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Abstract

This work investigates the quantitative validation and clinical application of two MRI-derived biomarkers in 3T Whole-Body MRI (WB-MRI): the Apparent Diffusion Coeffi-cient (ADC), reflecting water mobility and microstructural density, and the Fat Fraction(FF), representing tissue fat content. The objectives were to assess their robustness,define reference values in healthy tissues and evaluate their diagnostic potential inMultiple Myeloma (MM). Technical validation was performed using a water phantomfor ADC accuracy and a custom-built fat–water phantom for FF quantification. In vivocharacterisation in 20 healthy females across seven anatomical sites — parenchymalorgans (liver, spleen, pancreas, kidneys) and skeletal regions (vertebrae, pelvic bone,femoral head) — examined repeatability, variability and radiomic feature stability. ADCshowed greater consistency in parenchymal organs, whereas FF proved more stable inadipose-rich skeletal tissues. The clinical study analysed 107 MM patients (38 Smol-dering, the early asymptomatic stage; 46 active; 23 Relapsed/Refractory) against the20 healthy controls. In the pelvic bone the replacement of normal marrow by malig-nant plasma cells was associated with increased ADC and decreased FF. FF consistentlyshowed higher discriminative power in distinguishing healthy from infiltrated marroweven at early stages, while ADC reached high significance mainly in advanced disease.Radiomic descriptors further enhanced classification performance, with FF-based mod-els achieving Area Under the Curve (AUC) values above 0.95 and ADC providing comple-mentary information in multiparametric models. The results demonstrate that ADC andFF can be robustly quantified in WB-MRI. FF emerges as the more stable and diagnosti-cally sensitive biomarker for bone marrow infiltration in MM. The proposed frameworksupports the integration of quantitative biomarkers into non-invasive tools for diagno-sis, staging and longitudinal monitoring of MM patients.



Sommario

Questo lavoro tratta la validazione quantitativa e l’applicazione clinica di due biomarca-tori derivati dalla risonanza magnetica Whole-Body MRI (WB-MRI) a 3T: il coefficientedi diffusione apparente (ADC), che riflette la mobilità delle molecole d’acqua e quindi ladensità microstrutturale, e la percentuale di grasso (FF), che rappresenta il contenutolipidico dei tessuti. Scopo del lavoro è stato quello di valutare la robustezza quanti-tativa di tali biomarcatori, definire i loro valori di riferimento nei tessuti sani e anal-izzarne il potenziale diagnostico nel mieloma multiplo (MM). La validazione tecnica èstata condotta utilizzando un fantoccio di acqua per verificare l’accuratezza delle mis-ure dell’ADC e un fantoccio a emulsione grasso–acqua appositamente realizzato per val-utare la quantificazione della FF. La caratterizzazione in vivo, svolta su 20 soggetti sani disesso femminile e comprendente sette distretti anatomici - organi parenchimali (fegato,milza, pancreas, reni) e regioni scheletriche (vertebre, osso pelvico e testa femorale) -ha esaminato ripetibilità, variabilità e stabilità delle caratteristiche radiomiche. L’ADC hamostrato maggiore affidabilità negli organi parenchimali, mentre la FF si è dimostratapiù stabile nei tessuti scheletrici ricchi di adiposità. Lo studio clinico ha coinvolto 107pazienti con MM (38 Smoldering MM, fase precoce e asintomatica; 46 nella fase attivaMM; 23 Recidivi/Refrattari MM), confrontati con i 20 soggetti sani. A livello dell’ossopelvico la sostituzione del midollo sano da parte di plasmacellule neoplastiche è risul-tata associata a un incremento dell’ADC e a una riduzione della FF. Quest’ultima hadimostrato una superiore capacità discriminativa nel distinguere in modo significativoil midollo sano da quello infiltrato già negli stadi precoci, mentre l’ADC ha raggiunto altasignificatività soprattutto nelle fasi avanzate. I descrittori radiomici (caratteristiche ra-diomiche) hanno ulteriormente potenziato le performance di classificazione, con mod-elli basati sulle feature delle mappe FF che hanno raggiunto valori di Area Under theCurve (AUC, area sotto alla curva) superiori a 0.95, mentre le caratteristiche derivatedalle mappe ADC hanno fornito un contributo complementare nei modelli multipara-metrici. I risultati dimostrano che ADC e FF possono essere quantificati in modo robustonella WB-MRI. La FF emerge come biomarcatore più stabile e sensibile per l’infiltrazionemidollare nel MM. Il framework proposto rappresenta un quadro metodologico ripro-ducibile per l’integrazione dei biomarcatori di imaging quantitativo in strumenti noninvasivi per la diagnosi, la stadiazione e il monitoraggio longitudinale dei pazienti affettida MM.
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INTRODUCTION

Introduction
Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique widely usedin clinical diagnostics due to its ability to provide high-resolution images of soft tis-sues without the use of ionising radiation. Unlike nuclear imaging techniques such asPositron Emission Tomography (PET) or radiological modalities like Computed Tomogra-phy (CT) — which rely on the administration of radioactive tracers or ionising radiation— MRI is based on the interaction between magnetic fields and hydrogen nuclei nat-urally present in biological tissues. This allows for safe and repeatable imaging acrossmultiple anatomical regions. Moreover, MRI combines anatomical and functional infor-mation within a single acquisition, enabling both morphological assessment and tissuecharacterisation.
Recent developments in acquisition techniques and signal modelling have progressivelyextended the capabilities of MRI from purely morphological imaging to the quantita-tive characterisation of tissue properties. This evolution has led to quantitative MRI(qMRI), in which specific acquisition sequences and reconstruction strategies are usedto derive physical and physiological parameters directly from the MR signal. When com-bined with standardised protocols and appropriate post-processing, qMRI enables thederivation of Quantitative Imaging Biomarkers (QIBs) — scalar values that reflect un-derlying microstructural or compositional properties. These biomarkers have potentialdiagnostic, prognostic and predictive value. As reproducible and non-invasive metrics,QIBs enable longitudinal assessment of tissue alterations, supporting both clinical in-terpretation and computational modelling. They also enhance diagnostic precision byproviding objective measurements that complement visual analysis and can be used toinform personalised treatment planning through quantitative insight into disease bur-den and tissue composition.
Two quantitative biomarkers of particular interest in current clinical research are theApparent Diffusion Coefficient (ADC) and the Fat Fraction (FF), derived respectively fromdiffusion-weighted imaging and fat quantification sequences.ADC quantifies the mobility of water molecules within biological tissues and is sensitiveto microstructural changes such as increased cellularity, fibrosis or necrosis.FF, on the other hand, is an emerging clinical biomarker that measures the proportionof fat within a tissue and provides insight into its lipid content. It is particularly usefulin the analysis of organs where fat content varies with metabolic, inflammatory or in-filtrative conditions.Although ADC and FF are derived from different physical principles — water diffusionand chemical shift, respectively — they provide complementary information about tis-sue composition and structure. Both biomarkers hold clinical relevance, as they are
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INTRODUCTION

