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Abstract

Inflation not only provides a promising explanation for the observed structure of our universe;
but also reveals a novel and elegant mechanism for the production of dark matter, distinct from
the historically considered scenarios. Among the others, inflation naturally generates vector field
fluctuations which, after being stretched to super-horizon scales and re-entering the horizon, are
viable dark matter candidates. The longitudinal mode of a massive vector boson is especially
noteworthy, being abundantly produced during inflation. Unlike scalars and tensors which are
typically produced with a nearly scale-invariant spectrum, the longitudinal mode inherits unique
dynamics from its inflationary origin, satisfying cosmological constraints and providing a robust
dark matter candidate.

In this thesis, we propose a mechanism through which ultralight dark matter is generated
during inflation. We introduce a brief departure from slow-roll inflation to address the challenge
of producing a realistic dark matter candidate and explore its consequences. The violation of
slow-roll conditions during inflation induces a rapid change in the vector boson mass, producing
significant features in the power spectrum. We show that this rapid variation, occurring during
a short non-slow-roll phase, enhances the power spectrum and naturally generates an ultralight
dark matter relic with extremely small vector masses, allowing for the inclusion of candidates with
masses as low as m ~ 1071 eV or even smaller.

Our results demonstrate that the non-standard evolution of inflationary parameters strongly
amplifies the longitudinal mode fluctuations, enabling ultralight bosons to be naturally produced
by quantum fluctuations during inflation. This mechanism establishes a theoretically consistent
pathway for generating ultralight dark matter and provides a framework to explore a unified
inflationary origin for mixed dark matter scenarios.
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Notation and Units

In this thesis, boldface symbols are consistently used to denote vector quantities, while scalar
quantities are represented by regular (non-bold) symbols. Greek letters are reserved for param-
eters and constants that are widely accepted in the literature and subscripts are employed to
indicate specific components or references where necessary. This notation is maintained through-
out the thesis to ensure clarity and consistency in the presentation of mathematical expressions
and physical concepts.

We will be using the convention (—,+, 4+, +).

We will adopt natural, or high energy physics, units. After setting h = ¢ = kg = 1, there is
only one fundamental dimension: energy.
In these units:

[Energy] = [Mass] = [Temperature] = [Length] ' = [Time] *

Common quantities used:

1GeV ™t =1.97 x 107 cm = 6.59 x 1072 sec

Mp] =1.22 x 1019 GeV

Hy = 100h km sec™! Mpc™! = 2.1h x 107*2 GeV

pe = 1.87h? x 10722 g/cm® = 1.05h% x 10* eV /em® = 8.1h% x 10747 GeV*
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Chapter 1

Introduction

A description of our Universe has two complementary aspects:
e the global properties, encoded in the so-called cosmological parameters,
e the irregularities in the distribution of matter and radiation.

The cosmological parameters describe both the geometry and the content of the universe. The
overall dynamics of cosmic expansion are governed by the Hubble parameter and the spatial curva-
ture, the latter being determined by the relative fractions of different forms of energy and matter.
Direct observations reveal the presence of baryonic matter (the ordinary matter of which we are
made) and radiation, primarily in the form of the cosmic microwave background (CMB), char-
acterized by a thermal spectrum with temperature T, = 2.728 K. In addition, particle physics
predicts a background of cosmological neutrinos, with a similar energy density to the CMB.

However, several lines of evidence indicate that most of the matter in the universe is in the form
of non-baryonic dark matter, whose nature is still unknown. The evolution of the universe, and in
particular of the irregularities it contains, depends quite sensitively on the properties of this dark
matter. Structure formation models generally require at least a component of cold dark matter
(slow-moving particles), though other components such as hot dark matter (relativistic particles)
are also possible. Determining the precise values of the cosmological parameters remains one of
the central goals in cosmology: apart from the CMB temperature, most parameters -such as the
Hubble constant and the total density parameter- are still debated.

The second key feature of the cosmological description is the fact that the distribution of matter
is not uniform. The deviations from homogeneity are known as density perturbations and under-
standing their origin and evolution is one of the major challenges of modern cosmology. A wide
variety of observational probes give us information about structure formation: the anisotropies in
the CMB reflect the distribution of matter at very early times, the velocities of galaxies reveal
the gravitational forces they experience, galaxy abundances and galaxy clusters inform us about
present-day density fluctuations, and observations of high-redshift objects (quasars and distant
galaxies observed by telescopes such as HST and Keck) probe structure at earlier cosmic epochs
1, 2].



The current cosmological model, ACDM, has been very successful at describing the observed
large-scale structure. One of the main components of this model is dark matter, which is thought
to make up approximately 5/6 of all matter in the Universe. The evidence for the existence of
dark matter is strong and includes galaxy rotation curves [3, 4], redshift surveys |5l [6], the cosmic
microwave background [7], weak lensing [8, 9] and other observational probes [2] [10)].
Considerable effort has been dedicated to developing a wide range of theoretical models and ex-
perimental searches in an attempt to identify the correct dark matter candidate. The models
themselves vary in complexity, but they are often parameterized according to the mass of the dark
matter particle, which spans a range from roughly 1072*eV to ~ 10M. Despite these global
efforts, no confirmed non-gravitational detection of dark matter has yet been achieved and the
nature, composition and origin of dark matter remain still unknown.

Thus, determining the fundamental nature of dark matter (DM) remains one of the most pressing
open questions in modern physics. Its extremely weak interactions with Standard Model particles
-possibly limited to gravity alone-, make direct detection exceptionally difficult [10, [1T].

Inflation provides a compelling framework for understanding the very earliest moments of the
universe. It offers solutions to a number of fundamental cosmological puzzles, including the strik-
ing homogeneity and isotropy observed on large scales. At the same time, quantum fluctuations
during inflation generate small perturbations in the density field, which serve as the seeds for the
formation of cosmic structure. These primordial inhomogeneities leave observable imprints on the
cosmic microwave background and the measured spectrum of these fluctuations is in remarkable
agreement with the predictions of inflation. This concordance is widely considered one of the
strongest pieces of observational support for the inflationary paradigm.

Since its conception, the inflationary universe scenario has progressed from a bold hypothesis
to a well-established theory of the evolution of the universe, accepted by the majority of cosmol-
ogists. If gravity is the sole interaction connecting the hidden and visible sectors, an efficient
mechanism is required to generate dark matter in the early universe. Cosmic inflation naturally
provides such a mechanism through the process of particle production in a rapidly expanding,
curved spacetime. During inflation, the exponential expansion stretches quantum fluctuations
beyond the Hubble horizon, effectively converting vacuum fluctuations into excited modes. This
phenomenon is not limited to the inflaton field itself but can also produce other fields that are
only gravitationally coupled, including potential dark matter candidates [12HI4].

Besides explaining the origin of the structures in the universe, inflation addresses many theo-
retical puzzles such as the observed large scale homogeneity and isotropy of the universe on large
scales, the horizon problems and the flatness problem.

Furthermore, the imprint left on the CMB by the inhomogeneities arising from quantum fluc-
tuations during the inflationary epoch, where probed, matches with those of the predictions of
inflation. This remarkable agreement is often regarded as the best observational evidence for the
inflationary paradigm and makes inflation one of the cornerstones of modern cosmology.

However, while inflation is widely accepted as the origin of structure in the universe, the na-
ture and origin of dark matter remains unknown. Conventionally, dark matter is assumed to
originate from mechanisms such as thermal freeze-out or misalignment. In this thesis, we ex-
plore a striking alternative: the possibility that inflation, a theory that so beautifully explains
the origins of structure in the universe, could also simultaneously be the source of the dark mat-



ter that is essential for the growth of this structure, through purely gravitational processes [15-17].

To achieve this goal, it is intriguing to explore the possibility that inflation may include brief
epochs of non-slow-roll (NSR) evolution. Such departures from the standard slow-roll dynamics
can leave distinctive signatures on the small-scale spectrum of fluctuations, which can be exploited
to enhance dark matter production. In particular, NSR phases can induce a strong amplification
of scalar curvature perturbations, potentially exceeding the threshold for primordial black hole
formation in single-field inflation models [I8-20]. Similarly, an enhancement of the primordial
gravitational wave spectrum at high frequencies could bring it within the sensitivity of current or
next-generation gravitational wave detectors. From a theoretical perspective, incorporating NSR
phases into the standard inflationary model is highly significant, as these non-slow-roll periods
can significantly alter our understanding of dark matter production.

Therefore, in our work we extend the perspective of [15] by demonstrating that NSR phases

play a key role in the gravitational production of ultralight dark matter [10, 21, 22]. We investigate
a variation of the scenario proposed in [I5], where DM consists of the longitudinal modes of a
massive dark photon produced purely through gravitational effects during inflation. The frame-
work of [15] is especially minimal, relying only on the existence of a massive vector field as the
DM candidate, which is efficiently generated in the very early universe. Since then, this setup has
been further elaborated in a broad range of theoretical works [23H34], while its phenomenological
consequences have been addressed in [35H45].
Here we study how this setup is modified by introducing a brief phase of non-slow-roll dynamics
during inflation, leading to a rapid variation of the effective vector mass. The rapid changes in the
inflaton dynamics during these brief epochs can induce strong modifications in the mass-dependent
spectra of longitudinal vector modes, offering a new and efficient channel for generating ultralight
dark matter during the early universe.

This generalization enables the production of dark matter with ultralight masses, down to m ~
107" eV or below. A central prediction of the mechanism is the simultaneous generation of a
stochastic gravitational wave background [46-H50], peaking at ultra-low frequencies, which pro-
vides a distinctive observational signature of the scenario. Thus, by studying these effects, NSR
inflation not only enriches the phenomenology of primordial perturbations but also opens a unified
window to study both gravitational wave signals and dark matter production. Furthermore, this
opens a novel connection between ultralight vector dark matter and PBH physics, suggesting a
framework in which mixed dark matter scenarios naturally arise and offering new ways to probe
inflationary dynamics across widely separated scales.

It is important to emphasize that the mechanism of ultralight dark matter (DM) production
we propose differs fundamentally from previously studied frameworks, such as those based on
the misalignment mechanism [22, [5I]. Unlike these approaches, our mechanism does not rely
on background fields oscillating around the minimum of their potential. Moreover, the fact that
the spectrum of the longitudinal vector field is not scale-invariant implies that the misalignment
mechanism is ineffective in generating a late-time vector abundance. This is because the energy
density stored in a homogeneous vector field redshifts away while H > m, rendering any relic
abundance produced in this manner negligible. This point is crucial, as it highlights that our
proposal relies on a genuinely distinct mechanism for the production of ultralight DM. Our results
are then different from the results of previous models in which ULDM was proposed as produced
from cosmological initial conditions. By opening up this new avenue, our mechanism broadens



the landscape of viable dark matter models, offering fresh opportunities to connect early-universe
dynamics with present-day cosmological observations.

Executive summary

This thesis explores the role of inflationary cosmology and ultra-light vector bosons in the early
universe, with the goal of exploring the origin of dark matter. It is organized as follows:

We begin with an introduction to the inflationary theoretical framework in Chapter[2] outlining
the standard inflationary paradigm, its puzzles and the motivations for inflation as our starting
point. Building on this foundation, in Chapter [3] we study cosmological perturbation theory,
focusing on quantum fluctuations of scalar fields during inflation and their power spectra. After
this, we move into the core of our analysis by investigating the origin of dark matter in Chapter
M, and then examining in detail the role of vector fields in the early universe in Chapter [5
Here, we analyse the compatibility of ultra-light vector bosons with cosmological constraints,
their dynamics during inflation and radiation domination and their implications for dark matter
abundance. In Chapter [6] we extend this analysis to scenarios of non-slow-roll inflation, exploring
departures from standard conditions, both in terms of how the behaviour of longitudinal modes
changes under different initial conditions and of the phenomenological consequences of this new
mechanism.

The thesis concludes by highlighting the key findings and open questions, and by presenting
three technical appendices that support the main calculations. Overall, the aim is to show how
ultra-light vector bosons may be produced during inflationary epoch and may serve as viable dark
matter candidates, bridging inflationary physics, cosmological perturbations and observational
constraints.



Chapter 2

Foundations of Inflationary Cosmology

“We are just an advanced breed of monkeys on a minor planet of a very average star.
But we can understand the Universe. That makes us something very special.”
— Stephen Hawking

Inflation [T, 62] stands as the most beautiful and profound theoretical paradigm in modern cos-
mology. It offers a convincing explanation of the reasons for which our universe appears as it
does today. The inflationary paradigm asserts that, in its earliest moments, an infinitesimally
small region of spacetime underwent a phase of rapid accelerated expansion -transforming into
the universe we live in and that we now observe. This dramatic growth smoothed out primordial
irregularities, rendering the observable universe remarkably homogeneous and isotropic at large
scales.

Yet the elegance of inflation extends far beyond this initial contribution: inflation not only
stretches spacetime, but also quantum fields themselves. During this epoch, quantum fluctuations
are excited and their perturbations extended from microscopic to cosmological scales. The vacuum
fluctuations, once stretched beyond the horizon, effectively freeze and become classical, imprint-
ing energy density variations across the universe. As the universe evolves and these fluctuations
re-enter the observable horizon, they manifest as temperature and matter anisotropies- believed
to be the origin of the large-scale structure of galaxies and dark matter [I, 53]. Inflation, in its
richness, offers yet another remarkable prediction: it sources primordial gravitational waves as
quantum fluctuations of spacetime itself. These waves may leave subtle imprints in the polariza-
tion patterns of the CMB and their detection is now the focus of an ambitious and far-reaching
observational effort.

Thus, inflation suggests a breathtaking possibility: that all the structure we see in the universe
today -every galaxy, cluster and filament- is the result of quantum fluctuations born in the earliest
moments of cosmic history. This provides the motivation for taking it as the basis of our study.

Inflation is defined in an extraordinarily clear and elegant way: it refers to the epoch in the
early universe during which the scale factor -the parameter that quantify the size of the universe-
undergoes accelerated expansion. As we shall see, this does not constitute the sole definition of
inflation, as there exist equivalent formulations describing the same period of accelerated expan-
sion. Regardless the definition, inflation represents an extraordinary phase of expansion in the



universe that irreversibly shaped its structure. More insightfully, one might describe the inflation-
ary expansion by involving the Hubble radius -the characteristic scale of causal contact-, saying
that it shrinks relative to any fixed physical scale embedded in the expansion. In this sense,
inflation should be viewed as a powerful “zoom-in” on a tiny patch of the primordial universe.
Importantly, inflation is not a replacement for the Hot Big Bang theory; rather, it is a remarkable
extension appended to its earliest phase.

A sufficiently long period of inflation can successfully solve various issues related to the initial
conditions required by the Hot Big Bang model in order to produce a universe like the one we live
in. In particular, it naturally explains why the universe is so close to being spatially flat and why it
appears remarkably homogeneous on large scales. These puzzles were precisely the motivation for
Guth’s original proposal of inflation in 1981 [54]. Even so, these issues are no longer the primary
driving force behind inflationary cosmology. What makes inflation truly compelling today is its
role as a mechanism for generating the primordial structure of the universe. In this sense, inflation
has become a genuinely predictive paradigm and remains the leading theoretical framework for
explaining the origin of all structure in the universe, including life itself.

2.1 Overview of Inflationary Paradigms

The history of the universe from 107! seconds after the Big Bang (corresponding to energies
around 1 TeV) up to the present day is grounded in observational evidence and well-tested physical
theories [T], 13]. It relies mainly on the Hot Big Bang cosmology [2] and its success ensures that the
model gives a correct description of the Universe starting at some epoch before nucleosynthesis
takes place. At epochs well before nucleosynthesis, the universe was composed of a hot gas
that gradually cooled as cosmic expansion proceeded. This gas contained several components,
corresponding to the various particle species present, among them the photons that we now detect
as the cosmic microwave background radiation. Initially, the energy density was dominated by
relativistic species (including photons), collectively referred to as radiation; at later times it became
dominated by non relativistic species, referred to as matter. However, in sharp contrast to this well-
defined picture, we have no certain knowledge of the universe well before nucleosynthesis: before
10719 seconds from the Big Bang, the physics becomes as uncertain as it is fascinating. No direct
experimental probe can give us information about the very first instants of the universe. It’s in
this regime, where experimental physics is blind, that theory offers insights in the understanding
of the universe. It is from those first 1071 seconds that we want to extrapolate information
about the universe today. For example, to explain the perturbations in the CMB temperature we
require a primordial seed of fluctuations and a mechanism by which those microscopic quantum
fluctuations in the energy density are stretched to macroscopic scales.

The entire gaseous period of the universe is often referred to as the Big Bang, with the term

Hot typically omitted, since the universe need not have been in thermal equilibrium or radiation-
dominated. Before this, there is thought to have been an era of inflation, during which the



energy density of the universe was dominated by the potential of the scalar fields. Inflation is
supposed to determine the initial conditions for the Big Bang, including the perturbations. How-
ever, as anticipated, one of the most fascinating things about inflation is that, although initially
proposed to fix issues involving the initial conditions of the standard Hot Big Bang cosmology, its
enduring importance stems from a feature identified shortly after its introduction: it also offers
a compelling mechanism for generating the primordial inhomogeneities that ultimately gave rise
to all observable structures, from the earliest collapsed objects and the clustering of galaxies, to
the anisotropies detected in the microwave background. Then, if we assume this spectrum was
produced by inflation, we can use late time observations of the CMB and the LSS to infer the
primordial input spectrum. This gives us an observational probe of the physical conditions when
the universe was 10734 seconds old and a new, fascinating opportunity to use cosmology to probe
physics at the highest energies [53].

2.2 The Standard Inflationary Universe

Homogeneity and isotropy are observed when the universe is considered at sufficiently large scales.
At these scales, our universe exhibits a striking degree of uniformity, an observation that under-
pins the Cosmological Principle. The most compelling evidence for this isotropy comes from the
extraordinary uniformity of the cosmic microwave background (CMB) radiation: intrinsic tem-
perature anisotropies are suppressed to the level of one part in 10°. This remarkable smoothness
indicates that, at the epoch of last scattering, approximately 200,000 years after the Big Bang, the
universe was isotropic and homogeneous to an exceptional degree of precision, on the order of 1075.

This observed large-scale homogeneity and isotropy provides the foundation for modeling the
universe using the Friedmann—Robertson-Walker (FRW) framework. By assuming that the uni-
verse is homogeneous and isotropic, the FRW model successfully describes its large-scale dynamics
and allows us to extend our understanding back to extremely early times, as close as 10~%3 seconds
after the Big Bang, approaching the limits of known physics [1I, 12, 62} 53], 55].

2.2.1 An Homogeneous Universe

Assuming large-scale homogeneity and isotropy, one is naturally led to describe the spacetime
geometry of the universe using the Friedmann—-Robertson-Walker (FRW) metric:

2

2 2 2

+ 72 d6? + r?sin® 0 dp?| . (2.1)



where the spacetime coordinates (¢,7,0,¢) are comoving coordinates, with ¢ representing the
proper time as measured by an observer at rest in the comoving reference frame -i.e. with fixed
spatial coordinate (r,0, ). The expansion of the universe is reflected by the growth of the scale
factor a(t), while galaxies and comoving observers retain fixed spatial coordinates, provided no
external forces act upon them [12] [14].

The radial coordinate r is dimensionless, meaning that the cosmic scale factor a(t) carries the
dimension of length, and only relative distances are physically meaningful. For spaces of con-
stant spatial curvature, the curvature parameter k can be rescaled to take values +1,—1 or 0,
corresponding respectively to positive, negative or flat spatial geometry. In the case k = +1, the
coordinate r ranges from 0 to 1.

The essential quantity characterizing the Friedmann—Robertson—Walker spacetime is the expan-
sion rate, defined by the Hubble parameter:
a(t

H(t) = a(t) (2.2)
where a(t) is the time derivative of the cosmic scale factor. The Hubble parameter H(t) has
units of inverse time. It sets the characteristic time-scale and the characteristic length-scale of
the homogeneous universe, respectively the Hubble time: ty ~ H~! and the Hubble radius given
by Ry ~ H~!'. This means that the Hubble time sets the scale for the age of the universe, while
the Hubble length sets the size of the observable universe. It is positive in an expanding universe,
negative in a contracting one.
Given the comoving distance, the corresponding physical distance is due to

R=a(t)r, (2.3)

which evolves in time even for objects with zero peculiar velocity. This encapsulates the essence
of cosmic expansion: the stretching of space itself rather than motion through space.

Besides, the form of the scale factor a(t) is dictated by the matter content of the universe via
the Einstein field equations. Its evolution, on the other hand, is determined by the Friedman
equation

k 87TGN
= p

H? + — 2.4
+ 3 (2.4)
and, for the acceleration

a 47TGN

- =— 3P 2.5

© = TN (p+3P) (2.5
The Friedmann equation [2.4] can be recast as

0-1 Pk (2.6)

T 3H?/87Gy  a?H?'

where the parameter € is the ratio between the energy density p and the critical energy density
pe (both € and p. are not constant in time):

3H?
Q= £7 Pc = .
Pe 81GN

(2.7)
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Since a?H? > 0, there is a correspondence between the sign of k and the sign of (Q — 1):

k=41 = Q>1 closed,
k=0 = Q=1 Aflat, (2.8)
k=-1 = Q<1 open.

This is valid at all times. This classification corresponds to three distinct possible geometries for
the universe:

e Closed universe (k = +1, Q > 1): The spatial geometry is spherical, meaning the universe
is finite in volume and may eventually recollapse under its own gravity if dominated by
matter.

e Flat universe (k = 0, Q = 1): The spatial geometry is Euclidean, implying that the
universe is spatially infinite and the expansion rate asymptotically balances the gravitational
attraction. This case is especially favoured by inflationary cosmology.

e Open universe (kK = —1, Q < 1): The spatial geometry is hyperbolic, indicating an infinite
universe that expands forever, with curvature dominating at large scales if no dark energy
is present.

By introducing the conformal time 7, as a clock which slows down with the expansion of the
universe and as the coordinate for which light rays propagate as if in flat space

dt
T = /% , (2.9)

+7r2df* + r*sin® 0 dgpﬂ =a*(7) [-dr? +dx?] . (2.10)

we can rewrite the FRW metric as:

ds* = a®(7) |—dr? +

1—kr?

The reason why is called conformal is manifest from Eq. [2.10; the corresponding FRW line element
is conformal to the Minkowski line element describing a static four dimensional hypersurface [12-
14].

2.2.2 The Particle Horizon and the Hubble Radius
Having introduced the conformal time, we can now proceed to give a set of useful definitions [14].

A light signal emitted from coordinate position (ry, 6y, ¢¢) at time ¢ = 0 will reach ry = 0 in

a time t determined by
t / T /
dt H d
/ — = / —T/ (2.11)
o a(t’) 0 1 — kr'2
11



This is the maximum distance light can propagate between an initial time ¢;, usually taken to be
the origin of the universe, t; = 0, and some later time t.
Starting from this, we define the particle horizon as the proper distance to the horizon at time ¢

Ru(t) = a(t)/o a‘z:) — at) /0‘2—@#@) — at) /OH ﬂd_—rw (2.12)

The particle horizon is fundamental for understanding the causal structure of the universe. In

the standard Big Bang model, the universe begins at a finite time in the past and at any point
in its early history, the particle horizon is likewise finite. This constrains the maximum distance
over which regions of spacetime could have interacted causally, forming the basis of the so-called
Big Bang puzzles.
Specifically, if Ry(t) is finite, it marks the boundary between the observable Universe and
regions from which light has not reached us. The finiteness of the particle horizon depends on
the behaviour of the scale factor a(t) near the initial singularity. In standard cosmology, one finds
Ry (t) ~ t, confirming that the particle horizon is indeed finite.

