r

r
. (104)

From a QFT perspective, we recognize in (87) and (99) the Klein-Gordon equation
and propagator respectively, if we assumed a point-source, i.e. ρ̃ = M . Indeed, in this
case (104) would be the standard Yukawa potential one obtains integrating over k the
tree-level amplitude of and interaction like

Lint = gψ̄ϕψ , (105)

representing a scalar exchange between matter particles (see Fig. 2).
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3.3 Single-field Screening Mechanisms
Looking at (102), one can think of at least two ways to reduce F5 in the Solar System
without relying on fine-tuning: meff ≫ 1 or g ≪ 1. This is possible thanks to these
parameters’ dependence on the minimum ϕ0. The two strategies above represent ex-
amples of single-field screening mechanisms: the chameleon and symmetron screening
mechanism respectively. Let us see how these work in details.

3.3.1 Chameleon Screening

The chameleon screening mechanism achieves high meff in regions of high density ρ
and low meff in regions of low ρ. This is possible for specific choices of potential V (ϕ)
and Weyl factors A(ϕ). Here we illustrate the mechanism with [25]

V (ϕ) =
Λn+4

Mn
p ϕ

n
, (106)

where Λ is just a scale factor with mass dimension 1, and [25]

A(ϕ) = egϕ , (107)

which using (83) gives

Veff(ϕ) =
Λn+4

Mn
p ϕ

n
+ ρgϕ . (108)

A ρ-dependent minimum exists for n = −2,−4,−6, ... and n ≥ 1 and it is

ϕ0(ρ) =

(
nΛn+4

Mn
p gρ

) 1
n+1

. (109)

The effective mass is given by

m2
eff(ρ) =

1

M2
p

V ′′
eff(ϕ0) =

n(n+ 1)

Mn+2
p

Λn+4

(
Mn

p gρ

nΛn+4

)n+2
n+1

. (110)

Notice that for n = −2 (110) loses the dependence on ρ. By plotting (108) in Fig. 3, one
can see from the width of the valley that meff grows with ρ as we aimed.

3.3.2 Symmetron Screening

The symmetron screening mechanism uses density-induced symmetry restoration. We
start from a potential [25]

V (ϕ)

M4
p

= −1

2
µ2ϕ2 +

λ

4
ϕ4 (111)
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Figure 3: Sketches of the chameleon effective potential for positive n (upper panels)
and negative n (lower panels). The left and right panels show the cases of low and high
density environments respectively. The blue lines show the bare potential and the red
lines show the contribution from the coupling to matter. The black dashed lines show
the resultant effective potential, which is the sum of the red and blue lines, and governs
the dynamics of the scalar. Figure from [25].
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Figure 4: The effective potential for the symmetron when ρ < ρ⋆ (red) and when ρ > ρ⋆
(blue). Figure from [25].

with λ > 0, and the Weyl factor [25]

A(ϕ) = 1 +
ϕ2

2k2s
(112)

with ks a numerical factor. Combined, these give an effective potential
Veff(ϕ)

M4
p

= −1

2
µ2ϕ2 +

λ

4
ϕ4 +

ρ

M4
p

ln
(
1 +

ϕ2

2k2s

)
≃ −1

2
µ2

(
1− ρ

M4
pµ

2k2s

)
ϕ2 +

λ

4
ϕ4

(113)
for small ϕ. The value

ρ⋆ ≡M4
pµ

2M2
s (114)

plays the role of a critical density. For ρ < ρ⋆ the quadratic term in (113) has negative
coefficient, while it is positive for ρ > ρ⋆. The two cases correspond to broken and
restored Z2 symmetry. When symmetry is broken, we find two minima

ϕ±
0 = ± µ√

λ

√
1− ρ

ρ⋆

ρ≪ρ⋆−−−→ ± µ√
λ

(115)

and, using (79),

g(ϕ0) ≃
∣∣∣∣ϕ±

0

k2s

∣∣∣∣ ≃ µ√
λk2s

. (116)

If the symmetry is restored, ϕ0 = 0 and g = 0. Basically, this mechanism turns off
coupling to the SM in regions of density greater than a certain threshold (see Fig. 4).
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Figure 5: Model-independent constraints on chameleon fields in the g, meff plane with
ρlab = 10g/cm3. Shaded regions show loop bounds from (125) and experimental con-
straints from Eöt-Wash [28]. The dashed curve shows the direct bound on the ϕ4 model
for g < 1 [29], converted to meff. Figure from [30].

3.3.3 Instability due to Quantum Corrections

As we have seen above for some examples, single-field screening mechanisms rely
heavily on specific shapes for the potential. However, quantum effects can spoil these
through Coleman-Weinberg corrections [31], nullifying the screening mechanism one
had achieved classically. In particular, here we focus on the instability these corrections
bring to the chameleon screening mechanism [30].

Coleman-Weinberg corrections grow more and more relevant as the mass of the
scalar field increases. This causes some tension, since in high-density regions ϕ should
be heavy enough to achieve significant screening, but also light enough to suppress
quantum correction to the potential. As a result, meff ends up squeezed in a quite nar-
row region (see Fig. 5).

Let us be more quantitative. For scalar fields, 1-loop Coleman-Weinberg corrections
are given by [31]

∆V1-loop(ϕ) =
m4

eff(ϕ)

64π2
ln
(
m2

eff(ϕ)

µ2
0

)
(117)

with µ0 arbitrary mass scale. Since we are interested in scalars with low mass but high
meff, we assume most of the potential contribution to come from SM interaction, mean-
ing

Veff(ϕ) ≃ gρϕ . (118)
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For the classical theory to be predictive, we need quantum corrections not to change
the potential minimumϕ0 and the effective massmeff too much. Since the first is related
to V ′

eff and the second to V ′′
eff, this means requiring∣∣∣∣∆V ′

1-loop

V ′
eff

∣∣∣∣ ≃ ∣∣∣∣ (m4
eff)

′

64π2gρ

∣∣∣∣ < ϵ , (119)

∣∣∣∣∆V ′′
1-loop

V ′′
eff

∣∣∣∣ ≃ ∣∣∣∣ (m4
eff)

′′

64π2m2
eff

∣∣∣∣ < ϵ , (120)

where all primes represent derivation with respect to ϕ and we approximated (117) by
setting the logarithm to unity [30].

We can go from ∂ϕ to ∂ρ by noticing that

∂2Veff

∂ρ∂ϕ
= g =

∂2Veff

∂2ϕ

∂ϕ

∂ρ
=M2

pm
2
eff
∂ϕ

∂ρ
→ ∂ϕ

∂ρ
=

g

M2
pm

2
eff
. (121)

This, together with

∂(m6)

∂ρ
=
∂(m6)

∂(m4)

∂(m4)

∂ρ
=

3

2
m2∂(m

4)

∂ρ
(122)

and

∂2(m6)

∂ρ2
=

3

2

∂

∂ρ

(
m2∂(m

4)

∂ρ

)
=

3

2

(
m2∂

2(m4)

∂ρ2
+

1

2m2

∂(m4)

∂ρ

)
meff≫1−−−−→ 3

2
m2∂

2(m4)

∂ρ2
,

(123)

turns (119) and (120) into

1

ρ

dm6
eff

dρ
,

∣∣∣∣d2m6
eff

dρ2

∣∣∣∣ ≤ 96π2g2ϵ . (124)

Integrating, we find [30]

meff ≤
(
48π2g2ρ2labϵ

) 1
6 ≃ 0.0073

(
gρlab

10gcm−3

) 1
3

ϵ
1
6 eV . (125)

By setting ϵ = 1 and ρlab = 10g/cm3, we get our constraint on the effective mass
and coupling constant. Combining them with experimental constraints on fifth-forces,
bounding meff from below, we get Fig. 5.
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3.4 The Axio-Chameleon Screening Mechanism
The axio-chameleon screening mechanism presented in [1] has its novelty in the intro-
duction of a second scalar field: an axion a. The backbone of the mechanism is no
longer the scalar potential, but a generalized kinetic term

L ⊃ −
√
−gf

2

2
Gab(ϕ)∂µϕ

a∂µϕb . (126)

Because axio-chameleon screening does not rely on properties of the scalar potential,
it is robust against the quantum corrections that endanger single-field screening, dis-
cussed in section 3.3.3.