expected to follow physiologically consistent patterns across different biological tissuesand deviations from these patterns may serve as indicators of pathological change.These concepts, along with the basic principles of MRI and qMRI, are further detailedin Chapter 1.
This study focuses on the evaluation of both ADC and FF within the context of 3T Whole-Body MRI (WB-MRI), a non-invasive imaging modality that enables comprehensive cov-erage of the entire body in a single examination. WB-MRI combines high anatomicalresolution with advanced functional imaging, allowing for the extraction of quantitativebiomarkers across multiple organs and tissue types. This makes it particularly suitablefor the assessment of systemic diseases, in which it is essential to evaluate the extentof involvement beyond a single anatomical region.All MRI acquisitions and data analyses presented in this work were conducted at the Is-tituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori” in Meldola (FC, Italy),as part of ongoing clinical and research protocols carried out by the Medical PhysicsUnit, with a specific focus on the development and validation of quantitative imagingtechniques for oncological applications.
To ensure the robustness of ADC and FF biomarkers before their clinical application,this study begins by verifying that both parameters satisfy the technical requirementsexpected for any quantitative imaging biomarker: accuracy, repeatability, reproducibil-ity and — ideally — linearity across the physiologically relevant range. These propertieswere evaluated through phantom studies, which provide a stable ground truth againstwhich the performance of a sequence can be evaluated.The ADC protocol was tested using a water phantom, confirming whether the measureddiffusion values were consistent with known physical references at the correspondingacquisition temperature, as detailed in Chapter 2.For FF, validation was carried out using a custom-built fat–water emulsion phantomspecifically designed to simulate a wide range of fat concentrations. This enabled theassessment of signal stability, linearity and quantitative reliability across the full spec-trum of expected values. As described in Chapter 3, this experimental setup also servedto compare different fat quantification sequences available on the scanner, providing apractical framework for selecting the most accurate and robust acquisition protocol forclinical and research applications.
Following phantom validation, the in vivo behaviour of each biomarker was assessedin physiologically normal tissues. Establishing reference values in healthy subjects isa fundamental step for clinical interpretation, as it provides a baseline against whichpathological deviations can be measured. In addition to absolute values, the evaluationof intra-subject repeatability and inter-subject variability is essential to understand the
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consistency and robustness of the biomarkers across different anatomical regions andindividuals.Chapters 2 and 4 are dedicated to the systematic characterisation of ADC and FF, re-spectively, using data from a cohort of 20 healthy adult female subjects undergoingmultiple WB-MRI acquisitions. The analysis was conducted across seven anatomical re-gions, including both parenchymal organs (liver, spleen, pancreas, kidneys) and bonetissues (vertebrae, pelvic bone and femoral head). For each biomarker, the statisticalanalysis includes assessments of repeatability across the study cohort, longitudinal sta-bility in repeated scans from a single subject and intra-organ variability. Furthermore,the structural complexity and feature stability of each biomarker beyond its averagevalue was explored by performing radiomic analysis, which consists in the extractionof mathematically defined features — numerical descriptors of image properties suchas intensity, texture and spatial organisation — that quantitatively characterise tissuemorphology and heterogeneity.
Once validated and characterised in healthy tissue, the clinical applicability of thesebiomarkers was evaluated. In this work, the selected clinical context is Multiple Myeloma(MM), a plasma cell malignancy characterised by bone marrow infiltration and pro-gressive alteration of marrow composition. Infiltrated regions are expected to showincreased ADC values — due to greater water mobility — and reduced FF values —reflecting the loss of adipose tissue. These theoretical expectations were examinedthrough quantitative analysis of a cohort including 20 healthy controls and 107 pa-tients at different stages of myeloma: 38 smoldering (SMM), 46 active (MM) and 23relapsed/refractory (RRMM). Both mean signal values and radiomic features were ex-tracted from the pelvic bone ADC and FF maps and used in predictive models to evaluatetheir discriminative power. These analyses are presented in detail in Chapter 5, whichfocuses on the clinical evaluation of ADC and FF in multiple myeloma, exploring theirindividual and combined potential for the non-invasive assessment of bone marrow in-volvement in the pelvic bone of affected patients.
The thesis reflects the logical progression of the study and is structured as follows:

• Chapter 1 provides the theoretical background of MRI, with a focus on whole-body and quantitative imaging techniques. It explains the physical principles andclinical relevance of ADC and FF and describes the acquisition protocols adoptedthroughout the study.
• Chapter 2 presents the quantitative analysis of ADC in healthy tissues. It includesphantom validation using a water-based reference and describes the dataset, theanatomical ROI placement strategy and the feature extraction protocol. The anal-ysis evaluates intra-subject repeatability, longitudinal stability and intra-organ
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variability across seven anatomical regions, as well as radiomic descriptors to as-sess feature stability beyond mean intensity.
• Chapter 3 focuses on the validation of fat quantification sequences. A custom-built fat–water emulsion phantom is used to compare different acquisition meth-ods and assess the linearity and accuracy of FF estimation. The analysis highlightsthe impact of different fat modelling strategies on signal behaviour and quantifi-cation accuracy and informed the selection and interpretation of FF maps in thesubsequent in vivo analyses.
• Chapter 4 reports the characterisation of FF in healthy tissues, following the samedataset and methodological framework adopted for ADC. It includes the evalua-tion of repeatability, variability and longitudinal consistency across parenchymaland skeletal regions and a radiomic analysis to investigate structural and compo-sitional stability in the evaluated anatomical regions.
• Chapter 5 explores the clinical application of ADC and FF in multiple myeloma.Building on the characterisation of both biomarkers in healthy tissues, this chap-ter focuses on their use for the non-invasive assessment of bone marrow involve-ment in the pelvic bone. It describes the behaviour of ADC and FF across diseasestages — from smouldering to multiple myeloma and relapsed/refractory cases— and evaluates their diagnostic performance through groupwise comparisonsand predictive models based on intensity and radiomic features.
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1 PRINCIPLES AND TECHNIQUES OF MAGNETIC RESONANCE IMAGING

1 Principles andTechniques ofMagnetic
Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique used for clinicalpurposes to provide information about the human body without using ionising radia-tion. It is based on the physical phenomenon of Nuclear Magnetic Resonance, whichinvolves the interaction between atomic nuclei and external magnetic fields.
This chapter presents the fundamental principles of MRI and their applications in quan-titative assessment of tissue properties through Apparent Diffusion Coefficient (ADC)and Fat Fraction (FF) imaging biomarkers. Furthermore, it introduces the concept ofWhole-Body MRI (WB-MRI) and gives an overview of the acquisition systems and se-quences employed in this work as a foundation for the subsequent experimental andclinical analyses.
1.1 Fundamentals of Magnetic Resonance Imaging
MRI is a high-resolution, non-invasive imaging technique that allows the acquisition ofdetailed three-dimensional anatomical images and is currently used in clinical practicefor disease detection, diagnosis and treatment monitoring. It is able to provide ex-cellent soft tissue contrast in anatomical images and also to exploit different physicalproperties of tissues — such as proton density, relaxation times, functional activity, dif-fusion and fat content — to generate various types of contrast and quantitative maps.Since the working principles involve radiofrequency pulses in the low-energy range ofthe electromagnetic spectrum, MRI is considered safer than other radiographic modal-ities such as Computed Tomography (CT) and Positron Emission Tomography (PET) thatuse ionising radiation, respectively X-rays or γ-rays, to produce diagnostic images of thebody.
The physical mechanism of MRI is Nuclear Magnetic Resonance (NMR), a phenomenondiscovered and explained simultaneously by F. Bloch[1] at Stanford University and E.M. Purcell[2] at Harvard University in 1946. Their theoretical and experimental obser-vations lead to their Nobel Prize in 1952 and are essentials to understand how atomicnuclei respond to external magnetic fields and radiofrequency excitation[3].
In order to interact with an external static magnetic field ®B0 nuclei must have a nu-clear magnetic moment ®µ which arises from a non-zero nuclear spin ®I in nuclei withan odd number of protons or neutrons. The magnetic moment is proportional to the
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1 PRINCIPLES AND TECHNIQUES OF MAGNETIC RESONANCE IMAGING

nuclear angular momentum according to the relation
®µ = γ

(
h

2π

)
®I = γħ ®I (1.1)

where γ (or γn ) is the gyromagnetic ratio, a constant characteristic of each nucleus. Thevalue of γ
2π is particularly high for the 1H atom and this is one of the main reasons whyhydrogen nuclei are the most commonly used in MRI: their high gyromagnetic ratio andlarge abundance in biological tissues lead to a stronger detectable signal.

