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Abstract

A worldline formulation for charged, massive spin-1 particle is presented through two
distinct models. First, a model with bosonic oscillators on the worldline is considered.
We extend it to describe massive integer spin particles and, via both Dirac and BRST
quantization, the free Proca field theory is reproduced in the spin-1 sector. The coupling
of the model to an external electromagnetic field is consistent only for on-shell backgrounds,
as determined by the nilpotency of the BRST charge. For such configurations, we perform
a path integral quantization of the worldline action for the charged spin-1 particle on the
circle. This yields the one-loop effective Lagrangian for a constant electromagnetic field
induced by a charged massive vector boson. From the Lagrangian, we quantify vacuum
instability by computing the pair production rate for massive vector bosons. Our results
confirm previous findings obtained in quantum field theory. Finally, for comparison, we
repeat the analysis using the standard N = 2 spinning particle model, which contains

fermionic worldline degrees of freedom, and obtain identical results.
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Introduction

The Worldline Formalism [1, 2] provides a first-quantized approach to Quantum Field The-
ory (QFT). Its first appearance can be traced to the early 1950s, in the appendices of Feyn-
man’s pioneering papers on Quantum Electrodynamics (QED) [3, 4] and in Schwinger’s
seminal work on vacuum polarization [5]. In these works, the spinor and scalar QED
S-matrix is represented in terms of path integrals of relativistic particle actions. With
the introduction of Grassmann variables and the advent of supersymmetry (SUSY), the
corresponding Lagrangians were identified as that of a supersymmetric theory defined over
the worldline of the particle. The interest in this formalism increased with the development
of string theory. Within the study of string scattering amplitudes in the infinite tension
limit to recover gauge theories scattering amplitudes, the work by Bern and Kosower [6, 7]
provided master formulae for one-loop n-gluon amplitudes which required no knowledge
of string theory at the end. An independent derivation of the “Bern-Kosower” rules was
provided by Strassler [8] through the path integral on the circle of a suited worldline the-
ory. Subsequently, a systematic formulation of different QFTs based on the quantization
of various relativistic particle actions was developed.

In this work, we bridge the gap for a charged, massive vector boson. While massless
spin-1 particles cannot exist in a theory with a Lorentz-covariant conserved current [9],
and therefore do not admit electromagnetic coupling, charged massive spin-1 particles are
consistent, as exemplified by the W bosons in the Standard Model. Hence, it should
be possible to describe them within a worldline approach. We aim to find a worldline
representation of this theory and compute the one-loop effective Lagrangian the charged
vector boson induces in a constant electromagnetic background. Euler and Heisenberg
derived an analogue Lagrangian for electron loops [10], and shortly thereafter Weisskopf
extended it to include massive charged scalars [11] (see [12, 13] for a review of Euler
and Heisenberg type Lagrangians and [1] for their derivation via worldline techniques).
Starting from a quantum field theory of vector electrodynamics, the effective Lagrangian
induced by charged, massive spin-1 particles was obtained much later [14]. We reproduce

it using worldline techniques. The effective Lagrangian encodes information about vacuum



instability, enabling the computation of the pair production rate.

In the first-quantized approach, the worldline theory is a one-dimensional sigma model
with values on a target space. The latter is the ordinary spacetime with the addition of
auxiliary variables that parametrize the spin degrees of freedom. After quantization, the
model reproduces the field equations of a particle of spin s in spacetime. Traditionally,
the additional variables are worldline fermions and, as we mentioned, the worldline theory
enjoys local N = 2s supersymmetries to ensure unitarity at the quantum level [15-19]. In
order to describe interacting QFTs, one couples the worldline theory to background fields.
Depending on the spin and type of background, this procedure may break the worldline
supersymmetry, leading to an inconsistent quantum theory. In recent works [20-24], BRST
quantization has been employed to determine the consistency conditions required for the
interacting quantum theory. These conditions restrict the class of admissible backgrounds
to on-shell configurations. For such backgrounds, the path integral formulation can be ex-
ploited, yielding the full propagator and the one-loop effective action of the corresponding
QFT.

We adopt a bosonic worldline model. It contains worldline bosons as additional vari-
ables to generate spin degrees of freedom [25-29], and is characterized by a “bosonic su-
persymmetry” (BUSY). The model analysed in [29] describes massless bosonic particles of
any spin. Therefore, we first extend it to accommodate a mass term and describe massive
particles. The latter are identified by the field equations encoded in the physicality con-
ditions for quantum states. We focus on the spin s = 0,1 sectors, which are expected
to admit a consistent coupling to an external electromagnetic field. Through a BRST
analysis, for spin s = 0 we find a consistent coupling for any background, while in the
s = 1 sector, the consistency condition for the coupling, i.e. the nilpotency of the BRST
charge, requires the background to satisty Maxwell’s equations. This allows us to compute
the one-loop effective action in a constant electromagnetic field through the development
of the path integral formulation. As expected, an imaginary part emerges, signalling a
non-vanishing pair production rate of massive vector bosons. Our results for the spin-1
sector [30], based on a first-quantized approach, reproduce the findings originally due to
Vanyashin and Terent’ev [14]. Also, the one-loop effective Lagrangian for a scalar particle
[11] is recovered, thereby providing an additional consistency check on our path integral
construction.

The same results are obtained using a fermionic spinning particle model, the N = 2
particle. It enjoys two local supersymmetries on the worldline and describes massive or
massless p—forms. As suggested in [19], the coupling to electromagnetism breaks SUSY.
Nonetheless, we consider the massive extension of the model and show, using again BRST

techniques, that a coupling to electromagnetism for massive spin-1 excitations is actually
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feasible, in a way analogous to the bosonic model, leading to identical results.

Our results provide a test of the self-consistency of the Worldline Formalism. We
believe our analysis can be extended to more general cases. For instance, one possibility is
to extend the particle model to include additional effective coupling to electromagnetism,
in order to describe a non-point-like particle, as suggested in [30]. Another is to consider
pair creation in a non constant-field, by exploiting worldline instanton techniques [31-35].
Finally, one could study scattering amplitudes within this formalism, as established in [20]
and investigated recently in [36].

This thesis is organized into four chapters. In Chapter 1 we review the classical and
quantum theory of constrained Hamiltonian system, since worldline theories describe sys-
tems of this type. The correspondence between gauge theories and first-class systems
is established, and different quantization schemes for constrained systems are discussed.
Chapter 2 treats worldline models, both fermionic and bosonic. The general formulation
and specific examples are presented for the free case. In particular, we introduce the exten-
ded version of the bosonic model to describe massive particles with integer spin. We then
address interacting worldline theories and the case of interactions that spoil the algebra
of the symmetry group. At the end, we examine the path integral formulation. Chapter
3 contains the main results. We concentrate on the s = 1 sector of the bosonic spinning
particle. The free field equations are derived, and the path integral is defined after a
gauge fixing procedure. To couple the model to a classical Abelian background, BRST
quantization is employed, showing that quantum consistency requires the background field
to be on-shell, i.e. to satisfy the free Maxwell’s equations. Thus, we compute, through
its worldline representation, the one-loop effective action in a constant electromagnetic
background, extract its imaginary part, and discuss the implications for Schwinger-type
pair production of massive spin-1 particles. Lastly, we reproduce the same results using

the N = 2 fermionic spinning particle. Chapter 4 concludes.



Chapter 1

Gauge systems as constrained

Hamiltonian systems

All the fundamental laws of nature appear to be described by gauge theories. A gauge
theory is a theory in which physical quantities have a not-unique representation in their
mathematical formulation. The mathematical objects describing these quantities can be
transformed in a way that depends on the spacetime point in which the transformation
acts, without changing the physical quantity they represent. In the Hamiltonian formal-
ism, a characterization of these systems is provided by a particular type of constrained
Hamiltonian systems. In order to define a quantum theory that describes only the phys-
ical degrees of freedom of the gauge system, specific quantization procedures must be

employed. Our discussion here follows [2, 37, 3§]

1.1 Constrained Hamiltonian systems

Let us consider a physical system with n degrees of freedom described, in the Lagrangian
formulation, by the coordinates ¢ = (q¢',...,¢") and Lagrangian L(q,q). The Euler-

Lagrange equations read

- L oL .. L

e = — == 1=1,...,n. 1.1.1
1 0¢’0q" ¢ 1 0q’ 04" ( )
If the matrix M;; = % is not invertible, then there exist m = n — rank(M) vectors,

ko = kwy(q,q4), I = 1,...,m, in the kernel of M (for simplicity, we assume rank(M) a

constant function of (g, ¢)), and the general solution for §, which provides the system of



1.1 Constrained Hamiltonian systems

second-order differential equations is

where §,(q, ¢) is a solution of the inhomogeneous (1.1.1) and Ag)(t) arbitrary functions of
time. Thus, the solution of the equations of motion (1.1.2) contains an arbitrary depend-
ence on time, a feature that typically occurs in systems with gauge symmetries. We stress

that this is related to the non-invertibility of the matrix M, i.e.

2L
det (aQJaqi> =0, (1.1.3)

that defines a set of relations between the coordinates and the velocities. A Lagrangian

satisfying (1.1.3) is called a singular Lagrangian. In particular, if we move to the Hamilto-

nian description by introducing conjugate momenta p; = qui, (1.1.3) implies that these

defining relations cannot be inverted to express velocities in terms of momenta. Hence, a

set of constraints between the phase space variables (g, p) must hold:

calq,p) =0, (1.1.4)

where ¢,, a = 1,..., A, constitutes a set of primary constraints, not necessarily inde-
pendent, that defines the submanifold of the phase space (primary constraint surface) on
which the dynamics of the system is restricted. The submanifold of the total phase space
on which the dynamics occurs is not necessarily a phase space itself, i.e. the restricted
symplectic form may fail to be symplectic. In order to describe the Hamiltonian dynam-
ics of a constrained system we must take care of the constraints (1.1.4) when we derive
equations of motion in canonical form.

Let’s consider the Legendre transform of L,
H =p" — L. (1.1.5)

By varying the phase space coordinates (g, p) subjected to (1.1.4) (we now consider the

irreducible case, i.e. independent constraints), we obtain

oL
oqt

oH oH

dH = ¢'6p; — op; :
q'op 20,00t g

5q' = 5q" (1.1.6)

with dp;, d¢* tangent to the primary constraint surface, that is, the vector

0H oL o0H
(G 20 7) D




1.1 Constrained Hamiltonian systems

belongs to the normal space of the primary constraint surface. The canonical equations

then read:
. O0H oc
= — == 1.1.
L H
p= Lo O e (1.1.9)

= - = - 4+ Uu -
oq oq oq"

along with (1.1.4), where u® are arbitrary coefficients, which may depend on the phase
space point. Such a set of equations describes the dynamics of the constrained system. It

can be derived from a Hamiltonian of the form
Hr(q,p,u) = H+ uc,, (1.1.10)

called the total Hamiltonian, and the action functional

to

Sla. p, u] =f (¢'pi — Hr) . (1.1.11)

t1

The role played by the u’s coefficients is exactly that of Lagrange multiplier for the con-
straints (1.1.4). Notice that the Hamiltonian Hr, defined on the whole phase space, when
restricted to the primary constraint surface is equal to H: Hy ~ H. The symbol “x”
means that we are considering quantities evaluated on the primary constraint surface and,
we say that Hr equals H weakly. Given the evolution determined by the Hamiltonian Hrp,
consistency of the construction requires the primary constraints to be preserved along the

physical trajectories. For each of the phase functions c,, the following must hold:
éa = {Ca, HT}pB = {Ca, H}PB + U/B{Ca, Cﬁ}pB a7 O, (1112)

with Poisson bracket {-,-}pp defined as

OF 6G  0F 0G
aqi op; op; (9qi

{F,G} = (1.1.13)
for any two phase functions F, G.

The conditions (1.1.12) can either impose a restriction on the u’s coefficients or they
may define equations that are independent of them, that is, they define a new set of con-
straints, called secondary class constraints. These must be preserved by the Hamiltonian
evolution as well, and iterating the consistency requirement above one can find all the
constraints that characterize the system. Notice that, except for the primary constraints,
all others require the use of the equations of motion to be identified. For this reason, we

adopt a distinct nomenclature to differentiate them. However, their role in what follows



1.1 Constrained Hamiltonian systems

will be the same. We denote all the constraints by cg, with g =1,..., 4, A+1,...,B.
Having found all the constraints, the consistency requirements involving the coefficients
u® fix the latter to be equal to
u® =~ U+ 0"V, (1.1.14)

with U® a solution of the inhomogeneous (1.1.12) for each ¢, and v(® V(e a solution, with
coefficients v(*) in the basis solutions V(Z“), of the homogeneous V(g) {cs,ca}py ~ 0. Hence,
we have singled out the arbitrary part of the coefficients u (v*) from the part fixed by the

consistency requirements (U%). The Hamiltonian is rewritten as
Hr = H + U%4 + 0"V, = H' +v%,. (1.1.15)

Considering the v coeflicients as arbitrary function of time, the general solution of the
equations (1.1.8) contains an arbitrary dependence on time, meaning that our mathemat-
ical framework has a certain degree of arbitrariness in the description of the physical state.
In fact, a physical state is given by the phase space point (qo,po), but the evolution of
such a state does not uniquely determine the values (g, p) in the future or in the past, due
to the presence of the arbitrary parameters v. On the contrary, we expect the equations
of motion uniquely determine the physical state at time ¢t # ty if we know the physical
state at £y, thus, the conclusion is that to a physical state corresponds several phase space
points. In particular, let us consider the evolution of the canonical coordinates ¢, for

mstance:

q(t +dt) = q(t) + ¢ ot = q(t) + ({q, H'} pg + v"{q, ca}pB) t, (1.1.16)

and compare two evolutions with two different values of the v coefficients,

¢ (t +0t) — q(t + 0t) = 0t(v"* —v*) {q, ca} pp = €a {q: Ca}pp - (1.1.17)

These coordinates, together with their respective conjugate momenta, must represent the
same physical state, their difference being proportional to the arbitrary parameters ¢,
and not being related to different initial conditions. Hence, the transformation generated
by the function v®c, through the Poisson bracket does not affect the physical state, but
connect equivalent phase space points representing the same state. These transformations
are called gauge transformations and the v coefficients gauge fields. The equivalent classes
of points connected by gauge transformations are called gauge orbits.

To characterize such a system, we notice that the phase functions H' and ¢, satisfy

{H' cs}pp =0, {ca,ca}pp =0, (1.1.18)



1.1 Constrained Hamiltonian systems

for any constraints cg. A function F' whose Poisson bracket with every constraint vanishes
weakly is called a first class function; otherwise, it is called a seconds class function. It
follows that the Poisson bracket of two first class function is first class. The constraints
¢, are called first class (primary) constraints (in particular, they define a complete basis).
Therefore, we conclude that first class primary constraints generate gauge transformations
(for this reason, we will call them also gauge generators). Since the Poisson bracket
of two first class constraints can contain first class secondary constraints, one sees that
gauge transformation are generated also by those specific first class secondary constraints.
One postulate that all first class secondary constraints are gauge generators in physically
relevant systems. Thus, every first class constraint is a gauge generator in what follows.
With this terminology, a first class function is, in particular, a gauge invariant function, i.e.
a function whose Poisson bracket with gauge generators vanishes weakly. Gauge invariant
functions will represent physical observables.

Since the most general evolution is generated by a Hamiltonian containing all the
gauge generators, in (1.1.15) we need to add also the first class secondary constraints.

The extended Hamiltonian reads
Hp = H + \*C, (1.1.19)

where C, denotes all first class constraints, \* the associated gauge fields and now a is an
index running over all first class constraints.

Let us consider such a gauge system, with no second class constraints. We can general-
ize our phase space to contain Grassmann variables, both commuting and anticommuting,
collectively denoted by z4. We introduce the graded Poisson bracket

orF LG
{F,G}pp = aZ_A OAB aLz_B : (1.1.20)
where Q47 is the symplectic constant matrix defining the canonical graded Poisson bracket

{z4, 2P} pp = 17, (1.1.21)

A

between the canonical coordinates z* employed in the following.