The non-linear sigma model (126) together with the Einstein-Hilbert term give the
action

S =

∫
d4x

√
−g4

(
M2

p

2
R4 −

f 2

2
Gab(ϕ)∂µϕ

a∂µϕb − V (ϕ)

)
, (127)

from which the Variational Principle provides the equation of motion

1√
−g

∂µ
(√

−gGcb∂
µϕb
)
− 1

2
∂cGab∂µϕ

a∂µϕb − ∂cV

f 2
= 0 . (128)

Let us see how in details. We start by evaluating

− 1

f 2

δS

δϕc
=

√
−g1

2

∂

∂ϕc
(Gab∂µϕ

a∂µϕb) +
√
−g∂cV

f 2
, (129)

where the first term can be expanded into

∂

∂ϕc
(Gab∂µϕ

a∂µϕb) = ∂cGab∂µϕ
a∂µϕb + Gab∂c(∂µϕ

a∂µϕb)

= ∂cGab∂µϕ
a∂µϕb + Gab(∂µ∂cϕ

a∂µϕb + ∂µϕ
a∂µ∂cϕ

b)

= ∂cGab∂µϕ
a∂µϕb + Gab(∂µδ

a
c∂

µϕb + ∂µϕ
a∂µδbc) ,

(130)

turning (129) into

− 1

f 2

δS

δϕc
=

√
−g1

2
∂cGab∂µϕ

a∂µϕb +
√
−g1

2
Gab(∂µδ

a
c∂

µϕb + ∂µϕ
a∂µδbc) +

√
−g∂cV

f 2
.

(131)
Here, the second term can be integrated by parts, obtaining

√
−g1

2
Gab(∂µδ

a
c∂

µϕb + ∂µϕ
a∂µδbc)

= −∂µ
(√

−g1
2
Gab∂

µϕb

)
δac − ∂µ

(√
−g1

2
Gab∂µϕ

a

)
δbc

= −∂µ
(√

−gGcb∂
µϕb
)
.

(132)
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We find (128) by imposing
1√
−gf 2

δS

δϕc
= 0 . (133)

The equation of motion can equivalently be expressed as

Gcb

(
□ϕb + Γb

ad∂µϕ
a∂µϕb

)
− ∂cV

f 2
= 0 , (134)

as one can see by making the following considerations. Firstly,

1√
−g

∂µ
(√

−gGcb∂
µϕb
)
=

1√
−g

√
−gGcb∂µ∂

µϕb +
1√
−g

∂µ
(√

−gGcb

)
∂µϕb

= Gcb∂µ∂
µϕb +

1√
−g

∂µ
√
−gGcb∂

µϕb + ∂µGcb∂
µϕb .

(135)

Secondly,

∂µGcb∂
µϕb =

∂Gcb

∂ϕd
∂µϕ

d∂µϕb =
1

2
(∂dGcb + ∂bGcd) ∂µϕ

b∂µϕd , (136)

where we used the symmetry of the term under b ↔ d swap. Together, these two
insights allow us to rewrite (128) as[

Gcb∂µ∂
µϕb +

1√
−g

∂µ
√
−gGcb∂

µϕb

]
+

+

[
1

2
(∂dGcb + ∂bGcd) ∂µϕ

b∂µϕd − 1

2
∂cGab∂µϕ

a∂µϕb

]
− ∂cV

f 2
= 0 .

(137)

The first bracket can be simplified into

Gcb
1√
−g
(√

−g∂µ∂µϕb + ∂µ
√
−g∂µϕb

)
= Gcb

1√
−g

∂µ
(√

−g∂µϕb
)
= Gcb□ϕ

b (138)

using
1√
−g

∂µ
(√

−g∂µϕ
)
= □ϕ , (139)

while the second into

1

2
(∂dGcb + ∂bGcd − ∂cGbd) ∂µϕ

b∂µϕd

= GacGac1

2
(∂dGcb + ∂bGcd − ∂cGbd) ∂µϕ

b∂µϕd

= GacΓ
a
bd∂µϕ

b∂µϕd ,

(140)

giving us precisely (134).

26
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As we anticipated, two fields are considered in this model: the saxion-axion pair
{ϕ1, ϕ2} ≡ {ϕ, a}. By virtue of the axion shift-symmetry, the target-space metric Gab

must be independent of a. Without loss of generality, one can write [32]

Gab =

(
M2

p

f2 0

0 W 2(ϕ)

)
, (141)

where the overall scale factor has been chosen such to put ϕ in canonical form in (127).
Direct calculations reveal that the only non-vanishing Christoffel symbols are

Γ1
22 = − f 2

M2
p

WW ′ , (142)

Γ2
12 = Γ2

21 =
W ′

W
, (143)

where primes represent derivation with respect to ϕ. Also, since we are interested
in screening a light saxion, we assume ϕ to be a flat direction in the scalar potential,
i.e. V = V (a). As was the case for single-field screening mechanism, we introduce a
saxion-SM interaction of the QBD type in order to preserve the Equivalence Principle.
This addition, (273), (142) and (143) turn (127) into

S =

∫
d4x

√
−g4

(
M2

p

2
R4 −

M2
p

2
∂µϕ∂

µϕ− 1

2
f 2W 2∂µa∂

µa− V (a)

)
+ SSM(g̃µν)

(144)

and the equation of motion into

□ϕ− f 2

M2
p

WW ′(∂a)2 +
gT

M2
p

= 0 , (145)

∇µ(W
2∂µa)− ∂aV + ∂aU

f 2
= 0 , (146)

where in (145) one can recognize the QBD source term coming from (78), while in (146)

∂aU ≡ − 1√
−g

δSSM

δa
(147)

represents direct axion-SM interaction [1].
For non-relativistic matter T ≃ −ρ, so (145) becomes

□ϕ− f 2

M2
p

WW ′(∂a)2 − gρ

M2
p

= 0 . (148)
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3 SCREENING MECHANISMS

Figure 6: Calculated axion profile a(r) as a function of the radius in the adiabatic ap-
proximation [1]. The external minimum is chosen to be a+ = 0. The left panel uses a
step-function matter-density profile and the right panel a decaying exponential profile.
The solid and dashed lines in the right panel differ only in the value used for the eternal
axion mass, with the solid line using a larger value. Figure from [1].

Since we are assuming a static, spherically symmetric system, we can use □ = ∇2 =
∂r(r

2∂r)/r
2 to find the equation of motion in the radial coordinate

M2
p

(
r2ϕ′)′ = r2gρ+ f 2r2WW ′(a′)2 , (149)

where primes on ϕ and a indicate derivation with respect to r.
In (149) one can recognize the kinetic term, the matter source term and the saxion-

axion interaction term arising from the non-linear sigma model. In particular, notice
how this last one is related to the axion gradient. Different terms are going to be rele-
vant or not in different environments. By simplifying the matter distribution of the solar
system with just the Sun itself (as we must given our assumption of spherical symme-
try), we can define three regions: outside the Sun (r > R), inside (r < R− l) and close
to the surface (R− l < r < R with l ≪ R).