We also recall the defintion of Hubble radius:

g g (2.13)

as the distance over which particles can travel in the course of one expansion time.

The main difference between these two recently introduced quantities is subtle but important.
The Hubble radius provides a measure of whether particles are causally connected at a given
time. If they are separated by distances larger than the Hubble radius H !, they cannot currently
communicate, i.e., they cannot interact at time ¢t. However, they could have interact in the past.
In contrast, if particles are separated by distances greater than Ry(t), they could never have
communicated with one another.

In standard cosmology, the particle horizon is finite and, up to numerical factors, approximately
equal to the Hubble radius, H~!. For this reason, the terms horizon and Hubble radius are often
used interchangeably in this context. However, in inflationary models the horizon and Hubble
radius behave quite differently. During inflation, the horizon distance grows exponentially relative
to the Hubble radius; by the end of inflation, the two differ by a factor of eV, where N denotes
the number of e-folds of inflation.

Let us also define the comoving particle horizon as the quantity which delineates the boundary
beyond which signals emitted at a given time 7 will never reach a specified observer in the future.
In comoving coordinates, the comoving particle horizon corresponds to the set of points satisfying

t dt/ a da/ a 1
— — e — dlnd 2.14
i /0 a(t") /0 H(a')a" /0 na (Ha’) ( )

— (2.15)

where the quantity
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gives the definition of the comoving Hubble radius, which plays a crucial role in inflation. We see
that the comoving horizon then is the logarithmic integral of the comoving Hubble radius (aH)™!.

Since particles separated by distances larger than (aH)™! are not in causal contact at a given
time, it is possible for 7y to be much larger than the comoving Hubble radius at the present
epoch: in this case, particles may not be able to communicate today, even though they could have
interacted at earlier times. This situation can occur if the comoving Hubble radius was much
larger in the early universe, such that 74 receives most of its contribution from those early times.
This does not occur during matter-dominated or radiation-dominated epochs. In these periods,
the comoving Hubble radius increases with time, so that the dominant contribution to H typically
comes from the most recent times.

Furthermore, a physical length scale \ lies inside the Hubble radius if A < H~*. We can also
express this condition in terms of its comoving wavenumber k, since: A\ = 27 a/k. This leads to
the following useful expressions:

k
i <1 — scale A outside the Hubble radius, (2.16)
a
iH >1 — scale A inside the Hubble radius. (2.17)
a

2.3 The Big Bang Puzzles

Initial Conditions as Fine-Tuning Problems

For the universe to evolve to its current state, in the context of the conventional Big Bang model,
extreme fine-tuning is required. Indeed, in order to obtain a homogeneous and isotropic universe,
we would need to specify the initial amount of matter and its spatial distribution in the universe,
which can be done by explicitly giving its energy density and pressure, p(Z) and p(Z), both de-
pending on spatial location. However, at the same time, observations of the cosmic microwave
background show that the inhomogeneities were much smaller in the past than they are today.
To ensure that the universe remains homogeneous at late times requires the initial fluid velocities
U(Z) to take very precise values. It seems, then, that in order to obtain the universe as it is today,
we need exact initial values, so the initial conditions for the conventional FRW cosmology appear
highly fine-tuned [13].

While this is not inherently problematic, it is somewhat unsatisfying to attribute the universe’s
current configuration only to a specific and highly delicate configuration of the initial conditions:
it does necessitate the precise calibration of fundamental parameters, and this invites deeper ex-
amination.

Inflation offers a compelling resolution to this issue by providing a mechanism through which the
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observed features of the universe can emerge naturally, without invoking such extreme fine-tuning.

The fine-tuning problem manifests in distinct forms, commonly referred to as the horizon prob-
lem and the flatness problem to which we may add the primordial perturbation problem.

Homogeneity and the Horizon Problem: Why does the Universe look the
same wn all directions?

The only way two regions of the universe can share the same physical properties, such as tem-
perature, is if they are close enough for information to be exchanged between them and allow
their conditions to equilibrate, in particular to reach thermal equilibrium, which requires causal
contact. Since no signal can travel faster than light, causal contact is limited by the light-travel
time. Whenever two regions are separated by a distance so large that light has not had sufficient
time to cross between them, they are causally isolated. In that case, the regions lie beyond each
other’s horizons and cannot influence one another [13] 56].

According to standard cosmology, photons decoupled from baryons and electrons at a temperature
of order ~ 0.3eV, corresponding to the so-called surface of last scattering at redshift z ~ 1100,
when the universe was about 3 x 10° years old. From that moment onward, CMB photons have
free-streamed essentially unperturbed and thus provide a direct snapshot of the state of the uni-
verse at that early epoch.

Observations reveal that the universe is highly homogeneous and isotropic on large scales. The
best measure of this is provided by observed spectrum of the cosmic microwave background,
which is extremely close to a perfect blackbody with temperature T' ~ 2.728 K, with temperature
anisotropies of order 10~°, over more than three orders of magnitude in wavelength. This suggests
that the universe was even smoother at earlier epochs. So, when we observe the CMB in opposite
directions, we find that its temperature is almost identical to an astonishing level of precision.
However, CMB photons have been travelling for almost the entire lifetime of the Universe in order
to reach us today and they had no time to traverse the whole universe and reach the regions on
the opposite side of the sky. Yet, the universe appear homogeneous in all the directions. This is
particularly surprising since in the conventional Big Bang picture the early universe consisted of
a large number of causally-disconnected regions of space.

How can distant regions be so finely correlated if they were never in causal contact? In the
Big Bang theory, there is no dynamical reason to explain why these causally-separated patches
show such similar physical conditions. By tracing the expansion backwards, one finds that even
regions that are only one degree apart on today’s sky were already outside each other’s horizons
when the CMB was emitted. We then refer to the homogeneity problem as the horizon problem.

In order to have a more quantitative perspective, let us follow the discussion of [57] and consider
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the physical length corresponding to present Hubble radius, which is essentially the size of the
observable universe. We can evaluate it at the time of last scattering (Is) by scaling it back with

the scale factor: T
Qls
A (ty) = Ru(to) — = Ru(to) —. (2.18)
ap ﬂs

During matter domination, however, the Hubble length evolves differently, since
H? & pp, < a™? o< T, (2.19)
Consequently, at last scattering one finds
T\ 32
H_' = Rulto) (TL) < Rul(to). (2.20)

In other words, the physical size of today’s Hubble radius was much larger than the causal horizon
at the epoch of last scattering. From the comparison of the corresponding volumes, one finds:

No(To) (T ™
s =\ ~ 10°. (2.21)

This implies that within the region which has now grown into our present Hubble volume, there
were of order 10° causally disconnected patches at the time of last scattering. It is difficult to
imagine any mechanism within the standard Big Bang framework capable of producing a black-
body spectrum for the cosmic photon bath when those regions had no causal contact the last time
they interacted with the surrounding plasma.

The Flatness Problem: Why is the universe so flat?

At the present time, the universe is remarkably close to being spatially flat, lying almost exactly
between a positively curved (closed) and a negatively curved (open) geometry.
Out of the full range of possibilities, our nearly flat universe seems to be clearly a very special case.

Let’s assume that Einstein equations are valid until the Plank era, and let’s turn to the Friedmann
equation for the curvature:

H? = @ - % (2.22)
also written as i
Qa) —1= (2’ (2.23)
where @
= e iwla) = a 2. .
Q(CL) - pcrit(a) ) pcr1t< ) 3H( ) (2 24)

Stating that the universe is perfectly flat means to require 2 = 1 at all times; but if there is even
a small curvature term, the time dependence of €2(a) is quite different.
During a radiation—dominated (RD) era we have:

H? x p, ca™™, (2.25)
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and therefore
Q-1 x x x a’. (2.26)

Pm X a3 (2.27)
and, analogously,
1 1
-1 x x x a. (2.28)
a?pm a’a=3

In both regimes, (€2 — 1) becomes smaller as we go backwards in time.
Since today (29 — 1) is of order unity, we can estimate its value at ¢p; (the time when the
temperature of the universe was Tp; =~ 10 GeV):

|Q — 1|T:TP1 <a%’l> (T()z) —64
A~ | =)~ =] ~ O(10 . 2.29
Q2 — 1] r=p, ag T3 ( ) (2.29)

with Ty ~ 10713 GeV, which is the current temperature of the CMB radiation. Thus, the devia-
tion from flatness at Planck scales is extremely small.

This is particularly striking because any small departure from flatness in the early universe be-
comes increasingly amplified as the Universe evolves. For example, if the density had been only
slightly larger than the critical value even as late as one billion years after the Big Bang, the
universe would already have collapsed by now; if it had been slightly smaller, the rapid expansion
would have diluted all matter and prevented structure formation.

In standard cosmology, the comoving Hubble radius, (aH)™!, grows with time and from Eq.
the quantity | — 1| must thus diverge with time. In the absence of any selection principle or
dynamical mechanism, one would expect |2 — 1|7z, ~ O(1).

The critical value €2 = 1 is an unstable fixed point. Therefore, in standard Big Bang cosmology
without inflation, the near-flatness observed today requires a drastic fine-tuning. The value of
|2- 1| at early times have to be fine-tuned to values amazingly close to zero, but without being
exactly zero. Why, then, we need such tuned initial conditions?

2.4 Inflation as the solution of the Big Bang Puzzles

To specify the universe’s initial conditions, well-posed Cauchy problem requires the specification
of the positions and velocities of all matter particles, everywhere in space. The subsequent homo-
geneity of the universe turns out to be extremely sensitive to these initial velocities. If they are
even slightly underestimated, matter collapses rapidly under gravity; if they are slightly overesti-
mated, the expansion proceeds too fast, leaving behind a nearly empty universe without structure.
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This deep sensitivity, as we outlined, reflects a fine-tuning problem. The situation is further com-
plicated by the horizon problem: the required coordination of velocities must extend across regions
that, according to causal limits, could never have exchanged information.

The flatness and horizon problems thus represent significant limitations in the predictive power
of the Big Bang model [I], 12} 13]. The extreme flatness of the early universe must be imposed as
part of the initial conditions. Similarly, the remarkable large-scale homogeneity of the universe is
neither explained nor predicted by the model, but must be assumed. A theory capable of dynam-
ically accounting for these initial conditions is therefore highly desirable.

In this respect, one might observe that both of these problems stem from the fact that, within
conventional cosmology, the comoving Hubble radius grows monotonically with time. This obser-
vation points to an elegant resolution: if, in the very early universe, the comoving Hubble radius
were instead to decrease sufficiently, the puzzles of the Big Bang would naturally be resolved.
Thus, we require a primordial period during which physical length scales evolve more rapidly than
the Hubble radius, H~!. This hypothesis could allow photons to have been in causal contact in the
past, thereby explaining the observed homogeneity of the CMB. Indeed, if there exists an epoch
during which physical scales grow faster than the Hubble radius, then scales that are within the
horizon today (A < H~') but were outside it at some earlier time (A > H~!) -for instance, at the
time of last scattering when two photons were emitted- could have re-entered the Hubble radius
during a primordial epoch (A < H~') once again.

If this occurs, homogeneity and isotropy of the CMB follow naturally: photons we observe to-
day, which were emitted from causally disconnected regions on the last-scattering surface, share
the same temperature because they had an opportunity to exchange information at an earlier
stage in the universe’s evolution.

The resolution of the horizon problem thus lies in the distinction between the (comoving)
particle horizon and the (comoving) Hubble radius: while the particle horizon is larger than the
Hubble radius today -so that particles were in causal contact at early times- they are no longer in
contact at later epochs.

Since a given scale evolves as a, while the Hubble radius scales as H~! ~ a/a, we must impose a
period during which their ratio increases with time. Equivalently, this requires that the comoving
Hubble radius decreases.

2.4.1 Conditions for Inflation

The fundamental condition we gave for inflation relies on the definition of the Hubble radius, since
it most directly relates to the flatness and horizon problems and is the key for the mechanism
to generate fluctuations. This is the requirement for which the comoving horizon has to decrease
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[13]:

d 1
—|—]<0. 2.30
dt (aH ) ( )
If we now take the time derivative of the shrinking Hubble sphere, we can see that this corresponds
to:
d/s 1 —a
——=) = — 2.31
dt (aH ) (aH)?’ (231)

and then we immediately deduce that a shrinking comoving Hubble radius implies accelerated
expansion
d*a
—>0. 2.32
e (2.32)
This explains why inflation is often defined as a period of accelerated expansion and gives us
another way to describe the inflationary epoch.

This can be seen also in a different way, by expressing the second time derivative of the scale
factor in terms of the first time derivative of the Hubble parameter H and by introducing the
parameter e:

H

i
- =H*1- h =-——. 2.33
" (1—¢), where ¢ e (2.33)
Acceleration therefore corresponds to
H dln H
- - _ 1 2.34
£=—13 N <L (2.34)

Here, we have defined dN = H dt = dIn a, which measures the number of e-folds N of inflationary
expansion. Eq therefore means that the fractional change of the Hubble parameter per e-fold
is small.

Moreover, from the second Friedman equation we infer that ¢ > 0 requires

1
p< =3P (2.35)

1.e. negative pressure.

Thus, we have three equivalent formulations of inflation, three conditions that can be equivalently
verified in order to characterize the inflationary expansion. The three conditions for inflation are:

e Decreasing comoving horizon
e Accelerated expansion
e Negative pressure

If this occurs, the isotropy and homogeneity of the CMB are naturally accounted for: photons
observed today, which were emitted from causally disconnected regions at the time of last scat-
tering, could nevertheless have the same temperature because they were once in causal contact in
the very early universe.
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To investigate easily some properties and features of the inflationary epoch, let us consider the
special case P = —p, so let us work in a de Sitter phase.
From the FRW equations together with the energy conservation law, one finds that during a
de Sitter stage,
p = constant, H; = constant, (2.36)

where H; denotes the Hubble parameter during inflation. As a consequence, the scale factor

evolves as
a(t) = ap eIt (2.37)

with ¢; marking the onset of inflation.

Although the scale factor grows exponentially and the expansion is therefore superluminal, this
does not contradict General Relativity. The rapid growth refers to the expansion of space-time
itself, not to the propagation of signals within it.

It is precisely this period of exponential expansion that allows us to address the primordial
shortcomings of the standard Big Bang model:

Flatness problem and Inflation

Recall the Friedmann Equation for a non-flat universe

1 1
X — . (2.38)

|1_Q(a’)‘: (CLH)2 a2

If the comoving Hubble radius decreases this drives the universe toward flatness (rather than away
from it). This solves the flatness problem. The solution 2 = 1 is an attractor during inflation
[13].

It is important to underline the fact that inflation does not change the global geometric prop-
erties of the spacetime. If the universe is open or closed, it will always remain flat or closed,
independently from inflation. What inflation does is to magnify the radius of curvature R.,,, so
that locally the universe is flat with a great precision.

The Horizon problem and Inflation

A decreasing comoving horizon implies that the large scales we observe in the present universe were,
in fact, within causal contact before the onset of inflation. This means that causal information
operating prior to inflation was able to establish spatial homogeneity across regions that today
appear disconnected. Once a phase of accelerated expansion began, these initially uniform regions
were stretched to enormous scales, thereby preserving their homogeneity.
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During inflation:

bt 1 ¢ a(t)
Ry(t) = a(t = qpefll=t) [ _— ) [e-tht=t)1" ~ 27 2.39
H( ) CL( >/tI a(t’) ar e < HI) [6 ]tl HI ) ( )

while the Hubble radius itself remains constant,

Hubble Radius = - = H; . (2.40)
a
Besides, in comoving coordinates, the comoving Hubble radius decreases exponentially,
Comoving Hubble Radius = H; teHilt=t), (2.41)

while comoving length scales remain constant.

In this way, inflation naturally resolves the horizon problem: regions of the cosmic microwave
background (CMB) sky that seem causally disconnected today were actually in thermal contact
before inflation. They reached equilibrium prior to being stretched beyond each other’s horizons
during inflation, which explains why the CMB exhibits such remarkable uniformity across the sky.
Moreover, small primordial fluctuations generated during this epoch were imprinted on top of this
nearly homogeneous background, providing the seeds for the anisotropies observed in the CMB
and, ultimately, for the formation of cosmic structure.

2.4.2 Beyond the Big Bang Puzzles: The Deeper Role of Inflation

Beyond solving the horizon and flatness problems, inflation stands as the leading theory of the
primordial universe because, by simply requiring the condition outlined in Section to be
verified, inflation also accounts for another fundamental feature of the our universe: the existence
of galaxies and clusters of galaxies. In other words, inflation provides a natural explanation for
the origin of large-scale structure (LSS).

This is possible because inflation stretched microscopic fluctuations into macroscopic scales.
Thus, today’s large-scale structures are the amplified remnants of primordial quantum fluctuations,
expanded during the accelerated phase of cosmic inflation [1I, 17, 5§].

Indeed, the quantum fluctuations present in the very early universe could have served as the
primordial source for galaxy formation. However, without inflation, these fluctuations would have
been far too small to account for the ripples we observe in the cosmic microwave background.
Therefore, inflation resolves this issue: the extremely rapid expansion of the universe during this
epoch stretched the quantum fluctuations to much larger physical scales, large enough to manifest
as the anisotropies in the CMB, which later grew under the influence of gravity to form galaxies
and clusters over billions of years.

In this sense, inflation not only explains the initial conditions of the universe but also provides
the mechanism by which microscopic quantum fluctuations are promoted to macroscopic, classical
perturbations. These perturbations form the seeds of all cosmic structures observed today.
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Thus, inflation should be regarded, first and foremost, as a theory of primordial quantum fluc-
tuations.

2.5 A Scalar field as the source of Inflation

2.5.1 Standard models of inflation

The main idea underlying all existing versions of the inflationary universe scenario is that in the
very earliest stages of its evolution, the universe could be in an unstable vacuum like state having
high energy density. In most conventional inflationary models, the accelerated expansion is driven
by a particular type of matter given by a scalar field. This type of field, which plays a central role
in symmetry breaking in particle physics, is assumed to possess a potential energy that sustains
the inflationary phase. However, particle physics does not yet provide a definitive prediction for
the form of this potential, nor for the detailed properties of the scalar field itself. This lack of
specificity leaves considerable freedom to construct a variety of inflationary scenarios, each based
on different choices of the potential and motivated by different high-energy physics backgrounds.

Inflationary models differ primarily in the choice of the potential for the scalar field (or fields)
driving inflation, as well as the mechanism by which inflation ends. Throughout the early 1990s,
single-field models dominated [59, [60]. In these models, the scalar-field potential is often chosen
for simplicity, e.g., as a monomial or exponential function, with initial conditions set so that the
field is well displaced from its minimum, while keeping its energy density below the Planck scale.
Some single-field models can also produce a significant level of gravitational waves.

In the mid-1990s, a new class of particle-physics-motivated models emerged, known as hybrid
inflation [53] 61], 62]. These involve interactions between two scalar fields and exploit the flat po-
tentials expected in supersymmetric theories. Hybrid models can generate enough inflation with
only modest evolution of the fields, which remain far below the Planck mass.

Finally, there are less conventional models, such as those based on extended gravitational theories.
These aim to source the inflation-driving scalar field directly from the gravitational sector rather
than from matter fields.

Is it clear that many different models of inflation have been proposed and the challenge of ex-
plaining the underlying physics of inflation is considerable. The mechanisms capable of producing
an inflationary expansion are quite diverse. Inflation can arise in many different theoretical set-
tings, ranging from models based on simple scalar fields with carefully chosen potentials to more
elaborate frameworks involving multiple fields, higher-order corrections or even modifications of
General Relativity itself. This variety reflects both the flexibility of the inflationary paradigm
and the fact that we still lack a definitive understanding of the physics driving inflation. Inflation
should be regarded as a paradigm, a theoretical framework for describing the early universe, rather
than a single unique theory.
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A wide variety of phenomenological models have been developed, motivated by different theo-
retical considerations and yielding diverse observational predictions. This diversity provides a
certain freedom to investigate alternative scenarios and to examine their phenomenological im-
plications, but it also poses the challenge of identifying which, if any of these models, correctly
describes the physics of the early universe.

2.5.2 The Scalar Field Dynamics

Several are the advantages of having a phase of accelerated expansion in the primordial universe,
but it is true that this is a rather unusual physical phenomenon: within a tiny fraction of a second,
the universe expanded exponentially at an accelerated rate. In the framework of Einstein gravity,
such behavior demands the presence of a source with negative pressure; it requires p < —% p. This
condition can be realized through a simple scalar field, which we shall call the inflaton.

The single scalar field model of the inflaton ¢ minimally coupled with gravity is the simplest
model of inflation. For this to work, we do not need to specify the physical nature of this field, but
rather use it as an order parameter (or clock) to describe the time evolution of the inflationary
energy density [13].

Its dynamics is governed by the action:

S = / dixy/—g BR + %g”’jﬁuqﬁ 9,6 — V(6)| = Sen + Sy (2.42)

which is just the sum of the gravitational Einstein-Hilbert action, Sgg, and the action of a scalar
field with canonical kinetic term, S,, where V(¢) describes the self-interactions of the inflaton.

From the Eulero-Lagrange equations, the dynamics of the (homogeneous) scalar field in the FRW
geometry is given by:

o+ 3Ho+V'(¢) =0, (2.43)

where V'(¢) = (dV (¢)/d¢) and where the friction term 3H¢ comes into play: for large values of
the potential, the field experiences significant Hubble friction, being:

H? = % (%& + V(¢)) : (2.44)

This means that a scalar field rolling down its potential suffers a friction due to the expansion of
the universe.

The energy-momentum tensor for the scalar field is

245,
SN

— 0,00,6 — g (%awa,(ﬁ + v<¢>> . (2.45)
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We assume the FRW metric for g,,. Consistency with the symmetries of the FRW spacetime re-
quires that the background value of the inflaton only depends on time ¢(¢,x) = ¢(t). Restricting
to the case of a homogeneous field, the scalar energy-momentum tensor takes the form of a perfect
fluid

pe 0 0 0
0 —p, 0 0
’LL:
To=to o —p o0
0 0 0 —p
with
1-
po = 0" +V(9), (2.46)
1.
ps = 0" =VI(9). (2.47)

and the resulting equation of state is given by

12
s =V
T - fb— (2.48)
Pe §¢2+V

Thus we can see that, if the potential energy V' dominates over the kinetic energy
V(g)>¢* | (2.49)
we obtain the condition

which means that a scalar field can lead to negative pressure (w, < 0) and accelerated expansion.
So inflation can be driven by a scalar field whose energy is dominant in the universe and whose
potential energy dominates over the kinetic term. In particular, inflation is sourced by the vacuum
energy of the inflaton field.