From the relations {C,, Cp} pp = 0, it follows that the first class constraints satisfy
{Co, Co}pp = fupCe, (1.1.22)

with f,,¢ functions on the phase space called the structure functions. The same applies

10



1.1 Constrained Hamiltonian systems

for the first class Hamiltonian H':
{H',Co}pg = h,'Cy. (1.1.23)

Given the action principle for the system

1
S[z* A = Jdt <§(Ql)ABzA,éB — H'(2) — )\“C’a(z)) : (1.1.24)
we shall verify that a gauge transformation generated by ¢,C® leaves the action invariant.
By varying a generic phase function F by §F = {F,€e,C%} 55 and the gauge fields A* by
oA, we get

55 — Jdt (3@ ) 45625 — SH'(2) — N6C, (=) — 5A°Ca(2)) - (1.1.25)

Now, using §z4 = —eaC’a, SH' = €*h *Cy, A\*6C, = e\ f,,°C.., this fix how the gauge fields
must transform in order to keep the action invariant, up to boundary terms. The gauge

transformations of the dynamical variables are:

624 = {zA,eaC'“}PB , (1.1.26)
SN = ¢ — Xf " — € hy. (1.1.27)

In order to deal with boundary terms, the gauge parameters at the boundaries of the
integration region must satisfy specific conditions. We postpone this discussion until we
address the relativistic case.

To conclude, let us consider a system that possesses only second class constraints
denoted by S,. By definition, they satisfy {S,,Sp}pp # 0. Let us assume, in addition,
that

det {S,, Sp}pg # 0, (1.1.28)

i.e. the matrix N = {S,, S} pp is invertible. This condition makes it possible to define
a reduced phase space, which is the submanifold defined by the constraints with a sym-
plectic structure inherited by the symplectic structure on the whole phase space through

restriction. The algebra defined over the reduced phase space is given by the Dirac bracket
{F,GYpg = {F,G}pp —{F,Sa} pg N* {Sh, G} pjs (1.1.29)

with N = (N71),,. The constraints have vanishing Dirac bracket with any arbitrary

phase function L,
{L,S.}ps = {L,Sa}pe —{L, S} pg N"Ney = 0. (1.1.30)

11



1.2 Quantization of gauge systems

One can implement the constraints right from the beginning, finding the independent
canonical coordinates and working in the resulting phase space with Dirac bracket as
usual. This algebra allows ones to carry the ordinary quantization procedure for such

systems, differently from the procedure that we will apply to quantize gauge systems.

1.2 Quantization of gauge systems

Canonical quantization requires a well-defined Poisson bracket structure on the classical
phase space and a positive-definite Hilbert space built as a representation of the canonical
(graded) commutation relations. In the case of gauge systems, these requirements are not
both satisfied if one adopts only the usual quantization procedure. To obtain a meaningful
quantum theory, one can employ different quantization methods for such systems. Let us

discuss them.

Reduced phase space quantization Given the first class constraints C,, the gauge
orbits generated by them foliate the constraint surface. Even if there is no induced Poisson
bracket on it, the quotient space, made up by the equivalence class of points lying on the
same gauge orbit, is equipped with a symplectic form, i.e. constitutes a phase space, the
reduced phase space. Hence, one could consider only functions defined over this space,
the gauge invariant functions, and quantize the theory by finding a complete set of these
functions, canonical Poisson brackets among them and their irreducible representations.
A complete set of gauge invariant functions is a complete set of solutions {F,} to the

differential equations:
{F,Cu}pp ~ 0, (1.2.1)

for the function F'. In general, finding such solutions is far from trivial. To cope with this

difficult, one can work in the reduce phase space by defining gauge firing conditions

Ya(psq) =0, (1.2.2)

which are additional constraints that select a representative from each gauge orbits. This
happens provided these conditions satisfy two properties: (i) for each point, there must
exist a gauge transformation that maps it to another point satisfying the gauge fixing

conditions, (i7) they must fix the gauge completely, i.e.

{fyCLaCb}PB x 07 (123)

12



1.2 Quantization of gauge systems

thus, the set of constraints (C,,7,) is second class. Such gauge fixing functions determine
a submanifold that intersects each gauge orbit in just one point. The reduced phase space
of gauge invariant functions with usual Poisson bracket is obtained as the space defined
by the secondary constraints (1.2.3), and a Dirac bracket structure that allows to solve
the constraints explicitly to find a coordinate system for the reduced phase space.

The above method can be difficult to implement for technical reasons and not useful
when the complete elimination of gauge freedom spoils manifest invariance under sym-

metries one wants to keep manifest (let us think of Poincaré invariance).

Dirac quantization In this method, the full phase space is retained and the usual
Poisson bracket structure is considered. Quantization proceeds as usual, thus, every phase
space variable is realized as an operator acting on a Hilbert space H. Actually, this space
contains non-physical states as well, since we have constructed it as a representation of all
the phase space variables, including non-physical configurations that do not belong to the
constraint surface. In particular, the resulting Hilbert space may not be positive-definite.
In order to work with physical states only, i.e. gauge invariant states, and a well-defined
Hilbert space, one defines the physical Hilbert space H,, as the set of states, |¢), invariant
under the action of a gauge transformation. Being the constraints C, the classical gauge
generators, their realization as quantum operator C’a represents the gauge generators in

the quantum theory. Therefore, the definition of a physical state translates into
W) € Hy == Culth) = 0. (1.2.4)

Sometimes this condition is too strong and one prefers to define a physical state as a state
that, after an infinitesimal gauge transformation, has zero overlap with another physical

state, which means the vanishing of the matrix element

X Caly) =0, (1.2.5)

for any |x), |[¢)) € Hpn. This scheme is also known as Dirac-Gupta-Bleuler quantization.
It is a subtle problem to define a sensible scalar product that provides the right nor-

malization for physical states. If we consider the usual scalar product

(1, p2) = {p1]p2) = Jd”q ©1(q) ¢2(q) (1.2.6)

this could be infinite if both states are physical. The solution is to redefine a physical

scalar product for physical states with the insertion of a (hermitian) operator i that has

13



1.2 Quantization of gauge systems

the effect of restricting the integral to the physical degrees of freedom only:

(b1, 92) = (er| ft]p2) (1.2.7)

for any |p1),|¢2) € Hpn. The form of i depends on the explicit expression of the con-
straints.

BRST quantization The BRST quantization method (named after Becchi, Rouet,
Stora and Tyutin) employed in the quantization of gauge systems expressed in Hamiltonian
form, is based on the analogous method developed for quantizing gauge theories in their
Lagrangian formulation. The latter, through the introduction of Faddeev-Popov ghosts,
introduces gauge fixing conditions to define a sensible path integral. The gauge-fixed the-
ory possesses a residual global supersymmetry, namely the BRST symmetry, which now
involves the additional ghost variables as well. The generator of this symmetry is nilpo-
tent, allowing physical states to be defined as elements of the cohomology of this operator
in the quantum theory. The same idea is applied in the Hamiltonian formulation.

Let us consider a theory with first class constraints C, and the action (1.1.24). The
original phase space is enlarged by including, for each constraint, a pair of conjugate
ghost variables (¢, P,), ¢® the ghost variable and P, the conjugate ghost momenta. We
denote the total phase space, the BRST phase space, by Mpgrsr. The conjugate ghosts
have opposite Grassmann parity to that of the constraints with which they are associated.

Their Poisson brackets read
{Pa, "}, =00 (1.2.8)

The total action is given by

S[z4, ¢, Py, A" = Jdt G(Q*)ABZAZ'B + &P, — H'(2) — )\“C’a(z)) : (1.2.9)

The ghost-content of a phase function F', defined over the BRST phase space Mpggrsr, is
determined by the ghost number

gh: C*(Mprsr) — R, (1.2.10)

with C®(Mpgrst) the set of phase functions on Mpgrgr. By definition, for the canonical
variables we have gh(c¢*) = 1, gh(P,) = —1 and vanishing ghost number for all other
variables.

One then defines the BRST charge Q as a phase function such that the following holds:

e Qisreal ;

14



1.2 Quantization of gauge systems

e O is anticommuting;
e gh(Q) = 1;

e O acts as generator of gauge transformations with ghost coordinates ¢* as gauge

parameters;

o {Q 0O},;=0,1ie Q isnilpotent.

Such charge Q can always be constructed. The first four points fix Q = ¢*C, + ...,
and the ghosts are chosen to be real or complex in order to define a real BRST charge.

Then, let us decompose Q as
Q= c"Co+ gy Po+ gy PuP+ ..., (1.2.11)
that implies
0={Q,Q}pp = {"Ca, Co} oy + 2{¢{1) P, "o}, + {aly Pas 401y Poy g + -+ - (1.2.12)
From the first two terms, at order zero in P, we obtain
0= (=1)%c* 4, C = 2q{)Ca (1.2.13)

which fixes ahy- If the structure functions are constants, the other terms vanish exactly
and the last bracket written in (1.2.12) is zero due to the Jacobi identities for the structure

constants. In this case, the nilpotent BRST charge is
1
Q=&Q+§an%b%&. (1.2.14)

For non-constant structure functions, higher order terms in P are needed to cancel other
pieces and guarantee the nilpotency.

To understand the importance of a nilpotent BRST charge, we need to discuss the
concept of cohomology. Given a vector space V, a linear map § : V — V, with §%2 = 0, the

operator ¢ is called a nilpotent operator. Given the kernel of 9,
Ker(d) = {v e V|év = 0}, (1.2.15)
its elements are called (6—)closed (or cocycles). In addition, being the image of § the set
Im(§) ={weV|Fze Vst.w =0z}, (1.2.16)

we call its elements (d—)exact (or coboundaries). By definition, all exact elements are

closed, Im < Ker(d). Roughly speaking, the cohomology measures how this inclusion is

15



1.2 Quantization of gauge systems

proper or not. It is defined as the space of equivalent classes

Ker(6)
H()) = 1.2.17
with equivalence relation given by
v~ i W =0+ dw. (1.2.18)

If Im(6) = Ker(6), the cohomology is vanishing.
Now, being the space V' the space of phase functions C*°(Mpggrsr), and the linear map
on this space given by the action of the charge Q on any phase function F' through the

Poisson bracket

Q(F) ={Q,F}pp, (1.2.19)

we notice that, thanks to the Jacobi identities and its last defining property, the BRST

charge defines a nilpotent operator on this space:
Q*(F) ={Q,{Q,F}}p5 =0, V F e C®(Mpgrsr)- (1.2.20)

We can define the cohomology of this operator and divide the space of phase functions into
equivalent classes. We identify physical observables with cohomology classes with ghost

number zero. Therefore, the function £’ such that
{Q, F}pp =0, gh(F) =0, (1.2.21)
and the function F’, with
F'=F+{Q,G}ps, VGeC®Msppsr), gh(G) = -1, (1.2.22)

represent the same physical observable, F” ~ F. The gauge invariant Hamiltonian H’, is
extended to a BRST invariant Hamiltonian Hp, {Q, Hp}pp = 0, which means, also, that
the BRST charge is conserved along the evolution generated by Hg. As for any physical

observable, there exists equivalent Hamiltonian Hp,
Hp=Hp+{Q,V},p, (1.2.23)

with ¥ an arbitrary function. Different choices of W correspond to different choices of gauge
fixing in the theory, which amount to fix the values of unphysical degrees of freedom, as
we will see in the next chapters.

Quantizing the theory, one realizes all the dynamical variables, including the ghost,
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1.2 Quantization of gauge systems

as linear operators. Then, promoting the BRST function (1.2.14)! to a hermitian, ghost
number one, nilpotent operator Q,
Q?=0, (1.2.24)

the same concept of cohomology is defined. By the same argument, a physical observable
is a ghost number zero cohomology class in the BRST operator cohomology, meaning a
BRST invariant operator F ,

[O,F} =0, (1.2.25)

where the graded commutator [-,-} is the anticommutator if £ is fermionic, or the com-

mutator otherwise, with the equivalence relation
F'~F if F =F+[0Q B}. (1.2.26)

for some operator B.

Physical states are identified with cohomology classes of the BRST state cohomolgy

~

H(Q), with vanishing ghost number:

~

Ker(Q)

) e Hpn = [y € Hy(Q) = (@) (1.2.27)
Therefore, the following holds:
Q) =0, (1.2.28)
and
WY~y i =)+ QX (1.2.29)

for every state |x) with ghost number —1. Notice that the Hilbert space #,, has a positive-
definite inner product, even if states of the form Q |y) have vanishing norm due to the
nilpotency of 0,

QPO = (] Qo) = 0. (1.2.30)

Indeed, these elements are identified with the zero vector in H,,. Physical measurable
quantities, such as the (modulo squared of) matrix elements between a physical observable

F and physical states 1), |¢), are gauge invariants,

CRADERCINON (1.2.31)

In general, the existence of a classical BRST charge does not guarantee the existence of a quantum
BRST charge, due to possible ordering ambiguities of the quantum operators. However, in the rest of this
thesis, such correspondence will always exist.
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1.3 Example: the relativistic scalar particle

In fact, one may check, for example, that

(B F |y =B F 9"y = (¢ FQ|x (1.2.32)
= (@I [F, Q} Ix) £ (6| OF x>
=0,

since (¢| and F are physical.
Time evolution is generated by the equivalence class of the Hamiltonian Hp paramet-

rized by the operator U

Ol Uy taan(tr 1) = Glexp (— 4ty ~0)(Ha + (0.0 ) 10) . (1239

From these matrix elements we will calculate the gauge-fixed path integral in the next
chapters.

Time evolutions generated by equivalent Hamiltonians are equivalent in the following
sense. First, the operator U 1y is BRST invariant and has ghost number zero, hence time
evolution preserves the physical Hilbert space. Then, time evolution operators related to

equivalent Hamiltonians U Hps U Hg+{0,w} are equivalent,
UHBHQ,\I’} = UHB + {M> Q} ; (1.2.34)

for some operator M. It follows they have the same matrix elements between physical

states.

1.3 Example: the relativistic scalar particle

The action of a relativistic scalar particle of mass m is invariant under changes of inertial
reference frame, that is under the action of the Poincaré group, in accordance to the
principle of special relativity. Given the coordinates z# = (¢,z")? in an inertial reference
frame, u = 0,..., D—1, D the dimension of the Minkowski spacetime with metric signature

(—,+,+,...,4), we know the action is proportional to the proper time,

S[z*] = —mj@: —mj\/m. (1.3.1)

However, manifest invariance of the action is not a requirement of the theory in principle,
rather a useful formulation for some scopes. One could choose to describe the trajectory

(or worldline) of the particle by employing the time ¢ measured in the inertial reference

2We work in natural units.
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1.3 Example: the relativistic scalar particle

frame: z#(t) = (t,2'(t)) and the action (1.3.1) becomes

; dxt dxt
Slx'(t)] = —mfdt 11— e (1.3.2)
where the Lorentz symmetry is not manifest but the true dynamical degrees of freedom
are shown. This description is correct, but when it comes to describe interactions, the
guiding practical principle of manifest covariance is needed, since one has to introduce
them by keeping the theory Poincaré invariant. For this reason, one treats space and time
on the same footing by the beginning, considering the time coordinate ¢ as a dynamical
variable as well, meaning the trajectory of the particle is parametrized by an arbitrary
parameter. Having introduced an additional dynamical variable, the physical degrees
of freedom should, in principle, be recoverable within this covariant description. Due
to the emergency of a new local symmetry for the action, i.e. a gauge symmetry, one
can use gauge transformations and gauge fixing to eliminate the unphysical degrees of
freedom. Also in this case, it may be more convenient not to remove all unphysical
degrees of freedom, selecting a so-called “unitary gauge” and reaching a non-manifest
invariant formulation, but instead to choose “covariant gauges” that are preserved by
Poincaré transformations. Let us introduce a parameter 7 to parametrize the trajectory:
z#(1) = (t(7),2'()). The action (1.3.1) then reads

S[e"(7)] = —m f A= | (1.3.3)

. . e . . . . s’ . . . oy . . . .
with z# = dd%. This action is Poincaré invariant and, in addition, is invariant under

arbitrary reparametrizations of the trajectory

T— 7 =7(1)~7—-¢&(7), (1.3.4)
and

zH (1) — 2M(7") = 2¥(7), (1.3.5)

(1) = (1) + &(7)iM(T), (1.3.6)

43 7

where “~” means infinitesimally. Under such transformations the action varies by a term

5S[a(r)] = —m f dT%(gw /i) (1.3.7)

which requires {(71) = £{(m2) = 0, in order for the transformations to constitute a gauge

symmetry.
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1.3 Example: the relativistic scalar particle

We have shown that gauge systems in Hamiltonian formulation are described by con-
strained systems with first class constrains as gauge generators. This is the case for the

action (1.3.3). In fact, being the momenta

oL mi,,
- = 1.3.8
b= %5, ~ V=ig, (138)

these are constrained to the submanifold

pup" +m? =0. (1.3.9)

The Hamiltonian H = p,a* — L vanishes and one can check that no other constraints
arise by the consistency requirements. With the above (first class) constraint, the action
(1.1.24) reads in this case *

Spnl (1), pu(7), e(T)] = JdT (pux'“ — g(p“p“ + m2)> , (1.3.10)

with the gauge field e associated to the constraint # = 1(p’p, + m?). The latter
generates gauge transformations of the dynamical variables through the Poisson bracket
action (1.1.26)

dat = {a" e} = ep”, (1.3.11a)
opp = {pu e} =0, (1.3.11b)
e =¢, (1.3.11c)

for a gauge parameter €(7).