We isolate the third region on its own because we know most of the axion gradient
to be concentrated here, the reason being the following. One expects axion-matter
coupling inside the Sun to contribute to the effective axion potential, giving something
like

Veff(a) = V (a) + U(a)F (r) =
1

2
m2

outf
2(a− a+)

2 +
1

2
m2

inf
2(a− a−)

2F (r) , (150)

where F (r) is a normalized function proportional to the density of matter coupled to
a. Assuming mout ≪ min, a− and a+ are the field minima inside and outside the Sun
respectively and the gradient between the two happens in a narrow layer just beneath
the surface of the Sun [1] (see Fig. 6).
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3 SCREENING MECHANISMS

We can finally give our full attention to (149). For r > R, ρ = 0 and a = a+,
therefore (149) simplifies to (

r2ϕ′
ext
)′
= 0 , (151)

which is solved by

ϕext = ϕ∞ − L

r
, (152)

where ϕ∞ is the asymptote at infinity and we introduced

L ≡ (r2ϕ′)r=R = r2ϕ′
ext . (153)

Combining (81) with (153), one can notice that F5 ∝ ϕ′
ext ∝ L. Our goal of screening

fifth-forces can then be reformulated in terms of L. In particular, we want our mecha-
nism to drive L to small values.

Through integration, (149) can be also expressed as

ϕ′(r) =
1

M2
p r

2

∫ r

0

dr̂r̂2
(
gρ(r̂) + f 2WW ′(a′)2

)
(154)

using the boundary condition ϕ′(0) ≡ 0 coming from spherical symmetry. In a standard
QBD theory, the last term is not present and the integral can be solved exactly for ϕ′(R)
noticing that

M = 4π

∫ R

0

drr2ρ(r) , (155)

where M is the Sun mass. Since
1

M2
p

= 8πG , (156)

one obtains
ϕ′(R) =

2gGM

R2
. (157)

Comparing this result with (153) shows that the unscreened parameter is

L0 = 2gGM . (158)

Interestingly enough, looking at (152) and (158), notice how we got the same result as
in (88) for a point source and massless scalar.

To solve the full equation of motion (149), we need first to formalize the behavior
of a in the narrow width R− l < r < R. We approximate it with a step-function

a(r) = a− + (a+ − a−)Θ(r −R), a′(r) = ∆aδ(r −R), ∆a ≡ (a+ − a−) (159)

with
Θ(x) ≡ lim

l→0

1

2

(
1 + tanh

(x
l

))
, Θ′(x) = δ(x), δ(0) =

1

2l
. (160)

29
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The last equality lets us write

δ2(r −R) = δ(r −R)δ(0) =
1

2l
δ(r −R) , (161)

which is necessary to convert (149) into

M2
p

(
r2ϕ′)′ = r2gρ+ f 2WW ′ r

2

2l
(∆a)2δ(r −R) . (162)

Integrating both sides gives

M2
p

∫ R

R−l

dr
(
r2ϕ′)′ =M2

p

((
r2ϕ′)

R
−
(
r2ϕ′)

R−l

)
=M2

p

(
R2 ϕ′|R − (R− l)2 ϕ′|R−l

)
≃M2

pR
2
(
ϕ′

ext|R − ϕ′|R−l

) (163)

and ∫ R

R−l

drr2gρ+

∫ R

R−l

drf 2WW ′ r
2

2l
(∆a)2δ(r −R) = f 2WsW

′
s

R2

2l
(∆a)2 , (164)

where the first integral in (164) vanishes for continuity of the integrand and the subscript
s denotes evaluation at r = R. Combining the two sides back gives the jump condition

ϕ′
ext(R) = ϕ′(R− l) +

f 2

M2
p

WsW
′
s

2l
(∆a)2 , (165)

which can be turned into the condition on L

L = L0 +
f 2

M2
p

WsW
′
s

R2

2l
(∆a)2 (166)

by recalling that

ϕ′
ext(R) =

L

R2
, ϕ′(R− l) ≃ ϕ′(R) =

2gGM

R2
=
L0

R2
. (167)

To quantify the amount of screening provided by the saxion-axion coupling, it is
convenient to look at the ratio L/L0, which from (166) can easily be expressed as

L

L0

= 1 +

f2

M2
p

R2

2l
(∆a)2

L0

WsW
′
s . (168)

To achieve screening, we need this ratio to be smaller than 1.
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Given the presence of Ws(ϕ)W
′
s(ϕ), (168) is not fully determined yet, but has a

dependence on the integration parameter ϕ(R) ≡ ϕs. One chooses to fix its value by
minimizing the energy of the whole system. Outside the Sun, the energy is given by

Eext = 4πM2
p

∫ +∞

R

drr2
1

2
(ϕ′

ext)
2 = 4πM2

p

∫ +∞

R

drr2
1

2

L2

r4
= 2πM2

p

L2

R

=
L2

4GR
,

(169)

while inside by

Ein = 4π

∫ R

0

drr2
(
1

2
f 2W 2(a′)2 +

1

2
M2

p (ϕ
′)2
)

≃ πf 2R
2

l
(∆a)2W 2

s + E0 , (170)

using the narrow width approximation for the axion gradient. E0 comes from the saxion
gradient and is independent of ϕs. Overall,

4G

R
Etot =

4G

R
(Eext + Ein)

=
f 2

M2
p

R

2l
(∆a)2W 2

s +

(
L0

R
+

f 2

M2
p

R

2l
(∆a)2WsW

′
s

)2

+
4G

R
E0

= y(ϕs) +

(
B +

1

2
y′(ϕs)

)2

+ const. ,

(171)

where we defined
y(ϕs) =

f 2

M2
p

R

2l
(∆a)2W 2

s , B =
L0

R
. (172)

(172) lets us rewrite (168) as
L

L0

= 1 +
y′(ϕs)

2B
. (173)

Recalling that L0 and g are directly proportional through (158), one can introduce
and effective coupling geff such that L ≡ 2geffGM and consequently

L

L0

=
geff

g
. (174)

This allows to interpret the screening as the weakening of the saxion-SM coupling. The
absence of observable fifth-forces imposes geff ≲ 10−3 [33] (see Fig. 7).

This is as far as our general framework can take us. To continue our analysis, one
needs to assume functional forms for W 2(ϕ).
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3 SCREENING MECHANISMS

Figure 7: Solar-system and binary pulsar 1-σ constraints on the matter-scalar coupling
constants α0 and β0 assuming lnA(ϕ) = lnA(ϕ0) + α0(ϕ − ϕ0) +

1
2
β0(ϕ − ϕ0)

2 + ....
Note that a logarithmic scale is used for the vertical axis |α0|, i.e. that GR (α0 = β0 = 0)
is sent at infinite distance down this axis. LLR stands for lunar laser ranging, Cassini
for the measurement of a Shapiro time-delay variation in the Solar System and SEP for
tests of the Strong Equivalence Principle using a set of neutron star-white dwarf low-
eccentricity binaries. The allowed region is shaded and it includes GR. Figure from [33].
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3.5 ExponentialW 2

Here we consider the case

W (ϕ) ≡ W0e
− 1

2
ξϕ → y(ϕs) ∝ e−ξϕs , y′ = −ξy . (175)

It follows that the total energy is

4G

R
Etot = y(ϕs) +

(
B − 1

2
ξy(ϕs)

)2

+ const. (176)

Since y(ϕs) is monotone, one can equivalently minimize Etot with respect to it in place
of ϕs. Direct calculations show the energy minimum to be at

y =
2B

ξ

(
1− 1

ξB

)
. (177)

Plugging (177) into (173) gives

L

L0

= 1− ξy

2B
=

1

ξB
=

R

2ξgGM
. (178)

For the Sun, R/GM ∼ 10−6 [1]. Starting from a coupling g ∼ O(1), this means that
one needs ξ ≳ 109 to reach the required amount of screening.

