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Abstract
The dynamic study of economic systems is an area of Economics that is now a century
old, startingwith the first economic growthmodels of Harrod-Domar. Through thework
of economist Nicholas Kaldor and the eclectic RichardM. Goodwin, non-linear relation-
ships have made their appearance in endogenous growth models, which are, we might
say, the gateway to complex systems. In this work, we will study a series of models that
deal with the mathematisation of the business cycle and the study of its fluctuations.
In particular, the absolute protagonist will be the dynamic model of the Sraffian Super-
multiplier, belonging precisely to the school of economic thought initiated by the work
of Italian economist Piero Sraffa. Although the author will attempt to explain the dif-
ferences between the various schools of thought and introduce notions of economics,
the central theme of the work will be the addition of inventory fluctuations to the Sraf-
fian Supermultiplier model developed by Freitas and Serrano (2015). We firmly believe
that this topic deserves detailed investigation within the Sraffian School, not only for its
mathematical content, but, above all, for the addition of an element of realism to the
study of economic fluctuations and endogenous growth.

Sommario

Lo studio dinamico dei sistemi economici è un’area della Scienza Economica che ha or-
mai un secolo, a partire dai primi modelli di crescita economica di Harrod-Domar. Attra-
verso l’opera dell’economista Nicholas Kaldor e attraverso quella dell’eclettico Richard
M. Goodwin hanno fatto la loro comparsa nei modelli di crescita endogena le relazio-
ni non lineari, che sono, potremmo dire, la porta di accesso ai Sistemi Complessi. In
questo lavoro studieremo una serie di modelli che si occupano della matematizzazio-
ne del business cycle e dello studio delle sue fluttuazioni. In particolare, il protagoni-
sta assoluto sarà il modello dinamico del Supermoltiplicatore Sraffiano, appartenente
appunto alla Scuola di pensiero economico avviata dall’opera dell’economista italiano
Piero Sraffa. Sebbene sarà cura dell’autore tentare di spiegare le differenze tra le va-
rie scuole di pensiero e introdurre nozioni di Economia, l’argomento cardine del lavoro
sarà l’aggiunta delle fluttuazioni delle giacenze di magazzino (inventories) al modello
di Supermoltiplicatore Sraffiano sviluppato da Freitas e Serrano (2015). Crediamo fer-
mamente che questo argomento meriti una investigazione dettagliata all’interno della
Scuola Sraffiana, non solo per il contenuto matematico, ma, soprattutto, per l’aggiunta
di un elemento di realismo allo studio delle fluttuazioni economiche e della crescita
endogena.
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1 INTRODUCTION

1 Introduction
Economics, as a social science, is characterized by several “Schools of Thought”, which
are sets of theories and approaches that offer different perspectives on how economic
systems function.
These schools have evolved over time, often in response to economic crises or social
changes, and they continue to influence the economic policies of governments and in-
stitutions worldwide.
It’s important to note that, unlike in Physics, the debate often revolves not around
cutting-edge theories, but rather the very foundations of knowledge. Often, the debate
revolves precisely around causal connections. One school interprets causal connection
as meaning that phenomenon A causes phenomenon B, while another school holds
the opposite view.
One of the most famous examples is the debate over the importance of supply and de-
mand. For the so-called Orthodox School (Marginalist/Neoclassical), supply-side mech-
anisms are themost important aspect ofmarket economies. For theHeterodox Schools,
however, demand is of great importance and the key mechanism in economic crises.
While Economics is a social science, it is also possible to describe economical systems
using mathematical models. In particular, large macroeconomic aggregates can be de-
scribed by kinetic models similar to those in Physics: dynamical models applied to Eco-
nomics, and in particular, models of economic growth, will be the main topic of this
thesis.
However, wemust not delude ourselves: the veil of mathematical description cast over
social and economic science cannot eliminate theoretical debates about the underly-
ing foundations. Thus, even in mathematical models, the aspect of different schools of
thought recurs, specifically in the hypotheses subsequently described by the model’s
equations.
For example, some elements used below, such as themultiplier or induced investments,
are not universally accepted by all economists, or rather, by all schools of thought. For
this reason, a clarification is necessary before we begin. In this thesis, we will not
deal with models from the Orthodox School, since the main topic concerns the Sraf-
fian School, which is one of the Heterodox Schools. Beyond that, most of the models
will come from the (Post-)Keynesian School.
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2 DYNAMICAL SYSTEMS AND
BIFURCATION THEORY

2 Dynamical systems and
bifurcation theory

2.1 Introductory definitions
A very informal definition of a dynamical system is the following: it is a mathematical
formalization of the concept of a deterministic process. A state in the future or in the
past of many physical, chemical, biological, etc systemsmay be inferred by knowing the
present state and the laws governing the evolution. If these laws do not change in time,
then the behaviour of the system is completely determined by its initial conditions. In
conclusion, a dynamical system is defined by a set of possible states and the law which
settles the evolution of the states in time, see (Kuznetsov, 1995).
More precisely, a dynamical system is defined by a triple {T,X, φt}, where T is a num-
ber set,X is a state space and φt is an evolution operator. Typically t ∈ T is identified
as the time: in discrete-time dynamical systems T ∈ Z, in continuous-time dynamical
systems T ∈ R. The possible states in state space are identified by the points in a set
X. Finally, the evolution operator φt is defined for every t ∈ T as:

φt : X → X (1)

and transforms an initial state x0 ∈ X in a state xt ∈ X at time t as:

xt = φtx0 (2)

In addition, the evolution operator has to satisfy the two following properties:

x0 = φ0x0 (3)

which means that φ0 is the identity operator and:

xt+s = φt+sx0 = φt(φsx0) (4)

which means that the final state xt+s is the same if the system evolves for a time t+ s
or if it evolves for a time s and then for a time t.
For our purposes we limit our discussion to continuous-time dynamical systems, thus
T ∈ R, in a state space X ∈ Rn and the evolution operator is defined by ordinary
differential equations. From now on we use the terms dynamical system and ordinary
differential equation as synonyms.
If a dynamical system depends on one or more parameters, it can happen that varying
these parameters, the qualitative behaviour of the systemcan change, for example fixed
points can be created or destroyed, their stability can change, even periodic solutions
arise. These kind of changes are called bifurcations. In the following we will refer to
well-behaved real-valued functions, in the sense they are sufficiently smooth and allows
all the derivatives we will need.
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2.2 Fixed points and stability in 1 dimension
We begin our discussion on fixed points by considering the ODE:

ẋ = f(x) (5)

where D is a subset of R, f : D → R is a smooth function and x ∈ D, then a fixed
point x∗ is defined by:

f(x∗) = 0 (6)

namely it is an equilibrium solution of Eq(5):

x(t) = x∗ (7)

Note that Eq(5) has an exact general solution obtained by separation of variables:

t = t0 +

∫ x

x0

dx′

f(x′)
(8)

We now focus our attention on the stability of Eq(7), roughly speaking we are asking
ourselves: “what happens to equilibrium solutions after a perturbation?”.
In order to answer this question we apply a procedure called linearization, thus we
define a small deviation η(t) = x(t)− x∗ ≪ 1 and check its behaviour:

dotη = ẋ = f(x∗ + η) ≈ f(x∗) + f ′(x∗)η = f ′(x∗)η (9)

where we neglected the quadratic term in η and supposed f ′(x∗) ̸= 0. If this is the
case1 then Eq(9) has the solution:

η(t) = η(0)ef
′(x∗)t (10)

which means η(t) decays if f ′(x∗) < 0 (x∗ is stable) or grows if f ′(x∗) > 0 (x∗ is
unstable).

2.3 Fixed points and stability in 2 dimensions
Consider the system of coupled ODEs:

˙⃗
X = F⃗ (X⃗) (11)

where U is a subset of R2, F⃗ : U → R2 is a smooth vector field defined as F⃗ (X⃗) =

(f(X⃗), g(X⃗))T , X⃗ = (x, y) ∈ U . Supposing (x∗, y∗) is a fixed point:

f(x∗, y∗) = g(x∗, y∗) = 0 (12)
1If f ′ (x∗) = 0 nothing can be said about stability and problem has to be studied case by case.

3
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then:
u = x− x∗ ≪ 1

v = y − y∗ ≪ 1)
(13)

define a small deviation from the fixed point and its dynamics is given by:

u̇ = ẋ = f(x∗ + u, y∗ + v) ≈
≈ f(x∗, y∗) + u∂xf(x

∗, y∗) + v∂yf(x
∗, y∗) =

= u∂xf(x
∗, y∗) + v∂yf(x

∗, y∗)

and similarly:
v̇ = u∂xg(x

∗, y∗) + v∂yg(x
∗, y∗) (14)

in which quadratic terms in u and v are neglected. In this case the deviation evolves
according to the linearized system (until quadratic terms are negligible) which can be
solved exactly:

(u̇, v̇)T = J (x∗, y∗) (u, v)T (15)

where J (x∗, y∗) is the jacobian matrix at the fixed point.
Since we are interested in studying the stability we only care about the behaviour of
the system close to fixed points, thus linearization is a good approximation2.
Due to the fact J (x∗, y∗) is a symmetric matrix, it can always be rewritten in terms of
eigenvalues and eigenvectors.
The general solution of a generic 2-dimensional linear system of ODEs:

˙⃗
X = AX⃗ (16)

is given by:
X⃗(t) = c1e

λ1tw⃗1 + c2e
λ2tw⃗2 (17)

where λi is the eigenvalue associated to the eigenvector w⃗i, i = 1, 2 of matrix A.
In order to check the stability of the fixed point (x∗, y∗), it is sufficient to look at the
sign of the real part of the eigenvalues: if at least one of them is positive, then Eq(17)
grows exponentially and the fixed point is unstable. On the other hand, if the real parts
are all negative then the fixed point is stable. Imaginary parts do not affect the global
stability, even though have impact on the trajectories: for example a stable fixed point
is a node if Im(λ1,2) = 0, but it is a focus if Im(λ1,2) ̸= 0.
Since in 2-dimensional the determinant of the jacobian matrix is ∆ = λ1λ1 and the
trace is τ = λ1 + λ1 the scheme in Figure 1 is useful for classifying ODEs systems by
looking only at the sign of the trace and the determinant3.
An additional tool, which allows us to find fixed points graphically, is represented by

2There are particular case where this approximation fails since it isn’t enough.
3it is often useful for deriving the conditions on a parameter in the bifurcation study.
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Figure 1: 2-dimensional topology, where ∆ is the determinant and τ the trace of the
jacobian matrix. The image is taken from (Strogatz, 2024).

the study of nullclines. A nullcline is defined as the curve on which the time derivative
of a variable in the dynamical system is equal to zero, namely, for Eq(11), the nullclines
are the curves defined by f (x, y) = 0 and g (x, y) = 0, which can be plotted on phase
plane. By definition, the points at which these curves cross are fixed points.
The definitions we introduced in order to study stability or instability of fixed points are
pretty general and valid even for higher-dimensional systems.

2.4 Limit cycles
The dynamics in 1 dimension is pretty poor, in fact a trajectory in phase space can only
approach, be repelled or stand on a fixed point. In 2 dimensions oscillations and peri-

Figure 2: Three kinds of limit cycles. The image is taken from (Strogatz, 2024).
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odic orbit can arise, in addition to the already-known behaviour seen in 1 dimension.
A limit cycle is an isolated closed trajectory, whichmeans that neighbouring trajectories
are not closed: they approach the limit cycle (if the limit cycle is stable) or move away
from it (if the limit cycle is unstable). There also exist half-stable limit cycles: trajectories
are attracted on one side and repelled on the other. Note that limit cycles occur only in
non-linear systems. In linear systems of course closed orbits are possible but they are
not isolated: if x⃗(t) is a closed orbit, because of linearity also cx⃗(t) does, which means
x⃗(t) is surrounded by a one-parameter family of closed orbits (center).

2.5 Bifurcations in 1 dimension
In this section the main bifurcations in 1 dimension, which occur also in higher dimen-
sional systems, are outlined and a few examples are provided.

2.5.1 Saddle-node bifurcation

The saddle-node bifurcation is the mechanism that manages the creation and destruc-
tion of fixed points. As the control parameter is varied, two fixed points canmove closer
to each other, collide and mutually annihilate at bifurcation point.
The normal form of this kind of bifurcation is given by:

ẋ = r + x2 (18)

where r is the control parameter. As shown in Figure 3, the two fixed points x∗ =
±
√
−r, one stable and the other unstable, exist if r < 0 and approach or move away

each other as r varies. If r < 0 is increased the fixed points come closer and in r = 0
they collide and disappear. On the other hand if r > 0 is decreased two fixed points

Figure 3: Saddle-node bifurcation. The image is taken from (Strogatz, 2024).

emerge in r = 0 and then move away. In r = 0 the system changes its qualitative
behaviour so this is the bifurcation point. In order to represent this behaviour we can

6
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Figure 4: Saddle-node bifurcation diagram. The image is taken from (Strogatz, 2024).

plot the bifurcation diagram which shows the dependence of fixed points as a function
of r, as shown in Figure 4.

2.5.2 Transcritical bifurcation

The transcritical bifurcation manages the exchange of stabilities between two fixed
point after they collided. This kind of bifurcation typically occurs when a fixed point

Figure 5: Transcritical bifurcation. The image is taken from (Strogatz, 2024).

always exists and cannot be destroyed. The normal form of this kind of bifurcation is
given by:

ẋ = rx− x2 (19)

In this case the fixed points are x∗ = 0 and x∗ = r.
As shown in Figure 5, x∗ = 0 is a fixed point for all values of r and, if r < 0, it is stable
and x∗ = r is unstable. On the other hand if r > 0 then x∗ = 0 becomes unstable
and x∗ = r becomes stable. This means the two fixed points at bifurcation point r = 0
exchange their stability, as also shown in the bifurcation diagram in Figure 6.

7
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Figure 6: Transcritical bifurcation diagram. The image is taken from (Strogatz, 2024).

2.5.3 Pitchfork bifurcation

The pitchfork bifurcation occurs in systems presenting some kind of symmetry and so
fixed points tend to appear and disappear in symmetrical pairs. There exist two kind

Figure 7: Supercritical pitchfork bifurcation. The image is taken from (Strogatz, 2024).

of pitchfork bifurcation: supercritical and subcritical.
The normal form of the supercritical pitchfork bifurcation is given by:

ẋ = rx− x3 (20)

whose fixed points are x∗ = 0 and, if r > 0, x∗ = ±
√
r. As shown in Figure 7, x∗ = 0

is the only existing fixed point if r ≤ 0 and it is stable. If r > 0 then it becomes
unstable and the two symmetrical stable fixed points x∗ = ±

√
r appear, so r = 0

is the bifurcation point, as also shown in the bifurcation diagram in Figure 8.
8
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Figure 8: Supercritical pitchfork bifurcation diagram. The image is taken from (Strogatz,
2024).

Figure 9: Subcritical pithfork bifurcation diagram. The image is taken from (Strogatz,
2024).

9



2 DYNAMICAL SYSTEMS AND
BIFURCATION THEORY

The normal form of the subcritical pitchfork bifurcation is:

ẋ = rx+ x3 (21)

As in the previous case, x∗ = 0 always exists but now is stable if r < 0 and x∗ = ±
√
−r

are unstable. Conversely, if r ≥ 0 then x∗ = 0 is the only fixed point and it is unstable,
as shown in Figure 9.

2.6 Bifurcations in 2 dimensions
The dynamics in 2 dimensions is richer than in 1 dimension.
In addiction to the bifurcations seen in the previous sections, in fact, new kinds of bi-
furcations involving limit cycles may arise.

2.6.1 Hopf bifurcation

Given a fixed point, as said in Section 2.3, its stability is regulated by the real part of
the eigenvalues λ1, λ2 of the jacobian matrix. Since they satisfy a quadratic equation,
if the fixed point is stable, they must be real and negative or complex conjugates with
negative real part, see Figure 10. In order to destabilize the fixed point, at least one of

Figure 10: Jacobian eigenvalues of a stable fixed point in complex plain: both real or
complex conjugates. The image is taken from (Strogatz, 2024).

the two eigenvalues has to cross the imaginary axis, as the control parameter µ varies.
If both complex conjugates eigenvalues do, the system undergoes an Hopf bifurcation.
A supercritical Hopf bifurcation occurs when a stable fixed point becomes unstable and
is surrounded by a small limit cycle.
The normal form in polar coordinates is given by:{

ṙ = µr − r3

θ̇ = ω
(22)

10
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Figure 11: Supercritical Hopf bifurcation phase portrait. The image is taken from (Stro-
gatz, 2024).

Figure 12: Subcritical Hopf bifurcation phase portrait. The image is taken from (Strogatz,
2024).

11
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After calculation, the eigenvalues of the jacobian are found to be λ = µ ± iω, so the
bifurcation point is µc = 0. As shown in Figure 11 the origin r = 0 is stable if µ ≤ 0. If
µ > 0 it becomes unstable and a stable circular limit cycle of radius r = √

µ appears.
It can be shown that, in general in supercritical Hopf bifurcation, the size of the limit
cycle grows continuously from zero of a factor proportional to

√
µ− µc and the period

of the limit cycle is T = 2π
Im(λ)

+O (µ− µc), for µ− µc close to zero.
Instead, in subcritical Hopf bifurcation the trajectories jump to a distant attractor (a
fixed point, a limit cycle, infinity).
This means there is not a continuous growth of a limit cycle as in the supercritical case.
The normal form is given by: {

ṙ = µr + r3 − r5

θ̇ = ω
(23)

Note that r3 is now the destabilizing term.
If µ < 0, there is a stable fixed point in the origin surrounded by an unstable limit cycle
and an external stable limit cycle, as shown in Figure 12.
As µ increases, the unstable limit cycle shrinks to zero amplitude and makes the origin
become unstable at the bifurcation point µ = 0.
Thismeans that there is a trajectory rapidly emerging from the origin which approaches
the stable limit cycle after the bifurcation.

2.6.2 Saddle-node bifurcation of cycles

Consider once again Eq(23) we have seen in previous section if µ = 0 a subcritical Hopf
bifurcation occurs, anyway another kind of bifurcation may occur too.
As shown in Figure 13, if µc = −1/4, an half-stable limit cycle appears and, as µ is
increased, it splits into two limit cycles, in a sort of saddle-node bifurcation. This kind
of bifurcation is called saddle-node bifurcation of cycles.