Now, let us quantize the theory with the Dirac method. The phase space variables
(x#,p,) are realized as linear operators (2*,p,) with canonical commutators obtained by
the canonical Poisson brackets

[2#, p,] = oL . (1.3.12)

The Hilbert space is realized as a representation of the above algebra. The states [¢)
give rise to wave functions ¥ (z#) = {z*|1)), which depend on the variables (¢,z%). The
evolution of these states is determined by the Hamiltonian H with parameter 7. Being

the Hamiltonian vanishing, the Schrodinger equation

0
i y=0, (1.3.13)

3Tt is worth noting that the phase space formulation of the action accommodates the description of
massless particles as well.
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1.3 Example: the relativistic scalar particle

tell us that no explicit dependence in 7 occurs in |¢).
The implementation of the constraint 2 ((1.2.4) and (1.2.5) are equivalent with just

one constraint)
(0D +m®) [y =0, (1.3.14)

selects physical states, i.e. gauge invariant states. As a differential equation, the physic-
ality condition reads
(=0,0" +m?) () = 0. (1.3.15)

We see how physical states are described by wave functions satisfying the Klein-Gordon
equation. They propagate the degrees of freedom of a scalar particle at the quantum
level. This is a paradigmatic example of how the first quantization of a relativistic particle
produces the equations of motion of the field theory describing the quantum particle.
When we will work out the path integral quantization of theories defined on the world-
line, it will be useful to get action expressed in configuration space (and Euclidean time).
In this case, from the phase space action (1.3.10) we can pass to the configuration space

action by solving for the momenta

S,

=0, 1.3.16
o (1.3.16)
that is
pr=e it (1.3.17)
By substituting back in (1.3.10) we get
1
Seolz!(T), e(T)] = JdT 5 (e 'i*E, —em?) . (1.3.18)

The gauge symmetry, from (1.3.11), (1.3.17) is given by
oxt = &t (1.3.19a)
d
oe = — 1.3.19b
e= L), (1.3.190)

where £ = ee™1.

The gauge field e is called einbein because its squared is equal to the metric defined

on the worldline. In fact, we can rewrite (1.3.18)

Seo[(7), e(7)] = JdT e (e 2k, —m?) = fdn/?oo ((g00) """, —m?) | (1.3.20)

from which we recognize gy, = —e?, where gy, is the metric on the one dimensional

worldline.
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1.3 Example: the relativistic scalar particle

From the action (1.3.18), if one solves for e and substitutes it back, one should recover

the original action in configuration space (1.3.3). Indeed, by computing:

agco 0 e e(et) =+ L, (1.3.21)
(&

m

choosing the plus sign for the solution, and inserting it into (1.3.18), one obtains

Seolz! (1), e(z"(7))] = S[=*(7)] . (1.3.22)
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Chapter 2
The spinning particle

The correspondence between the action of a relativistic particle and the description of a
scalar particle in QFT, obtained from the first-quantized action, can be generalized to
accommodate the description of free spin-s particles. This is achieved by starting from
suitable worldline actions describing a relativistic particle with additional degrees of free-
dom in its phase space. These are Grassmann variables that will represent the spin of
the particle after quantization. The worldline theory so defined is called fermionic (also
O(N)) or bosonic (also Sp(2N)) spinning particle, according to the additional variables be-
ing Grassmann odd or even, respectively. In both case, it will turn out to be a constrained
Hamiltonian system of the type (1.1.24). Interacting QFTs quantities are computed from
the path integral of the interacting worldline theory. Introducing interactions on the
worldline and quantizing it consistently is a subtle task, and its solution depends on the
worldline model and type of interaction considered.

The systematic definition of these models constitutes an aspect of the so-called World-
line Formalism, which provides a first-quantized approach to QFT.

This chapter covers both fermionic and bosonic spinning particle, with a survey of
specific spin-s cases relevant to the historical development of the subject and to our work
in the following chapter. Finally, we address interacting theories and the path integral
formulation. The general discussion follows [2], while specific references are provided

throughout the sections.
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2.1 O(N) spinning particle

2.1 O(N) spinning particle

2.1.1 Spin-1/2 particle

Let us consider first the description of a massless spin-1/2 particle. The minimal extension
of the relativistic particle action (1.3.10) describes a particle with phase space coordinates
(x#,p,, ), where * are real Grassmann odd variables and will play the role of the

supersymmetric partners of x#. Adding the symplectic term for the 1) variables, we get
) 1 . e
5= |ar (puas“ + 2, - §p“pu> , (2.1.1)
from which

{z",p.}pp =0, (W' W} pp = —idl . (2.1.2)

In addition to reparametrization invariance, this system has the following global symmetry:

St = gyt (2.1.3a)
oYt = —&pt, (2.1.3b)
opy =0, (2.1.3¢c)

with £ a constant parameter, and the conserved fermionic current:

Q = p*. (2.1.4)

Notice that this is a global N = 1 supersymmetric transformation on the worldline phase
space. To extend the set of constraints, we gauge this global symmetry. We know this
amounts to add the fermionic conserved charge (3.3.2) as a constraint on the worldline
action, as it will act as generator of the gauged symmetry (2.1.3). Thus, with £(7) a local
parameter now, the ) constraint, together with the constraint H = %p“pu (from now on we
denote it by H), generate, through the Poisson brackets, the N = 1 local supersymmetry

(or supergravity) algebra in (0+1)-dimension

{Q,Q}pp = —2iH. (2.1.5)

The other Poisson bracket involving these constraints vanishes. The new action reads

S = JCZT <puzb“ + %@D“LLM —eH — sz) , (2.1.6)
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2.1 O(N) spinning particle

where the gauge fields (e, x) are called the einbein and the gravitino, as they compose
the supergravity multiplet in one dimension. The gauge transformation generated by
V = eH +i£Q acts on the phase space variable as

dat = {a", Vipg = ept + ", (2.1.7)
oYt = {W, V}pB = —fp“, (2.1.8)
opp = 0w, Vipp =0, (2.1.9)

while the gauge fields from the algebra (2.1.5) transform as (cf. (1.1.27))

de = €+ 21x¢&, (2.1.10)
Sy =¢. (2.1.11)

To see how the equations for spin-1/2 emerge, let us quantize the theory with the Dirac

method. The canonical commutation and anticommutation relations read
[, p,] = 6",  {F v} =g, (2.1.12)

and the Hilbert space is realized as tensor product of representations of these algebras.
From the first term above, we obtain the infinite-dimensional space of square-integrable
functions L?(RP). The second term realizes a Clifford algebra, with gamma matrices I'
represented by
- 1
F=_—T", 2.1.13
- (2.1.13)

which gives, indeed,
{TH TV} = 29" (2.1.14)

The Clifford algebra is represented on the finite-dimensional space of spinors, with dimen-
D
sion 2171 1. €22 The total Hilbert space is the space of spinor fields in D dimensions

D
H=L}RY)@C?? . (2.1.15)
The physical Hilbert space H,, is composed by states satisfying the conditions
. 1. . .
H |y = 5pu"[4) =0, Q)= 4", |¢) = 0. (2.1.16)

From (2.1.5), these conditions are not independent: Q2 = H. It therefore suffices for the

!The symbol |z| indicates the greatest integer less than or equal to z, i.e. its integer part.
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2.1 O(N) spinning particle

Q constraint to be satisfied. The latter implements the Dirac massless equations
(), 0uth(a) = 0, (2.1.17)

where (z) is the spinorial wave function and a,b are spinorial indices. Finally, the H
constraint would determine the massless Klein-Gordon equation for each of the components
of ¢(x), which is automatically satisfied if the above equations hold, as we know.

We now turn to the description of massive spin-1/2 particle. In this case, the worldline
theory can be obtained through the mechanism of dimensional reduction from a higher-
dimensional worldline theory (2.1.6). We start from a worldline theory formulated in a

(D + 1)—dimensional spacetime

: i : e .
S = de (pMiUM + §¢M¢M - §PMPM - zxprM) ) (2.1.18)
with M =0,..., D, and we fix the momenta in the extra dimension to be equal to
pvo=m, (2.1.19)

where m is the mass of the particle being described. The above equation represents an
additional first class constraint. The previous action reads

(&

5= [ar (it +mi® + 20md+ 0P = S + ) = ix(p® + me®))

(2.1.20)
The second term, being a total derivative in x, does not affect the equations of motion
and can thus be discarded. Let us show how this action correctly describes massive Dirac
fermions in even dimensions D.

Quantizing the theory, in addition to the algebra (2.1.12), we have the property
(I)? =1, (2.1.21)

where, as before, I'? is a realization of ¥’ and we used {g@D , &D } = 1. Thus, it satisfies

the properties of the chirality gamma matrix in D dimensions. The Q constraint

(But™ +miP) [y = 0, (2.1.22)
becomes, in terms of the spinorial wave function ¥ (z),

(—=iT"0, + mI'P)e(z) (2.1.23)

where we suppressed spinorial indices. By multiplying by I'” and working with the equi-
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2.1 O(N) spinning particle

valent set of gamma matrices —iI'°T*, we get the Dirac equation for a particle of mass

m
(I'*0, + m)yY(z) =0, (2.1.24)
in its standard form via the redefinition I'* = —i~#
(=0, + m)y(x) = 0. (2.1.25)

2.1.2 Spin-1 particle

Let us start with the massless case. The description of a massless spin-1 particle follows
from the same arguments of the previous subsection. We add another set of real Grassmann
odd variables to the action (2.1.6), such that our phase space is now composed by the

coordinates (z*, p,, ¥, ¢4), with

{ol o}, = —idyn™,  i,j=1,2. (2.1.26)

We now gauge the N = 2 worldline supersymmetry, together with the SO(2) R-symmetry
that rotates the fermionic variables, to obtain the worldline theory as the N = 2 super-
gravity in (0+41)-dimension. This is a constrained Hamiltonian system whose constraints

are given by the generators of the above symmetries. If we introduce the complex fermionic

variables . .
Pr = E@M +igy), Y= \—@Wf —iy), (2.1.27)
with
{0}y = =10l (2.1.28)
the resulting action reads
S = JdT <p“x'“ + it — eH —ivQ — ixQ — aJ) , (2.1.29)
with constraints
1 _ _ _
H = §p,upﬂ s Q = p;ﬂﬁ“ > Q = p;ﬂﬁ“ ) J = %ﬂﬂ“ 5 (2130>
that generate the NV = 2 supergravity algebra
{Q? Q}PB = —27,H, {’]7 Q}PB = _ZQa {J7 Q}PB = Z@a (2131>

and the set of corresponding gauge fields (e, x, x,a). Gauging the worldline supersym-

metry via the einbein e and the complex conjugate gravitinos Y, X, ensures unitarity at
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2.1 O(N) spinning particle

the quantum level, as the corresponding constraints eliminate negative norm states. In
addition, the field a, which gauges the U(1) R-symmetry in the complex basis, allows
projecting the physical Hilbert space onto a subspace containing only a specific number
of degrees of freedom. We will see this explicitly shortly.

Under a gauge transformation generated by V = eH + i€Q + i€Q + oJ, the canonical

variables transform according to

ozt = {2, Vipp = ep! + i€y + iy, (2.1.32a)
opy ={pu,Vipp =0, (2.1.32D)
ot =Y Vipp = —Ep" +io)*, (2.1.32¢)
ot = {H V', = —Ep" — ot (2.1.32d)
and the gauge fields as
de = € + 20§ + 2ix¢E, (2.1.33a)
oy = € —ial +ia, (2.1.33b)
5X = € +iaf —iax, (2.1.33¢)
da = d. (2.1.33d)

Let us notice that we can add a term of the form

CJdTCL (2.1.34)

in the action (2.1.29), since, due to (2.1.33d), this term is gauge invariant. Such a term is
called Chern-Simons (CS) term, and the constant ¢ CS coupling. This coupling must take
quantized values, as it parametrizes the ordering ambiguities arising in the quantization
of the constraint J. Indeed, the CS coupling can be interpreted as a term introduced to
compensate for different ordering prescriptions and to allow for non-trivial solutions of the
constraint J in the quantized theory.

At the quantum level, we have the canonical commutation and anticommutation rela-

tions
[£u7ﬁV] = 1557 {'@“’J;l} = 657 (2135>
with 1@2 = zzl,, which define the Hilbert space as the representation space

H=L*R)QF, (2.1.36)
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2.1 O(N) spinning particle

with F the Fock space built from the zﬂ creation operators and vacuum state, |0, anni-
hilated by . Hence, a generic state |¢) € H can be written as

D

1 o
6) =D, 77 Dy (2) 070210 (2.1.37)

=07

The functions F},,. ,,(z) are rank-j antisymmetric tensors. For the operator J we choose

the following antisymmetric quantization prescription:
A ]_ A Au o Au A QM D ~
J = §(¢u¢ — Yupt) = Pt — 5= Ny — — (2.1.38)

with ]\7¢ denoting the number operator for the 1[) creation operators. The presence of the

CS term (2.1.34) in the action allows us to choose:

D
c=p+l-=. (2.1.39)

and obtain the constraint operator J. in the form
Jo=J—c=N,—(p+1). (2.1.40)

It should be clear that the relation between the value of the CS coupling ¢ and the number
of propagating degrees of freedom, parametrized by p, depends on the quantization scheme
adopted.

Let us show that, with this choice, the quantized worldline theory describes a gauge
p-form. In particular for p = 1 it describes massless spin-1 particles.

Implementing the constraints & la Dirac, the physicality condition J, [¢)) = 0 selects

the subspace of the Hilbert space with occupation number Ny = p + 1 with elements

1

6) = Gy o (D31 470 [0) (2.1.41)

while the constraint QT |1)) = 0 gives the following condition for the p-form F:
O Fyy (1) = 0. (2.1.42)
Finally, from Q |1y = 0 one obtains

o F,

Vi..Up+1

() = 0. (2.1.43)

The H constraint is, again, automatically satisfied due to the constraints’ algebra. The

last two equations are exactly the Maxwell’s equations in vacuum for the field strength
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2.1 O(N) spinning particle

F

H1eeHpt+1)

the Bianchi identity (2.1.43). For p = 1, the physicality conditions are the Maxwell’s

which can be expressed in terms of the p-form gauge potential A, , by solving

equations in vacuum for a gauge potential A, and field strength F),,, i.e. the field equations
for a spin-1 particle.

We can describe massive p-forms, and so massive spin-1 particles, by dimensional
reduction of the theory (2.1.29) in dimensions D + 1, fixing the momentum in the extra
dimension equal to the mass of the particle. Doing so, from the action (2.1.29) in (D + 1)-

dimensions, denoting # := ", we arrive at
S = JdT (puic“ + zﬁ,ﬂﬁ“ +i00 — eH —ixQ — ixQ — a(J — c)) (2.1.44)
with now
H = %(py,p“ +m?), Q=p"+ml, Q=p"+ml, J=1,0"+600. (2.1.45)

Clearly, they form the same algebra (2.1.31).

When we quantize the phase space variables, in addition to (2.1.35), we have
0,01 = 1. (2.1.46)

Let us omit the hat symbol “°” for operators from now on. The Hilbert space is of the
form (2.1.36), but with a Fock space built from creation operator ¢ as well and a vacuum

|0) annihilated also by #%. Therefore, a generic state |¢) now reads

D

B=3 % (Fo o (@) 910 [0) + Ay, () G052 [0)) (2.1.47)

=07

where the prefactor im has been included for later convenience. Following the antisym-

metric quantization prescription for J, we get

D+1_ D+1

J =" + 600 — 5 = Ny + Ny — o (2.1.48)
that, with a CS coupling of the form
c=p+1—D;_1, (2.1.49)
gives
Jo=J—c=Ny+Ng—(p+1). (2.1.50)

Going through quantization ¢ la Dirac, the condition J.|¢)) = 0 selects the following
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2.1 O(N) spinning particle

eigenspace of the occupation number:

X |
)= —F (@)h . et |0) + %AM,,M@)QW Lm0y, (2.151)

(p + 1)! H1---fp+1
while the constraint Q |¢) = 0 determines the Bianchi identities for F),.; and their solution
in terms of A,

OuFumopi =0, F

HE L Hpt1 H1---fp41

= dp, A ] (2.1.52)

1 2. Up+1

Finally, the constraint QF |¢> = 0 produces the Proca equations and the transversality
property for A,

oM F =m?A

M1 Hp41 aMAm..-up =0. (7-53)

K2 Hpt+1

For p = 1 in the above equations, we obtain the Proca equations describing a massive spin

1 particle.

