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Abstract

A worldline formulation for charged, massive spin-1 particle is presented through two

distinct models. First, a model with bosonic oscillators on the worldline is considered.

We extend it to describe massive integer spin particles and, via both Dirac and BRST

quantization, the free Proca field theory is reproduced in the spin-1 sector. The coupling

of the model to an external electromagnetic field is consistent only for on-shell backgrounds,

as determined by the nilpotency of the BRST charge. For such configurations, we perform

a path integral quantization of the worldline action for the charged spin-1 particle on the

circle. This yields the one-loop effective Lagrangian for a constant electromagnetic field

induced by a charged massive vector boson. From the Lagrangian, we quantify vacuum

instability by computing the pair production rate for massive vector bosons. Our results

confirm previous findings obtained in quantum field theory. Finally, for comparison, we

repeat the analysis using the standard N � 2 spinning particle model, which contains

fermionic worldline degrees of freedom, and obtain identical results.
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Introduction

The Worldline Formalism [1, 2] provides a first-quantized approach to Quantum Field The-

ory (QFT). Its first appearance can be traced to the early 1950s, in the appendices of Feyn-

man’s pioneering papers on Quantum Electrodynamics (QED) [3, 4] and in Schwinger’s

seminal work on vacuum polarization [5]. In these works, the spinor and scalar QED

S-matrix is represented in terms of path integrals of relativistic particle actions. With

the introduction of Grassmann variables and the advent of supersymmetry (SUSY), the

corresponding Lagrangians were identified as that of a supersymmetric theory defined over

the worldline of the particle. The interest in this formalism increased with the development

of string theory. Within the study of string scattering amplitudes in the infinite tension

limit to recover gauge theories scattering amplitudes, the work by Bern and Kosower [6, 7]

provided master formulae for one-loop n-gluon amplitudes which required no knowledge

of string theory at the end. An independent derivation of the “Bern-Kosower” rules was

provided by Strassler [8] through the path integral on the circle of a suited worldline the-

ory. Subsequently, a systematic formulation of different QFTs based on the quantization

of various relativistic particle actions was developed.

In this work, we bridge the gap for a charged, massive vector boson. While massless

spin-1 particles cannot exist in a theory with a Lorentz-covariant conserved current [9],

and therefore do not admit electromagnetic coupling, charged massive spin-1 particles are

consistent, as exemplified by the W� bosons in the Standard Model. Hence, it should

be possible to describe them within a worldline approach. We aim to find a worldline

representation of this theory and compute the one-loop effective Lagrangian the charged

vector boson induces in a constant electromagnetic background. Euler and Heisenberg

derived an analogue Lagrangian for electron loops [10], and shortly thereafter Weisskopf

extended it to include massive charged scalars [11] (see [12, 13] for a review of Euler

and Heisenberg type Lagrangians and [1] for their derivation via worldline techniques).

Starting from a quantum field theory of vector electrodynamics, the effective Lagrangian

induced by charged, massive spin-1 particles was obtained much later [14]. We reproduce

it using worldline techniques. The effective Lagrangian encodes information about vacuum

3



instability, enabling the computation of the pair production rate.

In the first-quantized approach, the worldline theory is a one-dimensional sigma model

with values on a target space. The latter is the ordinary spacetime with the addition of

auxiliary variables that parametrize the spin degrees of freedom. After quantization, the

model reproduces the field equations of a particle of spin s in spacetime. Traditionally,

the additional variables are worldline fermions and, as we mentioned, the worldline theory

enjoys local N � 2s supersymmetries to ensure unitarity at the quantum level [15–19]. In

order to describe interacting QFTs, one couples the worldline theory to background fields.

Depending on the spin and type of background, this procedure may break the worldline

supersymmetry, leading to an inconsistent quantum theory. In recent works [20–24], BRST

quantization has been employed to determine the consistency conditions required for the

interacting quantum theory. These conditions restrict the class of admissible backgrounds

to on-shell configurations. For such backgrounds, the path integral formulation can be ex-

ploited, yielding the full propagator and the one-loop effective action of the corresponding

QFT.

We adopt a bosonic worldline model. It contains worldline bosons as additional vari-

ables to generate spin degrees of freedom [25–29], and is characterized by a “bosonic su-

persymmetry”(BUSY). The model analysed in [29] describes massless bosonic particles of

any spin. Therefore, we first extend it to accommodate a mass term and describe massive

particles. The latter are identified by the field equations encoded in the physicality con-

ditions for quantum states. We focus on the spin s � 0, 1 sectors, which are expected

to admit a consistent coupling to an external electromagnetic field. Through a BRST

analysis, for spin s � 0 we find a consistent coupling for any background, while in the

s � 1 sector, the consistency condition for the coupling, i.e. the nilpotency of the BRST

charge, requires the background to satisfy Maxwell’s equations. This allows us to compute

the one-loop effective action in a constant electromagnetic field through the development

of the path integral formulation. As expected, an imaginary part emerges, signalling a

non-vanishing pair production rate of massive vector bosons. Our results for the spin-1

sector [30], based on a first-quantized approach, reproduce the findings originally due to

Vanyashin and Terent’ev [14]. Also, the one-loop effective Lagrangian for a scalar particle

[11] is recovered, thereby providing an additional consistency check on our path integral

construction.

The same results are obtained using a fermionic spinning particle model, the N � 2

particle. It enjoys two local supersymmetries on the worldline and describes massive or

massless p�forms. As suggested in [19], the coupling to electromagnetism breaks SUSY.

Nonetheless, we consider the massive extension of the model and show, using again BRST

techniques, that a coupling to electromagnetism for massive spin-1 excitations is actually
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feasible, in a way analogous to the bosonic model, leading to identical results.

Our results provide a test of the self-consistency of the Worldline Formalism. We

believe our analysis can be extended to more general cases. For instance, one possibility is

to extend the particle model to include additional effective coupling to electromagnetism,

in order to describe a non-point-like particle, as suggested in [30]. Another is to consider

pair creation in a non constant-field, by exploiting worldline instanton techniques [31–35].

Finally, one could study scattering amplitudes within this formalism, as established in [20]

and investigated recently in [36].

This thesis is organized into four chapters. In Chapter 1 we review the classical and

quantum theory of constrained Hamiltonian system, since worldline theories describe sys-

tems of this type. The correspondence between gauge theories and first-class systems

is established, and different quantization schemes for constrained systems are discussed.

Chapter 2 treats worldline models, both fermionic and bosonic. The general formulation

and specific examples are presented for the free case. In particular, we introduce the exten-

ded version of the bosonic model to describe massive particles with integer spin. We then

address interacting worldline theories and the case of interactions that spoil the algebra

of the symmetry group. At the end, we examine the path integral formulation. Chapter

3 contains the main results. We concentrate on the s � 1 sector of the bosonic spinning

particle. The free field equations are derived, and the path integral is defined after a

gauge fixing procedure. To couple the model to a classical Abelian background, BRST

quantization is employed, showing that quantum consistency requires the background field

to be on-shell, i.e. to satisfy the free Maxwell’s equations. Thus, we compute, through

its worldline representation, the one-loop effective action in a constant electromagnetic

background, extract its imaginary part, and discuss the implications for Schwinger-type

pair production of massive spin-1 particles. Lastly, we reproduce the same results using

the N � 2 fermionic spinning particle. Chapter 4 concludes.
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Chapter 1

Gauge systems as constrained

Hamiltonian systems

All the fundamental laws of nature appear to be described by gauge theories. A gauge

theory is a theory in which physical quantities have a not-unique representation in their

mathematical formulation. The mathematical objects describing these quantities can be

transformed in a way that depends on the spacetime point in which the transformation

acts, without changing the physical quantity they represent. In the Hamiltonian formal-

ism, a characterization of these systems is provided by a particular type of constrained

Hamiltonian systems. In order to define a quantum theory that describes only the phys-

ical degrees of freedom of the gauge system, specific quantization procedures must be

employed. Our discussion here follows [2, 37, 38]

1.1 Constrained Hamiltonian systems

Let us consider a physical system with n degrees of freedom described, in the Lagrangian

formulation, by the coordinates q � pq1, . . . , qnq and Lagrangian Lpq, 9qq. The Euler-

Lagrange equations read

:qj
B2L
B 9qjB 9qi �

BL
Bqi � 9qj

B2L
BqjB 9qi , i � 1, . . . , n . (1.1.1)

If the matrix Mij :� B2L
B 9qjB 9qi

is not invertible, then there exist m � n � rankpMq vectors,
kplq � kplqpq, 9qq, l � 1, . . . ,m, in the kernel of M (for simplicity, we assume rank(M) a

constant function of pq, 9qq), and the general solution for :q, which provides the system of
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1.1 Constrained Hamiltonian systems

second-order differential equations is

:qpq, 9qq � :qspq, 9qq � λplqptq kplqpq, 9qq , (1.1.2)

where :qspq, 9qq is a solution of the inhomogeneous (1.1.1) and λplqptq arbitrary functions of

time. Thus, the solution of the equations of motion (1.1.2) contains an arbitrary depend-

ence on time, a feature that typically occurs in systems with gauge symmetries. We stress

that this is related to the non-invertibility of the matrix M , i.e.

det

� B2L
B 9qjB 9qi



� 0 , (1.1.3)

that defines a set of relations between the coordinates and the velocities. A Lagrangian

satisfying (1.1.3) is called a singular Lagrangian. In particular, if we move to the Hamilto-

nian description by introducing conjugate momenta pi � BL
B 9qi

, (1.1.3) implies that these

defining relations cannot be inverted to express velocities in terms of momenta. Hence, a

set of constraints between the phase space variables pq, pq must hold:

cαpq, pq � 0 , (1.1.4)

where cα, α � 1, . . . , A, constitutes a set of primary constraints, not necessarily inde-

pendent, that defines the submanifold of the phase space (primary constraint surface) on

which the dynamics of the system is restricted. The submanifold of the total phase space

on which the dynamics occurs is not necessarily a phase space itself, i.e. the restricted

symplectic form may fail to be symplectic. In order to describe the Hamiltonian dynam-

ics of a constrained system we must take care of the constraints (1.1.4) when we derive

equations of motion in canonical form.

Let’s consider the Legendre transform of L,

H � pi 9q
i � L . (1.1.5)

By varying the phase space coordinates pq, pq subjected to (1.1.4) (we now consider the

irreducible case, i.e. independent constraints), we obtain

dH � 9qiδpi � BL
Bqi δq

i � BH
Bpi δpi �

BH
Bqi δq

i , (1.1.6)

with δpi, δq
i tangent to the primary constraint surface, that is, the vector�BH

Bqi �
BL
Bqi ,

BH
Bpi � 9qi



, (1.1.7)
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1.1 Constrained Hamiltonian systems

belongs to the normal space of the primary constraint surface. The canonical equations

then read:

9qi � BH
Bpi � uα

Bcα
Bpi , (1.1.8)

9pi � BL
Bqi � �BHBqi � uα

Bcα
Bqi , (1.1.9)

along with (1.1.4), where uα are arbitrary coefficients, which may depend on the phase

space point. Such a set of equations describes the dynamics of the constrained system. It

can be derived from a Hamiltonian of the form

HT pq, p, uq � H � uαcα , (1.1.10)

called the total Hamiltonian, and the action functional

Srq, p, us �
» t2

t1

�
9qipi �HT

�
. (1.1.11)

The role played by the u’s coefficients is exactly that of Lagrange multiplier for the con-

straints (1.1.4). Notice that the Hamiltonian HT , defined on the whole phase space, when

restricted to the primary constraint surface is equal to H: HT � H. The symbol “�”
means that we are considering quantities evaluated on the primary constraint surface and,

we say that HT equals H weakly. Given the evolution determined by the Hamiltonian HT ,

consistency of the construction requires the primary constraints to be preserved along the

physical trajectories. For each of the phase functions cα, the following must hold:

9cα � tcα, HT uPB � tcα, HuPB � uβtcα, cβuPB � 0 , (1.1.12)

with Poisson bracket t�, �uPB defined as

tF,Gu � BF
Bqi

BG
Bpi �

BF
Bpi

BG
Bqi (1.1.13)

for any two phase functions F,G.

The conditions (1.1.12) can either impose a restriction on the u’s coefficients or they

may define equations that are independent of them, that is, they define a new set of con-

straints, called secondary class constraints. These must be preserved by the Hamiltonian

evolution as well, and iterating the consistency requirement above one can find all the

constraints that characterize the system. Notice that, except for the primary constraints,

all others require the use of the equations of motion to be identified. For this reason, we

adopt a distinct nomenclature to differentiate them. However, their role in what follows
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1.1 Constrained Hamiltonian systems

will be the same. We denote all the constraints by cβ, with β � 1, . . . , A,A� 1, . . . , B.

Having found all the constraints, the consistency requirements involving the coefficients

uα fix the latter to be equal to

uα � Uα � vaV α
a , (1.1.14)

with Uα a solution of the inhomogeneous (1.1.12) for each cβ, and vpaqV α
paq a solution, with

coefficients vpaq in the basis solutions V α
paq, of the homogeneous V α

paq tcβ, cαuPB � 0. Hence,

we have singled out the arbitrary part of the coefficients u (va) from the part fixed by the

consistency requirements (Uα). The Hamiltonian is rewritten as

HT � H � Uαcα � vaV α
a cα :� H 1 � vaca . (1.1.15)

Considering the v coefficients as arbitrary function of time, the general solution of the

equations (1.1.8) contains an arbitrary dependence on time, meaning that our mathemat-

ical framework has a certain degree of arbitrariness in the description of the physical state.

In fact, a physical state is given by the phase space point pq0, p0q, but the evolution of

such a state does not uniquely determine the values pq, pq in the future or in the past, due

to the presence of the arbitrary parameters v. On the contrary, we expect the equations

of motion uniquely determine the physical state at time t � t0 if we know the physical

state at t0, thus, the conclusion is that to a physical state corresponds several phase space

points. In particular, let us consider the evolution of the canonical coordinates q, for

instance:

qpt� δtq � qptq � 9q δt � qptq � ptq,H 1uPB � vatq, cauPBq δt , (1.1.16)

and compare two evolutions with two different values of the v coefficients,

q1pt� δtq � qpt� δtq � δtpv1a � vaq tq, cauPB � ϵa tq, cauPB . (1.1.17)

These coordinates, together with their respective conjugate momenta, must represent the

same physical state, their difference being proportional to the arbitrary parameters ϵa

and not being related to different initial conditions. Hence, the transformation generated

by the function vaca through the Poisson bracket does not affect the physical state, but

connect equivalent phase space points representing the same state. These transformations

are called gauge transformations and the v coefficients gauge fields. The equivalent classes

of points connected by gauge transformations are called gauge orbits.

To characterize such a system, we notice that the phase functions H 1 and ca satisfy

tH 1, cβuPB � 0 , tca, cβuPB � 0 , (1.1.18)
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1.1 Constrained Hamiltonian systems

for any constraints cβ. A function F whose Poisson bracket with every constraint vanishes

weakly is called a first class function; otherwise, it is called a seconds class function. It

follows that the Poisson bracket of two first class function is first class. The constraints

ca are called first class (primary) constraints (in particular, they define a complete basis).

Therefore, we conclude that first class primary constraints generate gauge transformations

(for this reason, we will call them also gauge generators). Since the Poisson bracket

of two first class constraints can contain first class secondary constraints, one sees that

gauge transformation are generated also by those specific first class secondary constraints.

One postulate that all first class secondary constraints are gauge generators in physically

relevant systems. Thus, every first class constraint is a gauge generator in what follows.

With this terminology, a first class function is, in particular, a gauge invariant function, i.e.

a function whose Poisson bracket with gauge generators vanishes weakly. Gauge invariant

functions will represent physical observables.

Since the most general evolution is generated by a Hamiltonian containing all the

gauge generators, in (1.1.15) we need to add also the first class secondary constraints.

The extended Hamiltonian reads

HE � H 1 � λaCa (1.1.19)

where Ca denotes all first class constraints, λ
a the associated gauge fields and now a is an

index running over all first class constraints.

Let us consider such a gauge system, with no second class constraints. We can general-

ize our phase space to contain Grassmann variables, both commuting and anticommuting,

collectively denoted by zA. We introduce the graded Poisson bracket

tF,GuPB � BRF
BzA ΩAB BLG

BzB , (1.1.20)

where ΩAB is the symplectic constant matrix defining the canonical graded Poisson bracket

tzA, zBuPB � ΩAB , (1.1.21)

between the canonical coordinates zA employed in the following.

From the relations tCa, CbuPB � 0, it follows that the first class constraints satisfy

tCa, CbuPB � f c
ab Cc , (1.1.22)

with f c
ab functions on the phase space called the structure functions. The same applies
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1.1 Constrained Hamiltonian systems

for the first class Hamiltonian H 1:

tH 1, CauPB � h b
a Cb . (1.1.23)

Given the action principle for the system

SrzA, λas �
»
dt

�
1

2
pΩ�1qABzA 9zB �H 1pzq � λaCapzq



, (1.1.24)

we shall verify that a gauge transformation generated by ϵaC
a leaves the action invariant.

By varying a generic phase function F by δF � tF, ϵaCauPB and the gauge fields λa by

δλa, we get

δS �
»
dt
�� 9zApΩ�1qABδzB � δH 1pzq � λaδCapzq � δλaCapzq

�
. (1.1.25)

Now, using δzA � �ϵa 9Ca, δH 1 � ϵah b
a Cb, λ

aδCa � ϵbλaf c
ab Cc, this fix how the gauge fields

must transform in order to keep the action invariant, up to boundary terms. The gauge

transformations of the dynamical variables are:

δzA �  
zA, ϵaC

a
(
PB

, (1.1.26)

δλa � 9ϵa � ϵbλcf a
cb � ϵbh a

b . (1.1.27)

In order to deal with boundary terms, the gauge parameters at the boundaries of the

integration region must satisfy specific conditions. We postpone this discussion until we

address the relativistic case.

To conclude, let us consider a system that possesses only second class constraints

denoted by Sa. By definition, they satisfy tSa, SbuPB � 0. Let us assume, in addition,

that

det tSa, SbuPB � 0 , (1.1.28)

i.e. the matrix Nab :� tSa, SbuPB is invertible. This condition makes it possible to define

a reduced phase space, which is the submanifold defined by the constraints with a sym-

plectic structure inherited by the symplectic structure on the whole phase space through

restriction. The algebra defined over the reduced phase space is given by the Dirac bracket

tF,GuDB � tF,GuPB � tF, SauPB Nab tSb, GuPB (1.1.29)

with Nab � pN�1qab. The constraints have vanishing Dirac bracket with any arbitrary

phase function L,

tL, SauDB � tL, SauPB � tL, SbuPB N bcNca � 0 . (1.1.30)
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1.2 Quantization of gauge systems

One can implement the constraints right from the beginning, finding the independent

canonical coordinates and working in the resulting phase space with Dirac bracket as

usual. This algebra allows ones to carry the ordinary quantization procedure for such

systems, differently from the procedure that we will apply to quantize gauge systems.