2.6.3 Saddle-node on a limit cycle (SNLC) bifurcation

The SNLC bifurcation occurs when two fixed points emerge on a limit cycle in a saddle-
node bifurcation.
As an example we consider: {

ṙ = r − r3

θ̇ = µ− sin (θ)
(24)

As shown in Figure 14, if µ > 1, the trajectories approach the stable limit cycle r = 1
surrounding the origin which is always unstable.
Asµ decreases, a bottleneck appears at θ = π/2 and finally, at bifurcation pointµc = 1,
a fixed point emerges on the limit cycle and the period becomes infinite (it can be shown

12
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Figure 13: Saddle-node bifurcation of cycles radial plot and phase portrait. The image
is taken from (Strogatz, 2024).

Figure 14: SNLC bifurcation phase portrait. The image is taken from (Strogatz, 2024).
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the period is T = O
(

1√
µ−µc

)
near the bifurcation).

If µ < 1 the fixed point splits into a saddle and node in a saddle-node bifurcation.

Figure 15: Saddle-homoclinic bifurcation phase portrait for different values of µ. The
image is taken from (Strogatz, 2024).

2.6.4 Saddle-homoclinic bifurcation

A saddle-homoclinic bifurcation occurswhen a limit cycle and a saddlemove closer until
they touch at bifurcation point, thus making the orbit homoclinic.
As an example consider: {

ẋ = y

ẏ = µy + x− x2 + xy
(25)

In Figure 15 the phase plane is plotted for different values of µ: if µ < µc ≈ −0.8645, a
stable limit cycle surrounds the unstable fixed point on the right and there is a saddle
at the origin. As µ increases, the limit cycle moves closer to the saddle until µ = µc,
where they touch, and the orbit becomes homoclinic.
Finally, if µ > µc, the limit cycle is destroyed.
We conclude noting that also in this case the period becomes infinite but the asymp-
totic behaviour is different than in SNLC bifurcation: T = O

(
ln
(

1
µ−µc

))
near the

14
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bifurcation point.
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3 EXAMPLES OF DYNAMICAL SYSTEMS
IN ECONOMICS

3 Examples of dynamical systems
in Economics

3.1 The first growth model: the Harrod-Domar model
The Harrod-Domar model is important because it was the first growth model.
Contemporary interest in modern theories of economic growth can be conveniently
dated from the (Harrod, 1939) paper (and (Harrod, 1948), years later) followed shortly
byDomar’ similar, but indipendently derived, contributions, (Domar, 1946) and (Domar,
1947), (see also Hywel, 1975, Chapter 3).
(Cesaratto, 2019)4 comments on this point:

Keynes’ first biographer was Roy Harrod (1900-1978), who in the late 1930s
was also the initiator of modern growth theory. His was an attempt to extend
Keynes’ ideas to the long term. Keynes had in fact stated that in the short term,
when production capacity is given, the degree of utilisation of that capacity de-
pends on aggregate demand. In the long term, economists say, productive capac-
ity (or capital stock) increases. The question is therefore what determines this
increase. Harrod came up with a model that was as simple as it was ambiguous,
which was neither Keynesian nor marginalist. So much so that both the orthodox
and heterodox strands of growth theory departed from him.

The first assumption of the model is that savings S are proportional to national income
Y

S = sY (26)

where s is the average and marginal propensity to save.
The labour force L is assumed to grow at a constant rate n, so it’s exogenous

L̇

L
= n (27)

Y is not only the national income but also the output produced. Here, we assume that
the capital stockK do not depreciate5 and there is no technical progress.
A given flow to outputY requires an amount of capital and labour and they are uniquely
given6. So a stock of capital K is required to produce an output Y = K

νG
where νG is

4The translation from Italian is our.
5So the flow of investment is I = K̇.
6So here it is not possible to produce, as in neoclassical models, a quantity of output through different

combinations of capital and labour. Where, on the other hand, the substitution of factors of production
applies (e.g. neoclassical models), capitalists will be able to choose the proportion of labour and capital
that will minimise their expenditure, depending on the prices of factors of production.

16
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the capital-output ratio or accelerator (here it has two different conceptions, that we’ll
see later).
However any given flow of output requires L

o
units of labour, with o defined as the

constant ratio of labour requirements to total output o = L
Y
. Put another way, if all

labour is fully employed then the maximum flow of output, whatever the size of the
stock of capital, is L

u
.

So the production function implied by the Harrod approach is of the fixed proportion
variety:

Y = min

(
K

νG
,
L

o

)
(28)

If, at the beginning of time, all labour is fully employed, this assumption implies that,
in the absence of technical progress, the maximum rate of growth of national income
and output is given by the exogenously determined rate of growth of the labour force.
Please note, νG also implies that

K̇ = νGẎ = I (29)

νG can be considered the actual increment in the capital stock in any period divided by
the actual increment in output, thus, e.g., at the end of year, νG could be interpreted
as the measured increase in the capital stock during the year divided by the measured
increase in income or output. This is the first definition. The second definition is the
increment in the capital stock associated with an increment in output that is required
by entrepreneurs if, at the end of the period, they are to be satisfied that they have
invested the correct amount. We will refer to this interpretation with the symbol νGw

to distinguish this conception from the first definition.
Now we recall the equilibrium condition of elementary macroeconomics, i.e.aggregate
planned investment must equal aggregate planned saving

I ≡ S (30)

So the output growth rate g is given by

g ≡ Ẏ

Y
=

s

νG
=

K̇

K
≡ gK (31)

so
Y (t) = Y (0) e

s
νG

t
= K (0) e

s
νG

t
= K (t) (32)

Both national income and the capital stock must grow at the same constant rate s
νG
,

we call it steady-state growth. Eq(31) is called “fundamental” equation. It can be inter-
preted in two different ways depending upon with conception of νG is employed.
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Following (Hywel, 1975), from νG = K̇
Ẏ
= I

Ẏ
and Eq(31) we have Ẏ

Y
I
Ẏ
= s = S

Y
which re-

duces to accounting identity that investment must equal savings ex-post. If the capital-
output ratio is given by the the fist definition than the fundamental equation is a nec-
essary true statement, a “truism”7. So if νG follows the first definition then the rate of
growth of national income must equal s

νG
. Using the symbol ga for the actual growth

rate over any period of time, the fundamental equation, viewed as a truism, can be
written as

ga ≡
s

νG
(33)

The fundamental equation can, however, be given theoretical content if the capital-
output ratio is interpreted in the second of the two ways discussed above. Now νGw

expresses the entrepreneurs’ requirements for additions to the capital stock given the
growth of income and output, calling gw = Ẏ

Y
= s

νGw
the rate of growth of output,

which will satisfy capitalists that they’re investing the correct amount.

gaνG = s = gwνGw (34)

If national income and output happens to grow at the rate gw then the actual increase
in the capital stock associated with the growth of income will equal the increase that
entrepreneurs require if they are to be satisfied that the level of the capital stock is
exactly appropriate for the production of the current level of national output. Harrod
called the rate of growth gw the warranted rate. There is not, of course, any particular
reason why we should expect that economy will actually grow at the warranted rate:
the actual growth rate being the outcome of the expectations, decisions and mistakes
of a host of different decision-makers.
Now, let’s add the level of employment to add more keynesian flavour.
We have already noted that the actual output growth rate could not permanently ex-
ceed the labour growth rate because of the assumed constancy of the labour-output
ratio o = L

Y
. Thus ga ≤ L̇

L
= n. Now, if economy is originally in a situation of full em-

ployment, full employment through time would imply that the actual growth rate ga
would equal n. But we have already seen that, for equilibrium steady-state growth, ga
must equal gw: it’s therefore clear that equilibrium steady growthwith full employment
necessitates that

ga =
s

νGw

= gw = n (35)

Mrs Robinson has described the mythical state of affairs where economy grows at the
constant n rate “The Golden Age”.
Hywel (1975):

It is therefore clear that the Harrod model includes the possibility of equilib-
rium steady growth at full employment. However, there is clearly no reason to be-
lieve that s

νGw
will equal s

νG
or n. s, νG and n are all independently determined.

7Of course, one could say that we have used Eq(30) to calculate Eq(31).
18



3 EXAMPLES OF DYNAMICAL SYSTEMS
IN ECONOMICS

Only a happy accident will generate steady-state growth at full employment in
the Harrod model. The propensity to save, s, is determined by the preferences of
firms and households in the economy. The rate of growth of the labour force, n, is
exogenous and determined simply by the biologically determined birth and death
rates. The capital-output ratio, νG, is, on our present interpretation, a reflection of
the fixity of the technology. If, by coincidence, the actual rate of growth equalled
the warranted rate, which itself equalled the rate of growth of the labour force,
then steady growth at full employment would occur. But, there is no mechanism
in the Harrod model which would ensure the attainment of this Golden Age situ-
ation. Although steady state growth at full employment is possible in an Harrod-
typemodel of economic growth, such a Golden Age is highly improbable given the
independent constituent variables in the necessary equality of the warranted rate
of growth, s

νGw
, to the natural rate of growth, n. This conclusion is thoroughly

keynesian in spirit; there is no reason to believe that full-employment equilibrium
growth will be attained. Thus, the “First Harrod Problem” can be interpreted as a
dynamic version of the central keynesian allegation that under-employment equi-
librium is possible in a capitalist economy.

The First Harrod Problem leads us to the Harrod Stability Problem or Second Harrod
Problem. Indeed, Harrod suggested that the warranted rate of growth was fundamen-
tal unstable in the sense that divergences of the actual rate of growth, from the war-
ranted rate, would not only not correct themselves but would produce even larger di-
vergences: deviations are cumulative in effect.
It should be clear that there is no reason why entrepreneurs’ expectations should be
consistent with the warranted rate of growth.
They have no means of knowing s

νG
and there would be no reason for them to suppose

that a consideration of this expression should enter into their decision making process.
It should also be clearly understood that the Second Harrod Problem is logically inde-
pendent of the First.

3.2 The Kaldor (1940) model

In this section, we will briefly examine Kaldor’s Trade Cycle8 model. Although it does
not directly belong to the line of research followed in this work, we have decided to
include it anyway for various reasons.
First of all, it is an example of howeconomists often reason: in fact, Kaldor (1940) did not
originally express themodel through equations, but rather in graphic form. Economists,
especially at the educational level but not only, often reason through graphs and charts.
Furthermore, Kaldor is one of the most important exponents of the Post-Keynesian
School, and heterodox in general. Finally, it is one of the first economicmodels in which

8Here, trade cycle is the British synonym for the, now, more common, American term, business cycle.
It refers to the study of the alternation of booms and recessions in economic systems.
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non-linear relationships appeared, which, as we know, are important in complex sys-
tems.
The Kaldor (1940) model represents a milestone in macroeconomic theory due to its
ability to generate endogenous cyclical fluctuations, i.e. fluctuations originating from
the functioning of the economic system itself rather than from external shocks.
Indeed, the core of this behaviour lies in the non-linear interaction between investment
and savings decisions.
Anyway, Kaldor’s original model has been extended and studied over the years.
Here, wewill briefly present the dynamical model proposed by Chang and Smyth (1971).
Kaldor begins his paper by introducing the terms often used by economists, “ex-ante”
and “ex-post”. Let’s explain them. The former refers to planning and desire, i.e. actions
planned with a view to a goal or event. The latter refers to reality, to the result, or how
things actually realize. Thus, we can talk about planned investment and actual invest-
ment with ex-ante investment and ex-post investment, and the same applies to ex-ante
saving and ex-post saving. Let’s quote (Kaldor, 1940), then we’ll explain it.

Investment ex-ante is the value of the designed increments of stocks of all
kinds (i.e., the value of the net addition to stocks plus the value of the aggregate
output of fixed equipment), which differs from Investment ex-post by the value
of the undesigned accretion (or decumulation) of stocks. Savings ex-ante is the
amount people intend to save - i.e., the amount they actually would save if they
correctly forecast their incomes. Hence ex-ante and ex-post Saving can differ only
in so far as there is an unexpected change in the amount of income earned. If ex-
ante Investment exceeds ex-ante Saving, either ex-post Investmentwill fall short of
ex-ante Investment, or ex-post Saving will exceed ex-ante Saving; and both these
discrepancies will induce an expansion in the level of activity. If ex-ante Invest-
ment falls short of ex-ante Saving either ex-post Investment will exceed ex-ante
Investment, or ex-post Saving will fall short of ex-ante Saving, and both these dis-
crepancies will induce a contraction. This must be so, because a reduction in ex-
post Saving as compared with ex-ante Saving will make consumers spend less on
consumers’ goods, an excess of ex-post Investment over ex-ante. Investment (im-
plying as it does the accretion of unwanted stocks) will cause entrepreneurs to
spend less on entrepreneurial goods; while the total of activity is always deter-
mined by the sum of consumers’ expenditures and entrepreneurs’ expenditures.
Thus a discrepancy between ex-ante Saving and ex-ante Investment must induce
a change in the level of activity which proceeds until the discrepancy is removed.

Let’s take an example ofwhat Kaldor is saying: assuming that investment plans (ex-ante)
> savings plans (ex-ante). What does this mean? Firms want to inject more money into
the economy by investing than households want to take out by saving. In practice, to-
tal planned demand is really high. So firms find that they are selling much more than
they had predicted: the stocks (inventories) are unexpectedly declining. What is the
reaction? To avoid running out of stock and to meet high demand, companies do two
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things: they increase production and hire more staff. But this means more production
and more employment which in turn means more income for everyone (wages and
profits increase). So the economy enters a phase of expansion. The exact opposite

(a) (b)

Figure 16: Linear cases: (a) dI
dx

> dS
dx
, only a single position of unstable equilibrium, since

above the equilibrium point I > S, and thus activity tends to expand, below it S > I ,
and hence it tends to contract, so the economic system would always be rushing either
towards a state of hyper-inflation with full employment, or towards a state of complete
collapse with zero employment, with no resting-place in between, recorded experience
does not bear out such instabilities and (b) dS

dx
> dI

dx
, again, only a single position, but

here of stable equilibrium, any disturbance, originating either on the investment side
or on the savings side, would be followed by the re-establishment of a new equilibrium,
with a stable level of activity, so this assumption fails in the opposite direction: it assumes
more stability than the real world appears, in fact, to possess. They’re taken from (Kaldor,
1940).

happens if households intend to save more than entrepreneurs intend to invest, lead-
ing to a contraction.
Kaldor’s reasoning is that this “surprise” (the discrepancy between ex-ante plans and
ex-post results) is the signal that prompts firms to change their behaviour, setting the
business cycle in motion.
Kaldor denotes the level of economic activity, measured in terms of employment, by
x; the level of ex-ante saving is S and I is the level of ex-ante investment. Both are
single-valued functions of the level of activity x and they vary positively with x: dS

dx
> 0

and dI
dx

> 0.
The S (x) expresses the principle of the multiplier9 (that the marginal propensity to
consume is less than unity) and I (x) denotes the assumption that the demand for cap-
ital goods will be greater the greater the level of production.

9Here the multiplier is 1
1− dC

dx

where dC
dx = 1− dS

dx and dC
dx is the marginal propensity to consume.
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Figure 17: The trade cycles. It’s taken from (Kaldor, 1940).

If we regard S (x) and I (x) functions as linear, we have two possibilities. dI
dx

> dS
dx
,

in which case, as show by Figure 16a there can be only a single position of unstable
equilibrium, since above the equilibrium point I > S, and thus activity tends to ex-
pand, below it S > I , and hence it tends to contract. If the S and I functions were
of this character, the economic system would always be rushing either towards a state
of hyper-inflation with full employment, or towards a state of complete collapse with
zero employment, with no resting-place in between. Since recorded experience does
not bear out such dangerous instabilities, this possibility can be dismissed.
The second one also can be dismissed, since dS

dx
> dI

dx
, in which case, as shown in Figure

16b, there will be a single position of stable equilibrium. If the economic system were
of this nature, any disturbance, originating either on the investment side or on the sav-
ings side, would be followed by the re-establishment of a new equilibrium, with a stable
level of activity. Hence this assumption fails in the opposite direction: it assumes more
stability than the real world appears, in fact, to possess.
Therefore,S (x) and I (x) functions cannot be linear; furthermore, theymust be “short-
period” functions.
Figure 17 shows Kaldor’s proposal. Now there are three positions of equilibrium (Stage
I). dS

dx
> dI

dx
at the two extreme equilibrium points, A and B, and dS

dx
< dI

dx
is less than

at the equilibrium point C so that A and B are points of stable equilibrium and C is
a point of unstable equilibrium. The investment and saving schedules are short-period
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functions and will shift as capital stock shifts: a rise in capital stockK will shift the in-
vestment function down and the saving function up and a fall in capital stock will shift
the investment function up and the saving function down. Thus if the system is in equi-
librium atB and capital is being accumulatedB is shifted to the left and C to the right
(Stage II). When B and C coincide the investment and saving functions are tangent to
each other (Stage III) and the system is unstable in a downward direction and employ-
ment (or x) falls to A (Stage IV). There the movements in the investment and saving
schedules are in the opposite direction provided capital is being decumulated, thus A
andC move together (Stage V) until they coincide (Stage VI) and the system is unstable
in an upward direction and x or the employment rises until B is reached again, upon
which the process repeats itself (Stage I again).
This is the Kaldor’s business (or trade) cycle.
To capture the basic spirit of Kaldor’s original model, Chang and Smyth (1971) use a dif-
ferential equation system with general non-linear form.
So ex-ante net investment and saving are functions of income and stock of capital10:
I = I (Y,K) and S = S (Y,K) where IY ≡ ∂I

∂Y
> 0, IK ≡ ∂I

∂K
< 0, SY ≡ ∂S

∂Y
> 0 and

SK ≡ ∂S
∂K

< 0.
It would seem reasonable to assume |IK | > |SK | so that IK − SK is always negative.
Since income will rise if and only if ex ante investment is greater than ex ante saving,
the dynamic equation for changes in national income is Ẏ = α [I (Y,K)− S (Y,K)]
where α is a positive constant which denotes the speed of adjustment.
The accumulation or decumulation of capital can be postulated in different ways, but
it is sufficient here to consider the case where the movement is along the I curve,
i.e. investment plans are realized. Thus the adjustment in the stock of capital is K̇ =
I (Y,K).
Together {

Ẏ = α [I (Y,K)− S (Y,K)]

K̇ = I (Y,K)
(36)

Eq(36) constitutes the dynamical system of Kaldor’s model.
The jacobian matrix of the dynamical system is

J =

[
α (IY − SY ) α (IK − SK)

IY IK

]
(37)

Chang and Smyth (1971) find the limit cycle in Figure 18 andprove it applying the Poincarè-
Bendixson Theorem. Kaldor’s cycle insight is therefore proven.

10No more level of activity x or employment in their model.
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Figure 18: Phase diagramwith the limit cycle and nullclines Ẏ = 0 and K̇ = 0 of Eq(36).
You can also see the invariant set built to apply the Poincarè-Bendixson Theorem. The
image is taken from (Chang and Smyth, 1971).