2.1.3 Spin-N /2 particle

The worldline theories in the previous subsections are particular realizations of the O(N)
spinning particle, that is a worldline theory with an O(NN) local supersymmetry. The
quantization of this model gives the Bargmann-Wigner equations for a spin-N/2 in di-
mension D = 4 [39, 40]. In addition to (z*,p,), one has N families of real fermionic

variables 1! with

{0y} = =iy, dj=1,...,N. (2.1.53)
The set of constraints is
1 .
H = 5%?“; Qi = puly,  Jij = Wiy, (2.1.54)

which generates the O(N) supergravity algebra on the worldline

{Qi, Qj}pp = —2i0iH , (2.1.55a)
{Jij, Qryre = 0;xQi — 0iQ; , (2.1.55D)
{Jij, It pe = Ojpdi — Sindji — dutire + 0urJjic - (2.1.55¢)

The O(N) spinning particle action reads
oy Lo ; 1
S = dr Pu + §¢z 77[)1‘“ —eH — ZXZQZ — §aijJij . (2156)

The role of the gauge fields is the same as before: gauging worldline translation, through

the einbein e, and local worldline supersymmetries through the gravitons y;, ensures
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2.2 Sp(2) spinning particle

unitarity at the quantum level, while gauging the O(N) R-symmetry produces algebraic
constraints on the wave function so to obtain irreducible (field) representations for the
particles. In this general case, the gauge symmetry generated by V = eH +i&,Q; + %Bij Jij

acts on the phase space variables as follows:

St = {x",Vipp = ep" + i&yl', (2.1.57a)
Opu = {pﬂ, Vipg =0, (2.1.57b)
o =, Virg = =&ip" + Bl (2.1.57c)
and on the gauge fields as:
5Xi = & - az‘jgj + ﬁinj , (2.1.5813)
Saij = Bij + Bimtmj + Bimim (2.1.58¢)

By proceeding with quantization a la Dirac and finding a representation of the canon-
ical commutation and anticommutation relations, one finds that the wave function is a
multispinor field with N spinorial indices 10a,. ., . The constraints Q] |¢)) = 0 impose the
conditions

(704) 0, “arcyan () =0, i=1,...,N. (2.1.59)

The constraints jij |t)) = 0 determine algebraic relations required to make the representa-
tion ¥, . .ay itreducible. As a result, the multispinor field becomes completely symmetric
under permutations of its indices. All together, one obtains the Bargmann-Wigner equa-

tions for a massless spin-N /2 particle in D = 4 dimensions [41, 42].

2.2 Sp(2) spinning particle

2.2.1 Massless integer spin particles

This worldline model is defined by the usual set of phase space variables (z*,p,) for a
relativistic particle moving in a Minkowski target spacetime, augmented by an additional
pair of complex bosonic variables (a#,a*), with a* = o** [25-29]. As for the fermionic
case, these additional variables are needed in order to account for the spin degrees of

freedom. The symplectic term

S = de (P’ — i, c) (2.2.1)
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2.2 Sp(2) spinning particle

defines the phase space symplectic structure and fixes the Poisson brackets to
{m“,p,,}pB = (55 s {Oé’u,O_éV}pB = i?’]“y . (222)

As it stands, the model is not unitary, as upon quantization negative norm states will
be generated by the (2% p° o a%) variables. Moreover, the model, as we shall discuss,
contains particle excitations of any integer spin, and one needs to eliminate some further
degrees of freedom to describe a single particle with fixed spin, or a finite multiplet of
particles with fixed maximum spin. Both problems can be addressed by gauging suitable

constraints. The gauged worldline action we are interested in is given by
S = JdT [puat —ia, e —eH —ul —ul —alJ] | (2.2.3)

where we introduced the worldline gauge multiplet (e, @, u, a) acting as a set of Lagrange
multipliers that enforces the constraints

1 = _ _
Hzipupw L=cd'"p,, L=da'p,, J=d'a,. (2.2.4)

The latter satisfy a first class algebra
{L,Lypg =2iH , {J L}pp=—iL, {J L}pg=iL. (2.2.5)

The role played by the constraint J is analogous to the one played in the fermionic case:
here, it is a U(1) generator which rotates the bosonic oscillators by a phase; its gauging
is optional as far as unitarity is concerned. However, upon quantization, it projects the
Hilbert space onto the physical subspace with a specific occupation number, describing the
degrees of freedom of a particle with maximal spin s. For this to occur, one must add a CS
term on the worldline with the CS coupling fine-tuned according to the desired value of s.
The (H, L, L) constraints remove the negative-norm states, as usual, and must be gauged
to make the model consistent with unitarity. The Hamiltonian constraint H corresponds to
the mass-shell condition for massless particles, and generates 7-reparametrization in phase

space, while the remaining pair, L and L generates “bosonic” supersymmetry (BUSY):2.

2The algebra of (H, L, L) can be obtained from the s[(2,R) subalgebra of the Virasoro algebra
{Lo,L1}pp = —ily, {Lo,L 1}pg=14L 1, {Li,L 1}pp=2ilg,

as a contraction

Lo L, - L,
H=— L= I =
o’ N /o

in the string tensionless limit o’ — oo [43, 44].
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2.2 Sp(2) spinning particle

The action of a generic gauge transformation V = eH + £L + £L + ¢J, with gauge

parameters (e, &, €, ¢), on the phase space variables is:

dxt = {a" Vpp = ep! + £a + Eat | (2.2.6a)
5pu = {p/u V}PB =0 y (226b)
oot = {au7 V}PB = i{p" + 19’ (2.2.6¢)
sak = {a", V}pp —i€ph —iga’ (2.2.6d)

and, in order for the action (2.2.3) to be invariant, the gauge fields must transform as

follows:
Se = é + 2iué — 2iuf | (2.2.7a)
Su =& —iak +idu (2.2.7b)
5t = € + iaf — idu , (2.2.7¢)
Sa=¢ . (2.2.7d)

The need for the worldline constraints to enforce unitarity remains somewhat obscure
up to this point. To review and clarify this claim, it may be beneficial to perform a brief
light-cone analysis. Despite the loss of manifest covariance, a light-cone analysis allows
for a direct calculation of the number of propagating physical degrees of freedom. It is
a well-known method, employed in many worldline models, see e.g. [45-47]. We define

light-cone coordinates by

1

o = (5,2, 2%, with 2% = —@"+2P1), 2.2.8

( ) ﬁ( ) (2.2.8)

where 2%, a = 1,...,D — 2, are the transverse directions. The line element reads ds? =
—2dx"dz + dax*dz®, whence, for any vector V#, VT = —-V_and V- = -V,.

The guiding idea behind the light-cone analysis is to remove negative-norm states by
implementing a gauge fixing that isolates the physical degrees of freedom, which in turn
lead to a manifestly positive-norm Hilbert space upon quantization. To do that, let us

first assume motion with p* # 0 and consider the Hamiltonian constraint

1 — 1 a, a
H = Sp'pu=—p"p +5p""=0. (2.2.9)
This symmetry is gauge-fixed by imposing the light-cone gauge

at =1, (2.2.10)
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2.2 Sp(2) spinning particle

Correspondingly, the Hamiltonian constraint is solved for the momentum p~, conjugate
to xT,
— 1 a, a
p- = QPﬁp P . (2.2.11)
At this point, the remaining independent phase space variables are (x~,p™) and (2%, p?).
A Hilbert space can be constructed by quantizing these independent variables to obtain a
positive-definite Hilbert space.

On top of these variables, there are also the bosonic oscillators, which may as well lead
to negative norms. That this does not happen is again made explicit by completing the
light-cone gauge fixing. The gauge symmetries generated by L and L, see (2.2.6¢) and
(2.2.6d), are fixed by setting

at =0, at=0, (2.2.12)

while the constraints L = L = 0 are solved explicitly by expressing the variables conjugate

to (2.2.12) in terms of the remaining independent variables

1, 1,
= ]Fa Do, Q@ = ]F& Da - (2.2.13)

The conjugated pairs (& ,a*) and (a*,a ) are thus eliminated as independent phase
space coordinates, highlighting the fact that the only independent physical oscillators are
the transverse ones (a®, a®). They produce states with positive norm upon quantization,

as can be inferred by promoting their Poisson brackets to commutation relations
[a%, o] = 6%, (2.2.14)

which are realized on a Fock space, where a® act as creation operators while a® as destruc-
tion operators, thus yielding a unitary spectrum of massless particles that decompose into
irreducible representations of the little group SO(D — 2).

The gauge fixing functions (2.2.10), (2.2.12), together with the constraints (H, L, L)
form a set of second class constraints that allows one to solve for the conjugated vari-
ables (2.2.11), (2.2.13). Accordingly, the space parametrized by the independent variables
(x=,p*), (x% p*), (@ a”) is the reduced phase space. The Lagrangian restricted to this
space, i.e. the (partially) gauge-fixed Lagrangian, is

L=p 1" + p,z® — Lp“p“ — i@, —aclay , (2.2.15)
2p*
It only remains to address the further constraint related to the worldline gauge field a(7),
but this has no relevance to unitarity.

As previously discussed, a non-covariant gauge, such as the light-cone gauge, spoils
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2.2 Sp(2) spinning particle

the manifest covariance of the theory, and one prefers to work in a covariant formulation
when adding interactions.
Hence, it is useful to proceed with covariant quantization techniques. The canonical

commutation and anticommutation relation reads
[2/,p,] =it , [a*, o] =n"", (2.2.16)

and the first class algebra becomes

[L,L]=2H, [J.,Ll=L, [J,L]=-L. (2.2.17)

We have defined as usual J. = J—c, after having introduced the CS coupling ¢ in the action

(2.2.3). The quantum operator J, is defined by a symmetric quantization prescription

D
Jo= = a#d“+6z”au)—c=aud”+5—c=Na—s, (2.2.18)

5
with N, = a,0" the occupation number operator for the a-oscillators and the following

CS coupling c related to the real number s

D
c=5*+s. (2.2.19)

Let us observe once again that the relation between the CS coupling ¢ and the value of
the spin s depends on the quantization prescription employed.

From (2.2.16), the Hilbert space H is the tensor product space
H=LR)QF, (2.2.20)
with F the Fock space with vacuum defined by
a0y =0. (2.2.21)

The decomposition of a generic state |®) is thus written in terms of coefficients corres-

ponding to rank-s symmetric tensors
D) = 2 D™y = Z q><f> L) @aM ' |0) . (2.2.22)

We know quantization may proceed either following a procedure a [a Dirac or by using
BRST techniques. We start with the former method, leaving the BRST analysis for the
next chapter, when it will be useful for dealing with the interacting worldline theory (in

the massive case).
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2.2 Sp(2) spinning particle

The physical Hilbert space is composed by states |p), |x) such that
XIH, L, L, )y = 0. (2.2.23)
This can be satisfied by requiring
Hlpy=Llpy=J|p)=0 (2.2.24)

for any physical state |©), since then also {¢|L = 0, as L is the hermitian conjugate of L.

First, since the operator J. counts the occupation number of the a-oscillators, shifted
by —s, we see that the J. constraint selects precisely states with occupation number s,
which must be a nonnegative integer. Hence, physical states are contained in states of the

form

1
lp) = o <pff1)“_us (x)ak .. a0y . (2.2.25)

Since the operator p, acts as —id/0" on the above state, imposing the constraints H and
L:

1 . ‘
H|p) = ~ 5 Dgpgg_nus (z)a" ... a"|0Y =0, (2.2.26)

(s) (x)ak? ... ats

_ 7 y
L |S0> == (S _ 1)|a SOV/,LQ...[J,S

0)=0, (2.2.27)

with [ = 0*d,, we obtain the following conditions for the wave function of a physical

state:
Ol (@) =0, (2.2.28)
") (@) =0 (2.2.29)

This wave function propagates the degrees of freedom of a rank-s symmetric tensor in
dimensions D — 1.

The conditions (2.2.24) defines a physical state as an equivalence class

) ~ o) + [oman) (2.2.30)

where |pna) is a null state of the form

enay = Llpy . with H|¢) = Llp) = (J.+1)|py=0. (2.2.31)

These null states are physical, but have vanishing overlap with any other physical state,

therefore, they have zero norm. They give rise to redundancies or “residual” gauge sym-
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2.2 Sp(2) spinning particle

metries of the state |p). The null state, from (2.2.31), reads

‘ (s—1)

[omn) = — im0 - 10) (2.2:32)
with
] (s—1) ) = 0’
a pl/,u,Q...Hs—l (l‘) - 0 ’

With this gauge symmetry, the physical degrees of freedom of the tensor ¢(*) correspond
to that of a rank-s symmetric tensor in D — 2 dimension, i.e. it belongs to the rank-s
symmetric representation of the little group SO(D — 2). Notice that it is not traceless,
thus ¢ does not provide an irreducible representation of the Lorentz group for a spin-s
massless particle in D—dimensions. Instead, it propagates a reducible multiplet consisting
of massless particles of spin s,5s —2,s —4,...,00r s,s —2,s —4,...,1 for even or odd s,

respectively. For s = 0,1 the representations are irreducible.

2.2.2 Mass from dimensional reduction

We have extended the bosonic spinning particle model to describe massive particles (so to

study massive spin-1 particle in the next chapter) through dimensional reduction [30].

Thus, we consider the theory (2.2.3) in (D + 1)-dimensions and gauge the direction z”

by imposing the first class constraint
pp=m, (2.2.34)

with m the mass of the particle. We further define (3, 3) := (a”, &), which inherit the

following Poisson bracket
{8,8}ps =1 . (2.2.35)
The constraints (2.2.4) get modified by the presence of the mass:

1 _ _ _
]—Izi(p“pu—i—m2)7 L=ao'p,+pm, L=ar'p,+pm, J.=ao'a,+p6—c.
(2.2.36)

We notice they still satisfy the first class algebra (2.2.5). The gauge transformations (2.2.6)
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2.2 Sp(2) spinning particle

are enriched by

5B =iém +igB , (2.2.37a)
68 = —ifm —i¢f . (2.2.37b)

Upon covariant quantization, in addition to (2.2.16), we have

[3,8]=1. (2.2.38)

With the same quantization prescription, the constraint operator J,. is

D +1

1 _ _ —
Je = 5(opa +aay + BB+ BB) — = a4+ BB+ —5— —c = No+ Ny =5, (2:2.39)

with the CS coupling ¢ taking into account the additional S-oscillator,

_D+1
)

c + 5. (2.2.40)

Accordingly, the Hilbert space is of the type (2.2.20) but now with the Fock space built

out from the [-oscillator too, and a vacuum state such that
(@, B) 10 =0. (2.2.41)

A generic element of this space is given by

Q0 o6}
1
rvp:() 7’7p=0 e

Defining physical states as in (2.2.23), so (2.2.24) holds, and imposing J., we write a

generic state at occupation number s as

S

1,

[0y = 2, s el (@@ a8 [0) (2:243)
r,p=0 e
r+p=s

i.e. an element of the eigenspace of N = N, + N with eigenvalue n = s. The constraint

H determines the massive Klein-Gordon equation
(D—mQ)gol(ﬁ’_?m =0, Vrpe{0,...,sh,r+p=s, (2.2.44)

while the constraint L, due to the presence of /3, gives rise to a set of first order differential
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2.2 Sp(2) spinning particle

equation involving ¢™®) and pr—DE+D).