2.6 Slow-roll vs Non-slow-roll inflation

Slow-Roll Inflation

Slow Roll (SR) inflation is a deformation of exact de Sitter which lasts for a finite amount of time.
It can be followed by reheating and by the usual Hot Big Bang model.

To build SRI it is sufficient to consider the dynamics of the inflaton scalar field minimally cou-
pled to Einstein gravity via the action [2.42] To each value of the field ¢ corresponds a potential
energy density V(o).

If the condition holds, so if the potential energy dominates over the kinetic energy -i.e., if the
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field rolls slowly-, we can have a field configuration which leads to inflation.

The SR condition can be formulated in terms of the parameter e, which is related to the
evolution of the Hubble parameter through [2.33] Accelerated expansion occurs whenever € < 1,
while the exact de Sitter limit, p, — —pg, corresponds to e — 0. Thus, the first slow-roll condition
can be written as

First slow-roll condition: ~ V(¢) > ¢* <= e<1 (2.51)

This requirement alone, however, is not sufficient to guarantee successful inflation. One must
also ensure that inflation lasts long enough to solve the horizon problem. Sustained accelerated
expansion is possible only if the second time derivative of the field is small compared to the friction
and potential terms:

6] < [3H|, |Vy|. (2.52)

This motivates the introduction of a second slow-roll parameter,

é 1 de

R A = (2.53)

2¢ AN’
where the condition |n| < 1 ensures that the fractional variation of € per e-fold remains small.

The second slow roll condition can be then expressed as

Second slow-roll condition:  |¢| < |3H¢|, [Vy| <= |n| <1|. (2.54)

Generally, € and 7 are referred to as Hubble slow-roll parameters.
The two slow-roll conditions, can equivalently be expressed as constraints on the shape of the
inflationary potential:

M2 2
o) = 71)1 <%) <1, (2.55)
and
%
1e(¢) = M;% < 1. (2.56)

Here, ey and ny are called potential slow roll parameters. Also, the Planck mass M has been
reintroduced to make ¢, and 7, explicitly dimensionless.

Inflation terminates when the slow-roll conditions are violated:

8(gbend) = 17 8V(Qbend> ~ 1. (257)

The amount of inflation is measured in terms of e-folds of expansion, dN = dina. The total
number of e-folds between a point on the potential and the end of inflation at ¢.,q is

Qe te Pe H Pe 1 ’d(b‘ Pe 1 |d(b‘
N = dlna = Hdt = —do = I — . 2.58
0= [ ama= | a0 /d) =~ i 2
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To successfully address the horizon and flatness problems, the total number of inflationary e-folds
must satisfy
Nige = In 224 > 6. (2.59)
Qstart
although the precise threshold depends on the energy scale of inflation and the details of the
reheating temperature [13].

These are the conditions required to achieve a phase of accelerated expansion and to elegantly
resolve the horizon and flatness problems. It is important to stress, however, that the microscopic
origin of inflation remains unknown. Since inflation is thought to have occurred at extremely high
energy scales, probably of order ~ 10'°GeV, any description of this epoch necessarily involves
a significant extrapolation of the established laws of physics. In particular, the precise form of

the inflationary potential is not known. Defining an inflationary model therefore amounts to
specifying the action of the inflaton field. The dynamics of this field -from the time when the
CMB fluctuations were generated until the end of inflation- are fully determined by the shape of
the potential.

Non Slow-Roll Inflation

A large number of phenomenological models have been proposed with different theoretical mo-
tivations and observational predictions and, while the slow-roll approximation has long served
as the cornerstone of inflationary model building, it is not a necessary condition for accelerated
expansion. Non-slow-roll (NSR) scenarios explore regimes where the inflaton evolves rapidly, vi-
olating the standard slow-roll conditions yet still producing sufficient e-folds to solve the classical
problems of the Big Bang and typically arise in models with steep potentials, non-canonical ki-
netic terms or attractor-like dynamics that stabilize the evolution despite large field velocities. By
relaxing slow-roll constraints, such frameworks broaden the landscape of inflationary behaviour
and lead to distinctive signatures in the primordial power spectrum, non-Gaussianities, reheating
dynamics and even dark matter production. In particular, short phases of non-slow-roll evolution
can amplify scalar curvature perturbations at small scales, potentially triggering the formation of
primordial black holes [63-65] or enhance the primordial tensor spectrum. They may also explain
possible anomalies in the CMB by leaving localized imprints in the scalar and tensor spectra.

So far, various models achieve these aims by introducing a short phase of inflationary non-
attractor evolution. In one class of models, the first slow-roll parameter

H

=5 (2.60)
remains small, while the absolute value of the second slow-roll parameter is large [66HGS]. A
well-studied realization of this idea is ultra-slow-roll inflation, characterized by € ~ 0, n = —6,

naturally occurring near inflection points of the potential where V, ~ 0.

Other scenarios, such as punctuated inflation with step-like features in the potential, lead to
temporary violations of slow roll where € briefly grows before relaxing back to small values [69-71],
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producing potentially observable features at small scales that complement the near-perfect agree-
ment between slow-roll single-field inflation and large-scale CMB and structure data. Altogether,
the study of non-slow-roll phases provides a compelling extension of the inflationary paradigm,
motivated both by theoretical consistency and by their rich phenomenological consequences.

An analytical framework for studying non-slow-roll inflation in a general setting is presented
later in this work. In our approach, we address the inflationary problem by identifying common
features in the scale-dependent properties of the fluctuation power spectrum. We focus on sce-
narios that include brief and transient phases of non—slow-roll evolution, without specifying the
particular mechanism or model responsible for the departure from slow-roll.
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Chapter 3

Cosmological perturbation theory

This thesis builds on the premise that quantum fluctuations during inflation may provide a mech-
anism for the generation of dark matter; fluctuations that become stretched across cosmic scales
due to gravitational effects. This concept, revisited in references [16, 17, 58|, [72] [73], finds com-
pelling support in observational data, beautifully tying theoretical predictions to the fabric of our
visible universe. In order to understand how such a mechanism could account for dark matter
production, it is convenient to examine how the tiny anisotropies of the universe, combined with
its accelerated expansion, can lead to efficient particle production.

It may sound astonishing that quantum effects, typically confined to the microscopic realm,

can give rise to vast cosmic structures, like galaxies and clusters of galaxies. Indeed, in the
early universe, these quantum fluctuations are amplified due to great energy scales and fleeting
timescales, yet they remain small enough to act merely as gentle ripples atop the classical expan-
sion. What changes everything is the extraordinary acceleration of the universe: these fluctuations
are stretched by inflation to considerable sizes, far exceeding the Hubble horizon and, in doing
so, they become “frozen,” their amplitudes locked at non-zero values, poised to seed the intricate
structure of the cosmos.
Therefore, inflation imprints the universe with its primordial irregularities precisely because the
universe is quantum in nature, not classical. The vacuum of space indeed is anything but empty.
While the accelerated expansion driven by a scalar field would, in a purely classical world, render
the universe perfectly uniform, the quantum realm forbids such perfection: tiny residual fluctu-
ations always persist in the scalar field. Remarkably, the size of these fluctuations is set entirely
by quantum mechanics and is largely independent of the pre-inflationary state, making inflation
an exceptionally predictive theory. In this sense, inflation provides us with “natural” initial con-
ditions, which turn out to be the initial conditions that agree with the present observations.

In the following sections we address the topic of particle production in the very early universe. We
explore a mechanism which is non-standard; namely the production of particles from the vacuum
fluctuations during inflation [55, [72H75]. In order to do this, let us first analyse the quantum
fluctuations of a generic massless scalar field during inflation. This will help develop a method for
studying perturbations in an inflationary background.
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3.1 Quantum Fluctuations of a Massless Scalar Field during
Inflation

The quantum-mechanical fluctuations generated during inflation and their relation to cosmolog-
ical perturbations can be investigated by looking at free fields in De Sitter space [13|, 14]. An
interesting property of what we are going to analyse is that the treatment of free fields in curved
spacetime (and de Sitter space in particular) is similar to the one of a collections of harmonic
oscillators with time-dependent frequencies.

It is also worth remarking that the fluctuations weren’t deliberately built into the theory; rather,
they emerge organically as a direct result of applying quantum mechanics to the inflationary
framework.

Let us assume ¢ is a massless scalar field, which contributes negligibly to the overall energy
density, and thus does not induce any back-reaction on the geometry. A field of this nature is
commonly referred to as a spectator field.

We consider an unperturbed and spatially flat background spacetime metric which, in confor-
mal time, reads:

ds® = a*(1)(—dr?* + &;da'da?). (3.1)
The action of the massless, free scalar field ¢ in such a spacetime is:
S = —% /d4x\/—_gg“” POy = —% /d4:v\/—_g Dupdp (3.2)
with ¢ = det(g,,) = —a®(7). Thus, explicitly:
S = %/degx a’ [¢” — (V)] , (3.3)
where we used the notation: (...) = 0,(...) .

In order to quantize the system, it is useful to define the canonically normalized field v = a(7)p.
Rescaling the field, the action becomes:

1 3 2 2, 0% 5 a’
S—Q/drda:{v (Vo) + —v™ =2 vv} (3.4)

We manipulate the last two terms writing

and, sending the boundary terms to vanish, we obtain:

1 "
S = 3 /dT dx |:’U/2 —(Vv)® + %212] , (3.6)
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which effectively describes a scalar field in a FRW spacetime. The time dependence of the action
is entirely due to the variable background gravitational field.  Besides, the equation of motion
which follows from Eq. [3.6]is:

a//

V' =V — —v=0. (3.7)

a

We now Fourier expand the field v as
3
v(T,x) :/%vk(ﬂ ekex (3.8)

and, inserting the Fourier expansion in Eq. [3.7, we obtain the e.o.m. for the k-mode vy :

al/

vy + ko — —uc =0 (3.9)

Since Eq. does not show a directional dependence of the wavevector k, we drop the vector
notation in the subscript: the mode functions v, (7) are identical for all Fourier modes with fixed
magnitude |k|. Then the resulting equation is

a//
vy + <k2 — ;) v, =0/, (3.10)

which is referred to as Mukhanov-Sasaki (MS) equation. This equation shows an explicit time

dependence in the coefficient of the term v;.  Being a(7) = —% in De Sitter space, it follows
that g
a
—=—, 3.11
a T2 (3.11)

which encapsulates the contribution due to the expansion of the universe.

We observe that the resulting equation closely resembles that of a Klein-Gordon scalar field in
flat space-time, with the only distinction arising from the time dependence encoded in the effective
" = % In light of this, and given that

— a

2 =a
mass term mgy; = 7

1
= —— 3.12
T=—— (3.12)
during inflation, M .S equation is rewritten as:
vp + (k* —2(aH)*) v, = 0. (3.13)

It is really useful to study the behaviour of this equation on sub-Hubble and super-Hubble
scales [14]. We can distinguish the two significant cases:

1) Sub-Hubble scales: k> aH
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2) Super-Hubble scales: k < aH

1) In this first limit, the contribution given by aH can be neglected and the e.o.m. reduces to:
vy + ko ~ 0 (3.14)

whose solution is a plane wave

eflkT

7

This tells that, at early times, the effective mass of the field is negligible compared to the mo-
mentum of the relevant Fourier modes. In this regime, the wavelength is much smaller than the
Hubble radius and then a flat spacetime is a good approximation. Besides, the dynamic simplifies
to that of a simple harmonic oscillator in flat spacetime.

Consequently, the quantum fluctuations of the field can be described using the standard quanti-
zation procedure for a harmonic oscillator.

(3.15)

Vi —

2) On Super-Hubble scales, the k? term is irrelevant compared to the effective mass. The
equation of motion then simplifies to:

a//

o — 2% =0 (3.16)
a
with solution:
v, = B(k)a , (3.17)
where B(k) is integration constant.
Recalling the definition v = a¢p, we find that:
or = B(k) = const at Super-Hubble scales. (3.18)

Therefore, when a mode’s wavelength A becomes comparable to the Hubble radius H !, a crucial
transition occurs: the mode ceases to oscillate. This marks the moment when the fluctuation
crosses the Hubble horizon. Beyond this point -on super-Hubble scales- the quantum fluctuation
effectively "freezes in" and its amplitude becomes constant in time. Thus, we find that the quan-
tum fluctuations of the field remain conserved once their wavelengths exceed the Hubble radius.

The value of the constant B(k) can be determined by imposing continuity between the sub-Hubble

and super-Hubble solutions at horizon crossing, where k = aH = —%:

1 1 H

o = S = 1Bl = Bl = —— =

So, on super-Hubble scales, the fluctuation of the field remains constant and is roughly given by
o H

Pr = NoT

(3.19)

(3.20)



3.1.1 Quantization

In the sub-Hubble limit, the quantization of the field v proceeds in direct analogy with the treat-
ment of the quantum harmonic oscillator. We adopt the canonical formalism, from which the
conjugate momentum to v can be readily identified as

T=—=10. (3.21)

We promote the fields v(7,x) and 7(7,%) to the operators v(7,x) and 7(7,x) which satisfy the
equal time commutation relations:

,X), (7, x')] = id(x — X) (3.22)

7,x),0(7,x)] = [7(7, %), 7(1,x')] =0 (3.23)

[ox(7), e (7)] = / d’x / & [0(r,x), 7 (7, X)) e Hxe= K~
i [ o i
i (2m)%0(k + k')
¢
[0k (7), 7w (7)] = i (2m)%6(k + k') (3.24)

which implies that modes with different wavelengths commute.
Decomposing the pair of operators © and 7 in terms of a single time-independent, non-
Hermitian operator ay, the Fourier components vy read:

Uk (7) = vi(7) ax + vi(7) &T_k (3.25)

The field operator 7y (7) is then expressed in terms of a complex mode function vi(7) and a time-
independent, non-Hermitian operator ax. The function vy (7) satisfies the classical equation of
motion and v;(7) denotes its complex conjugate. Similarly, &L is the Hermitian conjugate of
ax. Alternatively:

o7, %) = / ((21;1;3 [0u(7) e ™% v () e (3.26)

Inserting [3.25[ into and recalling that 7, = 0, 0y:

[0k (7), i (7)] = [vk(7) i + V() Gy, Or (vn(7) e + vi(7) @l )]
[we(T) e + vE(7) @'y, V4 (7) dae + v () al ] (3.27)
= (vpvp — vjvp)la, a1 i)

=i (2r)* 83 (k + K). (3.28)
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This holds if and only if we assume the following normalization of the mode functions:
vr(T) v (T) — vi(T) (7)) =0 . (3.29)

This normalization relation provides the first of two boundary conditions on the solutions to the
Mukhanov equation [3.10]

However, applying this condition alone still leaves a one-parameter family of solutions for the
mode functions. This reflects the non-uniqueness of the vacuum.

The second boundary condition, which fully determines the mode functions, is set by the choice
of vacuum state.

At this stage, indeed, we have not yet uniquely determined the mode functions, and conse-
quently, the vacuum state remains unfixed. Any transformation of the mode function v that
preserves the solution vy will induce a corresponding change in the creating operator, hence a
change in the definition of the vacuum.

This ambiguity is not merely a technical artifact: it reflects a profound conceptual feature of
quantum field theory in time-dependent or curved backgrounds. In the case of a simple harmonic
oscillator with a time-dependent frequency w(t) and analogously for quantum fields propagating
in curved spacetime, there exists no unique prescription for selecting the mode functions v;. As
a result, the decomposition of the field v into annihilation and creation operators is inherently
non-unique.

This is linked to the fact that, in flat spacetime, the presence of a global timelike Killing vector
allows for a natural definition of positive frequency modes, which in turn leads to a canonical
vacuum state -the Minkowski vacuum. However, in curved spacetime, such a global symmetry is
generally not present anymore. The lack of a preferred time coordinate means that the notion of
"positive frequency" becomes observer-dependent, and so does the vacuum.

Different choices of mode functions correspond to different quantization schemes, each yielding a
distinct set of annihilation and creation operators. Consequently, each choice defines a different
vacuum state. This leads to the striking result that the vacuum is not an absolute concept in
curved spacetime, but rather a relative one, contingent upon the observer’s frame and the specific
mode decomposition employed.

Besides, this non-uniqueness has deep physical implications. For instance, it underlies phenomena
such as particle creation in expanding universes and the Unruh effect, where different observers
disagree on the particle content of a given quantum field.

3.1.2 Choice of the vacuum
Choosing a vacuum corresponds to specify the second boundary condition for wy.

The choice of the vacuum is guided by physical considerations such as asymptotic behaviour in
the early universe, but it remains a choice nonetheless, not a necessity dictated by the geometry.
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The conventional choice is the Minkowski vacuum, defined with respect to a comoving observer
in the asymptotic past 7 — —o0, when all comoving modes were back inside the Hubble scale and
satisfied k > aH, i.e., were deeply sub-Hubble. In this limit, the curvature of spacetime is negli-
gible and the field behaves as in flat space, justifying the use of the standard Minkowski vacuum
as the initial condition. Furthermore, the e.o.m. reduces to [3.14] which is the equation of a
simple harmonic oscillator with time-independent frequency.

For this particular case we can find a specific solution vy by choosing the vacuum as the eigenstate
of H which minimizes the energy. This definition fixes the mode functions and determines the
physical vacuum.

In order to find this preferred choice, let us consider the Hamiltonian of the system:
H=—L+#0, (3.30)
which is:

H== /d?’a: [0/2 + (Vv)? — %vﬂ : (3.31)

Upon using the decomposition [3.26], each term in the integral can be expressed in terms of the
creation and annihilation operators. The first piece reads:

1 ddk 3q ~ ~ 7 X
[1:§/d3xv X, T) /d3 /2%3/2 27T3/2[akaqvf(véle(k+(") +

(3.32)
+ax al g v v STV LG G o o) e D 4
+aly al g o oy e’i(”“)'x} :
After integration over x:
L = %/d?’k[ ax a_x v v + ax dT_k v, vy + dT_k TR dT_k alt v o™, (3.33)
Finally, using the commutation relations:
I = %/d?’k [ i vy vy +al aly o o 4+ 260 a [op? 4+ 8(0)|ug ] - (3.34)

Applying the same procedure to the other two terms of the integral yields:
1 1
I — 5/d% (Volx. 7)) = 7 /d?’k K2 [ e v v+ 6Lt 07 07,4260, dn [or2+5(0) el

1 a” 1 a At oAt A
I3 = —§/d3x ;U(X,’T)Q =—3 / d*k o [ Gige Uk V_p+ af a6 vF v 4280 dn o] 240(0) |ug] -

Combining the three pieces, and defining the time-dependent frequency as

a//

wi(T) =R = —, (3.35)
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we obtain:

~ 1 . At A 2 . At
= / K |incisc (o + (o) + afaly (o + we(r)o?) + (205 +6(0)) (ol + () ox?)
!
= / d%[&k&,k Fr+alal, Fp+ (2&Lak + 5(0)) Ek] (3.36)
where
Fi (1) = v +wi(m)vg (3.37)
Ep(1) = [0 + wi (7) x| (3.38)

Since the frequency wy(7) = k* — %/ depends only on the magnitude k& = |k|, the evolution of
the mode functions is isotropic and independent of the direction of k. However, the constant op-
erators a, and dlt, which encode the initial conditions, may retain directional dependence, thereby
introducing anisotropies into the initial quantum state.

To evaluate the vacuum expectation value of the Hamiltonian, we compute:

mmﬁmn=§§§/J%EAﬂ, (3.39)

where the §(0) is an artefact of integrating over an infinite volume. In order for |0), to represent
the true vacuum state, the quantity Ej, must be minimized. This requirement determines the
specific form of the mode functions wy.

In order to find the configuration which minimizes the vacuum, we write:

() = ri(7) e’ (3.40)

and then .
Vh(7) = T () — et (3.41)
27"k

since it is a solution of Eq. Substituting in the first boundary condition, Eq. [3.29}

rpe’% (T;e_w’“ — irk%e_ie’“) — rpe 0k (r}cew’“ + irk%ewk) =1. (3.42)
Thus: )
=2 O =i = 0,=-——. (3.43)
2r;,
Moreover, substituting in the expression for Ej:
i 1
Ek = ”U;€|2 + k2|’l}k’2 = (T;C - 2—77{) (’f’;€ + E) + kQ’l“]% . (344)
Straightforwardly, this becomes:
1
Ey =1+ —5 + k*r} (3.45)

2
dry
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and now, minimizing E), we find:

G =2 = =0
dE), 1 9 1 (3.46)
dry, Z—ﬁ—i—Qk‘ T, =0 <— Tk:\/_ﬁc
Hence, from the previous expression,
1
Qk:_/dT_:_/di:—kTJrc. (3.47)
2Tk
We have thus determined that the quantities
1
Ty = —F/— , ek = —]CT (348)

V2k

correspond to the configuration that minimizes the energy. From this result, we finally obtain the
second initial condition:

1 .
lim vy = ——e 7|, (3.49)

S N

which uniquely specifies the vacuum by requiring |0), to be the minimum energy state and, to-
gether with completely fixes the mode functions on all scales.

It can be easily proved that the most general solution of eq. is:

w(T) = ¢ (1 ! )—e_ﬁﬁ te (1+ i >—eik7 (3.50)
T) = - T 7 ) :
g ! kr ) Vak kr ) 2k

where the coefficients ¢; and ¢y encapsulate the non-uniqueness of the mode functions.

Inserting the general solution (3.50) into the normalization condition for the mode functions
vy — V' = 4, (3.51)

implies the constraint:
ler]* —|eaf> = 1. (3.52)

At this stage, basing on what we outlined before, the mode function vi(7) remains still undeter-
mined up to a one-parameter family of solutions. This is equivalent to say that a redefinition of
vk(T) can be compensated by a corresponding transformation of the operator ay, leaving the field
operator Uy (7) invariant.

However, the coefficients can be determined by enforcing the second boundary condition, which
requires the vacuum to asymptotically approach an instantaneous minimum-energy state in the
far past:

v = e T as T — —00 . (3.53)

9
o
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The quantization condition, combined with the subhorizon limit, uniquely fixes ¢; = 1 and
Cy = 0.
This exclusively determines:

vy = \/% (1 - k%)f“” (3.54)

as the function that ensures the state annihilated by ay is identified with the oscillator’s ground
state.

The unique mode functions of the previous expression are known as the Bunch-Davies mode
functions, and they describe the unique solution to the equations of motion in de Sitter space that
instantaneously minimizes the energy.

3.1.3 Power Spectrum of a Massless scalar in Quasi-de Sitter

Once the mode functions v, have been determined, they can be employed to compute the power
spectrum, a fundamental quantity for characterizing the statistical features of cosmological per-
turbations.