3.3 The Goodwin (1982) model
What we said about the Kaldor (1940) model also applies to the Goodwin (1982) model.
Indeed, it is too a milestone in macroeconomic theory due to its ability to generate
endogenous cyclical fluctuations.
However, from a mathematical point of view, (Kaldor, 1940) is nothing new: it is the
application of the famous Lotka–Volterra predator-prey model to Economics.
In the Author’s own words:

In this form we recognise the Volterra case of prey and predator (Théorie
Mathématique de la Lutte pour la Vie. Paris, 1931). To some extent the similar-
ity is purely formal, but not entirely so. It has long seemed to me that Volterra’s
problem of the symbiosis of two populations - partly complementary, partly hos-
tile - is helpful in the understanding of the dynamical contradictions of capitalism,
especially when stated in a more or less Marxian form.

So the main11 theme of the paper is the Marxian class struggle between capitalists and
workers and the Kaleckian disciplinary unemployment, i.e. the capitalists’ answer to
workers’ claim.

11On Goodwin important novelty for Economics (see Orlando et al., 2021, Chapter 14) (see also Tay-
lor, 2004, Chapter 9). Economic dynamics, nonlinearities, Chaos and the possible links between Marx,
Keynes and Schumpeter are all topics dear to Goodwin and to which he will return several times in his
studies (Goodwin, 1991, e.g.).
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Since Goodwin (1982) model provides the basis for Keen (1995) model, which we will
explain in the next section, we will not derive the model equations here, but will do so
directly in the Section 3.4. For now, we will only show the model assumptions and the

Figure 19: Linear approximation used by Goodwin of the non-linear function f (λ) = ẇ
w

of assumption 7). v stand for λ in our (and Keen) notation. The image is taken from
(Goodwin, 1982).

two equations.
These are the assumptions:
1) steady technical progress (disembodied);
2) steady growth in the labour force;
3) only two factors of production, labour and capital (plant and equipment), both ho-
mogeneous and non-specific;
4) all quantities real and net12;
5) all wages consumed, all profits saved and invested;
6) a constant capital-output ratio;
7) a real wage rate which rises in the neighbourhood of full employment.
Assumption 7) may be written as ẇ

w
= f (λ) where w is the real wage and λ is the em-

ployment rate.
In Figure 19 the linear approximation proposed by Goodwin: ẇ

w
= −t1+ t2λ. But in the

next section we will also analyse the non-linear case.
The 2D system is {

ω̇ = ω [−t1 + t2λ− α]

λ̇ = λ
[
1−ω
ν

− α− β
] (38)

3.4 From Goodwin to Minsky: the Keen (1995) model
Hyman P. Minsky (1919-1996) was an American Post-Keynesian economist who devel-
oped the theory of financial instability. In Minsky’s view, rather than stabilising the

12In Section 3.4 there will be also depreciation but investment I will still be considered net.
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economy and serving it, financial markets are, in fact, promoters of instability and one
of the main causes of speculative bubbles and the resulting crises.
Minsky’s view matured in the wake of the Great Depression, the Wall Street crash of
1929, which is still considered one of the most serious economic crises in capitalism.
Minsky wondered whether such a crisis could happen again (Minsky, 1982), and this
led him to develop a cyclical theory of crises. The description of the factors that lead
to a crisis stems from a recent crisis, following which, economic operators are reluctant
to invest, still mindful of the losses they have suffered. Furthermore, entrepreneurs
(capitalists) find difficult to obtain loans from banks, which have had to write off bad
debts from their balance sheets. Only investments that are considered extremely safe,
including investments in the financial sector, are pursued. Mistrust and caution domi-
nate the economic system.
However, the caution of capitalists means that most activities are successful and debts
are repaid: gradually, pessimism gives way to normality and low-risk activities, which
therefore offer low returns, give way to less cautious investments. Banks revise their
cautious positions, now convinced that capitalists will be able to repay their debts: pes-
simism gives way to optimism. Increased use of bank credit and investment drives eco-
nomic growth and profits. The pursuit of ever-greater profits leads to a total abandon-
ment of safe, low-yield investments, and economic operators begin to take on increas-
ingly greater risks. However, banks continue to grant loans, confident in the continued
increase in the growth rate of economy. But then operators begin to realise that the
debts incurred exceed cash flows and will not be repaid, and that interest on the debts
cannot be honoured, so they sell assets to obtain liquidity, but the sale of assets leads to
a decline in their value, which further worsens the position of operators in a reinforcing
mechanism: euphoria turns to panic and the bubble bursts, leading to an economic cri-
sis and consequent stagnation. Banks are unable to collect their loans and go bankrupt.
In Minsky’s view, private debt and financial markets, therefore, play a central role. His
idea came back into vogue with the 2007-2008 crisis and the ensuing Great Recession,
namely the subprime mortgage and real estate market crisis triggered by the bursting
of a real estate bubble. The lack of prudence in granting loans, combinedwith the belief
that house prices would continue to rise and the euphoria of the financial markets in
creating financial engineering tools for mortgage securitization, fully followed the pat-
tern proposed by Minsky.
The aim of Keen’s study was to translate Minsky’s verbal model into a mathematical
model. The starting point is the two-equation model originally proposed by Good-
win. The addition of a third equation, which models private debt, leads to Keen model,
named “Minsky”.
Keen derives his own version of the Goodwin (1982) model, which differs slightly from
the one presented in Section 3.3 due to the chosen form of non-linear functions.
Furthermore, wemustwarn the reader that Keen, being an economist and not amathe-
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matician, does not present a complete examination of fixed points and stability analysis
in (Keen, 1995). So in this section we will try to complete the analysis of his model, at
the cost of a obviously longer and more pedantic discussion.
The model proposed by Richard M. Goodwin (1913-1996) outlines what economists call
redistributive conflict, i.e. the ways in which the social classes involved in production
divide up the output, or national income.
There are two classes: workers and capitalists. Redistributive conflict is stylised using a
Lotka-Volterra predator-prey model.
To derive the two equations of the model, we must introduce macroeconomic equa-
tions and definitions of aggregate quantities.
Labour productivity a is assumed to grow exponentially and exogenously governed by
the parameter α due to technological progress

a = a0e
αt (39)

The working-age population N is also assumed to grow exponentially with parameter
β

N = N0e
βt (40)

Total outputY is given by productivitymultiplied by the numberL ofworkers employed

Y = aL (41)

The capital-to-output ratio is the fixed accelerator

νG =
K

Y
(42)

The fraction of the employed population relative to the total workforce

λ =
L

N
(43)

and it is one of the two fundamental variables of the model.
The rate of change ẇ of real wagew is the product of thewage and a non-linear function
w [·] of employment λ.

dw

dt
= w [λ]w (44)

It’s given by:
w [λ] =

A

(B − Cλ)2
−D

Since this functional form will be used several times, we indicate it more generally as

f (A,B,C,D, λ) = w [λ]
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whereA,B,C,D are parameters (see below for numerical values). The function mod-
els workers’ answer in bargaining wages due to the level of employment: the higher the
employment rate λ, the more power workers will have in demanding a wage increase;
the higher the unemployment (1− λ), the more workers will be inclined to accept the
conditions set by employers for fear of remaining unemployed. In particular, workers
accept a constant wage when unemployment is 3.6%, accept wage cuts (up to a max-
imum of 4%) at higher levels of unemployment, and demand wage increases at lower
levels of unemployment (which diverge at full employment λ = 1).
The same type of function, with different parameters, is used to model the response
of capitalists to economic conditions in making investment decisions. These are guided
by the level of profits Π.

f

(
E,F,G,H,

π

νG

)
= k

[
π

νG

]
=

E

(F −G π
νG
)2

−H

Net13 investments are a function of profits times the level of output minus the level of
capital depreciation given by the depreciation rate δ.

I =
dK

dt
= k

[
Π

K

]
Y − δK (45)

At zero or negative profits (losses), no investments are made (I = 0). When profits
reach 10%, the investment equals the profits and exceeds the profits at even higher
levels of earnings.

Figure 20: Functions that simulate the behaviour of workers and capitalists in response
to the business cycle.

13Please note, that here the equation for investment is defined differently than, for example, Eq(164):
indeed, what we call gross investment I in K̇ = I − δK, here is given by the function k

[
π
νG

]
, for this

reason we have net investment here.
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Π

K
=

Π

Y νG
=

π

νG
(46)

where Π
K
is the rate of profit relative to invested capital.

The profit share of national income π = Π
Y
is residual after workers income

π = 1− ω (47)

The wage share of national income is

ω =
W

Y
=

wL

aL
=

w

a
(48)

From macroeconomic definitions, we can calculate the time derivatives:

dY

dt
=

d

dt

K

νG
=

k
[

π
νG

]
νG

− δ

Y (49)

that is the rate of change of output.
The rate of change of employment is

dL

dt
=

d

dt

Y

a
=

1

a

(
dY

dt
− αY

)
(50)

From these, we can calculate the derivatives of ω = w
a
and λ = L

N
to obtain the two

predator-prey equations required (λ is the pray, ω is the predator):ω̇ = ω (w [λ]− α)

λ̇ = λ

(
k
[

π
νG

]
νG

− α− β − δ

)
(51)

When thewage share is low, profits are high, and this leads to greater investment, which
boosts employment. However, it also gives greater bargaining power to workers who
want to increase the share of national income in their hands. This, however, reduces
the profits of entrepreneurs, who consequently cut investment, thereby also reducing
employment, and the cycle starts again.
However, there is also a simplified version in which a form of the so-called “Say’s Law”
applies, i.e. it is assumed that capitalists invest all their profits, resulting in substitution.
k
[

π
νG

]
= 1− ω {

ω̇ = ω (w [λ]− α)

λ̇ = λ
(

1−ω
νG

− α− β − δ
) (52)

Here, the values of the parameters used by Keen in the model, assuming them to be
given throughout all the study: α = 0.015, β = 0.035, δ = 0.02, νG = 3, A =
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0.0000641,B = 1, C = 1,D = 0.0400641,E = 0.0175, F = 0.53,G = 6,H = 0.065.
So the model can be written in this form{

ω̇ = ωg (λ)

λ̇ = λf (ω)
(53)

Although the model is defined on R2, the physical region of economic interest is R+ ×
R+, and λ should not exceed unity, as the working population cannot be greater than
the total population.
With reference to Eq(53), let us begin with a general overview of the behaviour of both
Goodwin models, which will be analysed in detail later.
In the case of Say’s Law, f(ω) is linear and vanishes for ω̄1 = 0.79. The behaviour is sim-
ilar to the Lotka-Volterra model, with the only difference being that in Goodwin model,
g(λ) is non-linear. In the case of the investment function, f(ω) also becomes non-linear
and has two zeros 0 < ω̄1∗∗ < ω̄1∗ < 1, which are therefore in the economically signif-
icant region [0, 1].
The function g(λ) has a zero λ̄1 < 1 and, limiting ourselves to the physically significant
region, we have an attractive point at the origin, a saddle in

(
ω̄1∗∗, λ̄1

)
and a center in(

ω̄1∗, λ̄1

)
, as shown in the phase portrait in Figure 26.

Considering also the second zero λ̄1∗ of the function g(λ), we have λ̄1 < 1 < λ̄1∗, which
therefore falls outside the physical region but still influences the dynamics. As shown in
Figure 28, in addition to the previous three fixed points, there is a center at

(
ω̄1∗∗, λ̄1∗

)
and a saddle at

(
ω̄1∗, λ̄1∗

)
.

Finally, to understand the phase portrait, it should be noted that f(ω), in the case of
the investment function, has a singularity consisting of a pole at ω = 0.735, while g(λ)
has a pole at λ = 1.
After this general overview, let us now analyse Goodwin model in detail in the case of
Say’s Law.
A fixed point is obviously

(
ω̄0, λ̄0

)
= (0, 0), while fixed points other than the origin are

given by the zeros of the functions f (ω) and g (λ): if f (ω̄1) = g
(
λ̄1

)
= 0 then

(
ω̄1, λ̄1

)
is a fixed point while (ω̄1, 0) and

(
0, λ̄1

)
are not.

As already mentioned, according to Say’s Law, f (ω) is a straight line and has a single
zero, while g (λ) has two; however, we only consider the first one, since the second one
has λ > 1.
We therefore have a single fixed point over the origin: from the first equation we have
w
[
λ̄1

]
= α, i.e. w−1 [α] = λ̄1, which involves inverting the function A

(B−Cλ̄1)2
−D = α,

which gives λ̄1,∗ =
B
C
∓ 1

C

√
A

α+D
, obtaining the economically meaningful fixed point

(
ω̄1, λ̄1

)
=

(
1− νG(α + β + δ),

B

C
− 1

C

√
A

α +D

)
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Figure 21: The function f (ω), in the case where Say’s Law applies, is linear and we have
only one zero.

Figure 22: The function g (λ), in the case where Say’s Law applies, has two zeros, but
the second one is greater than 1, so it has no meaning.
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The Jacobian matrices are
J (0, 0) =

[
g(0) 0
0 f(0)

]
(54)

J
(
ω̄1, λ̄1

)
=

[
0 ω̄1g

′(λ̄1)
λ̄1f

′(ω̄1) 0

]
(55)

Since g(0) < 0, g′(λ̄1) > 0 and f(0) > 0, f ′(ω̄1) < 0, the origin is unstable and is a
saddle, while

(
ω̄1, λ̄1

)
is stable but not attractive, i.e. a center (see Appendix 8.2 for

detailed calculations).
In Figure 23 we show the phase portrait where we can appreciate the dynamics anal-
ogous to the Lotka-Volterra two-population model, while in Figure 24 we show the
time graphs of some of the flows. As can be seen from the graphs, in some cases the
wage share exceeds the output produced (ω > 1). Although the economic interpre-
tation is not straightforward, this behaviour could be understood as an impoverish-
ment of entrepreneurs as profits become negative. Now let us move on to model

Figure 23: Phase portrait in the case of Say’s Law.

in Eq(51) where profits are not automatically invested. Due to the presence of the in-
vestment function, f (ω) is no longer linear and has two zeros, as can be seen in Fig-
ure 25. The two zeros ω̄1∗ and ω̄1∗∗ therefore satisfy k

[
1−ω̄1

νG

]
= νG (α + β + δ), i.e.

k−1 [νG (α + β + δ)] = π̄1

νG
= 1−ω̄1

νG
, from which we obtain the equilibrium profits:

π̄1 =
νGF

G
∓ νG

G

√
E

H + νG (α + β + δ)
(56)
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(a) (b)

(c) (d)

Figure 24: Time dynamics in the case of Say’s Law.

Figure 25: The function f (ω) in the case of the investment function; unlike the previous
model, we have two zeros.
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Therefore, in addition to the origin, the two fixed points are

(
ω̄1∗, λ̄1

)
=

(
1− νGF

G
+

νG
G

√
E

H + νG (α + β + δ)
,
B

C
− 1

C

√
A

α +D

)

(
ω̄1∗∗, λ̄1

)
=

(
1− νGF

G
− νG

G

√
E

H + νG (α + β + δ)
,
B

C
− 1

C

√
A

α +D

)

We have that 0 < ω̄1∗∗ < ω̄1∗ (since ω̄1∗ ≈ 0.86 and ω̄1∗∗ ≈ 0.61), as we can see, the
two fixed points share the same λ.
With reference to Eq(54) and Eq(55) in the current case we have g(0) < 0, g′(λ̄1) > 0
but f(0) < 0 and also f ′(ω̄1∗∗) > 0 and f ′(ω̄1∗) < 0, therefore (0, 0) is a stable fixed
point,

(
ω̄1∗∗, λ̄1

)
is a saddle point and

(
ω̄1∗, λ̄1

)
is a center (see Appendix 8.3 for more

details).
In the phase portrait in Figure 26, it is possible to appreciate the attractive origin, the
saddle and the center with its cycles, while Figure 27 shows the time graphs of some
of the flows. It should also be noted that f(ω) has a pole at ωpole = 1 − νGF

G
= 0.735

and g(λ) at λpole = B
C

= 1. As can be seen, for example, from graph 27c, the dynam-
ics along them are problematic and difficult to interpret economically, as such sudden
changes in macroeconomic variables are unlikely. The stable fixed point at the origin is
also difficult to interpret, given that the Lotka-Volterra model, and consequently Good-
win model, are structurally unstable, so it is reasonable to expect changes in dynamics
as themodel changes. the fact that the orbits converge at the origin, i.e. at the collapse
of the economy, with the dynamics shown in Figure 27b cannot even be explained as a
conflict in income redistribution, as we do not have oscillations of ω and λ.
Although it is not relevant to the economic model, Figure 28 also shows the two fixed
points given by the solution λ̄1∗ > 1 (shown in Figure 22), which is obviously absurd
since workers cannot exceed the population: the situation is reversed with respect to
the lower portion, we have that

(
ω̄1∗∗, λ̄1∗

)
is a center and

(
ω̄1∗, λ̄1∗

)
is a saddle (the

vector field has also been plotted in a stylised manner in the graph). Finally, in Figure
29, we can see a comparison between the two versions of Goodwin model for the eco-
nomically meaningful part. The two centers and a cycle obtained from the same initial
conditions (ω0, λ0) = (0.96, 0.9) are represented: it can be seen that the system with
the investment function has a less extensive cycle than the other, due to the presence
of the saddle in the other portion of the graph. Let us now move on to the part of the
model added by Keen.
To model financial instability, we need to introduce a new social class, in addition to
workers and capitalists: bankers. They lend money to entrepreneurs to make invest-
ments, and their income B consists of the interest paid on the debt D incurred by
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Figure 26: Phase portrait in the case of the investment function.

(a) (b)

(c) (d)

Figure 27: Time dynamics in the case of Say’s Law.
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Figure 28: Phase portrait in the case of the investment function, where the second zero
of the function g (λ) is also shown.

Figure 29: The centers and cycles of the two Goodwin models compared, for the same
initial conditions (ω0, λ0) = (0.96, 0.9).
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capitalists; the debt share of national income is

b =
B

Y
=

rD

Y
= rd (57)

where r is the interest rate set by the Central Bank, i.e. a parameter.
The rate of change of debt is due to the interest on the outstanding debt rD, the in-
crease in investments I and is reduced by the increase in profits Π

dD

dt
= rD + I − Π (58)

With the presence of bankers, capitalists’ profits are now residual compared to national
income, 100%, after the income of workers and the income of the financial sector has
been removed.