—id" U, +mel DY =0, (2.2.45)

with 7 € {1,...,s},p € {0,...,s} and 7 + p = s. These fields equations exhibit a gauge
symmetry due to the existence of null states, as happens for the massless case (2.2.31).
Let us consider the null state L |p), with |p) a state of the form (2.2.43) with r+p = s—1,
and a set of tensors {p®} that, due to H |p) = L|p) = 0, satisfies the equations

@-m*p{*, =0, (2.2.46)
—id"p) P+ mp T =, (2.2.47)

withre{l,...,s —1},pe{0,...,s —1},7 + p = s — 1. The gauge transformation reads,

in components,

5@ — iy 6(M1pu2 3(1)7) + mp,offl)(pml) : Vr,pe{0,....st,r+p=s (2.2.48)

H1---for
If we write the system of equations (2.2.45) explicitly:

v s—1)(1
—i0" Pl +mef 0, = 0

laygpyill f}s) + msp(s 2)(2) _

2.2.49
2.2.50

( )
( )
(2.2.51)
( )

—i" oV 4 @) — o 2.2.52

we see that we can get rid of all the tensors labelled by a non-zero value of p by moving to
a gauge in which ¢ DM vanishes. In this gauge, the tensor ¢®(©) satisfies the Fierz-Pauli
equation for a massive spin-s particle, without the traceless condition. Hence, it would
propagate a reducible massive multiplet, as in the massless case. Such a gauge can be

reached through the transformation
s s—2 s—1)(0 s
(54,021 1;231) —i(s—1) (9(mpit2 BL( )) + mpla1 A ) gpl(“ %1) (2.2.53)
To solve this equation, one must take into account the dependence between p*=2(1) and
PO from (2.2.47),
—i”plr O omplAM = . (2.2.54)

VLT fhs— H1efls—2

This makes the equation for the gauge condition not algebraic (i.e. we cannot set p(*=21)

to zero in (2.2.53)). Taking the symmetrized gradient of the above expression and using
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the massive Klein-Gordon equation for p=1(©) we can write

o 1 s 1 _
—i0 /0( 2)(1) :_Laua p( 1)(0) —-m (s—1)(0) (2255>

(11 Pps.cps—1) ms—1 VP pr.ps—1) s — 1p1u1-~~/>14571 )

thus, the gauge condition (2.2.53) becomes

1 _
_Saua(yp(s 1)(0) — (s—=1)(1) (2256)

m predism1) — Ppafis 1

Provided the above differential equations admit a solution, at least locally, one finds the

following for the only non-vanishing ¢()(©):

@O—m*)e)). (x) =0, (2.2.57)
", () = 0. (2.2.58)

It forms a rank-s symmetric representation of the little group SO(D — 1). Since it is not
traceless, it propagates the degrees of freedom of a multiplet containing massive particles

of spin s,s —2,s—4,...,00r s,s —2,5s—4,...,1 for even or odd s, respectively.

2.3 Interactions

So far we have discussed worldline theories that, upon quantization, describe the propaga-
tion of free spin—s particles. To make contact with interacting QFTs, one couples the
worldline to background fields, obtaining an interacting worldline theory. This theory will
represent the interaction of the particle with either other quantum particles or an external
potential determined by the experimental apparatus. As discussed previously, the way a
specific interaction is introduced is constrained both by the symmetry one wants to pre-
serve manifestly on the worldline, the Lorentz symmetry, and by the symmetries that the
relativistic field equations should enjoy in order to describe that interaction.

Let us suppose we want to describe the interaction with a scalar particle, then, we will
introduce a scalar potential, on the other hand the interaction with a gauge boson will
require a gauge potential. Coupling the particle with the graviton requires the introduction
of a background metric on the target space time.

Let us consider the free worldline theory (1.1.24). Then, consider a potential V', of
generic type. The interacting worldline theory is the constrained Hamiltonian system

with “covariantized” constraints C, containing the potential,

S[=A, A% V] = f dt (%(Q—I)ABZ%B _H'(2) = MGy (= V);) @31
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Thus, the quantized theory, through the implementation of the above constraints, will
reproduce the relativistic field equations for a particle coupled to the potential V.

Let us consider the coupling of a spin—s particle, described by the O(N) spinning
particle action (2.1.56), with N = 2s, with a U(1) background gauge field A,(z) [19]. We

introduce the covariant momenta
Ty = Dp — qA,, (2.3.2)
where ¢ is the charge of the particle, in the constraints @);:
Qi — Qi = Tl (2.3.3)

We define the Hamiltonian as the N-extendend generalization of the minimal Hamiltonian
Hmin: 1
H— H = Hpnin + ZgF/w@ZJfI/);/ = §7TM7TM + Z%Fuﬂbﬁ/};’ g (2.3.4)

with F),, the field strength given by
{mu.m}pg = (WA, — 0L AL) = qF L . (2.3.5)

Substituting these constraints into (2.1.56), eliminating the momenta p, through their
equations of motion
P =e (@M — ik + qA,, (2.3.6)

the interacting O(N) action in configuration space becomes
Seo = Sfree 4 gint (2.3.7)

where SEe the free action (2.1.56) in configuration space,
Siree de Ee—l (" — ixapt)” + %wimf — %aijzﬁfz/;jﬂ] , (2.3.8)
and S the additional term due to the interacting part,
st = a |ar (4, ~ i Futer) (239)

Now, we may ask: is this action still gauge invariant under the transformations in
Subsection 2.1.3 ? This is equivalent to ask if the system is still a first class constrained
Hamiltonian system and the constraints’ algebra is preserved. Let us answer the question

and consider, for instance, the transformation generated by V = &Q,. In configuration
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space, it acts on the fields through

Szt = ig" (2.3.10)

70

S = —e M@ — il i) (2.3.11)

so it acts as a supersymmetry transformation does in the free case. We keep the trans-
formation of the gauge fields to be the same as in (2.1.58). The action ST is invariant

up to boundary terms, while the action S transforms, up to a boundary term, as

5Sm = JdT (gzwj”(sz; = XU Pl + gfzwfw]waaaFw/) ' (2.3.12)

The second term vanishes due to the Bianchi identity Jj,F),) = 0. The first term vanishes
only for N = 0,1, while for N > 2 it requires F},, = 0. In deriving this variation, we
assumed the constraints’ algebra (2.1.55) remains unchanged for the new C, = (H, Q;, Ji)s
since we used the variation (2.1.58) for their gauge fields. If the assumption is right, then
the above variation vanishes. We see that for the N = 1 model (and, trivially, N = 0)
this is the case, while for N > 2 the covariantized constraints C,, break the SUSY algebra
(2.1.55). However, this does not exclude, a priori, that they form a different algebra. One
can check, by computing their Poisson brackets, that it does not happen, hence, for N > 2,
the covariantized constraints (H, Q;, Ji;) are no longer first class constraints. Equivalently,
the interacting worldline is not a gauge system any more. The analysis for the massive
case furnishes the same results.

This renders the quantization of these models more complicated, as one has to deal
with second class constraints, which are difficult to solve explicitly in order to work in
the reduced phase space. Physically, we noticed how worldline theories led to relativistic
field equations by applying the physicality conditions for first class constraints. For this
reason, the role of these latter is fundamental in the first-quantized approach to QFT.

Such a problem also arises when the O(N) spinning particle is coupled to a gravitational
background and N > 2 [40] (see [48, 49] for the coupling of the O(2) spinning particle).

To cope with situations where the interaction breaks worldline SUSY or BUSY, BRST
quantization techniques have been employed. The first important progress was made in
[20] for the O(2) spinning particle coupled to a Yang-Mills background and then the same
strategy was applied in the recent works [21-24] for different N and interactions. These
methods enable the construction of a consistent quantum theory for the interacting world-
line, allowing one to describe the coupling of the particle with the background potential.
We will discuss it in the next chapter, where we will investigate the behaviour of the

bosonic spinning particle when it couples to a background U(1) gauge field.
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2.4 Path integral representations

The path integral quantization of worldline theories permits to compute propagators and
one-loop effective actions in the presence of a background potential. Precisely the repres-
entation of the propagator and one-loop effective action in QED and scalar QED in terms
of relativistic particles’ path integral, worked independently by Feynman and Schwinger,
posed the basis for a systematic formulation of QFT in terms of relativistic particle’s
actions.

Let us consider the action (2.3.1), under the assumption that the interaction has been
consistently introduced via one of the approaches discussed in the previous section. Then,
denoting by (;B(x) the field operator associated to the described particle, worldline theories
show the following relation between the propagator in the presence of the background V'

and the path integral over a worldline being an open curve I in spacetime:

QTS (2") d()} 1) ~ 27 = f DDA isteam | (2.4.1)

po(n Vol(Gauge)
with boundary conditions (BC) I(r;) = ', (1) = 2", x the spacetime coordinates (re-
member 24 = (z#,...)). The symbol “~” indicates that the path integral is known up to
an infinite normalization factor.

In addition, the one-loop effective action in the presence of the background V' can be

obtained by the path integral over a closed curve (a loop, sometimes called the worldloop)

L,
DzDA eiS[z,)\;V]

Piplis VI~ 2= [ DDA
el VI~ = [

, (2.4.2)

with L(7;) = L(7y), i.e. periodic boundary conditions for the .

Since the theory on the worldline is a gauge theory, it is necessary to formally divide
by the volume of gauge equivalent configurations, i.e., practically, to gauge fix the path
integral. This is achieved with the Faddeev-Popov method or using BRST techniques.
The result is that one fixes the values of the gauge fields through their gauge transform-
ations. Values that cannot be globally (i.e. in all the worldline) reached through a gauge
transformation are called moduli. The moduli space depends on the chosen topology for
the worldline. Formally, for each path integral measure over the gauge fields A\, we can
split it into an integration over gauge equivalent configurations, parametrized by the set
of gauge parameters € = (ey, ..., €,), and gauge inequivalent configurations, parametrized
by the modulus py:

DX = d%edpy J(1y), (2.4.3)

with J(uy) the Jacobian from the change of integration variable. At the end, one is left
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with an integration over the moduli space of the gauge fields. A moduli-dependent term,
f(pr), can appear from the integration of the ghosts. The path integral over the phase

space variables is

ZT ~ Jdu,\J(u)\)f(uA) J Dz eiS[Z’uMV] s (244)
BC(T)

with T € {I, L} indicating the only two possible topologies for the worldline, the open or
closed curve, i.e. the line and the circle. Boundary conditions for the fields depends on
the topology.

Let us see explicitly how this works for a massive scalar particle coupled to a back-
ground U (1) gauge field A, for instance. Working in Euclidean metric, the Euclidean full
propagator is

Y

D" [A] = (Q| T (") d(a”) |2 = (2| [ (0 — iqA)* +m?] " [a")
Joo (2.4.5)

dT efm?'T <$//| 6—(—(07iqA)2)T |II> _

0
By using the Euclidean version of the path integral

x(T)=a"

<[L’”| e—Tﬁ |£Ifl> _ J Dxe™ SOT dr(%a'cQ—&-V(a:(T))) ’ (2.4.6)
z(0)=xa'
with H = —5-[04 V(z), we rewrite
1o @ 2 2o(T)=z" —ST dT(ﬁ—i mA(:E))
D" [A] = J dTe™ Tf Dze % “Ua™ : (2.4.7)
0 z(0)=xa'

This is called the Fock-Schwinger proper time representation of the propagator and 7' is the
so-called Schwinger proper time. In this representation, the propagator can be obtained
from a first-quantized picture within the Worldline Formalism.

We consider the Euclidean, massive version of the action (2.3.7) for N = 0:

! 1 1
Slat, e; Al = J dr (56_155“:@ + §em2 — iqAM(x):t“> : (2.4.8)
0

where we have chosen to parametrize the worldline with the parameter 7 € [0,1]. Let
us compute the (Euclidean) path integral of the above action with boundary conditions
z(0) = 2/, (1) = 2”. From the general formula for the gauge-fixed path integral (2.4.4),
we have to find the modulus for the gauge field e, with gauge symmetry:

de = ¢€. (2.4.9)
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2.4 Path integral representations

This transformation leaves the length of the worldline invariant:

Lle] = J dre(r), (2.4.10)

0

as €(0) = €(1) = 0. Hence, for each einbein e(7) such that the length is £[e| = 27", with
T an arbitrary positive value for e positive, the einbein ¢/ = e + de will determine the
same length for the worldline. We can fix such gauge equivalent einbein fields to have a
constant value e(7) = 2T, by solving the differential equation for ¢(7) in (2.4.9). Thus,
gauge inequivalent einbein fields are parametrized by the modulus 7T, the length of the
worldline. After gauge fixing the action with e(7) = 27T, the path integral of the relativistic
particle described by the action (2.4.8) reads:

@ z(1)=z"

Zi[A] ~ f Dy e~ b (Frmiaiaw) (2.4.11)

dT e ™7 f
0

z(0)=a'

being exactly equal to the full propagator (2.4.7) (after the rescaling 7 — 7/T) if we choose
a normalization factor equal to 1.
The same can be observed for the Euclidean one-loop effective action I'y jo0p[ A],

e TroonlAl = f D¢Dg*e *19¢" 4l = Det™ (—(0 — igA)? + m?) (2.4.12)
from which
Iiioop[A] = —InDet ™ (—(0 — igA)* + m®) = Trln (—(0 — igA)* + m?) . (2.4.13)
By using the integral representation of the logarithm

In

o0
% _ _f ar (e — oY | (2.4.14)

o T
we obtain the Fock-Schwinger proper time representation of the one-loop effective action,
0 oo
IiooplA] = — J dr TreT(—(@=igAy+m?) _ _ J % Jde (] e T 0=tV +m?)
0

o T
(2.4.15)

Then, from

Tro-TH — dex (e T |2 :J Dy e~ lo dr(F4* V) (2.4.16)
2(0)=x(T)
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2.4 Path integral representations

one gets the final expression

©dr 2 T ar( 2 o s Alz

Tpt00p[A] = — J S—— Tf Dye b dr(friniaAw) (2.4.17)
o T 2(0)—2(T)

The above effective action can be obtained from the path integral of the system (2.4.8) over

a worldline with the topology of the circle, with periodic boundary conditions z(0) = z(1).

The gauge-fixed path integral now reads

o .
ZL[A] ~ f d?T emQTf Dy e~ B dr(f—ini-a@) (2.4.18)
0 2(0)==(1)
The measure in the modulus space of e, 1/T, comes from the fact that the condition for
(2.4.9) to be a gauge symmetry now is €(0) = €(1). This allows the existence of killing
vectors €’ such that de = 0. Thus, they are constant vectors ¢ = k. In the gauge orbit
e = 2T, these vectors correspond to the generators of time translation in 7 (remember
ozt = e texrt). Thus, we need to divide by the volume of these transformations, which
represent a residual gauge symmetry. Their volume is the length of the worldline. If we fix
the overall normalization factor in (2.4.18) to be —1, then it reproduces the effective action

induced by a charged massive scalar in the presence of an Abelian background (2.4.17).
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Chapter 3
Charged massive vector bosons

In this chapter, we investigate massive spin-1 particles coupled to electromagnetism. We
shall describe this interaction through the worldline techniques discussed in the previous
chapter. The formulation is first developed in terms of the bosonic spinning particle and
then, for completeness, within the fermionic model. In both models, consistency condi-
tions for the electromagnetic background emerge. For a particular class of backgrounds
satisfying these conditions, we derive the one-loop effective action for the electromagnetic
field induced by the spin-1 particle and compute the particle-antiparticle pair production
rate in a constant electric field. The material presented in the following sections is based
on [30].

3.1 Free massive vector bosons from the Sp(2) particle

We aim to describe massive spin-1 particles from the bosonic spinning particle action
discussed in Section 2.2. Hence, we impose the operator constraint J. in (2.2.39) with
CS coupling given by (2.2.40) with s = 1. A generic state at occupation number s = 1
(2.2.43) is given by

) = Wa(@)a [0) — iip(2)3]0) . (3.11)

where we have factored out —i for convenience. The remaining physicality conditions
(2.2.44) and (2.2.45) translate into the following set of equations:

@-m*)W, =0, (3.1.2)
@-m*)p=0, (3.1.3)
MW, +me=0. (3.1.4)
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3.2 Counting degrees of freedom

The gauge symmetries (2.2.48) related to the null state L |p), with |p)y = p(z) |0), are given
by

W, =0up, dp=—mp. (3.1.5)

Using the gauge symmetry to set ¢(x) = 0, we recover the standard Fierz-Pauli equations

for a massive spin-1 field W, ().

3.2 Counting degrees of freedom

The degrees of freedom propagated by the massive model, for different values of the CS
coupling, can be computed through the one-loop effective action obtained by path integ-
rating the free action on worldlines with the topology of a circle S'. After fixing the overall
normalization to match the scalar case, we will get the number of degrees of freedom in

the other sectors of the worldline theory.

3.2.1 Gauge fixing

We first need to define a finite path integral for the worldline action. Let us consider the

following path integral

Zg1 ~ J _DGEDX s : (3.2.1)
pac Vol(Gauge)

where A = (e, 4, u,a) denotes the gauge fields, whereas z = (z#,p,, a*, &,, 3, 3) collect-
ively denotes all dynamical variables parametrizing the phase space. Periodic boundary
conditions (PBC) are understood to implement the path integral on the circle. It will be

useful to explicitly rewrite the action, namely the one in (2.2.3) with the constraints in
(2.2.36),

1

SMMZJ

dr [pﬂj:” —iay, Gt — g(p“p“ +m?) — u(atp, + pm)
0

(3.2.2)
—u(a'p, + Bm) — ala*a, + BB — c)] .

