
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Black Holes with Rotating
Quantum Dust Cores

Supervisor:

Prof. Roberto Casadio

Submitted by:

Ediz Yılmaz

Academic Year 2024/2025



Abstract

Classical gravitational collapse models suggest the existence of spacetime singulari-
ties, where one expects Einstein’s general relativity to break down. There are several
approaches in the literature to avoid such singularities, by either imposing regularity
conditions inspired by classical physics or attempting to give quantum mechanical de-
scription to the existing collapse models. Here, we review a recent proposal [1, 2] in
which the collapse is modelled as a dust ball with a sequence of layers. By quantising
the trajectories of dust particles in each layer, one finds a collective ground state for
the core which has a radius of 3

2
GNM , thus supporting the idea that black holes can

be macroscopic extended objects. We then discuss the effects of rotation on the core
by following the analysis in [3], which shows that increasing (classical) angular momen-
tum increases the core radius but corresponds to a smaller outer horizon while removing
the inner horizon completely within the perturbative approximation. Finally, we repeat
a similar analysis for a more “realistic” case in which we consider the geometry to be
described by the Kerr metric and observe that it yields similar results.
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Introduction

Between the 1930s and 1940s Robert Oppenheimer, Richard C. Tolman, and their col-
laborators showed that at the end of their lives, sufficiently massive stars will collapse
indefinitely into a singular configuration [4, 5, 6, 7]. Einstein’s general theory of rela-
tivity predicts that such processes produce a black hole geometry characterised by the
existence of an event horizon. Once the horizon forms, the interior becomes geodesically
incomplete and contains a spacetime singularity, whose existence was proved by Stephen
W. Hawking and Roger Penrose in the late 1960s [8, 9].

The singularity is a “region” that contains a finite amount of mass within zero proper
volume, where the tidal forces diverge. The prediction of such singularities clearly sug-
gests a breakdown of general relativity in its original formulation since the classical de-
scription of matter cannot be expected to remain valid at such extreme conditions. The
singularity theorems of Hawking and Penrose do not prove that the singularities in clas-
sical general relativity have infinite spacetime curvature, however, they strongly suggest
that at these extreme conditions, as in gravitational collapse, the quantum mechanical
effects cannot be ignored.

Although these quantum effects are usually associated with processes that occur
at the Planck mass mp and length ℓp, processes that involve bound states occur at
significantly larger length scales. We recall that, the way quantum mechanics explains the
stability of atoms and resolves the ultraviolet catastrophe, is by not admitting quantum
states corresponding to classical trajectories of the electron around the nucleus. In a
similar way, it is expected [10] that quantum mechanics will fix the inconsistencies of
the semiclassical approach at the singularity, where the uncertainty principle is clearly
violated, and it is conjectured that the singularity will be replaced by a matter core
with finite size. Since the quantum description of bound states is not compatible with
the background field approach, as in the case of the hydrogen atom, it is suspected that
a proper quantum theory of black holes might require a new perspective in which the
classical geometry might emerge as an effective field description.

Since objects of compactness X = GNM/RS ∼ 1, where the quantum effects are
expected to become relevant, occur in nature only at processes with matter sources of
several solar masses and thus ∼ 1057 neutrons, it is practically impossible to model their
gravitational collapse in detail. Therefore, the usual approach is to consider simplified

1



Figure 1: Black hole formation in classical general relativity versus quantum gravity
(from [10]).

toy models that allow for analytical treatment, like the Lemâıtre-Tolman-Bondi and the
Oppenheimer-Snyder models, and attempt to give a quantum mechanical description.

Many of these attempts in the literature start from a reduction of degrees of free-
dom using the spherical symmetry and continuity of the fluid that describes the dust
configuration. This uniquely determines the solutions both inside (LTB) and outside
(Schwarzschild). From the Einstein-Hilbert action, one can identify a few collective de-
grees of freedom, particularly the radius RS = RS(τ), the Schwarzschild coordinate time
TS = TS(τ) of the dust ball, and the ADM mass M [11]. Then these collective degrees
of freedom can be analysed in the Hamiltonian formalism and canonically quantised [12,
13, 14].

The problem with the approach mentioned above becomes clear when the following is
realised: The thermodynamics of perfect fluids, i.e. properties like pressure, temperature,
and volume, are derived a posteriori from the statistical mechanics of classical particles
in a canonical ensemble. This is also true for fermions and bosons which are quantum
particles themselves. However, the quantum equation of state of a gas is obviously not
obtained by quantising the collective pressure, density, and volume of the gas. With
this in mind, and considering the system to which we are trying to provide a quantum
description consists of many particles, it seems logical to conclude that it is those particles
that require a proper quantum description to begin with and not the ball as a whole.

An alternative approach [1, 2], which is the main guideline of this dissertation and
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is reviewed in chapter 2, is to describe the ball of dust as the quantum state of a very
large number of particles of mass µ ≪ M and eventually derive a collective, fluid-like
description a posteriori.

The outline of this thesis is as follows:

Chapter 1

We first discuss the equilibrium conditions of stars, as modelled by a spherically sym-
metric perfect fluid, mainly from a general relativistic point of view. Then we introduce
the standard classical gravitational collapse models, namely, the Lemâıtre-Tolman-Bondi
and the Oppenheimer-Snyder models. We end the chapter with a brief summary of space-
time singularities, mentioning the famous singularity theorems of Hawking and Penrose,
and the Kerr solution for rotating black holes.

Chapter 2

We review the alternative quantisation procedure for the gravitational collapse of a ball
of dust analysed in [1, 2]. The key idea is to divide the dust ball into N concentric
layers, and quantise the geodesic equation for the areal radius for each layer as an ef-
fective quantum mechanical description of the ball as in the case of the usual quantum
mechanical description of the hydrogen atom. This approach leads to the existence of a
discrete spectrum of bound states, and one finds that the dust ball in its ground state
has a quantised and macroscopically large surface area, hence no singularity ever forms.

Chapter 3

Here we investigate the effects of rotation on the dust core of the black hole as modelled in
the previous chapter. First, we treat the core as a slowly rotating rigid ball with classical
angular momentum and use perturbation theory to calculate the energy eigenvalues and
the core radius as corrections to the static case, as analysed in [3]. Then, we attempt
to extend this approach to a more realistic case by considering a full general relativistic
treatment in which the spacetime geometry is described by the Kerr solution.
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Chapter 1

Classical gravitational collapse and
black holes

The purpose of this first chapter is to introduce classical general relativistic models of
gravitational collapse in the way it was first established by the pioneers R. Oppenheimer,
H. Snyder, R. Tolman, G. Lemâıtre, and H. Bondi. We also review the evolutionary
phases and equilibria of spherically symmetric fluids to see under what conditions collapse
occurs. We conclude the chapter by briefly discussing the consequences of a complete
gravitational collapse and some properties of rotating black holes.

1.1 Stellar evolution in a nutshell

Stars are born when fragments of primordial hydrogen clouds with enough mass contract
under their own gravity and start fusing hydrogen into heavier elements. With mass
M ≳ 0.08M⊙, the core temperature reaches around 4 × 106K, which is high enough to
start the fusion of hydrogen into helium. During this stage of the star’s lifetime, which is
called the main-sequence, it is in a state of equilibrium under the gravitational attraction
and the outward thermal pressure by the nuclear reactions. When the star exhausts its
hydrogen fuel in its core, it cools down, and its gravity causes it to contract further.
Thus, the star exits the main-sequence and its evolution depends on its mass.

One of the possible end stages of stellar evolution is a white dwarf. It is a compact
remnant of a star that has used all of its fuel and stopped nuclear fusion. They have
masses around ∼ 1M⊙ and radius comparable to that of the Earth, so their average
density is of the order of ρ̄ ∼ 106 g/cm3 (ρ̄⊙ = 1.4g/cm3 for comparison). In the 1930s,
it was found by Chandrasekhar [15] that a star cannot form a stable white dwarf if its
mass is greater than 1.44M⊙, which is famously known as the Chandrasekhar limit.

Stars with mass M ≲ 0.5M⊙ form a white dwarf without intermediate stages. More
massive stars, with mass between 0.5M⊙ and 8 − 10 M⊙, can fuse helium to produce
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Figure 1.1: Density-mass diagram of astronomical objects (from [16])

carbon and oxygen, contracting even further at each step, raising the temperature and
pressure in the core, allowing nuclear processes to produce the next element. However,
stars in this mass range cannot produce elements heavier than oxygen. Thus, when they
exhaust all their fuel, they contract until they also become a white dwarf.

If the star has a mass between 8M⊙ and 20 − 30M⊙, its evolutionary path will
be different: The gravitational attraction will become strong enough to overcome the
internal pressure, and the core will collapse in a fraction of a second. During this process,
electrons are forced to merge with protons to produce neutrons, and the core reaches
densities of the order of atomic nuclei, i.e. ∼ 1014 g/cm3. This core is now so rigid that
the infalling matter bounces back to produce a violent shock wave, called a supernova,
that ejects the external matter into outer space, leaving behind a neutron star with a
mass around M ∼ 1 − 3M⊙ and a radius of 10 − 15 km, which is kept together by the
quantum mechanical pressure of the degenerate Fermi gas of neutrons.

The final possible end stage for a star is reached when the mass of the neutron star
exceeds the so called Tolman-Oppenheimer-Volkoff limit [5, 7], which is around 3M⊙,
above which the star would not be stable and collapse to a point-like singularity to form
a black hole.
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1.2 Static sphere of fluid

Before dealing with gravitational collapse, we will briefly discuss the equilibrium con-
ditions of spherically symmetric perfect fluids from a general relativistic perspective to
see under what conditions collapse occurs. To do that, we first need to determine the
gravitational field inside a static, spherically symmetric fluid.

1.2.1 The interior solution

Since we are looking for a static, spherically symmetric solution, we consider the most
general metric in the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θ dϕ2) (1.1)

where functions ν and λ are independent of time and will be determined according to the
interior structure of the star. A good way to model this internal structure is by assuming
that the matter can be described as a perfect fluid with the energy-momentum tensor

T µν = (ρ+ p)uµuν + pgµν (1.2)

where ρ(r) is the proper energy density, p(r) is the isotropic pressure in the co-moving
frame, and uµ is the 4-velocity of the fluid. Since we are dealing with a static configura-
tion, we only have the u0 component;

uµ = (e−ν/2, 0, 0, 0). (1.3)

Now, substituting the energy-momentum tensor given above into the Einstein field
equations, and using the Ricci scalar and the nonzero components of the Ricci tensor
(see Appendix A), we see that the Einstein equations yield 3 equations;

G0
0 = −e−λ

[
λ′

r
− 1

r2

]
− 1

r2
= −8πGNρ (1.4)

G1
1 = e−λ

[
ν ′

r
+

1

r2

]
− 1

r2
= 8πGNp (1.5)

G2
2 = e−λ

[
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+

(ν ′ − λ′)

2r

]
= 8πGNp (1.6)

where f ′ = ∂rf for any function f . We can write Eq. (1.4) as

8πGNρr
2 = 1− (e−λr)′, (1.7)

which can be integrated to find one of the metric functions

e−λ = grr = 1− 2GNm(r)

r
(1.8)
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where m(r) is the (Misner-Sharp-Hernandez) mass function [17, 18], defined as

m(r) = 4π

∫ r

0

ρ(x)x2dx, (1.9)

such that the total mass of a star of radius r = RS is given byM = m(RS), which is also
the ADM mass of the system which appears in the exterior Schwarzschild solution. The
mass function m(r) can also be interpreted as the total mass contained within a sphere
of (coordinate) radius r.