π = 1− ω − b (59)

Moving on to d = D
Y
and deriving with respect to time, using definitions Eq(58) and

Eq(49), we find the third equation added to Goodwin model

ḋ =
d

dt

(
D

Y

)
= b− π + (νG − d)

k
[

π
νG

]
νG

− δ

 (60)

that is, the rate of change of private debt ratio. In it, we can still express b and π.
So the Keen (1995) is:

ω̇ = ω (w [λ]− α)

λ̇ = λ

(
k
[
1−ω−rd

νG

]
νG

− α− β − δ

)
ḋ = 2rd− 1 + ω + (νG − d)

(
k
[
1−ω−rd

νG

]
νG

− δ

) (61)

Let us begin with a general overview of the equilibrium points of Eq(61). Compared to
Goodwin model, the second equation is now better expressed as λ̇ = λf (π), the zeros
are still given by Eq(56), but now π includes both ω and d. From these two zeros, two
fixed points can be obtained, only one of which has economic significance and is stable.
The main competitor in attracting the orbits of this stable fixed point is another stable
fixed point (0, 0,±∞), whose+∞ version symbolises the collapse of the economy due
to a speculative bubble. However, it is also possible to set λ̇ to zero by taking λ = 0
which, together with ω = 0, leads to a triplet of fixed points

(
0, 0, d̄0

)
whose d̄0 are

zeros of the third equation of the model. These three fixed points have no economic
interpretation, but the second of them is stable and the other two are unstable. Finally,
againω = 0 and a choice of d such as to set, simultaneously, the second and third equa-
tions to zero, provide, as λ varies, a straight line of unstable fixed points that exist only
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when a very specific condition on the interest rate is met: these too have no economic
significance. Let us now go into detail.
By setting the derivatives equal to zero, we find that the first equation is not affected
by the transition from the two-dimensional to the three-dimensional system and there-
fore the equilibrium value of λ is decoupled from the other two equations.
From the second equation, we find the profit equilibrium condition already encoun-
tered π̄1

νG
= k−1 [νG (α + β + δ)] and through this and the third equation we have

the equilibrium debt. Finally, the equilibrium wages can be found by inverting π̄1 =
1− ω̄1 − rd̄1; therefore, the equilibrium point is

ω̄1 = 1− π̄1 − r π̄1−νG(α+β)
r−(α+β)

λ̄1 =
B
C
− 1

C

√
A

α+D

d̄1 =
π̄1−νG(α+β)
r−(α+β)

π̄1 =
νGF
G

∓ νG
G

√
E

H+νG(α+β+δ)

This fixed point
(
ω̄1, λ̄1, d̄1

)
corresponds to a finite level of debt and an employment

rate that is not zero and less than 1, so it is economically meaningful and desirable.
We also note another interesting aspect, common to both Goodwin and Keen models:
substituting π̄1 in Eq(49), we find that the growth rate of the economy at this desirable
equilibrium point is given by

Ẏ

Y
=

k
[
π̄1

νG

]
νG

− δ =
νG (α + β + δ)

νG
− δ = α + β (62)

So, once equilibrium has been reached, the growth of the economic system is deter-
mined by the productivity and labour force growth rates.
Studying its stability (for details, see Appendix 8.4), we find that

(
ω̄1, λ̄1, d̄1

)
is stable if

the following conditions are simultaneously satisfied:

α + β > 2r − r
νG − d̄1

νG

 2EG
νG(

F −G π̄1

νG

)3
 (63)

α + β > r (64)

r

(νG − π̄1 − νG (α + β)

r − (α+ β)

) 2EG
νG(

F −G π̄1

νG

)3
− νG

 > 0 (65)

Numerical simulations show that usually π̄1 in Eq(56) with a positive sign produces a
negative d̄1 and the corresponding fixed point does not satisfy either Eq(64) or Eq(65)
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and it is therefore unstable.
There is also another fixedpoint thatmodels financial instability: the fixedpoint

(
ω̄2, λ̄2, d̄2

)
=

(0, 0,±∞). In this case, the stability conditions are not stringent and the equilibrium
is practically always stable. However, please refer to Appendix 8.4 for further informa-
tion.
A third fixed point is given by

(
ω̄0, λ̄0, d̄0

)
=
(
0, 0, d̄0

)
, where d̄0 are the solutions of

the third equation of the model:

2rd̄0 − 1 + (νG − d̄0)

k
[
1−rd̄0
νG

]
νG

− δ

 = 0 (66)

Finally, there is a fourth fixed point that is obtained by setting ω = 0 and choosing π to
set the second equation to zero

1− rd = π̄1 = νGk
−1 [νG (α + β + δ)]

In this way, we have that ω̇ = λ̇ = 0 regardless of the values assumed by λ. However,
in order for ḋ = 0 as well, wemust have d = d̄1, which must also simultaneously satisfy
the condition written above. This leads us to an extremely specific condition for the
model parameters:

1− π̄1

r
=

π̄1 − νG(α + β)

r − (α+ β)
(67)

The fixed point
(
0, λ, d̄1

)
is therefore structurally unstable, as a small variation in the

model parameters could cause it to disappear. If we consider the interest rate as the
only free parameter, then from (67) we can obtain the two r values for which this point
exists

r =
(α + β) (π̄1 − 1)

2π̄1 − 1− νG (α + β)
(68)

These are r ≈ 4.9% for π̄1 with negative sign and r ≈ 8.3% for the positive sign.
Let us now begin to examine the phase space by choosing a low interest rate r = 2.5%.
As can be seen from Figure 30, most orbits diverge, both going to−∞ (e.g. Figure 31d)
and+∞. there is a small area where focus form that converge to the stable fixed point
(in Figure 31a and Figure 31b)

(
ω̄1, λ̄1, d̄1

)
(as we will analyse in more detail below) and

then there are three points
(
0, 0, d̄0

)
solutions of Eq(66) of which the second, the cen-

tral one, is stable 31c, while the other two are unstable.
Let us now consider the case of a high interest rate, where we choose one of the Eq(68)
and obtain the phase portrait in Figure 32, where we can see the straight line with the
fixed points

(
0, λ, d̄1

)
which, having two negative eigenvalues and one positive eigen-

value, are unstable. The focuses now diverge to+∞, see Figure 33b, while the second
of the points

(
0, 0, d̄0

)
is still stable, in Figure 33a. Furthermore, the third of these
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Figure 30: Phase portrait of the Minsky model at low interest rate r.

(a) (b)

(c) (d)

Figure 31: Time dynamics of the Minsky model at low interest rate r.
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Figure 32: Phase portrait of the Minsky model at high r.

(a) (b)

(c) (d)

Figure 33: Time diagrams of the Minsky model at high interest rate r.
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points lies on the line, as does the fixed point
(
ω̄1, λ̄1, d̄1

)
, which therefore becomes

unstable, Figure 33d: indeed, it no longer satisfies Eq(65). It is not possible to assign an
economical interpretation to the three points

(
0, 0, d̄0

)
because an economy without

employment or wages makes no sense, but with a non-zero debt level, which is also
very high, as well as the fact that the second of these is stable and therefore attractive.
Furthermore, the points

(
0, λ, d̄1

)
also make no sense, where, in addition to the criti-

cality of such a high level of debt, workers are not paid because the wage share is zero.
In general, all trajectories that go to −∞ and those that go directly to +∞ without
oscillating do not seem to make sense either.
Therefore, the portion of the phase space that is economically meaningful seems to be
limited to that where there are focuses. For reasons related to scale, this part appeared
confusing in the phase portraits shown: let us therefore explore the two cases numer-
ically, using the same initial conditions (ω0, λ0, d0) = (0.96, 0.9, 0).
We start with a low interest rate (r = 2.5%) and obtain convergence to the finite equi-
librium, which in this case is

(
ω̄1, λ̄1, d̄1

)
= (0.85, 0.97, 0.44).

At low interest rates, increased investment leads to higher employment and wages, but
also to increased debt and therefore higher interest payments, which reduces profits,
subsequent investment and, consequently, economic booms, slowing down the rush to
take on further debt. All this therefore results in dampening capitalists’ investments to
a sustainable level that favours convergence towards the finite equilibrium that char-
acterises good economical stability and a healthy economy: this achieves a division of
output between the three social classes (workers, capitalists, bankers) that ensures bal-
anced growth. The time dynamic is illustrated in Figures 34 and in Figure 35, in Figure
36 we have the phase diagram.

Figure 34: Time dynamic for initial condition (ω0, λ0, d0) = (0.96, 0.9, 0) at low interest
rate r.
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Figure 35: Time dynamic at low interest rate r.

Instead, at high interest rates (4.6% or higher), the race for debt is not slowed down
in time by convergence to finite equilibrium, and the debt accumulated at each cycle
due to the high interest rate ultimately proves unsustainable, causing profits to col-
lapse and, consequently, investment and employment: the system thus converges to
the equilibrium

(
ω̄2, λ̄2, d̄2

)
, i.e. to the collapse of the economy. Let us look in detail at

the economical meaning of this dynamic.
The initial level of wages and the absence of debt and therefore of bankers’ share lead
to high investments financed through borrowing. The emergence of debt provides a
share for bankers, and investments generate jobs and therefore wage claims that in-
crease the wage share of output. The combination of these two factors reduces profits
and leads to a fall in investment, which reverses the growth in the workers’ share. In
this first phase of the dynamic, profits exceed investments, leading to the partial but
not total repayment of bank debt, reducing the bankers’ share. However, the cycle is
not dampened and does not converge to a good equilibrium due to the formation of
a focus between wages and employment, where the higher interest rate continuously
increases the bankers’ share rather than converging it to a fixed value.
The increase in the bankers’ share causes a fall in investment and therefore in employ-
ment, as well as a slightly more marked decline in wages. There is a renewed increase
in profits and investment, leading to higher debt and a higher share of bankers, but
instead of easing, the cycle becomes more intense with more marked falls in the wage
share and equivalent surges in investment (due to the non-linearity of the investment
function) and therefore in debt, leading to more abrupt wage demands. The cycle re-
peats itself each time at a higher level of debt and becomes increasingly drastic until,
eventually, the increase in debt lead to such a high share for bankers that profits fall
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(a)

(b)

Figure 36: Phase portrait for initial condition (ω0, λ0, d0) = (0.96, 0.9, 0) at low interest
rate r. 44
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and remain below zero. Then the system collapses towards zero employment, wages
and profits: this is the debt-induced collapse from which, without some kind of inter-
vention, such as a change in the rules or a debt moratorium, there is no escape.
Figure 37 shows the time dynamic of employment, wage share and capitalists’ debt,
and Figure 38 shows the phase diagram before the collapse. In this case, the finite
equilibrium was obviously not reached, and private debt and the bankers’ share go to
+∞. Minsky’s contribution to the development of the theory of financial instability

Figure 37: Time dynamic for the initial condition (ω0, λ0, d0) = (0.96, 0.9, 0) at high
interest rate r.

was to conceive of great depressions as one of the possible states in which capitalist
economies could find themselves.
The addition of the banking class, and therefore debt, to Goodwin extremely simpli-
fied model - which only models the "stylized facts" of the business cycle - is sufficient
to demonstrate the validity of Minsky’s hypothesis. Indeed, simply inserting plausible
interest rates and capitalists’ profit expectations (what Keynes called “animal spirit”)
during economic booms is sufficient to explain the accumulation of debt beyond what
the system can sustain. Furthermore, the simulated crashes that occur in themodel are
similar to those that occur in real economies. The difference lies in the fact that, after
the collapse, capitalists’ indebtedness continues to grow improbably forever, whereas
in the real world this is obviously impossible: some capitalists go bankrupt, many cred-
itors are forced to cancel their debts and suffer capital losses.
In cases where divergent equilibrium is achieved, the long period of apparent stability
is an illusion, and the crisis, when it occurs, is sudden and violent. This is a warning
for real-world economic policies: crises occur too rapidly to be prevented by changes
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(a)

(b)

Figure 38: Phase portrait for initial condition (ω0, λ0, d0) = (0.96, 0.9, 0) at high inter-
est rate r. 46
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in discretionary policies; consequently, (private) debt crises should be prevented, they
cannot be avoided.
For example, conventional government policies responding to rising inflation due to
overheating economies during economic booms - such as raising interest rates with the
intention of curbing investment and thus dampening booms - might not simply affect
the incentive to invest, but also the level of debt: if debt is already high, raising the
interest rate could even turn the economic boom into a crisis. On the other hand, the
resulting attempt to revitalize the economy by reducing the interest rate, and thus stim-
ulate investment, in accordance with conventional economic analysis, should force the
system back along the phase diagram toward the stable region of the focuses.
However, in the presence of excessively large accumulated debt and a depressed econ-
omy, government action may be too weak and too late.
Consequently, as Minsky suggests, crises should primarily be avoided through active
support for the economy and financial regulation. The goal of stabilization policies is
therefore not to prevent economic cycles, which are endemic in a complex system, but
to prevent the system’s collapse.
The chaotic dynamics explored in Keen model suggest that periods of relative tran-
quillity in a financial economy may actually be nothing more than the calm before the
storm. This aspect of themodel resonates with economic reality: it recalls the so-called
“Great Moderation”, a period from the 1980s to 2007 characterized by the decline in
employment volatility, wages, and consequently inflation. This period was long hailed
as beneficial and a bringer of stability, until it resulted in the bursting of the housing bub-
ble and the Great Recession. Indeed, one economic variable that was not adequately
considered in assessments of the Great Moderation was the increase in private debt.
Since the dynamics of the stable fixed point that goes to infinity, seen in the (ω − λ)
plane, show increasingly smaller cycles and seem to suggest a convergence towards a
good economic stability, Keen (1995) convinced himself that his model14 was capable of
studying and predicting the Great Moderation and the subsequent crash.

14To be completely honest, in our opinion, Keen model also shows some details that are not entirely
compatible with the Minskian tale that it would like to tell.
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4 Growth models with inventories
4.1 The Franke (1996) model
Here we’ll discuss the work made by (Franke, 1996). This is a growth model in which
inventories15 play a role in the business cycle. This was a novelty, as theoretical studies
ofmacroeconomic inventory cycles are rare and they take into account neither long-run
growth nor capacity effects from investment in fixed capital goods.
Through the Author’s words:

The aim of the paper has been to contribute to a macroeconomic theory of
inventory fluctuations, which has to take sustained growth into account and must
not neglect the concurrent accumulation of fixed capital.

All variables are in real terms and they are divided by the capital stock K to deflate
growth. So

uF =
Y

K
(69)

the output capital ratio is proportional to the utilization of productive capacity and
therefore characterizes total economic activity. We assume a constant ratio un relat-
ing normal output to fixed capital, a normal utilization of productive capacity.
V stands for inventories of finished goods and its ratio is

vF =
V

K
(70)

Eventually, Ye are the expected sales and are divided by the capital stock

zF =
Ye

K
(71)

Let total output Y and all other flow magnitudes be measured per year.
In continuous time, the accounting identity for the change in inventories is given by the
difference between production Y and final sales (or effective demand) Yd

V̇ = Y − Yd (72)

There is an “inventory accelerator” fd > 0: it is a certain desired ratio of inventories to
expected sales Ye, above which firms based stock management

Vd = fdYe (73)
15As regards the inventories, the inspiration comes from an old paper, (Metzler, 1941), that was the

first study on the subject.
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Since desired and inventories generally differ, firms seek to close this gap gradually with
speed λF > 0, i.e. the stock of inventories would reach its target level Vd in 1

λF
years.

But firms also account for the growth of economy, doing this in view of a “normal”
trend rate of growth g, which is a constant here. All together leads to desired change
in inventories Jd:

Jd = gVd + λF (Vd − V ) (74)

Firms decide on production before actual sales are known and the decision are not
modified within the short period, so inventories absorb any excess supply, similarly an
excess of demand over current production is served from the existing stock. The buffer-
stock aspect is represented by this equation

Y = Jd + Ye (75)

Regarding net investments I in fixed capital, we have an unspecified (for now) function
h (uF ), which, at equilibrium, has to give un since firms strive for a level of normal
utilization when the system grows at the normal rate of growth g

I

K
= h (uF ) h (un) = g

∂h

∂uF

> 0 (76)

We postulated that total demand can be represent as a function of the output-capital
ratio uF . Moreover, the requirement that the marginal propensity to spend c be less
than unity is converted to the notion that Yd

Y
depends negatively on uF . So the excess

demand function is

Yd − Y

Y
= e (uF ) e (un) = − gfd

1 + gfd

∂e

∂uF

< 0 (77)

to obtain the equilibrium equation (77) (the second one) we use together Eq(73), (74),
(75):

Y = Jd + Ye = gVd + λF (Vd − V ) + Ye = gfdYe + λF (Vd − V ) + Ye

but at equilibrium we necessary have V = Vd and Yd = Ye so

Y = (1 + gfd)Ye = (1 + gfd)Yd

or
Y − Yd = gfdYd

where we use Yd = Y
1+gfd

for Yd on the right side to obtain the second equation of
Eq(77).
How does Ye change? Author adopt adaptive expectations to determine the formation
of firms’ sale expectations

Ẏe = gYe + σ (Yd − Ye) (78)
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At this point, Franke specifies a linear form of the two demand functions in Eq(76) and
(77)

h (uF ) = g +
βh (uF − un)

un

(79)

and
e (uF ) = − gfd

1 + gfd
− βe (uF − un)

un

(80)

The parameters, βh, βe, g and fd are estimated from a regression on quarterly data of
US non-financial corporate business sector.
Using Eq(73), (74), (75) and division byK, we have a relationship between utilization uF

and those two that will soon become the state variables of the two differential equa-
tions that define the Franke model, sales expectation zF and inventories vF :

uF = uF (vF , zF ) = (1 + gfd) zF + λF (zF ) (fdzF − vF ) (81)

λF (zF ) is a continuous and piecewise differentiable function of zF replacing the stock-
adjustment speed λF in Eq(74). Afterwards, we will see why Frankemade this decision.
Using Eq(72) and (77) we obtain

V̇

V
=

V̇

Y

Y

K

K

V
= −e (uF )

uF

vF
(82)

Logarithmic differentiation of vF gives v̇F
vF

= V̇
V
− K̇

K
, where from Eq(76) K̇

K
= h (uF )

16.
Using Eq(81) we obtain our first differential equation

v̇F = −uF (vF , zF ) e (uF (vF , zF ))− vFh (uF (vF , zF )) (83)

To derive the equation for żF we observe that

Yd

Ye

=

[
1 +

Yd − Y

Y

]
Y

K

K

Ye

= [1 + e (uF )]
uF

zF
(84)

Division of Eq(78) by Ye and logarithmic differentiation of zF leads to żF
zF

= Ẏe

Ye
− K̇

K
=

g + σ
[
(1 + e (uF ))

uF

zF
− 1
]
− h (uF ).