Atomic nuclei are characterised by states of quantum mechanical nature. The projec-tion of the nuclear magnetic moment along the direction of the external magnetic field
®B0 is denoted as the z -component and is given by

µz = γħm (1.2)
where m is the magnetic quantum number that for spin-12 nuclei can take values equal
to 1

2 for spin-up state, aligned parallel to the external field, or −1
2 for the spin-downstate, in the antiparallel configuration. Therefore, for the 1H atom that has nuclear spin

I = 1
2 , only two possible values exist for µz .

When there is no external magnetic field, the two energy levels of spin-12 nuclei aredegenerate and equally populated at thermal equilibrium. When an external magneticfield ®B0 is applied, Zeeman interaction between the spins and the magnetic field takesplace and cause the splitting of the degenerate energy level into two distinct states withdifferent energies, corresponding to spin orientations either aligned or anti-alignedwith the external field.

Energy [10−7 eV]

E = 0
No magnetic field

E− 1
2
= +1

2γħB0

E+ 1
2
= −1

2γħB0

∆E = γħB0
Magnetic field applied

N+

N−

Figure 1.1: Schematic representation of the Zeeman splitting in a population of spin- 12 nuclei.
Considering ®B0 uniform along the z -axis ( ®B0 = B0ẑ ), the Zeeman Hamiltonian is

ĤZ = −γħIzB0 (1.3)
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1 PRINCIPLES AND TECHNIQUES OF MAGNETIC RESONANCE IMAGING

and, as illustrated in Figure 1.1, the energy values are defined by the eigenvalues
Em = −γħmB0 (1.4)

so that the splitting of the energy levels generated by the magnetic field can be quan-tified by the energy gap between them
∆E = γħB0 . (1.5)

Transitions between energy levels can occur when the system absorbs energy throughelectromagnetic radiation with a frequency equal to
ω0 = γB0 (1.6)

which is known as Larmor frequency and determines the resonance condition requiredto excite nuclear spins.At thermal equilibrium, nuclei distribute among the 2I + 1 possible energy levels ac-cording to Boltzmann distribution
N+
N−

= exp
(
∆E

kT

)
= exp

(
ħγB0

kT

)
(1.7)

where N+ and N− are the number of nuclei per unit volume in the lowest and highestenergy configuration (respectively the ones with up and down spins), k is the Boltzmannconstant andT is the absolute temperature measured in kelvin.Since the lowest energy state will be the most populated, in the total amount of nucleiper unit volume (N = N+ +N−) there will be an excess of up spins over the down spins,as schematically represented in Figure 1.1, and this quantity will give rise to a net nuclearmagnetization, known as nuclear magnetization at equilibrium
M0 = µ (N+ − N−) = Nµ tanh γħB0

2kT
. (1.8)

More generally, the magnetization at equilibrium per unit volume is a vector ®M0 thathas the same direction of ®B0 and a magnitude given by Curie Law
M0 = N

γ2ħ2I (I + 1)
3kT

B0 . (1.9)
In NMR, an additional oscillating magnetic field ®B1 is generated by a radiofrequency (r.f.)pulse delivered through a transmit coil, tuned to the resonance frequency and appliedperpendicularly to ®B0 (i.e. in the xy-plane). This excitation tilts the bulk magnetizationvector ®M from its equilibrium alignment along ®B0 by an angle which is called nutationangle

α = γB1τ (1.10)
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1 PRINCIPLES AND TECHNIQUES OF MAGNETIC RESONANCE IMAGING

with τ equal to the duration of the r.f. pulse application. This rotation causes the mag-netization to begin precessing around ®B0 at the Larmor angular frequency ω0.The time evolution of ®M in the Cartesian coordinate system is described by the Blochequation: d ®M
dt = γ ®M (t ) × ®B (t ) (1.11)

where ®B (t ) = ®B0 + ®B1 is the total magnetic field applied to the system.The time-varying magnetization induces an oscillating voltage and current in the re-ceiver coil, according to Faraday’s law of electromagnetic induction. The resulting signalis known as Free Induction Decay (FID) and constitutes the observable quantity used inNMR experiments to reconstruct information about the motion of the total amount ofspins in the real system and describe the tissue properties and characteristics.

Time (s)

Signal (a.u.)
FID

Figure 1.2: Free Induction Decay (FID) signal following radiofrequency excitation in NMR.
As shown in Figure 1.2, the FID is an exponentially damped oscillatory signal that de-cays towards zero. In particular, it is obtained by following the temporal evolution ofthe transverse magnetization Mx y that, after the NMR excitation phase, returns backto its equilibrium state, where the transverse component is zero. Once equilibrium isreached on the transverse plane, also the longitudinal component Mz is restored to itsinitial value M0. Starting from the acquired signal, it is therefore possible to reconstructthe two different relaxation processes through which ®M (t ) evolves back to equilibrium.
The transverse relaxation is an entropic process characterised by the loss of phase co-herence within the spin system. Each spin experiences a local magnetic field resultingfrom the combination of the externally applied field and the magnetic influence of sur-rounding spins and, as a result, magnetic moments spread over the xy-plane and indi-vidual spins precess at slightly different rates, gradually losing phase coherence.Transverse relaxation is therefore mainly due to spin-spin interactions and it is describedby an exponential decay of the measurable transverse component Mx y as modelled by

8
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the following relation
Mx y (t ) = Mx y (0) e−

t
T2 (1.12)

in which the time constant T2 is the transverse relaxation time. In order to take into ac-count also the additional dephasing induced by magnetic field inhomogeneities, com-mon in experiments, T2 will be substituted by an effective transverse relaxation timecalculated as
1

T ∗
2

=
1

T2
+ 1

Tinhomo . (1.13)
In practice, the observed decay of transverse magnetization towards equilibrium is gov-erned by this shorter time constant T∗2 that accounts for both intrinsic and extrinsic de-phasing mechanisms.
Longitudinal relaxation is instead an energetic process related to spin-lattice interac-tions that allow a transfer of energy from the nuclear spins to the surrounding lattice,allowing the spins to return to their lower energy state aligned with the static magneticfield.The recovery of the longitudinal component of the magnetization Mz (t ) of 1H nucleioccurs gradually over time and is described by an exponential relation

Mz (t ) = M0

(
1 − e−t/T1

)
. (1.14)

In Equation 1.14 M0 represents the equilibrium magnetization and T1 is the longitudinalrelaxation time, which characterises the rate at which the system returns to thermalequilibrium along the z -axis. The value of T1 depends on the difference in transitionprobabilities between the lower and higher energy states: even in the absence of ther.f. pulse, transitions between the two levels are possible due to fluctuations aroundthe Larmour frequency but transitions to the lower energy state are more probable.

[A] [B]
Figure 1.3: Diagrams of the longitudinal [A] and transverse [B] relaxation processes[4].
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Figure 1.3 illustrates the exponential recovery of the longitudinal magnetizationMz withthe time constant T1 and the exponential decay of transverse magnetization Mx y withtime constant T2. It is important to note that, since transverse relaxation leads the sys-tem towards internal equilibrium without any energy exchange, T2 is always shorterthan T1 and in biological tissues T2 ≪ T1.
T1 and T2 relaxation times are different for each specific tissue analysed with NMR be-cause variations in molecular composition, water content, cellular architecture and mi-croenvironmental interactions affect the efficiency of energy exchange and dephasingprocesses. This has a direct impact on contrast and visibility of different tissue types inMRI and allows to obtain images which are T1-weighted or T2-weighted, where imagesvoxel brightness predominantly reflects longitudinal and transverse relaxation time.An example of images acquired by T1-weighting or T2-weighting is shown in Figure 1.4,where the spine is imaged using both contrasts. In the T1-weighted image fluids appeardark, fat is bright and muscle and bone tissue show an intermediate grey intensity. TheT2-weighted image is instead generally brighter and particularly useful to highlight flu-ids or to detect pathological conditions such as tumour, inflammation or trauma.