Now, the conservation equation ∇µG
µν = ∇µT

µν = 0 implies

∇µ

[
(ρ+ p)uµuν + pgµν

]
= 0. (1.10)

Using the fact that we are dealing with a static distribution of matter, this reduces to

p,µ−(ρ+ p)Γλ
µνuλu

ν = 0 (1.11)

p,r −(ρ+ p)Γ4
14u4u

4 = 0 (1.12)

which yields

p′ = −ν
′

2
(ρ+ p). (1.13)

Now using this equation to substitute ν ′ in the field equation (1.5), and using the metric
function e−λ we found, we obtain a differential equation for p;

p′(r) = −[ρ(r) + p(r)]
GN

r2
[
m(r) + 4πr3p

][
1− 2GNm(r)

r

]−1

(1.14)

or equivalently,

p′(r) = −ρ(r)GNm(r)

r2

[
1 +

p(r)

ρ(r)

][
1 +

4πr3p(r)

m(r)

][
1− 2GNm(r)

r

]−1

(1.15)

This is called the Tolman-Oppenheimer-Volkoff (TOV) equation [5]. From the latter
equation, it can easily be seen that this is just the Newtonian equation for hydrostatic
equilibrium with general-relativistic corrections supplied by the last three factors. In-
deed, in the non-relativistic limit | p

c2
| ≪ ρ and the weak field limit GNm(r) ≪ r, it

reduces to

p′(r) ≃ −ρ(r)GNm(r)

r2
. (1.16)

Comparing this with the TOV equation, we observe that, due to the general relativistic
correction factors, the magnitude of p′(r) given by the TOV equation, is always greater
than the Newtonian counterpart. This implies that, in general relativity, a higher central
pressure, pc, is needed to maintain equilibrium than in Newtonian theory.
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Now to solve the TOV equation, we need we need to specify an equation of state.
For now, we consider the simplest case, where the density ρ(r) is constant,

ρ(r) = ρ0, (1.17)

for 0 ≤ r ≤ RS, where RS is the radius of the star. Then Eq. (1.8) becomes

e−λ = 1− 2GNm(r)

r
= 1− 8πGNρ0

3
r2 ≡ 1− Ar2 (1.18)

where A = 8πGNρ0
3

. Since ρ is constant, we can write equation (1.13) in the form

(ρ0 + p)′ = −ν
′

2
(ρ0 + p) (1.19)

and integrating it gives
(ρ0 + p) = B e−ν/2 (1.20)

where B is an integration constant, which will be determined by the matching conditions.
Now using the field equations (1.4) and (1.5), we get

G1
1 −G0

0 = e−λ (λ
′ + ν ′)

r
= 8πGN(ρ0 + p). (1.21)

Substituting the expressions we found for e−λ and e−ν/2 into Eq. (1.21),

e−λ

(
2Areλ + ν ′

r

)
= 8πGNB e−ν/2

eν/2
[
2Ar + (1− Ar2)ν ′

]
= 8πGNB r

and observing that [eν/2(1−Ar2)−1/2]′ = ν′eν/2

2
(1−Ar2)−1/2 + eν/2

2
2Ar(1−Ar2)−3/2, the

left hand side becomes

2(1− Ar2)3/2[eν/2(1− Ar2)−1/2]′ = 8πGNB r, (1.22)

which can finally be integrated to find

eν/2 =
8πGNB

2A
−D

√
(1− Ar2), (1.23)

where D is, again, an integration constant.
To determine the complete solution, we need to connect the interior and exterior

Schwarzschild solutions at the surface of the star. Thus, we require that the metric is
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continuous at r = RS, and impose the condition that p(r) = 0 at the surface. Using Eqs.
(1.20), (1.23), and writing ρ0 in terms of A, we can write the pressure as

p(r) = B e−ν/2 − ρ0

=
1

κ

[
κB e−ν/2 − 3A

]
=

1

κ

[
3AD

√
1− Ar2 − κB

2
κB
2A

−D
√
1− Ar2

]
(1.24)

where we let κ ≡ 8πGN to avoid clutter. So, matching the metric functions of the interior
and the exterior Schwarzschild solution at the surface, we obtain

1− AR2
S = 1− 2GNM

RS

, (1.25)

and (
8πGNB

2A
−D

√
1− AR2

S

)2

= 1− 2GNM

RS

, (1.26)

and the condition that p(RS) = 0,using Eq. (1.24), gives

3AD
√

1− AR2
S =

8πGNB

2
. (1.27)

Eq. (1.25) gives

M =
A

2
R3

S =
4

3
πR3

S ρ0, (1.28)

and solving Eqs. (1.26) and (1.27), determines the integration constants B and D;

B =
3A

κ

√
1− AR2

S = ρ0

√
1− 8πGNρ0

3
R2

S = ρ0

√
1− 2GNM

RS

(1.29)

D =
1

2
. (1.30)

Thus, finally we have constructed the interior Schwarzschild solution for a static, spher-
ically symmetric star with constant mass density ρ0, which reads

ds2 = −
[
3

2

√
1− 2GNM

RS

− 1

2

√
1− 2GNMr2

R3
S

]2
dt2 +

dr2(
1− 2GNM

R3
S

)
r2

+ r2dΩ2 (1.31)

where dΩ2 = (dθ2 + sin2 θ dϕ2) is the usual 2-sphere line element, and the pressure is
given by

p(r) = ρ0

√
1− 2GNM

R3
S
r2 −

√
1− 2GNM

RS

3
√
1− 2GNM

RS
−
√

1− 2GNM
R3

S
r2
. (1.32)
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An interesting feature of the interior Schwarzschild solution, and one of the important
differences between Newtonian and general relativistic equilibrium configurations, is that
while in Newtonian theory the central pressure pc is finite for all values of ρ0, which can
be seen by integrating Eq. (1.16),

p0 = pc =
2π

3
ρ0GNR

2
S (1.33)

this is not the case in general relativity. In that case, at the center of the star where p
reaches its maximum value, it becomes

pc = ρ0
1−

√
1− 2GNM

RS

3
√

1− 2GNM
RS

− 1
. (1.34)

From this, we can see that the pressure becomes infinite and the solution does not make
sense when

RS =
9

4
GNM. (1.35)

This means that, a uniform density star of mass M cannot be in equilibrium and will
have no regular interior solution, if RS <

9
4
GNM .

1.2.2 The Buchdahl limit

Having dealt with the simplest case of constant mass density, we now want to see if
general relativity imposes an absolute upper limit for the mass of a static, spherically
symmetric star with arbitrary rest mass density ρ(r), irrespective of the equation of
state. To do this, we first make the following assumptions:

• the pressure vanishes at the surface of the star, i.e., p(RS) = 0, and is finite at
r = 0,

• ρ(r) = 0 for r > RS,

• the density ρ(r) must not increase outwards, i.e.,

ρ′(r) ≤ 0, (1.36)

• the mass M is fixed, so

m(RS) =

∫ RS

0

4πx2ρ(x)dx =M (1.37)

where M is the ADM mass appearing in the exterior Schwarzschild solution.
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Now, we want to derive a condition for the maximum mass that complies with the above
requirements. By writing the field equation Eq. (1.5) in the form

ν ′

r

(
1− 2m

r

)
− 2m

r3
= 8πGNp, (1.38)

and using Eq. (1.13), ν ′ = −2p′/(p(r) + ρ(r)), we can eliminate p and after rearranging,
we obtain

d

dr

[
1

r

√
1− 2GNm(r)

r

dζ(r)

dr

]
=

GN√
1− 2GNm(r)

r

d

dr

(
m(r)

r3

)
ζ(r), (1.39)

where we defined ζ2(r) ≡ eν . Using the matching condition for the eν to the exterior
solution, we can find the initial conditions at r = RS:

ζ(RS) =

[
1− 2GNM

RS

]1/2
, (1.40)

ζ ′(RS) =
GNM

R2
S

[
1− 2GNM

RS

]−1/2

. (1.41)

Looking at Eq. (1.39), we can observe the following: m(r)
r3

is the average mass density
within the radius r, and for condition (1.36) to be satisfied, it cannot increase with r.
Also, ζ(r) must be positive, otherwise, the pressure will have a singularity when ζ passes
through zero. Thus, we can say that the right-hand side of equation (1.39) is negative,
giving

d

dr

[
1

r

√
1− 2GNm(r)

r

dζ(r)

dr

]
≤ 0. (1.42)

Integrating this from r to RS and using the initial condition (1.41), we get

ζ ′(r) ≥ GNMr

R3
S

[
1− 2GNm(r)

r

]−1/2

. (1.43)

Integrating again, from 0 to RS and using the initial condition for ζ(RS),

ζ(0) ≤
√
1− 2GNM

RS

− GNM

R3
S

∫ RS

0

r dr(
1− 2GNm(r)/r

)1/2 . (1.44)

Now, since we look for an upper bound for ζ(0), we focus on the second term on the
right-hand side. This term is smallest when m(r) is as small as possible. But, because
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of the condition ρ′(r) ≤ 0, m(r) cannot be smaller than the value it would have for a
uniform density star, which means

m(r) ≥M
r3

R3
S

. (1.45)

Therefore, the right-hand side of Eq. (1.44) is largest when the equality holds in Eq.
(1.45). Using this in the integral gives

ζ(0) ≤
√
1− 2GNM

RS

− GNM

R3
S

∫ RS

0

(
1− 2GNMr2

R3
S

)−1/2

=
3

2

√
1− 2GNM

RS

− 1

2
(1.46)

Thus, the condition that ζ(r) must be positive definite implies that√
1− 2GNM

RS

≥ 1

3
, (1.47)

that is,

RS ≥ 9

4
GNM ≡ RB (1.48)

where RB is the Buchdahl limit [19]. This limit is what we have already found previously
for the constant density case. So what we have found out now is that this holds for any
star regardless of its mass distribution, as long as it is isotropic and its mass density does
not increase outwards.
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1.3 Gravitational collapse of a ball of dust

The Buchdahl limit tells us that a star with RS < RB cannot be stable. The moment a
star passes this limit, any increase in the pressure adds to the gravitational field more
than it counteracts it. Hence, gravitational attraction becomes dominant, and unless it
loses enough mass by ejecting matter or radiation, then there is now nothing to stop the
star from contracting indefinitely, i.e., beyond the Schwarzschild radius r = 2GNM and
towards the r = 0 singularity where it suffers a complete gravitational collapse.

In this section, we will review a quantitative description of a simplified collapse model
[20], which is the result of works by Lemâıtre, Tolman, Oppenheimer and their collab-
orators in the 1930’s and 1940’s [4, 6, 21, 22]. The required simplification is that we
consider a spherically symmetric fluid to consist of pressureless dust particles, i.e., we
take p = 0. This allows the model to be solved exactly, and gives a good description for
collapsing stars, even though physically realistic configurations include pressure.

We first consider the general case of inhomogeneous models, giving the Tolman so-
lution. Then we finally present the Oppenheimer-Snyder model which makes a further
simplification by assuming a constant mass density.