Last differential equation is

żF = zF [g − h (uF (vF , zF ))] + σ {[1 + e (uF (vF , zF ))]uF (vF , zF )− zF} (85)

To summarise, the 2D system is{
v̇F = −uF (vF , zF ) e (uF (vF , zF ))− vFh (uF (vF , zF ))

żF = zF [g − h (uF (vF , zF ))] + σ {[1 + e (uF (vF , zF ))]uF (vF , zF )− zF}
(86)

16Please note that in this model the investment is considered net so K̇ = I , if it were gross we would
have depreciation δ as in Eq(164): K̇ = I − δK
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4 GROWTH MODELS WITH INVENTORIES

From Eq(76), (77) and (81), with respect to the given value of normal utilization un, the
steady-state position of the economy is

(v̄F , z̄F ) =

(
fdun

1 + gfd
,

un

1 + gfd

)
Franke shows that the local stability analysis of this stationary point rests on two sign
conditions, called E andH

E ≡ 1 + e (un) + un
∂e
∂uF

∣∣∣
uF=un

> 0

H ≡ −
[
e (un) + un

∂e
∂uF

∣∣∣
uF=un

+ v̄F
∂h
∂uF

∣∣∣
uF=un

]
> 0

(87)

which give a relationship for the critical valueL of the stock-adjustment speed, (v̄F , z̄F )
is locally asymptotically stable if

λ̄F ≡ λF (z̄F ) < L ≡ (1 + gfd)

Efd
un

∣∣∣∣ ∂e∂uF

∣∣∣
uF=un

∣∣∣∣ (88)

Using λ̄F , he also finds a critical value σ0 for σ that gives local asymptotic stability
σ < σ0.
The critical value is found to be L = 0.71. It does not appear very far-fetched to as-
sume that, in the course of one year, the underlying time unit, firms intend to close at
least three-quarters of the gap between desired and actual inventory in Eq(74). So fast
adaptive expectations of sales, i.e. high σ, render the steady state unstable.
At σ = σ0 the jacobian matrix of the process Eq(86) possesses a pair of purely imagi-
nary eigenvalues (the determinant is positive), so they are complex conjugate. This is
warning sign for oscillatory motions of the economy. As σ rises beyond σ0 a Hopf bifur-
cation occurs since the complex eigenvalues are crossing the imaginary axis.
Author finds that while equilibrium is locally repelling, it is attractive in the outer re-
gions of the space. Through his words:

It then turned out that the steady state of the model is typically repelling.
Furthermore, tendencies for oscillatory motions could be recognized. To prevent
the economy from continuously spiralling outwards in the phase space, we con-
centrated on the propagation effects of inventory investment and postulated that
the stock-adjustment speed towards the desired level of inventories is sufficiently
flexible when expected sales deviate too much from normal. It was demonstrated
that this non-linearity bends the spirals inwards in the outer regions of the state
space. As a consequence, persistent and bounded oscillations come into being.
More specifically, all trajectories converge to a periodic orbit. By means of numer-
ical simulations it was shown that the model can be calibrated such as to generate
cyclical behaviour that is qualitatively and quantitatively compatible with empiri-
cal time series.
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4 GROWTH MODELS WITH INVENTORIES

Figure 39: Phase diagram with the limit cycle and nullclines v̇F = 0 and żF = 0 of
Eq(86). You can also see the invariant set built to apply the Poincarè-Bendixson Theorem.
The image is taken from (Franke, 1996). Please note that our notation is slightly different
from that of the original paper, e.g. we use vF and zF instead of v and z and (v̄F , z̄F )
instead of (v∗, z∗) for the fixed point. We will explain the reason for this choice in the
next section.

So here is the explanation of what we left pending earlier: λF (zF ), a continuous and
piecewise differentiable function of zF , has replaced the previous definition of the
stock-adjustment speed λF in Eq(74) to ensure the convergence of the trajectories to
the periodic orbit. See Figure 39 for the phase portrait.
The most important qualitative result of the model, mentioned above, is that, com-
pared to empirical data, the loops have the correct counter-clockwise orientation.
At the end of the paper, Author suggests further developments of the model for the
future:

In a second step, the present model or a more advanced version of it may
be incorporated into another macroeconomic model which, for example, studies
inflation, income distribution and/or financial markets.

Indeed, this will be the path taken years later by Grasselli and Hguyen-Huu, whom we
will discuss in the next section (Section 4.2).

4.2 The Grasselli and Nguyen-Huu (2018) model
The Franke (1996) model is the main inspiration for the work of (Grasselli and Nguyen-
Huu, 2018). To this end, in the previous section, we did not follow Franke’s original
notation but we attempted to merge it with that used in (Grasselli and Nguyen-Huu,
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2018), in order to show the similarities. With regard to notation, we have also tried to
avoid the use of certain letters (or to distinguish them by adding subscripts17) that will
be assigned to important variables in the following sections.
The other important inspiration comes from the tradition of Goodwin’s class struggle
model and fromKeen’sMinskymodel. So the Grasselli andNguyen-Huu (2018) is a Post-
Keynesian model with many features: depreciation rate δ(u) expressed as a function
of capital utilization, productivity and workforce exogenous growth, nominal prices,
inventories, bargaining power, Kaleckian disciplinary unemployment and wage share
dynamics,many behavioural ruleswith also capitalists’ forecast for the long-run growth,
5D and stock-flow consistent model.
Unfortunately, as often happens, the more elegant and complete a model is, the more
complicated it is analytically and heuristically.
Quoting the Authors:

Global analysis of such high-dimensional nonlinear system is beyond the scope
of current techniques, and even local analysis of the interior equilibrium proves to
be laborious and not very illuminating.

and, once again:

The present model is nevertheless highly complex. It needs the specification
of at least fourteen parameters in addition to three behavioural functions. The
exploration of other possible equilibrium points is considerably involved, and any
local stability analysis will reveal to be cumbersome and non-intuitive exercise. In
order to build intuition about the system, we follow the strategy of considering
the lower-dimensional subsystems that arise in some limiting cases for the model
parameters and behavioural functions. We start with a few special cases corre-
sponding to known models in the literature.

Indeed, we’ll show that under certain conditions, it reduces to the models already dis-
cussed in the previous sections. Furthermore, this model will be important also for the
Section 6.1, as it formed the basis for the model proposed in this thesis.
Authors consider a three-sector closed economy consisting of firms, banks and house-
holds. The firm sector produces one homogeneous good used both for consumption
and investment. We have accelerator ν or constant technical capital/capacity output
ratio:

YK =
K

ν
(89)

where the total stock of capital K in real term determines potential or capacity out-
put YK . Anyway YK isn’t the actual output Y produced by firms, which is assumed to

17As in the case of the letter z, we used zF for Eq(71) to avoid conflict with z = Z
Y , the share of the

autonomous component of demand.
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consist of expected sales Ye plus planned inventory changes Ip

Y = Ye + Ip (90)

In turn, Eq(90) determines capacity utilization

u =
Y

YK

(91)

Finally, capital is assumed change according the famous equation

K̇ = Ik + δ (u)K (92)

where Ik denotes capital investment in real terms and δ (u) is a depreciation rate ex-
pressed as a function of capital utilization u.
The effective demand Yd is the total sales demand

Yd = C + Ik (93)

whereC denotes the total real consumption that, now, it isn’t only given by households
but also by banks.
Denote the stock of inventories by V , its change V̇ is the investment in inventory, which
consists of both planned Ip and unplanned Iu change in inventory held by firms

V̇ = Ip + Iu = Y − Yd (94)

Since the difference between output and demand determines actual changes in the
level of inventory, substituting Eq(90) into (94), we see that unplanned changes in in-
ventories are given by

Iu = V̇ − Ip = (Y − Yd)− (Y − Ye) = Ye − Yd (95)

and therefore accommodate any surprises in actual sales compared to the expected
one.
Finally total real investment I in economy is given by

I = Y − C = Y − Id + Ik = Ip + Iu + Ik (96)

W is the nominal wage bill (total expenditure paid by capitalists in wages),N the total
workforce and ℓ the number of employed workers, a the productivity per worker, λ the
employment rate and w the wage rate.

a =
Y

ℓ
(97)
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λ =
ℓ

N
=

Y

aN
(98)

w =
W

ℓ
(99)

whereas the unit cost of production c is given by

c =
W

Y
=

w

a
(100)

We will postulate throughout that productivity and workforce growth rates are exoge-
nously given

ȧ

a
= α (101)

Ṅ

N
= β (102)

Denoting the unit price level for the homogeneous good by p, the nominal sales should
be given by pYd = pC+pIk. To obtain nominal output Yn we can’t simply use Yn = pY
since we have to account for inventory changes:

Yn = pC + pIk + cV̇ = pYd + cV̇ = pYd +
d (cV )

dt
− ċV (103)

so Yn = pY is true if and only if either p = c or V̇ = 0.
The net profit for firms, after paying wages, interest on debt, and accounting for con-
sumption of fixed capital (a.k.a. depreciation), is given by

Π = Yn −W − rD − pδ (u)K (104)

The debt change for the firm sector is

Ḋ = p (Ik − δ (u)K) + cV̇ − Π = pIk + cV̇ − Πp (105)

where Πp = Yn −W − rD denotes the pre-depreciation profit.
We will also use the ratios:

ye =
Ye

Y
(106)

yd =
Yd

Y
(107)

v =
V

Y
(108)

ω =
W

pY
=

c

p
=

w

pa
(109)
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d =
D

pY
(110)

where we use p, the unit price level for the homogeneous good, to obtain nominal
quantities.
Authors clarify the logical sequence:

Wenowspecify the behavioural rules for firms, banks, andhouseholds. Namely,
for given values of the state variables, firms decide the level of capital investment
Ik, planned changes in inventory Ip, and expected sales Ye, whereas banks and
households decide the level of consumption Cb and Ch. This in turn determines
capital by Eq(92), output by Eq(90), utilization by Eq(91), sales demand by Eq(93),
and unplanned changes in inventory by Eq(95). Consequently, since productivity
and workforce growth are exogenous, the level of output Y in turn gives the num-
ber of employed workers ℓ and the employment rate λ by Eq(98). Further specifi-
cation of the dynamics for the nominal wage rate w and prices p then completes
the model.

It is assumed that firms forecast the long-run growth rate of the economy to be a func-
tion ge (u, πe) of utilization u and pre-depreciation expected profitability πe defined as

πe =
Yne −W − rD

pY
(111)

where
Yne = pYe + cIp (112)

denotes the expected nominal output.
Inserting Eq(106), (109) and (110) in Eq(111), expected profitability can also be expressed
as

πe = ye (1− ω)− rd (113)

In addition to taking into account the long-run growth rate ge (u, πe), firms adjust their
short-term expectations based to the observed demand, leading to the following dy-
namics for expected demand:

Ẏe = ge (u, πe)Ye + ηe (Yd − Ye) (114)

which is analogous to Franke’s Eq(78). ηe ≥ 0 is the speed of short-term adjustments
to observed demand.
As Franke, we assume that firms aim to maintain inventories at a desired level

Vd = fdYe (115)

for a fixed proportion 0 ≤ fd ≤ 1.
While this means that the long-term growth rate of desired inventory level should be
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ge (u, πe), we assume again that firms adjust their short-termexpectations based on the
observed level of inventory for a constant ηd ≥ 0, representing the speed of short-term
adjustments to observed inventory

Ip = ge (u, πe)Vd + ηd (Vd − V ) (116)

which is analogous to Eq(74).
We further assume that firms’ investment is given by

Ik =
k (u, πe)

ν
K (117)

for an unspecified function, as all the others, k (·, ·) capturing the effects of both capac-
ity utilization and expected profits. Based on K̇ definition in Eq(92), this leads to the
dynamics for capital

K̇

K
=

k (u, πe)

ν
− δ (u) (118)

The total consumption is given by assumption by

C = θ (ω, d)Y (119)

Consumption of households and banks is assumed to be given by constant fractions of
income and wealth, namely,

pCh = cih (W + rmM) + cwhM (120)

pCb = cib (rD − rmM) + cwb (D −M) (121)

forM stands for household deposits and rm for interest rate on them. Under the sim-
plifying assumption that cih = cib = ci and cwh = cwb = cw, we have

pC = c1W + c2D (122)

with c1 = ci and c2 = cw + cir.
We see that Eq(122) is an example of Eq(119) with

θ (ω, d) = c1ω + c2d (123)

Nominal demand pYd is given by

pYd = pC + pIk = pθ (ω, d)Y + p
k (u, πe)

ν
K (124)

from which
yd = yd (ω, d, ye, u) =

Yd

Y
= θ (ω, d) +

k (u, πe)

u
(125)

Authors say:
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For the price dynamics, we follow the Post-Keynesian tradition and assume
that the long-run equilibrium price is given by a constant markup m ≥ 1 times
unit labour cost c,whereas observe prices converge to this through a lagged ad-
justment with speed ηp > 0. A second component with adjustment speed ηq > 0
is added to that dynamics to take into account short-term considerations regarding
unplanned changes in inventory volumes:

ṗ

p
= ηp

(
m
c

p
− 1

)
− ηq

Ye − Yd

Y
=

= ηp (mω − 1) + ηq (yd − ye) ≡
≡ i (ω, yd, ye)

(126)

for Ye − Yd = Iu, remember Eq(95).
Workers are supposed to bargain for wages based on the current state of the labour
market, but also take into account the observed inflation rates with a degree of money
illusion 0 ≤ γ ≤ 1, with γ = 1 corresponding to the case where inflation is fully
incorporated in workers’ bargaining

ẇ

w
= Φ (λ) + γ

ṗ

p
(127)

Combining Eq(115) and Eq(116), we see that output is given by

Y = Ye + Ip = [fd (ge (u, πe) + ηd) + 1]Ye − ηdV (128)

so we can calculate also

v =
V

Y
=

[1 + fd (ge (u, πe) + ηd)] ye − 1

ηd
(129)

Differentiating Eq(128) and using Eq(114) and Eq(94) we obtain the output growth rate

Ẏ

Y
= [1 + fd (ge (u, πe) + ηd)] [yege (u, πe) +

+ ηe (yd − ye)] + ηd (yd − 1) ≡
≡ g (u, πe, yd, ye)

(130)

Here, we have an issue since in this equation there isn’t dge(u,πe)
dt

. Instead this term
should come from

İp
Y

=
dge (u, πe)

dt

Vd

Y
+ ge (u, πe)

V̇d

Y
+ ηd

(
V̇d

Y
− V̇

Y

)
but since it does not appear in the Authors’ equations, it seems that Grasselli and
Nguyen-Huu (2018) implicitly choose to set ġe (u, πe) ≈ 0, this is a significant simpli-
fication, since that term would have brought with it, in the final equations that we will
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soon derive, terms like u̇ and π̇e.
Anyway, moving forward, taking ln of ω = w

pa
we have

ω̇

ω
=

ẇ

w
− ȧ

a
− ṗ

p
= Φ (λ)− α− (1− γ) i (ω, yd, ye) (131)

Again, logarithmic differentiation of λ = Y
aN

with Eq(101), (102) and (130)

λ̇

λ
=

Ẏ

Y
− ȧ

a
− Ṅ

N
= g (u, πe, yd, ye)− α− β (132)

For the debt ratio d = D
pY

, using Eq(105) we find that

ḋ

d
=

Ḋ

D
− ṗ

p
− Ẏ

Y
=

=
pIk + cV̇ − (Yn −W − rD)

D
− i (ω, yd, ye)− g (u, πe, yd, ye) =

=
W + rD − pC

D
− i (ω, yd, ye)− g (u, πe, yd, ye) =

=
ω + rd− θ (ω, d)

D
− i (ω, yd, ye)− g (u, πe, yd, ye)

(133)

Similarly, for the expected sales ratio ye =
Ye

Y
we use Eq(114) to obtain

ẏe
ye

=
Ẏe

Ye

− Ẏ

Y
= ge (u, πe) + ηe

(
yd
ye

− 1

)
− g (u, πe, yd, ye) (134)

Finally, for the capacity utilization u = νY
K
, using Eq(118) we find

u̇

u
=

Ẏ

Y
− K̇

K
= g (u, πe, yd, ye)−

k (u, πe)

ν
+ δ (u) (135)

Since yd is expressed in Eq(125) as a function of (ω, d, πe, u) and πe is given in Eq(113) as
a function of (ω, d, ye), we see that the model can be completely characterized by the
state variables (ω, λ, d, ye, u) satisfying the following system of 5 ordinary differential
equations: 

ω̇ = ω [Φ (λ)− α− (1− γ) i (ω, yd, ye)]

λ̇ = λ [g (u, πe, yd, ye)− α− β]

ḋ = d [r − g (u, πe, yd, ye)− i (ω, yd, ye)] + ω − θ (ω, d)

ẏe = ye [ge (u, πe)− g (u, πe, yd, ye)] + ηe (yd − ye)

u̇ = u
[
g (u, πe, yd, ye)− k(u,πe)

ν
+ δ (u)

] (136)
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where i (ω, yd, ye) is given by Eq(126) and g (u, πe, yd, ye) by Eq(130).
To obtain the equilibrium point

(
ω̄, λ̄, d̄, ȳe, ū

)
, observe that the second differential

equation in Eq(136) requires that

g (ū, π̄e, ȳd, ȳe) = α + β (137)

which inserted in the forth equation leads to ȳd = ȳe and

ge (ū, π̄e) = α + β (138)

Therefore, using this and Eq(137) in (130) gives

ȳd = ȳe =
1

1 + fd (α + β)
(139)

Inserting the latter into Eq(129) implies that v̄ = fdȳe, so that the equilibrium level of
inventory is the desired level Vd = fdȳeY .
Substituting ȳd = ȳe into Eq(126) leads to an equilibrium inflation of the form

i (ω̄, ȳd, ȳe) = i (ω̄) = ηp (mω̄ − 1) (140)

Using the third differential equation we have

d̄ =
ω̄ − θ

(
ω̄, d̄

)
α + β + i (ω̄)− r

(141)

Moving to the last equation, we obtain that the investment function at equilibrium
satisfies

k (ū, π̄e) = ν [α + β + δ (ū)] (142)

which, inserted in Eq(125), gives

ū =
ν [α+ β + δ (ū)] [1 + fd (α + β)]

1− θ
(
ω̄, d̄

)
[1 + fd (α + β)]

(143)

We can then obtain the values of
(
ω̄, d̄

)
by solving Eq(141) and Eq(142) with π̄e defined

from Eq(113). Finally, returning to the first equation in Eq(136) we find the equilibrium
employment rate by solving

Φ
(
λ̄
)
= α+ (1− γ) i (ω̄) (144)

Of course, the Authors admit:

We therefore see that existence and uniqueness of the interior equilibrium
depends on properties of the functions k and θ, which need to be asserted in
specific realizations of the model.
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Now let’s move on to simplified cases. Indeed, Grasselli and Nguyen-Huu (2018) derive
models already seen in the Section 3 from the Eq(136) as special cases through precise
choices of parameters.
The simplest special case consists of the model proposed in (Goodwin, 1982) (Section
3.3 and Section 3.4). The original Goodwin model is formulated in real terms, which we
can easily reproduce by setting ηp = ηq = γ = 0, meaning that the rate of inflation is
zero, and setting unitary prices p = 1.
Likemostmodels, it alsomakes no reference to inventories, thereby implicitly assuming
that output equals demand. We can recover this from the general model by assuming
that fd = ηd = 0, meaning that there is no desired inventory level, i.e. Vd = 0, or
planned investment in inventory, i.e. Ip = 0, and that ηe → ∞, meaning that firms
have perfect forecast of demand and set Ye = Yd = Y at all times.
In addition, Goodwin adopts a constant capital-to-output ratio νG = K

Y
, which we can

recover by setting u ≡ 1, so Y ≡ YK . Finally, although not explicitly mentioned in
(Goodwin, 1982), we adopt a constant depreciation rate δ (u) = δ > 0.
The only explicit assumption of the Goodwin model regarding the behaviour of firms
is that investment is equal to profits (remember Say’s Law in Section 3.4), which in the
present setting corresponds to

k (u, πe) = πe = 1− ω − rd (145)

since ye = Ye

Y
= 1 in Eq(113).