1.2 Quantization of gauge systems

Canonical quantization requires a well-defined Poisson bracket structure on the classical

phase space and a positive-definite Hilbert space built as a representation of the canonical

(graded) commutation relations. In the case of gauge systems, these requirements are not

both satisfied if one adopts only the usual quantization procedure. To obtain a meaningful

quantum theory, one can employ different quantization methods for such systems. Let us

discuss them.

Reduced phase space quantization Given the first class constraints Ca, the gauge

orbits generated by them foliate the constraint surface. Even if there is no induced Poisson

bracket on it, the quotient space, made up by the equivalence class of points lying on the

same gauge orbit, is equipped with a symplectic form, i.e. constitutes a phase space, the

reduced phase space. Hence, one could consider only functions defined over this space,

the gauge invariant functions, and quantize the theory by finding a complete set of these

functions, canonical Poisson brackets among them and their irreducible representations.

A complete set of gauge invariant functions is a complete set of solutions tFnu to the

differential equations:

tF,CauPB � 0 , (1.2.1)

for the function F . In general, finding such solutions is far from trivial. To cope with this

difficult, one can work in the reduce phase space by defining gauge fixing conditions

γapp, qq � 0 , (1.2.2)

which are additional constraints that select a representative from each gauge orbits. This

happens provided these conditions satisfy two properties: piq for each point, there must

exist a gauge transformation that maps it to another point satisfying the gauge fixing

conditions, piiq they must fix the gauge completely, i.e.

tγa, CbuPB � 0 , (1.2.3)
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1.2 Quantization of gauge systems

thus, the set of constraints pCa, γaq is second class. Such gauge fixing functions determine

a submanifold that intersects each gauge orbit in just one point. The reduced phase space

of gauge invariant functions with usual Poisson bracket is obtained as the space defined

by the secondary constraints (1.2.3), and a Dirac bracket structure that allows to solve

the constraints explicitly to find a coordinate system for the reduced phase space.

The above method can be difficult to implement for technical reasons and not useful

when the complete elimination of gauge freedom spoils manifest invariance under sym-

metries one wants to keep manifest (let us think of Poincaré invariance).

Dirac quantization In this method, the full phase space is retained and the usual

Poisson bracket structure is considered. Quantization proceeds as usual, thus, every phase

space variable is realized as an operator acting on a Hilbert space H. Actually, this space

contains non-physical states as well, since we have constructed it as a representation of all

the phase space variables, including non-physical configurations that do not belong to the

constraint surface. In particular, the resulting Hilbert space may not be positive-definite.

In order to work with physical states only, i.e. gauge invariant states, and a well-defined

Hilbert space, one defines the physical Hilbert space Hph as the set of states, |ψy, invariant
under the action of a gauge transformation. Being the constraints Ca the classical gauge

generators, their realization as quantum operator Ĉa represents the gauge generators in

the quantum theory. Therefore, the definition of a physical state translates into

|ψy P Hph ðñ Ĉa |ψy � 0 . (1.2.4)

Sometimes this condition is too strong and one prefers to define a physical state as a state

that, after an infinitesimal gauge transformation, has zero overlap with another physical

state, which means the vanishing of the matrix element

xχ| Ĉa |ψy � 0 , (1.2.5)

for any |χy , |ψy P Hph. This scheme is also known as Dirac-Gupta-Bleuler quantization.

It is a subtle problem to define a sensible scalar product that provides the right nor-

malization for physical states. If we consider the usual scalar product

pφ1, φ2q � xφ1|φ2y �
»
dnq φ�

1pqq φ2pqq , (1.2.6)

this could be infinite if both states are physical. The solution is to redefine a physical

scalar product for physical states with the insertion of a (hermitian) operator µ̂ that has
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1.2 Quantization of gauge systems

the effect of restricting the integral to the physical degrees of freedom only:

pφ1, φ2q � xφ1| µ̂ |φ2y , (1.2.7)

for any |φ1y , |φ2y P Hph. The form of µ̂ depends on the explicit expression of the con-

straints.

BRST quantization The BRST quantization method (named after Becchi, Rouet,

Stora and Tyutin) employed in the quantization of gauge systems expressed in Hamiltonian

form, is based on the analogous method developed for quantizing gauge theories in their

Lagrangian formulation. The latter, through the introduction of Faddeev-Popov ghosts,

introduces gauge fixing conditions to define a sensible path integral. The gauge-fixed the-

ory possesses a residual global supersymmetry, namely the BRST symmetry, which now

involves the additional ghost variables as well. The generator of this symmetry is nilpo-

tent, allowing physical states to be defined as elements of the cohomology of this operator

in the quantum theory. The same idea is applied in the Hamiltonian formulation.

Let us consider a theory with first class constraints Ca and the action (1.1.24). The

original phase space is enlarged by including, for each constraint, a pair of conjugate

ghost variables (ca, Pa), c
a the ghost variable and Pa the conjugate ghost momenta. We

denote the total phase space, the BRST phase space, by MBRST . The conjugate ghosts

have opposite Grassmann parity to that of the constraints with which they are associated.

Their Poisson brackets read  
Pa, c

b
(
PB

� �δba . (1.2.8)

The total action is given by

SrzA, ca, Pa, λas �
»
dt

�
1

2
pΩ�1qABzA 9zB � 9caPa �H 1pzq � λaCapzq



. (1.2.9)

The ghost-content of a phase function F , defined over the BRST phase space MBRST , is

determined by the ghost number

gh : C8pMBRST q Ñ R , (1.2.10)

with C8pMBRST q the set of phase functions on MBRST . By definition, for the canonical

variables we have ghpcaq � 1, ghpPaq � �1 and vanishing ghost number for all other

variables.

One then defines the BRST charge Q as a phase function such that the following holds:

� Q is real ;
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1.2 Quantization of gauge systems

� Q is anticommuting;

� gh(Q) = 1;

� Q acts as generator of gauge transformations with ghost coordinates ca as gauge

parameters;

� tQ,QuPB � 0, i.e. Q is nilpotent.

Such charge Q can always be constructed. The first four points fix Q � caCa � . . . ,

and the ghosts are chosen to be real or complex in order to define a real BRST charge.

Then, let us decompose Q as

Q � caCa � qap1qPa � qabp2qPaPb � . . . , (1.2.11)

that implies

0 � tQ,QuPB �
 
caCa, c

bCb
(
PB

� 2
 
qap1qPa, c

bCb
(
PB

�  
qap1qPa, q

b
p1qPb

(
PB

� . . . . (1.2.12)

From the first two terms, at order zero in P , we obtain

0 � p�1qcacacbfdbaCd � 2qap1qCa , (1.2.13)

which fixes qap1q. If the structure functions are constants, the other terms vanish exactly

and the last bracket written in (1.2.12) is zero due to the Jacobi identities for the structure

constants. In this case, the nilpotent BRST charge is

Q � caCa � 1

2
p�1qcdcdcbfabdPa . (1.2.14)

For non-constant structure functions, higher order terms in P are needed to cancel other

pieces and guarantee the nilpotency.

To understand the importance of a nilpotent BRST charge, we need to discuss the

concept of cohomology. Given a vector space V , a linear map δ : V Ñ V , with δ2 � 0, the

operator δ is called a nilpotent operator. Given the kernel of δ,

Kerpδq � tv P V |δv � 0u , (1.2.15)

its elements are called (δ�)closed (or cocycles). In addition, being the image of δ the set

Impδq � tw P V |D z P V s.t.w � δzu , (1.2.16)

we call its elements (δ�)exact (or coboundaries). By definition, all exact elements are

closed, Im � Kerpδq. Roughly speaking, the cohomology measures how this inclusion is

15



1.2 Quantization of gauge systems

proper or not. It is defined as the space of equivalent classes

Hpδq � Kerpδq
Impδq , (1.2.17)

with equivalence relation given by

v � v1 if v1 � v � δw . (1.2.18)

If Impδq � Kerpδq, the cohomology is vanishing.

Now, being the space V the space of phase functions C8pMBRST q, and the linear map

on this space given by the action of the charge Q on any phase function F through the

Poisson bracket

QpF q � tQ, F uPB , (1.2.19)

we notice that, thanks to the Jacobi identities and its last defining property, the BRST

charge defines a nilpotent operator on this space:

Q2pF q � tQ, tQ, F uuPB � 0 , @ F P C8pMBRST q . (1.2.20)

We can define the cohomology of this operator and divide the space of phase functions into

equivalent classes. We identify physical observables with cohomology classes with ghost

number zero. Therefore, the function F such that

tQ, F uPB � 0 , ghpF q � 0 , (1.2.21)

and the function F 1, with

F 1 � F � tQ, GuPB , @ G P C8pMBRST q, ghpGq � �1 , (1.2.22)

represent the same physical observable, F 1 � F . The gauge invariant Hamiltonian H 1, is

extended to a BRST invariant Hamiltonian HB, tQ, HBuPB � 0, which means, also, that

the BRST charge is conserved along the evolution generated by HB. As for any physical

observable, there exists equivalent Hamiltonian H 1
B,

H 1
B � HB � tQ,ΨuPB , (1.2.23)

with Ψ an arbitrary function. Different choices of Ψ correspond to different choices of gauge

fixing in the theory, which amount to fix the values of unphysical degrees of freedom, as

we will see in the next chapters.

Quantizing the theory, one realizes all the dynamical variables, including the ghost,

16



1.2 Quantization of gauge systems

as linear operators. Then, promoting the BRST function (1.2.14)1 to a hermitian, ghost

number one, nilpotent operator Q̂,

Q̂2 � 0 , (1.2.24)

the same concept of cohomology is defined. By the same argument, a physical observable

is a ghost number zero cohomology class in the BRST operator cohomology, meaning a

BRST invariant operator F̂ ,

rQ̂, F̂ u � 0 , (1.2.25)

where the graded commutator r�, �u is the anticommutator if F̂ is fermionic, or the com-

mutator otherwise, with the equivalence relation

F̂ 1 � F̂ if F̂ 1 � F̂ � rQ̂, B̂u . (1.2.26)

for some operator B̂.

Physical states are identified with cohomology classes of the BRST state cohomolgy

HstpQ̂q, with vanishing ghost number:

|ψy P Hph ðñ |ψy P HstpQ̂q � KerpQ̂q
ImpQ̂q . (1.2.27)

Therefore, the following holds:

Q̂ |ψy � 0 , (1.2.28)

and

|ψ1y � |ψy if |ψ1y � |ψy � Q̂ |χy , (1.2.29)

for every state |χy with ghost number �1. Notice that the Hilbert spaceHph has a positive-

definite inner product, even if states of the form Q̂ |χy have vanishing norm due to the

nilpotency of Q̂,

|Q̂ |χy |2 � xχ|Q2 |χy � 0 . (1.2.30)

Indeed, these elements are identified with the zero vector in Hph. Physical measurable

quantities, such as the (modulo squared of) matrix elements between a physical observable

F̂ and physical states |ψy , |ϕy, are gauge invariants,

xϕ| F̂ |ψy � xϕ1| F̂ 1 |ψ1y . (1.2.31)

1In general, the existence of a classical BRST charge does not guarantee the existence of a quantum
BRST charge, due to possible ordering ambiguities of the quantum operators. However, in the rest of this
thesis, such correspondence will always exist.
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1.3 Example: the relativistic scalar particle

In fact, one may check, for example, that

xϕ| F̂ |ψy � xϕ| F̂ |ψ1y � xϕ| F̂ Q̂ |χy (1.2.32)

� xϕ| rF̂ , Q̂u |χy � xϕ| Q̂F̂ |χy
� 0 ,

since xϕ| and F̂ are physical.

Time evolution is generated by the equivalence class of the Hamiltonian ĤB paramet-

rized by the operator Ψ̂:

xϕ| ÛHB�tQ,Ψuptf ; tiq |ψy � xϕ| exp
�
� i

ℏ
ptf � tiqpĤB � tQ̂, Ψ̂uq



|ψy . (1.2.33)

From these matrix elements we will calculate the gauge-fixed path integral in the next

chapters.

Time evolutions generated by equivalent Hamiltonians are equivalent in the following

sense. First, the operator ÛHB is BRST invariant and has ghost number zero, hence time

evolution preserves the physical Hilbert space. Then, time evolution operators related to

equivalent Hamiltonians ÛHB , ÛHB�tQ,Ψu are equivalent,

ÛHB�tQ,Ψu � ÛHB � tM̂, Q̂u , (1.2.34)

for some operator M̂ . It follows they have the same matrix elements between physical

states.

1.3 Example: the relativistic scalar particle

The action of a relativistic scalar particle of mass m is invariant under changes of inertial

reference frame, that is under the action of the Poincaré group, in accordance to the

principle of special relativity. Given the coordinates xµ � pt, xiq2 in an inertial reference

frame, µ � 0, . . . , D�1, D the dimension of the Minkowski spacetime with metric signature

p�,�,�, . . . ,�q, we know the action is proportional to the proper time,

Srxµs � �m
» ?

�ds2 � �m
» a

�dxµdxµ . (1.3.1)

However, manifest invariance of the action is not a requirement of the theory in principle,

rather a useful formulation for some scopes. One could choose to describe the trajectory

(or worldline) of the particle by employing the time t measured in the inertial reference

2We work in natural units.

18



1.3 Example: the relativistic scalar particle

frame: xµptq � pt, xiptqq and the action (1.3.1) becomes

Srxiptqs � �m
»
dt

c
1� dxi

dt

dxi

dt
, (1.3.2)

where the Lorentz symmetry is not manifest but the true dynamical degrees of freedom

are shown. This description is correct, but when it comes to describe interactions, the

guiding practical principle of manifest covariance is needed, since one has to introduce

them by keeping the theory Poincaré invariant. For this reason, one treats space and time

on the same footing by the beginning, considering the time coordinate t as a dynamical

variable as well, meaning the trajectory of the particle is parametrized by an arbitrary

parameter. Having introduced an additional dynamical variable, the physical degrees

of freedom should, in principle, be recoverable within this covariant description. Due

to the emergency of a new local symmetry for the action, i.e. a gauge symmetry, one

can use gauge transformations and gauge fixing to eliminate the unphysical degrees of

freedom. Also in this case, it may be more convenient not to remove all unphysical

degrees of freedom, selecting a so-called “unitary gauge” and reaching a non-manifest

invariant formulation, but instead to choose “covariant gauges” that are preserved by

Poincaré transformations. Let us introduce a parameter τ to parametrize the trajectory:

xµpτq � ptpτq, xipτqq. The action (1.3.1) then reads

Srxµpτqs � �m
» τ2

τ1

dτ
a
� 9xµ 9xµ , (1.3.3)

with 9xµ � dxµ

dτ
. This action is Poincaré invariant and, in addition, is invariant under

arbitrary reparametrizations of the trajectory

τ ÝÑ τ 1 � τ 1pτq � τ � ξpτq , (1.3.4)

and

xµpτq ÝÑ x1µpτ 1q � xµpτq , (1.3.5)

x1µpτq � xµpτq � ξpτq 9xµpτq , (1.3.6)

where “�” means infinitesimally. Under such transformations the action varies by a term

δSrxµpτqs � �m
» τ2

τ1

dτ
d

dτ
pξ
a
� 9xµ 9xµq , (1.3.7)

which requires ξpτ1q � ξpτ2q � 0, in order for the transformations to constitute a gauge

symmetry.
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1.3 Example: the relativistic scalar particle

We have shown that gauge systems in Hamiltonian formulation are described by con-

strained systems with first class constrains as gauge generators. This is the case for the

action (1.3.3). In fact, being the momenta

pµ � BL
B 9xµ �

m 9xµ?� 9xν 9xν
, (1.3.8)

these are constrained to the submanifold

pµp
µ �m2 � 0 . (1.3.9)

The Hamiltonian H � pu 9x
µ � L vanishes and one can check that no other constraints

arise by the consistency requirements. With the above (first class) constraint, the action

(1.1.24) reads in this case 3

Sphrxµpτq, pµpτq, epτqs �
»
dτ

�
pµ 9x

µ � e

2
ppµpµ �m2q

	
, (1.3.10)

with the gauge field e associated to the constraint H :� 1
2
ppµpµ � m2q. The latter

generates gauge transformations of the dynamical variables through the Poisson bracket

action (1.1.26)

δxµ � txµ, ϵH u � ϵpµ , (1.3.11a)

δpµ � tpµ, ϵH u � 0 , (1.3.11b)

δe � 9ϵ , (1.3.11c)

for a gauge parameter ϵpτq.
Now, let us quantize the theory with the Dirac method. The phase space variables

pxµ, pµq are realized as linear operators px̂µ, p̂µq with canonical commutators obtained by

the canonical Poisson brackets

rx̂µ, p̂νs � iδµν . (1.3.12)

The Hilbert space is realized as a representation of the above algebra. The states |ψy
give rise to wave functions ψpxµq � xxµ|ψy, which depend on the variables pt, xiq. The

evolution of these states is determined by the Hamiltonian H with parameter τ . Being

the Hamiltonian vanishing, the Schrödinger equation

i
B
Bτ |ψy � 0 , (1.3.13)

3It is worth noting that the phase space formulation of the action accommodates the description of
massless particles as well.
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1.3 Example: the relativistic scalar particle

tell us that no explicit dependence in τ occurs in |ψy.
The implementation of the constraint Ĥ ((1.2.4) and (1.2.5) are equivalent with just

one constraint) �
p̂µp̂µ �m2

� |ψy � 0 , (1.3.14)

selects physical states, i.e. gauge invariant states. As a differential equation, the physic-

ality condition reads ��BµBµ �m2
�
ψpxq � 0 . (1.3.15)

We see how physical states are described by wave functions satisfying the Klein-Gordon

equation. They propagate the degrees of freedom of a scalar particle at the quantum

level. This is a paradigmatic example of how the first quantization of a relativistic particle

produces the equations of motion of the field theory describing the quantum particle.

When we will work out the path integral quantization of theories defined on the world-

line, it will be useful to get action expressed in configuration space (and Euclidean time).