3.6 QuadraticW 2

Another interesting possibility is the case

W 2(ϕ) ≡ W 2
0 +

W 2
1

2
(ϕ− ϕ0)

2 , (179)

from which it follows that

y(ϕs) = y0 +
y1
2
(ϕ− ϕ0)

2 (180)

with
yi ≡

f 2

M2
p

R

2l
(∆a)2W 2

i . (181)

Deriving (180) gives
y′(ϕs) = y1(ϕ− ϕ0) . (182)

From (171) one obtains

4G

R
Etot = y0 +

y1
2
(ϕ− ϕ0)

2 +
(
B +

y1
2
(ϕ− ϕ0)

)2
, (183)
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which can be extremized with respect to (ϕs − ϕ0) to find the minimum

ϕ− ϕ0 = − B

1 + y1
2

. (184)

Combining (173), (182) and (184), we obtain

L

L0

= 1−
y1

B
1+

y1
2

2B
=

1

1 + y1
2

=
1

1 + 1
4

f2

M2
p

R
l
(∆a)2W 2

1

. (185)

Therefore, to have significant amount of screening, l/R ≪ (∆a)2W 2
1 f

2/M2
p is re-

quired, which is likely to be valid in the narrow-width limit, since one expectsW 2
1 f

2/M2
p

to be of order unity.
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4 THE AXIO-CHAMELEON MECHANISM IN STRING THEORY

4 TheAxio-ChameleonMechanism in String
Theory

Here we study potential embeddings of the axio-chameleon screening mechanism in
String Theory. In particular, closed string moduli give rise to the exponential form of
W 2, while brane-position moduli can be used to implement the quadratic form of W 2.
First, we discuss how closed string moduli are actually not good candidates for this type
of screening. We then move on to the much more promising second option.

4.1 Closed String Moduli
In the context of Supergravity, complexified closed string moduli are associated to Kähler
potentials of the form

K = −nln(Φ + Φ̄) (186)

with n = 1, 2, 3 when dealing with the axiodilaton, some inner Kähler modulus or the
volume modulus respectively. We obtain the metric of the target space using

GΦΦ̄ = KΦΦ̄ =
n

(Φ + Φ̄)2
. (187)

The saxion-axion pair can be seen by turning the complex field into two real fields
using cartesian decomposition

Φ ≡ ϕ+ iθ . (188)

This guarantees, as opposed to polar decomposition, that K has no dependence on θ,
as one needs from an axion.

The generalized kinetic term [34] is

KΦΦ̄∂µΦ∂
µΦ̄ =

n

(Φ + Φ̄)2
∂µΦ∂

µΦ̄ =
n

(2ϕ)2
(∂µϕ+ i∂µθ)(∂

µϕ− i∂µθ)

=
n

4ϕ2
(∂µϕ∂

µϕ+ ∂µθ∂
µθ) .

(189)

Using the redefinition√
n

2

∂µϕ

ϕ
≡ ∂µχ→ χ =

√
n

2
ln(ϕ), ϕ = e

√
2
n
χ (190)

to put the saxion in canonical form, we find (see [35] for the axiodilaton case)

L ⊃ −
√
−gM2

pKΦΦ̄∂µΦ∂
µΦ̄ = −

√
−g
(
M2

p

2
∂µχ∂

µχ+
M2

p

2

n

2
e−2

√
2
n
χ∂µθ∂

µθ

)
.

(191)
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By comparing it with (175), we notice that 2
√

2/n plays the role of ξ. Recalling that ξ has
to be at least of order 109 if g = O(1) in order to get a significant amount of screening,
we easily realize that this cannot be achieved in the framework of String Theory.

We do need to point out that these results were obtained assuming a specific Weyl
rescaling between the Einstein and Jordan metric

g̃µν = e2gχgµν , (192)

which results in a constant coupling between the saxion and SM matter. One could in
principle consider different types of coupling (as we end up doing for the open string
case), hoping to get a more string-friendly constraint on ξ. However a shift of 9 orders
of magnitude seems unlikely.

4.2 Brane-Position Moduli
We recall our final result from the section on D-branes: the action

S =
M2

p

2

∫
d4x

√
−g4R4 −

2π

gsl4s

∫
d4x

√
−g4

1

2

V0
W

VW

V
1
3 gmn∂µy

m∂µyn

+ SSM(g̃µν) .

(193)

By taking the singular conifold as the compactified metric

ds2 =dρ2 + ρ2
[
1

9
(dψ + cosθ1dϕ1 + cosθ2dϕ2)

2 +
1

6
(dθ21 + sin2θ1dϕ

2
1)

+
1

6
(dθ22 + sin2θ2dϕ

2
1)

]
,

(194)

we obtain

− 2π

gsl4s

∫
d4x

√
−g4

1

2

V0
W

VW

V
1
3 gmn∂µy

m∂µyn

= − 2π

gsl4s

∫
d4x

√
−g4

1

2

V0
W

VW

V
1
3

(
∂µρ∂

µρ+ nρ2∂µa∂
µa
) (195)

with n a numerical coefficient dependent on how we define the axion a starting from
the five angles ψ, ϕ1, ϕ2, θ1, θ2. As an example, if we assume ψ to be our axion, then
n = 1/9. It is worth noticing that in general n ̸= 1; for a detailed discussion on the
matter, see Appendix B. Clearly, after each definition of a, one must verify that field is
indeed a pseudo-scalar and enjoys shift symmetry.

Redefining the radial-position modulus into its canonical form through

ϕ =

√
1

M2
p

2π

gsl4s

V0
W

VW

V 1
3ρ =

√
l2s

4πV0
W

2π

gsl4s

V0
W

VW

V 1
3ρ =

√
V 1

3

2gsVW

ρ

ls
, (196)
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we obtain

− 2π

gsl4s

∫
d4x

√
−g4

1

2

V0
W

VW

V
1
3∂µρ∂

µρ

= −
M2

p

2

∫
d4x

√
−g4∂µϕ∂µϕ ,

(197)

− 2π

gsl4s

∫
d4x

√
−g4

1

2

V0
W

VW

V
1
3nρ2∂µa∂

µa

= −
∫
d4x

√
−g4

2π

gsl4s

1

2

V0
W

VW

V
1
3n

(
2gsVW

V 1
3

l2s

)
ϕ2∂µa∂

µa

= −
∫
d4x

√
−g4

1

2

4π

l2s
V0
Wnϕ

2∂µa∂
µa

= −
∫
d4x

√
−g4

1

2
f 2ϕ2∂µa∂

µa

(198)

with f defined as

f =

√
4π

l2s
V0
Wn =Mp

√
n (199)

and finally the action

S =

∫
d4x

√
−g4

(
M2

p

2
R4 −

M2
p

2
∂µϕ∂

µϕ− 1

2
f 2ϕ2∂µa∂

µa− V (a)

)
+ SSM(g̃µν) .

(200)

Notice that f has mass dimension 1 as expected.
In (200) we assumed the saxion potential to be negligible, i.e. flat, while V (a) en-

joys shift symmetry. It would be desirable to back up these claims by studying the fluxes
living on the conifold. In this thesis, we provide only qualitative arguments, leaving
more rigorous demonstrations to future research. Let us start by addressing the flat-
ness of the saxion potential. This is what makes ϕ light and in need of screening in the
first place. Therefore, there is no point in studying the axio-chameleon screening mech-
anism for a massive saxion, since the fifth-forces would already be short-range. More-
over, it has already been shown that ϕ can be used as the inflaton [4][36][37][38][10]
or quintessence field [10][39], for which the flatness of the potential is mandatory. One
could then, for example, interpret ϕ as the quintessence field, currently living in the
flat region of the potential, and aim to use the screening mechanism to explain the ab-
sence of observable fifth-forces. Regarding the axion, the Kähler potential that sources
the singular conifold metric has no dependence on the angular coordinates [11]. This
is no longer true after introducing warping, unless the stack of branes sourcing it is
placed at the tip, preserving the symmetry of the geometry. However, the general case
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still preserve a discrete shift-symmetry of the angles, due to their intrinsic periodicity.
For this reason, we believe the conifold angles, or combinations of them, to be good
axion candidates.