Consider a generic field f(x,t), which can be expanded in Fourier space as:

o) = [ Gy e Al (3:55)

The power spectrum is defined through the two-point correlation function in momentum space:
(0] fir fiea|0) = (27)%6%) (ks + ko) | fuc? (3.56)
where |0) denotes the vacuum state of the quantum field. This leads to

O1re.0]0) = [ G fufa= [ s 1 = [ Prb). (357)

which gives the definition of the power spectrum Py(k) [14] associated with the field f(x,?):

k?)

o

Py (k) fil?] (3.58)

In our specific case, we defined the field 0y as 0x = a(7)@x. We now proceed to compute the
power spectrum associated with the field ¢y. Starting from the Bunch-Davies mode functions:

uk(T) = 6_\/;; (1 - é) : (3.59)
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the two-point correlation function in Fourier space is given by:
ok (7)[? H?
—5 = (27)%6®) (k + k’)Q—kS (1+K°r2). (3.60)

In the superhorizon regime, where |k7| < 1, the expression simplifies to a constant:

(Pu(7) i (7)) = (27)°6) (k + K

2
2k3

which equivalently corresponds to the dimensionless power spectrum:

AZ = (%)2 : (3.62)

Therefore, in the limit |k7| < 1, corresponding to modes well outside the horizon, the power
spectrum of the rescaled field ¢y approaches a constant value.  This behaviour has profound
physical implications. As inflation proceeds, modes with comoving wavenumber £ exit the horizon
when k& = aH. Once outside, their physical wavelength exceeds the causal horizon, and their
dynamics effectively freeze. The amplitude of the fluctuations becomes insensitive to local physics
and remains constant.

The constancy of Ai(k) implies that all modes have the same amplitude at horizon exit, regardless
of scale. This is the essence of scale invariance, a key prediction of inflationary cosmology. It is
consistent with observations of the cosmic microwave background, which show nearly uniform
fluctuations across a wide range of scales.

Besides, in the super-horizon regime, the evolution of perturbations is governed by the background
geometry (quasi-de Sitter), which is homogeneous and isotropic. As a result, the fluctuations settle
into a universal amplitude which characterize all the modes.

(Pw(7) i (7)) = (2m)*6) (k + K') (3.61)

3.1.4 Adiabatic and Isocurvature fluctuations

In the following sections, we will show how a massive vector field produced during primordial
expansion can serve as a robust and well-motivated dark matter candidate. Before proceeding,
it’s important to underline that, for such a candidate to serve as a viable and interesting proposal,
its power spectrum must be consistent with the observed structures distribution of the universe.
This requires consistency with the constraints derived from the CMB and, simultaneously, the re-
production of statistical properties of the universe. Such information is encoded in the primordial
density perturbations generated in the early universe, which can be classified into two distinct
contributions.

In this section, we provide a brief overview of these two types of primordial fluctuations and
examine the constraints they impose on viable dark matter candidates, setting the stage for un-
derstanding how a massive vector field can satisfy these cosmological requirements.

Primordial density perturbations in the early universe can be classified into two distinct types:
adiabatic and isocurvature fluctuations. Adiabatic fluctuations correspond to variations in the
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total energy density, affecting all matter and radiation components uniformly. In such regions,
the relative fractions of dark matter, baryons and radiation remain constant, so the overall com-
position of the universe is preserved even as the total density varies. In contrast, isocurvature
fluctuations involve changes in the relative abundances of different components while keeping the
total energy density unchanged. In this case, some constituents become locally more or less abun-
dant, producing a distinct primordial imprint on the universe that affects the relative composition
rather than the overall density.

The presence of these two types of perturbations is directly reflected in the anisotropy patterns
of the cosmic microwave background. On large scales, observations indicate that isocurvature
fluctuations contribute at most approximately 1-10% of the total primordial perturbations. This
corresponds to an amplitude of less than 1071 for the isocurvature power spectrum on these scales.
However, on smaller scales, where nonlinear processes can erase or modify primordial information,
observational constraints are far weaker and the strict bounds from the CMB no longer apply. As
a result, the behaviour of perturbations on sub-CMB scales remains largely unconstrained, leaving
room for additional effects.

Therefore, for the vector boson to be a compelling dark matter candidate, it must reproduce
the observed matter power spectrum of the universe. In particular, it should not generate large
isocurvature perturbations on long wavelengths -a common challenge for light bosonic fields. Re-
markably, the massive vector naturally avoids this problem.

Furthermore, it must exhibit adiabatic, nearly scale-invariant fluctuations on cosmological scales,
consistent with observations. As we will show, these conditions are indeed satisfied, making the
massive vector a robust and observationally consistent dark matter candidate.
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Chapter 4

The Origin of Dark Matter

Dark matter is one of the most fascinating and enigmatic components of the universe [10} 1T,
22), 277, [76], [77]. Accounting for approximately 85% of the total matter content, its presence is in-
ferred from a wide range of astrophysical and cosmological observations, including galactic rotation
curves, gravitational lensing, the dynamics of galaxy clusters and the anisotropies in the cosmic
microwave background. The rotation curves, in particular, represent the most direct evidence for
dark matter on galactic scales. These curves plot the circular velocities of stars and gas against
their distance from the galactic centre, revealing a striking discrepancy with the expectations from
visible matter alone. Together with the bounds on the abundance of light chemical elements from
Big Bang Nucleosynthesis, which constrain the amount of baryonic matter, all these observations
strongly point to the need for a clustering component of non-baryonic origin.

This component must not interact strongly with photons and dominates the matter content of
the universe. Despite its gravitational influence being well established, the fundamental nature
of dark matter remains unknown.

This is one of the oldest unsolved problems in cosmology, dating back to the 1930s, and at
the same time one of the best measured. The first clear evidence for dark matter emerged in the
1970s [78]. Today, the case for its existence comes from precise measurements across a wide range
of scales, from sub-galactic and galactic environments, to galaxy clusters and up to the large-scale
structure (LSS) of the universe. Across a wide range of astrophysical systems we observe dynam-
ical anomalies that cannot be accounted for by standard matter only. This component, which is
believed to be responsible for the “missing” mass in our universe, is then the main ingredient for
all the structures we have in our universe |21} 22].

Currently, the concordance model of cosmology, the ACDM model, has accumulated a remark-
able number of observational successes, despite the fact that, as the observations and simulations
of the small non-linear scales and galactic scales improve, a number of challenges have emerged
for this coarse grained description from ACDM.

Within this framework, the Cold Dark Matter (CDM) paradigm arose from large-scale observa-
tions, describing the component responsible for cosmic structure formation through gravitational
clustering. In the CDM model, dark matter is treated as a perfect fluid: it must be massive,
sufficiently cold (non-relativistic at the epoch of structure formation) and collisionless, in order to
account for the observational data on large, linear scales. This coarse-grained description of CDM
has been extremely successful in reproducing observations across the CMB, LSS, galaxy clusters
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and the general properties of galaxies.

This allows for the creation of a plethora of possible models of DM. Those models recover the
large scale properties of CDM, but invoke very different objects and phenomena to play the role
of DM, as can be seen in the following, not to scale, picture:

1073eV 107 2eV eV keV GeV My, M, Mass
___________________ L 1 | | 1 1
I | | I " | T
DE Ultra-light DM “Light” DM WIMP (D‘\”I”“' o Primordial BHs
Not DM ) : Limit

thermal relic

Figure 4.1: Figure taken from [21]. A very wide range of dark matter models has been proposed, with
DM represented by different phenomena, spanning from new particle candidates to primordial black holes.

This figure illustrates the wide variety of broad classes of dark matter models, each of which
can encompass many specific realizations. The range extends over more than 80 orders of mag-
nitude, covering very different hypotheses for DM: from new elementary particles, to composite
objects and even astrophysical-scale primordial black holes. This highlights that, despite the hy-
drodynamical properties of dark matter on large scales are now known with high precision, its
underlying microphysical nature remains elusive.

Historically, the weakly interacting massive particle (WIMP) has been the dominant candi-
date for dark matter [79]. Dark matter was assumed to be composed of non-relativistic, weakly
interacting particles that decoupled from the thermal bath in the early universe. Traditional pro-
duction mechanisms, such as thermal freeze-out or freeze-in, rely on interactions within a hot,
radiation-dominated background. However, these scenarios face increasing tension with observa-
tional constraints and null results from direct detection experiments. Another accredited candidate
that comes from extensions of the standard model of particle physics is the QCD axion [80], first
introduced to address the strong CP problem of quantum chromodynamics (QCD).

Although we have these very well motivated candidates from particle physics, we still have no
conclusive evidence for electroweak or other non-gravitational interactions for dark matter. All
the knowledge we have about dark matter is gravitational.

In recent years, a diverse array of alternative candidates has garnered increasing attention.
Among these, ultra-light dark matter [2I] has emerged as a particularly compelling possibility,
offering novel phenomenology and distinct cosmological signatures. The central idea is that the
wave-like nature of dark matter on galactic scales gives rise to non-CDM behaviour, leading to a
rich and distinct phenomenology on those scales. On large scales, however, DM still behaves like
CDM, albeit with different initial conditions for ULDM compared to CDM, thereby preserving the
well-established observational successes of the standard paradigm. There exist multiple realiza-
tions of this small-scale non-CDM phenomenology. Depending on how ULDM is modelled, it can
give rise to different condensate structures and, consequently, to distinct astrophysical signatures.
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An alternative and theoretically intriguing possibility is that dark matter was produced during
the inflationary epoch itself [17) 58, R}, B2]. Inflation, a period of accelerated expansion in the
early universe, not only resolves several classical problems of cosmology but also provides a natural
framework for generating primordial perturbations. In this context, dark matter may arise from
quantum fluctuations of spectator fields, non-minimally coupled scalars or other degrees of freedom
that are excited by the inflationary dynamics.

4.1 Ultra-light Dark Matter

A significant effort has been devoted to developing a wide array of theoretical models and ex-
perimental strategies aimed at identifying the true nature of dark matter. These models exhibit
considerable diversity and complexity, yet it is often useful to classify them according to the mass
of the proposed dark matter candidate, which spans an extraordinary range; from approximately
10722eV to ~ 10 M. Despite decades of investigation, no non-gravitational interaction of dark
matter has been conclusively observed [22].

The term wultralight dark matter encompasses a broad class of candidates with masses in the
range 107**eV < m < eV. Notable examples include the QCD axion [80], the dark photon [83]
and light scalar fields arising from compactified extra dimensions in string theory. These models
differ significantly in their couplings, both within the dark sector and to Standard Model parti-
cles. However, a common feature among them is that their low mass leads to a high occupation
number per de Broglie wavelength in galactic environments. For m < eV, this occupation number
typically exceeds unity, implying -via the Pauli exclusion principle-, that all viable ultralight dark
matter candidates must be bosonic.

The sub-region of parameter space with masses on the order of < 107! eV is commonly referred
to as fuzzy dark matter [22][84]. In this mass regime, dark matter exhibits wave-like behaviour on
astrophysical scales, leading to distinctive phenomenology in structure formation and galactic dy-
namics. A commonly studied scenario assumes that the entire dark matter content is composed
of a minimally coupled classical field. This simple yet compelling model is phenomenologically at-
tractive, as it is fully characterized by a single parameter: the field mass. Despite its minimalistic
formulation, it gives rise to a rich phenomenology, yielding constraints from a broad spectrum of
astrophysical observables.

Indeed, just by assuming the the existence of a single ultralight field which constitutes all the
dark matter, a variety of effects and constraints can influence distinct domains of astrophysical
and cosmological relevance, such as primordial power spectrum of density fluctuations, the present
day halo mass function, the scales at which we would expect to observe fluctuations in the Lyman-
alpha forest.

So, why consider particles with such extremely small masses? This regime is interesting not only
due to its theoretical motivation within particle physics, but also because particles of ultra-light
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Figure 4.2: Bosonic fields with non-zero mass that may constitute the ultra-light dark matter.
Adapted from [85].

mass exhibit exceptionally large de Broglie wavelengths. The de Broglie wavelength is defined as:

2mh
/\dB = —, (41)
mu
which, for typical galactic velocities, evaluates to:
1072 eV 250 k
Adp ~ 0.48 kpe < © ) ( m/s> : (4.2)
m v

where v denotes the non-relativistic velocity of the particle, or more specifically, the velocity dis-
persion of the galactic halo. Here, i = h/2 is the reduced Planck constant.

In the context of ultra-light dark matter (ULDM), this implies that the de Broglie wavelength
can reach astrophysical scales. For instance, when m ~ 10723 eV, the wavelength is on the or-
der of kiloparsecs for a Milky Way-like halo. Another relevant aspect of ULDM is related to its
production: due to its extremely low mass, this component could not have remained in thermal
equilibrium with the primordial plasma at late times. If it had, it would be relativistic today,
which is ruled out by observational constraints.

As illustrated in [21] and [22], a wide range of particle candidates could potentially account
for ultra-light dark matter. Any bosonic field with an ultra-light mass that can be produced in
sufficient abundance throughout the universe may serve as a viable microphysical description of
this component. These candidates include: the QCD axion, axion-like particles, massive scalar
fields, vector or higher-spin bosonic fields.

Each of these possibilities offers distinct theoretical motivations and phenomenological implica-
tions.
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4.2 Primordial Black Holes

In this section, the topic of primordial black holes (PBHs) will be briefly addressed.

Although primordial black holes are not the central focus of this work, they bear relevance to
the results presented, as it will discussed in Section [6.5] For completeness, it is useful to briefly
review their key properties and the mechanisms by which they may be formed in the early universe.

Multiple lines of observational evidence -such as galaxy rotation curves, large-scale structure
formation and the dynamics of the Bullet Cluster-strongly suggest that the majority of gravi-
tationally bound matter in the universe is non-baryonic. This unseen component is commonly
referred to as dark matter.  An intriguing and economical explanation that might account for
DM density in our universe is a scenario where DM is made of compact objects, such as primor-
dial black holes. PBHs would represent a unique class of dark matter candidates in that they do
not require the introduction of new fundamental particles. Instead, PBHs can form within the
first second after the Big Bang through the gravitational collapse of overdense regions seeded by
early-universe fluctuations.

Initial ideas in this direction emerged from the realization that primordial black holes (PBHs)
could form through the gravitational collapse of over-dense inhomogeneities in the early universe.
By the mid-1970s, it was further recognized that primordial black holes (PBHs) might contribute
to the dark matter (DM) density and serve as seeds for the supermassive black holes (BHs) popu-
lating our universe. Interest in PBHs grew even further following the first detection of gravitational
waves (GWs) from merging black holes.

There is still no clear direction or agreement on how primordial black holes could arise. They
are expected to form well before the end of the radiation-dominated era (i.e. prior to matter-
radiation equality). Once formed, they behave as cold and collisionless matter, making them a
compelling dark matter candidate -provided their masses are sufficiently large, Mpgpy = 10 g ~
10718 M, to ensure a lifetime comparable to the age of the universe.

A natural and compelling origin for the perturbations leading to PBH formation lies in the
quantum fluctuations generated during inflation, which are stretched outside the horizon in much
the same way as those responsible for the anisotropies of the cosmic microwave background (CMB).
However, while CMB observations are explained by relatively small scalar perturbations, the for-
mation of PBHs requires overdense regions with amplitudes several orders of magnitude larger on
much smaller scales (kppy > kcwmp, corresponding to the late stages of inflation). Since CMB data
favours a red-tilted power spectrum on large scales, PBH production typically demands either a
blue-tilted spectrum or specific features in the power spectrum localized at the scales associated
with PBH formation (see [86-88] for reviews).

In this context, producing PBHs requires modifications to the standard slow-roll inflationary
picture. In particular, brief periods of non-attractor dynamics, corresponding to departures from
slow-roll evolution, can significantly amplify scalar fluctuations on small scales [89,[90]. Two broad
approaches are commonly considered: (7) generating substantial scale dependence in the curvature
perturbation after horizon crossing, thereby boosting the small-scale spectrum; or (i) introducing
mechanisms that already imprint strong scale dependence at the time of horizon exit.
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Consequently, producing a sufficient abundance of PBHs necessitates non-standard initial con-
ditions that amplify small-scale perturbations well beyond the nearly scale-invariant spectrum
predicted by conventional inflationary models. Such enhancement typically arises from modifica-
tions to the inflationary dynamics, which can lead to a localized increase in the power spectrum
at small scales. These scenarios will be reviewed in Sections [6.5hnd in relation to the results
presented in this work.
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Chapter 5

Vector Fields in the Early Universe

Inflation is one of the most elegant and powerful paradigms in modern cosmology for describing
the very early universe: a brief epoch of accelerated expansion that reshapes our understanding
of the universe. It provides a coherent theoretical framework to address fundamental puzzles of
standard cosmology that plagued the standard Big Bang model, such as the horizon problem and
the flatness problem. Beyond solving these puzzles, it not only solves the traditional problems of
cosmology, but also provides a natural way to explain the large-scale structures of our universe, by
generating the primordial density fluctuations that seeded galaxies and cosmic structure, through
quantum fluctuations stretched to cosmic scales.

The very mechanism that drives inflation seeds the universe with the primordial inhomogeneities
that evolve into galaxies, clusters and the cosmic web. It’s a profound synthesis of quantum me-
chanics and general relativity, where the smallest scales give rise to the largest structures.

However, while inflation is widely accepted as the origin of structures in the universe, the nature
and origin of dark matter is still unknown. Cosmological measurements show that the observed
growth of structure in our universe requires its existence.

Traditionally, the origin of dark matter is considered to be independent of the inflationary
dynamics. While it is reasonable to consider these two sectors as decoupled, it is nonetheless
tempting to ask whether inflation -a theory that so elegantly accounts for the origin of cosmic
structure- might also serve as the source of the dark matter essential for the growth of the structures
in the universe [15]. In fact, particles can be produced from vacuum fluctuations during inflation
[16, 17, 58, [72] [73]. Thus, inflation naturally provides a mechanism for generating a cosmological
abundance of particles: as the universe transitions from the inflationary phase to the subsequent
radiation- or matter-dominated era, quantum field modes that were initially in their vacuum
state become excited due to the rapidly changing spacetime background. This process, known
as gravitational particle production, arises from the non-adiabatic evolution of the metric and
can lead to the creation of particles even in the absence of direct couplings. Remarkably, this
mechanism is capable not only of contributing to the reheating of the universe, but also of sourcing
the matter content itself, offering a unified framework in which both the thermal history and the
origin of dark matter may be addressed within the inflationary paradigm.

The earliest attempts to link dark matter production to inflation focused on a massive scalar
field produced via quantum fluctuations. In particular, it was noted that a scalar field with mass
m < Hj, where H; is the Hubble parameter during inflation, would be naturally and coherently
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populated through inflationary quantum fluctuations (see, e.g., [17, 58, 82]). These fluctuations
yield a nearly scale-invariant power spectrum and, for sufficiently light fields, such as axions or
axion-like particles, the resulting energy density could, in principle, account for the observed dark
matter abundance.

This mechanism is theoretically appealing due to its minimal assumptions and natural embed-
ding in inflationary dynamics. However, it faces a critical observational challenge. The fluctuations
of such a light scalar field are uncorrelated with the inflaton perturbations and thus manifest as
1socurvature modes in the primordial power spectrum. These isocurvature perturbations evolve
differently from adiabatic ones and leave distinct imprints on the cosmic microwave background,
particularly in the temperature anisotropies and polarization spectra. Observations from the
Planck satellite place stringent upper bounds on the amplitude of isocurvature modes, requiring
them to be subdominant compared to adiabatic perturbations. But, for a scalar field to account
for the full dark matter abundance, the associated isocurvature fluctuations would typically ex-
ceed these bounds unless the inflationary scale H; is unnaturally low, which conflicts with other
inflationary observables such as the tensor-to-scalar ratio.

Therefore, while scalar field production during inflation offers an elegant route to generating
dark matter, the unavoidable presence of isocurvature perturbations renders this scenario incom-
patible with CMB observations.

Given these well-established results for scalar (and tensor) perturbations, it is natural to ask:
what about vector fields? Interestingly, unlike scalars and tensors, the power spectrum of massive
vector fields produced during inflation is not flat. As we will see in Section [5.40] their spectrum
behaves quite differently: it is peaked around a characteristic scale k,, which corresponds to a
cosmologically small wavelength. The isocurvature power spectrum falls off at long wavelengths
(low k), reaching levels that are effectively unobservable, for which we have no constraints at
present days. So, unlike the case for scalars, the spectrum of density inhomogeneities produced
by this mechanism matches with those observed in the CMB.

5.0.1 Compatibility with CMB Constraints

At first glance, the difference in the spectra of scalar (or tensor) and vector perturbations may
appear surprising. After all, the production of these particles during inflation is governed entirely
by gravitational dynamics. One might expect, based on the equivalence principle, that all bosonic
degrees of freedom would acquire identical spectra. Indeed, for sub-horizon modes, the energy
densities of scalar and vector fields evolve in the same way.

However, the behavior of super-horizon modes reveals a crucial distinction: the energy density
of vector bosons evolves differently from that of scalars. As we shall see, during inflation, the
primordial spectrum of the longitudinal vector mode A; grows as k2, in sharp contrast to the
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scale-invariant spectrum of the scalar mode . This scale dependence, together with the sub-
sequent evolution during radiation domination, gives rise to a momentum-dependent spectrum
that increases toward small scales and develops a pronounced peak whose position and amplitude
are determined by the vector mass. Since longitudinal vector perturbations behave as isocurva-
ture modes, their amplitude is strongly suppressed at the large scales probed by the CMB, and
therefore they remain well within current observational bounds. Significant power only appears at
much smaller wavelengths, which are not yet accessible to experiment. Consequently, the presence
of a peak in the spectrum of longitudinal vector modes does not lead to any conflict with CMB
data; rather, it reflects the fact that isocurvature power is negligible on large scales.

The discrepancy between the scalar and vector power spectra does not violate the equivalence
principle either, which is inherently a local statement and thus only constrains the evolution of
sub-horizon fluctuations. The distinct evolution of super-horizon modes is precisely why inflation
efficiently generates massless scalars and tensors (i.e., gravitational waves), but does not source
massless vectors. At the same time, this behaviour implies that isocurvature perturbations are
not problematic for massive vector bosons generated during inflation and they then represent a
viable dark matter candidate.

5.1 Ultra-light vector bosons as dark matter candidates

We investigate the inflationary production of ultra-light vector bosons. Such bosons can naturally
emerge in extensions of the Standard Model [10, IT]. Their interactions with Standard Model
particles may be extremely weak, which prevents them from thermalizing with the primordial
plasma in the early universe. As a result, a population of these vector bosons generated during
inflation could survive until late times, making their cosmological abundance potentially signifi-
cant. We demonstrate that ultra-light vector bosons are indeed produced during inflation. While
their initial spectrum resembles that of scalar and tensor modes, its subsequent evolution during
cosmological expansion differs markedly, leading to distinct observational implications.

Remarkably, this mechanism requires no additional terms in the Lagrangian -such as explicit
couplings to the Standard Model. The mere existence of a massive vector boson is sufficient,
if we have an accelerated expansion of the universe: the combined presence of inflation and an
ultra-light massive vector boson is enough to account for the abundance and the key properties
of dark matter.
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5.2 A Massive Vector in the Expanding Universe

We demonstrate that ultra-light vector bosons are naturally produced during inflation. Although
their initial spectrum closely resembles that of scalar and tensor modes, a key distinction arises
in their subsequent evolution: the spectrum of vector bosons undergoes a different transforma-
tion during cosmological expansion. This difference enables inflationary production of such vector
fields to account for the entirety of the observed dark matter density.