In this case, from the phase space action (1.3.10) we can pass to the configuration space

action by solving for the momenta
BSph
Bpµ � 0 , (1.3.16)

that is

pµ � e�1
9xµ . (1.3.17)

By substituting back in (1.3.10) we get

Scorxµpτq, epτqs �
»
dτ

1

2

�
e�1

9xµ 9xµ � em2
�
. (1.3.18)

The gauge symmetry, from (1.3.11), (1.3.17) is given by

δxµ � ξ 9xµ , (1.3.19a)

δe � d

dτ
pξeq , (1.3.19b)

where ξ � ϵe�1.

The gauge field e is called einbein because its squared is equal to the metric defined

on the worldline. In fact, we can rewrite (1.3.18)

Scorxµpτq, epτqs �
»
dτ e pe�2

9xµ 9xµ �m2q �
»
dτ
?�g00

�pg00q�1
9xµ 9xµ �m2

�
, (1.3.20)

from which we recognize g00 � �e2, where g00 is the metric on the one dimensional

worldline.
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1.3 Example: the relativistic scalar particle

From the action (1.3.18), if one solves for e and substitutes it back, one should recover

the original action in configuration space (1.3.3). Indeed, by computing:

BSco

Be � 0 ðñ epxµq � � 1

m

a
� 9xµ 9xµ , (1.3.21)

choosing the plus sign for the solution, and inserting it into (1.3.18), one obtains

Scorxµpτq, epxµpτqqs � Srxµpτqs . (1.3.22)
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Chapter 2

The spinning particle

The correspondence between the action of a relativistic particle and the description of a

scalar particle in QFT, obtained from the first-quantized action, can be generalized to

accommodate the description of free spin-s particles. This is achieved by starting from

suitable worldline actions describing a relativistic particle with additional degrees of free-

dom in its phase space. These are Grassmann variables that will represent the spin of

the particle after quantization. The worldline theory so defined is called fermionic (also

OpNq) or bosonic (also Spp2Nq) spinning particle, according to the additional variables be-
ing Grassmann odd or even, respectively. In both case, it will turn out to be a constrained

Hamiltonian system of the type (1.1.24). Interacting QFTs quantities are computed from

the path integral of the interacting worldline theory. Introducing interactions on the

worldline and quantizing it consistently is a subtle task, and its solution depends on the

worldline model and type of interaction considered.

The systematic definition of these models constitutes an aspect of the so-called World-

line Formalism, which provides a first-quantized approach to QFT.

This chapter covers both fermionic and bosonic spinning particle, with a survey of

specific spin-s cases relevant to the historical development of the subject and to our work

in the following chapter. Finally, we address interacting theories and the path integral

formulation. The general discussion follows [2], while specific references are provided

throughout the sections.
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2.1 OpNq spinning particle

2.1 OpNq spinning particle

2.1.1 Spin-1/2 particle

Let us consider first the description of a massless spin-1/2 particle. The minimal extension

of the relativistic particle action (1.3.10) describes a particle with phase space coordinates

pxµ, pµ, ψµq, where ψµ are real Grassmann odd variables and will play the role of the

supersymmetric partners of xµ. Adding the symplectic term for the ψ variables, we get

S �
»
dτ

�
pµ 9x

µ � i

2
ψµ 9ψµ � e

2
pµpµ



, (2.1.1)

from which

txµ, pνuPB � δµν , tψµ, ψνuPB � �iδµν . (2.1.2)

In addition to reparametrization invariance, this system has the following global symmetry:

δxµ � iξψµ , (2.1.3a)

δψµ � �ξpµ , (2.1.3b)

δpµ � 0 , (2.1.3c)

with ξ a constant parameter, and the conserved fermionic current:

Q � pµψ
µ . (2.1.4)

Notice that this is a global N � 1 supersymmetric transformation on the worldline phase

space. To extend the set of constraints, we gauge this global symmetry. We know this

amounts to add the fermionic conserved charge (3.3.2) as a constraint on the worldline

action, as it will act as generator of the gauged symmetry (2.1.3). Thus, with ξpτq a local

parameter now, the Q constraint, together with the constraintH � 1
2
pµpµ (from now on we

denote it by H), generate, through the Poisson brackets, the N � 1 local supersymmetry

(or supergravity) algebra in (0+1)-dimension

tQ,QuPB � �2iH . (2.1.5)

The other Poisson bracket involving these constraints vanishes. The new action reads

S �
»
dτ

�
pµ 9x

µ � i

2
ψµ 9ψµ � eH � iχQ



, (2.1.6)
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2.1 OpNq spinning particle

where the gauge fields pe, χq are called the einbein and the gravitino, as they compose

the supergravity multiplet in one dimension. The gauge transformation generated by

V � ϵH � iξQ acts on the phase space variable as

δxµ � txµ, V uPB � ϵpµ � iξψµ , (2.1.7)

δψµ � tψµ, V uPB � �ξpµ , (2.1.8)

δpµ � tpµ, V uPB � 0 , (2.1.9)

while the gauge fields from the algebra (2.1.5) transform as (cf. (1.1.27))

δe � 9ϵ� 2iχξ , (2.1.10)

δχ � 9ξ . (2.1.11)

To see how the equations for spin-1/2 emerge, let us quantize the theory with the Dirac

method. The canonical commutation and anticommutation relations read

rx̂µ, p̂νs � iδµν , tψ̂µ, ψ̂νu � ηµν , (2.1.12)

and the Hilbert space is realized as tensor product of representations of these algebras.

From the first term above, we obtain the infinite-dimensional space of square-integrable

functions L2pRDq. The second term realizes a Clifford algebra, with gamma matrices Γ

represented by

ψ̂µ � 1?
2
Γµ , (2.1.13)

which gives, indeed,

tΓµ,Γνu � 2ηµν . (2.1.14)

The Clifford algebra is represented on the finite-dimensional space of spinors, with dimen-

sion 2tD
2

u 1: C2tD2 u

. The total Hilbert space is the space of spinor fields in D dimensions

H � L2pRDq b C2tD2 u

. (2.1.15)

The physical Hilbert space Hph is composed by states satisfying the conditions

Ĥ |ψy � 1

2
p̂µp̂

µ |ψy � 0 , Q̂ |ψy � ψ̂µp̂µ |ψy � 0 . (2.1.16)

From (2.1.5), these conditions are not independent: Q̂2 � Ĥ. It therefore suffices for the

1The symbol txu indicates the greatest integer less than or equal to x, i.e. its integer part.
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2.1 OpNq spinning particle

Q̂ constraint to be satisfied. The latter implements the Dirac massless equations

pΓµq b
a Bµψbpxq � 0 , (2.1.17)

where ψpxq is the spinorial wave function and a, b are spinorial indices. Finally, the Ĥ

constraint would determine the massless Klein-Gordon equation for each of the components

of ψpxq, which is automatically satisfied if the above equations hold, as we know.

We now turn to the description of massive spin-1/2 particle. In this case, the worldline

theory can be obtained through the mechanism of dimensional reduction from a higher-

dimensional worldline theory (2.1.6). We start from a worldline theory formulated in a

pD � 1q�dimensional spacetime

S �
»
dτ

�
pM 9xM � i

2
ψM 9ψM � e

2
pMp

M � iχpMψ
M



, (2.1.18)

with M � 0, . . . , D, and we fix the momenta in the extra dimension to be equal to

pM � m, (2.1.19)

where m is the mass of the particle being described. The above equation represents an

additional first class constraint. The previous action reads

S �
»
dτ

�
pµ 9x

µ �m 9xD � i

2
ψµ 9ψµ � i

2
ψD 9ψD � e

2
ppµpµ �m2q � iχppµψµ �mψDq



.

(2.1.20)

The second term, being a total derivative in x, does not affect the equations of motion

and can thus be discarded. Let us show how this action correctly describes massive Dirac

fermions in even dimensions D.

Quantizing the theory, in addition to the algebra (2.1.12), we have the property

pΓ5q2 � 1 , (2.1.21)

where, as before, ΓD is a realization of ψD and we used tψ̂D, ψ̂Du � 1. Thus, it satisfies

the properties of the chirality gamma matrix in D dimensions. The Q̂ constraint

pp̂µψ̂µ �mψ̂Dq |ψy � 0 , (2.1.22)

becomes, in terms of the spinorial wave function ψpxq,

p�iΓµBµ �mΓDqψpxq , (2.1.23)

where we suppressed spinorial indices. By multiplying by ΓD and working with the equi-
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2.1 OpNq spinning particle

valent set of gamma matrices �iΓDΓµ, we get the Dirac equation for a particle of mass

m

pΓµBµ �mqψpxq � 0 , (2.1.24)

in its standard form via the redefinition Γµ � �iγµ

p�iγµBµ �mqψpxq � 0 . (2.1.25)

2.1.2 Spin-1 particle

Let us start with the massless case. The description of a massless spin-1 particle follows

from the same arguments of the previous subsection. We add another set of real Grassmann

odd variables to the action (2.1.6), such that our phase space is now composed by the

coordinates pxµ, pµ, ψµ1 , ψµ2 q, with 
ψµi , ψ

ν
j

(
PB

� �iδijηµν , i, j � 1, 2 . (2.1.26)

We now gauge the N � 2 worldline supersymmetry, together with the SOp2q R-symmetry

that rotates the fermionic variables, to obtain the worldline theory as the N � 2 super-

gravity in (0+1)-dimension. This is a constrained Hamiltonian system whose constraints

are given by the generators of the above symmetries. If we introduce the complex fermionic

variables

ψµ :� 1?
2
pψµ1 � iψµ2 q , ψ̄µ :� 1?

2
pψµ1 � iψµ2 q , (2.1.27)

with  
ψµ, ψ̄ν

(
PB

� �iδµν , (2.1.28)

the resulting action reads

S �
»
dτ

�
pµ 9x

µ � iψ̄µ 9ψ
µ � eH � iχ̄Q� iχQ̄� aJ

	
, (2.1.29)

with constraints

H � 1

2
pµp

µ , Q � pµψ
µ , Q̄ � pµψ̄

µ , J � ψµψ̄
µ , (2.1.30)

that generate the N � 2 supergravity algebra

tQ, Q̄uPB � �2iH , tJ,QuPB � �iQ , tJ, Q̄uPB � iQ̄ , (2.1.31)

and the set of corresponding gauge fields pe, χ, χ̄, aq. Gauging the worldline supersym-

metry via the einbein e and the complex conjugate gravitinos χ, χ̄, ensures unitarity at
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2.1 OpNq spinning particle

the quantum level, as the corresponding constraints eliminate negative norm states. In

addition, the field a, which gauges the Up1q R-symmetry in the complex basis, allows

projecting the physical Hilbert space onto a subspace containing only a specific number

of degrees of freedom. We will see this explicitly shortly.

Under a gauge transformation generated by V � ϵH � iξ̄Q� iξQ̄� αJ , the canonical

variables transform according to

δxµ � txµ, V uPB � ϵpµ � iξ̄ψµ � iξψ̄µ , (2.1.32a)

δpµ � tpµ, V uPB � 0 , (2.1.32b)

δψµ � tψµ, V uPB � �ξpµ � iαψµ , (2.1.32c)

δψ̄µ �  
ψ̄µ, V

(
PB

� �ξ̄pµ � iαψ̄µ , (2.1.32d)

and the gauge fields as

δe � 9ϵ� 2iχ̄ξ � 2iχξ̄ , (2.1.33a)

δχ � 9ξ � iaξ � iαχ , (2.1.33b)

δχ̄ � 9̄ξ � iaξ̄ � iαχ̄ , (2.1.33c)

δa � 9α . (2.1.33d)

Let us notice that we can add a term of the form

c

»
dτ a (2.1.34)

in the action (2.1.29), since, due to (2.1.33d), this term is gauge invariant. Such a term is

called Chern-Simons (CS) term, and the constant c CS coupling. This coupling must take

quantized values, as it parametrizes the ordering ambiguities arising in the quantization

of the constraint J . Indeed, the CS coupling can be interpreted as a term introduced to

compensate for different ordering prescriptions and to allow for non-trivial solutions of the

constraint J in the quantized theory.

At the quantum level, we have the canonical commutation and anticommutation rela-

tions

rx̂µ, p̂νs � iδµν , tψ̂µ, ψ̂:
νu � δµν , (2.1.35)

with ψ̂:
ν � ˆ̄ψν , which define the Hilbert space as the representation space

H � L2pRq b F , (2.1.36)
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2.1 OpNq spinning particle

with F the Fock space built from the ψ̂ creation operators and vacuum state, |0y, anni-
hilated by ψ̂:. Hence, a generic state |ϕy P H can be written as

|ϕy �
Ḑ

j�0

1

j!
Fµ1...µjpxq ψ̂µ1 ...ψ̂µj |0y . (2.1.37)

The functions Fµ1...µjpxq are rank-j antisymmetric tensors. For the operator Ĵ we choose

the following antisymmetric quantization prescription:

Ĵ � 1

2
pψ̂µ ˆ̄ψµ � ˆ̄ψµψ̂

µq � ψ̂µ
ˆ̄ψµ � D

2
� N̂ψ � D

2
, (2.1.38)

with N̂ψ denoting the number operator for the ψ̂ creation operators. The presence of the

CS term (2.1.34) in the action allows us to choose:

c � p� 1� D

2
, (2.1.39)

and obtain the constraint operator Ĵc in the form

Ĵc :� Ĵ � c � N̂ψ � pp� 1q . (2.1.40)

It should be clear that the relation between the value of the CS coupling c and the number

of propagating degrees of freedom, parametrized by p, depends on the quantization scheme

adopted.

Let us show that, with this choice, the quantized worldline theory describes a gauge

p-form. In particular for p � 1 it describes massless spin-1 particles.

Implementing the constraints à la Dirac, the physicality condition Ĵc |ψy � 0 selects

the subspace of the Hilbert space with occupation number Nψ � p� 1 with elements

|ϕy � 1

pp� 1q!Fµ1...µp�1pxqψ̂µ1 . . . ψ̂µp�1 |0y , (2.1.41)

while the constraint Q̂: |ψy � 0 gives the following condition for the p-form F :

Bµ1Fµ1...µp�1pxq � 0 . (2.1.42)

Finally, from Q̂ |ψy � 0 one obtains

BrµFν1...νp�1spxq � 0 . (2.1.43)

The H constraint is, again, automatically satisfied due to the constraints’ algebra. The

last two equations are exactly the Maxwell’s equations in vacuum for the field strength
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Fµ1...µp�1 , which can be expressed in terms of the p-form gauge potential Aµ1...µp , by solving

the Bianchi identity (2.1.43). For p � 1, the physicality conditions are the Maxwell’s

equations in vacuum for a gauge potential Aµ and field strength Fµν , i.e. the field equations

for a spin-1 particle.

We can describe massive p-forms, and so massive spin-1 particles, by dimensional

reduction of the theory (2.1.29) in dimensions D � 1, fixing the momentum in the extra

dimension equal to the mass of the particle. Doing so, from the action (2.1.29) in pD�1q-
dimensions, denoting θ :� ψD, we arrive at

S �
»
dτ

�
pµ 9x

µ � iψ̄µ 9ψ
µ � iθ̄ 9θ � eH � iχ̄Q� iχQ̄� apJ � cq

	
(2.1.44)

with now

H � 1

2
ppµpµ �m2q, Q � pµψ

µ �mθ, Q̄ � pµψ̄
µ �mθ̄, J � ψµψ̄

µ � θθ̄ . (2.1.45)

Clearly, they form the same algebra (2.1.31).

When we quantize the phase space variables, in addition to (2.1.35), we have

tθ̂, θ̂:u � 1 . (2.1.46)

Let us omit the hat symbol “ˆ” for operators from now on. The Hilbert space is of the

form (2.1.36), but with a Fock space built from creation operator θ as well and a vacuum

|0y annihilated also by θ:. Therefore, a generic state |ϕy now reads

|ϕy �
Ḑ

j�0

1

j!

�
Fµ1...µjpxqψµ1 ...ψµj |0y � imAµ1...µjpxq θψµ1 ...ψµj |0y

�
, (2.1.47)

where the prefactor im has been included for later convenience. Following the antisym-

metric quantization prescription for J , we get

J � ψµψ̄
µ � θθ̄ � D � 1

2
� Nψ �Nθ � D � 1

2
, (2.1.48)

that, with a CS coupling of the form

c � p� 1� D � 1

2
, (2.1.49)

gives

Jc :� J � c � Nψ �Nθ � pp� 1q . (2.1.50)

Going through quantization à la Dirac, the condition Jc |ψy � 0 selects the following
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eigenspace of the occupation number:

|ϕy � 1

pp� 1q!Fµ1...µp�1pxqψµ1 . . . ψµp�1 |0y � im

p!
Aµ1...µppxqθψµ1 . . . ψµp |0y , (2.1.51)

while the constraint Q̂ |ϕy � 0 determines the Bianchi identities for Fp�1 and their solution

in terms of Ap

BrµFµ1...µp�1s � 0 , Fµ1...µp�1 � Brµ1Aµ2...µp�1s . (2.1.52)

Finally, the constraint Q̂: |ϕy � 0 produces the Proca equations and the transversality

property for Ap

Bµ1Fµ1...µp�1 � m2Aµ2...µp�1 , Bµ1Aµ1...µp � 0 . (7.53)

For p � 1 in the above equations, we obtain the Proca equations describing a massive spin

1 particle.