4.2.1 Generalization to a Field-Dependent Coupling Constant

By comparing (200) and (144), we notice that we have reached the same setup for
the screening mechanism as the one presented in [1], with quadratic W 2. The only
difference lays in the Weyl factor and, therefore, in the saxion-SM coupling. Indeed,
while in [1] the authors assume

g̃µν = A2(ϕ)gµν = e2gϕgµν , (201)

we keep a more general scope and for the moment consider a generic non-constant
g(ϕ). We present now the implications of this generalization. In doing so, we also re-
define all relevant elements to be dimensionless in preparation for the soon to come
numerical analysis.

Let us start again from the saxion equation of motion one obtains from the action

r2ϕ′′ + 2rϕ′ − r2

M2
p

ρg(ϕ)− f̄ 2r2ϕ(a′)2 = 0 , (202)

where g = g(ϕ), ρ = const. for simplicity, f̄ ≡ f/Mp =
√
n and ϕ and a are already

dimensionless. We substitute also r with its dimensionless counterpart through the
definitions

r, ρ −→ r̄ =Mpr, ρ̄ =
ρ

M4
p

−→ r̃ = r̄
√
ρ̄ =

r
√
ρ

Mp

= r
√
ρ

√
lp
Mp

(203)

and (202) becomes

r̃2ϕ′′ + 2r̃ϕ′ − r̃2g(ϕ)− f̄ 2r̃2ϕ(a′)2 = 0 . (204)

Again, we solve (204) both inside and outside the Sun, as well as in the narrow width
at the boundary. Outside the Sun, the terms representing interaction with the SM and
the axion gradient vanish, simplifying the equation of motion to

r̃2ϕ′′ + 2r̃ϕ′ = 0 (205)

or equivalently
(r̃2ϕ′)′ = 0 . (206)

Introducing L̃ as
(r̃2ϕ′)r̃=R̃ = L̃ , (207)
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we find the solution

ϕext(r̃) = ϕ∞ − L̃

r̃
, (208)

where ϕ∞ is the value of the field at infinite distance from the Sun.
Inside the Sun we only have

r̃2ϕ′′ + 2r̃ϕ′ − r̃2g(ϕ) = 0 , (209)

since we assume the axion gradient to be non-null only in a thin region at the boundary.
Through integration, (209) is equivalent to

ϕ′(r̃) =
1

r̃2

∫ r̃

0

drr2g(ϕ) , (210)

from which one finds

L̃0 = (r̃2φ′)r̃=R̃ =

∫ R̃

0

dr̃r̃2g(ϕ) , (211)

where R̃ ≃ 7∗10−4 is the dimensionless Sun radius. Unlike in [1], (210) and (211) cannot
be solved analytically in general, neither will they be for the specific case we are about
to consider.

In the narrow width, all terms of (204) are relevant. In narrow-width approximation,
we use

a′(r̃) = ∆aδ(r̃ − R̃) (212)

to turn (204) into

r̃2ϕ′′ + 2r̃ϕ′ = r̃2g(ϕ) + f̄ 2 r̃
2

2l̃
ϕ(∆a)2δ(r̃ − R̃) , (213)

where we used
δ2(r̃ − R̃) = δ(r̃ − R̃)δ(0) (214)

and introduced the width thickness through

δ(0) =
1

2l̃
. (215)

Let us integrate both sides separately. We have∫ R̃

R̃−l̃

dr̃
(
r̃2ϕ′′ + 2r̃ϕ′) = ∫ R̃

R̃−l̃

dr̃
(
r̃2ϕ′)′ = (r̃2ϕ′)

R̃
−
(
r̃2ϕ′)

R̃−l̃

= R̃2 ϕ′|R̃ − (R̃− l̃)2 ϕ′|R̃−l̃ ≃ R̃2
(
ϕ′

ext|R̃ − ϕ′|R̃−l̃

) (216)

and ∫ R̃

R̃−l̃

dr̃r̃2g(ϕ) +

∫ R̃

R̃−l̃

dr̃f̄ 2 r̃
2

2l̃
ϕ(∆a)2δ(r̃ − R̃) = f̄ 2 R̃

2

2l̃
ϕs(∆a)

2 , (217)
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where the first integral is subleading for small l̃ for continuity of ϕ(r̃). Finally, we obtain
the jump condition on the derivative of ϕ

ϕ′
ext(R̃) = ϕ′(R̃− l̃) + f̄ 2ϕs

2l̃
(∆a)2 , (218)

which equivalently gives the relation

L̃ = L̃0 + f̄ 2 R̃
2

2l̃
(∆a)2ϕs . (219)

Similarly to what we did in Chapter 3, we quantify the screening through the ratio

L

L0

=
L̃

L̃0

= 1 +
f̄ 2 R̃2

l̃
(∆a)2

2L̃0

ϕs . (220)

The first equation becomes apparent once one realizes that

L0 =
1

M2
p

∫ R

0

drr2ρg(ϕ) =
1

M2
p

∫ Mp√
ρ
R̃

0

d

(
Mp√
ρ
r̃

)(
Mp√
ρ
r̃

)2

ρg(ϕ)

=
1

M2
p

(
Mp√
ρ

)3 ∫ R̃

0

dr̃r̃2ρg(ϕ) =
Mp√
ρ
L̃0

(221)

and

L = L0 + f̄ 2R
2

2l
(∆a)2ϕs =

Mp√
ρ
L̃0 + f̄ 2

(
Mp√
ρ
R̃
)2

2
(

Mp√
ρ
l̃
) (∆a)2ϕs

=
Mp√
ρ

(
L̃0 + f̄ 2 R̃

2

2l̃
(∆a)2ϕs

)
=
Mp√
ρ
L̃ .

(222)

An important observation can be made here, which is going to guide us in the real-
ization of our brane setup on the conifold. In order to have screening, i.e. L/L0 < 1,
the second term in (220) needs to be negative. In [1], this was possible because at the
energy minimum the field would assume a negative value. This cannot be true for our
stringy model, since ϕ represents the radial coordinate on the conifold, which is always
non-negative. Our only hope is for L0, and therefore g(ϕ), to be negative. Therefore,
we must build a setup where that is the case. We will put this insight to good use in
the next section; for now, we continue our generalization of the screening mechanism,
focusing on the energy profile and minimization.