A massive vector field possesses three degrees of freedom: two transverse modes and one lon-
gitudinal mode. During inflation, the transverse modes -being approximately conformal, akin to
massless vectors- are only weakly produced. In contrast, the longitudinal mode is generated copi-
ously. It is this longitudinal component that naturally emerges as a viable dark matter candidate
[15, [O1].

In this way, quantum fluctuations during inflation naturally give rise to a relic population of mas-
sive vector bosons, with their abundance governed exclusively by two parameters: the Hubble
scale H; during inflation and the mass M of the vector field.

Much like the case for scalars that we have already addressed, the analysis involves decompos-
ing the vector field into spatial Fourier modes. These modes begin deep inside the horizon and
are stretched to super-horizon scales as inflation progresses, effectively populating the spectrum.
Later, during the radiation-dominated era, the modes re-enter the horizon. To accurately deter-
mine the present-day abundance and spectral distribution of these particles, one must carefully
follow their evolution across both sub-horizon and super-horizon regimes.

To achieve this, let us consider a Friedman universe with the metric:
ds* = a*(1) [—dr? + b5 dz'da’] (5.1)

so a spatially flat, homogeneous and isotropic background metric D
The dynamic of a massless vector field is governed by the action:

1 1
S = —Z/d4x\/—g Fu P = —- /d4:z: V=9 F.,Feg" 9", (5.2)

where the field strength tensor is F,, = 0,4, — 0, A,.

This action is invariant under a confromal transformation g,, — Q?g,,. This property ensures
that the conformal structure of the theory is preserved and, consequently, the conformal vacuum
remains unaffected in such a spacetime.

To generate and enhance quantum fluctuations during inflation, it becomes necessary to endow
the electromagnetic field with a non-zero mass thanks to which it is possible to break conformal

!The above line element neglects the scalar metric fluctuations, under the assumption that they provide sub-
dominant contributions to the dynamics of the longitudinal vector modes. This assumption is justified by the fact
that such scalar perturbations are not amplified by the mechanism to be discussed next. Consequently, we are
assuming that the longitudinal vector fluctuations are non-adiabatic.
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invariance | Such a system would carry three degree of freedom -two transversal components and
a longitudinal one. The latter breaks conformal invariance and is the key point of this model.
Therefore, let us focus on the action:

2
S = / d'z /=g {—EF,WFW — MTAMA“ (5.3)
for a massive vector field in a flat, homogenous and isotropic spacetime. The quantity M? is a
mass parameter that can depend on spacetime coordinates -for example, through its coupling to
dynamical fields active during inflation, such as the inflaton. We assume that the vector field A,
has no homogeneous background value and instead behaves as a perturbation propagating on the
cosmological background. We also assume the mass to be a Stueckelberg mass; for an Abelian

gauge boson, such a mass term is simply a parameter in the Lagrangian and is technically natural.

The transversal and the longitudinal components behave differently under a conformal trans-
formation. As outlined, the transverse modes are approximately conformal, much like massless
vectors, and then their production is suppressed during inflation. On the other hand, the longi-
tudinal mode is copiously produced since it is the the only one who breaks conformal invariance.
Thus, the longitudinal mode of a massive vector boson sourced by inflation becomes the dark
matter of the universe [15].

For our future analysis, it is convenient to decompose the spatial part of the vector potential
into its transverse and longitudinal components, as follows:

where the transverse vector component satisfies the condition 9;A7 = 0 and ¢ is the scalar
(longitudinal) degree of freedom. Consequently, the vector field A, decomposition takes the form:

Au(@) = (Ao(), dip(z) + Al () . (5.5)

Following the procedure outlined in Appendix [A] the action can be reformulated in terms of
the components as:

1
S=3 / d'z [AE’AE’ + ATAAT + 240 Ay — AgAAy — ¢ Ay + M2a? (Ag +pAp— AZTAZT)} .
(5.6)
The variation of this action with respect to Ag gives:
—AAO —+ AQDI + M2a2A0 = O . (57)

The temporal component Ay appears in the action without time derivatives; therefore, it is a non
dynamical auxiliary field. Fourier transforming the e.o.m., we find an algebraic equation in this
variable, allowing Aj to be expressed in terms of ¢, without introducing a new dynamical degree
of freedom. Thus, the Ag component is a constrained field whose evolution is governed by the

2The breaking of conformal invariance could be achieved also by requiring the electromagnetic field effective
coupling to be time-dependent during inflation [92].
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dynamics of the component ¢, referred to as the longitudinal scalar component.
Taking the Fourier transform of the fields

d3k ik-x d3k ik-x
(,O(X, 7') = W QOk(T) (& y A()(X, 7') = W A()k(7'> e s (58)
we obtain: 2 /
Aok = RSV AL (5.9)

In the following, we restrict our attention to the scalar sector, characterized by the fields Ay
and . In Fourier space, the physical longitudinal component of the vector field takes the form:

A (1) = ik i (7). (5.10)

Substituting into action [5.6] the expansions focusing only on the scalar modes and using
to express Ay in terms of ¢, the action reads

k*a?(T M?
S:/de?)k 2( ) {k:2+M2a2(7) Pl — M o] - (5.11)

The non-canonical kinetic structure of the scalar variable ¢ is due to the procedure of integrating
out the auxiliary field Ay. The corresponding equation of motion is:

2

o + R 20H gy + (K2 + M?a®) o =0 (5.12)

To bring the kinetic term into canonical form, we define the canonically normalized field:

kMa
Tk = ———— Yk , 5.13
S T (513)
so that the canonically normalized action is:
1 5 ) 5 o 3k2M2a/2 k’2 a//

S:E/dek}[ﬂ'{(ﬂ',_k—(k +a"M +(k:2+a2M2)2_k2+a2M25 x| , (5.14)

where the term in parentheses acts as an effective time-dependent mass squared and a boundary
term has been subtracted to eliminate single time derivatives, ensuring the action is in canonical
form.

5.3 Evolution of the longitudinal modes through the expan-
sion of the Universe: the dynamics of Aj,

We proceed by deriving the solutions to the evolution equations across different regimes -namely,
inflation and radiation domination. Our analysis reveals that the longitudinal modes of a vector
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field are a compelling dark matter candidate, with their phenomenological features governed by
the vector mass M.

5.3.1 Evolution during Inflation

To analyze the dynamics of oy or, equivalently, of A; during inflation, we begin by noting that,
owing to the hierarchy M < Hj, all modes initially evolve in the relativistic regime k > aM and
remain in this regime until after horizon crossing. In this limit, the dynamics of the longitudinal
mode effectively reduces to that of a massless scalar field, apart from an overall (and crucial)
rescaling.

In order to see this, let’s work in standard slow-roll inflation, driven by an additional field
independent of the vector sector under consideration. We suppose that, at early times,

M < Hjp (5.15)
and, for wavelengths within the Hubble radius, A < HI_I:
aH; < k, (5.16)

i.e., we are working in the relativistic limit, where the physical momentum of the mode is much
larger than its mass. By doing this, we are considering modes with wavelengths much smaller
than the Hubble radius.

In relation [5.16 & is the comoving wavenumber, a is the scale factor, and H; is the Hubble pa-
rameter during inflation, which is constant assuming a de Sitter expansion during this epoch.
We can conclude that in the highly relativistic limit, the longitudinal mode is equivalent to a
massless scalar and when the wavelength of the fluctuation is within the horizon, the fluctuation
oscillates.

In this regime, the a?M? term can be dropped from the field redefinition and m, can be
approximated as:
e = aMpy . (5.17)

Correspondingly, the canonical action is well approximated by setting M = 0 in the equa-
tion. In doing so, the standard action of a free massless scalar field in de Sitter is obtained. This
confirms that the vector longitudinal component of the vector field behaves as a standard real
massless scalar field in the expanding universe.

In fact, in the k > aH; limit, we can drop M? contribute and the equation of motion is ap-
proximately

Oy + 2aH @) + k*pr ~ 0 . (5.18)

Upon the field redefinition [5.17, then:

_ = /: _
aM’ Pk aM a2 M’ ik alM a? M

L T _ @ e P Mo M (2<a,)2 aﬂ) = (5.19)
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and, plugging these expressions into the e.o.m, multiplying the entire expression by aM and

recalling that the conformal Hubble parameter is H = %%’, we find:
a/ (a/)Q a// a/ (a/)Q
7r{<'—257r{{+(2 e 7Tk+2571'{<—2 = T + k* e = 0. (5.20)

A 2
The terms proportional to m and to <%> m cancel and we are left with:

T + <k2 - ‘::((TT))) e =0. (5.21)

During inflation one has a”/a = 2/72; consequently, the solution of Eq. |[5.20, matching the
Bunch-Davies vacuum deep inside the horizon (—k7 > 1), is

CLH] ik _ik
= 1 ———)efr. 5.22
Wk V2k3 ( CLHI) o (5.22)

Inverting the field redefinition (Eq. ) by writing ¢ = (QLM), the solution for the longitudinal
mode in the relativistic regime becomes

ox = Pl (1 - ) = (5.23)

where we have defined the k-dependent super-horizon amplitude as

1 H
) = ! (5.24)

A e
Finally, by invoking the relation [5.10, which links the longitudinal mode to the underlying scalar
dynamics, we are now in a position to explicitly determine the behavior of Arx. We find:
1k ik

Ape = AY) (1 - ﬁ) e (5.25)
I

Shortly after horizon exit, all modes rapidly settle into a constant amplitude, as given by [5.24]
regardless of whether a particular mode subsequently becomes non-relativistic. Consequently,
longitudinal modes freeze out efficiently on super-horizon scales and asymptotically approach a
fixed amplitude determined by

1 (H 0
A 7 0 e e i A T 9
And =5 — () A5 750 (5:26)

If M is small enough, the condition aM < k remains valid throughout the inflationary period,
across all scales relevant to our analysis, applying both in the sub-horizon regime (k > aHj)
already discussed and in the super-horizon regime (k < aHj). The super-horizon limit indeed can

be expressed by the inequality:

M k
— <K —K 1. 5.27
H[<<CLH[ < ( )
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As a consequence, even at super-horizon scales, the a?M? term in the equation of motion can be
safely neglected, yielding a dynamical behaviour that closely mirrors that of a massless scalar field.
This regime corresponds to a frozen kinetic energy regime. Indeed, in this regime, the equation of
motion simplifies to

o +2aH oy, ~0. (5.28)

During quasi—de Sitter expansion we have a(7) ~ —1/(H7), implying aH = —1/7. Thus the
mode equation becomes

2
P~ =0, (5.29)

whose solution is

or(T) = CL+ Co 1’ (5.30)

Since a o< (—7)~!,we can rewrite the solution as
(1) = C1 + Cya™. (5.31)

Therefore, once the mode is outside the horizon, its amplitude consists of a constant mode and a
decaying mode. The decaying contribution quickly vanishes, leaving only the constant piece. As
a consequence, the fluctuation’s amplitude becomes effectively fixed in time: it “freezes” until the
mode re-enters the horizon during later cosmological epochs.

Since when the wavelength stretches beyond the Hubble horizon, causal communication across the
mode is lost: different parts of the fluctuation cannot interact.

We may thus outline the following scenario: consider a fluctuation whose initial physical wave-
length A\ ~ a/k lies well within the Hubble radius. On sub-horizon scales, modes with k& > aH
undergo rapid oscillations and the mass term can play a significant role -unless M < Hj, in
which case the mass contribution remains negligible compared to the expansion rate. As cosmic
expansion proceeds, the wavelength stretches and eventually approaches the horizon scale. Once
the mode crosses outside the Hubble radius, its oscillations are suppressed due to the dominance
of Hubble friction and, if M < Hj, the field behaves as if it were massless and its Compton
wavelength becomes much larger than the Hubble radius; the fluctuation then effectively freezes,
retaining its amplitude until re-entry.

In the two regimes under consideration, the dynamics of the longitudinal component of the field
are equivalent to those of a massless scalar field.

This behavior is observed both on sub-horizon and super-horizon scales during inflation and cor-
responds respectively to the pale blue region marked as "De Sitter Vacuum fluctuations" and to
the "Frozen Kinetic Energy" region in Figure [5.2] See also Figure for a detailed explanation
of the various regimes.

Accordingly, we conclude that the massless scalar approximation remains valid throughout the
entire inflationary epoch.
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Figure 5.1: The diagram illustrates how cosmological length scales evolve and how the longitudinal mode
of a vector field behaves across different regimes. The curve labelled horizon represents the comoving
Hubble radius %, which contracts during inflation and expands after reheating. The curve labeled
Compton wavelength corresponds to the comoving Compton wavelength of the vector field, given by ﬁ
Vector field modes, characterized by a fixed comoving wavevector k, propagate along straight trajectories
from left to right. In the pale blue region, where the condition k& < M holds, the modes are relativistic.
In the pale brown region, where Hubble dumping becomes negligible (H < M), the longitudinal mode
behaves like a free massive scalar field. Between these two regimes lies the red triangular zone, where the
longitudinal mode exhibits novel dynamics not reducible to any scalar behavior. Modes that pass through
the tip of this region reenter the horizon precisely as they transition to non-relativistic motion, defining
a characteristic scale k.. Adapted from [15].

5.3.2 Evolution during Radiation Domination

During the radiation-dominated universe (RDU), the dynamics of the longitudinal mode exhibit
considerable richness and complexity.

The problem of determining the post-inflationary dynamical evolution of the modes has been
addressed and analytically solved in [I5], where it was demonstrated that, after the end of in-
flation, different regimes can be identified for the description of the modes. The way in which
the mode redshifts during RD era does depend on the wavelength of the mode itself and there-
fore, equivalently, on the scale of horizon exit. In particular, three distinct regimes were found
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to characterize the modes evolution during this epoch: a Hubble-damped, non-relativistic regime
(referred to as the "vector regime" in Fig. [5.2), a super-horizon relativistic regime and a late-time
non-relativistic regime.

In the sub-horizon relativistic regime, the mass contribution is negligible, the mode behaves as
radiation and its energy density evolves as a~*, while in the late-time non-relativistic approxi-
mation, the energy density redshifts as a3, behaving as matter. Particular attention must be
given to the vector regime, which is something new with respect to the standard massless scalar
dynamics: in this case, the solution contains a term which grows with @, which might naively
be expected to dominate. However, this regime is preceded by a long period of super-horizon
relativistic evolution, during which the field becomes effectively constant. To maintain continu-
ity with this prior regime, the linear growth does not occur; the solution remains approximately
constant. As a result, in the vector regime the energy density redshifts as a=2.

Interestingly, this behaviour contrasts with that of massive scalar modes, whose energy density

in a comparable regime would contribute with a constant value.
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Figure 5.2: From [I5]. Outside the region marked as the "Vector regime" (red triangle), the
energy density evolves identically to that of a massive scalar field. Within this regime, however,
the behaviour differs: while the scalar energy would remain constant, the vector energy redshifts
as a~2. This additional damping suppresses large-scale isocurvature perturbations, enabling the
resulting vector population to constitute the dark matter. The abundance is mainly set by modes
of comoving size 1 ~ 1/k,, highlighted by the dashed line.

The treatment carried out in reference [15] provides valuable insight, though it is approximate;
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a more thorough and precise analysis requires a numerical approach. Specifically, to accurately
track the evolution of the mode from inflation through to the deep RDU phase, one must account
for the transitions between different cosmological epochs. This can be achieved by introducing
a dimensionless quantity 7, which serves as a transfer function encoding the full time evolution
of the longitudinal mode across these regimes. This approach has been developed in [34] and
thoroughly used in [93] 04].

For this purpose, we follow the cosmological evolution during radiation domination of the
transfer function. Therefore we write

ow(T) = T (k1) 90 (7) (5.32)

where we give the initial condition gol({o) (7) in terms of the value of the longitudinal mode at the

onset of inflation. By combining this with the transfer function, one obtains the evolution of the
mode after its re-entry into the horizon. This approach, as will be demonstrated, enables the
derivation of the power spectrum associated with the longitudinal component of the vector field
in the post-inflationary epoch.

To determine accurate initial conditions for the transfer function at the beginning of RDU, the
evolution of T for a given mode k& must be studied from the time of its horizon crossing until
the end of inflation. The numerical procedure used to carry out this analysis is explicitly de-
scribed in [34] and we will reproduce the core points in the following. With this method we can
successfully determinate the initial conditions for the transfer function at the beginning of the
radiation-dominated universe.

We introduce a set of quantities that will prove useful in the subsequent analysis and in the
following sections:

— k. =aM
— rx=kT
(5.33)
x
Te Gy
k
— oy, =kT, = —
T T .

These are suggested to facilitate the numerical analysis, in consistency with the conventions of
[34, 93]. In the first definition, k, is the wave number that re-enters the horizon at the time when
the co-moving Hubble horizon is equal to the Compton horizon, as set by the bare mass

In the third one we used the fact that a o< 7 during RD.
Inserting the transfer function into the equation of motion of the longitudinal mode, we
obtain the evolution equation for 7

2 k*aH

2
B T(0) 4k g os

T'(z) + <k2 + a2M2> T(x)=0. (5.34)
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Dividing by k% and recalling that, in this era, e = 1, we ultimately find that the transfer function

obeys the following evolution equation during RD:
2 a?M?\ -1 a’M?
/! / —
T(:v)+;<1+ S ) T(x)+<1+ = )T(x)—O. (5.35)
Here, the parameter M denotes the mass of the vector field during the radiation-dominated (RD)
era, the Hubble rate decreases relative to its inflationary value H; and, as anticipated previously,
a, is the value of the scale factor at which the Hubble rate becomes equal to the vector mass, i.e.:

H.,=H(a,) =M . (5.36)
In terms of the new variables, Eq. reads:
>T 2 y2\ " dT

o (1+5) S ()T =0 5.37

et (145) G (@ ed)Tw (5.37)

The evolution equation for for the transfer functions 7 during RD has analytical solutions for in
the regimes of small and large y. These solutions can be conveniently approximated by consid-
ering the two regimes z, < 1 and x, > 1 [05]. For an extended description of the method, see
Appendix [B]

Both the analytical and numerical approach are graphically synthesized in Fig.

b.2] After the end of inflation, the subsequent redshifting of the energy density evolves differ-
ently for distinct modes and at different epochs, as illustrated. In particular, if £ > aM, the mode
behaves relativistically and redshifts as radiation; if k¥ < aM the mode behaves as matter and
redshifts as a=3. Thus, within the pale-blue and brown regions of the figure, the energy density of
vector and scalar modes redshifts in an identical manner. This behaviour is expected, since in these
domains the effective action of the vector reduces to that of a scalar field (up to field redefinitions).

By contrast, in the red region of Fig.[5.2] the energy density of vector modes redshifts as a?,
whereas for scalar modes it would remain constant. Geometrically, one can infer from this plot
that the modes experiencing the least redshifting are those with the characteristic wavenumber
k.. Modes with longer wavelengths (towards the upper part of the figure) undergo additional
redshifting in the vector regime, causing their final energy to scale as k? at small k. Conversely,
shorter-wavelength modes (towards the lower part of the figure) redshift rapidly while behaving
as radiation, leading their final energy density to fall off as k! at large k.

This behaviour stands in sharp contrast to that of scalars. For scalar modes, the energy density
remains constant throughout the red region. Consequently, all modes with momentum below k.,
carry the same power, leading to isocurvature perturbations at length scales directly accessible to

the CMB.

As a result, we expect the power spectrum of vectors to be different from the scalr one and
to exhibit a pronounced peak, centred around the characteristic wavenumber k,. This is exactly
what we will outline in the following sections.

57



5.4 The Power Spectrum at the End of Inflation

For light scalar fields, the spectrum of fluctuations produced by inflation is flat (or nearly at) over
a large range of wavelengths.

Instead, the longitudinal modes are generated with a power spectrum that deviates from scale
invariance, whereas the transverse modes remain suppressed. We find, in particular, that the
longitudinal modes of a canonically coupled massive vector are produced with a peaked spectrum.
If the vector field is stable on cosmological timescales, the produced abundance survives as cold
relic matter in the late universe, manifesting as a coherently oscillating condensate of the field.

The peak occurs at an intermediate scale: it is much smaller than the present horizon of the
observable universe, yet considerably larger than the usual ultraviolet cut-off associated with in-
flationary perturbations. Consequently, the resulting power spectrum is suppressed at the largest
wavelengths, in stark contrast to the flat spectrum of light scalar and tensor perturbations.

The departure from scale invariance in the spectrum originates from a fundamental difference
in the behaviour of scalar and vector fields in the early universe. For scalar fields, the energy
density in non-relativistic modes remains effectively constant when the Hubble parameter exceeds
the field mass. In contrast, the energy density of a vector field redshifts as a=2 in the same regime.
This difference arises from the fact that the norm of a vector field intrinsically involves the space-
time metric and thus the scale factor. Simply raising or lowering the index of the field introduces
a dependence on the background geometry, which is absent in the scalar case [15].

It is a well-established result that, for a free, real, massless and canonically normalized scalar
field, the Fourier modes that cross the inflationary horizon evolve into classical field fluctuations.
Initially emerging as small-scale vacuum fluctuations, these modes experience an amplification
in amplitude as they are stretched beyond the horizon, at which point their quantum nature
effectively freezes and they behave classically.

Using the expression and the definition of the power spectrum given in Section [3.1.3] we
understand that the super-horizon power spectra of the field ¢ is:

1 /H\2
0 _ _* _1)
P 47r2<M ' (5-38)

From which, by recalling the expansion of A, in Eq. [5.10, we find that the power spectrum of the
longitudinal mode Aj, at the end of inflation is:

1 /Hp\2 ©o Kk (Hp\?
0
Py :4_7T2<M> = Pu :4_7T2<M> ’ (5.39)

where the suffix (0) has been added to indicate that these quantities are constant, and they pro-
vide initial conditions for the mode evolution during the radiation dominated era.

Therefore, as it is evident from Eq. the primordial spectrum of the longitudinal scalar
field ¢ exhibits scale invariance, with its amplitude governed by the vector mass and the Hubble
parameter during inflation. In contrast, the longitudinal component of the vector field Ay, features
a spectrum that grows proportionally to k? throughout the inflationary epoch, as expected from
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the relation [5.10, Thus we learn, as already shown in [15], that the power spectrum at the end of
inflation is suppressed at large scales while it increases as k? towards small scales (large k).

5.5 The Power Spectrum during Radiation Domination

Once the modes exit the horizon during inflation, they evolve as coherent classical field modes.
When they re-enter the horizon, they behave differently basing on the wave-umber k. This is
shown thanks to analytical approximations in [I5] and it is resumed in Fig. . At the same
time, the different behaviour is captured also by the transfer function we defined in the previous
section.

Making use of the above-mentioned transfer function, the power spectrum of the longitudinal
mode can be expressed directly in terms of it, since the transfer function encapsulates the full
evolution of the mode throughout the radiation-dominated era. Consequently, at sufficiently late
times, the power spectrum takes the form

ke Hp\2/ k2
Pa, = POITL(7)| = (5527) () 1Telkn) (5.40)

in terms of the transfer function 77, and the scale k., already introduced [93].