We prefer to work in the Euclidean version of the theory, so that we first pass to

configuration space by eliminating the momenta p,:

0S

— =0, = p, = e (Tp—ua" — ua"), (3.2.3)
op,,
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3.2 Counting degrees of freedom

Wick rotate the action with 7 — —i7, taking into account also the rotation of the gauge

field a — ia, and get the Euclidean worldline action

1
I , : e
d7[2—(x“ + iua” + iuar)? + a,&t + BB + §m2
e

SE [Z, )\] =
L (3.2.4)

+ uBm + afm +ia(a"a, + 88 —c)|.

The transformation rules for phase space variables and gauge fields in Euclidean time are
obtained by Wick rotating the gauge parameters € — —ie, & — —if, & — —if. We report
the transformation of the gauge fields, useful to study the gauge fixing:

Se = é + 2ué — 2u€ (3.2.5a)
Su =€ —ial + igu (3.2.5b)
5 = € + iaf — idu (3.2.5¢)
da=¢ . (3.2.5d)

The Wick rotation of the gauge field a is needed in order to maintain the U(1) group
compact.

As we know, the overcounting in (3.2.1) from summing over gauge equivalent config-
urations is formally taken into account by dividing by the volume of the gauge group. We
will work the BRST procedure to define this path integral. To do so, it is useful to notice

that we can gauge fix the worldline gauge fields to constant moduli
A= (e,i,u,a) — A= (2T,0,0,0) . (3.2.6)

We have already seen T', the modulus related to the einbein e(7), corresponding to the
gauge-invariant worldline length. On the other hand, the gauge fields (u, @) can be gauge-
fixed to zero. The modulus 6 is associated with the worldline U(1) gauge field a(7) and
parametrizes the gauge invariant Wilson loop. It is responsible for the reduction of the
Hilbert space to a given spin sector. Let us see how these moduli emerge.

From the finite U(1) transformation generated by ¢.J

(r) = /(1) = “Du(r),
u(r) - d(r) = e*w(T)ﬂ(T) ,

a(r) = d'(7) = a(r) + (1),

I~

l

since periodic boundary conditions for u, @ hold, the gauge transformations g = e**(") must

20



3.2 Counting degrees of freedom

be periodic functions on [0, 1], that is
(1) = ¢(0) + 2mn, neN. (3.2.7)
We can define the gauge invariant Wilson loop
wla] = eifodra, (3.2.8)

Then, we can transform each field a(7) into a constant field o’(7) = 6 through

T

¢@y:am+97—1<hmuq, (3.2.9)

0

but this constant cannot be arbitrary, but, from (3.2.7), it is fixed to be

1
0 = J dra(r) + 2mn. (3.2.10)
0

Being the Wilson loop w defined on the gauge slices of a(7), and, from the above equation,
w[f] = wla], the variable € is a modulus in the space of the field a(7), as it parametrizes
gauge inequivalent configurations. From w|f] = w[f + 27n|, we can take [0, 27| as the
fundamental region of the moduli space. The killing vectors ¢g, such that da = (/50 =0,
are constant vectors ¢y = k.

Moving to the field u (equivalently for u), the gauge transformation generated by &L
can be employed to set it to zero, by solving the first order linear differential equation in
¢ with a =0 (3.2.5b),

0=¢E—ifE+u. (3.2.11)

In fact, no constraint arises in the constant values the field u can take. There is not a
gauge invariant quantity for such field as long as 6 is different from zero. In that case, the
quantity Sé dr £(7) is gauge invariant due to the periodic boundary conditions (1) = £(0).
We will see the value 8 = 0 can be handled through a limiting procedure, as in the standard
N = 2 particle case [48, 49]. Therefore, (u, ) carry no moduli, they are “pure gauge”.

Finally, in Section 2.4, we have seen how the space of gauge fields e shows moduli T’
associated to the length of the worldline, and the killing vectors correspond, in each gauge
slice, to the generators of time translation.

Having examined the fields space, we construct a finite path integral by gauge fixing
the action and splitting the functional integration measure over these fields in moduli- and
gauge-dependent measures. To obtain a BRST invariant gauge-fixed action, one introduces

a set of anticommuting ghost, anticommuting antighost, and commuting auxiliary field for
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3.2 Counting degrees of freedom

each gauge field by

, e = Ac, opb = iAw, , opw. =0,
C,B,w;), £=AC, pB=il\w;, dpwe =0,
C,B,we), {=AC, 0pB=il\wg, dpwg =0,
o= (fg.@g), =Af, dpg=ilwy, Ipwy=0,

(3.2.12)

where 6g := AS indicates the BRST transformation, A is an anticommuting parameter
and S the Slavnov operator. The nilpotency of the BRST transformation requires S2.
Thus, each gauge parameter is replaced by the constant A times the associated ghost, and
the BRST transformation for the gauge fields are obtained from (3.2.5) and the above

replacement for the parameters. Through the gauge fermion:
1
¥ = J dT(b Fl(C, we) + BFQ(C,W&) + BFg(C_, wg) + gF4(f, w¢)) s (3213)
0

with Fy, Fy, F3, Iy arbitrary functions that parametrize the choice of the gauge fixing, the

gauge-fixed action reads

)
S=S5 A —v 3.2.14
E[Z ’ ] + SA ) ( )
where 5% indicates the BRST transformation with the parameter A factorized and removed

from the left. With this action, the path integral becomes
Zg1 ~ f DzDADG e, (3.2.15)
PBC

where G denotes the set of all ghosts, antighosts and auxiliary fields.
Each gauge field can be decomposed in a modulus-dependent part and gauge-dependent

part, infinitesimally given by
A= pixi + 0N iy, (3.2.16)

and the measure correspondingly splits into
D)\ = DlaE d/L)\ J(M)\) s (3217)

where a prime indicates that the integration is not carried over the killing vectors. We
choose a function ¥ such that the gauge fields are set equal to their moduli and the

variations due to gauge transformations are set to zero:

U = f dr (b(2T —€) — Bu—Bu + g(0 — a)) . (3.2.18)
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3.2 Counting degrees of freedom

In fact, if one computes SV, then expresses the gauge fields as
e=2T+delecor, u=0uly—o, U=0Ulg—g, a=0dalo—y, (3.2.19)

and integrates over the w variables, this produces delta functions in the variations of the
fields §(de|e—ar), - .., d(0al.—p), that, after integration of the gauge parameters from which
these variations depend, {D’e...D’'¢, fixes the values of the gauge fields as in (3.2.6) in
the total action (3.2.14). At this point, the path integral reads

0 2m
Zg1 ~ J dTJ(T) J do.J (o) J DzDGe 7, (3.2.20)
0 0 PBC

with G denoting the set of ghosts and antighosts, the action

Q ! .oafd d .\ 5 :
SZSE[Z,)\]-FJ dr (bc—i—B(%—ng)C—i—B(%—i—zqﬁ)C—i—gf) : (3.2.21)

0

and, explicitly,
1
Splz,A] = J dr [41T:L' + a, (0, +i0)a" + B(0, +i0)B + m°T — zc@] (3.2.22)

From the integration of the ghosts associated to the BUSY parameters, we obtain the
modulus-dependent functional determinants (the others can be reabsorbed into the overall

normalization of the path integral)
Det (0, + i0)Det(0, — i0) , (3.2.23)

evaluated with periodic boundary conditions (as the ghost and antighost inherit the bound-
ary conditions of the gauge parameters they are associated with). For the functional de-
terminants arising from the integration measures, the modulus-dependent one is that for
T 150, 51]

J(T)=T7". (3.2.24)

The final form of the path integral is conveniently written
© AT (*" d6 5
Zg1 ~ J f 5 Det(0r + i) Det (0 — z@)f Dze el (3.2.25)
PBC

The path integral over the coordinates z* can be computed by decomposing the space of

closed loops in a constant path z* (zero mode of the free kinetic operator) and fluctuations
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3.2 Counting degrees of freedom

t"(7) satisfying Dirichlet boundary conditions (DBC)
() =" +t*(r), with *(0) =¢"(1)=0, (3.2.26)
such that

f Dz o3 o 47 (= 5r 020 )" _ J dDa‘ﬁf Dt e~ 3 5o drt* (=030 )t" (3.9 97)
2(0)=x(1) #(0)=¢(1)=0

1
= Jd% =, (3.2.28)
(ArT)=
where, in the last line, we used the result of the free path integral of a non-relativistic
particle.
Path integrating over the bosonic oscillator brings down the functional determinants

Det (0, + i0)~P~1, evaluated with periodic boundary conditions.

3.2.2 Degrees of freedom

It is useful to recast the final expression for the path integral over the circle, i.e. the free

one-loop effective action I, as

© 4T dPz
['=Zg = —f —eszJ DoF(c, D), (3.2.29)

o T (47T

where we denoted by DoF (¢, D) the number of (complex) degrees of freedom that acquires

the expression

o
DoF(c, D) = k:fo g e’ Det (0, — i) Det (0, + i0) [Det(d, +i6)] "', (3.2.30)
with £ an overall normalization to be fixed later on. The value DoF = 1 corresponds to a
complex scalar, as seen by comparing with QFT expression.
The determinants need to be regularized, as they are infinite in principle. We regularize
them by dividing for the determinant of the “free operator” without the zero mode, so it
is infinite too. We compute them as infinite product of their eigenvalues. They act on

periodic functions F on [0, 1], hence, a generic function can be expanded in the basis

F(r) =Y F,e”™ . (3.2.31)

neZ
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3.2 Counting degrees of freedom

Therefore, the regularized determinants

Det (0, +i0)

Det (0, + i0) —> 3.2.32
€ ( G ) Det’(&r) ( )
are easily computed:
Det (0, £i0)  [],ezi(2mn £ 0)
Det'(3;) [ ez 1270
0
= +i6 14+ —
+if || < + 27m) (3.2.33)
neZ\{0}
0
— +2isin (= | .
o (?)
Setting the CS coupling to'
D -1
c=— + s, (3.2.34)
and fixing k = —1 as overall normalization, we find the following expression for the number
of degrees of freedom
S AN
DoF (s, D) :f = il Pt )0 (Qisin —) . (3.2.35)
0 2m 2

To evaluate it, we find it more convenient to recast it in terms of the Wilson loop variable

w = e " so that
dw 1 1

— 971 wstL (1 _ w)D—l )

DoF(s, D) — jg (3.2.36)
v
where v_ indicates the clockwise oriented contour. The singular point # = 0 is mapped
to the pole w = 1. Our prescription to deal with this pole is to deform the contour to
exclude it in such a way to take care only of the pole w = 0 (cf. Fig. 3.1). Thus, from the
Residue Theorem,
1 d° 1 (D—1)D---(D+s—2)

DoF(s, D) = = Top| T . : (3.2.37)

w=0

which indeed describes the degrees of freedom of a reducible (for s > 1) representation of
the little group SO(D — 1) as carried by a symmetric tensor with s indices. This confirms
that the massive bosonic spinning particle propagates, for a given value of s, the degrees

of freedom of a multiplet of massive particles of decreasing spin s,s —2,s —4,---,0 for

!The shift from the value given in (2.2.19) is due to the contribution of the ghost fields. For convenience,
we now indicate the degrees of freedom by DoF(s, D), which highlights the dependence on the value of
the spin s. This should not cause any confusion.
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3.3 Coupling to electromagnetism

Figure 3.1: Regulated contour of the integral in the Wilson loop variable w. The pole at
w = 1 is excluded through a limiting procedure, pictorially represented by the semicircle
of radius € — 0.

even s, and s,s — 2,--- ,1 for odd s, as discussed in Subsection 2.2.2.

3.3 Coupling to electromagnetism

So far, we have quantized the free theory through the Dirac method. On the other side,
the (Hamiltonian) BRST quantization is especially well-suited for analysing the conditions
required for consistent background interactions, when these spoil the first class nature of
the constraints. For this reason, we quantize the free particle in this framework and then

examine its interaction with an electromagnetic background.

3.3.1 Free BRST analysis

Following the discussion in Section 1.2, we proceed with the BRST quantization focusing
only on the subalgebra of (2.2.17) generated by (H, L, L). The constraint J, is treated on
different footings: it is imposed as a constraint on the BRST Hilbert space, a la Dirac,
defining a restricted Hilbert space where the cohomology of the BRST operator will be
analysed.

The Hilbert space is enlarged to realize the fermionic ghost-antighost pairs of operators

{bc}=1, {B,C}=1, {BCi=1, (3.3.1)
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3.3 Coupling to electromagnetism

associated with the (H, L, L) constraints, respectively. We assign them the following ghost
numbers: gh(c,C,C) = +1, gh(b,B,B) = —1. The BRST charge associated with a first

class system is readily constructed from (1.2.14). In the present case, it takes the form

Q=cH+CL+CL—2CCh. (3.3.2)

It is an anticommuting, ghost number +1, nilpotent operator by construction. It is her-

mitian provided that
d=c, =0, C'=C, B'=B. (3.3.3)

The “matter” sector Hilbert space with elements as in (2.2.42) is extended to the
BRST Hilbert space Hgrst by a tensor product with the ghost sector, associated with the
(¢,b,B,C,C, B) operators. The latter is constructed as a Fock space on the ghost vacuum
defined by

(b,C,B) 0),, =0 (3.3.4)

Since all ghosts are Grassmann odd, Hgy, is finite dimensional. A generic state |®) in the
BRST-extended Hilbert Hgrst space reads

o0} 1
@)= > D Bt |@tpert (3.3.5)
s,p=0 q,r,t=0
where
1
|<I>(s’p)(q”"t)> = s'_p' @&i’??ﬁ‘i”’t) (x) !t .. oGP |0) (3.3.6)

with |0) now denoting the full BRST vacuum. With this choice, the conjugate momenta

act as derivatives:

Pu=—id,, a"=0w, B=03, b=0,, C=0ds, B=ic. (3.3.7)

We now introduce a couple of operators, G' and J;, to further restrict the full BRST

Hilbert space. These are the ghost number operator
G=cb+CB-BC, [G,Q]=Q, (3.3.8)
and the (shifted) occupation number operator

Je=a,a"+BB+CB+BC—s, [QT]=0. (3.3.9)
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3.3 Coupling to electromagnetism

They commute between themselves, |G, J;] = 0. The occupation number operator Js
is defined in such a way to commute with the BRST charge operator, and it is derived
from the quantization of the constraint operator J. (2.2.36) with the addition of the above
ghost operators. With the usual antisymmetric quantization’s prescription for fermionic
operators and Weyl prescription for the bosonic ones, the effect is to shift the CS coupling
in (2.2.40) as ?

D -1

2

The ghost number operator grades the BRST Hilbert space according to the ghost number,
and the commutator |G, Q] = Q manifests that the BRST charge has ghost number 1.

The occupation number operator also grades the BRST Hilbert space according to its

+s. (3.3.10)

C =

eigenvalues and can be used as a constraint to project the Hilbert space onto the subspace

with fixed occupation number s. In fact, the Hilbert space decomposes into the direct sum
0 2
HBRST = @ @ Hs,g; (3311)
s=0g=—1

with H, 4 the eigenspace of the occupation number operator J; with zero eigenvalue, and
of the ghost number operator with eigenvalue g. The BRST cohomology can be studied at
fixed values of s, since J, map physical states into physical states due to [Q, Js| = 0 and
|G, Js] = 0. Therefore, physical states are identified as elements of the BRST cohomology

QY =0, [D)~|D)+ OJA (3.3.12)

restricted to the subspace with vanishing eigenvalues of the ghost number and shifted

occupation number operators, i.e.
G|®)=Ts|®)=0. (3.3.13)

Our interest lies in the first-quantized description of a massive spin-1 particle, thus we
choose s = 1. From (3.3.5), an arbitrary wave function at zero ghost number and with

s =1 is then given by

) = Wu(z)a |0) —ip(x)510) + f(z)cB0) (3.3.14)

where the complex fields W,(z), ¢(x), and f(z) must be further constrained by Eq.
(3.3.12) to represent the physical states of the theory. From the closure equation, i.e.,

2This value has already been used in the path integral construction (see footnote 1), which evidently
involves a regularization consistent with this ordering prescription.
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3.3 Coupling to electromagnetism

the first one in (3.3.12), we obtain:

@O-m*) W, —2id.f =0, (3.3.15a)
@O—-m*)¢+2imf =0, (3.3.15D)
oWH +me—2if =0, (3.3.15¢)

which, upon eliminating the auxiliary field f(z), represent the field equations of the Proca
field in the Stiickelberg formulation:

O—m*) W, — 3,0°W, —mdup =0, (3.3.16a)
Ce +md,WH# =0. (3.3.16b)

The above equations enjoy a gauge symmetry, which, from (3.3.12), reads
S|y =QIA)y ,  with [A) =ip(x)B|0) , (3.3.17)

le.
W, =0.,p, 0p=—mp, (3.3.18)

which is the well-known Stiickelberg gauge symmetry. The presence of the Stiickelberg
scalar ¢ restores the U(1) gauge symmetry [52] originally broken due to the introduction
of the mass. In the so-called unitary gauge, namely setting the Stiickelberg field to zero,
one reduces the field equations to the standard Fierz-Pauli system for the massive spin-1
field W, (z).