40



4 THE AXIO-CHAMELEON MECHANISM IN STRING THEORY

Similarly to Chapter 3, the total energy is given by the sum of the energy inside and
outside the Sun, with

Eext = 4πM2
p

∫ +∞

R

drr2
1

2
(ϕ′

ext)
2 =

4πM3
p√
ρ

∫ +∞

R̃

dr̃r̃2
1

2
(ϕ′

ext)
2

=
4πM3

p√
ρ

∫ +∞

R̃

dr̃r̃2
1

2

L̃2

r̃4
=

2πM3
p√
ρ

L̃2

R̃

(223)

and

Ein = πf 2R
2

l
(∆a)2ϕ2

s + 4πM2
p

∫ R

0

drr2
1

2
(ϕ′)2

=
2πM3

p√
ρ

(
f̄ 2 R̃

2

2l̃
(∆a)2ϕ2

s +

∫ R̃

0

dr̃r̃2(ϕ′)2

)
,

(224)

where to go from dimensionful to dimensionless lengths we used similar steps to those
in (221) and (222). In the case of constant g, the last term of (224) would not be relevant
for the energy minimization, since it would not depend on ϕs. However, this is not true
in general. After summing we find

√
ρ

2πM3
p R̃

Etot =

√
ρ

2πM3
p R̃

(Eext + Ein)

= f̄ 2 R̃

2l̃
(∆a)2ϕ2

s +

(
1

R̃

∫ R̃

0

dr̃r̃2g(ϕ) + f̄ 2 R̃

2l̃
(∆a)2ϕs

)2

+
1

R̃

∫ R̃

0

dr̃r̃2(ϕ′)2

=
y1
2
ϕ2
s +

(
B(ϕs) +

y1
2
ϕs

)2
+ I(ϕs)

(225)

with

y1 = f̄ 2 R̃

l̃
(∆a)2, B(φs) =

1

R̃

∫ R̃

0

dr̃r̃2g(ϕ) = R̃φ′(R̃) =
L̃0

R̃
, I(φs) =

1

R̃

∫ R̃

0

dr̃r̃2(φ′)2.

(226)
Notice how y1 is the same whether we use dimensionless or dimensionful lengths.

Using (226), (220) becomes

L

L0

= 1 +
y1

2B(ϕs)
ϕs , (227)

where ϕs is evaluated at the energy minimum.
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Figure 8: Pictorial representation of the brane setup on the conifold. The stack is stabi-
lized at ρ0, while the SM-brane can move in all directions and has radial coordinate ρ.

4.2.2 Brane setup on the conifold

We have already highlighted how, for the screening mechanism to work, we need g(ϕ)
to be negative. Here we investigate what this implies for the brane setup on the coni-
fold.

Recall that g(ϕ) comes from the Weyl factor through the relation

g(ϕ) = ∂ϕlnA , (228)

where A comes from
g̃µν = A2(ϕ)gµν . (229)

For the open string model we found

g̃µν = h−
1
2 e2ωgµν → A = h−

1
4 eω . (230)

Using properties of the logarithm, we can trace the following logical map

g(ϕ) < 0 ⇐⇒ ∂ϕlnA < 0 ⇐⇒ ∂ϕA < 0 ⇐⇒ ∂ϕh > 0 ; (231)
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that is, the warping must increase with the radial coordinate at least in some region of
the conifold. In the common scenario where the warping is sourced by a stack of branes
and fractional branes at the tip of the conifold, the opposite is true. Therefore, we are
led to consider a different setup. We imagine to stabilize a stack of branes at some
radial position ρ0, while the SM lives on a probe D3-/D3-brane moving between 0 and
ρ0 and along the angular directions. For simplicity, we assume the stack and the probe
brane to be almost aligned in the angular coordinates and to be practically separated
only along the radial direction (see 8 and [40] for a more general solution). Starting
from (59), this allows us to write the warp factor in the strong warping regime as

h =
c4

(ρ− ρ0)4
=

c̄4

(ϕ− ϕ0)4
, (232)

where we used (196) to go from ρ, ρ0 to ϕ, ϕ0 and all the multiplicative constants have
been reabsorbed into c̄4.

Consequently,

A =
(
h−

1
2 e2ω

) 1
2
= h−

1
4 eω =

ϕ− ϕ0

c̃
(233)

and
g(ϕ) =

1

ϕ− ϕ0

, 0 < ϕ < ϕ0 , (234)

which is indeed negative. Since ϕ0 is constant, it is convenient from now on to use the
shifted field φ = ϕ− ϕ0 in place of ϕ.

4.2.3 Numerical Analysis

Combining results from the last two sections, we obtain

r̃2φ′′ + 2r̃φ′ − r̃2
1

φ
− f̄ 2r̃2(φ+ ϕ0)(a

′)2 = 0 , (235)

L

L0

=
L̃

L̃0

= 1 +
y1

2B(φs)
(φs + ϕ0) (236)

with

B(φs) =
1

R̃

∫ R̃

0

dr̃r̃2
1

φ
= R̃φ′(R̃) =

L̃0

R̃
(237)
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Figure 9: Numerical solutions of (239) for r̃ ∈ [0, R̃] and various φs.

and
√
ρ

2πM3
p R̃

Etot =

√
ρ

2πM3
p R̃

(Eext + Ein)

= f̄ 2 R̃

2l̃
(∆a)2(φs + ϕ0)

2 +

(
1

R̃

∫ R̃

0

dr̃r̃2
1

φ
+ f̄ 2 R̃

2l̃
(∆a)2(φs + ϕ0)

)2

+
1

R̃

∫ R̃

0

dr̃r̃2(φ′)2

=
y1
2
(φs + ϕ0)

2 +
(
B(φs) +

y1
2
(φs + ϕ0)

)2
+ I(φs) .

(238)

Our goal here is to find the energy profile and minimize it with respect to φs, in order
to get an equation for the screening as a function of y1 and ϕ0. To do so, we need
to express Etot as an explicit function of φs. That is, we need at least an approximate
dependence of φ on φs, which we can find by solving (235) numerically inside the Sun,
i.e. neglecting the last term.

Plotting the numerical results of

r̃2φ′′ + 2r̃φ′ − r̃2
1

φ
= 0 (239)
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-0.0004

φ
varying r

Figure 10: Numerical evaluation of φ(r̃, φs) along φs for r̃ = 0 (blue), r̃ = R̃/2 (green)
and r̃ = R̃ (orange).

Figure 11: Hyperboloid given by (241) and φ at a fixed φs (black).
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Figure 12: Hyperboloid given by (241) and φ at two values of r̃ (black).

for various φs and r̃ ∈ [0, R̃] helps us build intuition. From Fig. 9 and 10 we observe
that φ(r̃, φs) is sort of hyperbolic in both r̃ and φs. Therefore, we formulate an ansatz

ar̃2 + bφ2
s − φ2 = c , (240)

or equivalently
φ = −

√
ar̃2 + bφ2

s − c (241)

once we consider only the bottom half of the hyperboloid, and compare with the nu-
merical solution with good qualitative results (see Fig. 11 and 12). Imposing φ(R̃, φs) =
φs kills two of the three parameters. In details,

φ(R̃, φs) = −
√
aR̃2 + bφ2

s − c ≡ φs → b = 1, c = aR̃2 (242)

and one is left with
φ = −

√
a(r̃2 − R̃2) + φ2

s . (243)

Since our ansatz was just an approximation, a is not purely numerical, but in itself
a function of φs. One can see this by fitting (243) over the numerical solution of (239)
for different values of φs. The results are displayed in Fig. 13. Fitting this plot gives the
approximate expression for a

a = 0.34 +
1.5 ∗ 10−9

(φs + 3.4 ∗ 10−4)2
. (244)
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Figure 13: Values of a after fitting (243) over numerical solutions of (239) for various φs

(blue) and fit (244) (red).