This is evaluated numerically by solving the differential equation for T;, and integrating
for a set of different values x, = k/k, -corresponding to different comoving momenta normalized
to the pivot momentum £k,. For each integration, the initial conditions

dr

T(yin) = 1, d_y =0 y

Yin

are imposed, with yi, = ain/a. = /M /H;.
Since during radiation domination H o t~'M o a2, the choice

corresponds to

2
Hin = 11y <&) - H[ .
Qin

In other words, the variable y takes the value y;, at the onset of radiation domination, which in
this computation is assumed to occur immediately after the end of inflation.
The result is then evaluated at a sufficiently late time,



when the longitudinal spectrum stabilizes its shape as a function of frequency [93].

The resulting normalized spectrum is:

102

—— Numerical

1034 77" Fitting function

1073 1072 1071 10° 10! 102
X«

Figure 5.3: From [93]. Primordial power spectrum of the longitudinal modes of a massive vector field,

2
purely generated by inflationary fluctuations. The spectrum is normalized versus ((];;IE))Q , evaluated at

time yyip, = 55, while y;;, = 1073, In red dashed the analytical fitting function from the same reference.

Notice that the spectrum changes slope around z, = 1, i.e., for scales k ~ k,, and thus
shows some characteristic and unique features: a pronounced peak located at an intermediate

momentum k, = a,M, which corresponds to the physical scale re-entering the horizon at the
epoch when H(a,) = M.

We can outline its specific features: from large scales toward smaller ones, the spectrum rises
proportionally to k% . This growth originates from the inflationary initial conditions. This scaling
reflects the fact that long-wavelength modes remain mostly outside the horizon and evolve with
an approximately constant transfer function. In contrast, modes with wavelengths smaller than
this characteristic scale (i.e., k 2 k), undergo sub-horizon evolution and their amplitudes decay.

At late times, this causes their power amplitude to decrease and the spectrum approximately goes
as kL.

It is worth emphasizing that this peaked spectrum emerges without any fine-tuning of pa-
rameters. This peaked structure implies that the power in long-wavelength fluctuations of the
vector energy density -those probed by the CMB- is strongly suppressed. On the contrary, this
production mechanism does predict significant power at short wavelengths, but such scales have
not yet been experimentally explored.

More specifically, an important consequence of the long-wavelength suppression is the absence of
isocurvature modes on cosmological scales, which would be visible in the CMB and are ruled out
by observations. Such isocurvature modes are dangerous if the dark matter candidate is a scalar,
since there is no suppression and this results in large parts of parameter space being typically
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ruled out. However, the vector naturally avoids these observational constraints.

On the contrary, in the case of scalars, whose energy density remains constant, all modes with
comoving momenta smaller than &k contribute equally, yielding an isocurvature spectrum precisely
at the cosmological scales investigated through the CMB.

Certainly, for a light vector to qualify as a viable dark matter candidate, it must reproduce
the well-established, nearly scale-invariant and adiabatic spectrum of density perturbations on
cosmological scales, characterized by fluctuations of order 107°. Interestingly, the vector field
naturally inherits this spectrum without the need for additional assumptions.

This feature can be understood through the Separate Universe picture [96], 97]: since the rele-
vant vector dynamics occurs at sub-horizon scales, while the observed adiabatic modes correspond
to wavelengths much larger than the horizon at that time, each region of the universe can be
regarded as evolving independently, as if it were a homogeneous universe. In this description,
the long-wavelength inflaton perturbations act solely as a shift in the local scale factor or cosmic
clock. Such a shift affects the energy density of vector dark matter in exactly the same way as
it influences any other dark matter candidate, such as a thermally produced relic. Consequently,
the vector density fluctuations automatically track the adiabatic pattern imprinted by inflation.

Therefore, inflationary fluctuations of a light vector field not only generate the required dark
matter abundance but also ensure consistency with the observed adiabatic perturbation spectrum,
providing a compelling and novel production mechanism.

5.6 Abundance of the Longitudinal Vector Mode

We now consolidate the preceding results to compute the final abundance of longitudinal vector
modes. Remarkably, these modes can account for the totality of dark matter across a wide range
of vector masses. The resulting dark matter abundance depends only on the mass M of the vector
field, rendering the scenario both minimal and predictive.

The computation of the energy density p4, stored in the longitudinal component of the massive
vector field serves as a useful first application of the analytic expressions derived in the preceding
sections. The quantity py4, is obtained from the time component of the energy-momentum tensor
associated with the vector field, and is given by [15]:

M? P(BTA )
paL = 53 /dlnk: {—k”a;MQ +Pa, | (5.41)

with M the vector mass during radiation domination | By substituting expression for the
primordial spectrum of longitudinal vector modes during RD into the integral takes the

3In order to account for the variety of possible physical scenarios, the abundance could be defined with a
multiplicative factor og [93]. This parameter effectively keeps track of generalizations of the baseline model proposed
in [I5]. In our following discussion, oy would encode the impact of a non-slow-roll phase on the final abundance.
For the time being, however, we set 0y = 1 and restrict ourselves to the standard case.
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explicit form:
M? 1 koHiN\2/ k\2 ke HiN\2/ k\2
dink (gor) () 1078+ (537) () 1P
PAL = 2a2 / t {kz—ka?MQ 2rM k. 0- T+ 2r M k. 7|

1 /H; kN2 a, k% a 9 k% a 9
- — — dlnk T T : A2
2a2< 27 > a [/ " (kf a, (k? +a?M?) 9T + k2 a*| | (542)

Let us now focus on the dimensionless integral enclosed in the square brackets of equation [5.42;

k2 a ak?
Z,= [ dlnk o, T]? + —|T|?| . 5.43
o= [k |t TR+ I (5.43

By recalling the definitions: y = * = & and z, = kﬁ, the resulting expression in the new time

coordinate is )

x
() = y /dlnx* [mmyﬂ? + xz]Tﬂ | (5.44)
The integral is evaluated at late times, y = ¥yenq, employing the analytical transfer functions
derived earlier. Following the analysis of [93], we choose a sufficiently large yenq, in order to ensure
that the subsequent integration acquires a stable, convergent value.
Furthermore, guided and motivated by the discussion in Appendix [B|regarding the two regimes of
the analytic transfer function solutions, we find convenient to split the integral into two distinct

domains: y < 1 and y > 1. Thus,

1 2
dx, x: A)
Ip(yend) = Yend / [— |a Tlate|2 |ﬂgte|2:|

0o Tx x2+yend

Yend dl‘ 12
on 5 =20, Tl I+ 22|72 5.45
b [ | TP 4 2T (5.45)

The integral appearing in the first line of Eq. [6.58]is easily numerically integrated by taking the
large Yenq limit directly within the integrand. The resulting result yields a value of 0.475883.

Turning to the second integral in Eq. [6.58, we note that the parameter ye,q enters both the
integration extreme and the integrand itself. To simplify the analysis, we perform a change of
variable from z, to z = 2, /yena. In terms of z, the lower limit becomes ﬁ, which is small and

can be safely approximated by zero.

Following this rescaling, the integrand contains terms that oscillate rapidly over the interval
0 < z <1 and are suppressed by inverse powers of y.,q. These contributions effectively aver-
age out and can be neglected. Aside from these oscillatory terms, the integrand features a ratio
of polynomials in x,, which, upon integration, yields a value of 1.025 in the large yenq limit.

Summing the two contributions, we obtain:

3
T, = 150088 = . (5.46)

a number of order one. We then find the following expression for the present-day energy density
of longitudinal vector modes:
3H? k2 a.

pAL = 5 87T2 CL3 (547)
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Combining this result with the definition of H, and recalling that k, = a,M, Eq. can be
rewritten as:

_ 3H?M?a?
2 8w a3’

We evaluate this relation at matter-radiation equality, taking into account that, during radia-

tion domination:

Qg (te\¥2 (H N\ M2

b _ (ten) :(H) M (5.49)
* * Cq

eq

pay, (5.48)

This gives

(5.50)

3 H2M? (He\*”?
PAL = 5 .

2 8nm? M
Besides, the present-day dark matter energy density can be accurately approximated by the ex-
pression:

3H2 M?
H=H., pou= O‘Tpl (5.51)
Thus, using the value Hoq = 3 x 1072% ¢V, that we obtain from:
Heq lo ap \*"* 3/2 —33 —28
Heq = o=|—|Ho=(— Hy ~ 34007 x 1.43 x 107> eV ~ 2.8 x 107" eV , (5.52)
HO teq Qeq

we compute the ratio of the two abundances and we get:

= Y P Y (5.53)
pov \0.6 x 10-6eV 104 GeV ) ‘

which provides the ratio of the energy density of the longitudinal vector A, versus the dark matter
energy density today.

Therefore, in order to make up the measured dark matter abundance we need a condition on the
mass of the vector and the Hubble scale of inflation. The current bound on the scale of inflation is
H; <10 GeV and places a lower limit on the vector mass required for this mechanism to account
for the entire dark matter abundance. Choosing the scale H; ~ 10 GeV, a vector mass of the
order m ~ 1075 eV, would account for the totality of dark matter present in the universe: the
abundance of the longitudinal vector component is equal to the observed dark matter. Conversely,
for vector boson masses lying below this range, the production mechanism still operates but yields
a subdominant contribution to the total dark matter content.

This result highlights a striking feature of the model: without requiring additional fine-tuning
or couplings beyond gravitational interactions, inflation itself provides a natural and robust mech-
anism for the generation of a cosmological abundance for any massive vector boson, which would
correspond to the correct relic abundance of dark matter. Moreover, the framework naturally ac-
commodates both dominant and subdominant dark matter components, depending in particular
on the mass scale of the vector field.
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Chapter 6

Ultralight Dark Matter from
Non-Slow-Roll Inflation

Having established that the inflationary epoch offers a natural stage for the production of dark
matter, we now seek to refine the framework and to improve the existing estimates. In [I5] and
in the previous sections, it has been demonstrated that the longitudinal component of a massive
vector field is as a promising dark matter candidate. To reproduce the observed dark matter
density today, however, the required vector mass M appears to be of the order M ~ 1076 eV
and this does not correspond to any known particle, nor to any established mass scale in particle
physics which could represent a viable dark matter candidate. This motivates the question of
whether modifications of the initial conditions could yield a mass compatible with well-motivated
dark matter frameworks. Our aim, in particular, is to embed this mechanism within the dark
photon scenario, showing that, upon suitably altering the conditions, one can obtain an ultralight
dark matter candidate with a mass of order 107 eV or smaller. Furthermore, we consider the
possibility of mixed scenarios where dark matter coexists with primordial black holes.

An intriguing aspect of dark matter composed of longitudinal modes of a massive vector field,
is its broad testability across different experimental fronts. From a particle physics perspective,
dark photons can interact with the Standard Model via milli-charged couplings [83], allowing
for a variety of laboratory and collider constraints. The cosmological evolution of dark photons
also exhibits distinctive features and they can leave observable imprints in environments such as
black hole surroundings or through the formation of cosmic strings. Furthermore, they may be
detectable through precision instruments such as accelerometers, or via gravitational wave obser-
vatories or through gravitational waves in the LISA frequency band. These signals are sourced at
second order in cosmological perturbations by the amplified longitudinal vector modes [83].

The central idea of our proposal is to supplement the standard inflationary picture with a brief
phase of non-slow-roll (NRS) evolution [98|. Specifically, we investigate how such a transient
departure from slow-roll affects dark matter generation, how it can be consistently modelled and
what physical motivations justify this extension. Our generalization of the minimal setup intro-
duced in [I5] will allow for the production of dark matter candidates with extremely small masses,
thereby broadening the phenomenological landscape and opening the way to new connections be-
tween inflation and particle physics.
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Such brief NSR era should last few e-folds but gives rise to important differences with respect to
the slow-roll base case, leaving distinct imprints in the small-scale regions of the spectrum.

As anticipated in the discussion on SR inflation, there are several mechanisms by which one
can introduce a temporary deviation from the slow-roll regime. In our scenario, this is achieved
through a rapid variation of the vector mass. We analyze how such a modification alters the
inflationary dynamics and we find that the resulting framework has profound phenomenological
implications: it naturally accommodates viable ultralight vector dark matter candidates, providing
a concrete realization of wltralight spin-1 dark matter. Moreover, this mechanism offers a com-
pelling generalization of previous results on the maximal amplification of adiabatic fluctuations
during inflationary phases with transient non—slow-roll evolution. Taken together, these insights
highlight a rich interplay between inflation, dark matter and primordial black holes, and point to
promising new directions for early-universe cosmology.

6.1 The setup

Generalizing the formalism developed in Section to a dark matter candidate with mass M (7),
it is possible to present a cosmological scenario involving a massive vector field whose mass evolves
dynamically during inflation. We propose to work with a variable mass, which undergoes a rapid
variation over a brief interval during inflation, to then stabilize to a constant value by when in-
flation ends. As a consequence, the system exhibits distinctive features, which characterize and
shape our results.  The scenario we are going to introduce in this chapter, allows for a new
mechanism to produce ultralight dark matter in the form of vector bosons during inflation, in
such a way that the longitudinal vector dark matter abundance and its properties are controlled
by the vector mass scale and its time variation during inflation.

We argue that this mechanism provides a compelling framework for generating dark matter in the
form of the longitudinal mode of a massive dark vector field, using ideas borrowed from physics
of primordial black hole formation and with interesting phenomenological ramifications.

Let us start from a setup similar to the one previously introduced in 5.2l We work with a
spatially flat, homogeneous and isotropic Friedmann—Robertson-Walker (FRW) metric.

To investigate how the introduction of a non-slow-roll phase can yield a viable dark matter
candidate -in particular, a dark photon- we begin by generalizing the action through the inclusion
of a time-dependent mass term in a cosmological setting:

M(r)?

S: /d4x\/ —g |:—}1FMVFMV— T

where F),, = 0,A, — 0,4, as before, and where the mass parameter M (7) now acquires a time
dependence through

A A (6.1)

(6.2)
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with m denoting a constant mass scale corresponding to the physical vector mass at the end of
inflation 7. The dimensionless function J(7) depends on conformal time. For convenience, we
impose the condition

J(ri) = alra) | (6.3)
ensuring

M(tg) =m . (6.4)

The non-zero vector mass explicitly breaks an Abelian gauge symmetry, thereby rendering the
longitudinal mode of the vector field physical and dynamical. A natural motivation for the time
dependence of J(7) arises if it originates from a coupling to the inflaton field, whose dynamics
during inflation control the evolution of the effective vector mass.

The time dependence of M? can therefore be generated through couplings to dynamical fields
active during inflation. In particular, we are guided by scenarios in which the inflaton’s velocity
undergoes a rapid and transient variation-, as for example happens in ultra—slow-roll inflation
[68, ©99], [100] or constant-roll models [L101HI03]. Such abrupt departures from standard slow-roll
behaviour are expected to manifest as short-lived, sharp features in the function J(7). For the
purpose of our analysis, however, we need not commit to a specific inflationary framework; it
is sufficient to assume that the mass undergoes a rapid variation. In this sense, our arguments
remain general and can be applied across a broad class of models.

We further assume that the vector field A, has no homogeneous background component and
instead appears only as a perturbation propagating on the cosmological background. Its decom-
position takes the schematic form of expression [5.5] and, in what follows, we neglect fluctuations
of the metric, assuming that their contributions do not spoil the early universe amplification
mechanism.

Basing on these considerations, the central problem we need to address is the analysis of vector
fluctuations when J(7) exhibits a rapid transition during inflation. Successfully doing so, allows
us to broaden the parameter space of the longitudinal vector dark matter model [15], thereby
accommodating light dark matter candidates with potentially rich phenomenological implications.

With the considerations we outlined, the action [6.1] of the vector field minimally coupled with
gravity explicitly reads:
m2J?(7)

1
— 3 2 - 122
S /de xa”(T) [ 4F,WF 2a2(r)

Making use of the decomposition of A,, the gauge field splits into two distinct components:
transverse vector modes and a scalar longitudinal mode. In the remainder of this analysis, we
concentrate just on the scalar sector, governed by the fields Ay and .

We follow the same steps as in Section for the case of a general longitudinal mode: we move
to Fourier space, where the physical longitudinal mode of the vector field can be expressed as

ALk(T) = ZIC gOk(T) > (66)

A Ar| (6.5)

as in Eq. [5.10]
We then solve the equation of motion for the nondynamical component Ay, which yields the
following relation in Fourier space:

= , —ik

Aox(T) = m@k(ﬂ = m Ti(T)

(6.7)
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This expression generalizes the result obtained previously, with the important difference that
the time dependence is now encoded in the dimensionless function J(7).

We substitute the relation [6.7] back into [6.1] and we obtain the effective quadratic action for the
longitudinal scalar mode ¢y:

o= /dT it J2<T> L@ + Zzp(T) D7) 1 (7) = m* (7)o (7)) | - (6.8)

To bring the kinetic term into canonical form, we define the canonically normalized field:

B kmJ(T)
m(T) = Ry o(T) . (6.9)

In terms of m, the quadratic action becomes:

3k2m2 J/2 k2 J//

1
(B2 + m2J2)2 k2 + m2J2 7) T ”k} . (6.10)

S = —/d7d3/~c {71'1/(71',_1( — (k2 +m?J? +

2

which constitutes the starting point for our discussion.

Throughout this section we assume a quasi-de Sitter background with scale factor

1
a(t) = o7 (6.11)
Besides, we work under the hypothesis that the physical vector mass at the end of inflation is much
smaller than the Hubble scale during inflation, m < H;, where m is the constant mass parameter
defined in Eq.[6.2)and H; denotes the inflationary Hubble rate, taken to be approximately constant.
We assume that this condition remains valid over the full duration of the accelerated expansion
epoch. These considerations translate into the following hierarchy of scales:

- On sub-horizon scales, the physical momentum satisfies:

k Jm
— > 1> —; 6.12
CLH[ > 1> aH[ ’ ( )

- On super-horizon scales the ordering becomes:

Jm k
—_— —_— 1. 6.13
CLH[ < CLH[ < ( )

Under these conditions, the leading contributions to the action [6.10| simplify considerably. In
particular, the equation of motion for the canonically normalized scalar field m takes the form

e (7) + (kz2 — %) me(7) =0 (6.14)
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and, since Jm < k throughout inflation, both on sub-horizon and super-horizon scales, m, ~
m J(7T) ¢k, and the power spectrum of the original scalar mode ¢ can be related to that of the
canonically normalized mode 7 simply by

P

T (6.15)

P, =

To understand how the introduction of a non-slow-roll phase affects the phenomenology of
our system, we need to determine the spectrum P,. In the following, we adopt the approach
developed in [104] and we analytically solve the mode evolution equations in different regimes -
inflation and radiation domination- in order to account the differences with respect to the SR case
encountered in previous sections and to demonstrate that vector longitudinal modes can constitute
an interesting dark matter candidate, whose properties depend on the vector mass m and on the
characteristics of the time-dependent function J(7).

In particular, we show that the introduction of a non-slow-roll phase significantly alters the k-
dependence of the power spectrum. This modification has direct implications for the production
of dark matter during inflation.

Interestingly, this is not the full story. We also find that the enhancement of the power spectrum
bears a striking resemblance to the maximal £* amplification typically encountered in primordial
black hole scenarios. This parallel naturally leads us to consider possible correlations between the
two dark matter candidates.

6.2 A brief, transient departure from Slow-Roll Conditions

The introduction of a non-slow-roll phase during inflation offers an appealing possibility to achieve
an enhancement of the power spectrum. Studying the spectrum of cosmological fluctuations in
single-field inflation models with brief and transient departures from slow-roll conditions provides
a valuable opportunity to explore new phenomenological effects triggered by this departure.

The motivation for considering a non-slow-roll phase primarily comes from models of primor-
dial black hole formation [86H88|, where a significant amplification of the curvature perturbation
amplitude is required. Specifically, producing PBHs demands an increase in the power spectrum
amplitude by approximately seven orders of magnitude from large to small scales [89] [90]. This
dramatic growth cannot be achieved within the standard slow-roll framework of single-field infla-
tion, necessitating a temporary violation of slow-roll conditions. Such a strong enhancement in
the scalar curvature power spectrum can push perturbations beyond the threshold for PBH forma-
tion. Consequently, the breakdown of slow-roll makes the analysis of fluctuation dynamics more
complex but also opens the door to discovering novel effects in the inflationary power spectrum.
In addition, there is another important outcome: the non-slow-roll phase can enhance the primor-
dial gravitational wave spectrum at high frequencies, potentially bringing it within the reach of
gravitational wave detectors.
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In such scenario, the evolution of fluctuations becomes analytically challenging because the
usual slow-roll approximation is no longer valid.
In order to address the problem of studying the power spectrum associated with the field when
we introduce a non—slow-roll phase, we can rely on the analytical, model-independent method
developed in [104]. To this end, we introduce the ratio Ar/7; as the parameter quantifying the
duration of the non—slow-roll epoch relative to a reference timescale. This ratio is small, allowing
us to expand the evolution equations of the fluctuations in a Taylor series around it. Starting
from this expansion, we will solve the equations at first order in A7/7. In this way, we will derive
the properties of the corresponding spectrum of fluctuations in scenarios where the amplitude is
significantly enhanced toward small scales.

In the definition of A7/m, the quantity A7 is the duration of the non—slow-roll phase,

AT = ‘7'1 — 7'2|, (616)

with 71 and 75 denoting the start and end of the NSR phase, respectively, while 7, is the reference
timescale we consider, much larger than the transient phase, which we suppose to be particularly
brief.
The other key quantity, specific to the model under consideration, is J(7), which we refer to as
the pump field (following [104]) and which characterizes the dynamics of the fluctuations.
In a regime of slow-roll single-field inflation, the pump field would have the generic profile
Co
J(1) = ——— 6.17
() =3 (617

where ¢y denotes a (nearly) constant parameter depending on the system under study. With such
a pump field, the evolution equation can be solved exactly in the pure de Sitter limit of slow-roll
inflation.

During the brief non-slow-roll epoch, however, the pump field is not described by the simple
profile of Eq.[6.17} In this phase we do not expect an attractor regime of inflation and the would-
be decaying mode can become temporarily relevant, thereby affecting the features of the power
spectrum.

In our case, we parametrize the pump field as depending on a function w(7). More in detail, we
assume that the time-dependent vector mass profile of Eq. is encoded in the function

J(1) = a(1) Jw(T). (6.18)

In the ultra—slow-roll model, w(7) o 75 [104], while in the case of slow-roll inflation, w(7) is nearly
constant. In the case under study, w(7) encapsulates the (possibly rapid) time dependence of the
physics governing the vector mass during the inflationary epoch. As we explained, such a situation
can arise, for example, when the vector mass depends on the inflaton velocity, which may vary
abruptly over a brief interval in a non-slow-roll phase.