Figure 1.4: Comparison of T1 and T2-weighted images for the spine[5].
The relaxation processes described above determine the measurable image contrast,through which anatomical information can be represented. As in other diagnostic modal-ities, MRI images are displayed by slicing the reconstructed volume along three orthog-onal reference planes: the axial plane, oriented perpendicular to the longitudinal bodyaxis, the coronal plane, oriented parallel to the frontal surface of the body, and thesagittal plane, oriented parallel to the median division between left and right sides.A schematic representation of the three anatomical planes is reported in Figure 1.5.
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Figure 1.5: Schematic representation of the three anatomical planes conventionally used inMRI[6].

1.2 Quantitative MRI
In conventional MRI, contrast-weighted images exploit differences in tissue relaxationproperties to produce high-quality anatomical images. While the resulting soft tissuecontrast is excellent, it remains limited to qualitative analysis and is subject to humaninterpretation.Quantitative MRI (qMRI) was developed to overcome these limitations by measuring in-trinsic physical properties of tissues and expressing them in values associated to mean-ingful physical units. Its implementation has been enabled by technological progress,including improved scanner hardware, faster data acquisition and new advanced soft-ware algorithms. The rationale behind qMRI is therefore to provide objective, repro-ducible and standardised parameters in the form of quantitative maps that, unlike con-ventional MRI, offer voxel-wise measurements of specific physical or physiological prop-erties rather than qualitative signal intensities.
qMRI refers to a range of techniques that enables the quantification of several tis-sue characteristics such as relaxation times, diffusion, perfusion, iron fraction, elasticproperties, temperature, chemical composition and exchange. All of these measurableparameters can serve as quantifiable indicators of biological processes, pathologicalchanges or treatment response and they are defined as Quantitative Imaging Biomark-
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ers or QIBs[7].To explain the physical principles behind qMRI, this section will concentrate on the twoQIBs relevant to the experimental validation of this work: the Apparent Diffusion Coef-ficient (ADC) and the Fat Fraction (FF).
1.2.1 Diffusion and Apparent Diffusion Coefficient

Diffusion is the movement of particles down their concentration gradients, from regionsof higher concentration to regions of lower concentration. In a free medium, the fluxof particles due to diffusion ( ®J ) is described by Fick’s First Law
®J = −D ®+c (1.15)

where c is the concentration and D the diffusion coefficient.This movement is a consequence of the microscopic Brownian motion of particles: dueto thermal energy, molecules follow a random translational motion and for the idealcase of free diffusion, there will be a net mean square displacement equal to
⟨x 2(t )⟩ = 2Dt (1.16)

in each spatial direction in a given time t , corresponding to a Gaussian probability dis-tribution of displacements. The entity of this phenomenon is related to the moleculardimension and shape since the diffusion coefficient, according to Stokes-Einstein equa-tion[8], is inversely proportional to the radius of the spherical particle and the viscosityof the fluid, besides being directly proportional to the temperature.
Diffusion Weighted Imaging (DWI) is an MRI technique that makes the signal sensitiveto diffusion, allowing the detection of tissue microstructural changes based on the mo-bility of water molecules. In MRI, diffusion is encoded by including additional magneticfield gradients into the pulse sequence, translating the entity of water molecules dis-placement into an attenuation of the measurable signal.
The most common method for image acquisition is the Spin Echo Diffusion WeightedImaging (SE-DWI), schematically represented in Figure 1.6.As in a standard SE sequence, there is a first 90◦ r.f. pulse that tips the longitudinal mag-netization into the transverse plane, starting the spins dephasing, and then a 180◦ refo-cusing pulse that reverses the dephasing and leads to the formation of an echo at timeTE. Immediately before and after the 180◦ pulse there are two diffusion sensitising gra-dients, applied on the three axes for a time duration δ , both with the same amplitude(gradient strength G ) but with inverse polarities and separated by a time gap equal to
∆. In this way, the first gradient after excitation generates a position-dependent phaseshift among the spins and during the ∆ period spins that diffuse acquire an additional

12



1 PRINCIPLES AND TECHNIQUES OF MAGNETIC RESONANCE IMAGING

Figure 1.6: Schematic diagram of the Spin Echo sequence for Diffusion Weighted Imaging(SE-DWI)[9].

phase shift. The second gradient exactly realigns only the spins that remained station-ary in their original position: only the spins that did not diffuse will be rephased andwill contribute to the echo signal, leading to a diffusion-dependent signal loss[10].
The signal attenuation depends on water molecule displacement and can be modelledusing a mono-exponential relation

S = S0 e−b ·D (1.17)
where S is the signal measured with diffusion weighting, S0 is the signal acquired with-out diffusion gradients and D is the diffusion coefficient, usually expressed in mm2/s.The signal sensitivity to diffusion depends on the physical characteristics of the diffusiongradients and is quantified by the b-value

b = γ2G 2δ2

(
∆ − δ

3

)
(1.18)

that combines the parameters of the gradients (gradient amplitude G , time duration δand time gap between the two gradients ∆) with the gyromagnetic ratio of the proton
γ. An higher b-value increases the sensitivity to diffusion but also leads to greater signal

13



1 PRINCIPLES AND TECHNIQUES OF MAGNETIC RESONANCE IMAGING

attenuation and therefore to a lower signal-to-noise ratio.
From Equation 1.17 it is possible to understand that to measure the diffusion coefficient

D = −1

b
ln

(
S

S0

)
(1.19)

it is necessary to acquire at least two measurements: one for b = 0 to determine S0and one at b > 0 for D . In real acquisitions, the images acquired at different b-valuesare fitted to the monoexponential model of Equation 1.17 that in its logarithmic formreturns the value of D as the negative slope of the fitted line and the value of S0 as theintercept.Deviations from the mono-exponential model can occur, particularly at low b-valuesdue to molecular perfusion, as described by the IntraVoxel Incoherent Motion (IVIMModel[11]), or at high b-values where diffusion becomes non-Gaussian due to the tis-sue structure, requiring more sophisticated models such as Diffusion Kurtosis Imaging(DKI[12]). To avoid these deviations and more advanced models, the mono-exponentialsignal decay is still assumed over an intermediate range of b-values (from 0 to 800s/mm2), where perfusion and non-Gaussian effects are minimised[7].
In biological tissues, diffusion is not completely free but restricted by structural bound-aries such as cell membranes, organelles and extracellular matrix components. More-over, the intrinsic anisotropy of many tissues influences water mobility since physicalproperties can vary with the direction along which the analysis is run. The diffusionmeasured by MRI is therefore affected by restrictions and anisotropies and, for thisreason, the coefficient D in the ideal signal relation (Equation 1.17) is replaced by theApparent Diffusion Coefficient (ADC), which is operationally defined through the sameexpression — explicitly formulated in Equation 1.19 — but with D substituted by ADCto account for non-ideal effects. In practice, ADC values are consistently lower than thefree diffusion coefficient D [13].The ADC is the QIB that reflects the diffusion of water molecules within tissues, includ-ing the effects of both true molecular diffusion and microstructural constraints. In ADCmaps, high values of ADC (i.e. bright regions) indicate high water mobility, typical intissues with low cellularity or disrupted structural integrity such as in necrotic lesions,edema or bone marrow infiltrations. Low ADC values (i.e. dark regions) are insteadtypical in tissues with restricted diffusion due to dense cellular structures.An example of an ADC Map MRI of the upper abdomen acquired in the axial planeis illustrated in Figure 1.7. The liver is shown on the left side of the image (patients’anatomical right), the stomach on the upper right, the spleen on the lower right andthe vertebral column centrally located in the lower region.
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Figure 1.7: ADC Map of the upper abdomen acquired through DWI in the axial plane.