Figure 14: Hyperboloid given by (241) and three φ at fixed φs with different qualitative
behavior over the domain r̃ ∈ [0, R̃] (black).
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Let us make some remarks on this result. Numerical solutions of (239) for different
φs and R̃ reveal a boundary for φs at −R̃/

√
2 (one can also see this in Fig. 13). We can

back this up with an analytical argument. Numerically, as φs tends to the boundary,
φ(r̃, φs) gets more and more pointy along r̃ (see Fig. 9). The same happens for our
ansatz (240) (see Fig. 14). Here one sees even more clearly that when transitioning
from a region where φ is defined for every r ≥ 0 to one where it is not, φ takes the
form

φ = Ar̃ +B . (245)

Surprisingly, this ansatz gives an exact solution for (239) (clearly, we have to drop the
constraint φ′(0, φs) = 0). By substituting (245) into (239) we find

2r̃A− r̃2

Ar̃ −B
= 0 , (246)

which is solved by A = ±1/
√
2 and B = 0. We pick

φ = − 1√
2
r̃ , (247)

since we know φ ≡ ϕ − ϕ0 < 0. Imposing φ(R̃) = φs gives φs = −R̃/
√
2 for this

boundary case. Looking back at (243), we notice that it stops being defined at r̃ = 0
when φs > −

√
aR̃. Therefore, we deduce that for φs = −R̃/

√
2, we must have

a = 1/2.
Let us now look at the horizontal asymptote in Fig. 13, which the raw fit in (244) sets

at 0.34. We can show that it corresponds to the region where ϕ/ϕ0 ≪ 1,that is where

g(φ) =
1

φ
=

1

ϕ− ϕ0
≃ − 1

ϕ0

(
1 +

ϕ

ϕ0

)
≃ − 1

ϕ0

. (248)

In this regime g is practically constant, leading us back to the case studied in [1] and in
Chapter 3. Taking the derivative of (243) and evaluating at r̃ = R̃ gives

φ′|R̃ = − aR̃√
φ2
s

=
aR̃

φs

≃ −aR̃
ϕ0

. (249)

Comparing it with the constant g case (154)

φ′(r̃)|R̃ = − 1

R̃2

∫ R̃

0

dr̃r̃2
1

ϕ0

= − R̃

3ϕ0

(250)

reveals that a → 1/3 for ϕ/ϕ0 ≪ 1. Being ϕ′|R̃ the fundamental quantity of this
mechanism, we expect the amount of screening L/L0 to match that of [1] in this limit.
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Figure 15: Energy profile Etot for ϕ0 = 0.001. Notice how the minimum is close to
φs = −ϕ0.

We will verify shortly that this is indeed the case. Imposing the asymptotic value and
fitting again, (244) gets updated to

a =
1

3
+

2.5 ∗ 10−9

(φs + 3.0 ∗ 10−4)2
(251)

and we obtain our final expression for φ

φ(r̃, φs) = −

√(
1

3
+

2.5 ∗ 10−9

(φs + 3.0 ∗ 10−4)2

)
(r̃2 − R̃2) + φ2

s . (252)

Enforcing the boundary value a = 1/2 worsens the fit in the overall domain for the
ansatz assumed in (244). Therefore, we prefer not to impose it and label the region
φ ∼ −R̃/

√
2, i.e. ϕ0 ∼ R̃/

√
2 as not fully trust-worthy.

Plugging (252) into the energy expression (238) give an energy profile (see Fig. 15)
that we can minimize numerically with respect to φs. This gives us a value for φs that
we can use in (236). Different values of ϕ0 and y1 give different amounts of screening;
we sum them up in Fig. 16.

We notice that the bigger ϕ0 is, the smaller the minimized value of ϕs (see Tab. 1).
Takingϕs as indicative of the order of magnitude ofϕ in the whole region inside the Sun,
we deduce that the ratio ϕ/ϕ0 can be small even for relatively small values of ϕ0. We
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y1

0.05

0.10

0.15

0.20

0.25

L/L0

Figure 16: Numerical evaluation of screening for ϕ0 = 6 ∗ 10−4 (blue), ϕ0 = 0.1 (red)
and analytical evaluation for g = const. [1] (black).

ϕs/ϕ0 y1 = 1 y1 = 10 y1 = 100
ϕ0 = 6 ∗ 10−4 −10−1 8.5 ∗ 10−2 10−2

ϕ0 = 10−3 7.0 ∗ 10−2 2.9 ∗ 10−2 3.3 ∗ 10−3

ϕ0 = 10−2 1.1 ∗ 10−3 2.8 ∗ 10−4 3.3 ∗ 10−5

ϕ0 = 10−1 1.1 ∗ 10−5 2.8 ∗ 10−6 3.3 ∗ 10−7

Table 1: ϕs/ϕ0 at the energy minimum for various ϕ0 and y1. The top left value being
negative indicates that ϕs < 0 and that we cannot trust our analysis in that regime.
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20 40 60 80 100
y1

0.00001

0.00002

0.00003

0.00004

0.00005

ϕs

Figure 17: Numerical evaluation of ϕs at the energy minimum (blue) compared to the
constant g case [1] (orange) for ϕ0 = 6 ∗ 10−4.
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ϕs

Figure 18: Numerical evaluation of ϕs at the energy minimum (blue) compared to the
constant g case [1] (orange) for ϕ0 = 0.1. The overlap is already practically exact.
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Figure 19: Relative difference between the B resulting from our analysis and the one
obtained in [1] where g = const. We took y1 = 10.
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Figure 20: Relative difference between g ∼ 1/φs and g = −1/ϕ0. We took y1 = 10.
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see this clearly in Fig 16, where for ϕ0 = 0.1 the amount of screening already coincides
with the constant g case, meaning that the approximation in (248) is allowed.

To be even more certain of the validity of (248) for ϕ/ϕ0 ≪ 1, we compare relevant
quantities when evaluated numerically and with the g ≃ −1/ϕ0 approximation. Results
are shown in Fig. 17, 18, 19 and 20. Notice how the approximation gets better as y1 and
ϕ0 increase.

For constant g, L0 ∝ g. This allows us to reinterpret L/L0 as geff/g, where geff is
the effective saxion-SM coupling resulting from the screening. In our model, this is true
only when ϕ/ϕ0 ≪ 1. In this regime, we can apply existing experimental constraints to
our model (experiments for space-dependent g are not as developed yet). In particular,
for fifth-forces to evade observation in the solar system, one needs geff ≲ 10−3; for us
this means

|geff| = |g| L
L0

∼ O
(
10−3

)
. (253)

To study the feasibility of (253), the parameters at our disposal are y1 and ϕ0. Recall
that the former is itself dependent on the axion gradient∆a and the Sun radius to width
thickness ratioR/l. To estimate the order of magnitude of these quantities, one would
need a better understanding of the axion potential and of the axion-SM interactions,
which we have been neglecting in this thesis. This remains thus an open question in
need of further research.

In contrast, ϕ0 can already be constrained quite accurately. As already mentioned,
we know φs < −R̃/

√
2. Also, we have been limiting our analysis to the strong warping

regime; as a result, we must impose

(ρ− ρ0)
4 ≪ c4

V 2
3

=
27
4
πgsN(α′)2

V 2
3

=
27

64π3 gsNl
4
s

V 2
3

→ |ρ− ρ0|
ls

<

(
27

64π3 gsN
) 1

4

V 1
6

. (254)

Recalling (196) we find

φ =

√
V 1

3

2gsVW

ρ− ρ0
ls

∼ 1
√
2gsV

1
3

(ρ− ρ0)

ls
, (255)

where we used
V ∼ VW , (256)

which is true if we assume the conifold to be a small part of the overall Calabi-Yau.
Combining (254) and (255) we find

|φ| < 1
√
2gsV

1
3

(
27

64π3 gsN
) 1

4

V 1
6

∼

(
N
gs

) 1
4

4V 1
2

. (257)
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Overall

−

(
N
gs

) 1
4

4V 1
2

< φ < − R̃√
2
≃ −5 ∗ 10−4 . (258)

Recalling that φ ∼ −ϕ0, our constraints on ϕ0 are

R̃√
2
≃ 5 ∗ 10−4 < ϕ0 <

(
N
gs

) 1
4

4V 1
2

. (259)

Notice how we also get constraints on V from

5 ∗ 10−4 <

(
N
gs

) 1
4

4V 1
2

→ 1 ≲ V ≲ 106
(
N

gs

) 1
2

. (260)

These allow a bit of overlap with the LVS regime, which is good news if one hopes to
stabilize the stringy moduli. However, one should remember that the volume upper
boundary is just the result of us limiting the model to the strong warping regime. It is
therefore worth it to attempt a generalization of our research beyond this regime, in
the hope of extending the axio-chameleon screening mechanism well inside LVS.