2.1.3 Spin-N/2 particle

The worldline theories in the previous subsections are particular realizations of the OpNq
spinning particle, that is a worldline theory with an OpNq local supersymmetry. The

quantization of this model gives the Bargmann-Wigner equations for a spin-N/2 in di-

mension D � 4 [39, 40]. In addition to pxµ, pµq, one has N families of real fermionic

variables ψµi with  
ψµi , ψ

ν
j

(
PB

� �iηµνδij , i, j � 1, . . . , N . (2.1.53)

The set of constraints is

H � 1

2
pµp

µ, Qi � pµψ
µ
i , Jij � iψµi ψjµ , (2.1.54)

which generates the OpNq supergravity algebra on the worldline

tQi, QjuPB � �2i δijH , (2.1.55a)

tJij, QkuPB � δjkQi � δikQj , (2.1.55b)

tJij, JkluPB � δjkJil � δikJjl � δjlJik � δilJjk . (2.1.55c)

The OpNq spinning particle action reads

S �
»
dτ

�
pµ 9x

µ � i

2
ψµi

9ψiµ � eH � iχiQi � 1

2
aijJij



. (2.1.56)

The role of the gauge fields is the same as before: gauging worldline translation, through

the einbein e, and local worldline supersymmetries through the gravitons χi, ensures
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unitarity at the quantum level, while gauging the OpNq R-symmetry produces algebraic

constraints on the wave function so to obtain irreducible (field) representations for the

particles. In this general case, the gauge symmetry generated by V � ϵH� iξiQi� 1
2
βijJij

acts on the phase space variables as follows:

δxµ � txµ, V uPB � ϵpµ � iξiψ
µ
i , (2.1.57a)

δpµ � tpµ, V uPB � 0 , (2.1.57b)

δψµi � tψµi , V uPB � �ξipµ � βijψ
µ
j , (2.1.57c)

and on the gauge fields as:

δe � 9ϵ� 2iχiξi , (2.1.58a)

δχi � 9ξi � aijξj � βijχj , (2.1.58b)

δaij � 9βij � βimamj � βjmaim . (2.1.58c)

By proceeding with quantization à la Dirac and finding a representation of the canon-

ical commutation and anticommutation relations, one finds that the wave function is a

multispinor field with N spinorial indices ψα1...αN . The constraints Q̂:
i |ψy � 0 impose the

conditions

pγµBµq αj
αi

ψα1...αj ...αN pxq � 0 , i � 1, . . . , N . (2.1.59)

The constraints Ĵij |ψy � 0 determine algebraic relations required to make the representa-

tion ψα1...αN irreducible. As a result, the multispinor field becomes completely symmetric

under permutations of its indices. All together, one obtains the Bargmann-Wigner equa-

tions for a massless spin-N/2 particle in D � 4 dimensions [41, 42].

2.2 Spp2q spinning particle

2.2.1 Massless integer spin particles

This worldline model is defined by the usual set of phase space variables pxµ, pµq for a

relativistic particle moving in a Minkowski target spacetime, augmented by an additional

pair of complex bosonic variables pαµ, ᾱµq, with ᾱµ � αµ� [25–29]. As for the fermionic

case, these additional variables are needed in order to account for the spin degrees of

freedom. The symplectic term

S �
»
dτ ppµ 9xµ � iᾱµ 9α

µq (2.2.1)
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2.2 Spp2q spinning particle

defines the phase space symplectic structure and fixes the Poisson brackets to

txµ, pνuPB � δµν , tαµ, ᾱνuPB � iηµν . (2.2.2)

As it stands, the model is not unitary, as upon quantization negative norm states will

be generated by the px0, p0, α0, ᾱ0q variables. Moreover, the model, as we shall discuss,

contains particle excitations of any integer spin, and one needs to eliminate some further

degrees of freedom to describe a single particle with fixed spin, or a finite multiplet of

particles with fixed maximum spin. Both problems can be addressed by gauging suitable

constraints. The gauged worldline action we are interested in is given by

S �
»
dτ

�
pµ 9x

µ � iᾱµ 9α
µ � eH � ūL� uL̄� aJ

�
, (2.2.3)

where we introduced the worldline gauge multiplet pe, ū, u, aq acting as a set of Lagrange

multipliers that enforces the constraints

H � 1

2
pµpµ , L � αµpµ , L̄ � ᾱµpµ , J � αµᾱµ . (2.2.4)

The latter satisfy a first class algebra

tL, L̄uPB � 2iH , tJ, LuPB � �iL , tJ, L̄uPB � iL̄ . (2.2.5)

The role played by the constraint J is analogous to the one played in the fermionic case:

here, it is a Up1q generator which rotates the bosonic oscillators by a phase; its gauging

is optional as far as unitarity is concerned. However, upon quantization, it projects the

Hilbert space onto the physical subspace with a specific occupation number, describing the

degrees of freedom of a particle with maximal spin s. For this to occur, one must add a CS

term on the worldline with the CS coupling fine-tuned according to the desired value of s.

The pH,L, L̄q constraints remove the negative-norm states, as usual, and must be gauged

to make the model consistent with unitarity. The Hamiltonian constraintH corresponds to

the mass-shell condition for massless particles, and generates τ -reparametrization in phase

space, while the remaining pair, L and L̄ generates “bosonic” supersymmetry (BUSY):2.

2The algebra of pH,L, L̄q can be obtained from the slp2,Rq subalgebra of the Virasoro algebra

tL0, L1uPB � �iL1 , tL0, L�1uPB � iL�1 , tL1, L�1uPB � 2iL0 ,

as a contraction

H � L0

α1
, L � L1?

α1
, L̄ � L�1?

α1
,

in the string tensionless limit α1 Ñ8 [43, 44].
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The action of a generic gauge transformation V � ϵH � ξ̄L � ξL̄ � ϕJ , with gauge

parameters pϵ, ξ̄, ξ, ϕq, on the phase space variables is:

δxµ � txµ, V uPB � ϵpµ � ξᾱµ � ξ̄αµ , (2.2.6a)

δpµ � tpµ, V uPB � 0 , (2.2.6b)

δαµ � tαµ, V uPB � iξpµ � iϕαµ , (2.2.6c)

δᾱµ � tᾱµ, V uPB � iξ̄pµ � iϕᾱµ , (2.2.6d)

and, in order for the action (2.2.3) to be invariant, the gauge fields must transform as

follows:

δe � 9ϵ� 2iuξ̄ � 2iūξ , (2.2.7a)

δu � 9ξ � iaξ � iϕu , (2.2.7b)

δū � 9̄ξ � iaξ̄ � iϕū , (2.2.7c)

δa � 9ϕ . (2.2.7d)

The need for the worldline constraints to enforce unitarity remains somewhat obscure

up to this point. To review and clarify this claim, it may be beneficial to perform a brief

light-cone analysis. Despite the loss of manifest covariance, a light-cone analysis allows

for a direct calculation of the number of propagating physical degrees of freedom. It is

a well-known method, employed in many worldline models, see e.g. [45–47]. We define

light-cone coordinates by

xµ � px�, x�, xaq , with x� � 1?
2
px0 � xD�1q , (2.2.8)

where xa, a � 1, . . . , D � 2, are the transverse directions. The line element reads ds2 �
�2dx�dx� � dxadxa, whence, for any vector V µ, V � � �V� and V � � �V�.

The guiding idea behind the light-cone analysis is to remove negative-norm states by

implementing a gauge fixing that isolates the physical degrees of freedom, which in turn

lead to a manifestly positive-norm Hilbert space upon quantization. To do that, let us

first assume motion with p� � 0 and consider the Hamiltonian constraint

H � 1

2
pµpµ � �p�p� � 1

2
papa � 0 . (2.2.9)

This symmetry is gauge-fixed by imposing the light-cone gauge

x� � τ . (2.2.10)

34



2.2 Spp2q spinning particle

Correspondingly, the Hamiltonian constraint is solved for the momentum p�, conjugate

to x�,

p� � 1

2p�
papa . (2.2.11)

At this point, the remaining independent phase space variables are px�, p�q and pxa, paq.
A Hilbert space can be constructed by quantizing these independent variables to obtain a

positive-definite Hilbert space.

On top of these variables, there are also the bosonic oscillators, which may as well lead

to negative norms. That this does not happen is again made explicit by completing the

light-cone gauge fixing. The gauge symmetries generated by L and L̄, see (2.2.6c) and

(2.2.6d), are fixed by setting

α� � 0 , ᾱ� � 0 , (2.2.12)

while the constraints L � L̄ � 0 are solved explicitly by expressing the variables conjugate

to (2.2.12) in terms of the remaining independent variables

ᾱ� � 1

p�
ᾱapa , α� � 1

p�
αapa . (2.2.13)

The conjugated pairs pᾱ�, α�q and pᾱ�, α�q are thus eliminated as independent phase

space coordinates, highlighting the fact that the only independent physical oscillators are

the transverse ones pᾱa, αaq. They produce states with positive norm upon quantization,

as can be inferred by promoting their Poisson brackets to commutation relations

rᾱa, αbs � δab , (2.2.14)

which are realized on a Fock space, where αa act as creation operators while ᾱa as destruc-

tion operators, thus yielding a unitary spectrum of massless particles that decompose into

irreducible representations of the little group SOpD � 2q.
The gauge fixing functions (2.2.10), (2.2.12), together with the constraints pH,L, L̄q

form a set of second class constraints that allows one to solve for the conjugated vari-

ables (2.2.11), (2.2.13). Accordingly, the space parametrized by the independent variables

px�, p�q, pxa, paq, pᾱa, αaq is the reduced phase space. The Lagrangian restricted to this

space, i.e. the (partially) gauge-fixed Lagrangian, is

L � p� 9x
� � pa 9x

a � 1

2p�
papa � iᾱa 9α

a � aαbᾱb , (2.2.15)

It only remains to address the further constraint related to the worldline gauge field apτq,
but this has no relevance to unitarity.

As previously discussed, a non-covariant gauge, such as the light-cone gauge, spoils
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the manifest covariance of the theory, and one prefers to work in a covariant formulation

when adding interactions.

Hence, it is useful to proceed with covariant quantization techniques. The canonical

commutation and anticommutation relation reads

rxµ, pνs � iδµν , rᾱµ, ανs � ηµν , (2.2.16)

and the first class algebra becomes

rL̄, Ls � 2H , rJc, Ls � L , rJc, L̄s � �L̄ . (2.2.17)

We have defined as usual Jc � J�c, after having introduced the CS coupling c in the action

(2.2.3). The quantum operator Jc is defined by a symmetric quantization prescription

Jc � 1

2
pαµᾱµ � ᾱµαµq � c � αµᾱ

µ � D

2
� c � Nα � s , (2.2.18)

with Nα � αµᾱ
µ the occupation number operator for the α-oscillators and the following

CS coupling c related to the real number s

c � D

2
� s . (2.2.19)

Let us observe once again that the relation between the CS coupling c and the value of

the spin s depends on the quantization prescription employed.

From (2.2.16), the Hilbert space H is the tensor product space

H � L2pRq b F , (2.2.20)

with F the Fock space with vacuum defined by

ᾱµ |0y � 0 . (2.2.21)

The decomposition of a generic state |Φy is thus written in terms of coefficients corres-

ponding to rank-s symmetric tensors

|Φy �
8̧

r�0

|Φprqy �
8̧

r�0

1

r!
Φprq
µ1...µr

pxq b αµ1 . . . αµr |0y . (2.2.22)

We know quantization may proceed either following a procedure à la Dirac or by using

BRST techniques. We start with the former method, leaving the BRST analysis for the

next chapter, when it will be useful for dealing with the interacting worldline theory (in

the massive case).
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The physical Hilbert space is composed by states |φy, |χy such that

xχ|pH,L, L̄, Jcq|φy � 0 . (2.2.23)

This can be satisfied by requiring

H |φy � L̄ |φy � Jc |φy � 0 (2.2.24)

for any physical state |φy, since then also xφ|L̄ � 0, as L̄ is the hermitian conjugate of L.

First, since the operator Jc counts the occupation number of the α-oscillators, shifted

by �s, we see that the Jc constraint selects precisely states with occupation number s,

which must be a nonnegative integer. Hence, physical states are contained in states of the

form

|φy � 1

s!
φpsq
µ1...µs

pxqαµ1 . . . αµs |0y . (2.2.25)

Since the operator pu acts as �iB{Bµ on the above state, imposing the constraints H and

L̄:

H |φy � � 1

2s!
lφpsq

µ1...µs
pxqαµ1 . . . αµs |0y � 0 , (2.2.26)

L̄ |φy � � i

ps� 1q!B
νφpsq

νµ2...µs
pxqαµ2 . . . αµs |0y � 0 , (2.2.27)

with l � BµBµ, we obtain the following conditions for the wave function of a physical

state:

lφpsq
µ1...µs

pxq � 0 , (2.2.28)

Bνφpsq
νµ2...µs

pxq � 0 . (2.2.29)

This wave function propagates the degrees of freedom of a rank-s symmetric tensor in

dimensions D � 1.

The conditions (2.2.24) defines a physical state as an equivalence class

|φy � |φy � |φnully , (2.2.30)

where |φnully is a null state of the form

|φnully � L |ρy , with H |ξy � L̄ |ρy � pJc � 1q |ρy � 0 . (2.2.31)

These null states are physical, but have vanishing overlap with any other physical state,

therefore, they have zero norm. They give rise to redundancies or “residual” gauge sym-
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metries of the state |φy. The null state, from (2.2.31), reads

|φnully � � i

ps� 1q!Bpµ1ρ
ps�1q
µ2...µs

αµ1 . . . αµs |0y , (2.2.32)

with

lρps�1q
µ1...µs�1

pxq � 0 ,

Bνρps�1q
νµ2...µs�1

pxq � 0 .
(2.2.33)

With this gauge symmetry, the physical degrees of freedom of the tensor φpsq correspond

to that of a rank-s symmetric tensor in D � 2 dimension, i.e. it belongs to the rank-s

symmetric representation of the little group SOpD � 2q. Notice that it is not traceless,

thus φpsq does not provide an irreducible representation of the Lorentz group for a spin-s

massless particle in D�dimensions. Instead, it propagates a reducible multiplet consisting

of massless particles of spin s, s� 2, s� 4, . . . , 0 or s, s� 2, s� 4, . . . , 1 for even or odd s,

respectively. For s � 0, 1 the representations are irreducible.

2.2.2 Mass from dimensional reduction

We have extended the bosonic spinning particle model to describe massive particles (so to

study massive spin-1 particle in the next chapter) through dimensional reduction [30].

Thus, we consider the theory (2.2.3) in pD�1q-dimensions and gauge the direction xD

by imposing the first class constraint

pD � m , (2.2.34)

with m the mass of the particle. We further define pβ, β̄q :� pαD, ᾱDq, which inherit the

following Poisson bracket

tβ, β̄uPB � i . (2.2.35)

The constraints (2.2.4) get modified by the presence of the mass:

H � 1

2
ppµpµ �m2q , L � αµpµ � βm , L̄ � ᾱµpµ � β̄m , Jc � αµᾱµ � ββ̄ � c .

(2.2.36)

We notice they still satisfy the first class algebra (2.2.5). The gauge transformations (2.2.6)
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are enriched by

δβ � iξm� iϕβ , (2.2.37a)

δβ̄ � �iξ̄m� iϕβ̄ . (2.2.37b)

Upon covariant quantization, in addition to (2.2.16), we have

rβ̄, βs � 1 . (2.2.38)

With the same quantization prescription, the constraint operator Jc is

Jc � 1

2
pαµᾱµ � ᾱµαµ � ββ̄ � β̄βq � c � αµᾱ

µ � ββ̄ � D � 1

2
� c � Nα �Nβ � s , (2.2.39)

with the CS coupling c taking into account the additional β-oscillator,

c � D � 1

2
� s . (2.2.40)

Accordingly, the Hilbert space is of the type (2.2.20) but now with the Fock space built

out from the β-oscillator too, and a vacuum state such that

pᾱµ, β̄q |0y � 0 . (2.2.41)

A generic element of this space is given by

|Φy �
8̧

r,p�0

|Φpr,pqy �
8̧

r,p�0

1

r!p!
Φpr,pq
µ1...µr

pxq b αµ1 . . . αµrβp |0y . (2.2.42)

Defining physical states as in (2.2.23), so (2.2.24) holds, and imposing Jc, we write a

generic state at occupation number s as

|φy �
ş

r,p�0
r�p�s

1

r!p!
φpr,pq
µ1...µr

pxq b αµ1 . . . αµrβp |0y , (2.2.43)

i.e. an element of the eigenspace of N � Nα �Nβ with eigenvalue n � s. The constraint

H determines the massive Klein-Gordon equation

pl�m2qφpr,pq
µ1...µr

� 0 , @ r, p P t0, . . . , su, r � p � s , (2.2.44)

while the constraint L̄, due to the presence of β̄, gives rise to a set of first order differential
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2.2 Spp2q spinning particle

equation involving φprqppq and φpr�1qpp�1q:

�iBνφprqppq
νµ1...µr�1

�mφpr�1qpp�1q
µ1...µr�1

� 0 , (2.2.45)

with r P t1, . . . , su, p P t0, . . . , su and r � p � s. These fields equations exhibit a gauge

symmetry due to the existence of null states, as happens for the massless case (2.2.31).

Let us consider the null state L |ρy, with |ρy a state of the form (2.2.43) with r�p � s�1,

and a set of tensors tρprqppqu that, due to H |ρy � L̄ |ρy � 0, satisfies the equations

pl�m2qρpr,pqµ1...µr
� 0 , (2.2.46)

�iBνρprqppqνµ1...µr�1
�mρpr�1qpp�1q

µ1...µr�1
� 0 , (2.2.47)

with r P t1, . . . , s � 1u, p P t0, . . . , s � 1u, r � p � s � 1. The gauge transformation reads,

in components,

δφprqppq
µ1...µr

� �i r Bpµ1ρpr�1qppq
µ2...µrq

�mpρ
prqpp�1q
µ1...µr , @r, p P t0, . . . , su, r � p � s. (2.2.48)

If we write the system of equations (2.2.45) explicitly:

�iBνφpsqp0q
νµ1...µs�1

�mφps�1qp1q
µ1...µs�1

� 0 (2.2.49)

�iBνφps�1qp1q
νµ1...µs�2

�mφps�2qp2q
µ1...µs�2

� 0 (2.2.50)

... (2.2.51)

�iBνφp1qps�1q
ν �mφp0qpsq � 0 (2.2.52)

we see that we can get rid of all the tensors labelled by a non-zero value of p by moving to

a gauge in which φps�1qp1q vanishes. In this gauge, the tensor φpsqp0q satisfies the Fierz-Pauli

equation for a massive spin-s particle, without the traceless condition. Hence, it would

propagate a reducible massive multiplet, as in the massless case. Such a gauge can be

reached through the transformation

δφps�1qp1q
µ1...µs�1

� �i ps� 1q Bpµ1ρps�2qp1q
µ2...µs�1q

�mρ
ps�1qp0q
µ1...µs�1

� �φps�1qp1q
µ1...µs�1

. (2.2.53)

To solve this equation, one must take into account the dependence between ρps�2qp1q and

ρps�1qp0q, from (2.2.47),

�iBνρps�1qp0q
νµ1...µs�2

�mρps�2qp1q
µ1...µs�2

� 0 . (2.2.54)

This makes the equation for the gauge condition not algebraic (i.e. we cannot set ρps�2qp1q

to zero in (2.2.53)). Taking the symmetrized gradient of the above expression and using
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2.3 Interactions

the massive Klein-Gordon equation for ρps�1qp0q, we can write

�iBpµ1ρps�2qp1q
µ2...µs�1q

� 1

m

s

s� 1
BνBpνρps�1qp0q

µ1...µs�1q
�m

1

s� 1
ρps�1qp0q
µ1...µs�1

, (2.2.55)

thus, the gauge condition (2.2.53) becomes

1

m
s BνBpνρps�1qp0q

µ1...µs�1q
� �φps�1qp1q

µ1...µs�1
. (2.2.56)

Provided the above differential equations admit a solution, at least locally, one finds the

following for the only non-vanishing φpsqp0q:

pl�m2qφpsqp0q
µ1...µs

pxq � 0 , (2.2.57)

Bνφpsqp0q
νµ2...µs

pxq � 0 . (2.2.58)

It forms a rank-s symmetric representation of the little group SOpD � 1q. Since it is not

traceless, it propagates the degrees of freedom of a multiplet containing massive particles

of spin s, s� 2, s� 4, . . . , 0 or s, s� 2, s� 4, . . . , 1 for even or odd s, respectively.