1.3.1 Lemâıtre-Tolman-Bondi model

The analysis of this collapsing model is done by considering the system in comoving
coordinates, hence putting the line element in the form:

ds2 = −dτ 2 + eλ(τ,R)dR + r2(τ, R)(dθ2 + sin2 θ dϕ2) (1.49)

where τ is the proper time of a particle at rest in this coordinate system, r is the areal
radius and R is just the comoving coordinate. Since we are dealing with a pressureless
fluid configuration (dust), the energy-momentum tensor has the form

T µν = ρuµuν . (1.50)

In the comoving coordinates uµ = (1, 0, 0, 0), so T µν has a single non-vanishing compo-
nent,

T 0
0 = −ρ(τ, R) (1.51)

Using the components of the Ricci tensor (see Appendix A) for the metric Eq.(1.49), we
can write the field equations in the form:

G0
0 =

e−λ

r2
(
2rr′′ + r′

2 − rr′λ′
)
− 1

r2
(
rṙλ̇+ ṙ2 + 1

)
= −8πGNρ, (1.52)

G1
1 = e−λ r′

2 − 2rr̈ − ṙ2 − 1 = 0, (1.53)

G2
2 = G3

3 =
e−λ

r

(
2r′′ − r′λ′

)
− ṙλ̇

r
− λ̈− λ̇2

2
− 2r̈

r
= 0, (1.54)

G01 = R01 = 2ṙ′ − λ̇r′ = 0 (1.55)
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where ḟ ≡ ∂f
∂τ

and f ′ ≡ ∂f
∂R

. Integrating Eq.(1.55) we get

eλ =
r′2

1− εf 2(R)
, ε = 0,±1. (1.56)

where f(R) is an arbitrary function. Using this in Eq.(1.53) gives

2r̈r + ṙ2 = −εf 2(R). (1.57)

If we let u = ṙ2, this equation can be simplified to d(ru)/dr = −εf 2(R), which can be
solved to obtain

ṙ2 = −εf 2(R) +
F (R)

r
(1.58)

where F (R) is another arbitrary function. This can be integrated by introducing a
parameter η such that dη = (f/r)dτ . Then, Eq.(1.60) becomes(

∂r

∂η

)2

=
F

f 2
r − εr2, (1.59)

whose solutions are

r =
F (R)

2f 2(R)
(1− cos η), τ − τ0(R) =

F (R)

2f 3(R)
(η − sin η), (for ε = +1) (1.60)

and

r =
F (R)

2f 2(R)
(cosh η − 1), τ − τ0(R) =

F (R)

2f 3(R)
(sinh η − η), (for ε = −1) (1.61)

while the solution for ε = 0 can be obtained by solving Eq.(1.58) directly, which gives

r =

(
9F (R)

4

)1/3

[τ − τ0(R)]
2/3 (for ε = 0) (1.62)

where τ0(R) is again an arbitrary function. Additionally, using Eq. (1.58) in Eq. (1.56)
we can eliminate f 2 and obtain an expression for the energy density:

8πGNρ =
F ′

r′r2
. (1.63)

Thus, we have obtained the Tolman solution for spherically symmetric, inhomogeneous
dust:

ds2 = −dτ 2 +

(
∂r

∂R

)2
dR2

1− εf 2(R)
+ r2(τ, R)(dθ2 + sin2 θ dϕ2), (1.64)

8πGNρ(τ, R) =
F ′(R)

r2 ∂r
∂ρ

. (1.65)
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1.3.2 Oppenheimer-Snyder model

In this model, we require that the mass density ρ does not depend on the radial coordinate
R and assume the function r(τ, R) is of the form

r(τ, R) = K(τ)R (1.66)

where K(τ) is a scaling factor. These conditions give, from Eqs. (1.57) and (1.63),

f(R) = R, F (R) =
8πGN

3
ρK3R3, τ0 = 0 (1.67)

and since F is a function of R only, we see that ρK3 has to be a constant,

ρ(τ)K3(τ) ≡ M̃. (1.68)

With these, the interior solution becomes

ds2 = −dτ 2 +K2(τ)

[
dR2

1− εR2
+R2(dθ2 + sin2 θ dϕ2)

]
(1.69)

with

K(η) =


1
6
κM̃(1− cos η) for ε = +1

1
6
κM̃

(
η2

2

)
for ε = 0

1
6
κM̃(cosh η − 1) for ε = −1

(1.70)

and

τ =


−1

6
κM̃(η − sin η) for ε = +1

−1
6
κM̃

(
η3

6

)
for ε = 0

−1
6
κM̃(sinh η − η) for ε = −1

(1.71)

The metric, Eq.(1.71), suggests that the interior of the collapsing star is a constant
curvature space whose radius depends on time. For ε = 0,−1, the star contracts from
its initial size until it collapses to r = 0. And for ε = 1, the star first expands and then
collapses.

Matching conditions

The exterior solution of the star is given by the Tolman solution for ρ = 0, and due to
Birkhoff’s theorem, this must correspond to the Schwarzschild solution.

Since the surface of the star moves on geodesics, Eq.(1.58) must correspond to the
radial geodesic equation of the Schwarzschild metric at R = RS. This yields

F = 2M. (1.72)
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Figure 1.2: Finkelstein diagram of a collapsing spherically symmetric fluid ball. Each
point represents a two-sphere. (from[23])

.

The condition for matching the interior and exterior solutions smoothly is

r(τ, RS) = K(τ)RS. (1.73)

This is achieved when
6m

f 3(RS)
= κρK3 (1.74)

which fixes f(RS) = RS, and we have

κρK3R3
S = 6M. (1.75)

This condition ensures the continuity of the metric at the surface of the star. It also
relates the mass density and radius to the ADM mass of the system.
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1.4 Black holes

Normally, for a star in static equilibrium, the radius r = 2GNM ≡ RH is far within
the interior of the matter. However, a star undergoing a full gravitational collapse will
eventually contract past the radius RH and approach the r = 0 singularity. Although the
r = 2GNM singularity of the Schwarzschild metric is merely a coordinate singularity and
can be removed by an appropriate coordinate transformation, it is still a crucial aspect
of the gravitational collapse and worth a discussion to understand what a collapsing star
looks like for an outside observer.

1.4.1 Contracting beyond r = 2GNM

By solving the equations for ṫ and ṙ, one obtains (see Appendix B.1)

τ(r) =
2

3

1√
2GNM

(
r
3/2
0 − r3/2

)
, (1.76)

and

t(r) =
2

3

1√
2GNM

(
r
3/2
0 − r3/2 + 6Mr

1/2
0 − 6Mr1/2

)
+ 2GNM ln

[√
r0 −

√
2GNM√

r0 +
√
2GNM

√
r +

√
2GNM√

r −
√
2GNM

]
. (1.77)

Assuming the trajectory starts from r0 ≫ 2GNM , behaviour of t(r) becomes

t ≃ 2

3

1√
2GNM

(
r
3/2
0 − r3/2

)
= τ for r ≫ 2GNM, (1.78)

t ≃ −2GNM ln(
√
r −

√
2GNM) + const for r ≃ 2GNM. (1.79)

Thus, while τ(r) is regular, t(r) diverges as r → 2GNM . This suggests that, although
the particle trajectory crosses RH in a finite amount of proper time, for an asymptotically
inertial observer at r ≫ RH whose clock measures time t, it would look like the particle
takes an infinite amount of time t to reach RH .

To understand this seemingly paradoxical result, we consider a radially infalling probe
that emits a signal of frequency ωs at fixed intervals ∆τs, and determine the spacetime
points of detection of the signals (tn, r0) and their frequencies measured by an asymptotic
observer at r = r0.

Eq. (B.16) implies that there will be a difference in the observed time interval given
by

∆t(1)n =

(
1− 2GNM

rn

)−1

∆τs. (1.80)
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Figure 1.3: Proper time τ and coordinate time t, as functions of r, for a radially infalling
particle in Schwarzschild spacetime (from [24]).

Additionally, the travel time of the signal between two emissions needs to be taken into
account, which is, for the asymptotic observer

∆t(2)n ≡ tn − tn−1 =

∫ r0

rn

dt

dr
dr −

∫ r0

rn−1

dt

dr
dr ≃

√
2GNM

rn

(
1− 2GNM

rn

)−1

∆τs (1.81)

Adding these up we get a total observed time difference of

∆tn = ∆t(1)n +∆t(2)n ≃
(
1 +

√
2GNM

rn

)(
1− 2GNM

rn

)−1

∆τs, (1.82)

which means that the time interval between two consecutive signals received by the
outside observer will diverge, and the observer will have to wait an asymptotically infinite
amount of time between signals as the probe approaches the Schwarzschild radius r =
2GNM .

Additionally, looking at the equation for the gravitational redshift with the contri-
bution of the Doppler effect,

ωn ≃ ωs

√
1− vn
1 + vn

√
1− 2GNM

rn
, (1.83)

where vn → 0 for rs → RH , one can see that the frequency of the signal received by the
observer vanishes, i.e. ωn → 0.

Thus, we arrive at the conclusion that a spherically symmetric collapsing body will
seem to an outside observer as if it is asymptotically slowing down and redshifting and
will eventually become so faint that it practically becomes invisible.
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The event horizon

The above results imply that nothing, not even light, can escape the surface r = RH

once it is crossed. A photon emitted at r = RH would spend all of its energy to escape,
hence infinitely redshift. For these reasons, the surface of radius RH is called the event
horizon. The physical nature of this surface can be better understood by looking at
the properties of constant radius hypersufaces, S , and the behaviour of light cones.
For r > 2GNM , S is timelike and there exist both ingoing and outgoing light cones.
However, for r = 2GNM , S is a null hypersurface and the outgoing light cone is stuck
at r = RH , while for r < 2GNM , the light cones are always ingoing. This means that the
hypersurfaces with r ≤ 2GNM can only be crossed in one direction, which is inwards,
and supports the identification as an horizon. A region of spacetime surrounded by this
event horizon is called a black hole.

1.4.2 The singularity

As a consequence of what we have discussed so far, it seems that according to general
relativity alone, a complete gravitational collapse will inevitably result in a singular final
state, where any matter or light ray past the event horizon reaches the point r = 0 in a
finite amount of time.

The emergence of such singularities can also be understood by studying the relation
between the geodesic congruences and the particular nature of the matter source, as it
is described by its energy-momentum tensor. This is what led to the famous singularity
theorems of S. W. Hawking and R. Penrose in the 60’s and 70’s [8, 9] which prove the
existence of singularities in general relativity. Before stating the theorem, we first give
some necessary definitions.

In general relativity, spacetime is defined as a pair (M, g), i.e. a four-dimensional C∞

manifold endowed with a Lorentz metric of signature +2 [23]. The pair (M, g) is said
to be geodesically complete if every geodesic can be extended to arbitrary values of its
affine parameter. This is the property that is used in the generally accepted definition of
a spacetime singularity. If a spacetime (M, g) is timelike or null geodesically incomplete,
it is said to contain a singularity.

Another key point in the proof of the singularity theorems is provided by the so
called Raychaudhuri equation, which describes the evolution of geodesic congruences. It
is given by

dθ

dτ
= −1

3
θ2 − σµνσ

µν + ωµνω
µν −Rµνξ

µξν (1.84)

where θ is the expansion, the symmetric tensor σµν is called the shear, the skew-symmetric
part ωµν gives the twist, and ξµ is a vector field that is tangent to the congruence of
timelike geodesics.
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Using the Einstein’s equation, the last term in Eq. (1.84) can be written as

Rµνξ
µξν = 8πGN

(
Tµνξ

µξν +
1

2
T

)
. (1.85)

where Tµν is the energy-momentum tensor, and the term Tµνξ
µξν represents the energy

density of matter as measured by an observer with four-velocity ξµ.
There are several conditions in the literature that have been proposed for the energy-

momentum tensor of regular matter sources. For any observer with unit timelike four-
velocity ξµ, the conditions in terms of a diagonalisable energy-momentum tensor T =
ρ dt⊗ dt+

∑
i pidx

i ⊗ dxi read

• Weak energy condition:
Tµνξ

µξν ≥ 0 (1.86)

This yields ρ ≥ 0 and ρ+ pi ≥ 0.