1.2.2 Fat Quantification and Fat Fraction

The quantification of fat in MRI starts from the physical phenomenon of chemical shift[14]:fat and water protons are surrounded by different molecular environments which mod-ify the effective local magnetic field experienced by each nucleus. Due to differences inmolecular size and electronic configuration, the shielding from the external magneticfield varies between the two, leading to slightly different Larmor frequencies. This fre-quency offset is referred to as chemical shift and is defined as the difference in res-onance frequency between fat and water, normalised to the resonance frequency ofwater, which is used as a reference.Fat is composed of multiple spectral components, but in a first approximation, a singlepeak centred on the methylene group is considered. The resonance frequency of fatis slightly lower than that of water and the chemical shift between the two is approxi-mately 3.5 parts per million (ppm)[15].
The Dixon method, originally proposed by W. T. Dixon in 1984[16], enables the sepa-ration of water and fat signals in MRI by exploiting their chemical shift and the resultingphase evolution over time. Precessing at different rates, water and fat protons gradu-ally accumulate a phase difference and at specific echo times their signals may be eitherin-phase (IP) or opposed-phase (OP). In the first case, the magnetization vectors of fatand water are aligned and add constructively in the total signal while in the second onethey are oriented in opposite directions and there is signal cancellation.Under the assumption that water and fat are the only chemical species contributing tothe signal, the resulting complex image obtained after applying the Fourier transformto the acquired data can be written as

S (x , y ) = [W (x , y ) + F (x , y ) · e i α ′] · e iφ (x ,y ) · e iφ0 (x ,y ) (1.20)
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where (x , y ) are the pixel coordinates, W and F are the magnitudes of the magneti-zations, α ′ is the phase angle of fat relative to water due to the chemical shift, φ is theerror phase due to magnetic field inhomogeneity and φ0 is the error phase due to theacquisition system[15].The vector representation of such complex signal is illustrated in Figure 1.8.

Figure 1.8: Graphical representation of the vector quantities involved in the acquisition of thecomplex signal through the water (W ) and fat (F ) spectral components[15].
The original two-point Dixon technique involves the acquisition and elaboration of twoimages, one in the in-phase condition and one in the opposite-phase one. In their com-plex form, they are respectively indicated as

S0 = (W + F ) · e iφ0 (1.21)
S1 = (W − F ) · e iφ · e iφ0 . (1.22)

When the error phase due to the magnetic field inhomogeneity φ = 0 it is possible toobtain the water-only and fat-only images as an algebraic combination of Equation 1.21and Equation 1.22 as follows
W =

1

2
· |S0 + S1 | (1.23)

F =
1

2
· |S0 − S1 | . (1.24)

Due to the absolute value, the error phase φ0 does not affect the calculations. For thisreason, the complex form is usually avoided and Equation 1.23 and Equation 1.24 arewritten using only the magnitudes
W =

I P +OP

2
, F =

I P −OP

2
. (1.25)
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Finally, for each pixel the Fat Fraction (FF) is given by the ratio between the fat signaland the total signal as
FF =

F

F +W =
I P −OP

2I P
. (1.26)

The fat quantification from two-point Dixon technique is a good approximation and isa simple method, both from a theoretical and a computational point of view. However,it suffers from several important limitations[15, 17, 18, 19]:
• T1 and T∗2 bias: there is no compensation for the relaxation differences betweenfat and water. Short repetition times (TR) introduce T1-weighting that can biasthe signal intensity, while the T∗2 decay during the echo time (TE) leads to signalloss and an underestimation of fat fraction.
• B0 inhomogeneity: the magnetic field inhomogeneities affect the value of the er-ror phase φ. Spatial inhomogeneities alter the phase evolution of fat and water,distorting the relationships that assume to know exactly how the two magnetiza-tion are aligned at each TE.
• Incomplete modelling of the fat spectrum: modelling the fat spectrum as a singlepeak centred on the methylene group resonance frequency is not enough in clin-ical applications. In reality, fat spectroscopy shows a multi-peak structure withdifferent amplitudes and chemical shifts and, especially at higher field strengths,this is an important source of errors in fat quantification.

In order to overcome these limitations, more advanced Dixon-based techniques havebeen proposed and validated, including explicit phase corrections, compensations forT1 and T∗2 decays and multi-peak spectral model of fat. Several methods for phase un-wrapping have been studied[15] and the Dixon method was generalised by acquiringmultiple echoes to better estimate the field map, water and fat images.
An efficient solution is the semi-flexible two-point method that is still based on theacquisition of two echoes but allows more flexibility in the choice of echo times[20,21].The acquired signal at each echo time TEn (with n = 1, ..,NE ) is modelled as

Sn =
(
W + F · e i θn

)
· e iφn (1.27)

withW and F the water and fat signals in image space. θ is the dephasing angle
θn = 2π∆f tn (1.28)

directly proportional to the resonance frequency offset of the central resonance peakof fat with respect to water and the echo time at which the sample is taken. Φ = e i φ is
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the phasor corresponding to the phase error, dependent on ∆B0 and TE. The importantdifference with the original two-point method is that here Φ is not linearly related toTE.In the reconstruction following the acquisition, this method analytically computes thephasor Φ and solves the complex equations to obtain the F and W images from thein-phase and out-of-phase echoes, including signal dephasing and decay and also eddycurrent corrections[21].In this protocol, the imaging time is kept short and the spatial resolution is optimised.Additional improvements can be obtained by including the complete 7-peaks spectrumof fat-water, particularly relevant for theB0 correction in the case of large fields of view.This spectrum, illustrated in Figure 1.9, shows the dominant water resonance peakalongside six smaller peaks corresponding to the different spectral components of fat.

Figure 1.9: Fat-water emulsion MR spectrum acquired at 3T[22].
In qualitative fat imaging, SE sequences can be exploited if adapted to generate multipleechoes in each repetition time. Turbo Spin Echo sequences (TSE) repeat the refocusingpulse multiple times in each TR, obtaining the generation of a train of echoes that allowsto collect multiple k-lines after each 90◦ excitation pulse, reducing the time needed toacquire the whole k-space and generate the image.However, for an accurate fat reconstruction and quantification, the literature supportsthe use of multi-echo Gradient Echo sequences (GRE)[17, 20]. As shown in Figure 1.10these sequences are composed by an initial r.f. pulse of a flip angle α , tipically low andless than 90◦. The echo is generated by applying two bipolar gradients. The first one isnegative and dephases the transverse magnetization, introducing spatially dependent
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phase shifts due to variations in precessional frequencies. This dephasing is not causedby intrinsic field inhomogeneities alone but is induced by the gradient itself. The sec-ond gradient is positive and used as a readout gradient, effectively rephasing the spins.By reversing the polarity and duration of the initial dephasing gradient, it realigns thespins and leads to the formation of a gradient echo at the time of acquisition.With respect to SE sequences, the echo time at which the echo is generated is sig-nificantly lower and this enables rapid readouts, allowing the sampling of the phaseevolution between water and fat signals over time. Beyond being sensitive to phasevariations caused by chemical shift, GRE is also compatible with multi-echo acquisitionschemes and flexible echo times but is much more sensible to the T∗2 decay because the
B0 inhomogeneities are not canceled out when the echo is generated by gradients.

Figure 1.10: Schematic diagram of the Gradient Echo sequence (GRE)[23].
The fat fraction has gained clinical importance for the non-invasive assessment of tis-sue lipid content and now represents a valid quantitative imaging biomarker in severaldiagnostic contexts.In living organisms, each anatomical location has its own physiological fat percentageaccording to the tissue function, structural characteristics and metabolic demand. Thepossibility to accurately measure the actual fat fraction with MRI allows to detect non-physiological changes for early diagnosis, disease monitoring and treatment responseevaluation of pathological processes that involve fat accumulation, infiltration or fat
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depletion. These alterations can be associated with a wide range of diseases such asobesity, hepatic steatosis, metabolic dysfunctions, neuromuscular disorders and bonemarrow pathologies[20, 17].An example of axial fat fraction imaging and its corresponding FF map acquired in ahealthy subject at the upper abdomen level is shown in Figure 1.11. In FF maps, brighterregions indicate a higher fat content, whereas darker regions correspond to tissues witha lower fat fraction. The anatomical structures visible in the reported slice are the sameas those described in the ADC map of Figure 1.7 but here the skin contour is more clearlydelineated due to its high and homogeneous fat content.