The model is also silent about banks, but it follows from Eq(105) and the investment
rule above (recalling that V̇ = 0) that Ḋ = 0 at all times, so we assume for simplicity
that d = D0 = 0.
Regarding households, the assumption is that all wages are consumed, namely cih =
c1 = 1 in the notation of Eq(120). For consistency, we set c2 = r, even though this is
not relevant withD = 0.
For the growth rate, observe that we can no longer obtain it by simply differentiating
Eq(128), since Eq(114) is degenerate in the limit case ηe → ∞.
Instead, since u = 1, we can use the fact that Y = K

ν
to obtain

Ẏ

Y
=

K̇

K
=

1− ω

ν
− δ (146)

With these parameter choices, the system in Eq(136) reduces to the form{
ω̇ = ω [Φ (λ)− α]

λ̇ = λ
[
1−ω
ν

− α− β − δ
] (147)

discussed also in (Grasselli and Costa Lima, 2012).
The solutions are closed periodic orbits around the non-hyperbolic equilibrium point
(center) (

ω̄, λ̄
)
=
(
1− ν (α + β + γ) , Φ−1 (α)

)
(148)
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which is a special case of Eq(142) and Eq(143).
Now it’s the turn of the model developed by (Keen, 1995). It’s based on the same
assumptions of the Goodwin model. So again we have ηp = ηq = γ = 0, p = 1,
fd = ηd = Vd = Ip = 0, ηe → ∞, Ye = Yd = Y , u = 1, δ (u) = δ.
The innovation in the model is the presence of debt and that investment is now given
by

k (u, πe) = k (πe) = k (1− ω − rd) (149)

where we used the fact that ye = Ye

Y
= 1 in Eq(113). Moreover, the identity Yd = Y

implies that
C = Yd − Ik = [1− k (πe)]Y (150)

i.e. θ (ω, d) = 1−k (1− ω − rd) in Eq(119), so in the absence of either price or quantity
adjustments, total consumption plays the role of an accommodating variable in the
model.
Since Eq(114) is degenerate, we again use Y = K

ν
to obtain the growth rate of the

economy as
Ẏ

Y
=

K̇

K
=

k (πe)

ν
− δ (151)

So Eq(136) now becomes
ω̇ = ω [Φ (λ)− α]

λ̇ = λ
[
k(πe)
ν

− α− β − δ
]

ḋ = d
[
r − k(πe)

ν
− δ
]
+ ω − 1 + k (πe)

(152)

where πe = 1− ω − rd.
Eq(141), (142) and (144) reduce to

d̄ =
ω − 1 + ν (α + β + δ)

α + β − r
(153)

k (π̄e) = ν (α + β + δ) (154)

Φ
(
λ̄
)
= α (155)

fromwhereweobtain the equilibriumpoint
(
ω̄1, λ̄1, d̄1

)
found in (Grasselli andCosta Lima,

2012), which is shown to be locally stable provided the investment function k (·) is suf-
ficiently increasing at equilibrium, but does not exceed the amount of net profits by too
much.
There is also another equilibrium

(
ω̄2, λ̄2, d̄2

)
= (0, 0,+∞) which is a “bad” equilib-

rium that economically represents the bursting of the financial bubble caused by debt
deflation and it is locally asymptotically stable provided

lim
πe→−∞

< ν (r + δ) (156)
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Finally, it’s the turn of (Franke, 1996). The Frankemodel is also formulated in real terms,
so we maintain the choice of ηp = ηq = γ = 0 and p = 1 and normalizes all variables
by dividing them byK instead of Y

uF ≡ Y

K
=

u

ν
(157)

zF ≡ Ye

K
= yeuF (158)

vF ≡ V

K
= vuF (159)

Crucially, the model in (Franke, 1996) implicitly assumes a constant wage share ω, so
that the first equation is simply ω̇ = 0. The second equation then decouples from
the rest of the system and simply provides the employment rate along the solution
path, in particular leading to a constant employment rate at equilibrium. As with the
Goodwin model, the Franke model is also silent about banks, implicitly assuming that
firms can raise the necessary funds for investment through retained profits and savings
from households, which we reproduce here by setting ḋ = 0 in Eq(136).
The behaviour of firms, on the other hand, is almost identical to the one adopted here,
provided we take

ge (u, πe) = α + β (160)

as the long-run growth rate of expected sales.
For the investment function, we recover the assumption in (Franke, 1996) by setting

k (u, πe) = νh (uF ) (161)

for an increasing function h (·).
Regarding effective demand, instead of modelling consumption and investment sepa-
rately, the assumption is that demand in excess of output is given directly in terms of
utilization, which we can reproduce in our model by setting

yd = e (uF ) + 1 (162)

for a decreasing function e (·).
With these choices, it is a simple exercise to verify that the fourth and fifth equations
in Eq(136) are equivalent to equations for vF and zF in (Franke, 1996), with equilibrium
values given by

(v̄F , z̄F ) =

(
fdūF

1 + fd (α + β)
,

ūF

1 + fd (α + β)

)
= (v̄ūF , ȳeūF ) (163)

It is shown in (Franke, 1996), as we have seen, that this equilibrium is locally asymptot-
ically stable provided the speed of adjustment of inventories ηd is sufficiently small.
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For ηd above a certain threshold, however, local stability can only be asserted when the
speed of adjustment of expected sales ηe is sufficiently small.
The Franke’s main innovation consists of adopting a variable speed of adjustment ηd =
ηd (zF ) and investigating its effect on the stability of the equilibrium.
It is then shown that even in the unstable case, namely when both ηd (z̄F ) and ηe are
large enough that the equilibrium is locally repelling, global stability can be achieved
provided ηd (zF ) decreases fast enough away from the equilibrium.
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5 The Sraffian Supermultiplier
5.1 A brief review of the Sraffian Supermultiplier literature
The term “Supermultiplier” was coined by Hicks (1950) as an extension of the more fa-
mous Keynesian Multiplier, it has later acquired the broader meaning of a formal the-
oretical apparatus, based on the principle of effective demand, that takes into account
both the multiplier and accelerator effects. It became “Sraffian” with Serrano (1995).
Years later, the paradigm is strengthened with Cesaratto et al. (2003) where Authors
strongly reject the neo-Schumpeterian notion of autonomous investment, in favour of
the view that, in the long period, all investment is induced. The neoclassical claim that
market mechanisms will restore full employment, whenever workers are displaced by
technical change, and the argument of automatic compensation are rejected as well.
Following Post-Keynesian lines, the ultimate engines of growth are located by Authors
in exports, government spending and autonomous consumption: componentswhich all
share the status of autonomous components of effective demand, e.g. they are neither
financed by wage income nor can create capacity. Finally, paper claims that technical
change plays a role in the accumulation process through its effects on consumption and
thematerial requirements, but it is seen to depend upon income distribution, exchange
rate policy, bank liquidity and other circumstances. Cesaratto examines more in depth
the link between the Supermultiplier and the EndogenousMoney Theories with a focus
on Initial and Final Finance in (Cesaratto, 2016a), and again in (Cesaratto and Di Bucchi-
anico, 2021). In (Cesaratto and Pariboni, 2022), the Authors demonstrate, once again,
the compatibility between the Keynesian and Sraffian Schools.
The next step is the aforementioned paper, (Freitas and Serrano, 2015). Its main contri-
bution will be to change the mathematical shape of the models for the following years:
for the first time, a dynamical model of Sraffian Supermultiplier sees the light, in the
form of ODE; its stability conditions are also discussed. On henceforth, the research on
topic comes alive. Without claiming to be complete, we shall cite some papers, but the
main differences are in the incarnation of the autonomous component of demand and
in the number of components (one or two): although Serrano and the other Authors
referred to the components of autonomous demand, the dynamical model in Freitas
and Serrano (2015) had only one component to keep things simple. So, for example,
Morlin (2022) studies economic growth, fiscal policy rules aimed at debt stability and
open economies, in a model with two autonomous components: public expenditure
and exports (imports are instead proportional to the level of income). We’ll see it in
Section 5.4.
Two components are also protagonists in (Di Bucchianico et al., 2024): workers’ credit-
financed consumption and rentiers’ consumption which is the earnings given by the
interest rate calculated to extant debt accumulated by workers. Instead Morlin and
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Pariboni (2024) introduce, into the (Freitas and Serrano, 2015) landscape, the conflict
inflation getting a long-period autonomous demand-led model with endogenous dis-
tribution. We’ll see it in Section 5.3.
Serrano et al. (2018), in contrast to other works, study Harrodian instability not with
a continuous time model (ODE), but with a map, a discrete time model. They find a
Keynesian stability condition: marginal propensity to invest have to remain lower than
the marginal propensity to save.
Of course, critics exist and Sraffian Supermultiplier advocates react in (Serrano et al.,
2023), (Serrano et al., 2024a) and (Serrano et al., 2024b)18. Precisely regarding the
criticism, we would like to point out that one of the most interesting ones concerns
instability through the study of a map version model in (Thompson, 2024).

5.2 The Freitas and Serrano (2015) model
Here, we will derive Freitas and Serrano (2015) model, as you will see, calculations are
really simple and derivation is straightforward. First of all, let’s start by mentioning the
assumptions from the paper. The system is a closed capitalist economy without a gov-
ernment sector. The onlymethod of production in use required a fixed combination of a
homogeneous labor input with homogeneous fixed capital to produce a single homoge-
neous output19. Natural resources are supposed to be abundant; also constant returns
to scale and no technological progress are assumed, as well as no labour scarcity. All
variables are measured in real terms. Moreover, output, income, profits, investment
and savings are all in gross terms. Time is continuous. The level of aggregate gross fixed
investment I is given by the equation

K̇t = It − δKt (164)

where δ is exogenously given depreciation rate of the capital stock K. The last, really
important, assumption of the model is this equation, often called “flexible accelerator”

ḣt = htγ (ut − un) (165)

whereht
20 is a variable and it’s the investment share in aggregate output or themarginal

propensity to invest
ht =

It
Yt

(166)

18They are free unpublished discussion papers available on https://www.ie.ufrj.br/

publicacoes-j/textos-para-discussao.html.
19The firm sector produces one homogeneous good used both for consumption and investment, e.g.

the corn metaphor: cereal grain can be used both for consumption and for planting, as an investment
(new capital-goods), for future harvests.

20Here, for a variable Ξ, the notation Ξt doesn’t mean a map or discrete time, Ξt ≡ Ξ(t).
From now on, we will use this notation, which differs from that used in the previous Sections, in order
to be consistent with the notation used by Sraffian Authors.
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ut is the other main variable of the model, it’s the actual degree of capacity utilization

ut =
Yt

YKt

(167)

γ > 0 is a parameter that measures the reaction of the growth rate of the marginal
propensity to invest ḣt

ht
to the deviation of the actual degree of utilization ut from the

normal or planned level un (with 0 < un < 1). Eq(165) is a hypothesis about the be-
haviour21 of capitalists, but it’s also a version of flexible accelerator investment function.
Since this is a 2D model, one half of the model is assumed by hypothesis, let’s derive
the remaining part.

The accelerator ν (not the constant one22) is the technical capital/capacity output ratio:

ν =
Kt

YKt

(168)

where YKt is the capacity output of the economy at time t andKt is the level of capital
stock installed in the economy at that time. Since ν is a constant (a.k.a. parameter), to
be consistent, it’s time derivative should be zero

0 =
dν

dt
=

d

dt

(
Kt

YKt

)
=

K̇t

YKt

− ẎKt

YKt

Kt

YKt

=
It − δKt

YKt

− gKtν

=
It
Yt

Yt

YKt

− νδ − νgKt = htut − νδ − νgKt

which, finally, gives the rate of capital accumulation

gKt =
htut

ν
− δ (169)

but gKt is also the rate of growth of capacity output, so gKt =
K̇t

Kt
=

ẎKt

YKt
.

To clarify, ht is not a constant, as ν, so it’s derivative is not zero, i.e., if we take d
dt
lnht,

we find
ḣt

ht

=
İt
It

− Ẏt

Yt

= gIt − gt

which corresponds to Eq(9) in (Freitas and Serrano, 2015).
This approach derives the equations of motion directly from the macroeconomic defi-
nitions, so to get the last main equation it is sufficient to evaluate the time derivative

21They want to stay as close to the normal level as they can, so they change the level of investment
accordingly.

22Beware, it is also possible to define it as νG = Kt

Yt
(e.g. Goodwin (1982) adopts a fixed capital-to-

output ratio) but herewewill use only the onewithYKt . However, one could always recover the constant
one by setting ut = 1 ∀t.
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5 THE SRAFFIAN SUPERMULTIPLIER

of lnut = lnYt − lnYKt

u̇t = ut (gt − gKt) (170)

Now, the last piece is the growth rate of output or demand gt calculation. It comes
from Yt = Ct + It + Zt where Zt is the autonomous consumption financed by credit.
Consumption Ct is instead induced, i.e., Ct = cYt where c = φω23 is the marginal
propensity to consume, φ is the marginal propensity to consume out of wages and ω is
the wage share of output (constant, following Classical and Sraffian hypothesis), so

Yt =
Zt

1− c− ht

(171)

where (1− c− ht)
−1 is the Sraffian Supermultiplier, which is a variable as ht. Taking ln

and time derivative of Eq(171), the growth rate of aggregate demand is

gt =
Żt

Zt

− 0− 0− ḣt

1− c− ht

= gZ +
htγ (ut − un)

1− c− ht

(172)

where gZ is a parameter, i.e., the growth rate of autonomous component of demand is
exogenously given.
Serrano and Freitas firmly clarify the difference between s = 1− c, which is the aggre-
gate marginal propensity to save, and the actual saving ratio, the average propensity to
save, St

Yt
= s− Zt

Yt
= sft = ht where ft = It

It+Zt
= St

Yt
s−1 is called “the fraction”. c+ ht

is the marginal propensity to spend and it’s lower than one, the case c + ht = 1 is the
Say’s Law, which is rejected.
Finally the 2D model is:{

u̇t = ut

[
gZ + γht(ut−un)

1−c−ht
− htut

ν
+ δ
]

ḣt = γht (ut − un)
(173)

Regarding fixed points, the origin is obviously the trivial solution; the economically
meaningful equilibrium is achievedby settingu ̸= 0 and g = gK :

(
ū, h̄
)
=
(
un,

ν(gZ+δ)
un

)
.

So at equilibrium g = gZ = gK . I will not study the stability conditions and the bi-
furcations here, I’ll just say that, for parameters in Section 8.1 Appendix, topologically
speaking, the point (0, 0) is a saddle and

(
ū, h̄
)
is a stable focus (a.k.a. spiral).

From jacobian linearization, Authors find this condition for the stability

gZ < gmax =
s

ν
un − δ − γun (174)

In Figure 40 and 41 you can see a phase portrait of the phase space and the really slow
secular convergence to equilibrium stable point.

230 < c < 1 since 0 < φ < 1 and 0 < ω < 1.
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(a) (b)

Figure 40: (a) the secular convergence to the spiral point and (b) the phase portrait with
both fixed points, initial condition are also marked with smaller dot.