• Strong energy condition:

Tµνξ
µξν +

1

2
T ≥ 0 (1.87)

which gives ρ+
∑3

i pi ≥ 0.

• Dominant energy condition: For all future directed, timelike ξµ, the vector

Jµ = T µ
νξ

ν (1.88)

representing a possible flux of energy, should be a future directed timelike or null
vector.

Returning to the Raychaudhuri equation, one can see that under the strong energy
condition, the right hand side of Eq. (1.84) is always negative. Then, one can write

1

θ2

(
dθ

dτ
+

1

3
θ2
)

≤ 0, (1.89)

which, upon integrating, yields

θ−1(τ) ≥ θ−1
0 +

τ

3
(1.90)

where θ0 is the initial value of θ. This equation implies that, if the congruence is initially
converging, i.e. θ0 < 0, then θ−1(τ) must pass through zero, that is, θ → −∞, and the
congruence will collapse to a point within a proper time τ ≤ 3/|θ0|.

These results just represent a singularity in the congruence and do not say much
about the existence of actual spacetime singularities. In fact, the conclusion is simply
that gravity is attractive and will cause particles or light rays to converge to a focusing
point, called caustics, if they started out moving towards each other.
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Singularity theorems

Before stating the singularity theorems (without proofs), we give one more important
definition which is crucial for the understanding of the theorems.

Definition 1: A compact, two-dimensional, smooth spacelike submanifold T , having
the property that the expansion, θ, of both ingoing and outgoing sets of future directed
null geodesics orthogonal to T is everywhere negative, is called a trapped surface.

In the extended Schwarzschild solution, all spheres inside the black hole are trapped
surfaces. One may think of T as being in such a strong gravitational field that even
the outgoing light rays are dragged back and are converging. It follows from this fact
that trapped surfaces must form in any gravitational collapse whose initial conditions are
sufficiently close to the ones for spherical collapse. This has been shown in the following
theorem.

Theorem 1 (Penrose 1965 [8]) Spacetime (M, gµν) cannot be null geodesically com-
plete if it satisfies:

1. Rµνk
µkν ≥ 0 for all null vectors kµ,

2. there is a non-compact Cauchy surface S in M,

3. there is a closed trapped surface T in M.

This theorem tells us that in a gravitational collapse there will occur either a singularity
or a Cauchy horizon, and in either case our ability to predict the future breaks down.
However, it does not say whether singularities occur in physically realistic solutions. For
this, we need the following more general theorem,

Theorem 2 (Hawking-Penrose 1970 [9]) Spacetime (M, gµν) is not timelike and null
geodesically complete if it satisfies the following conditions:

1. Rµνk
µkν ≥ 0 for every null and timelike vector kµ,

2. timelike and null generic conditions are satisfied,

3. there are no closed timelike curves on M,

4. there exists at least one of the following:

• a compact achronal set without edge,

• a closed trapped surface,

• a point p such that, on every past (or the future) directed null geodesics from
p, the expansion θ of the null geodesics emanating from p becomes negative.
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1.5 Rotating black holes

The gravitational field of an astronomical body will not be spherically symmetric if the
body is rotating. An exact solution of Einstein’s equation outside a rotating, axially
symmetric, stationary body was found by Roy Kerr in 1963 [25], known as the Kerr
solution, which we briefly summarise in this section.

1.5.1 The Kerr solution

The Kerr solution in Boyer-Lindquist coordinates [26] is given by the metric

ds2 = −dt2 + Σ

(
dr2

∆
+ dθ2

)
+ (r2 + a2) sin2 θdϕ2 +

2Mr

Σ
(a sin2 θdϕ− dt)2, (1.91)

where

∆(r) ≡ r2 − 2Mr + a2, (1.92)

Σ(r, θ) ≡ r2 + a2 cos2 θ. (1.93)

The parameters M and a ≡ J/M represent the ADM mass and angular momentum per
unit mass respectively.

Looking at the metric, one can see that the Kerr spacetime is (i) axisymmetric, (ii)
stationary, but (iii) not static, i.e. it is not invariant under time reversal. Furthermore,
it is also (iv) asymptotically flat, and (v) reduces to Schwarzschild spacetime in the limit
a→ 0.

Being stationary and axisymmetric, the Kerr metric admits two Killing vector fields,

kµ = (1, 0, 0, 0), mµ = (0, 0, 0, 1) (1.94)

in coordinates (t, r, θ, ϕ). Thus, there are two conserved quantities,

E ≡ −uµkµ, L ≡ uµmµ. (1.95)

associated to particles in geodesic motion.

1.5.2 Horizons

One can also immediately realize that the metric becomes singular at ∆ = 0 and Σ = 0.
However, it turns out that the Kretschmann scalar is only singular on Σ = 0, while it
is regular on the surfaces where ∆ = 0. This suggests that these are just coordinate
singularities and can be removed by an appropriate coordinate transformation.

To understand where these coordinate singularities occur, we look at the roots of

∆ = r2 + a2 − 2GNMr = 0. (1.96)
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• For a2 ≤M2, this equation has two roots

r+ ≡M +
√
M2 − a2, (1.97)

r− ≡M −
√
M2 − a2, (1.98)

so we can write ∆(r) = (r − r+)(r − r−). From the norm of the normal vector to
the surfaces r = r+ and r = r−

nµnµ =
∆

Σ
, (1.99)

one can see that these are null hypersurfaces and can be crossed only in one direc-
tion, thus identifying as horizons, as in the case of a Schwarzschild black hole.

• For a2 > M2, the metric is singular only when r = 0. Equation (1.96) has no real
solution and there is no horizon. In this case, the singularity is said to be “naked”.

• For a2 = M2, the two horizons r+ and r− coincide, and the solution describes an
extremal black hole.

The two horizons r = r+ and r = r−, which are called the outer horizon and the
inner horizon, respectively, divide the spacetime into three regions: (i) For r > r+, the
constant radius hypersurfaces Σ are timelike and can be crossed both ways. (ii) In the
region between the two horizons, i.e. r− < r < r+, S are spacelike and thus a particle
crossing the outer horizon can only fall until it reaches the inner horizon. (iii) For r < r−,
where the Σ = 0 singularity is contained, S are again timelike and can be crossed in
both inwards and outwards.

1.5.3 Frame dragging and the ergosphere

One of the peculiar properties of Kerr spacetime is that an observer with zero angular
momentum falling towards a Kerr black hole gets dragged along and is forced to co-rotate
with the black hole. This can be seen by realizing that the off-diagonal terms in the Kerr
metric result in non-zero angular velocity for the observer.

The angular velocity for an observer with four velocity uµ is given by

Ω ≡ dϕ

dt
=
uϕ

ut
. (1.100)

Since we are considering a zero angular momentum observer, i.e. L = uϕ = 0, we can
write

uϕ = gϕϕu
ϕ + gtϕu

t = 0. (1.101)

Using this, and substituting the metric functions, the angular velocity can be written as

Ω = − gtϕ
gϕϕ

=
2Mar

(r2 + a2)2 − a2∆sin2 θ
. (1.102)
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The Ergosphere

In Kerr spacetime, the metric function gtt changes sign at the surfaces

rS± ≡M ±
√
M2 − a2 cos2 θ. (1.103)

In Schwarzschild spacetime, these surfaces coincide with the horizon. However, in the
Kerr case, the surface rS+ lies outside the outer horizon r+. This means that, there is a
region outside the horizon, called the ergoregion, where the timelike killing vector field
kµ becomes spacelike. This forces observers to co-rotate with the black hole and a static
observer cannot exist even if it has arbitrarily large angular momentum. The surface
rS+ is called the ergosphere, or sometimes the stationary limit surface.

1.5.4 The singularity of Kerr spacetime

The curvature singularity of Kerr spacetime occurs on the surface

Σ = r2 + a2 cos2 θ = 0 (1.104)

where the Kretschmann scalar diverges. The nature of this singularity is better under-
stood by transforming to Kerr-Schild coordinates (t̄, x, y, z), where

x+ iy = (r + ia) sin θ exp

[
i

∫ (
dϕ+

a

∆
dr

)]
, (1.105)

z = r cos θ, (1.106)

t̄ = −r +
∫ (

dt+
(r2 + a2)

∆
dr

)
. (1.107)

With these the metric takes the form

ds2 = −dt̄2+dx2 + dy2 + dz2

+
2mr3

r4 + a2z2

(
dt̄+

r(xdx+ ydy)− a(xdy − ydx)

r2 + a2
+
zdz

r

)
(1.108)

where r is defined implicitly by

r4(x2 + y2 + z2 − a2)r2 − a2z2 = 0. (1.109)

From Eqs. (1.105, 1.106), one obtains

x2 + y2

r2 + a2
+
z2

r2
= 1 (1.110)

which shows that surfaces of constant radius r are confocal ellipsoids for r ̸= 0.
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Figure 1.4: Kerr spacetime with a2 < M2 (from [27]).

At r = 0 and 0 < θ < π, the ellipsoids degenerate to the disk x2 + y2 ≤ a2. Thus,
r = 0 is not a single point but a disk with each value of θ corresponding to a circle
x2 + y2 = a2 sin2 θ.

In particular, for θ = π/2, r = 0 corresponds to the ring

x2 + y2 = a2, z = 0, (1.111)

which is the boundary of the beforementioned disk. On this ring, Σ = 0, and the
Kretschmann scalar actually diverges. Thus, it is a real curvature singularity of the Kerr
spacetime, called the ring singularity.
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Chapter 2

Quantum ball of dust

In the literature of regular black holes, one approach of avoiding singularities is to impose
regularity conditions inspired by classical physics, e.g. finite effective energy density and
scalar invariants [28]. However, these conditions usually fail to remove (or bring back) a
seemingly undesirable inner Cauchy horizon. This can be seen in the static spherically
symmetric case where gtt = −eφgrr with φ = φ(r) is a regular function, and

grr = 1− 2m(r)

r
. (2.1)

For the Schwarzschild vacuum solution, the Misner-Hernandez-Sharp mass function

m(r) = 4π

∫ r

0

ρ(x)x2dx, (2.2)

is equal to the ADM mass M and is constant. Thus, both gtt and the Kretschmann
scalar diverge for r → 0, suggesting that the tidal forces also diverge towards the centre.
If we impose the condition that the proper energy density ρ(r) to be regular for r → 0,
then we get m ∼ r3. This makes the metric functions and the curvature scalars finite
at r = 0, hence removing the Schwarzschild singularity. However, the relation m ∼ r3

makes gtt(0) = eφ(0) > 0, suggesting that gtt changes sign twice going inward, which
suggests that there must exist a second horizon r− inside the outer event horizon r+.

In quantum theory, one can impose weaker conditions on the energy density of the
source [29]. In particular, we can consider

ρ ∝ |Ψ|2, (2.3)

where Ψ = Ψ(r) is the wave function of the fully collapsed matter source. Then, since
the wave function must yield finite probability densities, the fundamental requirement
becomes that Ψ needs to be integrable. Thus, we must have

m(r) ∼ 4π

∫ r

0

|Ψ|2x2dx <∞, (2.4)
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for any r <∞. This results in a weaker condition ρ ∼ r−2 and m ∼ r, which still ensures
that m(0) = 0. This behaviour of m both removes the inner Cauchy horizon and replaces
the central singularity with an integrable singularity where the curvature scalars and the
effective energy-momentum tensor diverge but their volume integrals remain finite [30].