Figure 1.11: FF Map of the upper abdomen acquired in the axial plane.

1.3 Whole-Body MRI: Imaging Techniques and Applications
Recent advancements in MRI techniques have led to the development of extremely ef-ficient sequences with high spatial resolution, reduced acquisition times and specificpost-processing techniques that enable excellent tissue contrast.These improvements have provided the foundation for the development of Whole-Body MRI (WB-MRI), a technique that allows complete imaging of the entire body withina single examination. WB-MRI combines anatomical and quantitative sequences andis particularly useful for systemic disease evaluation in oncologic staging and skeletalscreening.
The next sections of this chapter will focus on the techniques and applications of WB-MRI. Beginning with its general principles and implementation in clinical practice, thespecific role of WB-MRI in the diagnosis and treatment monitoring of multiple myelomawill be discussed in accordance with international guidelines.
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1.3.1 WB-MRI Techniques and Clinical Applications

Whole-body MRI (WB-MRI) is a multi-station, multi-sequence imaging technique thatenables the evaluation of the entire body in a single examination without the use of ion-ising radiation. Anatomical, functional and quantitative sequences are acquired acrossmultiple contiguous anatomical regions in a multi-station scanning approach, in whichthe patient table moves to image successive body sections. The full coverage typicallyspans from vertex (i.e. head) to mid-thigh but can be adjusted to reach knees or feet,according to specific clinical needs.The complete procedure generally lasts from 25 to 90 minutes, depending on the num-ber of stations, the sequences included and scanner capabilities[24, 25].
The typical WB-MRI protocol includes anatomical, functional and quantitative sequences.Morphological T1 and T2-weighted images are acquired through GRE or TSE sequences.T1-weighted images provide anatomical details and highlight bone metastases, whileT2-weighted ones are implemented with fat-suppression techniques such as STIR andcan provide information about other organs and liquid components.DWI is typically acquired during free-breathing using 2 b-values to reconstruct the ADCparameter: the lowest b-value is at least 50 s/mm2 in order to minimise the perfu-sion effects and the highest is recommended to be between 800 and 1000 s/mm2. Toachieve a high signal-to-noise ratio while maintaining short acquisition times and en-abling the coverage of large anatomical regions, a single-shot echo planar imaging (EPI)readout is employed in combination with a single diffusion encoding direction. This alsoreduces the image blurring and artefacts caused by eddy currents, without introducingbiases in the tissues characterised by isotropic diffusion as the ones commonly investi-gated by WB-MRI[24].In a multiparametric approach, WB-MRI protocols finally integrate Dixon-based gradi-ent echo acquisitions to reconstruct the fat fraction (FF) maps. This is essential to eval-uate bone marrow involvement and fat distribution across different tissues[26, 17].
WB-MRI is particularly useful to detect systemic, multifocal or diffuse disease patternsin oncologic, haematologic, metabolic and musculoskeletal contexts[24, 25].Its clinical applications include the assessment of multiple myeloma, skeletal metas-tases from prostate or breast cancer, lymphoma, melanoma and gynecologic malig-nancies, as well as the evaluation of inflammatory lesions and treatment response inarthritides and myopathies . In addition, since WB-MRI does not involve ionising radi-ation and the associated risks, this technique is increasingly used for pediatric imagingand cancer screening in individuals with hereditary cancer predisposition syndromessuch as Li-Fraumeni or Neurofibromatosis Type 1 (NF1).
In clinical practice, WB-MRI is typically acquired either in the coronal or axial plane.
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Coronal acquisitions may reduce the overall scan time by requiring fewer stations (i.e.coils) but they are more subject to distortions in DWI compared to axial scans withequivalent field of view and slice coverage. Axial imaging is instead also compatiblewith cross-sectional anatomy of other modalities.To ensure consistent interpretation, slice thickness must be kept constant across all se-quences and its typical numerical value in protocols ranges from 5 to 7 mm[24].WB-MRI can be performed on both 1.5 T and 3 T scanners. In particular, 3 T scanners arepreferred because they offer high signal-to-noise ratio (SNR) which is an essential char-acteristics for quantitative techniques. However, it is important to note that at higherfield strength the impact of field inhomogeneities is much more pronounced and dis-tortions could be observed, especially near air-tissue interfaces and in Dixon scans[27].Among the other technical difficulties, WB-MRI requires the coordinated use of multi-ple surface coils — including head-neck, spine and body arrays — to ensure consistentimage quality across the extended field of view. The acquisitions performed in sepa-rate stations must be integrated in a post-processing step to obtain a single compositevolume from spatial alignment and merge.
In order to overcome the main limitations of WB-MRI, dedicated guidelines such asthe Metastasis Reporting and Data System for Prostate Cancer (MET-RADS) and theMyeloma Response Assessment and and Diagnosis System (MY-RADS) have been de-veloped to promote protocol standardisation and improve the reproducibility of WB-MRI examinations, especially in the context of multicentre studies. These internationalrecommendations promote the standardisation of acquisition protocols in terms of se-quence selection and parameter optimisation and also provide structured criteria forimage interpretation and results reporting, enhancing consistency across institutionsand over time[28, 25, 29].
1.3.2 WB-MRI in Multiple Myeloma

Multiple Myeloma (MM) is a malignant plasma cell disorder characterised by the clonalproliferation of plasma cells in the bone marrow. It is the second most common haema-tological cancer and accounts for 1 % of all cancers, with an increasing worldwide inci-dence[30, 31, 32]. In Europe, approximately 50000 new cases are diagnosed annually,while in Italy the incidence is estimated at 5500–6000 new cases each year, with nearly30000 patients currently living with the disease and a median age at diagnosis of 72years[33].
Myeloma arises from genetic damage occurring during the development of plasmacells in the bone marrow, leading to their uncontrolled proliferation. These malignantmyeloma cells produce large quantities of a single, non-functional antibody known asM-protein, monoclonal immunoglobulin or paraprotein. This accumulation process, il-
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lustrated in Figure 1.12, interferes with the normal haematopoietic function of bonemarrow, preventing normal blood cells - red and white blood cells and platelets - frombeing produced.

Figure 1.12: Monoclonal plasma cell proliferation and accumulation in the bone marrow inMultiple Myeloma[34].
Multiple Myeloma condition is preceded by asymptomatic precursor conditions, bio-logically related but clinically different.The earliest stage is Monoclonal Gammopathy of Undetermined Significance (MGUS),defined by the presence of a low concentration of M-protein in the serum, less than10% clonal plasma cells in the bone marrow and no evidence of end-organ damage.MGUS is a benign condition, present in 5% of the population above 50 years old, butcan progress to malignant Smoldering Multiple Myeloma (SMM) with a rate of 1% peryear.SMM is still an asymptomatic condition but M-protein concentration in serum exceeds3 g/dL and bone marrow infiltration of plasma cells ranges between 10% and 60%. Inthe 5 years following SMM diagnosis, 10% of patients evolve to the MM condition.
The transition from the illustrated precursor stages to active disease (MM) is definedby the detection of at least one Myeloma-Defining Event (MDE), in combination witheither ≥10% clonal plasma cells in the bone marrow or a biopsy-confirmed plasmacy-toma. MDEs include clonal plasma cell infiltration ≥60% in the bone marrow, a serumfree light chain (FLC) ratio ≥100 (with the involved FLC concentration ≥100 mg/L) andthe presence of more than one focal lesion on MRI. In addition, the proliferative activ-ity of malignant plasma cells leads to various organ dysfunctions that serve as furtherevidence of active disease. These clinical complications include hypercalcemia, renalinsufficiency, anemia and lytic bone lesions and are known as the CRAB criteria[35].
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MM is a systemic disease since plasma cell infiltrations in the bone marrow are dis-tributed across the entire skeleton in a diffuse pattern. Whole-body imaging is neces-sary to evaluate the bone marrow involvement in the axial and appendicular skeleton,both for diagnosis and monitoring of MM.Compared to other imaging modalities such as CT or PET, WB-MRI has shown greatersensitivity in detecting both focal and diffuse pattern of bone marrow infiltration, par-ticularly in early-stage disease. While CT primarily detects cortical bone destruction andPET results may be biased by low metabolic activities, WB-MRI is the preferred imagingtechnique to assess marrow composition and to detect early bone involvement. Withthe advantage of avoiding radiometabolites and ionising radiation exposure, WB-MRIis the first choice also in patients follow-ups and treatment monitoring[36].
As cited in WB-MRI Techniques and Clinical Applications, the Myeloma Response As-sessment and Diagnosis System (MY-RADS) was developed to promote standardised useof Whole-Body MRI in patients with multiple myeloma. MY-RADS recommendationsfocus on acquisition protocols, image interpretation and reporting and provide a struc-tured framework for staging, monitoring and treatment response evaluation, based ona combination of morphological, diffusion-weighted and quantitative sequences.The core clinical WB-MRI protocol recommended for multiple myeloma is summarisedin Table 1.1.