More generally, assuming inflation occurs in the conformal time interval 7 < 75 (7 being the
epoch of the instantaneous reheating), we take

w(7) = const. for m <7,
w(7) = ¢ smooth but rapidly varying for 7y <7 < 73, (6.19)
1 for » < 7,
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with the transition interval satisfying |7 — 7»|/|71| < 1. The conformal time 7; denotes the
moment when the inflationary system first leaves the slow-roll phase and enters the non—slow-roll
era. We focus on scenarios where the duration of the non—slow-roll period is much shorter than
the characteristic timescales of the system, which we take to be of order || E|

This assumption is quantified by the inequality

AT

|Tl|

<1. (6.20)

With this profile we intend to model a non-slowroll phase treated as nearly instantaneous for
analytical tractability, which makes the inflaton velocity rapidly evolve affecting the vector mass.

The remaining technical task is to solve Eq. [6.14] To this end, we adopt the following pertur-
bative Ansatz [104]

B e~ a(1)\/w(T)Hy

m(T) = ok

which has the property to match to the standard de Sitter mode function when the functions
A(ny = 0. The functions A,)(7) account for corrections arising from the time dependence of w(7).
An arbitrary reference scale 7y can be introduced to make the series dimensionless, though the
final results are independent of this choice.

We choose this Ansatz since the dimensionless functions A, are taken such that they vanish for
7 < 71, while they encapsulate the corrections to the field during the NSR phase. This ensures
that, at early times, the solution reduces to the general de Sitter solution and that, later in the
expansion, it takes in account the effects of the non-slow-roll phase during Ar.

[1 4kt + (ikT)Aw) (1) + (ikT)* A (T) + . ] , (6.21)

Plugging the Ansatz into Eq. we find the following system of differential equations in the
time coordinate, valid for each power of k > 2 (the prime indicates derivative along time). We
aim to solve it order by order in powers of k:

For n = 2 {@T(?A’@)(r)] - w,f) , (6.22)
w(T "ow(n)Al, (T
For n > 2 [% (TOA/(n) (1) — A(n_l)(T)):| = % . (6.23)

A formal solution of A, in [6.22]is:

oA (T) = /_ ; dTa% ( /_ ; dwalg’))) (6.24)

'We are considering a single phase of non slow-roll expansion. We point out that is also possible to consider
situations with multiple non-slow-roll epochs and with intermediate phases of slow-roll expansion in between. In
[104] it has been shown that, if this is the case, the behaviour of the spectrum during phases of non-slow-roll
evolution might have a “memory” of what occurs prior to these phases, and such memory can be stored in the slope
of the spectrum.
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while a solution of is given by:

T T 2 Ta w(my) A T
TOA(n)(T)_/ dTaA(n—l)(Ta)+/ dr, —= (/ drm ) (2_1)< b)> : (6.25)

—0o0 —0o0 W(Ta> —0o0 Tb

where the extremes of integration are chosen to satisfy Ag,)(7) = 0 as 7 < 7. With this, we
determined the most general formal solutions for the functions A,), in analogy with what has
been done in [104].

We can now expressly calculate the functions A(,), solving the equations at leading order in
AT /7. Having required A7 to be small we Taylor expand Ay (n > 2):

1
A(Q) (TQ) = A(Q) (Tl) + A:(l2) (Tl)AT + 514(22) (Tl)ATz + ... (626)

where the upper index in boldface indicates the order of derivative. It is clear that Awy(m) = 0.
Then inserting in [6.24] and arresting at first order, we get

™ 7 W' (Ta
i A(lz)(ﬁ) =75 Ap)(m) = —(— / dTaL = A:(l2)(7'1) =0, (6.27)

w(T) J_ oo Ta

since w' = 0 for 7 < 7. Thus, the first derivative vanishes. On the other hand, the second
derivative has a non-vanishing contribution:

~ dInw(r)

2 42 _
TO A(Q)(Tl) a TW<T> T=T1 B dlnT T=T1 (628)
Identifying the last quantity with the parameter «,
d Inw(T)
= 7\ 6.29
@ d h’l T T=T1 ( )

we therefore find:

B A% (1) = {aT (i) / ", "“’/(Tﬂ +——w(r) = 22, (r) = D)6 )

w(t) ) Jooo Ta

which implies that

a AT?
A ~ T 6.31
@) = 5= (6.31)
is the leading contribution to the Taylor series in an expansion in A7 /7.
Proceeding recursively for each A, one finds that the first non-zero derivative of A, evaluated

at 7 = 7y is the n-th, with
7o Al (1) =2 . A?nf_ll)(ﬁ) = 2" ?q. (6.32)
This indicates that for each n, the leading order in the corresponding Taylor expansion is

2n—2 AT
Aw(12) = —~a Z : for any n > 2. (6.33)
n! 5
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Thus, we solved the system of equations order by order in n, determining, for each n, the leading-
order contribution to the functions A, in a Taylor expansion in the small parameter A7 /7.
The solutions depend on the duration A7 of the non-slow-roll era and on the parameter o which
characterizes the slope of the pump field.

The parameter « is a dimensionless quantity which represents the logarithmic rate of change
of w(7) at the transition. Since dInT = —dIna(7) during inflation, a positive « corresponds to
a negative rate of change for the vector mass M (1) during inflation: the vector mass rapidly
decreases during the non-slow-roll epoch.

We can now insert these results into the expression for the mode function m and evaluate it
at any time 7 within the interval 7 < 7 < 7, during which the slow-roll conditions are violated.
As a concrete example, we consider the limit of the end of the non-slow-roll phase 7 — 7. We
obtain:

e ™ (1) \/w(T)H]

' = (2ik)"
ﬂ-k(T): \/ﬁ 1+ZkT2_g_£kOCAT+gZ(Z> ATTL

12 12l
()T I [ A
o [(1 +ikry) = 7 (1+2ikAT — ¢ )] . (6.34)

This provides the analytic expression for the mode function at the end of the non-slow-roll phase
and describes how the field m, evolves after a brief period of slow-roll violation E| As previously
discussed, the result depends on two key parameters: «, which characterizes the slope of the
pump field and condenses in a single quantity any deviation with respect to de Sitter and Ar,
representing the duration of the non-slow-roll phase.

For 7 < 7, the mode function m(7) is given by the solution in Eq. [6.34 Having found the
solution during the non-slow-roll phase, the mode function obtained can be connected at the tran-
sition time 75 to the final, slow-roll phase of inflation, spanning the interval from 7 = 7, to 7 = 0.
For 7 > 75, the pump field J(7) takes on its pure de Sitter form and the corresponding general
solution for the mode function is given by

m(T) = — L_Ho [C1(1+ ikT)e ™ 4+ Co(1 — ikT)e™ ] . (6.35)

V2k3 ¢co

We match the solutions and and their derivatives through Israel matching conditions at the tran-
sition time 75 and we find that the two coefficients C} » must satisfy

1 — e?*Ama 21k ATA(1 + 2ikATR)

Ci(k)=1+a KA : (6.36)
62ikATB )
Co(k) = —a 55 (1 = 2ik(A74 + Arp) — ¥4 (1 — 2ikA7p)) . (6.37)
8k2ATE

2Tt is important to note that this approach involves truncating the Taylor expansions at the leading non-
zero term. While this is justified under certain conditions, it does not guarantee accuracy in all scenarios: the
perturbative scheme we adopted remains valid when the non-slow-roll interval A7 is sufficiently short and suitable
conditions are met. However, in models where A7 is not small, higher-order corrections may become significant,
particularly if enhanced by large coefficients. In this work, we assume a regime where this perturbative method is
reliable and the truncation is well justified.
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with A4 = 7 — 71 and A7 = 0 — 75 which is the duration of the final de Sitter phase.
The transition moment may also coincide with the end of inflation, though this is not necessarily
the case. Additional phases of non-slow-roll evolution may also follow.

Let us now examine the effects of the NSR phase on the power spectrum of the fluctuations.
Although brief, the NSR period significantly influences the system’s phenomenology, introducing
new features into its dynamics. These phenomenological differences are illustrated in Fig. [6.1]
which highlights the impact of including an NSR phase during inflation.

For our purposes, let us recall the definition of the power spectrum associated with our
mode functions at the end of inflation:

Pi(k) = 55l (6.38)
It is convenient to define the ratio:
Pr(7)
Iy(7) = ———, 6.39
() = i (6:39

which corresponds to the dimensionless ratio between the power spectra evaluated evaluated re-
spectively at scale k and at very large scales k& — 0: this ratio goes to 1 for £ — 0, and makes more
manifest the small-scale growth of the spectrum in scenarios with transient violation of slow-roll
conditions.

At the end of inflation, when 7 = 0 it simply results

My(r = 0) = [Ca(k) + Ca(k)]? . (6.40)

Matching the solutions in the slow-roll (SR) and non-slow-roll (NSR) regimes at 7, using Israel
junction conditions and substituting the values of C} 5, we find that the spectrum of fluctuations
exhibits distinctive features as a result of the slow-roll violation. These features are illustrated in
the plot [6.1] for a specific choice of the NSR parameters.

We observe that the power spectrum initially follows the expected scaling oc (k/k;)?, consis-
tent with the behaviour of fluctuations deep in the slow-roll regime [I5]. After this, we encounter
the first key difference compared to the slow-roll case: the rise proportional to k2 is followed by
a pronounced dip, whose position and depth provide important information about the scale at
which the spectrum starts to strongly deviate from the amplitude and scale dependence predicted
in single-field slow-roll inflation.

Right after the dip, there is a sharp rise in power, and the spectrum begins to steadily increase
as k grows. In this interval, the spectrum scales as (k/k1)®, peaking near the momentum scale
k ~ ky, corresponding to modes that exited the horizon during the NSR phase.

The central parameter of the NSR epoch is a. Indeed, it controls the total growth of the
spectrum: if we aim to gain several orders of magnitude in the amplitude of the spectrum with
respect to its large-scale value, we need to choose a large value for the parameter . Moreover,
both the position and the depth of the dip also depend on it [104].

For even smaller scales (k > ky), the growth rate of the spectrum gradually settles back to an av-
erage (k/k1)? scaling. Strong oscillatory features at small scales result from the sudden transition
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Figure 6.1: This plot displays the dimensionless power spectrum II(x) of the longitudinal component
of the vector field during inflation, plotted as a function of the dimensionless scale k = k/ki, where k;
is the characteristic momentum defined in Eq. The goal is to highlight the infrared modifications
to the spectrum induced by a brief phase of non-slow-roll (NSR) evolution. The blue curve shows the
resulting profile of the power spectrum for a representative value ITp = 10* (see the relation for its
definition), clearly exhibiting deviations from the standard slow-roll behavior at intermediate and small
scales. Il parameterizes the net growth of the power spectrum across scales during the NSR evolution.
For comparison, the dashed orange line represents the baseline scaling oc k2, corresponding to the case
without NSR effects (i.e., IIp = 0). This comparison emphasizes how the NSR phase enhances the
spectrum and introduces nontrivial scale dependence, especially in the infrared regime.

between the NSR and the final slow-roll phase; smoother transitions would likely suppress these
oscillations.

Notably, the resulting spectrum exhibits characteristics reminiscent of models that enhance
curvature perturbations for primordial black hole formation (see [105] for a comprehensive review).
In particular, the time-dependent vector mass during the NSR phase injects energy into the
longitudinal modes, triggering a rapid growth in the spectrum over an intermediate range of
scales. The shift from a k2 to a kS scaling in the infrared mirrors the maximal fourth-order
enhancement seen in PBH scenarios [I8], 201 [89] [90] , where such growth emerges from an initially
nearly scale-invariant spectrum. Similarly, in our context, the spectrum can attain a maximal
increase of four powers in momentum relative to the standard slow-roll case.

The intermediate (k/k1)® growth phase is particularly significant for determining the final dark
matter abundance sourced by longitudinal vector modes. Its presence introduces new parameters
into the model, thereby expanding the phenomenologically relevant parameter space and opening
potential connections with observable signatures, including those in gravitational wave physics.
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6.2.1 Large a limit

In an idealized yet insightful limit, originally motivated by techniques introduced by 't Hooft [106],
the analytical expressions simplify considerably. In order to see this, we have to turn out the
attention on the slope parameter . In many relevant scenarios, it temporarily exceeds unity
during a brief stage of inflation. To gain analytical control over such dynamics, we can consider
the regime where o > 1, treating 1/« as a small expansion parameter in a controlled perturbative
framework [TI07]. This approach allows for significant simplification of the equations, enabling also
to derive explicit analytic expressions for the two-point correlation functions of the perturbations.

The limit of large a we intend to explore exhibits an interesting analogy with the large- N limit
of SU(N) QCD, as originally proposed by 't Hooft [TI06]. In that context, a 1/N expansion offers
valuable insights into its dynamics. The large-N limit, taken alongside g — 0 -with g the QCD
coupling constant and N the number of colors- and helding ¢g2N finite, simplifies the theory while
preserving key physical properties.

Similarly, in our scenario, it is useful to consider the limit of vanishing e-folds of NSR expansion
ANnsr — 0 and to take the limit @ — oo, while keeping their product fixed. This combination
controls the enhancement of the power spectrum across scales. In this regime, expanding in
1/a leads to significant simplifications, allowing for analytic control over the n-point correlation
functions.

In order to exploit this limit to our advantage, we consider the quantity A7/7 to be infinitesimal,
and simultaneously take the parameter o to be very large. This limiting procedure, as previously
discussed, allows us to analytically capture the scale dependence of the power spectrum in a
significantly simplified manner.

The time scale 7, denotes the moment at which the non-slow-roll phase occurs and serves as a
reference for characterizing the onset of deviation from slow-roll dynamics.

Besides, it has a physical interpretation in terms of a (small) number ANyggr of e-folds of NSR

evolution. Indeed:
a(7) T 1 AT
AN, =1 =In|{—=) =1 ~ 6.41
NSR n(a(ﬁ)) n<7_2) n(l—é—:) o ( )

where in the last equality we expanded for small %.
1

In order to work with this, we also define the pivot scale

1
]{?1 = H[&(Tl) = -, (642)
1
corresponding to the comoving wavenumber of modes leaving the horizon at the onset of the brief
non-slow-roll era. We then express our formulas in terms of the dimensionless momentum scale:

k

- (6.43)

The expressions we use simplify with this notation, as we can easily identify modes with x ~ 1
which cross the horizon at epochs corresponding to the NSR phase. From a physical perspective,
this limiting regime permits the realization of a sufficient enhancement of the power spectrum, as
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demonstrated in [I07]. In particular, since we are operating within the domain A7/ < 1, the
realization of such an enhancement necessitates a large value of v during the NSR phase. This
amplification acquires particular significance in scenarios aimed at generating a substantial abun-
dance of dark matter through primordial black hole formation, wherein a pronounced increase of
the spectrum at small scales is required.

Under these conditions, the expression for the dimensionless power spectrum [6.39] simplifies
considerably. Thus, we take the simultaneous limits:

|71—T2|

|71\

alm — 7

a— 00, — 0, keeping = 2[1, finite. (6.44)

’Tl\

where Il parameterizes the net growth of the power spectrum across scales. A value Il = 0
corresponds to no enhancement.

Expanding in 1/« at fixed Iy, one finds, at leading order:
(k) = 1 — 4kl cos k j; (k) + 4K°T15 j7 (k) - (6.45)
The function j;(k) is the spherical Bessel function of the first kind:

. sink  COSK
jl("i>: 5 .

(6.46)

K K

The dimensionless function Ily encodes the imprint of the non-slowroll phase, which -as explained
above- we assume is making the vector mass changing rapidly during a small time interval.

Restoring all dimensionful quantities, we finally obtain the expression for the power spectrum
of the longitudinal mode of the vector field after the non-slow-roll phase. The result reads:

H2 ) H2K2 [k
PO(k) = Lo T(k) = H(k—1> (6.47)

472 m2 472m?2

This expression is the resulting power spectrum for the longitudinal mode of the vector field,
when evaluated at the end of inflation, after a brief phase of non-slow-roll inflation during which
the field mass M (7) changed its value accordingly to [6.19] The function II(k) encapsulates both
universal features of the spectrum -such as its infrared limit and the presence of a characteristic
enhancement at small scales- as well as model-dependent details encoded in the duration and
slope of the NSR phase. In particular, as discussed, the total amplification is governed by the
combination Iy ~ %T/ﬁ, controlling the transition to NSR regime. This setup allows us to
capture the key features of the power spectrum arising from a sudden, localized departure from
slow-roll, controlled by the amplitude IIy and the scale k;.
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6.3 Evolution during Radiation Domination

During the radiation-dominated (RD) epoch that follows inflation, the large-scale longitudinal
component of the vector field, Ay, re-enters the horizon and subsequently evolves. The behavior
of this mode depends sensitively on its comoving momentum k. As we have already seen in Section
(.32 at a generic time 7 > 7 within RD, the power spectrum of Ay, is determined by a transfer
function T (k1) and takes the form

Pa, (k) = |T(kn)[* PL(k), (6.48)

where PIEXOL)(k) denotes the primordial spectrum evaluated at the end of inflation, now incorporat-
ing the effects of the mass-varying phase, while 7 corresponds to the transfer function introduced

in Section £.3.21

In the standard slow-roll framework of [15], the spectrum exhibits a turnover at a characteris-
tic comoving scale k, ~ a,M, with M the vector mass and a, the scale factor at the epoch defined
by H = M. Our objective here is to explore how the presence of a transient non-slow-roll phase
during inflation modifies this baseline prediction, with particular emphasis on the resulting defor-
mation of the spectrum shape, as illustrated in Fig. [6.1]

For notational clarity, it is convenient to work again with the variables defined in [5.3.2] However,
unlike before, we now have two distinct reference scales:

— 71, the time at which the non-slow-roll phase of inflation begins,

— Ty, the time at which H, = m, corresponding to the vector mass scale at the end of the NSR
phase, which occurs during the radiation-dominated period.

It is then useful to define the following ratio:

_k*_a*H*_ a, m
kl CllH[ a(ﬁ) H['

o

(6.49)

To explore the physical implications of the relevant scales, we first recall that the comoving

momentum 1
]{31 = a(7'1)H[ = —— (650)

1

marks the onset of the non-slow-roll phase during inflation. In contrast,
k. = a.m (6.51)

defines the physical momentum at which the vector mass becomes dynamically relevant during
radiation domination. Thus, o measures the relative size of the two physical scales in the problem:
the momentum scale k; associated with the onset of the non-slow-roll phase of inflation and the
scale k, where the vector mass effects become relevant in the radiation era.

In other words, o quantifies how much the universe expands between these two events and how the
characteristic momentum scales are separated. Thus, o encodes the hierarchy between inflationary
dynamics and post-inflationary vector physics, and it plays a central role in determining the
evolution of the modes. This is made evident by the following illustrative cases:
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Denoting by ag the scale factor at the end of inflation, we have

c—— ', with N; the number of e-folds between 7; and the end of inflation, (6.52)
ai

. ) .\ 2 o\ 2
Qe Tx _ ( 1) — (_f) _ (6.53)
apr TR H, m

Combining these expressions gives

m \ /2
o=V (—) . 6.54
T (654

To illustrate typical values of o, consider two examples:

- For N; = 30 e-folds before the end of inflation, m = 107 ¢V and H; = 10'* GeV, we find
e ~ 10" and (m/H;)Y? ~ 107!, giving 0 ~ 1078, a negligible value.

- For N; = 49 e-folds before the end of inflation, m = 107! eV, and H; = 10'° GeV, we
obtain € ~ 1022 and (m/H;)Y? ~ 107!, yielding o ~ 10?2, a significantly large value.

Hence, depending on the inflationary history and the vector mass scale m, the parameter o
can vary over many orders of magnitude.

We can now re-express the power spectrum of EqJ6.48| using the dimensionless variable z, =
k/k., yielding

Parte) = () o, o], (6.5)

where II(ox,) is defined in Eq)6.45[ and explicitly is

H(ox,) =1—4 ox, cos(ow,)ji (o) My + 4 0?2257 (ox, )T | (6.56)

showing its dependence on the parameters o and Ily, which contain the information on the NSR
phase. The combination appearing in square brackets of Eq is displayed in three panels of
Fig. and, notably, does not depend on m or H;.

Besides clearly illustrating the effects of the non-slow-roll phase on the dip and subsequent
rise of the spectrum, the plots also reveal a nontrivial interplay between the modification of
the inflationary spectrum by II(ox,) and the influence of the transfer function [T (z.)|*>. For
sufficiently large Iy, for instance Iy = 10? (a choice motivated by the applications discussed in
Sections and , the longitudinal spectrum develops a pronounced peak followed by a turnover
whose position depends on the model parameters. Near this peak, the amplitude is substantially
larger than in the slow-roll case (Il = 0), indicating that the non-slow-roll phase efficiently
amplifies the production of longitudinal vector modes. As discussed previously, deviations from
slow-roll dynamics enhance the infrared part of the spectrum, accelerating its growth toward the
peak.

The turnover scale appears to be particularly sensitive to the value of o.
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- When o ~ 1, the turnover is close to the canonical scale k ~ k, = a,m, as in the standard
slow-roll picture (Fig. [6.2] upper left panel);

- For ¢ < 1, however, the turnover shifts to much smaller scales (k > k), concentrating
power at high k (Fig. , upper right panel);

- Conversely, when o > 1, the turnover remains near k ~ k,, but the spectrum grows
more steeply at small £ (Fig. , lower panel), suggesting that the contribution of short-
wavelength modes can be significantly enhanced.

Overall, the plots in Fig. clearly illustrate the dependence of the spectrum on the

parameters m, Iy, and o, pointing to a rich phenomenology that we explore in the following.
This behaviour distinguishes the scenario from others -such as models with nonstandard post-

inflationary histories [20], 27] -where the spectral modifications occur primarily after the peak.
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Figure 6.2: This series of plots shows the power spectrum P4, of the vector longitudinal mode, both
during inflation and the radiation-dominated era, as a function of scale. The emphasis is on illustrating
the impact in the infrared part of the spectrum of effects controlling a brief period of non-slowroll evolution
during inflation. (See the main text for definitions of the parameters and further discussion.) The colored
curves show the evolution of P4, during radiation domination for various values of the parameters Il
and o, compared to the black line representing the standard profile in the absence of non-slowroll effects.
Note that changes in the parameter o affect both the position and shape of the spectral peak.
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6.4 Longitudinal Energy Density and Dark Matter Abun-
dance

Our goal is to investigate whether the longitudinal vector mode A can account for some or all of
the dark matter observed in the universe. To this end, we calculate its present-day energy density
relative to the measured dark matter abundance. We then analyze how this fraction varies across
the parameter space of the model, paying particular attention to the influence of the non-slow-roll
phase of inflation on determining the final dark matter density.

By using the same considerations presented in Section [5.6] we obtain that the energy density
stored in the longitudinal vector modes is given by

1 a. (kHr\’ % o Ka., .,
=532 dlnk —10;T ——|T" ) II(k )

*

where the explicit oscillatory structure in the last factor II(k7y) of the integrand arises from the
non-slowroll transition at time 7, and correspondingly introduces a physical scale k1 = a(m)H;.