In this chapter, we review a recent approach towards the quantisation procedure of
the Oppenheimer-Snyder model of dust collapse, in which the trajectories of the dust
particles, which follow the geodesics in the classical theory, are quantised [1, 2]. This
approach confirms the expected quantum behaviour for the effective energy density and
the mass function in Eq. (2.4). Then the analysis of the inner core of the resulting
quantum black hole shows to support the idea that black holes are macroscopic extended
objects.

2.1 Collapse of a quantum ball of dust

The system we consider is the collapse of a spherically symmetric and isotropic ball of
dust, which has a total ADM mass of M and an areal radius R(τ), where τ is the proper
time in the comoving frame. During the collapse, the dust particles of proper mass µ
will fall along the radial geodesics r(τ) of the Schwarzschild metric

ds2 = −
(
1− 2GNm

r

)
dt2 +

(
1− 2GNm

r

)−1

dr2 + r2 dΩ2 (2.5)

wherem(r) is the (Misner-Sharp-Hernandez) mass function, which represents the fraction
of the total ADM mass inside the radius r(τ), and dΩ2 = dθ2 + sin2 θ dϕ2 is the usual
line element of a 2-sphere.

The first step is to discretise the ball of dust into N concentric layers, with inner
radius r = Ri(τ), and a spherical core in the centre with mass

µ0 = ϵ0M, (2.6)

where ϵi is the fraction of the ADM mass in the ith layer. Each layer surrounding the
core has a thickness ∆Ri = Ri+1−Ri and carry a mass µi = ϵiM . Thus, the mass inside
a sphere of radius r < Ri is given by

Mi =
i−1∑
j=0

µi =M

i−1∑
j=0

ϵj , (2.7)

and the total mass is M =MN+1.
Since each layer of dust will follow the geodesics, the radial geodesic equation(

dRi

dτ

)2

− 2GNMi

Ri

=
E2

i

µ
− 1 (2.8)
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Figure 2.1: The layered structure of the dust ball (from [19])
.

can be used to study the evolution of the layers, where µ is the proper mass of each dust
particle, and Ei is the conserved momentum conjugated to t = ti(τ). Using the radial
momentum1 Pi = µdRi

dτ
, conjugated to R = Ri(τ), we can write this equation in the form

Hi ≡
P 2
i

2µ
− GNµMi

Ri

=
µ

2

(
E2

i

µ2
− 1

)
≡ Ei, (2.9)

which is in the same form as the Newtonian equation for energy conservation, and also
equivalent to the mass shell condition for the dust layers.

1The angular momentum conjugated to ϕi = ϕi(τ) is set to zero since the ball of dust is not spinning.
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2.1.1 Quantisation

The next step is to employ the canonical quantisation prescription by introducing the
momentum operator Pi 7→ P̂i = −iℏ∂Ri

. With this, and the operator R̂i, the canonical
commutation relation [

R̂i , P̂j

]
= iℏδij (2.10)

implies that the radius of each layer of the ball satisfies an uncertainty relation2

∆Ri∆Pj ≳ ℏ = ℓpmp (2.11)

where ∆O = ⟨Ô2⟩−⟨Ô⟩
2
. With this prescription, Eq.(2.9) becomes the time-independent

Schrödinger equation

Ĥiψni
=

[
− ℏ2

2µ

(
d2

dR2
i

+
2

Ri

d

dRi

)
− GNµMi

Ri

]
ψni

= Eni
ψni

. (2.12)

which is formally the same as the equation for the s-states of the hydrogen atom. Thus,
the Hilbert space of states for the dust particles is spanned by the Hamiltonian eigen-
functions

ψni
(Ri) =

√
µ6M3

i

πℓ3pm
9
pn

5
i

exp

(
− µ2MiRi

nim3
pℓp

)
L1
ni−1

(
2µ2MiRi

nim3
pℓp

)
, (2.13)

where L1
ni−1 are Laguerre polynomials and ni = 1, 2, ... . The corresponding eigenvalues

are

Eni
= − µ3M2

i

2m4
pn

2
i

, (2.14)

and one can read out a Bohr radius

ai =
ℓpm

2
p

µMi

. (2.15)

The normalisation of the wave functions (2.13) is defined in the scalar product

⟨ni|n′
i⟩ = 4π

∫ ∞

0

R2
iψ

∗
ni
(Ri)ψn′

i
(Ri)dRi = δnin′

i
, (2.16)

which makes the Hamiltonian Hermitian when acting on the above spectrum.
The expectation value of the areal radius on these eigenstates is given by

R̄ni
≡ ⟨ni|R̂i|ni⟩ =

3m3
pℓpn

2
i

2µ2M2
i

, (2.17)

2The Planck constant ℏ and the Newton constant GN are written in terms of Planck length and
mass, i.e., ℏ = ℓpmp and GN = ℓp/mp.
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with relative uncertainty

∆Rni

R̄ni

≡

√
⟨ni|R̂2

i |ni⟩ − R̄2
ni

R̄ni

=

√
n2
i + 2

3ni

, (2.18)

which asymptotes to a minimum of 1/3 for ni → ∞.

2.1.2 A lower bound

At first, it seems like the spectrum contains states with infinitesimally small width since
R̄1 ∼ ℓp(mp/M)3 ≪ ℓp, with energy density of the order M/R̄1 ∼ (M10/m9

p)ℓ
−3
p . This

state is still indistinguishable from a point-like singularity for any macroscopic black hole
and cannot be considered as an alternative to the classical singularity. However, using
Eq. (2.5), and assuming that the conserved momentum Ei remains well defined for all
dust particles, i.e. E2

i ≥ 0, in the allowed quantum states, we obtain

0 ≤ E2
i

µ2
= 1 +

2Ei
µ

= 1− µ2M2
i

m4
pn

2
i

, (2.19)

which gives a lower bound for the single particle principle quantum number

ni ≥
µMi

m2
p

≡ Ni . (2.20)

So, the ground state wave function becomes

ψNi
(Ri) =

√
µmp

πℓ3pM
2
i

exp

(
− µRi

mpℓp

)
L1

µMi
m2

p
−1

(
2µRi

mpℓp

)
, (2.21)

which is occupied by νi dust particles in each layer, and from Eq. (2.17) we get

R̄Ni
=

3

2
GNMi. (2.22)

where we require Mi, and hence Ni in Eq. (2.16) be such that R̄i ≲ R̄i+1, that is, layer
must remain orderly nested.

Using the wave function Eq. (2.21) the effective energy density of each layer can be
written as

ρi = µ νi|ψNi
(r)|2 ≃ µ νi

∣∣∣∣ψNi

(
3

2
GNMi

)∣∣∣∣2. (2.23)

This expression depends on the distribution of νi particles in each layer, which we do
not yet know. In the next section, we see how this is estimated to obtain an expression
for the corresponding energy density.
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2.2 Ground state layers

Since the system consists of dust particles, which by definition only interact gravita-
tionally, the Hilbert space for the entire ball can be assumed to be given by the direct
product

H =
N⊗
i=1

( νi⊗
k=1

Hi

)
(2.24)

of bound eigenstates Eq. (2.13) for νi particles in each layer. Then, the global ground
state can be written as the product of single layer ground states

|{ν1, N1}, ..., {νN , NN}⟩ =
N⊗
i=1

|Ni⟩νi , (2.25)

of each layer with νi particles in their ground state |Ni⟩. In order to determine the states
|Ni⟩, the minimum thickness of the ith layer of inner radius R̄i is assumed to be of the
order of ∆Ri in Eq. (2.18), and the finest possible layering of the dust ball compatible
with this quantum description becomes

R̄i+1 ≃ R̄i +∆Ri ≳
4

3
R̄i. (2.26)

Further assuming Ni ≫ 1 for all i = 1, ..., N , one finds, using Eq. (2.22),

2GNMi =
4

3
R̄Ni

≃ R̄Ni
+∆RNi

≃ 3

2
GNMi+1 (2.27)

or

Mi+1 ≃
4

3
Mi, (2.28)

which implies µi ≃ Mi/3. Then the quantum numbers for the single particle ground
states in Eq.(2.25) can be written as

Ni ≃
(
3

4

)N−i+1
µM

m2
p

. (2.29)

Considering the outermost layer, the quantum number for the particles in the ground
state

NS ≡ NN ≃ 3µM

4m2
p

, (2.30)

can be used to obtain the global ball radius :

RS ≡ R̄NS
+∆RNS

≃ 3

2
GNM. (2.31)
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Figure 2.2: Mass functionMi (dots) for N = 100 layers and its continuous approximation
Eq. (2.31) (solid line). The innermost core has radius R1 ≃ 3 × 10−13RS and mass
M1 ≃ 2× 10−13M (from [2]).

This implies that, since RS < 2GNM ≡ RH , the ground state of the dust ball can be
the core of a black hole. Another important property of this result is that the radius Eq.
(2.31) depends only on the mass M . Therefore, the number of layers N , in other words,
how finely the central region of the ball is described, does not affect the result (2.31). In
particular, the innermost core has radius

R̄1 ≃
(
3

4

)N

RS, (2.32)

and mass

µ0 =M1 ≃
(
3

4

)N+1

M. (2.33)

It is also interesting that, even though the numerical prefactor is not the same as the
Bekenstein-Hawking entropy [31], multiplying the integer NS by the total number of
particles M/µ, is qualitatively in agreement with the black hole area quantisation

M

µ
NS ≡ NG ∼ M2

m2
p

∼ R2
H

ℓ2p
(2.34)

which suggests that the mass and horizon area are quantised, and further supports the
results for the dust ball to be described as a single quantum object.
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2.2.1 Effective energy density and pressures

The crucial result of this work is that it gives a discrete mass function Mi that grows
linearly with the areal radius Ri = R̄Ni

in the collective ground state regardless of the
number of layers N of the ball. Thus, one can introduce a continuous effective energy
density

ρ ≃ M

4πRSr2
≃ mp

6πℓpr2
, (2.35)

such that the mass function

m(r) = 4π

∫ r

0

r2ρ(r)dr =
2mpr

3ℓp
(2.36)

equals the ADM mass M for r = RS (Fig.2.2).
Since the dust particles are in the ground state, they cannot collapse any further and

the quantum core is necessarily in equilibrium. Then, corresponding effective pressures
can be determined from the Einstein tensor of the isotropic metric

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2dΩ2

≃ 1

3
dt2 − 3 dr2 + r2dΩ2, (2.37)

for 0 ≤ r ≤ RS, which yields the effective radial pressure

pr ≃ − m′

4πr2
≃ −ρ (2.38)

and the tangential pressure (or tension)

p ≃ −m′′

8πr
≃ 0, (2.39)

where f ′ ≡ ∂rf . Since the tangential pressure in each layer vanishes, one can deduce that
the system is unstable under perturbations of the angular momentum, thus the system
can be made to rotate differentially.

From Eq. (2.37) one can see that there is no inner Cauchy horizon inside the ground
state core. It should also be noted that the effective metric Eq. (2.37) cannot be used
to describe any meaningful motion inside the core, as the matter is in the ground state
and cannot evolve further. Therefore, the analysis of geodesics and geometric invariants
remains of formal value in the region of the core, where the quantum ground state does
not admit a classical approximation. This is reminiscent of bound states of the electrons
in the hydrogen atom, which cannot be described in terms of classical trajectories and
thus conceptually similar to our case. But even so, the Ricci and Kretschmann scalars
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Figure 2.3: Probability density for N = 3, µ = mp/10,M3 = 1100µ corresponding to a
black hole with M ≃ 150mp and RH ≃ 300ℓp (from [2]).

read R ≃ RαβγδR
αβγδ ≃ 64/9r2, whose square roots are integrable, agreeing with the

fact that ρ ∼ |Ψ|2 ∼ r−2 must be normalisable in quantum theory. Furthermore, the
tidal forces remain finite for all r. Thus, r = 0 can be seen as an integrable singularity
since the divergence of geometric invariants does not cause a pathological behaviour of
the matter.