Sequence Detected
anatomical
region

Acquisition
plane

Slice thickness Derived
calculations

T1-weightedFSE Whole spine Sagittal 4-5 mm
STIR orfat-suppressedT2

Whole spine Sagittal 4-5 mm

DWI (b=50-100and 800-900s/mm2) withSTIR fatsuppression

Whole body(vertex toknees)
Axial 5 mm ADC map frommonoexponen-tial data fitting

T1-weightedGRE Dixontechnique
Whole body(vertex toknees)

Axial ( orcoronal ) 5 mm FF map from fatand waterimagereconstructions
Table 1.1: Core clinical WB-MRI protocol for multiple myeloma according to MY-RADSguidelines[28]
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The detection of focal lesions is based on the identification of hyperintense regionson high b-value DWI images, coregistered with Dixon-derived fat fraction maps[28]. Incases of pathological marrow infiltration, the replacement of adipocytes and haematopoi-etic cells by myeloma cells alters the tissue microenvironment, resulting in increasedwater diffusivity and a corresponding decrease in fat fraction relative to normal mar-row.
Beyond standardised image interpretation and reporting of focal lesions, recent devel-opments have enabled the use of radiomics and deep learning algorithms in WB-MRIimage analysis.Radiomics refers to the extraction of several mathematically defined features from med-ical images. The so obtained radiomic features quantitatively describe structure, mor-phology, texture and heterogeneity of tissues, providing a deeper characterisation ofthe investigated regions. Radiomic features serve as QIBs and can be integrated intomachine learning models to predict plasma cell infiltration, cytogenetic aberrations andrisk status directly from MRI images of the pelvic bone, in a non-invasive, repeatableand multi-focal assessment of the bone marrow[37].In multiple myeloma, a further application is the evaluation of QIBs in regions near bonemarrow biopsy sites, restricting the image field in order to target the disease diffusionpatterns in the pelvic bone. This investigation is denoted as radiopsy and aims to createpredictive models for clinical diagnosis based on relevant radiological features that arecorrelated with histological findings. The quantification and modelling of image charac-teristics near the biopsy site enable a virtual, non-invasive biopsy approach to monitorpatients during treatment and to estimate tumor burden by assessing disease infiltra-tion in areas distant from the biopsy site[38].
1.4 MRI Acquisition System and Protocols
All the MRI sequences analysed in this study were acquired using a Philips Ingenia 3Tscanner (Philips Healthcare, Best, The Netherlands), installed at the Istituto Romag-nolo per lo Studio dei Tumori (IRST) “Dino Amadori” in Meldola, Italy and shown inFigure 1.13.This system is equipped with a 3.0 Tesla superconducting magnet and the dStream dig-ital broadband architecture, which allows for direct digital signal transmission from thecoil, improving signal-to-noise ratio (SNR) and minimising analog signal degradation.Whole-body acquisitions were performed using a combination of coils, including Q-Body, dS Anterior, dS Base, dS HeadNeck and dS Posterior coil. The continuous cov-erage from head to knees is obtained with automatic table movement across stationsand the final datasets are reconstructed into a single seamless image using the vendor’sMobiView algorithm for multistation image composition.The scanner supports parallel imaging acceleration (SENSE) and is compatible with
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Figure 1.13: Philips Ingenia 3T scanner[39].

Compressed-SENSE which reduces scan time while preserving image resolution andcontrast.Signal transmission is achieved using the integrated body transmit coil, while receptionis performed with multi-array surface coils, automatically selected for each anatomicalregion. This setup provides high image homogeneity and consistent spatial resolutionacross the full field of view[39, 40, 41].
The scan parameters of both the imaging protocols used in this work — WB-MRI forHealthy Tissue Characterisation and WB-MRI for Multiple Myeloma Imaging — are re-ported in WB-MRI Protocols and Acquisition Parameters for Quantitative Sequences,with a special focus on the sequences relevant to the quantitative analysis of healthytissues and disease-related alterations. Although both protocols included conventionalanatomical sequences (such as T1 and T2-weighted images) for diagnostic and structuralassessment, the description is limited to the sequences considered in the present workfor their ability to provide reproducible and spatially resolved maps of tissue diffusivityand lipid content: diffusion-weighted imaging (DWI) and Dixon-based fat quantificationtechniques.
1.4.1 WB-MRI Protocols and Acquisition Parameters for Quantitative Sequences

The two WB-MRI protocols used in this work, both implemented and acquired at IRST inMeldola, are the one dedicated to breast cancer patients, employed for healthy tissuecharacterisation, and the one used for multiple myeloma imaging.Both protocols include T1-weighted TSE and STIR TSE as conventional anatomical se-quences for diagnostic and structural evaluation.
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The two protocols slightly differs in the anatomical coverage: the multiple myelomaprotocol extends from the vertex to the knees, while the breast cancer protocol cov-ers from the vertex to approximately mid-thigh or just below the pelvic region. Thisdifference in coverage is reflected in the acquisition durations, which tends to increasewhen additional anatomical stations are included, although sequence-specific param-eters may also contribute to variability between protocols.
DWI is included in both protocols and can be classified as spin-echo echo-planar imag-ing (SE-EPI) scheme with inversion recovery fat suppression, offering rapid acquisitionwith robust sensitivity to microscopic water motion. This allows for voxel-wise ADCcomputation through mono-exponential fitting of the signal attenuation between twodiffusion weightings (i.e. two images acquired at different b-values).The acquisition parameters for both protocols are summarised in Table 1.2.

Acquisition Parameter WB-MRI for
Healthy Tissue Characterisation

WB-MRI for
Multiple Myeloma ImagingAcquisition Duration [s] 204.62 172.84Pulse Sequence Name DwiIR DwiIREcho Pulse Sequence SE SEAcquisition Plane Axial AxialSlices Thickness [mm] 6 6FOV [mm]/Acquisition Matrix 450/128 × 128 450/128 × 106Pixel Spacing [mm] 1.8 × 1.8 1.8 × 1.8Phase Encoding Direction AP APSENSE Acceleration Yes YesTR/TE [ms] 4946.64/62.80 8642.15/53.02Echo Train Length 47 31Echo Numbers 1 1Flip Angle [◦] 90 90Pixel Bandwidth [Hz/pixel] 3130.00 3734.53Fat Suppression Technique SPIR SPIRb-values [s/mm2] 50, 800 50, 800Diffusion Gradient Directions 3 3