(a) (b)

Figure 41: (a) determinant ∆ and trace τ of the jacobian calculated in the fixed points
and in orange the function τ 2 − 4∆ = 0 which divides spirals from nodes for the eco-
nomically meaningful equilibrium point (e.g. see Strogatz, 2024, Chapter 5) and (b) zoom
of the focus point in Figure 40b.
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5.3 The Morlin and Pariboni (2024) model
As an example of an extension of the previous model, again with a single component
of autonomous demand, we study here the Morlin and Pariboni (2024) model. It’s has
some similarities with the Goodwin (1982) class struggle model.
The money wages wt have their growth rate given by

gwt ≡
ẇt

wt

= α1πint + α2 (ωWt − ωt) (175)

This equation means that workers push for money wage increases to preserve their
purchasing power after price increases, so the rate of growth of money wages depends
on the inflation rate πin since changes in the cost-of-living affect wage negotiations.
This effect is nevertheless incomplete, so that α1 < 1 but positive. Workers also have
an ideal wage share ωW level in mind, which is their target, so they try to close the
aspiration gap ωW − ω with the actual real wage share ωt. However, workers’ ability
to meet their targets depends on their bargaining power: hence, α2 is the sensitivity of
the rate of change in money wages to the workers’ aspiration gap.
Inflation rate is the rate of growth of prices p

(
πin ≡ gp ≡ ṗ

p

)
and this process depends

upon the capitalists’ pricing decisions. So also capitalists have their aspiration gap with
targeted wage share ωK and coefficient λ2. Moreover, capitalists partially pass through
labour cost increases into final prices according to another coefficient λ1, positive and
smaller than one.

gpt ≡ πint = λ1gwt + λ2 (ωt − ωKt) (176)

The rate of growth of real wage is the difference between the two rates gωt = gwt −gpt .
Putting Eq(175) in Eq(176) we have

πint =
α2λ1 (ωWt − ωt) + λ2 (ωt − ωKt)

1− α1λ1

and, finally, we find the first differential equation of the model

gωt ≡
ω̇t

ωt

= gwt − gpt = πint (α1 − 1) + α2 (ωWt − ωt) =

=
ωKt (1− α1)λ2 + ωWt (1− λ1)α2 − ωt [(1− α1)λ2 + (1− λ1)α2]

1− α1λ1

(177)

Authors also endogenize workers’ income claim: workers’ target for the wage share
depends on an autonomous component, expressing institutional and political factor θ0
and a second term that expresses the effect of unemployment rate j

ωWt = θ0 − θ1jt (178)
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The unemployment rate evolves according to the difference between the growth of the
labour force gN and the growth of the labour demand gL. The latter is determined by
the output growth rate, so gL = g. Labour supply follows an exogenous demographic
trend β0 with an added endogenous component, according to the coefficient β1, that
captures the entrance into and exit from the labour force and migratory movements in
time of low unemployment. So we have another linear relationship:

gNt = β0 − β1jt (179)

As in (Freitas and Serrano, 2015) we have Eq(165), (171) and (170), but now the propen-
sity to consume c can vary in time since an increase in the wage share leads workers to
spend a greater portion of their income on consumption (it’s a natural tendency to do
so): ct = φωt.
Using the same mathematical procedure as before, we obtain the analogue of Eq(172)

gt = gZ +
φω̇t + γht (ut − un)

1− φωt − ht

(180)

To obtain the rate of chance in the unemployment rate, we reason as follows. Since,
N is the total population of workers, the labour force, and L is employed one, the
unemployment rate j is j = N−L

N
. Now taking, as usual, ln and time derivative of the

employment rate 1− j = L
N
we find 0−j̇

1−j
= L̇

L
− Ṅ

N
which is the growth rate of j

gjt =
1− jt
jt

(gNt − gLt) =
1− jt
jt

[
β0 − β1jt − gZ − φω̇t + γht (ut − un)

1− φωt − ht

]
(181)

So our 4D system is:

ḣt = γht (ut − un)

u̇t = ut

[
gZ + φω̇t+γht(ut−un)

1−φωt−ht
− htut

ν
+ δ
]

j̇t = (1− jt)
[
β0 − β1jt − gZ − φω̇t+γht(ut−un)

1−φωt−ht

]
ω̇t =

ωtωKt (1−α1)λ2+ωtωWt (1−λ1)α2−ω2
t [(1−α1)λ2+(1−λ1)α2]

1−α1λ1

(182)

This model combines conflict inflation (class struggle) and demand-led growth, fol-
lowing the supermultiplier approach: growth and distribution become interconnected
processes linked through the unemployment rate. The equilibrium between inflation
and distribution resulting from the conflict inflation implies an equilibrium wage share
ω̇t = 0 and the convergence to the growth rate of autonomous demand g = gZ .
Beside the trivial solution (0, 0, 1, 0), the economically meaningful equilibrium is

(
h̄, ū, j̄, ω̄

)
=

(
ν (gZ + δ)

un

, un,
β0 − gZ

β1

,
ωKλ2 (1− α1) + α2 (1− λ1) (θ0 − θ1j̄)

λ2 (1− α1) + α2 (1− λ1)

)
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In equilibrium, the inflation rate is given by

π̄in =
α2λ2 (θ0 − θ1j̄ − ωK)

α2 (1− λ1) + λ2 (1− α1)
(183)

Authors find this stability condition:

φω̄ + h̄+ γν < 1 (184)

To have an j̄ within the valid range 1 < j̄ ≤ 0we also need β0 ≥ gZ and β1 > β0 − gZ .

5.4 The Morlin (2022) model
As an example of a two-component model of autonomous demand, we see Morlin’s
paper. He studied growth in an open economy with government with a Sraffian Super-
multiplier model with two autonomous expenditures: exports and public expenditure.
Both expenditures are autonomous once they are neither finances out of the current in-
come nor directly caused by production decisions. Exports depend on foreign demand,
not the domestic demand, and government counts with several degrees of freedom to
run deficits and expand public expenditures independent of the current income and
taxation. According to (Cesaratto, 2016b), this is particularly true for countries issuing
public deb in their sovereign currency. So, now we have also the government sectorG,
export expenditureX and importM , hence Y equation here becomes

Yt = Ct + It +Gt +Xt −Mt (185)

To build the Supermultiplier we have to replace the equations for induced components,
but the only differences compared to previous models are in Ct = c (1− τ)Yt and
Mt = mYt, where τ is a constant income tax rate,m is a constant propensity to import
and the propensity to consume c is constant again. So Eq(171) here becomes:

Yt =
Zt

1− c (1− τ)− ht +m
(186)

where Zt = Xt +Gt.
Eq(165) and (170) are, once again, two of our differential equations. Taking ln and time
derivative of Eq(186) we find the growth rate of aggregate demand

gt =
γht (ut − un)

1− c (1− τ)− ht +m
+ gZ (187)

SinceZ is the sum ofG andX , gZ is given by the average of the growth rates of exports
and public expenditures, weighted by the share of each expenditures on Z

gZ = σtgG + (1− σt) gX (188)
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where σt = Gt

Zt
. Taking time derivative of ln σt = lnGt − lnZt we obtain σ̇t =

σt (gG − gZ). So σ, which is the share of government expenditure G in autonomous
demand Z, changes whenever the growth rates of exports and public expenditure dif-
fer. Using Eq(188) we find the third differential equation of the model

σ̇t = σt (1− σt) (gG − gX) (189)

If public expenditure grows faster (slower) than exports, then σt continuously increases
(decreases). So one of the expenditures keeps growing faster than the other, until σ
converges to one of the extreme positions: either σ = 0 or σ = 1. In that case, one of
the autonomous expenditures dominates the explanation of the growth of autonomous
demand. However, as modern economies usually present positive demand from ex-
ports and public expenditures, Author argues that this condition does not usually hold.
Taking this into account, a constant growth rate gZ for the total autonomous demand
can only be obtained if both expenditures constantly grow at the same rate, which is
highly unlikely. So a stable fixed point will need gZ = gG = gX .
A second alternative requires that the growth rate of each autonomous component
varies in time, exactly compensating from movements in the other and from changes
in σ to keep a constant value for gZ . Anyway, Author does not explore this possibility.
Our 3D system is

u̇t = ut

[
σtgG + (1− σt) gX + γht(ut−un)

1−c(1−τ)−ht+m
− htut

ν
+ δ
]

ḣt = γht (ut − un)

σ̇t = σt (1− σt) (gG − gX)

(190)

Beside the trivial solution, the economically meaningful one is(
ū, h̄, σ̄

)
=

(
un,

ν (gZ + δ)

un

, σ

)
Indeed, since gZ = gG = gX , the equilibrium can be achieved at any level of σ.
The stability analysis (see Morlin (2022) Appendix) is expressed as follow:

γν + c (1− τ) +
ν (gZ + δ)

un

−m < 1 (191)

Author concludes that the simple inclusion of another autonomous expenditure does
not affect the local stability of the (Freitas and Serrano, 2015) supermultiplier growth
model.
He also proposes an extension of hismodel from 3 to 5 equations. So let’s add the public
debtB which changes according to government expendituresG, taxes (proportional to
the level of income Y ) and the debt service iB, where i is the interest rate

Ḃt = Gt − τYt + iBt (192)
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The relevant economic variable for the analysis of public debt is the ratio between debt
and income bt = Bt

Yt
. Taking time derivative and using Eq(192), we have

ḃt = σtzt − τ + ibt − gtBt (193)

of course, zt = Zt

Yt
. The term σtzt − τ corresponds to the primary government deficit

(or surplus) to output ratio.
Moving on to the balance of payment, we assume that it’s composed of the trade bal-
ance, factor income balance and capital account. The factor income balance is solely
composed of external debt service payments Rt = rDt, r is the international interest
rate (it’s fixed) andD the external debt. Hence, trade balance plus external debt service
R constitute the current account and we assume that capital flows F are just sufficient
to cover the deficit in the current account

Ft = Mt −Xt +Rt (194)

Here the result of the balance of payment is equal to zero so that the country neither
accumulate nor loses reserves.
The change in external debt will be given by net entrance of capital to finance the cur-
rent account deficit, thus

Ḋt = Ft = Mt −Xt + rDt (195)

Defining dt = Dt

Xt
, we have

ḋt =
m

(1− σt) zt
− 1 + (r − gX) dt (196)

Foreign debt stability requires an export growth rate gX larger than the international
interest rate r

r < gX (197)

Eq(196) of course shows that the path of foreign debt to exports ratio diverges as σ
approaches 1: an increase share of government in autonomous demand implies an
increase in imports, owing to the increase in domestic demand, without a counterpart
in exports.
Now, our system becomes 5D

u̇t = ut

[
σtgG + (1− σt) gX + γht(ut−un)

1−c(1−τ)−ht+m
− htut

ν
+ δ
]

ḣt = γht (ut − un)

σ̇t = σt (1− σt) (gG − gX)

ḃt = σtzt − τ + ibt − gtBt

ḋt =
m

(1−σt)zt
− 1 + (r − gX) dt

(198)

74



5 THE SRAFFIAN SUPERMULTIPLIER

With these additions to the model, the equilibrium becomes

(
ū, h̄, σ̄, b̄, d̄

)
=

(
un,

ν (gZ + δ)

un

, σ,
σz̄ − τ

gZ − i
,

(
m

(1− σ) z̄
− 1

)(
1

gX − r

))
where z̄ is given by the inverse of Eq(186):

z̄ = 1− c (1− τ)− ν (gZ + δ)

un

+m

75



6 ADDING INVENTORY DYNAMICS TO
THE SRAFFIAN SUPERMULTIPLIER

6 Adding inventory dynamics to
the Sraffian Supermultiplier

6.1 Adding inventories
Now we will try to add inventory cycle to the Freitas and Serrano (2015) model pre-
viously seen (Section 5.2), but before we start, we would like to say that our attempt
could not even exist without the work done by (Grasselli and Nguyen-Huu, 2018) (Sec-
tion 4.2).
To avoid their problems, we took the road of simplification, but in addition, we decided
to add the autonomous component of demand Z and to make their model compat-
ible with (Freitas and Serrano, 2015): so, although we based our work on (Grasselli
and Nguyen-Huu, 2018) paper for how to deal with inventories, our model, also, shows
some own peculiarities.
Following Sraffian lines, we decided, in particular, to turn off the Goodwin engine and
to keep ω24 constant: so it will be a parameter exogenously determined and not a vari-
able.
In the previousmodel, output produced Y and demand for goodsC+I+Z, and there-
fore income Y , were equal by construction (i.e. Y ≡ Yd in Serrano-Freitas model), but
the existence of inventories relegates this to a special case.
So the actual output produced by firms Yt is assumed to consist of expected sales Ye,t

plus planned inventory changes Ip,t

Yt = Ye,t + Ip,t (199)

The total sales demand or effective demand Yd,t is

Yd,t = Ct + It + Zt (200)

The difference between output and demand determines actual changes V̇t in the level
of inventory Vt held by firms/capitalists

V̇t = Ip,t + Iu,t = Yt − Yd,t (201)

where Iu,t are the unplanned changes in inventories (anyway it won’t be important for
the model). So here as accounting identity we have

Yt = V̇t + Ct + It + Zt (202)
24we also set φ = 1, so workers spend their entire wage, and therefore ω = c = Ct

Yt
.

76



6 ADDING INVENTORY DYNAMICS TO
THE SRAFFIAN SUPERMULTIPLIER

and the Supermultiplier becomes

Yt =
V̇t + Zt

1− ω − ht

=
Zt

yd,t − ω − ht

(203)

where we define
yd,t =

Yd,t

Yt

= ω + ht + zt (204)

zt is simply the share of the autonomous component of the demand

zt =
Zt

Yt

(205)

and
ye,t =

Ye,t

Yt

(206)

Furthermore the capitalists are supposed to close the gap between the actual demand
and the expected sales25

Ẏe,t = ηe (Yd,t − Ye,t) (207)

for a constant ηe ≥ 0 representing the speed of short-term adjustment to observed de-
mand. As for the capacity utilization, we assume that firms aim to maintain inventories
at a desired level

Vd,t = fdYe,t (208)

for a fixed proportion 0 ≤ fd ≤ 1.
We further assume that capitalists adjust their short-term expectations based on the
observed level of inventory

Ip,t = ηd (Vd,t − Vt) (209)

for a constant ηd ≥ 0, representing the speed of short-term adjustments to observed
inventory.
Since V̇d,t = fdẎe,t and İp,t = ηd

(
V̇d,t − V̇t

)
, using Eq(201) and (207), it gives

İp,t
Yt

= ηdfd
Ẏe,t

Yt

+ ηd (yd,t − 1)

25As we have seen, (Franke, 1996) and (Grasselli and Nguyen-Huu, 2018) added a term concerning the
output growth rate to Eq(207) and to Eq(209). However, in Franke (1996) model this was a constant,
while in Grasselli and Nguyen-Huu (2018) model there was a capitalists’ expected growth rate ge (u, πe),
whose derivative, strangely enough, seemed to disappear in the calculations.
In our case, we could have included gt or gZ , but we preferred to take the path of simplicity and assume
that capitalists have no expectations regarding growth.
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Now we can’t use Eq(203) to get gt as in (Freitas and Serrano, 2015), since we would
find an equation with V̈t, but we can use Eq(199):

gt =
Ẏe,t

Yt

+
İp,t
Yt

= ηe (1 + ηdfd) (yd,t − ye,t) + ηd (yd,t − 1) (210)

Finally, calculating time derivative of ln zt = lnZt−lnYt and of ln ye,t = lnYe,t−lnYt
26

we ends the model with four ODE system which, we must admit, is not much simpler
than the 5D model of (Grasselli and Nguyen-Huu, 2018), despite the efforts made to
simplify it: 

żt = zt (gZ − gt)

ẏe,t = ηe (yd,t − ye,t)− gtye,t

u̇t = ut

(
gt − htut

ν
+ δ
)

ḣt = γht (ut − un)

gt = ηe (1 + ηdfd) (yd,t − ye,t) + ηd (yd,t − 1)

yd,t = ω + ht + zt

(211)

6.2 Dimensionless group and fixed points
It’s also possible reduce the number of parameters when the model is expressed in
dimensionless form (e.g. see Boccara, 2010, pag.27,28).
In Section 8.1 Appendix we perform the dimensional analysis, but for what concerns us
here, it is enough to know that all the variables of Eq(211) are already dimensionless by
construction, except time.
To define the new time scale τ , we could use any parameter or combination of them,
however to simplify the equations, it is better to use ηe, i.e., τ = tηe and d

dτ
= 1

ηe
d
dt
.

So Eq(211) system now becomes

dzτ
dτ

= zτ (geZ − ge,τ )
dye,τ
dτ

= (yd,τ − ye,τ )− ge,τye,τ
duτ

dτ
= uτ

(
ge,τ − hτuτ

νe
+ δe

)
dhτ

dτ
= γehτ (uτ − un)

ge,τ = gτ
ηe

= Me (yd,τ − ye,τ ) + ηed (yd,τ − 1)

yd,τ = ω + hτ + zτ

(212)

where we have defined Me = (1 + ηdfd), geZ = gZ
ηe
, νe = ηeν, δe = δ

ηe
, γe = γ

ηe
,

ηed =
ηd
ηe
.

With this choice we went from 9 to 7 parameters: ω,Me, geZ , νe, δe, γe, ηed.
26Beware that Ye,t and ye,t are unknown, but we know Ye,t definition and Eq(207). It’s enough.
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Later, we will also use the shorthandMed = ηed +Me.
The first fixed point requires, from dz

dτ
= 0 and z ̸= 0, an equilibrium growth rate

ḡe,1 = geZ .
To have dye

dτ
= 0 and ye ̸= 0, it’s needed ye =

yd
1+ge

, so ye = yd isn’t a solution, as one
could expect. ȳe = ȳd

1+ḡe
and z̄ = ȳd − h̄ − ω, further du

dτ
= 0 and u ̸= 0 requires

h̄ = νe(ge+δe)
u

.
So we need only ȳd that we can find solving ḡe = geZ with the other equilibrium vari-
ables: ȳd,1 = (ηed+geZ)(1+geZ)

MegeZ+ηed(1+geZ)
.