As a final note, let us mention a limitation of the assumption of the linear mass
function. It can be seen that the outermost layer with thickness ∆RN ≃ RS/4 ≃
3GNM/8, contains µN/M ≃ 1/4 of the total mass. So near the surface, a more accurate
effective energy density would be of the form ρ ≃ M

4
|ψNS

(r)|2. Thus, the mass function is
not expected to remain linear near the surface. To see this, we can consider an example
with N = 3 layers, plotting the probability densities

Pi = 4πr2|ψNi
|2 = 4π

ρi(r)

µi

, (2.40)

it turns out that finding a particle of the ith layer inside the adjacent layers has a nonzero
probability (see Fig. 2.3). This implies that the wave function of the dust particles in
a layer overlaps with the ones inside the interior layers. Due to this property, which is
neglected in the approximation for the continuous energy density, the actual density is
expected to decrease faster from the centre, resulting in different amount of dust in the
outermost layer. Thus, requiring a more accurate description of the energy density of
the outermost layer, which has just been obtained in [32] recently.
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Chapter 3

Quantum dust layers of rotating
black holes

In this chapter, we first review the analysis done in [3], where the rotational effects
have been estimated via perturbation theory. Then, we try to repeat the same analysis
considering layers of dust particles in the Kerr geometry.

3.1 Rigidly rotating ball with classical angular mo-

mentum

In the previous chapter, we dealt with purely radial motion, so we set the conserved
angular momenta L to zero in the geodesic equation. In this section, we look at the
effect of rotation on the matter core, which was analysed in [3]. Thus, we include
the angular momentum term and compute the perturbative effects for sufficiently slow
angular velocity. We consider the outermost (N th) layer as a “one body” with mass µN

and radius r = R(τ), whose evolution is now governed by the geodesic equation

E2
µ

µ2
N

− Ṙ2 +
2GNMN

R
−
(
1− 2GNMN

R

)
L2
µ

R2µ2
N

= 1, (3.1)

where MN is the mass inside the N th layer. This can be written in the form, as in Eq.
(2.9),

P 2

2µN

− GNµNMN

R
+

(
1− 2GNMN

R

)
L2
µ

2µNR2
=
µN

2

(
E2

µ

µ2
N

− 1

)
. (3.2)

We consider the case of a rigidly rotating dust ball with angular velocity ω. Then, the
N th layer will have a classical angular momentum

Lµ =
2

3
µNR

2ω (3.3)
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which we assume to be small enough. Then, we can write the total Hamiltonian as
H = H0 + VL, where H0 is given by Eq. (2.9), and

VL =

(
1− 2GNMN

R

)
L2
µ

2µNR2

=
2

9
µN (R2 − 2GNMNR)ω

2. (3.4)

Using perturbation theory, one can find the correction to the energy eigenvalues in Eq.
(2.14),

∆Eni
≡ ⟨ni|V̂L|ni⟩ ≃

2

9
µiR̄ni

(
10

9
R̄ni

− 2GNMi

)
ω2 (3.5)

where we assume ni ≫ 1, and R̄ni
is given by Eq. (2.17).

For the ground state ni = Ni, this becomes

∆ENi
≃ −1

9
µiG

2
NM

2
i ω

2 (3.6)

Thus, for the N th layer, we have

⟨NN |Ĥ|NN⟩ = ENN
+∆ENN

≃ ENN

(
1 +

2

9
G2

NM
2
Nω

2

)
. (3.7)

This result is valid only for |∆ENN
| ≪ |ENN

|, which suggests

|ω| ≪ 3√
2GNMN

=
2
√
2

GNM
≡ ωmax, (3.8)

where we used the fact that the outermost layer encloses a mass MN ≃ 3M/4. One can
also compute the correction to the ground state quantum number NN . To the first order
in ω, it reads

NL
N ≃ NN

(
1 +

1

9
G2

NM
2
Nω

2

)
≃ NN

(
1 +

1

16
G2

NM
2ω2

)
(3.9)

which yields a larger radius

R̄L
NN

≃ R̄NN

(
1 +

2

9
G2

NM
2
Nω

2

)
≃ R̄NN

(
1 +

1

8
G2

NM
2ω2

)
. (3.10)

This shows that the angular momentum acts as an effective potential barrier and allows
for a larger minimum ground state quantum number, thus resulting in a greater radius.
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We also note that ωmax corresponds to a total angular momentum per unit mass

amax ≡
L

M
=

2

5
⟨NN |R̂2|NN⟩ωmax (3.11)

≃ 4

9
R̄2

NN
ωmax

≈ 8

5
GNM (3.12)

where we used Eq. (2.18). Then one obtains a maximum value for the ground state
quantum number for which the perturbative approach is valid:

NL
max =

3

2
N =

3µNMN

2m2
p

, (3.13)

which corresponds to a maximum radius of

R̄L
Nmax

= 2R̄NN
= 3GNMN =

9

4
GNM. (3.14)

3.1.1 Outer geometry

We now look at what the results of the previous section yield when the geometry outside
the ball is assumed to be given by the Kerr metric.

Using Eq. (2.18) and Eq. (2.28), one can write the total angular momentum per unit
mass of the ball as

a =
L

M
=

2

5
⟨N |R̂2|N⟩ω =

9

16
G2

NM
2ω (3.15)

Then, the outer horizon of the Kerr spacetime (Eq. 1.97) is now located at

R+ = GNM +
√
G2

NM
2 − a2

= GNM

(
1 +

√
1−

(
9

16

)2

G2
NM

2ω2

)
≃ 2GNM

(
1− 1

12
G2

NM
2ω2

)
(3.16)

while the inner horizon will be at

R− = GNM −
√
G2

NM
2 − a2

≃ GNM

[
(9/16)2G4

NM
4ω2

2G2
NM

2

]
≈ 1

6
G3

NM
3ω2 ≪ R̄Ni

, (3.17)
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from which we can see that the inner horizon is within the dust core, which means that
in the perturbative approximation it cannot exist and the geometry will not be the Kerr
vacuum.

For the outer horizon R+, using Eqns. (3.10) and (3.16), one can find an angular
velocity ωH , such that, for

ω > ωH ≈ 17

10GNM
, (3.18)

R+ will also remain inside the core and will not be realised. This suggests that, within
the perturbative regime, if the core spins fast enough a black hole will not form at all.

3.1.2 Angular momentum quantisation

Considering Eq. (3.9), one should clearly quantise also the angular momentum, since NN

and NL
N should be integers in order to correspond to allowed states in the the spectrum

(2.17). Thus, we can let NL
N = NN + n where n > 0 is also an integer, and write, using

Eq. (3.9)

ω2 ≃ ω2
N =

16n

G2
NM

2NN

(3.19)

corresponding to a quantised angular momentum

Ln = 12ℓpmp

√
NNn (3.20)

or

an ≡ Ln

M
= 3ℓp

√
3n. (3.21)

Using these results one can also deduce that the outer horizon area should also be
quantised, which looks like

A+ = 4πR2
+ ≃ AH

(
1− 8n

3NN

)
, (3.22)

where AH is the horizon area of a Schwarzschild black hole of mass M . This makes
it clear that larger mass (hence larger NN) corresponds to a larger horizon, however,
increasing the angular momentum (i.e. increasing n) makes the horizon smaller.

On the other hand, increasing NN and n both makes the core radius larger. So there
is a critical angular velocity ωnc ≃ ωH ,

nc ≈
3NN

17
(3.23)

above which the core is larger than the horizon and the system is not a black hole.

38



3.2 General relativistic treatment

Now, instead of treating the rotation as a perturbation to the quantum system in the
static Schwarzschild geometry, we will examine the same system directly in Kerr space-
time and compare the results.

3.2.1 Rotating geodesics

We consider a layer of dust particles falling freely in Kerr spacetime, where the metric
in Boyer-Lindquist coordinates is given by

ds2 = −dt2 +
2GN mr

Σ
(a sin2 θ dϕ− dt)2 +

Σ

∆
dr2 + Σdθ2 + (r2 + a2) sin2 θ dϕ2 (3.24)

where
Σ = r2 + a2 cos2 θ (3.25)

and
∆ = r2 − 2GN mr + a2, (3.26)

In the above metric, the constant ADM mass M is replaced by the mass function m(r)
which represents the mass inside the ellipsoids of coordinate radius r, and a = a(r) =
J(r)/m(r) is the specific angular momentum on the surface of the same ellipsoid.

Dust particles in this metric will follow timelike geodesics xµ = xµ(τ) governed by
the Lagrangian

2L = ṫ2 − 2GN mr

Σ
(a sin2 θ ϕ̇− ṫ)2 − Σ

(
ṙ2

∆
+ θ̇2

)
− (r2 + a2) sin2 θ ϕ̇2 = 1 (3.27)

Inverting the expressions for the integrals of motion associated to the two killing
vector fields of Kerr spacetime

E =

(
1− 2GNmr

Σ

)
ṫ+

2GNmar

Σ
sin2 θ ϕ̇, (3.28)

and

L = −2GNmar

Σ
sin2 θ ṫ+

(
r2 + a2 +

2GNMa2r

Σ
sin2 θ

)
sin2 θ ϕ̇, (3.29)

yields

ṫ =
1

∆

[(
r2 + a2 +

2GNma
2r

Σ
sin2 θ

)
E − 2GNmar

Σ
L

]
(3.30)

= E +
4GNmr[(a

2 + r2)E + aL]

(r2 + a2 − 2GNmr)[2r2 + a2(1 + cos 2θ)]
, (3.31)
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and

ϕ̇ =
1

∆

[(
1− 2GNmr

Σ

)
L

sin2 θ
+

2GNmar

Σ
E

]
(3.32)

=
4GNmarE + 2a2L

(r2 + a2 − 2GNmr)[2r2 + a2(1 + cos 2θ)]
− 2L

[2r2 + a2(1 + cos 2θ)] sin2 θ
. (3.33)

In the following, we assume that the dust particles in a layer on the surface of an
ellipsoid of radial coordinate r = r(τ) co-rotate with the geometry and therefore have
L = 0. Then, from Eq. (3.23) we have(

r2 + a2 +
2GNma

2r

Σ
sin2 θ

)
sin2 θ ϕ̇ =

2GNmar

Σ
sin2 θ ṫ. (3.34)

which gives

ṫ = E +
2GNmr(r

2 + a2)E

∆Σ
, (3.35)

and

ϕ̇ =
2GNmarE

∆Σ
. (3.36)

With this assumption, the Lagrangian becomes

2L0 =

[
E +

2GNmr(r
2 + a2)E

∆Σ

]2
−2GNmr(r

2 + a2)2E2

∆2Σ

−Σ

(
ṙ2

∆
+ θ̇2

)
+
4G2

Nm
2a2r2(r2 + a2)E2 sin2 θ

∆2Σ2
(3.37)

Since the Kerr spacetime is axially symmetric, the trajectories of particles are usually
non-planar and the geodesic equations are quite complicated. This makes the system
we are considering practically unsolvable. Therefore, we will now consider the cases of
radial motion in which the trajectories are planar, that is, along the equatorial plane
θ = π/2 and the axis of symmetry θ = 0.