Taking the massless limit produces from (3.3.16) a pair of decoupled equations: one
for a free-propagating massless vector field W, (z) and one for a massless scalar field ¢(z).
This is tantamount to the fact that the theory of massive spin-1 does not suffer from the
so-called “vDVZ discontinuity”, differently from the massive spin 2 case [53, 54].

Finally, let us notice that the wave function (3.3.14) can be interpreted as a spacetime
Batalin-Vilkovisky (BV) “string field” displaying only the classical fields out of the minimal
BV spectrum of the Proca theory, along with an auxiliary field.®> The Grassmann parities

and ghost numbers of the field components are all equal to zero.

3The complete minimal BV spectrum is obtained by relaxing the condition G |[¢p) = 0, see for instance
[23, 24].
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3.3 Coupling to electromagnetism

3.3.2 Consistent electromagnetic coupling

The coupling of the worldline to an Abelian background field A, (z) in spacetime (with

coupling constant q) is achieved by covariantizing the BUSY constraints as follows:
L —a'm,+ Bm, L—a'm,+ PBm, (3.3.19)
where the covariantized momentum 7, with coupling constant ¢ is defined as usual by
Ty = Dp— qA, . (3.3.20)

It becomes the covariant derivative in the coordinate representation, 7, = —i(0, —igA,) =
—1D,,. The new constraints do not form a first class algebra any more: while the BUSY

charges do commute into a possibly deformed Hamiltonian

[L,L] = 7+ m* + a"a"F), = H_1ps, (3.3.21)

where we have denoted [r,,7,] = —[D,, D] = iqF,, =: E,,,, we find that the remaining

commutators read
By 3 ; 5
[L, Hyp| = ia"d"F,, + §CWFW7TV + %d”a”a“ﬁquy , (3.3.22)
_ 3 3 ' 3
(L Hyp] = i6#0" Fy + S Fyun” + %d”a”d”ﬁuﬂw , (3.3.23)

with 6,F,, = i[r,, F,,], and they do not allow for a suitable redefinition of the constraints
to form a first class algebra. Since the definition of a nilpotent BRST charge (1.2.14)
relies on the latter, we expect that the corresponding BRST charge, defined from (3.3.2)
by substituting the covariantized constraints, fails to be nilpotent. This indicates an
inconsistency of the interacting worldline theory at the quantum level.

We aim to “deform” the covariantized BRST operator, in order to define a nilpotent
one. With the BUSY charges given as in (3.3.19), we make the ansatz

Qu =cH,+CL+CL—2CCb (3.3.24)
=: cH, + S, +CBm +CmfB3 — Mb , (3.3.25)

with a deformed Hamiltonian
1 -
Ho= 3 (7r2 +m? o+ 2mﬂd“FW) (3.3.26)

that contains a non-minimal coupling with constant x to be conveniently fixed, and the
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3.3 Coupling to electromagnetism

shorthand notation

St = otC +a"C, M =2CC. (3.3.27)

Thus, let us compute:

2 v M 2
Q% = [H,, S*n,] — MH, + S*S"m,m, + - m (3.3.28)
M = M _ _

=c|H,,S"m,]| — j(ﬂ,ﬂr“ + 260"a" F) + 7(77“” + ot — ota” )T, (3.3.29)
where we used S*S” = M /2 (77’“’ +ava* —a“@”). Denoting S* = ata” —a”a*, we obtain

2k +1

Q% = c[H,, S"n,] — MS*™F,, (3.3.30)

In general, this is not zero, except for the trivial case of vanishing field strength, which
manifests the inconsistency of coupling massive spin s particles, with generic s, to an elec-
tromagnetic background. This is also the case for massless particles, as already discussed
in [29]. Even if we cannot define a nilpotent BRST charge on the whole Hilbert space, we
can restrict its action to a specific subspace and study the cohomology there. In fact the
deformed BRST charge still commutes with the occupation number (3.3.9). Restricting
the occupation number to be s < 1, the nilpotency condition simplifies: if there are two or
more annihilation operators in Q%, they annihilate the physical wave function for s = 0, 1.

Thus, the squared BRST charge in this subspace reads

Qz%l‘s:og = c[Hy, 5"m,] ‘s=0,1

e -~ o (3.3.31)
= _E (6MFM SV + 22(1 - /f)FH 7T,uSl/ - KkSYS ﬁéVFaﬁ) ‘s:O,l ’

For the s = 0 sector, this expression is automatically zero regardless of any condition
on the background electromagnetic field, as this operator contains destruction operators
sitting on the right that annihilate the s = 0 wave function (recall the expressions for
the operators S* and S*). Physically, this expresses the fact that spinless particles can
be consistently coupled to off-shell Abelian background fields. As for the massive spin-1
sector (3.3.14), using

SYSP7 1 = C(nPa’ —n’a’), (3.3.32)

the previous equation further simplifies to
il = gc(a”c_ — a"C)o"(0uAy — 0,A,) | (3.3.33)

having set k = 1 to achieve this result: then, nilpotency of the deformed BRST charge
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3.4 Effective action in electromagnetic background

requires the background A, (z) to be on-shell, i.e. it satisfies Maxwell’s equations
!
oMF, =0A,—0,(0"A,) =0. (3.3.34)

This is enough to prove the consistency of the coupling, since, provided the background
satisfies the Maxwell’s equations, in the subspace with s = 1 we can define a nilpotent
BRST charge for the interacting theory. Then, the usual cohomology of this operator can
be exploited to define physical states and observables.

Let us notice that the mass does not obstruct the nilpotency as it does not enter in
the squared BRST charge, namely, it does not seem to carry substantial differences with
respect to the massless case. Therefore, with worldline techniques, coupling massless spin-
1 particle to an Abelian U(1) background seems to not show obstacles. However, from
QFT, we know that massless charged spin-1 particles are inconsistent due to the breaking
of their own gauge invariance by the electromagnetic coupling. How the no-go theorem
about massless charged particles [9] appears from a worldline perspective is at the moment
unclear to us.

For general s, despite the mass m does not explicitly enter in the BRST algebra, it may
obstruct the nilpotency for higher-spin particles, starting from the spin-2 case as discussed

in [24] for the gravitational coupling.

3.4 Effective action in electromagnetic background

Let us employ the worldline model to compute the one-loop effective action induced by a
charged spin-1 particle in a constant electromagnetic background.

The worldline representation of the effective action is derived by following the same
approach as in the free case (cf. Section 3.2), which in particular determines the overall
normalization of the path integral. Now, the constraint’s algebra of the interacting world-
line theory is not first class and the classical system is not a gauge system. However, we
have seen that a BRST charge can be defined in the s = 0,1 subspaces, thus, an appro-
priate way of thinking about the gauge-fixed path integral is to consider it as describing a
quantum BRST system from the beginning, not as being derived from a gauge invariant
classical theory.

We treat the s = 0 and s = 1 cases simultaneously. This approach allows for a direct
comparison, with the spinless case serving as a check on the novel spin-1 contribution
within the first-quantized framework.

As the interacting worldline action, we take the covariantized version of the free ac-

tion in Euclidean configuration space (3.2.4) with covariantized constraints (3.3.19) and

62



3.4 Effective action in electromagnetic background

deformed Hamiltonian H; (3.3.26),

1

Selz, A Al = J

1 ) -
dr [2— (T + 1aa + iud)2 + o'y, + BB+ g (m2 + 2iqoz“o_/’FW)
0 e

(3.4.1)
+ufm + afm + ia(J — c) — z'qA“iH] )

The gauge-fixed version (cf. (3.2.6)), factoring out the m?T — icf constant term, reads

Sg| ;\-A]—fd LA var (50 (L 1i0) +2iqTE, Y+ B 4 i B

elz A A] = | dr | o —ig A+ o { O | -+ iqT'F,, | & o T
(3.4.2)

We restrict our analysis to four spacetime dimensions and consider a constant electromag-
netic field as the on-shell background. Under these conditions, we derive the one-loop
effective action of the Euler-Heisenberg type induced by a massive spin-1 particle. This
effective action is given by the path integral on the circle of the gauge-fixed action and
takes the form:

«dT T 46
I'[A] = J ?emQTf . e’ Det (0, —i0) Det (0, + i0) J DX e SelXXAl , (3.4.3)
0 0 7T

with measure in moduli space and determinants already fixed by the free case, and the
CS coupling fixed to ¢ = % + s. Recalling the coordinate split in (3.2.26), we use the
Fock-Schwinger gauge around z for the background field, i.e.

(x —Z2)"A,(x) =0, (3.4.4)

to express derivatives of the gauge potential at the point Z in terms of derivatives of the
field strength tensor

1
A (z+1) = §t”FW(:E) + ..., (3.4.5)

where the higher-derivative terms hidden inside the dots vanish since we focus on the
constant electromagnetic background case. Then, the path integral becomes Gaussian,

and it simplifies to

—m2T 2w :
Jdﬁl J dT’ e J d9 &7 i(3+9)0 4 gin? (Q) Dt ¢~ Stz AA]
(4rT)? ), 2« 2/ Josc (3.4.6)

DaDac™ %A | pgpeSsl=Al
PBC PBC

where we factored out the normalization of the free particle path integral, and where we
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3.4 Effective action in electromagnetic background

defined
. (1 , . R d
Si|z, A A] = ] dr ét“ALIEt , with Aig = _ﬁ(s’“’ﬁ = zqFWE , (3.4.7)
A v _ . d .
Salz, N A] = J dro*AWa” | with Al =4, <E + 29) +2iqTF,, ,  (3.48)
. r _ d
Sslz,A] = | drpAPj with A®) = =+ i6 | (3.4.9)
J T

in order to highlight the three differential operators whose functional determinants have to
be computed as a result of the path integration over the variables z(7). The determinant
of the last operator above was computed in (3.2.33), while the first two involves differen-
tial operators acting now on the space of four-vector fields with boundary conditions as
indicated in (3.4.6). The result for the determinants are:

0y _ sin(¢qT'F)

Det (A") = det <—qTF , (3.4.10)
Det (A®) = det [22’ sin (21 + qTF)] , (3.4.11)
Det (AW) = 2isin (g) : (3.4.12)

To derive these results, let 1 denote the identity matrix and F the Euclidean field
strength tensor with components

F4i = _ZEz Fij = EijkBka 27] = 17 27 3. (3413)

Then, for the first functional determinant (3.4.7), since we factored out the normalization

of the free particle path integral, we have to compute

— 2T dr? dr
Det’ (—5-51) Det' (L1)

27 dr2

Det'( — %551 —igF L) Det’' (L1 + 2igTF)

(3.4.14)
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3.4 Effective action in electromagnetic background

hence

Det’( _ %5_7_221 — z’qF%) _ det 1—[ 2minl + 2iqTF

2 .
Det’ (—57421) neZ\{0} 2min
(¢TF)? (3.4.15)
= det (1_[ (1 — a2
n>0
sin(¢TF)
¢ ( TF )~

where we have taken into account the Dirichlet boundary conditions that exclude the zero

mode. The second functional determinant (3.4.8), regularized,

d , Det ((s& +i60) 1 + 2igTF)
D — 1+ 2i¢TF | — dr 4.1
et ((dT + 19) + 2iq ) Det’ (L1) , (3.4.16)

is computed as

Det (4 +0) 1+ 2iTF) (Hnez i(2mn + 0)1 + 2iqTF>

Det’ (£1) [Lez\j0; 22710
= det (z(@l—i—QqTF)g(l—W (3.4.17)

0
= det [22’ sin (51 + qTF)] .

At this point, our final expression is

_(*dT e™T ., (sin(¢TF
I[A] = f 47 L i e (%) L(T, A)|, (3.4.18)

where all that is left to do is to perform the modular integration in 6 for a given value of

spin s

749 s 0 0
1(T, A) = J iG99 in (5) det™! [2¢ sin (51 + qTF)] . (3.4.19)

0 2mt

It is convenient to recast the determinants above by diagonalizing the field strength F. Its

eigenvalues are

Al - K_ y AQ - ZK+ B A3 == _K_ , A4 == _ZK+ B (3420)
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3.4 Effective action in electromagnetic background

having defined K4 = \/ VF?+ G? £ F in terms of the Maxwell invariants

1 B* - E? i L
F=fwt" =—37—, = —iFWF“” =FE-B. (3.4.21)

Therefore, we find

det™? [Qi sin (21 + qTF)]

1. (0 (0 (0 (0 -
=—|sin|{ = —qTK_|2isin| = —iqT K, )2isin| =+ q¢TI'K_)2isin| =+ iqT K,

21 2 2 2 2

= 111 [cos?(0) — cos() (K, + K_) + /CJCf]_l ;

(3.4.22)

and

det—12 (Sin(qTF)> (¢TK_)(¢TK+) ¢°T*K_Ky

¢IF )~ sin(qTK_)sin(igTC+)  sin(K_)sinh(K,)’ (3.4.23)

where IC; = cosh(2¢TK ;) and K_ = cos(2¢T K ). The modular integration in the Wilson
variable w = e~ is then

L) = §

Y-

dw 1 w—1
=2miwstt (1 + w? — 2wky) (1 + w? —2wk_)

(3.4.24)

We now have all the ingredients to investigate the effective action T'[A] = {d*z L] A] for
spin s = 0, 1. In particular:

(i) the scalar case s = 0, which corresponds to scalar QED, comes from the simple pole
at w =0,

1 w—1
Ih(T, A) = Res [J 0+ w2 —20k,) (1 5 w? = 2w,€)]w0 =—1, (3.4.25)

hence it correctly reproduces the celebrated Weisskopf Lagrangian [11]

Lo o[Al=-| — ; (3.4.26)

o T (4nT)? sinh(¢T K )sin(¢TK_)

F AT e=m™*T ¢PT*°K K.,
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3.4 Effective action in electromagnetic background

(ii) the massive spin-1 case instead arises from the pole of order two at w = 0,

1 w—1
Ii(T,A) = Res | — 3.4.27
(T, 4) eS [wQ (1+w2—2wlC+)(1+w2—2wlC_)]w_0 ( )
d w—1
_ 4 — 19K, +K_
dw (1 4+ w? —2wk,) (1 +w? —2wK_) |, _, (s +K)
(3.4.28)
leading to
©qr e ™7 PT?°K_K,
LAl = — 1 —2cosh(2qTK,)—2 2qT K _)||.
114] JO T (4nT)2 sh(qTK ) sin(qT ) |~ 200sh(2aTK ) = 2cos(2qTK-)]
(3.4.20)

This last expression corresponds to the Heisenberg-Euler effective Lagrangian for a massive
charged vector boson in a constant electromagnetic background. It was originally derived
in 1965 by Vanyashin and Terent’ev, starting from a quantum field theory of vector elec-
trodynamics [14]. In contrast, our derivation employs a self-consistent first-quantized
approach, which offers a more direct and transparent computation than the conventional
second-quantized formalism. This constitutes the main result we set out to obtain using
the worldline method.

This approach offers a natural framework for exploring possible extensions. For in-
stance, one could interpret our final expression as the result of a locally constant field
approximation [55] and investigate corrections by systematically including higher-order
terms in (3.4.5). This would likely involve following a procedure similar to that of [56]
for performing perturbative corrections from the worldline, ultimately leading to the de-
termination of the generalized heat kernel coefficients computed in [57, 58]. We leave this
analysis to future work.

Let us report the perturbative expression given by an expansion in the particle’s electric
charge q

AT e T 7
Lia[Al=| —=———= | -3+ - T*ta[F}
1[ ] JO T (47TT)2 ( 4q [ /j,l/]
. o7 (3.4.30)
Arpd L 20 2 4rpd 4 6
+ 354 Tt [F,,] — 107 T°tr[F,, ]+ O(q )) )
The first two terms give divergent contributions, the first one being an infinite vacuum
energy, while the second one corresponds to the one-loop divergence in the photon self-
energy, and they should be renormalized away. On the other hand, the last two terms are
finite and give rise to the quartic interaction’s contributions once integrated in the proper

time. Thus, the leading terms of the renormalized effective (Euclidean) Lagrangian, with
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3.4 Effective action in electromagnetic background

v Y
Y Y

Figure 3.2: Feynman diagrams representing the first terms of the expansion, in the coupling
constant, of the one-loop effective action induced by the vector boson W in a constant
electromagnetic background

the tree-level Maxwell term included, are expressed as

1 q ) 27
L£ren[Al = = F,, F™ —(F, ,F""M? - —_FWFE FFrPE 3.4.31
sailAl = P ™+ o5 (32( wE) =05 p “) + (3.4.31)

which shows the leading vertices for the scattering of light by light.
An overall minus sign arises upon continuation back to Minkowski spacetime. Inserting

this sign, the Lagrangian in Minkowski spacetime can be written in the more explicit form

1 q ) 27
£ [Al = —=F,, F™ ——(F, F"™? + —FM"WF, FFPF,
8—1[ ] 4 12 + 167T2m4 ( 32( M ) + 40 P H) + 3 4 32
o i’ c o (3.4.32)
=SB = BY) + (29(E2 — B2 1 108(E - 3)2) ¥

where, for ease of comparison with the literature, we have introduced the fine-structure

q2 . . .
constant a = - in natural units, and used the relations

F,F* =2(B*~ E*, FMWF,F’F,, =2E®— B*?+4(E-B)?, (3.4.33)

to obtain the second line.
It may be interesting to compare this result with the more widely known results for

the spin-0 and spin—% cases, which we include here for convenience:

4 16m2m* \ 288
1 = ?