The first fixed point is:

(
z̄1, ȳe,1, ū1, h̄1

)
=

(
(ηed + geZ) (1 + geZ)

MegeZ + ηed (1 + geZ)
−

νe (geZ + δe)

un

− ω,
(ηed + geZ) (1 + geZ)

MegeZ + ηed (1 + geZ)

1

1 + geZ
, un,

νe (geZ + δe)

un

)

For the sake of completeness, in the case of the system in Eq(211), the point becomes

(
z̄1, ȳe,1, ū1, h̄1

)
=

(
(ηd + gZ) (ηe + gZ)

gZηe (1 + ηdfd) + ηd (ηe + gZ)
−

ν (gZ + δ)

un
− ω,

(ηd + gZ) (ηe + gZ)

gZηe (1 + ηdfd) + ηd (ηe + gZ)

ηe

ηe + gZ
, un,

ν (gZ + δ)

un

)

For the second fixed point we set z̄2 = 0, thus the reason for having ḡe = geZ disap-

(a) (b) (c)

Figure 42: Numerical integration of the Eq(211) systemwith numerical values of Section
8.1 Appendix. (a) You can see the convergence to the fixed point

(
z̄1, ȳe,1, ū1, h̄1

)
, the

economically meaningful equilibrium point and (b) the same dynamics but in the phase
space and (c) the phase portrait with z, instead of h. Since the system is 4D, obviously,
we can’t represent it in only one 3D graph, so it is split in two.

pears, this needs to solve a quadratic equation for ḡe,2, i.e. ḡ2e,2O + ḡe,2P + Q = 027

but, unfortunately, it has not solutions in R since the discriminant is negative.
Finally, for the third fixed point, we have h̄3 = ū3 = z̄3 = 0, ȳd,3 = ω and ȳe,3 =

ȳd,3
1+ḡe,3

,
replacing in Eq(210) divided by ηe, it gives another quadratic equation

ḡ2e,3 + ḡe,3 [1− ωMe + ηed (1− ω)] + ηed (1− ω) = 0

27It has not solution for the parameters in Section 8.1 Appendix, anyway it isn’t easy to study.
O = 1− νe

un
(ηed +Me), P = 1 + ηed −

(
ω + δeνe

un

)
(ηed +Me)− νeηed

un
,Q = ηed

(
1− ω − δeνe

un

)
.
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without real solutions.
So also the third fixed point doesn’t exist for these values.
Moving on the jacobian matrix is

J
(
z̄, ȳe, ū, h̄

)
=


geZ − ḡe − z̄ (ηed +Me) z̄Me 0 −z̄ (ηed +Me)

1− ȳe (ηed +Me) ȳeMe − 1− ḡe 0 1− ȳe (ηed +Me)

ū (ηed +Me) −ūMe ḡe − 2 h̄ū
νe

+ δe ū (ηed +Me)− ū2

νe

0 0 γeh̄ γe (ū− un)

 (213)

and in the economically meaningful equilibrium point

J
(
z̄1, ȳe,1, ū1, h̄1

)
=


−z̄1 (ηed +Me) z̄1Me 0 −z̄1 (ηed +Me)

1− ȳe,1 (ηed +Me) ȳe,1Me − 1− geZ 0 1− ȳe,1 (ηed +Me)

un (ηed +Me) −unMe geZ − 2
h̄1un
νe

+ δe un (ηed +Me)−
u2
n

νe

0 0 γeh̄1 0

 (214)

The determinant of this matrix implies

0 = (−1)4+3 γeh̄1 det

−z̄1 (ηed +Me)− λ z̄1Me −z̄1 (ηed +Me)
1− ȳe,1 (ηed +Me) ȳe,1Me − 1− geZ − λ 1− ȳe,1 (ηed +Me)

un (ηed +Me) −unMe un (ηed +Me)− u2
n

νe

+

+ (−1)4+4 (−λ) det

−z̄1 (ηed +Me)− λ z̄1Me 0
1− ȳe,1 (ηed +Me) ȳe,1Me − 1− geZ − λ 0

un (ηed +Me) −unMe geZ − 2 h̄1un

νe
+ δe − λ


The eigenvalue equation for the first fixed point gives:

0 = λ4 + λ3

[
2
h̄1un

νe
− δe + 1− ȳe,1Me + z̄1Med

]
+ λ2 [(ȳe,1Me − 1− geZ)(

−2
h̄1un

νe
+ geZ + δe

)
− z̄1Med

(
−2

h̄1un

νe
+ geZ + δe

)
+ z̄1Med (1 + geZ)−

−z̄1Me + γe
h̄1u

2
n

νe
− unh̄1γeMed

]
+ λ

[
γe
h̄1u

2
n

νe
(1 + geZ − ȳe,1Me)−

−γeh̄1unMed (1 + geZ) + γe
h̄1u

2
n

νe
z̄1Med + γeh̄1unMe − (z̄1ηed + z̄1MedgeZ)(

−2
h̄1un

νe
+ geZ + δe

)]
+ γe

h̄1u
2
n

νe
z̄1 [Med (1 + geZ)−Me]

Routh-Hurwitz stability criterion for a fourth-order polynomial

P (λ) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0
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requires all coefficients must be positive, i.e., ai > 0 for all i, 0 < a2a1 − a3a0 and
0 < a3a2a1 − a4a

2
1 − a23a0.

Unfortunately, such conditions are not simple to check, here.
Moving on to numerical simulations, the four eigenvalues are:

(−0.024 + i0.078,−0.024− i0.078,−0.098 + i0.074,−0.098− i0.074)

They all have negative real part so the fixed point is a stable economically meaningful
equilibrium point.
Moreover, the fact that two eigenvalues are complex conjugate suggests that it could
be a focus, e.g., a fact that seems to be confirmed by the Figure 42.
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7 Conclusions and further developments
In this thesis, wediscussed someof themost importantmodels of theHeterodox Schools.
In particular, we focused on endogenous growth models.
Then,Wemoved on to themain topic: the version of the KeynesianMultiplier proposed
by the School founded by Piero Sraffa. In particular, the recent version of the Sraffian
Supermultiplier was discussed. The research proposal for this thesis was to add the in-
ventory dynamics to the Sraffian Supermultiplier.
As we have just seen, the model seems promising, however it presents mathematical
complications. For this reason, it seems unwise to further complicate an already com-
plicated model, nevertheless, one can easily imagine additions to the model, which we
will discuss in this section.

7.1 Class struggle, workers’ bargaining power and Goodwin cycles
Just as Morlin and Pariboni (2024) studied conflict inflation and endogenous distribu-
tion, even though they are Sraffian authors; one could reactivate here the class struggle
Goodwin engine that we had decided to ignore before.
Goodwin (1982), and Keen (1995) and Grasselli and Nguyen-Huu (2018) following him,
model their investment function and bargaining power on the disciplinary role of unem-
ployment and the “scarcity of hands”: hereω becomes a variable and ω̇t depends on λt,
so when the employment rate increases, also the strength of the workers increases and
therefore the wage claim, but capitalists react to the decrease of their profits (1 − ωt)
cutting investment and therefore the employment. Grasselli and Nguyen-Huu (2018)
don’t use h variable, but in our case, Eq(165) should also depend on the profit share
πt = 1− ωt since ḣt must decrease. The price to pay would be to add two more equa-
tions to the model, since we need the employment rate λt and the wage share ωt.

7.2 Labor force
The issue here is that in Goodwin (1982) and other related papers, there isn’t a limit for
λ̇t and Yt, so λt > 1 and Yt > Ymax = aN 28 are potential outcomes of the model. They
use ȧt

at
= α and Ṅt

Nt
= β so both grow exponentially fast: this often is enough to avoid

issues. For us, the problem still remains29.
28HereN is the total population and a the labour productivity. N is assumed fixed, so the population

doesn’t grow in our model, and so does α.
29We don’t find very interesting to study the dynamics if there is exponential growth, plus it must be

added that in the real world countries have problemswith both productivity and population growth, e.g.,
α = β ≈ 0.
Someone could use something like Yt = min (aLt, aN) where Lt is the number of workers employed
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A solution could be to use the logistic equation with carrying capacity aN , i.e., Ẏt

Yt
=

gt
(
1− Yt

aN

)
= gt (1− λ) = λ̇t

λt
. But here an issue arises with the Sraffian Supermulti-

plier: if gZ is given,Zt always increases, so when output will reach its aN limit, we think
that Zt to continuing to grow, it will absorb all the other components and, eventually,
the model will stop making sense. Again, one would try Żt

Zt
= gZ

(
1− Zt

aN

)
, although,

it must be said, there is no real economical reason to have such a behaviour. Maybe
that’s why Serrano and Freitas don’t consider the employment rate: it seems to us that
exogenous gz stopsmaking sense in conditions of full employment. Anyway, continuing
to follow this proposal, then one should derive gt from these equations and the Freitas
and Serrano (2015) model would become this 4D model:

λ̇t = gtλ (1− λ)

żt = zt [gZ − gt + λt (gt − gZzt)]

u̇t = ut

[
gt (1− λt)− htut

ν
+ δ
]

ḣt = γht (ut − un)

gt =
1

1−λt

[
gZ (1− ztλt) +

γht(ut−un)
1−c−ht

] (215)

at time t, but such approach complicates the derivatives for the jacobian matrix.
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8.1 Stocks and Flows. Dimensional analysis, benchmark parameters
A flow is howmuch a stock varies in time. Since, in this work, we have defined quantity
as a number (i.d. how many goods the output is made of30) they are dimensionless.
So stocks should be dimensionless, while flows have dimensions of [Time]−1.
Of course, one must also choose the time scale and define the size of the model pa-
rameters accordingly. One could choose, for example, quarters or years, we decided to
choose year as time scale.
Kt, Vt and Vd,t are stocks; It, Yt, YK,t, Ct, Zt, Yd,t, Ye,t, Ip,t, V̇t are flows.
Time derivative of a flow has dimension [Time]−2, e.g. acceleration in Physics.
Growth rates are [Time]−1 since a growth rate is a ratio between the derivative of a
flow and the flow itself.
Ratios are dimensionless, e.g. ht is a ratio between two flows.
In this model we have 9 parameters. The accelerator ν is a [Time] since it’s a ratio
between a stock and a flow. fd is also a [Time] since Eq(208) is an equality between
a stock and a flow, so fd must transform a flow in a stock. All other parameters are
[Time]−1, e.g. δ is the inverse of a time since in Eq(164) K̇t and It are flows and so the
stock of capitalKt must become a flow. A summary can be found in the Table 1.

8.2 Calculations for Goodwin model with Say’s Law
The jacobian matrix for the Goodwin model with Say’s Law is

J (ω, λ) =

[
w [λ]− α ωw′ [λ]

− λ
νG

1−ω
νG

− α− β − δ

]
(216)

where the derivative of the function with respect to employment is w′ [λ] = 2AC
(B−Cλ)3

.
We introduce the notation w0 = w [0] = A

B2 − D < 0, where w0 = −0.04 depends
solely on the value of the parameters chosen for the model (we said that workers were
willing to accept a maximum reduction in their wages of 4%).
For the first fixed point, we obtain

J0 (0, 0) =

[
w0 − α 0

0 1
νG

− α− β − δ

]
=

[
−0.055 0

0 0.263̄

]
(217)

30Since we did not want to make a particular choice of the representative good in my model. But, for
example, in the corn metaphor, the output could be composed of a number of grains, or, more likely,
a unit of measurement of the mass, e.g. in tons or kg. However, now, we prefer to keep this quantity
dimensionless, so it will be, simply, a number.
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Symbol Status Dimension Benchmark value
or initial condition

γ parameter [Time]−1 0.1500

un parameter [Time]−1 0.8242
ν parameter [Time] 0.9890

δ parameter [Time]−1 0.0840
ω parameter / 0.7000

gZ parameter [Time]−1 0.0390

ηe parameter [Time]−1 0.1500

ηd parameter [Time]−1 0.1500
fd parameter [Time] 0.1500
zt variable / 0.1329
ye,t variable / 0.7658
ut variable / 0.7642
ht variable / 0.0876

Table 1: Summary of the main variables and parameters. There are also the benchmark
values for the parameters and the initial conditions for the variable. Some values come
from Di Bucchianico et al. (2024).

where detJ0 = −0.014 < 0 and trJ0 = 0.208 > 0 and since the eigenvalues are one
positive and the other negative, the origin is a saddle point.
Instead, for the second fixed point

J1
(
ω̄1, λ̄1

)
=

[
0 ω̄1w

′ [λ̄1

]
− λ̄1

νG
0

]
=

[
0 2.550

−0.322 0

]
(218)

where detJ1 = 0.821 > 0 and obviously trJ1 = 0, the eigenvalues are purely imag-
inary complex conjugates λ1,2 = ±0.906i. The fixed point, having a real part of the
eigenvalues equal to zero, is a non-hyperbolic point and is a center: therefore, for ini-
tial conditions different from it, cycles will form around it.

8.3 Calculations for Goodwin model without Say’s Law
The jacobian matrix of Goodwin model in the case of the investment function is

J (ω, λ) =

 w [λ]− α ωw′ [λ]

λ
νG

k′
[

π
νG

]
k
[

π
νG

]
νG

− α− β − δ

 =

 w [λ]− α ω 2AC
(B−Cλ)3

− λ
νG

2EG
νG

(F−G 1−ω
νG

)3

k
[

1−ω
νG

]
νG

− α− β − δ

 (219)

In the same way, let us now introduce the notation km = k
[
π̄max

νG

]
= k

[
1−0
νG

]
=

E
(F−G 1

νG
)2
−H = −0.057 < 0 .
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For the fixed point
(
ω̄0, λ̄0

)
we have

J0 (0, 0) =

[
w0 − α 0

0 km
νG

− α− β − δ

]
=

[
−0.055 0

0 −0.089

]
(220)

where detJ0 = 0.005 > 0 e trJ0 = −0.144 < 0, unlike the previous case, now both
eigenvalues are negative, so the origin is a stable fixed point. This is due to the presence
of the inversion function, particularly in the second eigenvalue: since km < 0 due to
the chosen parameters, also km

νG
− α− β − δ < 0.

Instead, for
(
ω̄1∗∗, λ̄1

)
we have

J1
(
ω̄1∗∗, λ̄1

)
=

[
0 ω̄1∗∗w

′ [λ̄1

]
λ̄1

νG
k′
[
1−ω̄1∗∗

νG

]
0

]
=

[
0 1.965

1.404 0

]
(221)

It has detJ1 = −2.759 < 0 and trJ1 = 0, the eigenvalues are real with opposite signs
λ1,2 = ±1.661, therefore, the fixed point is a saddle.
Finally, for the fixed point

(
ω̄1∗, λ̄1

)
J2
(
ω̄1∗, λ̄1

)
=

[
0 ω̄1∗w

′ [λ̄1

]
λ̄1

νG
k′
[
1−ω̄1∗
νG

]
0

]
=

[
0 2.779

−1.404 0

]
(222)

It has detJ2 = 3.902 > 0 e trJ2 = 0, the eigenvalues are purely imaginary complex
conjugates λ1,2 = ±1.975i. Since the real part of the eigenvalues is zero, the fixed point
is a non-hyperbolic point and is a center.

8.4 Calculations for Keen model
The jacobian matrix of the Keen model is

J (ω, λ, d) =



w [λ] − α ω
(

2AC
(B−Cλ)3

)
0

− λ
νG

 2EG
νG(

F−G π
νG

)3

 k

[
π

νG

]
νG

− α − β − δ − λ
νG

 r 2EG
νG(

F−G π
νG

)3


1 − νG−d

νG

 2EG
νG(

F−G π
νG

)3

 0 2r −

 k

[
π

νG

]
νG

− δ

 − νG−d

νG

 r 2EG
νG(

F−G π
νG

)3




(223)

Let us, therefore, introduce a notation that will facilitate our subsequent calculations:
∂ω̇
∂λ

∣∣
(ω̄1,λ̄1,d̄1) = ω̄1

(
2AC

(B−Cλ̄1)
3

)
= K0

∂λ̇
∂ω

∣∣∣
(ω̄1,λ̄1,d̄1)

= − λ̄1

νG

(
2EG
νG(

F−G
π̄1
νG

)3

)
= −K1

∂λ̇
∂d

∣∣∣
(ω̄1,λ̄1,d̄1)

= − λ̄1

νG

(
r 2EG

νG(
F−G

π̄1
νG

)3

)
= −rK1
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∂ḋ
∂ω

∣∣∣
(ω̄1,λ̄1,d̄1)

= 1− νG−d̄1
νG

(
2EG
νG(

F−G
π̄1
νG

)3

)
= K2

∂ḋ
∂d

∣∣∣
(ω̄1,λ̄1,d̄1)

= 2r −
(

k
[
π̄1
νG

]
νG

− δ

)
− νG−d̄1

νG

(
r 2EG

νG(
F−G

π̄1
νG

)3

)
= r + rK2 − (α + β)

whereK0 > 0 andK1 > 0.
So, for the point

(
ω̄1, λ̄1, d̄1

)
we have

J
(
ω̄1, λ̄1, d̄1

)
=

 0 K0 0
−K1 0 −rK1

K2 0 r + rK2 − (α + β)

 (224)

Moving on to the characteristic equation

λ3 + [(α + β)− r − rK2]λ
2 +K0K1λ+ (α + β)K0K1 − rK0K1 = 0

according to the Routh-Hurwitz criterion, see (Grasselli and Costa Lima, 2012), to have
negative real parts of the all roots of a cubic polynomial of the form p(y) = a3y

3 +
a2y

2 + a1y + a0 it’s sufficient that an > 0 ∀n and that a2a1 > a3a0.
We therefore have the following conditions:
α + β − r − rK2 > 0
K0K1 > 0
K0K1(α + β − r) > 0
K0K1(α + β − r − rK2) > K0K1(α + β − r)
In our case, we already know that K0 > 0 andK1 > 0 and that α > 0 and β > 0, so
the second condition is automatically verified. Furthermore, the first condition requires
α + β > r(1 + K2) to be satisfied, and the third requires α + β > r. For the fourth
condition, however, it is sufficient that

rK2 < 0

Expressing, rK2 < 0 we have r − r νG−d̄1
νG

(
2EG
νG(

F−G
π̄1
νG

)3

)
< 0

that is r

[(
νG − d̄1

)( 2EG
νG(

F−G
π̄1
νG

)3

)
− νG

]
> 0

and replacing d̄1 as well, we finally get

r

(νG − π̄1 − νG (α + β)

r − (α+ β)

) 2EG
νG(

F −G π̄1

νG

)3
− νG

 > 0

If this and the other conditions stated above hold, the fixed point
(
ω̄1, λ̄1, d̄1

)
is stable.
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Instead, to study the stability of
(
ω̄2, λ̄2, d̄2

)
= (0, 0,±∞) we must perform the co-

ordinate change d = 1
u
so that u tends to zero when d tends to infinity and therefore

the fixed point of interest becomes
(
ω̄2, λ̄2, ū2

)
= (0, 0, 0). We then rewrite the system

of Eq(61) 

ω̇ = ω (w [λ]− α)

λ̇ = λ

(
k

[
1−ω− r

u
νG

]
νG

− α− β − δ

)

u̇ = u2 − ωu2 − 2ru− (νGu
2 − u)

(
k

[
1−ω− r

u
νG

]
νG

− δ

) (225)

It is easy to verify that
(
ω̄2, λ̄2, ū2

)
is a fixed point.

Let’s move on to the jacobian matrix

J (ω, λ, u) =


w [λ]− α ω

(
2AC

(B−Cλ)3

)
0

− λ
νG

(
2EG
νG

(F−G π
νG
)
3

)
k[ π

νG
]

νG
− α− β − δ rλ

νGu2

(
2EG
νG

(F−G π
νG
)
3

)
νGu2−u

νG

(
2EG
νG

(F−G π
νG
)
3

)
− u2 0 U

 (226)

dove U = 2u− 2ωu− 2r − (2νGu− 1)

(
k
[

π
νG

]
νG

− δ

)
− νGu2−u

νG

(
r
u2

2EG
νG(

F−G π
νG

)3

)
.

In the case of the fixed point
(
ω̄2, λ̄2, ū2

)
= (0, 0, 0) it becomes

J
(
ω̄2, λ̄2, ū2

)
=

w0 − α 0 0

0 k0−νG(α+β+δ)
νG

0

0 0 k0−νG(2r+δ)
νG

 (227)

where it was necessary to introduce the notation

k0 = lim
π→−∞

k

[
π

νG

]
= −H

since π = 1− ω − r
u
tends to −∞ when u → 0, as in the case of this fixed point. The

equilibrium is stable if the eigenvalues are all negative, i.e. if The equilibrium is stable
if the eigenvalues are all negative, i.e. if
w0 < α
k0 < νG (α + β + δ)
k0 < νG (2r + δ)
The first two conditions are automatically satisfied by the choice of parameters, while
the third implies

r >
1

2

(
k0
νG

− δ

)
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or, in our model, r > −0.021, which is not a limiting condition at all considering a
positive interest rate.
Consequently this fixed point is stable and competes with the one seen previously.
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