Equatorial motion

For θ = π/2 and θ̇ = 0, the Lagrangian in Eq. (3.21) reads

2Leq
0 =

1

r∆

[
(E2 − ṙ2)r3 + a2(r + 2GNm)E2

]
= 1, (3.38)

which can be written as

1

2
ṙ2 −

(
GNm

r
− a2

2r2

)
−
(
1 +

2GNm

r

)
a2E2

2r2
=

1

2
(E2 − 1). (3.39)
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Axial motion

For θ = θ̇ = 0, the Lagrangian becomes

2Lax
0 = ṫ2

(
1− 2GNmr

Σ

)
− Σ

∆
ṙ2 =

Σ

∆
(E2 − ṙ2) = 1 (3.40)

where Σ(r, θ = 0) = r2 + a2. Then, we can write

ṙ2

2
− GNmr

r2 + a2
=

(E2 − 1)

2
(3.41)

We can also write this as

ṙ2

2
− GNm

r

(
1− a2

a2 + r2

)
=

(E2 − 1)

2
(3.42)

from which we can see that for a = 0, it describes purely radial motion in Schwarzschild
spacetime.

3.2.2 Ground state and perturbative spectrum

As in the spherically symmetric case, we discretise the rotating ball into N comoving,
confocal layers by considering an ellipsoidal core of mass µ0 = ν0µ = ϵ0M and coordinate
radius r = R1(τ), which is surrounded by N layers of inner radius r = Ri(τ), thickness
∆Ri = Ri+1 − Ri, and mass µi = ϵiM . The gravitational mass inside each ellipsoid Ri

will be denoted by

Mi =
i−1∑
j=0

µj =M
i−1∑
j=0

ϵj, (3.43)

with M1 = µ0 and MN+1 = M . Additionally, we also denote the specific angular
momentum at the inner surface of the ith layer by Ai.

Similarly to the spherically symmetric case, we study the evolution of each layer using
the fact that dust particles at r = Ri(τ) will follow the radial geodesic equation, which
can be written as, from Eqs. (3.33, 3.36),

Hi ≡
P 2
i

2µ
− GNµM

Ri

+Wi =
µ

2

(
E2

i

2
− 1

)
(3.44)

where we let Pi = µdRi/dτ be the radial momentum conjugated to r = Ri(τ), and Ei

be the conserved momentum conjugated to t = ti(τ). We also defined Wi to be the
additional terms in the radial potential, which, for the equatorial motion, reads

W eq
i =

µA2
i

2R2
i

[
1−

(
1 +

2GNMi

Ri

)
E2

i

]
, (3.45)
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and for axial motion

W ax
i =

µGNMiA
2
i

Ri(R2
i + A2

i )
. (3.46)

With the canonical quantisation prescription Pi 7→ P̂i = −iℏ∂R, Eq. (3.38) becomes
the time-independent Schrödinger equation

Ĥi ψni
=

[
− ℏ2

2µ

(
d2

dR2
i

+
2

Ri

d

dRi

)
− GNµMi

Ri

+Wi

]
ψni

= Eni
ψni

(3.47)

which reduces to the spherically symmetric case for Wi ∼ a2 → 0.

3.2.3 Slow-rotation

If we consider Ai to be small enough, we can use the results of the previous chapter to
estimate the corrections to the radial potential. For the equatorial motion, it becomes

W eq
i ≃ µA2

i

2R̄2
Ni

[
1−

(
1 +

2GNMi

R̄Ni

)
E2

i

]
≃ 2µA2

i

9G2
NM

2
i

∼ a2

G2
Nm

2
, (3.48)

where we used Ei = 0 for the ground state, and for the axial motion we get

W ax
i ≃ µGNMiA

2
i

R̄Ni
(R̄2

Ni
+ A2

i )
≃ 8µA2

i

3(9G2
NM

2
i + 4A2

i )
∼ a2

G2
Nm

2
. (3.49)

If we assume that the geometry is defined by the mass and specific angular momentum of
the form m ≃ µ0r and a ≃ α0r, which is discussed in [29], then these effective potentials
are approximately constant. Therefore, they correspond to a correction to the energy
eigenvalues of the form

∆Ei = −Wi. (3.50)

This yields an acceptable estimation only for |∆Ei| ≪ |Ei|, which amounts to

Aeq
N ≪ 9

8
GNM (3.51)

on the equator and
Aax

N ≪ 2GNM (3.52)

on the symmetry axis, where we considered the outermost layer. Since Aeq
N is smaller,

we take into consideration only that, and define

Amax ≡
9

8
GNM (3.53)
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With Eq. (3.50), we can find the correction to the ground state quantum number as
we did in the previous section. For the equatorial motion we obtain

N eq
Ni

≃ NN

(
1 +

2A2
i

9G2
NM

2
i

)
, (3.54)

while on the symmetry axis we have

Nax
Ni

≃ NN

(
1 +

8A2
i

3(9G2
NM

2
i + 4A2

i )

)
. (3.55)

Thus, similarly to the previous case, the effective radial potential increases the minimum
allowed ground state quantum number, which again, results in a greater radius of the
core,

R̄eq
N = R̄N

[
1 +

4A2
i

9G2
NM

2
i

]
(3.56)

for the equator, and

R̄ax
N = R̄N

[
1 +

16A2
i

3(9G2
NM

2
i + 4A2

i )

]
(3.57)

on the symmetry axis.

Horizons

The outer horizon will be located at

R+ = 2GNM

(
1− A2

N

4G2
NM

2

)
. (3.58)

However, we still expect the radius of the core to exceed the outer horizon for some
value of AN = AH . We can find the value of AH by using Eq. (3.56) and (3.57). For the
equatorial motion, we obtain

Aeq
H ≃

√
63

73
GNM ≈ 13

14
GNM (3.59)

and for the axial motion

Aax
H =

√
108

208
GNM ≈ 3

4
GNM. (3.60)

On the other hand, the inner horizon R− will remain inside the core for all values of
AN on the equator, within the perturbative approximation of course, because R̄eq

N = R−
has no real solution for A, which also implies that the core radius is larger than R− for
all values of AN . For the axial motion, the inner horizon seems to exceed the core radius
at around AN ≈ 2GNM , however, this value is beyond the limit Amax, hence is not a
valid result.
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3.2.4 Quantised specific angular momentum

Equatorial motion

As in the case of rigid rotation, we can again deduce from Eqs. (3.54) and (3.55) that the
specific angular momentum A can also be quantised. Then, for the equatorial motion,
denoting N eq

N = NN + neq, we get

NN + neq

NN

− 1 =
neq

NN

≃
(

2A2
i

9G2
NM

2
i

)
, (3.61)

and find

Aeq
n =

3GNM√
2

√
neq

NN

. (3.62)

Consequently, the outer horizon radius can be written as

Req
n,+ ≃ 2GNM

(
1− 9

8

neq

NN

)
, (3.63)

thus, we obtain a quantised horizon area

Aeq
n,+ ≃ AM

(
1− 9

4

neq

NN

)
. (3.64)

Axial motion

Similarly, for the axial motion we obtain

nax

NN

≃ 8A2
n

3
(
81
16
G2

NM
2 + 4A2

n

) , (3.65)

which gives

Aax
n =

9
√
3

8
√
2
GNM

(
1 +

3nax

4NN

)√
nax

NN

. (3.66)

This puts the outer horizon radius into the form

Rax
n,+ = 2GNM

[
1− 243

256

(
1 +

3nax

4NN

)2
nax

NN

]
, (3.67)

which yields the quantised horizon area

Aax
n,+ = AM

[
1− 243

128

(
1 +

3nax

4NN

)2
nax

NN

]
. (3.68)

Comparing this with Eq. (3.64), we can see that they are approximately equal for
neq, nax ≫ NN .
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Conclusions

As we have discussed in the first chapter, classical general relativity predicts spacetime
singularities through gravitational collapse of sufficiently massive stellar objects. Their
existence has been established, at least mathematically, with the famous singularity
theorems of Hawking and Penrose. However, it is now also widely accepted that at such
scales, general relativity alone cannot describe the full reality , and quantum mechanical
effects must be taken into account, even though a complete theory of quantum gravity
has not yet been constructed.

There are already several approaches in the literature that attempt to give a quantum
mechanical description to the standard collapse models, whose shortcomings have already
been discussed in the introduction. Instead, we followed a different procedure which
yields promising results towards quantum black holes. We have reviewed the model
proposed in [1, 2] in which the collapsed ball of dust was discretised into N nested layers
and their trajectories individually quantised. With this method one finds that there
exists ground states for dust particles in each layer, and a collective ground state for the
entire core is built self consistently. This then allows one to estimate the expectation
value of the global radius of the ball, which turn out to be 3

2
GNM and hence can indeed

be the core of a black hole. An interesting point here is that this radius is independent
of the number of layers N of the ball, and only depends on the total mass M . The
crucial result of this model is that the discretised mass function grows linearly with the
areal radius in the collective ground state, thus, allowing one to introduce a continuous
effective energy density.

Having reviewed the model of quantum dust cores for static, spherically symmetric
black holes, we then discussed the effects of rotation on the matter core in the final
chapter. First, we considered the case of a rigidly rotating ball with classical angular
momentum, as analysed in [3], in which one uses perturbation theory to estimate the
corrections to the energy eigenvalues. We saw that, this method yields a larger ground
state quantum number and hence corresponds to a larger core radius and a smaller hori-
zon as expected. This also allows one to quantise the angular momentum by introducing
an additional quantum number n and write the corrected ground state quantum number
as NL = N + n. This further lets us quantise the area of the horizon and see how N
and n affect it separately. An important result of this analysis was that one can find
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a critical angular velocity above which the core becomes larger than the horizon and a
black hole does not form at all.

In the final part of the thesis, we have tried to extend this analysis to a fully gen-
eral relativistic case instead of a classically rotating rigid ball, where we replaced the
Schwarzschild geometry with the Kerr metric. However, the geodesic equations of Kerr
spacetime are quite complicated, and so a proper analytic solution is practically impos-
sible. Therefore, we instead dealt with a much more simplified case and considered only
motion of particles on the equatorial plane and the axis of symmetry. Then, we again
took a perturbative approach to estimate the corrected radii and the horizon areas. In
the end, we found similar results to the previous case.