2.3 Interactions

So far we have discussed worldline theories that, upon quantization, describe the propaga-

tion of free spin�s particles. To make contact with interacting QFTs, one couples the

worldline to background fields, obtaining an interacting worldline theory. This theory will

represent the interaction of the particle with either other quantum particles or an external

potential determined by the experimental apparatus. As discussed previously, the way a

specific interaction is introduced is constrained both by the symmetry one wants to pre-

serve manifestly on the worldline, the Lorentz symmetry, and by the symmetries that the

relativistic field equations should enjoy in order to describe that interaction.

Let us suppose we want to describe the interaction with a scalar particle, then, we will

introduce a scalar potential, on the other hand the interaction with a gauge boson will

require a gauge potential. Coupling the particle with the graviton requires the introduction

of a background metric on the target space time.

Let us consider the free worldline theory (1.1.24). Then, consider a potential V , of

generic type. The interacting worldline theory is the constrained Hamiltonian system

with “covariantized” constraints C̃a containing the potential,

SrzA, λa;V s �
»
dt

�
1

2
pΩ�1qABzA 9zB �H 1pzq � λaC̃apz;V q;



. (2.3.1)
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Thus, the quantized theory, through the implementation of the above constraints, will

reproduce the relativistic field equations for a particle coupled to the potential V .

Let us consider the coupling of a spin�s particle, described by the OpNq spinning

particle action (2.1.56), with N � 2s, with a Up1q background gauge field Aµpxq [19]. We

introduce the covariant momenta

πµ � pµ � qAµ , (2.3.2)

where q is the charge of the particle, in the constraints Qi:

Qi Ñ Q̃i � πµψ
µ
i . (2.3.3)

We define the Hamiltonian as the N -extendend generalization of the minimal Hamiltonian

Hmin:

H Ñ H̃ � Hmin � i
q

2
Fµνψ

µ
i ψ

ν
i �

1

2
πµπ

µ � i
q

2
Fµνψ

µ
i ψ

ν
i , (2.3.4)

with Fµν the field strength given by

tπµ, πνuPB � qpBµAν � BνAµq � qFµν . (2.3.5)

Substituting these constraints into (2.1.56), eliminating the momenta pµ through their

equations of motion

pµ � e�1p 9xµ � iψµi χiq � qAµ , (2.3.6)

the interacting OpNq action in configuration space becomes

Sco � Sfree
co � Sint

co , (2.3.7)

where Sfree
co the free action (2.1.56) in configuration space,

Sfree
co �

»
dτ

�
1

2
e�1 p 9xµ � iχiψ

µ
i q2 �

i

2
ψiµ 9ψ

µ
i �

i

2
aijψ

µ
i ψjµ

�
, (2.3.8)

and Sint
co the additional term due to the interacting part,

Sint
co � q

»
dτ

�
9xµAµ � i

e

2
Fµνψ

µ
i ψ

ν
i

	
. (2.3.9)

Now, we may ask: is this action still gauge invariant under the transformations in

Subsection 2.1.3 ? This is equivalent to ask if the system is still a first class constrained

Hamiltonian system and the constraints’ algebra is preserved. Let us answer the question

and consider, for instance, the transformation generated by V � ξiQ̃i. In configuration
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2.3 Interactions

space, it acts on the fields through

δxµ � iξiψ
µ
i , (2.3.10)

δψµi � �e�1p 9xµ � iψµi χiqξi . (2.3.11)

so it acts as a supersymmetry transformation does in the free case. We keep the trans-

formation of the gauge fields to be the same as in (2.1.58). The action Sfree
co is invariant

up to boundary terms, while the action Sint
co transforms, up to a boundary term, as

δSint
co �

»
dτ

�
ξiψ

µ
j pχiψνj � χjψ

ν
i qFµν �

e

2
ξiψ

µ
j ψ

ν
jψ

σ
i BσFµν

	
. (2.3.12)

The second term vanishes due to the Bianchi identity BrσFµνs � 0. The first term vanishes

only for N � 0, 1, while for N ¥ 2 it requires Fµν � 0. In deriving this variation, we

assumed the constraints’ algebra (2.1.55) remains unchanged for the new C̃a � pH̃, Q̃i, Jijq,
since we used the variation (2.1.58) for their gauge fields. If the assumption is right, then

the above variation vanishes. We see that for the N � 1 model (and, trivially, N � 0)

this is the case, while for N ¥ 2 the covariantized constraints C̃a break the SUSY algebra

(2.1.55). However, this does not exclude, a priori, that they form a different algebra. One

can check, by computing their Poisson brackets, that it does not happen, hence, for N ¥ 2,

the covariantized constraints pH̃, Q̃i, Jijq are no longer first class constraints. Equivalently,

the interacting worldline is not a gauge system any more. The analysis for the massive

case furnishes the same results.

This renders the quantization of these models more complicated, as one has to deal

with second class constraints, which are difficult to solve explicitly in order to work in

the reduced phase space. Physically, we noticed how worldline theories led to relativistic

field equations by applying the physicality conditions for first class constraints. For this

reason, the role of these latter is fundamental in the first-quantized approach to QFT.

Such a problem also arises when the OpNq spinning particle is coupled to a gravitational

background and N ¡ 2 [40] (see [48, 49] for the coupling of the Op2q spinning particle).

To cope with situations where the interaction breaks worldline SUSY or BUSY, BRST

quantization techniques have been employed. The first important progress was made in

[20] for the Op2q spinning particle coupled to a Yang-Mills background and then the same

strategy was applied in the recent works [21–24] for different N and interactions. These

methods enable the construction of a consistent quantum theory for the interacting world-

line, allowing one to describe the coupling of the particle with the background potential.

We will discuss it in the next chapter, where we will investigate the behaviour of the

bosonic spinning particle when it couples to a background Up1q gauge field.
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2.4 Path integral representations

2.4 Path integral representations

The path integral quantization of worldline theories permits to compute propagators and

one-loop effective actions in the presence of a background potential. Precisely the repres-

entation of the propagator and one-loop effective action in QED and scalar QED in terms

of relativistic particles’ path integral, worked independently by Feynman and Schwinger,

posed the basis for a systematic formulation of QFT in terms of relativistic particle’s

actions.

Let us consider the action (2.3.1), under the assumption that the interaction has been

consistently introduced via one of the approaches discussed in the previous section. Then,

denoting by ϕ̂pxq the field operator associated to the described particle, worldline theories

show the following relation between the propagator in the presence of the background V

and the path integral over a worldline being an open curve I in spacetime:

xΩ|T tϕ̂:px2q ϕ̂px1qu |Ωy � ZI �
»
BCpIq

DzDλ

Vol(Gauge)
eiSrz,λ;V s , (2.4.1)

with boundary conditions (BC) Ipτiq � x1, Ipτf q � x2, x the spacetime coordinates (re-

member zA � pxµ, . . . q). The symbol “�” indicates that the path integral is known up to

an infinite normalization factor.

In addition, the one-loop effective action in the presence of the background V can be

obtained by the path integral over a closed curve (a loop, sometimes called the worldloop)

L,

Γ1-looprϕ;V s � ZL �
»
BCpLq

DzDλ

Vol(Gauge)
eiSrz,λ;V s , (2.4.2)

with Lpτiq � Lpτf q, i.e. periodic boundary conditions for the x.

Since the theory on the worldline is a gauge theory, it is necessary to formally divide

by the volume of gauge equivalent configurations, i.e., practically, to gauge fix the path

integral. This is achieved with the Faddeev-Popov method or using BRST techniques.

The result is that one fixes the values of the gauge fields through their gauge transform-

ations. Values that cannot be globally (i.e. in all the worldline) reached through a gauge

transformation are called moduli. The moduli space depends on the chosen topology for

the worldline. Formally, for each path integral measure over the gauge fields λ, we can

split it into an integration over gauge equivalent configurations, parametrized by the set

of gauge parameters ϵ � pϵ1, . . . , ϵaq, and gauge inequivalent configurations, parametrized

by the modulus µλ:

Daλ � daϵ dµλ Jpµλq , (2.4.3)

with Jpµλq the Jacobian from the change of integration variable. At the end, one is left
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2.4 Path integral representations

with an integration over the moduli space of the gauge fields. A moduli-dependent term,

fpµλq, can appear from the integration of the ghosts. The path integral over the phase

space variables is

ZT �
»
dµλJpµλqfpµλq

»
BCpT q

Dz eiSrz,µλ;V s , (2.4.4)

with T P tI, Lu indicating the only two possible topologies for the worldline, the open or

closed curve, i.e. the line and the circle. Boundary conditions for the fields depends on

the topology.

Let us see explicitly how this works for a massive scalar particle coupled to a back-

ground Up1q gauge field Aµ, for instance. Working in Euclidean metric, the Euclidean full

propagator is

Dx1x2rAs :� xΩ| T ϕ̂:px2q ϕ̂px1q |Ωy � xx2| ��pB � iqAq2 �m2
��1 |x1y

�
» 8

0

dT e�m
2T xx2| e�p�pB�iqAq2qT |x1y .

(2.4.5)

By using the Euclidean version of the path integral

xx2| e�TĤ |x1y �
» xpT q�x2

xp0q�x1
Dx e�

³T
0 dτpm2 9x2�V pxpτqqq , (2.4.6)

with Ĥ � � 1
2m
l� V pxq, we rewrite

Dx1x2rAs �
» 8

0

dT e�m
2T

» xpT q�x2

xp0q�x1
Dx e

�
³T
0 dτ

�
9x2

4
�iq 9x�Apxq

	
. (2.4.7)

This is called the Fock-Schwinger proper time representation of the propagator and T is the

so-called Schwinger proper time. In this representation, the propagator can be obtained

from a first-quantized picture within the Worldline Formalism.

We consider the Euclidean, massive version of the action (2.3.7) for N � 0:

Srxµ, e;As �
» 1

0

dτ

�
1

2
e�1

9xµ 9xµ � 1

2
em2 � iqAµpxq 9xµ



, (2.4.8)

where we have chosen to parametrize the worldline with the parameter τ P r0, 1s. Let

us compute the (Euclidean) path integral of the above action with boundary conditions

xp0q � x1, xp1q � x2. From the general formula for the gauge-fixed path integral (2.4.4),

we have to find the modulus for the gauge field e, with gauge symmetry:

δe � 9ϵ . (2.4.9)
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This transformation leaves the length of the worldline invariant:

Lres �
» 1

0

dτ epτq , (2.4.10)

as ϵp0q � ϵp1q � 0. Hence, for each einbein epτq such that the length is Lres � 2T , with

T an arbitrary positive value for e positive, the einbein e1 � e � δe will determine the

same length for the worldline. We can fix such gauge equivalent einbein fields to have a

constant value epτq � 2T , by solving the differential equation for ϵpτq in (2.4.9). Thus,

gauge inequivalent einbein fields are parametrized by the modulus T , the length of the

worldline. After gauge fixing the action with epτq � 2T , the path integral of the relativistic

particle described by the action (2.4.8) reads:

ZIrAs �
» 8

0

dT e�m
2T

» xp1q�x2

xp0q�x1
Dx e

�
³1
0 dτ

�
9x2

4
�iq 9x�Apxq

	
, (2.4.11)

being exactly equal to the full propagator (2.4.7) (after the rescaling τ Ñ τ{T ) if we choose
a normalization factor equal to 1.

The same can be observed for the Euclidean one-loop effective action Γ1-looprAs,

e�Γ1-looprAs �
»
DϕDϕ�e�Srϕ,ϕ

�;As � Det�1
��pB � iqAq2 �m2

�
, (2.4.12)

from which

Γ1-looprAs � � lnDet�1
��pB � iqAq2 �m2

� � Tr ln
��pB � iqAq2 �m2

�
. (2.4.13)

By using the integral representation of the logarithm

ln
a

b
� �

» 8

0

dT

T

�
e�aT � e�bT

�
, (2.4.14)

we obtain the Fock-Schwinger proper time representation of the one-loop effective action,

Γ1-looprAs � �
» 8

0

dT

T
Tr e�Tp�pB�iqAq2�m2q � �

» 8

0

dT

T

»
dDx xx| e�T p�pB�iqAq2�m2q |xy .

(2.4.15)

Then, from

Tr e�TĤ �
»
dDx xx| e�TĤ |xy �

»
xp0q�xpT q

Dx e�
³T
0 dτpm2 9x2�V pxpτqqq , (2.4.16)
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one gets the final expression

Γ1-looprAs � �
» 8

0

dT

T
e�m

2T

»
xp0q�xpT q

Dx e
�
³T
0 dτ

�
9x2

4
�iq 9x�Apxq

	
. (2.4.17)

The above effective action can be obtained from the path integral of the system (2.4.8) over

a worldline with the topology of the circle, with periodic boundary conditions xp0q � xp1q.
The gauge-fixed path integral now reads

ZLrAs �
» 8

0

dT

T
e�m

2T

»
xp0q�xp1q

Dx e
�
³1
0 dτ

�
9x2

4
�iq 9x�Apxq

	
. (2.4.18)

The measure in the modulus space of e, 1{T , comes from the fact that the condition for

(2.4.9) to be a gauge symmetry now is ϵp0q � ϵp1q. This allows the existence of killing

vectors ϵ1 such that δe � 0. Thus, they are constant vectors ϵ1 � k. In the gauge orbit

e � 2T , these vectors correspond to the generators of time translation in τ (remember

δxµ � e�1ϵ 9xµ). Thus, we need to divide by the volume of these transformations, which

represent a residual gauge symmetry. Their volume is the length of the worldline. If we fix

the overall normalization factor in (2.4.18) to be �1, then it reproduces the effective action

induced by a charged massive scalar in the presence of an Abelian background (2.4.17).
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Chapter 3

Charged massive vector bosons

In this chapter, we investigate massive spin-1 particles coupled to electromagnetism. We

shall describe this interaction through the worldline techniques discussed in the previous

chapter. The formulation is first developed in terms of the bosonic spinning particle and

then, for completeness, within the fermionic model. In both models, consistency condi-

tions for the electromagnetic background emerge. For a particular class of backgrounds

satisfying these conditions, we derive the one-loop effective action for the electromagnetic

field induced by the spin-1 particle and compute the particle-antiparticle pair production

rate in a constant electric field. The material presented in the following sections is based

on [30].

3.1 Free massive vector bosons from the Spp2q particle

We aim to describe massive spin-1 particles from the bosonic spinning particle action

discussed in Section 2.2. Hence, we impose the operator constraint Jc in (2.2.39) with

CS coupling given by (2.2.40) with s � 1. A generic state at occupation number s � 1

(2.2.43) is given by

|ψy �Wµpxqαµ |0y � iφpxqβ |0y , (3.1.1)

where we have factored out �i for convenience. The remaining physicality conditions

(2.2.44) and (2.2.45) translate into the following set of equations:

pl�m2qWµ � 0 , (3.1.2)

pl�m2qφ � 0 , (3.1.3)

BµWµ �mφ � 0 . (3.1.4)
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The gauge symmetries (2.2.48) related to the null state L |ρy, with |ρy � ρpxq |0y, are given
by

δWµ � Bµρ , δφ � �mρ . (3.1.5)

Using the gauge symmetry to set φpxq � 0, we recover the standard Fierz-Pauli equations

for a massive spin-1 field Wµpxq.

3.2 Counting degrees of freedom

The degrees of freedom propagated by the massive model, for different values of the CS

coupling, can be computed through the one-loop effective action obtained by path integ-

rating the free action on worldlines with the topology of a circle S1. After fixing the overall

normalization to match the scalar case, we will get the number of degrees of freedom in

the other sectors of the worldline theory.

3.2.1 Gauge fixing

We first need to define a finite path integral for the worldline action. Let us consider the

following path integral

ZS1 �
»
PBC

DGDX

VolpGaugeq e
iSrz,λs , (3.2.1)

where λ � pe, ū, u, aq denotes the gauge fields, whereas z � pxµ, pµ, αµ, ᾱµ, β, β̄q collect-
ively denotes all dynamical variables parametrizing the phase space. Periodic boundary

conditions (PBC) are understood to implement the path integral on the circle. It will be

useful to explicitly rewrite the action, namely the one in (2.2.3) with the constraints in

(2.2.36),

Srz, λs �
» 1

0

dτ

�
pµ 9x

µ � iᾱµ 9α
µ � e

2
ppµpµ �m2q � ūpαµpµ � βmq

� upᾱµpµ � β̄mq � apαµᾱµ � ββ̄ � cq
�
.

(3.2.2)

We prefer to work in the Euclidean version of the theory, so that we first pass to

configuration space by eliminating the momenta pµ:

BS
Bpµ � 0 , ðñ pµ � e�1p 9xµ� uᾱµ � ūαµq , (3.2.3)
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Wick rotate the action with τ Ñ �iτ , taking into account also the rotation of the gauge

field aÑ ia, and get the Euclidean worldline action

SErz, λs �
» 1

0

dτ

�
1

2e
p 9xµ � iuᾱµ � iūαµq2 � αµ 9̄α

µ � β 9̄β � e

2
m2

� uβ̄m� ūβm� iapαµᾱµ � ββ̄ � cq
�
.

(3.2.4)

The transformation rules for phase space variables and gauge fields in Euclidean time are

obtained by Wick rotating the gauge parameters ϵ Ñ �iϵ, ξ Ñ �iξ, ξ̄ Ñ �iξ̄. We report

the transformation of the gauge fields, useful to study the gauge fixing:

δe � 9ϵ� 2uξ̄ � 2ūξ , (3.2.5a)

δu � 9ξ � iaξ � iϕu , (3.2.5b)

δū � 9̄ξ � iaξ̄ � iϕū , (3.2.5c)

δa � 9ϕ . (3.2.5d)

The Wick rotation of the gauge field a is needed in order to maintain the Up1q group
compact.