Computing the integral

We adopt a similar procedure to the one outlined in Section to evaluate the integral that
determines the dark matter abundance contributed by our vector boson of mass m. To do so,
we express the integral in terms of the variables x, and y and compute it at late times, Yenq,
corresponding to a period well within radiation domination. This allows us to average over the
rapid oscillations of the modes. The integral is then naturally split into two regions: z, < 1 and
x, > 1, which correspond, respectively, to modes outside and inside the Hubble radius during
radiation domination. Thus, the integral we need to evaluate is:

Vv, (4l (A2, 2lA)p2
Ip<yend) = Yend —Q‘ayj—iate’ + $*|T'1ate‘ H(U$*)

0 Tu \T5+ Yona
Yend dl.* xz (B) 5 5 (B) 5
tos [ (G TR+ AT o). (658)

Each line of Eq[6.58 depends on the different solutions for the analytic transfer functions which
apply in different regimes of y (see Appendix [B|for a description of the solutions).
In this case, the integral includes the modulation function, defined in Eq6.45] which depends on
the spherical Bessel function. It consists of three distinct contributions:

(oz,) =1 — 4 oz, cos(ox,)ji (0 )y + 4 0?2257 (ox,)TIE . (6.59)

Of course, when II; = 0, the integral of Eq. is recovered. However, for non-zero 11, additional
non-trivial contributions arise, characterized by oscillatory functions. To handle these terms effi-
ciently, it is necessary to distinguish between the two integration regimes, allowing us to exploit
the oscillatory nature of II(ox,) to our advantage.
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Figure 6.3: The functions s; 2(0) defined in Eq. exhibit oscillatory behavior, yet both converge to
the same asymptotic value at large o.

We first consider the contribution from the initial part of Eq. which we denote by Z().
In the limit of large yepnq, this term can be evaluated straightforwardly, giving

TW = 0.475883 + 51(0) Iy + s9(0) IT2. (6.60)

The functions s (o) and s;(c) are lengthy and are reported in Appendix [C] It is sufficient to note
that both vanish as ¢ — 0 and approach a common asymptotic value of approximately 0.95 for
large o, as shown in Fig. [6.3]

Next, we examine the second contribution of Eq. which we denote Z®. We rescale the
integration variable via z = x,/Yenq. This transforms the lower limit 1/yq,q into a value sufficiently
small to be approximated as zero. Moreover, the resulting integrand contains terms that oscillate
rapidly over 0 < z < 1, but these oscillations are suppressed by factors of 1/yenq and average out
to negligible contributions. After neglecting these terms, the remaining integral can be evaluated
exactly, yielding

7% =1.025 [1 + 2T, + (2 + 0'685) Hg] : (6.61)

o2

We now collect the results obtained so far. The total integral in Eq. [6.58]is the sum of the two
contributions previously evaluated,
7,=17W 4+ 1%, (6.62)
and depends on both ¢ and IIj.
In the limit of large o, the expression for Z, simplifies considerably:

3
I,~3 (1+2M, +2I) ,  for large 0. (6.63)
The corresponding energy density of the longitudinal vector modes, which redshifts like matter,
is
1a® (mH\?
=——=—— Z,. 6.64
pAL 2 0,3 ( 27T ) 14 ( )
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Evaluating this at matter-radiation equality and comparing with the total dark matter density as
done in Section [108],
3
PDOM = §H§QM§1, Heq =28 x 107%% eV, (6.65)

one obtains, in the large-o regime, the ratio:

1/2 H 2 1/2 H 2
pAL m I 2 m I
= T, ~ (1420 +2112) | ————— —L ) . (666
poM 3HA <27rMp1) 2 (14 2o+ 2MT) (0.6 x 106 eV) (1014 GeV) (6.66)

Hence, Eq. provides a direct link between the energy density of longitudinal vector modes,
pa,, and the observed dark matter density, ppy. This expression demonstrates a rich dependence
on the model parameters; some important features are worth highlighting:

e Dependence on the vector mass m: The abundance scales as m'/2, indicating that lighter
vector masses require a higher inflationary Hubble scale or larger Iy to achieve the same
contribution to the dark matter density. This scaling also emphasizes that the longitudinal
modes behave as cold dark matter, redshifting as =3 after production.

¢ Role of the inflationary scale H;: The dependence on H? characterizes the efficiently of
the mechanism at generating dark matter.

e Impact of non-slow-roll dynamics (Iy): The factor (1 + 2IIy + 2I13) captures the en-
hancement due to deviations from slow-roll during inflation. For II; ~ O(1) or larger, the
longitudinal mode production can be significantly amplified, showing that the inflationary
dynamics have a direct effect on the final dark matter abundance.

Furthermore, Eq. allows one to scan different combinations of (m, Hy,1ly) to match the ob-
served dark matter density. This highlights the flexibility of the model and provides guidance for
identifying viable regions where the longitudinal vector could constitute all or part of the dark
matter.

For instance:

- The combination m = 1.5 x 1072* eV, H;=10"GeV and TIIZ =107, reproduces the
observed dark matter abundance;

- Alternatively, with H; = 5 x 10'3 GeV while keeping the other parameters fixed, the longi-
tudinal vector constitutes roughly 25% of the total dark matter.

Overall, then, Eq. encapsulates the interplay between particle physics parameters and infla-
tionary dynamics, providing a quantitative framework for assessing the feasibility of longitudinal
vectors as dark matter candidates.

To conclude this section, we introduce a quantity that offers a detailed perspective on the
distribution of energy density of the longitudinal vector mode across different momentum scales.
We define the differential contribution, normalized to the total dark matter density, as

1 dPAL

i (6.67)
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Figure 6.4: Differential energy density as a function of momentum scale, shown for a representative
vector mass m = 1.5 x 10719 eV and an inflationary Hubble scale H; = 104 GeV. The parameters o and
Iy, which characterize the non-slow-roll dynamics during inflation, play a key role in enhancing the peak
amplitude.

This function quantifies the energy density contributed per logarithmic interval of momentum.
Integrating it over the full range of momenta reproduces the total density ratio presented in
Eq. [6.66] Before integration, however, it provides valuable insight into the relative importance of
different modes and highlights scale-dependent features of the production process.

Fig. [6.4] illustrates this distribution. It is evident that the short non-slow-roll phase during
inflation has a pronounced impact on the infrared portion of the spectrum, precisely in the region
where the energy density grows. This modification indicates that the departure from slow-roll
dynamics selectively amplifies certain momentum modes, leaving a distinct imprint on the shape
of the spectrum.

6.5 Phenomenological implications

The mechanism for generating longitudinal vector dark matter during inflation, as outlined in the
previous sections, leads to a number of distinctive outcomes.

First, the resulting spectrum of longitudinal modes is highly suppressed on cosmological scales,
thereby remaining consistent with constraints from cosmic microwave background measurements.
At the same time, the spectrum grows toward smaller scales, with a pronounced peak whose
amplitude and position are controlled by the underlying parameters: the vector mass m and
the quantities o and Il that encode the short departure from slow-roll dynamics. The low-
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momentum region of the spectrum is particularly sensitive to this non-slow-roll phase, which
leaves a characteristic imprint on its shape.

A noteworthy feature of this scenario is that it enables the efficient inflationary production
of ultralight vector dark matter, with masses as small as m < 107! eV, while still producing an
energy density compatible with the observed dark matter abundance. Such ultralight dark matter
candidates are phenomenologically attractive: their wave-like nature modifies the clustering of
matter on small scales, providing a potential avenue to address tensions in conventional cold dark
matter cosmology. Several recent analyses [109} T10] place bounds on the mass of generic ultralight
dark matter if it accounts for the entire dark matter component and extensive reviews are available
in [22, [51]. In the case where the dark matter takes the form of a dark photon, kinetic mixing with
Standard Model particles introduces additional phenomenological opportunities, as discussed in
[83]. From this perspective, our framework provides a novel route for producing ultralight dark
matter directly from the dynamics of inflation.

Furthermore, the transition from a k2 to a k% scaling in the infrared part of the spectrum is
reminiscent of the maximal fourth-order enhancement identified in primordial black hole scenar-
ios [I8], 20], where it emerges from an initially nearly scale-invariant spectrum. Analogously, in
our case we find that the spectrum can increase by at most four powers of momentum relative to
its slow-roll behavior.

Beyond the direct abundance, the relation has implications for experimental searches

and cosmological observables. For example, ultralight masses m < 1072 eV could give rise to
observable features in structure formation or in the stochastic gravitational wave background.
In fact, the departure from slow-roll dynamics during inflation not only enhances the spectrum of
longitudinal vector modes, but also has important implications for gravitational wave production.
In particular, the amplification of these modes is expected to substantially increase the resulting
gravitational wave background, potentially bringing its amplitude within the reach of forthcoming
observational facilities.

In order to probe effects of spacetime deformations associated with vector degrees of freedom,
is it possible to use stochastic gravitation wave backgrounds (SGWB) produced at second order
in perturbations by isocurvature fluctuations. The subject of scalar-induced SGWB by adiabatic
fluctuations is very well developed by now (see [IIIHII7| and the comprehensive review [50]).
Much less studied are SGWB induced by isocurvature modes -the case relevant for us since we
study vector longitudinal modes corresponding to iso-curvature fluctuations. However, it has been
demonstrated that, similar to the well studied adiabatic case, a peaked spectrum of longitudinal
iso-curvature modes (with a maximum at scale k. ), enhanced to the non-slowroll phase, is expected
to significantly boost the generation of gravitational waves- potentially to an amplitude detectable
by future experiments. In particular, the amplitude of the gravitational wave spectrum increases
with the parameter Il,. Since a large value of Il is permitted in the regime of small vector mass,
ultralight dark matter is particularly relevant for our purposes [98].
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6.5.1 Ultralight Dark Matter and Primordial Black Holes

An intriguing feature of this framework is its potential ability to simultaneously generate both
longitudinal vector dark matter and primordial black holes, offering a unified mechanism for pro-
ducing a two-component dark matter model from a common inflationary source.

The common ingredient is the brief violation of slow-roll conditions during inflation. While our
analysis has focused on how this non-slow-roll phase induces rapid variations in the effective vector
mass -leading to enhanced production of longitudinal modes-, the same mechanism also ampli-
fies adiabatic curvature perturbations. These enhanced perturbations can, in turn, collapse into
primordial black holes during the radiation-dominated era.

This opens the possibility of a mixed dark matter scenario, composed of both ultralight vector
modes and primordial black holes, with the black hole mass spectrum determined by the properties
of the non-slow-roll phase. Such a framework may help evade stringent observational constraints
that arise when each dark matter candidate is considered in isolation. In addition, it predicts
a gravitational wave background with a bimodal structure, featuring two distinct peaks at dif-
ferent frequencies -one sourced by amplified isocurvature fluctuations and the other by amplified
adiabatic perturbations.
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Chapter 7

Conclusions

In this work we have presented a new framework for the generation of ultralight vector dark matter
during inflation. The central ingredient is a temporary departure from slow-roll dynamics, which
we modeled as a brief non-slow-roll (NSR) phase. When the mass of the vector field depends
on the inflaton velocity, the large time derivatives of the inflaton during this epoch induce rapid
variations of the effective mass. As a consequence, the infrared behavior of the longitudinal
spectrum is dramatically modified: instead of the k? scaling typical of slow-roll inflation, we find
a much steeper k% growth.

This modification has noteworthy consequences. Thanks to the NSR phase, the power spectrum
is strongly amplified, and the enhancement opens up new regions of parameter space that would
otherwise be excluded in the standard slow-roll setup. In particular, it allows the vector field mass

to be as small as
m <1071 eV,

while still accounting for a sizeable fraction of the observed dark matter abundance in the form
of longitudinal vector bosons. Moreover, the same dynamics responsible for this enhancement can
also leave imprints in complementary observables. The steepened small-scale spectrum acts as a
source of scalar-induced gravitational waves at second order, generating a stochastic background
of potentially detectable amplitude. In addition, the interplay between the NSR-induced growth
and the breaking of conformal invariance by the longitudinal modes points to intriguing possibili-
ties for a unified inflationary origin of multiple relics: ultralight vector dark matter and primordial
black holes.

We first motivated our study by focusing our attention on a novel mechanism for producing
dark matter, which has attracted growing interest in recent years: inflation provides a minimal
and elegant mechanism for dark matter production, since quantum fluctuations during the pri-
mordial epoch can naturally seed relic abundances without requiring additional post-inflationary
dynamics. Inflation naturally provides the conditions for generating dark matter as a consequence
of quantum fluctuations in the primordial universe. We emphasize that this represents a refined
and self-contained production mechanism: it does not rely on additional assumptions beyond the
inflationary dynamics itself and the presence of a massive field.

In this respect, vector fields stand out as particularly promising candidates. Unlike scalars or
tensors, whose nearly scale-invariant spectra are tightly constrained by CMB data, we have seen
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that a massive vector acquires a distinctive peaked spectrum around a characteristic scale k, and
the CMB constraints are not restrictive because they primarily affect much larger scales. More-
over, the massive vector field is particularly appealing because its longitudinal degree of freedom
breaks conformal invariance, ensuring an efficient population of the mode which can account for
the dark matter density, and the generation of a significant dark matter abundance. We thus
computed the energy density of the vector candidate and recovered the results of [15], indicating
that for standard slow-roll dynamics a viable mass scale is m ~ 107 %¢eV.

We then explored how this prediction is modified in the presence of non-standard inflationary
dynamics. While earlier works have focused on the effects of reheating on the relic abundance,
our goal was instead to investigate departures from slow-roll during inflation itself. Motivated
by studies of primordial black hole formation, which require NSR phases to trigger the large
amplification of fluctuations needed for collapse, we asked whether a similar mechanism could
affect the production of ultralight vector dark matter. Remarkably, we found that the enhancement
induced by the NSR epoch modifies the spectrum in an analogous way: both in the PBH case and
in our setup the growth is steep, scaling as k*. This parallel opens the possibility of a common
inflationary origin for both ultralight vector dark matter and PBHs.

To analyze this setup, we relied on the analytical approach developed in [104], based on a
gradient expansion for cosmological perturbations during brief NSR phases. At leading order in
the small parameter controlling the NSR duration, we solved the equations of motion exactly,
yielding compact expressions for the mode functions. These depend only on the slope « of the
pump field during the NSR interval and on the timescale A7 of the departure from slow-roll. In
particular, these parameters fully determine the overall amplification and the scale dependence
of the fluctuation spectrum, controlling how the spectrum interpolates between large and small
momentum modes. The resulting power spectra reproduce a transient dip, and a region of rapid
growth toward small scales. These properties closely match what has been observed in detailed
numerical studies of concrete inflationary scenarios with brief non-slowroll periods.

We then supposed that such a scenario could be obtained by considering a time-dependent
mass M, whose mass changes rapidly in a very short period of time A7. This approach is pow-
erful because it does not require to explicitly specify how the mass changes to see how the mode
functions evolve during the NSR phase; we just need to match the solutions at the end of the NSR
phase with the standard slow-roll inflationary solution in order to delineate a spectrum which
describes the consequences of adding a non-slow-roll phase. This procedure allows us to construct
a spectrum that reflects the impact of including a brief non-slow-roll period.

It is important to emphasize that the mechanism we propose differs fundamentally from the
conventional misalignment scenario for producing ultralight dark matter. In our framework, the
relic abundance is generated directly during inflation through the dynamics of the longitudinal
vector modes, without relying on the oscillations of a background field around its potential mini-
mum: the dark matter abundance is produced directly by the inflationary dynamics of longitudinal
modes.

Moreover, as we have already emphasized, an intriguing aspect of this framework is its poten-
tial to simultaneously generate both longitudinal vector dark matter and primordial black holes,
thereby offering a unified mechanism for producing a two-component dark matter model.
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A second key implication is that this mechanism significantly amplifies the small-scale spec-
trum, which in turn drives the production of scalar-induced gravitational waves. Indeed, the
rapid growth at small scales naturally generates a stochastic background of gravitational waves
with a potentially observable amplitude. These waves are produced at second order in perturba-
tion theory and are sourced by the enhanced small-scale vector spectrum. The predicted signal
peaks at ultra-low frequencies, f ~ 1071°-1071% Hz [98], outside the range of pulsar timing arrays
but possibly accessible through alternative probes such as galaxy shape correlations and intrinsic
alignments. This constitutes a distinctive observational signature of our framework, testable even
if dark matter interacts with the Standard Model only gravitationally.

In conclusion, the scenario we developed shows that a short NSR phase during inflation is a
valuable mechanism for the production of ultra-light dark matter vector bosons, which could ac-
count for the abundance of dark matter in our universe. Moreover, this framework simultaneously
enhance the production of ultralight vector dark matter and generate observable relics such as
PBHs and a stochastic gravitational wave background. This opens up the intriguing possibility of
a unified inflationary origin for multiple dark components of the universe.

The question of what dark matter is and how it can be produced is still open and aston-
ishingly interesting. The work presented in this thesis is intended to contribute to the growing
body of knowledge in this area, providing a foundation for future investigations, collaborations
and potential breakthroughs. Several directions remain open for future research: identifying ex-
plicit realizations of this ultralight vector dark matter scenario, potentially within extensions of
the Standard Model that accommodate very light vector bosons, refining the predictions for PBH
abundances and exploring novel detection strategies for ultra-low-frequency gravitational waves.
We leave these questions to forthcoming work.

By continuing to push the boundaries of our understanding, we take meaningful steps toward
unrevealing the fundamental mysteries of the universe -shedding light on the hidden dynamics
of the primordial cosmos and opening new pathways for discovery at the frontiers of cosmology
and high-energy physics. In this pursuit, we do not merely seek answers, but participate in the
timeless human endeavour to comprehend the grand design of nature itself.

We look forward, searching for a light within the darkness of the primordial universe, hoping
that this will bring us closer to understanding the true nature of our origin.
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Appendix A

Action of the Massive Vector Boson in
terms of transversal and longitudinal modes

In this Appendix, we present a reformulation of the action [5.3] expressed in terms of the transverse
and longitudinal components of the vector field A,. This decomposition is useful as it separates
the physical degrees of freedom from the remaining components, thereby providing a clearer un-
derstanding of the underlying dynamics and simplifying the subsequent analysis. In this way, we

recover Eq. 5.6

We start from the action

S = /d4a: V=g (—%FWFW — MQAMA“) : (A1)

Here,
F,., =0,A,—0,A, , (A.2)
Ay = (Ao, Oip + AT) (A.3)
and

Furthermore, we work in a FWR spacetime:
ds* = a*(1) (—dr? + 0yda’da’) . (A.5)

We first evaluate the field strength component. Starting from:

FMVFMV - FuuguagyﬁFaB (A6)
we obtain:
- 1
Fo P = __4F0iF0i ;
a
ij 1
FyF = 1 FyFy (A7)
Thus: ) .
FMVF“V = g <_FOiF0i + § ZjE]) . (A8)
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We now write the latter in terms of the transversal and longitudinal components, by expressing:

FoiFy = AT? — AgV2 Ay — @' V2 + 24,V2 | (A.9)
FyFyy = —2A7V?AT (A.10)
Therefore, the first piece of the integral is:
1
SEM = _Z /d4l‘\/ —g F,UVFMV (All)
1
=3 / d'z [AT AT + ATAAT + 24000 — Ag AAy — ¢’ Ay (A.12)

On the other hand, the mass term gives the contribution:

M? M?
M?A, A" = M*g" A, A, = —?Ag + ?(AZT Al — pV30p) . (A.13)
Thus,
1
Smass = / &'z M?a? (Ag +pAp— ATAT ) . (A.14)

Bringing everything together:

1
§=3 / &'z [AE’AE’ + ATAAT + 245 Ay — Ag AAg — @' Ay + M2 (Ag o Ap— AiTA;fﬂ
(A.15)
which is Eq. [5.6]
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Appendix B

Analytical solutions of Eq.5.37

The evolution equation for for the transfer functions 7 during RD has analytical solutions for
small y and large y, which can be approximate as follow, if we work in the two regimes r, < 1
and z, > 1 [95]:

1. Range z, < 1:

Tearly = w, valid for y < 1, (B.1)
Ty
T = Aoos (L) 4 chsin (L lid f 1 B.2
late_ﬁ cpcos | o + ¢} sin 5 )| veli ory > 1, (B.2)
with
1 in x,
¢t = —sin(1/2) cosx, + (Cos(l/Q) + §Sin(1/2)) sn;a: , (B.3)
1 in x,
5t = cos(1/2) cos z, + (sin(1/2) ~ 3 cos(1/2)) iy (B.4)
Ty
2. Range x, > 1:
Tearly = smx(—x;y)7 valid for y < z,, (B.5)
w_ L [s (N, s (V .
Tl = ﬁ ey cos | + ¢y sin 5| valid for y > x,, (B.6)
with
5 sin(z?/2) sin 22
~ /(1 B.7
o= T ) (B7)
5 cos(z?/2) sin 22
~ Sl B It I B.8
“ 222 213 (B8)
The choice of y-independent coefficients cﬁéB ensures that the analytic approximation for T,

together with its derivative ‘g—T, remains continuous across these transition boundaries.

An extension of the domain of validity of these expressions to include the transition regions at
y =1 and z, = 1, can be obtained by replacing the strict inequalities < and > with the relaxed
bounds < and >, respectively.
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Appendix C

The values of s; and sy in Eq. [6.60

In this Appendix we provide the explicit expressions for the functions s; (o) and ss(0) appearing in
Eq. . Here, Ci denotes the cosine integral function and g is the Euler-Mascheroni constant.

s1(0) = m [4( —3+0*(4+5vp(c* — 1) = 6°(2+4 0%)) + 3cos(20)
+ 0(0( — 6+ cos(2) + 0*(3 + cos(2))) cos(20)
+ (6® — 1)*( — 6 ArcCoth(c) + 30 cos(2) — 5o Ci(2))>>
+ 20[ —40(0® — 1) cos(20) sin(2)
4 (0 — 1) <(—6 +50) Ci(2(1 — o)) + 6 Ci(2(1 + o))
+o( = 10Ci(20) + 5Ci(2(1 + 0)) + log(1024) + 101log() — 5log(0® — 1) + 4 sin(2))}
—2[(6® = 1)(7 — 5cos(2) + 0*(=7 + 3cos(2))) + 2(1 — 30° + ¢*) sin(2)] sin(20) |, (C.1)
So(0) = m — 154+ 300 — 170* — 20° 4 25 (1 — 0%)%(4 + 50?)

+ (1= 0%)*(54 60°) cos(2) + (15(1 — 6*)* + (=5 + 80 + 0*) cos(2)) cos(20)

+ 12 Ci(2) — 20%(17 — 160* + 50*)Ci(2)

+ (1 = 0%)*(—6 + 502)Ci(2(1 — 7)) — 2(1 — 0*)*(4 + 50%)Ci(20)

—6Ci(2(1 + o)) + log(256) + 8log(c) + 6log(1 — o) — 2sin(2) — 2(1 — ¢*) cos(20) sin(2)

TP [(17 — 1602 + 561 Ci(2(1 + 0)) + 2(=3 — 60 + 50*) log(20)

+ (=17 4+ 1602 — 50*) log(1 — 0?) + 2(4 — 50* + 20%) sin(2)}

—20[(1 = 0®)(7 = 5cos(2) + 0*(—=7 + 3cos(2))) + 2(2 — 40” + o) sin(2)] sin(2a)] :

(C.2)

These functions vanish in the limit o — 0, and for ¢ — oo they asymptote to a constant, as shown
in the left panel of Fig. [6.3]
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