54



5 CONCLUSION

5 Conclusion
We analyzed possible implementations of the novel axio-chameleon screening mech-
anism in Type IIB String Theory. While closed-string moduli seem unable to recreate
such effect, brane-position moduly showed promising results.

We assumed the Standard Model to live on a D3/D3-brane on a warped deformed
conifold. By using the radial coordinate and a combination of the angular coordinates of
the brane as a saxion-axion pair, screening can be achieved only for a warp factor that
decreases with the radial coordinate. For this reason, we assumed a stack of branes
to be fixed further away from the tip than the SM-brane. The saxion-SM coupling ap-
proaches a constant value the further the stack is from the tip.

Since we limited ourselves to the strong warping regime, we obtained a constraint
on the compactified volumes that lets us barely reach LVS. However, currently there is
no reason to believe this constraint could not the relaxed in the future.

We also acknowledge the necessity for further research in the study of the saxion
and axion potentials and the axion-SM interactions. In particular, managing to recre-
ate a slow-roll saxion potential in this non-conventional brane setup would solidify our
model. Also, throughout this thesis we have assumed that one can create an axion
from a combination of the angular brane-position moduli. This needs to be verified via
a detailed study of the field potential and its interaction with the SM.

55



5 CONCLUSION

Acknowledgements
I am grateful to Prof. Susha Louise Parameswaran and Prof. Michele Cicoli for the ad-
vice and guidance provided during this months. I also acknowledge and thank Joaquim
Gomes and Kajal Singh for the many constructive conversations that helped in the re-
alization of this thesis.

56



A REVIEW ON QUINTESSENCE

Appendix

A Review on Quintessence
Various models use the radial coordinate of a D3/D3-brane as a quintessence field in an
attempt of explaining the observed current accelerated expansion of the universe. The
stringy embedding of the axio-chameleon screening mechanism we proposed could be
used in this context, relaxing experimental constraints on quintessence fifth-forces. For
this reason, we provide here a short overview on the topic.

To describe an expanding universe, one must introduce a time-dependent scale fac-
tor in the metric. This is the role of a(t) in the FLRW metric

ds2 = −dt2 + a2(t)dx2 = −dt2 + a2(t)
(
dr2 + r2dΩ2

)
, (261)

where the time coordinate is absolute, but the spatial ones are comoving with the ex-
pansion. The maximum comoving distance a particle can travel in an interval of time,
known as the particle horizon, is given by

∆r =

∫ r2

r1

dr =

∫ t2

t1

dt

a(t)
=

∫ t2

t1

da

a2(t)

dt

da
a(t) =

∫ t2

t1

d(ln a)
aH

, (262)

where we obviously considered a massless particle (ds2 = 0) and defined the Hubble
parameter as

H ≡ 1

a

da

dt
. (263)

For the horizon to be shrinking as we observe today, the comoving Hubble radius (aH)−1

must be negative, i.e.
d

dt

1

aH
= −1

a

(
Ḣ

H2
+ 1

)
< 0 , (264)

which is equivalent to

ε ≡ − Ḣ

H2
< 1 . (265)

We will now show that (265) can be achieved from a scalar field, which is referred
to as quintessence, living in the FLRW spacetime. Let us start from the action

S =

∫
d4x

√
−g
(
M2

p

2
R−

M2
p

2
(∂ϕ)2 − V (ϕ)

)
, (266)
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where we are using the FLRW metric. The Variational Principle gives the Klein-Gordon
equation with Hubble friction

ϕ̈+ 3Hϕ̇ = −∂ϕV
M2

p

, (267)

while the Friedmann equation is

3H2 =
1

2
ϕ̇2 +

V

M2
p

. (268)

Differentiating (268) with respect to time gives

∂t(H
2) = 2HḢ =

1

3
ϕ̇ϕ̈+

1

3

∂ϕV

M2
p

ϕ̇ . (269)

By substituting ∂ϕV/M2
p with (267) we find

Ḣ =
1

2
ϕ̇2 (270)

and consequently (265) turns into

ε =
1
2
ϕ̇2

H2
=

3
2
ϕ̇2

1
2
ϕ̇2 + V

M2
p

V/M2
p≫ 1

2
ϕ̇2

−−−−−−−→ 0 . (271)

In the limit we took in (271), (265) is satisfied. This can happen in a number of poten-
tials, one of the most famous families being the slow-roll ones. These are characterized
by a very small slope, so that the kinetic energy of the field is indeed subleading to the
potential.

B Fictitious Non-Linear Sigma Models
Non-linear sigma models are characterized by a generalized kinetic term, responsible
for interactions between the scalar fields. However, there are instances when these
interactions are just artifacts of a poor choice of fields and an appropriate redefinition
can lead us back to a linear sigma model. Here we will argue that the action

S =
M2

p

2

∫
d4x

√
−g
(
R− ∂µϕ∂

µϕ− ϕ2∂µa∂
µa
)

(272)

falls into this category. Our interest in (272) is justified by its similarity with (200), which
coincides for f =Mp.
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The target-space metric in (272) is

Gab =

(
1 0
0 ϕ2

)
, (273)

which we recognize as the 2D flat metric in polar coordinates. Therefore, applying the
polar-cartesian coordinate conversion

ϕ2 = χ2 + θ2 ,

tan a =
θ

χ

(274)

is guaranteed to turn (272) into the equivalent linear sigma model

S =
M2

p

2

∫
d4x

√
−g (R− ∂µχ∂

µχ− ∂µθ∂
µθ) , (275)

where the fictitious interactions vanished.
One can make even further observations in the framework of Supergravity. Let us

start from a Kähler potential
K = 2n2ΦΦ̄ , (276)

which originates the metric
Gab = KΦΦ̄ = 2n2 (277)

appearing in the Supergravity lagrangian term [34]

L ⊃ −
√
−gM2

pKΦΦ̄∂µΦ∂
µΦ̄ . (278)

To express this in term of real fields, one needs to choose how to split the complex field
Φ. Picking Φ = χ+ iθ or Φ = ϕ exp(ia) gives

L ⊃ −
√
−gM2

p2n
2 (∂µχ∂

µχ+ ∂µθ∂
µθ) (279)

or
L ⊃ −

√
−gM2

p2n
2
(
∂µϕ∂

µϕ+ ϕ2∂µa∂
µa
)

(280)

respectively. Despite the minimalist appeal of (279), recalling that K appears in the
scalar potential

V =M4
p e

G
(
GΦΦ̄GΦGΦ̄ − 3

)
, G ≡ K + ln|W |2 (281)

might hint us towards the polar decomposition, since K would be independent of a,
making {ϕ, a} a promising saxion-axion pair. However, Kähler invariance

K 7→ K + f(Φ) + f̄(Φ̄) ,

W 7→ e−f(Φ)W
(282)
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tells us that (276) is equivalent to

K = 2n2ΦΦ̄ + (nΦ)2 + (nΦ̄)2 = n2(Φ + Φ̄)2 , (283)

which seems to suggest {χ, θ} as a saxion-axion pair.
Based on these considerations, we conclude that (279) and (280) are indeed equiv-

alent and that information on the eventual axionic nature of a field can only come from
W .
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