As we know, the overcounting in (3.2.1) from summing over gauge equivalent config-

urations is formally taken into account by dividing by the volume of the gauge group. We

will work the BRST procedure to define this path integral. To do so, it is useful to notice

that we can gauge fix the worldline gauge fields to constant moduli

λ � pe, ū, u, aq Ñ λ̂ � p2T, 0, 0, θq . (3.2.6)

We have already seen T , the modulus related to the einbein epτq, corresponding to the

gauge-invariant worldline length. On the other hand, the gauge fields pu, ūq can be gauge-

fixed to zero. The modulus θ is associated with the worldline Up1q gauge field apτq and
parametrizes the gauge invariant Wilson loop. It is responsible for the reduction of the

Hilbert space to a given spin sector. Let us see how these moduli emerge.

From the finite Up1q transformation generated by ϕJ

upτq Ñ u1pτq � eiϕpτqupτq ,
ūpτq Ñ ū1pτq � e�iϕpτqūpτq ,
apτq Ñ a1pτq � apτq � 9ϕpτq ,

since periodic boundary conditions for u, ū hold, the gauge transformations g � eiϕpτq must
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be periodic functions on r0, 1s, that is

ϕp1q � ϕp0q � 2πn , n P N . (3.2.7)

We can define the gauge invariant Wilson loop

wras � ei
³1
0 dτ a . (3.2.8)

Then, we can transform each field apτq into a constant field a1pτq � θ through

ϕpτq � ϕp0q � θ τ �
» τ

0

dτ 1 apτ 1q , (3.2.9)

but this constant cannot be arbitrary, but, from (3.2.7), it is fixed to be

θ �
» 1

0

dτ apτq � 2πn . (3.2.10)

Being the Wilson loop w defined on the gauge slices of apτq, and, from the above equation,

wrθs � wras, the variable θ is a modulus in the space of the field apτq, as it parametrizes

gauge inequivalent configurations. From wrθs � wrθ � 2πns, we can take r0, 2πs as the

fundamental region of the moduli space. The killing vectors ϕ0, such that δa � 9ϕ0 � 0,

are constant vectors ϕ0 � k.

Moving to the field u (equivalently for ū), the gauge transformation generated by ξL̄

can be employed to set it to zero, by solving the first order linear differential equation in

ξ with a � θ (3.2.5b),

0 � 9ξ � iθξ � u . (3.2.11)

In fact, no constraint arises in the constant values the field u can take. There is not a

gauge invariant quantity for such field as long as θ is different from zero. In that case, the

quantity
³1
0
dτ ξpτq is gauge invariant due to the periodic boundary conditions ξp1q � ξp0q.

We will see the value θ � 0 can be handled through a limiting procedure, as in the standard

N � 2 particle case [48, 49]. Therefore, pu, ūq carry no moduli, they are “pure gauge”.

Finally, in Section 2.4, we have seen how the space of gauge fields e shows moduli T

associated to the length of the worldline, and the killing vectors correspond, in each gauge

slice, to the generators of time translation.

Having examined the fields space, we construct a finite path integral by gauge fixing

the action and splitting the functional integration measure over these fields in moduli- and

gauge-dependent measures. To obtain a BRST invariant gauge-fixed action, one introduces

a set of anticommuting ghost, anticommuting antighost, and commuting auxiliary field for
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3.2 Counting degrees of freedom

each gauge field by

ϵÑ pc, b,ϖϵq , ϵ � Λc , δBb � iΛϖϵ , δBϖϵ � 0 ,

ξ Ñ pC, B̄, ϖξq , ξ � ΛC , δBB̄ � iΛϖξ , δBϖξ � 0 ,

ξ̄ Ñ pC̄,B, ϖξ̄q , ξ̄ � ΛC̄ , δBB � iΛϖξ̄ , δBϖξ̄ � 0 ,

ϕÑ pf, g,ϖϕq , ϕ � Λf , δBg � iΛϖϕ , δBϖϕ � 0 ,

(3.2.12)

where δB :� ΛS indicates the BRST transformation, Λ is an anticommuting parameter

and S the Slavnov operator. The nilpotency of the BRST transformation requires S2.

Thus, each gauge parameter is replaced by the constant Λ times the associated ghost, and

the BRST transformation for the gauge fields are obtained from (3.2.5) and the above

replacement for the parameters. Through the gauge fermion:

Ψ �
» 1

0

dτ
�
b F1pc,ϖϵq � B̄ F2pC, ϖξq � B F3pC̄, ϖξ̄q � gF4pf,ϖϕq

�
, (3.2.13)

with F1, F2, F3, F4 arbitrary functions that parametrize the choice of the gauge fixing, the

gauge-fixed action reads

S � SErz, λs � δ

δΛ
Ψ , (3.2.14)

where δ
δΛ

indicates the BRST transformation with the parameter Λ factorized and removed

from the left. With this action, the path integral becomes

ZS1 �
»
PBC

DzDλDG e�S , (3.2.15)

where G denotes the set of all ghosts, antighosts and auxiliary fields.

Each gauge field can be decomposed in a modulus-dependent part and gauge-dependent

part, infinitesimally given by

λi � µλi � δλi|λi�µλi , (3.2.16)

and the measure correspondingly splits into

Daλ � D1aϵ dµλ Jpµλq , (3.2.17)

where a prime indicates that the integration is not carried over the killing vectors. We

choose a function Ψ such that the gauge fields are set equal to their moduli and the

variations due to gauge transformations are set to zero:

Ψ �
» 1

0

dτ
�
bp2T � eq � B̄u� Bū� gpθ � aq� . (3.2.18)
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3.2 Counting degrees of freedom

In fact, if one computes SΨ, then expresses the gauge fields as

e � 2T � δe|e�2T , u � δu|u�0 , ū � δū|ū�0 , a � θ � δa|a�θ , (3.2.19)

and integrates over the ϖ variables, this produces delta functions in the variations of the

fields δpδe|e�2T q, . . . , δpδa|a�θq, that, after integration of the gauge parameters from which

these variations depend,
³
D1ϵ . . .D1ϕ, fixes the values of the gauge fields as in (3.2.6) in

the total action (3.2.14). At this point, the path integral reads

ZS1 �
» 8

0

dTJpT q
» 2π

0

dθJpθq
»
PBC

DzDḠ e�S , (3.2.20)

with Ḡ denoting the set of ghosts and antighosts, the action

S � SErz, λ̂s �
» 1

0

dτ

�
b 9c� B̄

�
d

dτ
� iϕ



C � B

�
d

dτ
� iϕ



C̄ � g 9f



, (3.2.21)

and, explicitly,

SErz, λ̂s �
» 1

0

dτ

�
1

4T
9x2 � αµpBτ � iθqᾱµ � βpBτ � iθqβ̄ �m2T � icθ

�
. (3.2.22)

From the integration of the ghosts associated to the BUSY parameters, we obtain the

modulus-dependent functional determinants (the others can be reabsorbed into the overall

normalization of the path integral)

DetpBτ � iθqDetpBτ � iθq , (3.2.23)

evaluated with periodic boundary conditions (as the ghost and antighost inherit the bound-

ary conditions of the gauge parameters they are associated with). For the functional de-

terminants arising from the integration measures, the modulus-dependent one is that for

T [50, 51]

JpT q � T�1 . (3.2.24)

The final form of the path integral is conveniently written

ZS1 �
» 8

0

dT

T

» 2π

0

dθ

2π
DetpBτ � iθqDetpBτ � iθq

»
PBC

Dz e�SErz,λ̂s . (3.2.25)

The path integral over the coordinates xµ can be computed by decomposing the space of

closed loops in a constant path x̄µ (zero mode of the free kinetic operator) and fluctuations
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3.2 Counting degrees of freedom

tµpτq satisfying Dirichlet boundary conditions (DBC)

xµpτq � x̄µ � tµpτq , with tµp0q � tµp1q � 0 , (3.2.26)

such that»
xp0q�xp1q

Dx e�
1
2

³1
0 dτ xµp� 1

2T
B2τ δµνqxν �

»
dDx̄

»
tp0q�tp1q�0

Dt e�
1
2

³1
0 dτ tµp� 1

2T
B2τ δµνqtν (3.2.27)

�
»
dDx̄

1

p4πT qD2
, (3.2.28)

where, in the last line, we used the result of the free path integral of a non-relativistic

particle.

Path integrating over the bosonic oscillator brings down the functional determinants

DetpBτ � iθq�D�1, evaluated with periodic boundary conditions.

3.2.2 Degrees of freedom

It is useful to recast the final expression for the path integral over the circle, i.e. the free

one-loop effective action Γ, as

Γ � ZS1 � �
» 8

0

dT

T
e�m

2T

»
dDx̄

p4πT qD2
DoFpc,Dq , (3.2.29)

where we denoted by DoF(c,D) the number of (complex) degrees of freedom that acquires

the expression

DoFpc,Dq � k

» 2π

0

dθ

2π
eicθ Det pBτ � iθqDet pBτ � iθq rDetpBτ � iθqs�D�1 , (3.2.30)

with k an overall normalization to be fixed later on. The value DoF = 1 corresponds to a

complex scalar, as seen by comparing with QFT expression.

The determinants need to be regularized, as they are infinite in principle. We regularize

them by dividing for the determinant of the “free operator” without the zero mode, so it

is infinite too. We compute them as infinite product of their eigenvalues. They act on

periodic functions F on r0, 1s, hence, a generic function can be expanded in the basis

F pτq �
¸
nPZ

Fn e
i2πnτ . (3.2.31)
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3.2 Counting degrees of freedom

Therefore, the regularized determinants

DetpBτ � iθq ÝÑ DetpBτ � iθq
Det1pBτ q (3.2.32)

are easily computed:

DetpBτ � iθq
Det1pBτ q �

±
nPZ ip2πn� θq±
nPZ zt0u i2πn

� �iθ
¹

nPZ zt0u

�
1� θ

2πn




� �2i sin
�
θ

2



.

(3.2.33)

Setting the CS coupling to1

c � D � 1

2
� s , (3.2.34)

and fixing k � �1 as overall normalization, we find the following expression for the number

of degrees of freedom

DoFps,Dq �
» 2π

0

dθ

2π
eipD�1

2
�sqθ

�
2i sin

θ

2


1�D

. (3.2.35)

To evaluate it, we find it more convenient to recast it in terms of the Wilson loop variable

w � e�iθ, so that

DoFps,Dq �
¾
γ�

dw

�2πi
1

ws�1

1

p1� wqD�1
, (3.2.36)

where γ� indicates the clockwise oriented contour. The singular point θ � 0 is mapped

to the pole w � 1. Our prescription to deal with this pole is to deform the contour to

exclude it in such a way to take care only of the pole w � 0 (cf. Fig. 3.1). Thus, from the

Residue Theorem,

DoFps,Dq � 1

s!

ds

dws
1

p1� wqD�1

����
w�0

� pD � 1qD � � � pD � s� 2q
s!

, (3.2.37)

which indeed describes the degrees of freedom of a reducible (for s ¥ 1) representation of

the little group SOpD� 1q as carried by a symmetric tensor with s indices. This confirms

that the massive bosonic spinning particle propagates, for a given value of s, the degrees

of freedom of a multiplet of massive particles of decreasing spin s, s � 2, s � 4, � � � , 0 for

1The shift from the value given in (2.2.19) is due to the contribution of the ghost fields. For convenience,
we now indicate the degrees of freedom by DoFps,Dq, which highlights the dependence on the value of
the spin s. This should not cause any confusion.
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Rew

Imw

1−1
ε

γ−

Figure 3.1: Regulated contour of the integral in the Wilson loop variable w. The pole at
w � 1 is excluded through a limiting procedure, pictorially represented by the semicircle
of radius ϵÑ 0.

even s, and s, s� 2, � � � , 1 for odd s, as discussed in Subsection 2.2.2.

3.3 Coupling to electromagnetism

So far, we have quantized the free theory through the Dirac method. On the other side,

the (Hamiltonian) BRST quantization is especially well-suited for analysing the conditions

required for consistent background interactions, when these spoil the first class nature of

the constraints. For this reason, we quantize the free particle in this framework and then

examine its interaction with an electromagnetic background.

3.3.1 Free BRST analysis

Following the discussion in Section 1.2, we proceed with the BRST quantization focusing

only on the subalgebra of (2.2.17) generated by pH,L, L̄q. The constraint Jc is treated on

different footings: it is imposed as a constraint on the BRST Hilbert space, à la Dirac,

defining a restricted Hilbert space where the cohomology of the BRST operator will be

analysed.

The Hilbert space is enlarged to realize the fermionic ghost-antighost pairs of operators

tb, cu � 1 , tB, C̄u � 1 , tB̄, Cu � 1 , (3.3.1)
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3.3 Coupling to electromagnetism

associated with the pH,L, L̄q constraints, respectively. We assign them the following ghost

numbers: ghpc, C̄, Cq � �1 , ghpb, B̄,Bq � �1. The BRST charge associated with a first

class system is readily constructed from (1.2.14). In the present case, it takes the form

Q � cH � C̄L� CL̄� 2CC̄b . (3.3.2)

It is an anticommuting, ghost number �1, nilpotent operator by construction. It is her-

mitian provided that

c: � c , b: � b , C: � C̄ , B: � B̄ . (3.3.3)

The “matter” sector Hilbert space with elements as in (2.2.42) is extended to the

BRST Hilbert space HBRST by a tensor product with the ghost sector, associated with the

pc, b,B, C̄, C, B̄q operators. The latter is constructed as a Fock space on the ghost vacuum

defined by

pb, C̄, B̄q |0ygh � 0 . (3.3.4)

Since all ghosts are Grassmann odd, Hgh is finite dimensional. A generic state |Φy in the

BRST-extended Hilbert HBRST space reads

|Φy �
8̧

s,p�0

1̧

q,r,t�0

cqCrBt |Φps,pqpq,r,tqy (3.3.5)

where

|Φps,pqpq,r,tqy � 1

s!p!
Φps,pqpq,r,tq
µ1...µs

pxqαµ1 . . . αµsβp |0y , (3.3.6)

with |0y now denoting the full BRST vacuum. With this choice, the conjugate momenta

act as derivatives:

pµ � �iBµ , ᾱµ � Bαµ , β̄ � Bβ , b � Bc , C̄ � BB , B̄ � BC . (3.3.7)

We now introduce a couple of operators, G and Js, to further restrict the full BRST

Hilbert space. These are the ghost number operator

G � cb� CB̄ � BC̄ , rG,Qs � Q , (3.3.8)

and the (shifted) occupation number operator

Js � αµᾱ
µ � ββ̄ � CB̄ � BC̄ � s , rQ,Jss � 0 . (3.3.9)
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3.3 Coupling to electromagnetism

They commute between themselves, rG,Jss � 0. The occupation number operator Js
is defined in such a way to commute with the BRST charge operator, and it is derived

from the quantization of the constraint operator Jc (2.2.36) with the addition of the above

ghost operators. With the usual antisymmetric quantization’s prescription for fermionic

operators and Weyl prescription for the bosonic ones, the effect is to shift the CS coupling

in (2.2.40) as 2

c � D � 1

2
� s . (3.3.10)

The ghost number operator grades the BRST Hilbert space according to the ghost number,

and the commutator rG,Qs � Q manifests that the BRST charge has ghost number 1.

The occupation number operator also grades the BRST Hilbert space according to its

eigenvalues and can be used as a constraint to project the Hilbert space onto the subspace

with fixed occupation number s. In fact, the Hilbert space decomposes into the direct sum

HBRST �
8à
s�0

2à
g��1

Hs,g , (3.3.11)

with Hs,g the eigenspace of the occupation number operator Js with zero eigenvalue, and

of the ghost number operator with eigenvalue g. The BRST cohomology can be studied at

fixed values of s, since Js map physical states into physical states due to rQ,Jss � 0 and

rG,Jss � 0. Therefore, physical states are identified as elements of the BRST cohomology

Q |Φy � 0 , |Φy � |Φy �Q |Λy (3.3.12)

restricted to the subspace with vanishing eigenvalues of the ghost number and shifted

occupation number operators, i.e.

G |Φy � Js |Φy � 0 . (3.3.13)

Our interest lies in the first-quantized description of a massive spin-1 particle, thus we

choose s � 1. From (3.3.5), an arbitrary wave function at zero ghost number and with

s � 1 is then given by

|ψy �Wµpxqαµ |0y � iφpxqβ |0y � fpxqcB |0y , (3.3.14)

where the complex fields Wµpxq, φpxq, and fpxq must be further constrained by Eq.

(3.3.12) to represent the physical states of the theory. From the closure equation, i.e.,

2This value has already been used in the path integral construction (see footnote 1), which evidently
involves a regularization consistent with this ordering prescription.
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3.3 Coupling to electromagnetism

the first one in (3.3.12), we obtain:

�
l�m2

�
Wµ � 2iBµf � 0 , (3.3.15a)�

l�m2
�
φ� 2imf � 0 , (3.3.15b)

BµW µ �mφ� 2if � 0 , (3.3.15c)

which, upon eliminating the auxiliary field fpxq, represent the field equations of the Proca

field in the Stückelberg formulation:

�
l�m2

�
Wµ � BµBνWν �mBµφ � 0 , (3.3.16a)

lφ�mBµW µ � 0 . (3.3.16b)

The above equations enjoy a gauge symmetry, which, from (3.3.12), reads

δ |ψy � Q |Λy , with |Λy � iρpxqB |0y , (3.3.17)

i.e.

δWµ � Bµρ , δφ � �mρ , (3.3.18)

which is the well-known Stückelberg gauge symmetry. The presence of the Stückelberg

scalar φ restores the Up1q gauge symmetry [52] originally broken due to the introduction

of the mass. In the so-called unitary gauge, namely setting the Stückelberg field to zero,

one reduces the field equations to the standard Fierz-Pauli system for the massive spin-1

field Wµpxq.
Taking the massless limit produces from (3.3.16) a pair of decoupled equations: one

for a free-propagating massless vector field Wµpxq and one for a massless scalar field φpxq.
This is tantamount to the fact that the theory of massive spin-1 does not suffer from the

so-called “vDVZ discontinuity”, differently from the massive spin 2 case [53, 54].