In this dissertation, we have only considered a perturbative approach. It seems like
the 1/R3 term in the radial potential on the symmetry axis, W ax, makes the Schrödinger
equation (3.47) unsolvable. However, it might be possible to find an analytic solution for
the equatorial motion and see how larger angular momentum affects the quantum core
on the equator. Or one can also try to solve Eq. (3.47) numerically and check whether
the results are consistent. Furthermore, one would obviously like to develop a more
accurate model by considering quantum excitations of standard model fields and their
interactions, which could significantly affect the global size of the core and the effective
energy density.
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Appendix A

Curvature quantities

A.1 Spherically symmetric spacetime

The spherically symmetric spacetime with the general metric

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + r2(dθ2 + sin2 θ dϕ2)

has the following Christoffel symbols:

Γ0
11 =

λ̇

2
eλ−ν , Γ0

10 =
ν ′

2
, Γ0

00 =
ν̇

2
,

Γ1
11 =

λ′

2
, Γ1

10 =
λ̇

2
, Γ1

22 = −re−λ,

Γ1
33 = −r sin2 θ e−λ, Γ1

00 =
ν ′

2
eν−λ, Γ2

12 =
1

r

Γ2
33 = − sin θ cos θ, Γ3

13 =
1

r
, Γ3

23 = cot θ.

with these and the definition of the Riemann tensor

Rl
kij = Γl

kj,i − Γl
ki,j + Γl

miΓ
m
kj − Γl

mjΓ
m
ki , (A.1)

the nonzero components of the Ricci tensor can be found to be

R00 =
1

4
[eν−λ(2ν ′′ + ν ′

2 − ν ′λ′ + ν ′/r)− (2λ̈+ λ̇2 − λ̇ν̇), (A.2)

R11 =
1

4
[eλ−ν (2λ̈+ λ̇2 − λ̇ν̇)− (2ν ′′ + ν ′

2 − ν ′λ′ − λ′/r)], (A.3)

R22 = 1− e−λ
[
1 +

r

2
(ν ′ − λ′)

]
, (A.4)

R01 = R33/ sin
2 θ =

λ̇

r
. (A.5)
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and the Ricci scalar is given by

R ≡ Ri
i = −e

−λ

2

(
2ν ′′ + ν ′

2 − ν ′λ′ − 4(ν ′ − λ′)

r
+

4

r2

)
+

2

r2
(A.6)

A.1.1 Comoving coordinates

The Christoffel symbols are given by

Γ0
11 =

λ̇

2
eλ, Γ0

22 = rṙ, Γ0
33 = rṙ sin2 θ,

Γ1
01 =

λ̇

2
, Γ1

11 =
λ′

2
, Γ1

22 = −e−λr′r,

Γ1
33 = −e−λr′r sin2 θ, Γ2

02 =
ṙ

r
, Γ2

12 =
r′

r

Γ2
33 = − sin θ cos θ, Γ3

03 =
ṙ

r
, Γ3

13 =
r′

r
,

Γ3
23 = cot θ.

which yields the following non-zero Ricci tensor components

R00 =
λ̇2

4
+
λ̈

2
+

2r̈

r
, (A.7)

R11 = −e
λ

4

(
2λ̈+ λ̇2 +

4λ̇ṙ

r

)
+

(2r′′ − r′λ′)

r
, (A.8)

R22 = −1 + e−λ

(
r′′r + r′

2 − λ′r′r

2

)
− r̈r − ṙ2 − λ̇ṙr

2
, (A.9)

R01 =
2ṙ′ − λ̇r′

r
. (A.10)

Then, the Ricci scalar reads

R = λ̈+
1

2
λ̇2 +

2λ̇ṙ

r
+

4r̈

r
+

2

r2
(
1 + ṙ2 − e−λr′2

)
+

2e−λ

r
(λ′r′ − 2r′′) . (A.11)
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Appendix B

Geodesics

Geodesic equations can also be derived from the variational principle, which is more
convenient for our purposes, by using the fact that they are curves of extremal length.
To do this, we vary the action for a massive particle

S[xµ(τ)] = m

∫ τ

0

√
−gµν ẋµẋν dτ ′ ≡ m

∫ τ

0

√
2T dτ ′, (B.1)

and obtain the geodesic equations from the Euler-Lagrange equations. Using the mass
shell condition gµν ẋ

µẋν = −1, the variation of the action reads

δS = m δ

∫ τ

0

√
2T dτ ′ = m

∫ τ

0

δT√
2T

dτ ′ = m δ

∫ τ

0

T dτ ′, (B.2)

where τ is the proper time of the particle and ẋµ ≡ dx
dτ
. Thus we can define T to be the

Lagrangian L, and obtain equations of motion using

d

dτ

(
∂L
∂ẋµ

)
=

∂L
∂xµ

, (B.3)

which allows us to avoid dealing with the square root.

B.1 Radial geodesics in Schwarzschild spacetime

The Lagrangian for a massive particle in Schwarzschild geometry is given by

L =
1

2

[
−
(
1− 2GNM

r

)
ṫ2 +

(
1− 2GNM

r

)−1

ṙ2 + r2θ̇2 + sin2 θ ϕ̇2

]
(B.4)

Euler-Lagrange equations for the θ-component yields

θ̈ = sin θ cos θ ϕ̇2 − 2

r
ṙθ̇. (B.5)
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Due to the spherical symmetry, we can always choose a certain axis such that the particle
trajectory remains on the same plane for any affine parameter. Thus, we pick θ(τ) = π

2
,

which clearly solves the equation of motion.
Since the Schwarzschild metric admits two Killing vector fields, one timelike kµ =

(1, 0, 0, 0), and one spacelike mµ = (0, 0, 0, 1), one expects two associated conserved
quantities, which are given by

gµνk
µuν =

(
1− 2GNM

r

)
ṫ = E (B.6)

and
gµνm

µuν = r2 sin2 θ ϕ̇ = L. (B.7)

where uµ ≡ ẋµ is the four-velocity of the particle, and, E and L can be interpreted as
energy and angular momentum per unit proper mass respectively. These can be used to
obtain equations for ṫ and ϕ̇, which reads ,after choosing θ = π/2 as the orbital plane,

ṫ =
E(

1− 2GNM
r

) , and ϕ̇ =
L

r2
(B.8)

The radial equation of motion can be obtained more easily by using the mass shell
condition

2L =

(
1− 2GNM

r

)
ṫ2 −

(
1− 2GNM

r

)−1

ṙ2 − r2
(
θ̇2 + sin2 θ ϕ̇2

)
= 1. (B.9)

Substituting the expressions for ṫ and ϕ̇, and setting θ = π/2, this becomes

ṙ2 +

(
1− 2GNM

r

)(
1 +

L2

r2

)
= E2 (B.10)

which yields

ṙ2 = E2 −
(
1− 2GNM

r

)(
1 +

L2

r2

)
, (B.11)

which, for purely radial motion, i.e. L = 0, becomes

ṙ2 =
2GNM

r
+ (E2 − 1). (B.12)

Integrating the expressions for ṫ and ṙ, i.e. Eqs. (B.8) and (B.12), and setting E = 1
one gets

τ(r) = −
∫ r

r0

dr′
√

r′

2GNM
=

2

3

1√
2GNM

(
r
3/2
0 − r3/2

)
, (B.13)
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and

t(r) =

∫ t

0

dt′ = −
∫ r

r0

dr′

1− 2GNM
r′

√
r′

2GNM
(B.14)

=
2

3

1√
2GNM

(
r
3/2
0 − r3/2 + 6Mr

1/2
0 − 6Mr1/2

)
+ 2GNM ln

[√
r0 −

√
2GNM√

r0 +
√
2GNM

√
r +

√
2GNM√

r −
√
2GNM

]
Null geodesics

For null geodesics one has

ṙ2 +
L2

r2

(
1− 2GNM

r

)
= E2 (B.15)

For radial geodesics, the relevant equations are

dr

dτ
= ±E,

(
1− 2GNM

r

)
dt

dτ
= E (B.16)

Thus, we have
dr

dt
= ±

(
1− 2GNM

r

)
(B.17)
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B.2 Geodesics of Kerr spacetime

As in the Schwarzschild case, Kerr spacetime admits two Killing vector fields kµ =
(1, 0, 0, 0) and mµ = (0, 0, 0, 1). Using the integrals of motion,

E ≡ −uµkµ, L ≡ uµmµ (B.18)

associated to these Killing vector fields, one can obtain equations for ṫ and ϕ̇. In Kerr
spacetime E and L reads

E =

(
1− 2GNMr

Σ

)
ṫ+

2GNMar

Σ
sin2 θ ϕ̇, (B.19)

and

L = −2GNMar

Σ
sin2 θṫ+

(
r2 + a2 +

2GNMa2r

Σ
sin2 θ

)
sin2 θ ϕ̇. (B.20)

Solving these for ṫ and ϕ̇ one obtains

ṫ =
1

∆

[(
r2 + a2 +

2GNMa2r

Σ
sin2 θ

)
E − 2GNMar

Σ
L

]
, (B.21)

and

ϕ̇ =
1

∆

[(
1− 2GNMr

Σ

)
L

sin2 θ
+

2GNMar

Σ
E

]
. (B.22)

In the Schwarzschild case, the fourth equation of motion was obtained by using the
fact that orbits are planar, and setting θ = π/2, θ̇ = 0 along the particle trajectory.
Since Kerr spacetime is axisymmetric, orbits in general are not planar, so one cannot
pick an arbitrary plane and solve the other three equations. Fortunately, Kerr spacetime
admits an additional constant of motion, called the Carter’s constant, and can be used
to solve equations for ṙ and θ̇.

The usual approach to find the expressions for ṙ and θ̇ is to use the Hamilton-Jacobi
method. Using the Lagrangian of the form L = gµν ẋ

µẋν as in (B.3), we define the
Hamiltonian of a particle as

H(xµ, pν) = pµẋ
µ(pν)− L(xµ, ẋµ) = 1

2
gµνpµpν (B.23)

and look for a function of the coordinates and the parameter λ,

S = S(xµ, λ) (B.24)

which is the solution of the Hamilton-Jacobi equation

H

(
xµ,

∂S

∂xµ

)
+
∂S

∂λ
= 0. (B.25)
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Figure B.1: A trajectory in Kerr spacetime in Cartesian coordinates with a = 0.9M ,
E = 0.969, L = 2.539, and C = 6.470.

If S is a complete integral, i.e. it depends on four constants of motion, then

∂S

∂xµ
= pµ. (B.26)

Thus, once the Hamilton-Jacobi equation is solved, the conjugate momenta are found in
terms of the four constants and allow one to write the solutions of geodesic equations in
closed form.

Using the three constants of motion pt = −E, pϕ = L and H = 1
2
gµνpµpν = −1

2
, one

can write S as

S = −1

2
λ− Et+ Lϕ+ S(rθ)(r, θ) (B.27)

where S(rθ)(r, θ) is to be determined.
We look for a separable solution, thus write

S = −1

2
λ− Et+ Lϕ+ S(r)(r) + S(θ)(θ). (B.28)
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Substituting this into Eq. (B.25) one obtains, after some algebra and rearrangements,

−∆

(
dS(r)

dr

)2

− r2 − (L− aE)2 +
1

∆
[E(r2 + a2)− La]2

=

(
dS(θ)

dθ

)2

− cos2 θ

[
(E2 − 1)a2 − L2

sin2 θ

] (B.29)

The left-hand side of this equation depends only on r, while the right-hand side depends
on θ. Thus, we conclude that they must be equal to the same constant, C, called the
Carter’s constant [33]. Then, we can define(

dS(θ)

dθ

)2

= cos2 θ

[
(E2 − 1)a2 − L2

sin2 θ

]
+ C ≡ Θ(θ), (B.30)(

dS(r)

dr

)2

=
1

∆
[−r2 − (L− aE)2 − C] + 1

∆2
[E(r2 + a2)− La]2 ≡ R(r)

∆2
, (B.31)

and the solution of the Hamilton-Jacobi equation becomes

S =
1

2
λ− Et+ Lϕ+

∫ √
R

∆
dr +

∫ √
Θdθ. (B.32)

The Carter constant C emerges as a separation constant and allows one to solve the
geodesic equations of Kerr spacetime completely. It is also important to note that the
existence of the Carter constant is not associated to any spacetime isometry, and is a
non-trivial property of the Kerr metric.

Given S, the solution of the Hamilton-Jacobi equations, one can find algebraic ex-
pressions for ṙ and θ̇. From Eq. (B.26) and the definition of conjugate momentum, one
finds

ṙ = ± 1

Σ

√
Θ, (B.33)

θ̇ = ± 1

Σ

√
R. (B.34)

Thus, we have obtained four algebraic equations for the components of the four-velocity
of the particle in Kerr spacetime.
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