— _ EQ—EQ
2( )+360m4

1 1 1 1
L A] = —=F, P+ — L ( (F F)? + %F“”FVPF""FW) b
(3.4.34)

(7(52 B2 A(E- é)?) .
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and:

1 7 1 7
LAl = —=F,, F™ F,,F"")? + —F"F, FFF,
Al 4" * 167r2m4( 32( et 90 g “) " 4
X 02 (3.4.35)
— —(E* - B? —(52—1}?“ 75-52)
5 )+ (¢ P +1(E-B7) +

They arise from the Weisskopf and Euler-Heisenberg effective Lagrangians, respectively.

3.5 Pair production

It is well-known that if the effective action in the presence of a classical background field
assumes a non-vanishing imaginary contribution, this has the physical interpretation of
an instability of the quantum field theory vacuum. In turn, this signals the appear-
ance of states with a non-vanishing number of particles, namely, a production of particle-
antiparticle pairs takes place. This is the essence of the so-called “Schwinger effect” [5].
Quantitatively, the Minkowskian effective action I'y; is related to the vacuum persistence
amplitude by

{0yt |0y = €™ | (3.5.1)

and thus to the vacuum persistence probability
[Out O] * = e721m I (3.5.2)
from which the pair production probability is given by
Ppair i= 1 — e 2 x 2Tm Ty . (3.5.3)

In this section, we compute the rate for the Schwinger pair production of massive charged
spin-1 particles in a constant external electric field E. The Euclidean effective action,
from (3.4.29), with K, = 0* and K_ = E, with F being the modulus of the electric field,

reduces to -
@ dT e ™ qTE
diz —1—2cos(2¢qTE)] . 5.4
J J (4nT)? sin(qTE)[ cos(24TE)] (3.5:4)

Apparently, it is a real quantity, but the presence of poles in the T-integral signals that

this is not the case. To extract its imaginary part, we go back to Minkowski space via a

Wick rotation, using T' — T, L — —L, to obtain the Minkowskian effective Lagrangian

£[A] = L ) d?T&;;)Q (—3815(61;? gy + 4aTE) sin(iqTE)) . (355)

4Let us observe that K, = 0 is a removable singularity of the effective Lagrangian (3.4.29).
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3.5 Pair production

For certain values of proper time, the integral develops poles in the T-plane, which in turn
produce an imaginary part of the Minkowskian effective action. In fact, let us consider

the complex conjugated Lagrangian

P L iqTE oo
L*[A] = L T (4nT)? (‘ Sn(iqTE) + 4(iqTE) sm(quE)) (3.5.6)
0 g ¢ im*T iqTE
T - 4(iqTE) sin(iqTE &
J w T (47T)? ( sin(iqT E) + 4(iqT'E) sin(ig )) ; (3.5.7)

where in the second line we have changed variable T" — —T'. The imaginary part is then

given by

I c[a] = LA L7141 1 r‘” AT oin®T (_ iqTE

= — —_— ———— + 4(iqTE) sin(iqT E

2i % ) T @D \ Csmigrmy T AT E) sinlia )>
(3.5.8)

Closing the contour in the lower half-plane, it is determined by the residues at the poles

of the first integrand function, located at

T=——, 0<neN,. (3.5.9)

Let us notice that they correspond to the zero modes of the differential operator Aﬂ?, (3.4.7)
in Minkowski spacetime except for the value n = 0, which indicates a UV divergence as
discussed at the end of the previous section. For these values of the proper time T, this
operator has a non-trivial kernel, hence a zero functional determinant.

Evaluating the following residues

Res | —3

m27rn
e T 4TE 3 e dE
T(47T)? sin(iqTE) o

the final result is

mnrn
qFE

Im £[A] = (3.5.11)

0 16
16 3 Z n-‘r

In conclusion, the rate for massive spin-1 particle-antiparticle pair production in the
presence of a constant electric field per unit of volume and time P := P/AVAT can be

written as

m27rn

Prai ~21m£[A]—i 2i ”+1e "~ (3.5.12)
pair ™ - 8 ; LJ.

n=1
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or, using the polylogarithm of order 2 °, in compact form

3
ol

m27r
7Dpair ~ QE)2 Liy <_e ak ) . (3513)

As already noted in [14], this probability corresponds to three times the probability of the

production of pairs of scalar particles with mass m.

3.6 O(2) spinning particle analysis

With the aim of completeness and to compare with our previous method, we present here
an alternative first-quantized derivation of the same results. We make use of the massive
version of the spinning particle model with N = 2 (cf. Subsection 2.1.2), which contains

fermionic oscillators.

Worldline action For convenience, let us rewrite the main formulae. The action is
S = de [puj:“ + i&,ﬂb“ +i00 — eH — iYQ — ixQ — aJC] , (3.6.1)
with first class constraints

1 _ _ _ _
H=§(p“pu+m2), Q=1"p,+0m, Q=dvrp, +0m, J.o=P, +0600—c.
(3.6.2)

The main difference with respect to the bosonic theory (2.2.3) consists of the presence
of fermionic oscillators employed to describe the spin degrees of freedom: their Poisson

brackets read
{wuaﬁy}PB = _inw/ ’ {eaé}PB = —1 ) (363)

and will be translated into anticommutation relations upon quantization.

The constraints’ algebra, the N = 2 supersymmetry algebra in (0+ 1)-dimension, reads

{Q.Qps = —2iH , {Q,J.}ps =iQ, {Q,J}ps=—iQ. (3.6.4)
5The polylogarithm function of order s is defined by
&L o
LIS(Z) = —
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3.6 O(2) spinning particle analysis

Under a gauge transformation generated via Poisson bracket by
V =eH +ifQ +i£Q + o ., (3.6.5)

the phase space variables transform according to

St = eph + il P! + i Y, (3.6.6a)
6p, = 0, (3.6.6b)
oPH = —Ept +iayt (3.6.6¢)
S = —Ept — it (3.6.6d)
00 = —&Em+iad (3.6.6¢)
60 = —&m —ial (3.6.6f)
while the gauge fields
Se=¢é+2iYE+ 2y E, (3.6.7a)
Sy = & —iaf + iay | (3.6.7b)
5% = € + ia€ —iay (3.6.7¢)
da =a . (3.6.7d)

Worldloop path integral and DOF To construct the path integral over the circle and
compute the number of degrees of freedom propagated in the loop, we choose antiperiodic
boundary conditions (ABC) for the fermionic fields and periodic boundary conditions for
the bosonic ones. Similarly to the bosonic case, the gauge symmetries (3.6.7) with the

chosen boundary conditions allow us to set
— (e, x,a) — A= (2T,0,0,0) . (3.6.8)
After Wick rotating, the gauge-fixed Euclidean action in configuration space is
Sg[z,A] = de [i# ot (iaw — i %) W+ 6 (i - ms) 0 — iqbc] . (3.6.9)
AT dr dr
and, after integration, the path integral is written as

©Ar dPz
F=—| —e™T | ——_DoF(p,D 6.1
J;] T € J (47TT)D/2 0 (p7 ) 9 (3 6 0)

72



3.6 O(2) spinning particle analysis

with the number of degrees of freedom given by

27 D—-1
dd /i
DoF(p, D) = f de o1z 4p)e (2 oS ?) : (3.6.11)
0 2m 2
In the above expression we have set the quantized CS coupling to ¢ = % +p. The cosines
in this expression arise from the integration over the fermionic phase space variables and
from the Faddeev-Popov determinants associated with the SUSY ghosts, which are now

bosonic. Its calculation leads to

DoF(p, D) = (Dp_ 1) : (3.6.12)

It corresponds to the number of degrees of freedom of a massive p-form in D spacetime

dimensions.

BRST quantization Upon quantization, the “matter” Hilbert space H = L*(R?) ® F,
with F the Fock space with vacuum |0) defined by

(¢",0)10) =0, (3.6.13)
consists of the states
D 0
@) = > (j@;) + @)
=0 (3.6.14)

Do/ 1
=2(ﬁ%hwww«wwm+ﬁéﬁw@wwwwwm)
NG .

with ®,, ., (z) and @fﬁl),,,uj (z) rank-j antisymmetric tensors. Proceeding with BRST
quantization along the lines of [21-24] to build a positive-definite Hilbert space, one en-

larges the phase space with the ghost pairs
{bc}=1, [B,C]=1, [B,C]=1, (3.6.15)

associated with (H,Q, Q) respectively. Note that the pairs associated with the SUSY
charges are now bosonic. Their ghost number assignments are gh(c,C,C) = 1 and
gh(b, B, B) = —1. From these operators, the full Hilbert space Hpgrgr is then constructed
as described in Subsection 3.3.1 for the bosonic case. The nilpotent BRST charge is

Q=cH+CQ+CQ—-2CCh. (3.6.16)
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3.6 O(2) spinning particle analysis

Once again, the ghost number operator G' = ¢b + CB + BC and the occupation number
operator [J, = wuzﬁ“ + 06 + CB — BC — p are introduced, with the choice for the CS

coupling

c=—D;1+p+1. (3.6.17)
They satisfy
[G.J)=0, [G,Ql=2, [F,Q]l=0, (3.6.18)

and are used to define physical states as those states in the cohomology of Q with vanishing
ghost number and occupation number (as measured by J,). The physical states at p =1

are contained in the wave function

[y = W, ()" |0) — ip(2)0 |0) + f(x)cB|0) (3.6.19)

where, requiring [¢) to be Grassmann-odd, the Grassmann parities and ghost numbers of
the component fields W, (x), p(x), f(z) are all vanishing. The field equations, obtained by
computing Q |[¢)) = 0, are found to be

O -m*)W, +2id,f =0, (3.6.20a)
@O—m*)p—2imf=0, (3.6.20b)
MW, +mep + 2if =0, (3.6.20c)

while the gauge symmetries, arising from § [¢) = Q|A), |A) = —ip(x)B|0), are given by
W, =0, dp=—mp, Of= %(D —m?)p . (3.6.21)

As in the bosonic case, the auxiliary field f(z) can be eliminated and subsequently the
gauge symmetry of ¢(z) may be used to set it to zero. Hence, the cohomology at p = 1
coincides with the one obtained from the bosonic worldline model, with W, (z) being the

massive spin-1 field.

Interacting theory The coupling with the background field A, (z) is realized by
Q- Y, +0m, Q—Y'm,+0m, H— % (7° + m? + 2igF,"Y") . (3.6.22)
The squared deformed BRST charge now reads
Q4 = —%c (CyP — CPP) 0MF,y — ic CYPpPp¥ 0, F,, + ic CYP Y 2P0, F,,

] ] ’ (3.6.23)
+ O By + CPPY Fyy — CCWMY Fyy
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3.6 O(2) spinning particle analysis

In general, it is not zero. However, when its action is restricted to the subspace p = 1, see
(3.6.19), all but the first term vanish

Ql,, = —%C (CyP — Cy#) " Fyy - (3.6.24)

Once again, we find that nilpotency is achieved if the background electromagnetic field
A, is on-shell.
Massive p—forms with p > 1 do not admit electromagnetic coupling within this frame-

work.

Effective action in electromagnetic background The path integral for the interact-
ing theory in the p = 0, 1 sectors is constructed analogously to the free theory. Considering

the constraints (3.6.22), the gauge-fixed action is

Skelz, 5\; Al = JdT[%i‘Q —iqA"z, + Y (%5,“, — 10y + 2iqTFW> Y

+9(%—i¢)9—i¢c].

Thus, taking a constant background electromagnetic field in the Fock-Schwinger gauge
(3.4.4) and setting D = 4, the path integral reads

0 21 A
F[A] = — fd‘%?;f d_TemQTf % ei(—%-i-p)(b 1(30872 (?) Dt e*St[z,A;A]
o T o 2m 4 2 ) Josc

(3.6.25)

(3.6.26)
DYDye oA | pgpge Sl
ABC ABC
where
A I , ; 1 . d
Si[z, A\ Al = JdT §t“A§“),t ,  with Aﬁg = _ﬁ%@ — zqFWE : (3.6.27)

. _ d
Sylz, A A] = j dr AWy with Al =4, (d——ms) +2iqTF,, , (3.6.28)
T

So[z, A] = de NS with A = % —ig . (3.6.29)

Evaluating the functional determinants, we get

AT ¢ T sin(¢qTF)
MA] == iz ] = det " | —=—=) L,(T, A 6.
4] J xfo T (47T)? ¢ ( qTF ) o(T,A), (3.6.30)
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3.6 O(2) spinning particle analysis

with
2T
do
I(T,A) = J do el(=3+2)¢ g cog~! (f) det [2 cos <—?1 + qTF)] : (3.6.31)
. 21 2 2
Diagonalizing the field strength F,,, cf. (3.4.20)-(3.4.21), the modular integration in the

Wilson variable z = e * becomes

2)\2 2 9
- L L T )

—27¢ 2Pl z+1
v—

. (3.6.32)

where K, = cosh(2¢TK ) and K_ = cos(2¢TK ). Deforming the contour to avoid the
pole in z = —1, we find:

(i) for the p =0 case

1(1 H2 1 22(1 2 _ 422 _
IO(T,A)zReS[;( + 2%)% + 22( +ZZ)S_,C1++IC )+ 422K, K ] 1. (3633)
z=0

(ii) for the massive 1-form case, p = 1

2\2 2 9
I,(T, A) — Res [ (14222 4221+ 22)(Ky + KO) +42 /c+/c]
z=0

22 z+1
d (1+22)2+22(1+ 23K, +K2) + 422K, K

dz z+1

=—-142(K, +K).

(3.6.34)

Thus, we have reobtained the same results found in previous sections. In particular,
setting p = 0 we get the usual Weisskopf effective Lagrangian, whereas for p = 1 we
obtain (3.4.29).
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Chapter 4
Conclusions

In this thesis, we have described a charged, massive spin-1 particle through worldline
actions with bosonic or fermionic oscillators. The actions enjoy the gauge symmetries
necessary to ensure unitarity at the quantum level, thereby leading to a positive-definite
Hilbert space for physical states. Precisely the physicality conditions encode the field
equations for particles of a given spin, in the different sectors of the theory’s spectrum.
The projection onto the subspace containing the relevant degrees of freedom is achieved
by gauging the oscillator number operator, appropriately shifted by a Chern-Simons coup-
ling. Using a BRST analysis, we derived consistency conditions for the coupling of the
spin-1 sector to an electromagnetic field: in both the models, the field must satisfy the
vacuum Maxwell’s equations. For such configurations, the path integral of the interacting
worldline action can be constructed. By contrast, the spin-0 sector admits coupling to ar-
bitrary electromagnetic fields without requiring any conditions. As for the other sectors,
corresponding to higher-spin particles (in the bosonic model) and massive p-forms with
p > 1 (in the fermionic model), they do not admit electromagnetic couplings within our
worldline framework.

The one-loop effective action induced by the charged, massive spin-1 particle in a
constant electromagnetic background is obtained by computing the worldline path integral
on the circle. From the effective Lagrangian, we derived the production rate for spin-1
particle-antiparticle pairs in a constant electric field. Our results, derived entirely within a
first-quantized framework and independent of any second-quantized formalism, fully agree
with the QFT result originally obtained in [14].

The work presented in this thesis and collected in [30] can be extended to include
effective interactions that account for the potential non-point-like nature of the particle
under consideration, as already explored in [30]. Also, more general field configurations

can be considered by employing worldline instanton techniques [31-35].
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Chapter 4. Conclusions

Our findings contribute to the programme of constructing worldline formulations of
QFT, based solely on first quantization principles, as has been successfully carried out for
Yang-Mills [20, 36], gravity [21, 22, 24, 59-62], and scalar theories [63].
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