Finally, let us notice that the wave function (3.3.14) can be interpreted as a spacetime

Batalin-Vilkovisky (BV) “string field” displaying only the classical fields out of the minimal

BV spectrum of the Proca theory, along with an auxiliary field.3 The Grassmann parities

and ghost numbers of the field components are all equal to zero.

3The complete minimal BV spectrum is obtained by relaxing the condition G |ψy � 0, see for instance
[23, 24].
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3.3 Coupling to electromagnetism

3.3.2 Consistent electromagnetic coupling

The coupling of the worldline to an Abelian background field Aµpxq in spacetime (with

coupling constant q) is achieved by covariantizing the BUSY constraints as follows:

LÑ αµπµ � βm , L̄Ñ ᾱµπµ � β̄m , (3.3.19)

where the covariantized momentum πµ with coupling constant q is defined as usual by

πµ � pµ � qAµ . (3.3.20)

It becomes the covariant derivative in the coordinate representation, πµ � �ipBµ�iqAµq �
�iDµ. The new constraints do not form a first class algebra any more: while the BUSY

charges do commute into a possibly deformed Hamiltonian

rL̄, Ls � π2 �m2 � ᾱµανF̃µν �: H�1{2 , (3.3.21)

where we have denoted rπµ, πνs � �rDµ, Dνs � iqFµν �: F̃µν , we find that the remaining

commutators read

rL,H1{2s � iαµBνF̃νµ � 3

2
αµF̃µνπ

ν � i

2
ᾱναραµBµF̃ρν , (3.3.22)

rL̄,H1{2s � iᾱµBνF̃νµ � 3

2
ᾱµF̃µνπ

ν � i

2
ᾱναρᾱµBµF̃ρν , (3.3.23)

with BρF̃µν � irπρ, F̃µνs, and they do not allow for a suitable redefinition of the constraints

to form a first class algebra. Since the definition of a nilpotent BRST charge (1.2.14)

relies on the latter, we expect that the corresponding BRST charge, defined from (3.3.2)

by substituting the covariantized constraints, fails to be nilpotent. This indicates an

inconsistency of the interacting worldline theory at the quantum level.

We aim to “deform” the covariantized BRST operator, in order to define a nilpotent

one. With the BUSY charges given as in (3.3.19), we make the ansatz

QA � cHκ � C̄L� CL̄� 2CC̄b (3.3.24)

�: cHκ � Sµπµ � C̄βm� Cmβ̄ �Mb , (3.3.25)

with a deformed Hamiltonian

Hκ � 1

2

�
π2 �m2 � 2καµᾱνF̃µν

	
(3.3.26)

that contains a non-minimal coupling with constant κ to be conveniently fixed, and the
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3.3 Coupling to electromagnetism

shorthand notation

Sµ � αµC̄ � ᾱµC , M � 2CC̄ . (3.3.27)

Thus, let us compute:

Q2
A � crHκ, S

µπµs �MHκ � SµSνπµπν � M

2
m2 (3.3.28)

� crHκ, S
µπµs � M

2

�
πµπ

µ � 2καµᾱνF̃µν
�� M

2

�
ηµν � ανᾱµ � αµᾱν

�
πµπν , (3.3.29)

where we used SµSν �M{2�ηµν�ανᾱµ�αµᾱν�. Denoting Sµν � αµᾱν�ανᾱµ, we obtain

Q2
A � crHκ, S

µπµs � 2κ� 1

4
MSµνF̃µν , (3.3.30)

In general, this is not zero, except for the trivial case of vanishing field strength, which

manifests the inconsistency of coupling massive spin s particles, with generic s, to an elec-

tromagnetic background. This is also the case for massless particles, as already discussed

in [29]. Even if we cannot define a nilpotent BRST charge on the whole Hilbert space, we

can restrict its action to a specific subspace and study the cohomology there. In fact the

deformed BRST charge still commutes with the occupation number (3.3.9). Restricting

the occupation number to be s ¤ 1, the nilpotency condition simplifies: if there are two or

more annihilation operators in Q2
A, they annihilate the physical wave function for s � 0, 1.

Thus, the squared BRST charge in this subspace reads

Q2
A

��
s�0,1

� crHκ, S
µπµs

��
s�0,1

� �ic
2

�
BµF̃ µνSν � 2ip1� κqF̃ µνπµSν � κSνSαβBνF̃αβ

	 ��
s�0,1

.
(3.3.31)

For the s � 0 sector, this expression is automatically zero regardless of any condition

on the background electromagnetic field, as this operator contains destruction operators

sitting on the right that annihilate the s � 0 wave function (recall the expressions for

the operators Sµ and Sµν). Physically, this expresses the fact that spinless particles can

be consistently coupled to off-shell Abelian background fields. As for the massive spin-1

sector (3.3.14), using

SνSρσ|s�1 � Cpηνρᾱσ � ηνσᾱρq , (3.3.32)

the previous equation further simplifies to

Q2
A

��
s�1

� q

2
cpαν C̄ � ᾱνCqBµpBµAν � BνAµq , (3.3.33)

having set κ � 1 to achieve this result: then, nilpotency of the deformed BRST charge
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3.4 Effective action in electromagnetic background

requires the background Aµpxq to be on-shell, i.e. it satisfies Maxwell’s equations

BµFµν � lAν � BνpBµAµq !� 0 . (3.3.34)

This is enough to prove the consistency of the coupling, since, provided the background

satisfies the Maxwell’s equations, in the subspace with s � 1 we can define a nilpotent

BRST charge for the interacting theory. Then, the usual cohomology of this operator can

be exploited to define physical states and observables.

Let us notice that the mass does not obstruct the nilpotency as it does not enter in

the squared BRST charge, namely, it does not seem to carry substantial differences with

respect to the massless case. Therefore, with worldline techniques, coupling massless spin-

1 particle to an Abelian Up1q background seems to not show obstacles. However, from

QFT, we know that massless charged spin-1 particles are inconsistent due to the breaking

of their own gauge invariance by the electromagnetic coupling. How the no-go theorem

about massless charged particles [9] appears from a worldline perspective is at the moment

unclear to us.

For general s, despite the mass m does not explicitly enter in the BRST algebra, it may

obstruct the nilpotency for higher-spin particles, starting from the spin-2 case as discussed

in [24] for the gravitational coupling.

3.4 Effective action in electromagnetic background

Let us employ the worldline model to compute the one-loop effective action induced by a

charged spin-1 particle in a constant electromagnetic background.

The worldline representation of the effective action is derived by following the same

approach as in the free case (cf. Section 3.2), which in particular determines the overall

normalization of the path integral. Now, the constraint’s algebra of the interacting world-

line theory is not first class and the classical system is not a gauge system. However, we

have seen that a BRST charge can be defined in the s � 0, 1 subspaces, thus, an appro-

priate way of thinking about the gauge-fixed path integral is to consider it as describing a

quantum BRST system from the beginning, not as being derived from a gauge invariant

classical theory.

We treat the s � 0 and s � 1 cases simultaneously. This approach allows for a direct

comparison, with the spinless case serving as a check on the novel spin-1 contribution

within the first-quantized framework.

As the interacting worldline action, we take the covariantized version of the free ac-

tion in Euclidean configuration space (3.2.4) with covariantized constraints (3.3.19) and
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3.4 Effective action in electromagnetic background

deformed Hamiltonian H1 (3.3.26),

SErz, λ;As �
» 1

0

dτ

�
1

2e
p 9x� iūα � iuᾱq2 � αµ 9̄αµ � β 9̄β � e

2

�
m2 � 2iqαµᾱνFµν

�

� uβ̄m� ūβm� iapJ � cq � iqAµ 9xµ

�
.

(3.4.1)

The gauge-fixed version (cf. (3.2.6)), factoring out the m2T � icθ constant term, reads

SErz, λ̂;As �
»
dτ

�
9x2

4T
� iqAµ 9xµ � αµ

�
δµν

�
d

dτ
� iθ



� 2iqTFµν



ᾱν � β

�
d

dτ
� iθ



β̄

�
(3.4.2)

We restrict our analysis to four spacetime dimensions and consider a constant electromag-

netic field as the on-shell background. Under these conditions, we derive the one-loop

effective action of the Euler-Heisenberg type induced by a massive spin-1 particle. This

effective action is given by the path integral on the circle of the gauge-fixed action and

takes the form:

ΓrAs �
» 8

0

dT

T
e�m

2T

» 2π

0

dθ

2π
eicθ Det pBτ � iθqDet pBτ � iθq

»
PBC

DX e�SErX,λ̂;As , (3.4.3)

with measure in moduli space and determinants already fixed by the free case, and the

CS coupling fixed to c � 3
2
� s. Recalling the coordinate split in (3.2.26), we use the

Fock-Schwinger gauge around x̄ for the background field, i.e.

px� x̄qµAµpxq � 0 , (3.4.4)

to express derivatives of the gauge potential at the point x̄ in terms of derivatives of the

field strength tensor

Aµpx̄� tq � 1

2
tνFνµpx̄q � . . . , (3.4.5)

where the higher-derivative terms hidden inside the dots vanish since we focus on the

constant electromagnetic background case. Then, the path integral becomes Gaussian,

and it simplifies to

ΓrAs �
»
d4x̄

» 8

0

dT

T

e�m
2T

p4πT q2
» 2π

0

dθ

2π
eip 3

2
�sqθ 4 sin2

�
θ

2


»
DBC

Dt e�Strz,λ̂;As»
PBC

DαDᾱ e�Sαrz,λ̂;As
»
PBC

DβDβ̄ e�Sβrz,λ̂s ,

(3.4.6)

where we factored out the normalization of the free particle path integral, and where we
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3.4 Effective action in electromagnetic background

defined

Strz, λ̂;As �
»
dτ

1

2
tµ∆ptq

µνt
ν , with ∆ptq

µν � � 1

2T
δµν

d2

dτ 2
� iqFµν

d

dτ
, (3.4.7)

Sαrz, λ̂;As �
»
dτ αµ∆pαq

µν ᾱ
ν , with ∆pαq

µν � δµν

�
d

dτ
� iθ



� 2iqTFµν , (3.4.8)

Sβrz, λ̂s �
»
dτβ∆pβqβ̄ , with ∆pβq � d

dτ
� iθ , (3.4.9)

in order to highlight the three differential operators whose functional determinants have to

be computed as a result of the path integration over the variables zpτq. The determinant

of the last operator above was computed in (3.2.33), while the first two involves differen-

tial operators acting now on the space of four-vector fields with boundary conditions as

indicated in (3.4.6). The result for the determinants are:

Det
�
∆ptq

� � det

�
sinpqTFq
qTF



, (3.4.10)

Det
�
∆pαq

� � det

�
2i sin

�
θ

2
1� qTF


�
, (3.4.11)

Det
�
∆pβq

� � 2i sin

�
θ

2



. (3.4.12)

To derive these results, let 1 denote the identity matrix and F the Euclidean field

strength tensor with components

F4i � �iEi, Fij � ϵijkBk, i, j � 1, 2, 3 . (3.4.13)

Then, for the first functional determinant (3.4.7), since we factored out the normalization

of the free particle path integral, we have to compute

Det1
�� 1

2T
d2

dτ2
1� iqF d

dτ

�
Det1

�� 1
2T

d2

dτ2
1
� � Det1

�
d
dτ
1� 2iqTF

�
Det1

�
d
dτ
1
� , (3.4.14)
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hence

Det1
�� 1

2T
d2

dτ2
1� iqF d

dτ

�
Det1

�� 1
2T

d2

dτ2
1
� � det

�
� ¹
nPZ zt0u

2πin1� 2iqTF

2πin

�



� det

�¹
n¡0

�
1� pqTFq2

π2n2


�

� det

�
sinpqTFq
qTF



,

(3.4.15)

where we have taken into account the Dirichlet boundary conditions that exclude the zero

mode. The second functional determinant (3.4.8), regularized,

Det

��
d

dτ
� iθ



1� 2iqTF



ÝÑ Det

��
d
dτ
� iθ

�
1� 2iqTF

�
Det1

�
d
dτ
1
� , (3.4.16)

is computed as

Det
��

d
dτ
� iθ

�
1� 2iqTF

�
Det1

�
d
dτ
1
� � det

�±
nPZ ip2πn� θq1� 2iqTF±

nPZ zt0u i2πn

�

� det

�
ipθ1� 2qTFq

¹
n¡0

�
1� pθ1� 2qTFq2

4π2n2


�

� det

�
2i sin

�
θ

2
1� qTF


�
.

(3.4.17)

At this point, our final expression is

ΓrAs �
»
d4x̄

» 8

0

dT

T

e�m
2T

p4πT q2 det
�1{2

�
sinpqTFq
qTF



IspT,Aq , (3.4.18)

where all that is left to do is to perform the modular integration in θ for a given value of

spin s

IspT,Aq �
» 2π

0

dθ

2πi
eip 3

2
�sqθ 2 sin

�
θ

2



det�1

�
2i sin

�
θ

2
1� qTF


�
. (3.4.19)

It is convenient to recast the determinants above by diagonalizing the field strength F. Its

eigenvalues are

λ1 � K� , λ2 � iK� , λ3 � �K� , λ4 � �iK� , (3.4.20)
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3.4 Effective action in electromagnetic background

having defined K� �
a?

F2 � G2 � F in terms of the Maxwell invariants

F � 1

4
FµνF

µν � B⃗2 � E⃗2

2
, G � � i

4
F̃µνF

µν � E⃗ � B⃗ . (3.4.21)

Therefore, we find

det�1

�
2i sin

�
θ

2
1� qTF


�

� 1

2i

�
sin

�
θ

2
� qTK�



2i sin

�
θ

2
� iqTK�



2i sin

�
θ

2
� qTK�



2i sin

�
θ

2
� iqTK�


��1

� 1

4

�
cos2pθq � cospθqpK� �K�q �K�K�

��1
,

(3.4.22)

and

det�
1{2

�
sinpqTFq
qTF



� pqTK�qpqTK�q

sinpqTK�q sinpiqTK�q �
q2T 2K�K�

sinpK�q sinhpK�q , (3.4.23)

where K� � coshp2qTK�q and K� � cosp2qTK�q. The modular integration in the Wilson

variable w � e�iϕ is then

IspT,Aq �
¾
γ�

dw

�2πi
1

ws�1

w � 1

p1� w2 � 2wK�q p1� w2 � 2wK�q . (3.4.24)

We now have all the ingredients to investigate the effective action ΓrAs � ³
d4x̄LrAs for

spin s � 0, 1. In particular:

(i) the scalar case s � 0, which corresponds to scalar QED, comes from the simple pole

at w � 0,

I0pT,Aq � Res

�
1

w

w � 1

p1� w2 � 2wK�q p1� w2 � 2wK�q
�
w�0

� �1 , (3.4.25)

hence it correctly reproduces the celebrated Weisskopf Lagrangian [11]

Ls�0rAs � �
» 8

0

dT

T

e�m
2T

p4πT q2
q2T 2K�K�

sinhpqTK�q sinpqTK�q ; (3.4.26)
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3.4 Effective action in electromagnetic background

(ii) the massive spin-1 case instead arises from the pole of order two at w � 0,

I1pT,Aq � Res

�
1

w2

w � 1

p1� w2 � 2wK�q p1� w2 � 2wK�q
�
w�0

(3.4.27)

� d

dw

w � 1

p1� w2 � 2wK�q p1� w2 � 2wK�q
����
w�0

� 1� 2pK� �K�q ,
(3.4.28)

leading to

Ls�1rAs �
» 8

0

dT

T

e�m
2T

p4πT q2
q2T 2K�K�

sinhpqTK�q sinpqTK�q r1� 2 coshp2qTK�q � 2 cosp2qTK�qs .
(3.4.29)

This last expression corresponds to the Heisenberg-Euler effective Lagrangian for a massive

charged vector boson in a constant electromagnetic background. It was originally derived

in 1965 by Vanyashin and Terent’ev, starting from a quantum field theory of vector elec-

trodynamics [14]. In contrast, our derivation employs a self-consistent first-quantized

approach, which offers a more direct and transparent computation than the conventional

second-quantized formalism. This constitutes the main result we set out to obtain using

the worldline method.

This approach offers a natural framework for exploring possible extensions. For in-

stance, one could interpret our final expression as the result of a locally constant field

approximation [55] and investigate corrections by systematically including higher-order

terms in (3.4.5). This would likely involve following a procedure similar to that of [56]

for performing perturbative corrections from the worldline, ultimately leading to the de-

termination of the generalized heat kernel coefficients computed in [57, 58]. We leave this

analysis to future work.

Let us report the perturbative expression given by an expansion in the particle’s electric

charge q

Ls�1rAs �
» 8

0

dT

T

e�m
2T

p4πT q2
�
� 3� 7

4
q2T 2 trrF 2

µνs

� 5

32
q4T 4 tr2rF 2

µνs �
27

40
q4T 4 trrF 4

µνs �Opq6q


.

(3.4.30)

The first two terms give divergent contributions, the first one being an infinite vacuum

energy, while the second one corresponds to the one-loop divergence in the photon self-

energy, and they should be renormalized away. On the other hand, the last two terms are

finite and give rise to the quartic interaction’s contributions once integrated in the proper

time. Thus, the leading terms of the renormalized effective (Euclidean) Lagrangian, with
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3.4 Effective action in electromagnetic background

W

+

W

γ γ +

W

γγ

γ γ

+ · · ·

Figure 3.2: Feynman diagrams representing the first terms of the expansion, in the coupling
constant, of the one-loop effective action induced by the vector boson W in a constant
electromagnetic background

the tree-level Maxwell term included, are expressed as

Lren
s�1rAs �

1

4
FµνF

µν � q4

16π2m4

�
5

32
pFµνF νµq2 � 27

40
F µνFνρF

ρσFσµ



� � � � (3.4.31)

which shows the leading vertices for the scattering of light by light.

An overall minus sign arises upon continuation back to Minkowski spacetime. Inserting

this sign, the Lagrangian in Minkowski spacetime can be written in the more explicit form

Lren
s�1rAs � �1

4
FµνF

µν � q4

16π2m4

�
� 5

32
pFµνF νµq2 � 27

40
F µνFνρF

ρσFσµ



� � � �

� 1

2
pE⃗2 � B⃗2q � α2

40m4

�
29pE⃗2 � B⃗2q2 � 108pE⃗ � B⃗q2

	
� � � �

(3.4.32)

where, for ease of comparison with the literature, we have introduced the fine-structure

constant α � q2

4π
in natural units, and used the relations

FµνF
µν � 2pB⃗2 � E⃗2q , F µνFνρF

ρσFσµ � 2pE⃗2 � B⃗2q2 � 4pE⃗ � B⃗q2 , (3.4.33)

to obtain the second line.

It may be interesting to compare this result with the more widely known results for

the spin-0 and spin-1
2
cases, which we include here for convenience:

Lren
s�0rAs � �1

4
FµνF

µν � q4

16π2m4

�
1

288
pFµνF νµq2 � 1

360
F µνFνρF

ρσFσµ



� � � �

� 1

2
pE⃗2 � B⃗2q � α2

360m4

�
7pE⃗2 � B⃗2q2 � 4pE⃗ � B⃗q2

	
� � � �

(3.4.34)
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and:

Lren
s� 1

2
rAs � �1

4
FµνF

µν � q4

16π2m4

�
� 1

32
pFµνF νµq2 � 7

90
F µνFνρF

ρσFσµ



� � � �

� 1

2
pE⃗2 � B⃗2q � 2α2

45m4

�
pE⃗2 � B⃗2q2 � 7pE⃗ � B⃗q2

	
� � � � .

(3.4.35)

They arise from the Weisskopf and Euler–Heisenberg effective Lagrangians, respectively.

3.5 Pair production

It is well-known that if the effective action in the presence of a classical background field

assumes a non-vanishing imaginary contribution, this has the physical interpretation of

an instability of the quantum field theory vacuum. In turn, this signals the appear-

ance of states with a non-vanishing number of particles, namely, a production of particle-

antiparticle pairs takes place. This is the essence of the so-called “Schwinger effect” [5].

Quantitatively, the Minkowskian effective action ΓM is related to the vacuum persistence

amplitude by

x0out|0iny � eiΓM , (3.5.1)

and thus to the vacuum persistence probability

|x0out|0iny|2 � e�2 ImΓM , (3.5.2)

from which the pair production probability is given by

Ppair :� 1� e�2 ImΓM � 2 ImΓM . (3.5.3)

In this section, we compute the rate for the Schwinger pair production of massive charged

spin-1 particles in a constant external electric field E⃗. The Euclidean effective action,

from (3.4.29), with K� � 04 and K� � E, with E being the modulus of the electric field,

reduces to

ΓrAs �
»
d4x̄

» 8

0

dT

T

e�m
2T

p4πT q2
qTE

sinpqTEq r�1� 2 cosp2qTEqs . (3.5.4)

Apparently, it is a real quantity, but the presence of poles in the T -integral signals that

this is not the case. To extract its imaginary part, we go back to Minkowski space via a

Wick rotation, using T Ñ iT , LÑ �L, to obtain the Minkowskian effective Lagrangian

LrAs �
» 8

0

dT

T

e�im
2T

p4πT q2
�
�3 iqTE

sinpiqTEq � 4piqTEq sinpiqTEq


. (3.5.5)

4Let us observe that K� � 0 is a removable singularity of the effective Lagrangian (3.4.29).
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3.5 Pair production

For certain values of proper time, the integral develops poles in the T -plane, which in turn

produce an imaginary part of the Minkowskian effective action. In fact, let us consider

the complex conjugated Lagrangian

L�rAs �
» 8

0

dT

T

eim
2T

p4πT q2
�
�3 iqTE

sinpiqTEq � 4piqTEq sinpiqTEq



(3.5.6)

� �
» 0

�8

dT

T

e�im
2T

p4πT q2
�
�3 iqTE

sinpiqTEq � 4piqTEq sinpiqTEq


, (3.5.7)

where in the second line we have changed variable T Ñ �T . The imaginary part is then

given by

ImLrAs � LrAs � L�rAs
2i

� 1

2i

» �8

�8

dT

T

e�im
2T

p4πT q2
�
�3 iqTE

sinpiqTEq � 4piqTEq sinpiqTEq


.

(3.5.8)

Closing the contour in the lower half-plane, it is determined by the residues at the poles

of the first integrand function, located at

T � �i πn
qE

, 0   n P N . (3.5.9)

Let us notice that they correspond to the zero modes of the differential operator ∆
ptq
µν (3.4.7)

in Minkowski spacetime except for the value n � 0, which indicates a UV divergence as

discussed at the end of the previous section. For these values of the proper time T , this

operator has a non-trivial kernel, hence a zero functional determinant.

Evaluating the following residues

Res

�
�3 e�im

2T

T p4πT q2
iqTE

sinpiqTEq

� �����
T��iπn

qE

� 3

16π4
pqEq2p�1qn e

�m2πn
qE

n2
, (3.5.10)

the final result is

ImLrAs � 3

16π3
pqEq2

8̧

n�1

p�1qn�1 e
�m2πn

qE

n2
. (3.5.11)

In conclusion, the rate for massive spin-1 particle-antiparticle pair production in the

presence of a constant electric field per unit of volume and time P :� P {∆V∆T can be

written as

Ppair � 2 ImLrAs � 3

8π3
pqEq2

8̧

n�1

p�1qn�1 e
�m2πn

qE

n2
, (3.5.12)
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or, using the polylogarithm of order 2 5, in compact form

Ppair � � 3

8π3
pqEq2 Li2

�
�e�m2π

qE



. (3.5.13)

As already noted in [14], this probability corresponds to three times the probability of the

production of pairs of scalar particles with mass m.

3.6 Op2q spinning particle analysis

With the aim of completeness and to compare with our previous method, we present here

an alternative first-quantized derivation of the same results. We make use of the massive

version of the spinning particle model with N � 2 (cf. Subsection 2.1.2), which contains

fermionic oscillators.

Worldline action For convenience, let us rewrite the main formulae. The action is

S �
»
dτ

�
pµ 9x

µ � iψ̄µ 9ψ
µ � iθ̄ 9θ � eH � iχ̄Q� iχQ̄� aJc

�
, (3.6.1)

with first class constraints

H � 1

2
ppµpµ �m2q , Q � ψµpµ � θm , Q̄ � ψ̄µpµ � θ̄m , Jc � ψµψ̄µ � θθ̄ � c .

(3.6.2)

The main difference with respect to the bosonic theory (2.2.3) consists of the presence

of fermionic oscillators employed to describe the spin degrees of freedom: their Poisson

brackets read

tψµ, ψ̄νuPB � �iηµν , tθ, θ̄uPB � �i , (3.6.3)

and will be translated into anticommutation relations upon quantization.

The constraints’ algebra, the N � 2 supersymmetry algebra in p0�1q-dimension, reads

tQ̄, QuPB � �2iH , tQ, JcuPB � iQ , tQ̄, JcuPB � �iQ̄ . (3.6.4)

5The polylogarithm function of order s is defined by

Lispzq :�
8¸

n�1

zn

ns
.
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3.6 Op2q spinning particle analysis

Under a gauge transformation generated via Poisson bracket by

V � ϵH � iξ̄Q� iξQ̄� αJc , (3.6.5)

the phase space variables transform according to

δxµ � ϵ pµ � iξ ψ̄µ � iξ̄ ψµ , (3.6.6a)

δpµ � 0, (3.6.6b)

δψµ � � ξ pµ � iα ψµ , (3.6.6c)

δψ̄µ � � ξ̄ pµ � iα ψ̄µ , (3.6.6d)

δθ � � ξ m� iαθ , (3.6.6e)

δθ̄ � � ξ̄ m� iα θ̄ , (3.6.6f)

while the gauge fields

δe � 9ϵ� 2i χ̄ ξ � 2i χ ξ̄ , (3.6.7a)

δχ � 9ξ � iaξ � iαχ , (3.6.7b)

δχ̄ � 9̄ξ � iaξ̄ � iαχ̄ , (3.6.7c)

δa � 9α . (3.6.7d)

Worldloop path integral and DOF To construct the path integral over the circle and

compute the number of degrees of freedom propagated in the loop, we choose antiperiodic

boundary conditions (ABC) for the fermionic fields and periodic boundary conditions for

the bosonic ones. Similarly to the bosonic case, the gauge symmetries (3.6.7) with the

chosen boundary conditions allow us to set

λ � pe, χ̄, χ, aq Ñ λ̂ � p2T, 0, 0, ϕq . (3.6.8)

After Wick rotating, the gauge-fixed Euclidean action in configuration space is

SErz, λ̂s �
»
dτ

�
1

4T
9x2 � ψ̄µ

�
d

dτ
δµν � iϕ δµν



ψν � θ̄

�
d

dτ
� iϕ



θ � iϕc

�
, (3.6.9)

and, after integration, the path integral is written as

Γ � �
» 8

0

dT

T
e�m

2T

»
dDx̄

p4πT qD{2 DoFpp,Dq , (3.6.10)
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with the number of degrees of freedom given by

DoFpp,Dq �
» 2π

0

dϕ

2π
eip 1�D

2
�pqϕ

�
2 cos

ϕ

2


D�1

. (3.6.11)

In the above expression we have set the quantized CS coupling to c � 1�D
2
�p. The cosines

in this expression arise from the integration over the fermionic phase space variables and

from the Faddeev-Popov determinants associated with the SUSY ghosts, which are now

bosonic. Its calculation leads to

DoFpp,Dq �
�
D � 1

p



. (3.6.12)

It corresponds to the number of degrees of freedom of a massive p-form in D spacetime

dimensions.

BRST quantization Upon quantization, the “matter” Hilbert space H � L2pRDqbF ,

with F the Fock space with vacuum |0y defined by

pψ̄µ, θ̄q |0y � 0 , (3.6.13)

consists of the states

|Φy �
Ḑ

j�0

p|Φjy � |Φpθq
j yq

�
Ḑ

j�0

�
1

j!
Φµ1...µjpxqψµ1 ...ψµj |0y �

1

j!
Φpθq
µ1...µj

pxq θ ψµ1 ...ψµj |0y

 (3.6.14)

with Φµ1...µjpxq and Φ
pθq
µ1...µjpxq rank-j antisymmetric tensors. Proceeding with BRST

quantization along the lines of [21–24] to build a positive-definite Hilbert space, one en-

larges the phase space with the ghost pairs

tb, cu � 1 , rB, C̄s � 1 , rB̄, Cs � 1 , (3.6.15)

associated with pH,Q, Q̄q respectively. Note that the pairs associated with the SUSY

charges are now bosonic. Their ghost number assignments are ghpc, C̄, Cq � 1 and

ghpb, B, B̄q � �1. From these operators, the full Hilbert space HBRST is then constructed

as described in Subsection 3.3.1 for the bosonic case. The nilpotent BRST charge is

Q � cH � C̄Q� CQ̄� 2CC̄b . (3.6.16)
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3.6 Op2q spinning particle analysis

Once again, the ghost number operator G � cb � CB̄ � BC̄ and the occupation number

operator Jp � ψµψ̄
µ � θθ̄ � CB̄ � BC̄ � p are introduced, with the choice for the CS

coupling

c � �D � 1

2
� p� 1 . (3.6.17)

They satisfy

rG,Jps � 0 , rG,Qs � Q , rJp,Qs � 0 , (3.6.18)

and are used to define physical states as those states in the cohomology ofQ with vanishing

ghost number and occupation number (as measured by Jp). The physical states at p � 1

are contained in the wave function

|ψy �Wµpxqψµ |0y � iφpxqθ |0y � fpxqcB |0y , (3.6.19)

where, requiring |ψy to be Grassmann-odd, the Grassmann parities and ghost numbers of

the component fields Wµpxq, φpxq, fpxq are all vanishing. The field equations, obtained by

computing Q |ψy � 0, are found to be

pl�m2qWµ � 2iBµf � 0 , (3.6.20a)

pl�m2qφ� 2imf � 0 , (3.6.20b)

BµWµ �mφ� 2if � 0 , (3.6.20c)

while the gauge symmetries, arising from δ |ψy � Q |Λy, |Λy � �iρpxqB |0y, are given by

δWµ � Bµρ , δφ � �mρ , δf � i

2
pl�m2qρ . (3.6.21)

As in the bosonic case, the auxiliary field fpxq can be eliminated and subsequently the

gauge symmetry of φpxq may be used to set it to zero. Hence, the cohomology at p � 1

coincides with the one obtained from the bosonic worldline model, with Wµpxq being the

massive spin-1 field.

Interacting theory The coupling with the background field Aµpxq is realized by

QÑ ψµπµ � θm , Q̄Ñ ψ̄µπµ � θ̄m , H Ñ 1

2

�
π2 �m2 � 2iqFµνψ

µψ̄ν
�
. (3.6.22)

The squared deformed BRST charge now reads

Q2
A � � i

2
c
�
C̄ψρ � Cψ̄ρ

� BµF̃µρ � ic C̄ψµψρψ̄νBρF̃µν � ic Cψµψ̄νψ̄ρBρF̃µν
� C̄2ψµψνF̃µν � C2ψ̄µψ̄νF̃µν � CC̄ψµψ̄νF̃µν .

(3.6.23)
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In general, it is not zero. However, when its action is restricted to the subspace p � 1, see

(3.6.19), all but the first term vanish

Q2
A

��
p�1

� � i
2
c
�
C̄ψρ � Cψ̄ρ

� BµF̃µρ . (3.6.24)

Once again, we find that nilpotency is achieved if the background electromagnetic field

Aµ is on-shell.

Massive p�forms with p ¡ 1 do not admit electromagnetic coupling within this frame-

work.

Effective action in electromagnetic background The path integral for the interact-

ing theory in the p � 0, 1 sectors is constructed analogously to the free theory. Considering

the constraints (3.6.22), the gauge-fixed action is

SErz, λ̂;As �
»
dτ

�
1

4T
9x2 � iqAµ 9xµ � ψ̄µ

�
d

dτ
δµν � iϕ δµν � 2iqTFµν



ψν

� θ̄

�
d

dτ
� iϕ



θ � iϕc

�
.

(3.6.25)

Thus, taking a constant background electromagnetic field in the Fock-Schwinger gauge

(3.4.4) and setting D � 4, the path integral reads

ΓrAs � �
»
d4x̄

» 8

0

dT

T
e�m

2T

» 2π

0

dϕ

2π
eip� 3

2
�pqϕ 1

4
cos�2

�
ϕ

2


»
DBC

Dt e�Strz,λ̂;As»
ABC

Dψ̄Dψ e�Sψrz,λ̂;As
»
ABC

Dθ̄Dθ e�Sθrz,λ̂s ,

(3.6.26)

where

Strz, λ̂;As �
»
dτ

1

2
tµ∆ptq

µνt
ν , with ∆ptq

µν � � 1

2T
δµν

d2

dτ 2
� iqFµν

d

dτ
, (3.6.27)

Sψrz, λ̂;As �
»
dτ ψ̄µ∆pψq

µν ψ
ν , with ∆pψq

µν � δµν

�
d

dτ
� iϕ



� 2iqTFµν , (3.6.28)

Sθrz, λ̂s �
»
dτ θ̄∆pθq

µν θ , with ∆pθq
µν �

d

dτ
� iϕ . (3.6.29)

Evaluating the functional determinants, we get

ΓrAs � �
»
d4x̄

» 8

0

dT

T

e�m
2T

p4πT q2 det
�1{2

�
sinpqTFq
qTF



IppT,Aq , (3.6.30)
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with

IppT,Aq �
» 2π

0

dϕ

2π
eip� 3

2
�pqϕ 8 cos�1

�
ϕ

2



det

�
2 cos

�
�ϕ
2
1� qTF


�
. (3.6.31)

Diagonalizing the field strength Fµν , cf. (3.4.20)–(3.4.21), the modular integration in the

Wilson variable z � e�iϕ becomes

IppT,Aq �
¾
γ�

dz

�2πi
1

zp�1

p1� z2q2 � 2zp1� z2qpK� �K�q � 4z2K�K�

z � 1
, (3.6.32)

where K� � coshp2qTK�q and K� � cosp2qTK�q. Deforming the contour to avoid the

pole in z � �1, we find:

(i) for the p � 0 case

I0pT,Aq � Res

�
1

z

p1� z2q2 � 2zp1� z2qpK� �K�q � 4z2K�K�

z � 1

�
z�0

� 1 ; (3.6.33)

(ii) for the massive 1-form case, p � 1

I1pT,Aq � Res

�
1

z2
p1� z2q2 � 2zp1� z2qpK� �K�q � 4z2K�K�

z � 1

�
z�0

� d

dz

p1� z2q2 � 2zp1� z2qpK� �K�q � 4z2K�K�

z � 1

�����
z�0

� �1� 2pK� �K�q .

(3.6.34)

Thus, we have reobtained the same results found in previous sections. In particular,

setting p � 0 we get the usual Weisskopf effective Lagrangian, whereas for p � 1 we

obtain (3.4.29).
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Chapter 4

Conclusions

In this thesis, we have described a charged, massive spin-1 particle through worldline

actions with bosonic or fermionic oscillators. The actions enjoy the gauge symmetries

necessary to ensure unitarity at the quantum level, thereby leading to a positive-definite

Hilbert space for physical states. Precisely the physicality conditions encode the field

equations for particles of a given spin, in the different sectors of the theory’s spectrum.

The projection onto the subspace containing the relevant degrees of freedom is achieved

by gauging the oscillator number operator, appropriately shifted by a Chern-Simons coup-

ling. Using a BRST analysis, we derived consistency conditions for the coupling of the

spin-1 sector to an electromagnetic field: in both the models, the field must satisfy the

vacuum Maxwell’s equations. For such configurations, the path integral of the interacting

worldline action can be constructed. By contrast, the spin-0 sector admits coupling to ar-

bitrary electromagnetic fields without requiring any conditions. As for the other sectors,

corresponding to higher-spin particles (in the bosonic model) and massive p-forms with

p ¡ 1 (in the fermionic model), they do not admit electromagnetic couplings within our

worldline framework.

The one-loop effective action induced by the charged, massive spin-1 particle in a

constant electromagnetic background is obtained by computing the worldline path integral

on the circle. From the effective Lagrangian, we derived the production rate for spin-1

particle-antiparticle pairs in a constant electric field. Our results, derived entirely within a

first-quantized framework and independent of any second-quantized formalism, fully agree

with the QFT result originally obtained in [14].

The work presented in this thesis and collected in [30] can be extended to include

effective interactions that account for the potential non-point-like nature of the particle

under consideration, as already explored in [30]. Also, more general field configurations

can be considered by employing worldline instanton techniques [31–35].
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Chapter 4. Conclusions

Our findings contribute to the programme of constructing worldline formulations of

QFT, based solely on first quantization principles, as has been successfully carried out for

Yang-Mills [20, 36], gravity [21, 22, 24, 59–62], and scalar theories [63].
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