Table 1.2: Acquisition parameters for DWI sequences in both WB-MRI protocols.
Despite minor variations in acquisition parameters between the DWI sequences used inthe two protocols such as repetition time, echo time, acquisition matrix size, echo trainlength and pixel bandwidth, these differences are not expected to significantly affectthe comparability of ADC values. Such parameters primarily influence image qualityfactors like signal-to-noise ratio, resolution and scan time. However, both sequencesshare the same pulse sequence design (DwiIR), acquisition plane (axial), b-values (50and 800 s/mm2), number of diffusion gradient directions (3) and fat suppression tech-
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nique, ensuring consistent diffusion weighting and anatomical coverage. Therefore,the two protocols can be considered technically comparable for the voxel-wise quan-tification of tissue diffusivity and the results obtained for patients scanned with eitherprotocols can be considered equivalent and suitable for direct comparison.
The fat fraction (FF) maps analysed in this study were generated using a dual-echogradient-echo (GRE) sequence, implemented on the Philips Ingenia 3T scanner as partof the vendor-specific mDixon family (Pulse Sequence Name: T1FFE). This implementa-tion, often referred to as mDixonAll, acquires two echoes with different echo times andapplies a two-point Dixon reconstruction algorithm to separate fat and water compo-nents. The resulting parametric maps provide voxel-wise estimates of proton-densityfat fraction expressed as a percentage. In both protocols, the short echo train length(Echo Train Length = 2) is consistent with the dual-echo design and enables fat-waterdecomposition with minimised artefacts.
Acquisition parameters used in the two WB-MRI protocols are summarised in Table 1.3.The two FF sequences are technically equivalent and, as stated for DWI sequences, thedifferences between the two protocols are not expected to significantly alter the qual-ity or quantitative consistency of the resulting maps.

Acquisition Parameter WB-MRI for
Healthy Tissue Characterisation

WB-MRI for
Multiple Myeloma ImagingAcquisition Duration [s] 13.67 16.05Pulse Sequence Name T1FFE T1FFEEcho Pulse Sequence GRE GREAcquisition Plane Axial AxialSlice Thickness [mm] 3 3FOV [mm]/Acquisition Matrix 430/268 × 217 480/300 × 237Pixel Spacing [mm] 0.8 × 0.8 0.8 × 0.8Phase Encoding Direction AP APSENSE Acceleration Yes YesTR/TE [ms] 3.79/shortest 3.64/shortestEcho Train Length 2 2Echo Numbers 1 1Flip Angle [◦] 10 10Pixel Bandwidth [Hz/pixel] 1110 1344.09Fat Quantification Model 2-point Dixon 2-point Dixon

Table 1.3: Acquisition parameters for Fat Fraction sequences (mDixonAll-based) in bothWB-MRI protocols.
In addition to the conventional dual-echo mDixon-based sequences used for FF map-
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ping, the more recent mDixonQuant implementation has been lately integrated intothe WB-MRI protocols for both breast cancer and multiple myeloma imaging.This sequence is based on a low-flip-angle, multi-echo gradient-echo acquisition (PulseSequence Name: T1FFE), specifically designed to support advanced fat quantificationthrough a multi-peak fat spectral model. The mDixonQuant framework acquires sixechoes with different echo times (Echo Train Length = 6), enabling simultaneous esti-mation of fat, water and T∗2 maps while correcting for confounding effects such as eddycurrents and field inhomogeneities. This sequence was initially developed for the ac-curate quantification of hepatic fat content but was subsequently optimised for whole-body imaging applications with high spatial resolution and short acquisition times overa wide range of echo times and fields of view[20].
Acquisition parameters used for the mDixonQuant sequences in both WB-MRI proto-cols are summarised in Table 1.4.The sequence design and acquisition parameters are identical in both the protocols.The only different value is the acquisition duration and it is due to the anatomical cov-erage of the protocols.

Acquisition Parameter WB-MRI for
Healthy Tissue Characterisation

WB-MRI for
Multiple Myeloma ImagingAcquisition Duration [s] 12.61 15.20Pulse Sequence Name T1FFE T1FFEEcho Pulse Sequence GR GRAcquisition Plane Axial AxialSlice Thickness [mm] 6 6FOV [mm]/Acquisition Matrix 400/160 × 160 400/160 × 140Pixel Spacing [mm] 2.1 × 2.1 2.1 × 2.1Phase Encoding Direction AP APSENSE Acceleration Yes YesTR/TE [ms] 5.61/shortest 5.61/shortestEcho Train Length 6 6Echo Numbers 1 1Flip Angle [◦] 3 3Pixel Bandwidth [Hz/pixel] 2367 2367Fat Quantification Model Multi-peak Dixon Multi-peak Dixon

Table 1.4: Acquisition parameters for Fat Quant sequences (mDixonQuant-based) in bothWB-MRI protocols.
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2 Quantitative ADC Analysis in Healthy
Tissues

In order to apply the Apparent Diffusion Coefficient (ADC) as a reliable clinical biomarker,it is essential to define its typical range and variability in normal tissues. Deriving ref-erence distributions and statistical measures from a well-controlled healthy cohort isnecessary to distinguish physiological variability from pathological alterations in clini-cal practice and research applications.
This chapter presents the quantitative assessment of ADC in healthy tissues, focusingon seven anatomically distinct organs.Regions of interest (ROIs) were manually placed on WB-MRI images acquired with astandardised protocol from a large cohort of healthy subjects and later processed forfeature extraction. Statistical analysis was performed to describe the behaviour of ADCvalues and the results are presented in terms of sample repeatability, organ-specificcharacterisation and intra-subject repeatability for a single patient.
2.1 Patients
This study was based on a dataset of 20 adult female patients who underwent WB-MRIat the IRST ”Dino Amadori” (Meldola, Italy) between 2023 and 2025, as part of clinicalstaging or follow-up for oligometastatic breast cancer. All imaging was acquired using astandardised WB-MRI protocol[29], described in detail in WB-MRI Protocols and Acqui-sition Parameters for Quantitative Sequences. Diffusion-Weighted Imaging (DWI) wasperformed with two b-values (0 and 800 s/mm2) and Apparent Diffusion Coefficient(ADC) maps were generated through mono-exponential fitting.
Patients with invasive ductal or lobular carcinoma were excluded to minimise the like-lihood of undetected lesions in the tissues of interest. Only scans showing no visibleabnormalities in the target organs were considered for analysis. Furthermore, imageswere reviewed to ensure high diagnostic quality: acquisitions containing severe motionartefacts or scanner-induced distortions were excluded so that only anatomically intactregions were included in the ROI analysis.
The dataset includes 20 patients (mean age 57 ± 13 years, range: 35–79 years) for a to-tal of 41 acquisitions. For most subjects, multiple time points were selected, as patientstypically underwent repeated WB-MRI examinations for clinical staging and monitoring.Among the available scans, a subset was selected for each patient based on image qual-ity and study requirements. Specifically, two acquisitions were selected for 14 patients,
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one acquisition for four patients, three acquisitions for one patient and six longitudinalscans for one patient, with inter-scan intervals ranging from three to nine months.This structure enables both inter-subject analysis across the whole healthy cohort andintra-subject repeatability assessment based on longitudinal data from a single case.
2.2 Data Collection and Processing
Following image acquisition, all data were anonymised and processed to extract quanti-tative diffusion metrics from anatomically healthy tissues. All 41 acquisitions underwentthe same standardised analysis workflow to maximise reproducibility and comparabil-ity across subjects. The following sections describe in detail the methodology used forROIs selection and placement and radiomic feature extraction using the SIBEX software.
To verify the accuracy of ADC measurements, a preliminary test acquisition was per-formed using a spherical water phantom at room temperature. The mean ADC valuemeasured in the phantom (2047 ± 61 mm2/s) was consistent with expected referencevalues, supporting the reliability of the imaging protocol[42].
2.2.1 ROIs Placement

WB-MRI visualization and ROIs placement were performed using MIM®(MIM SoftwareInc., Cleveland, OH, USA[43]), a commercial platform widely used in clinical imagingand research applications. The software allowed for interactive manipulation of themulti-planar image data and facilitated consistent ROIs placement across patients andanatomical planes.
To evaluate diffusion properties across multiple tissue types, seven anatomically dis-tinct regions were selected: liver, spleen, pancreas, kidneys, vertebrae, pelvic boneand femoral head. These organs were chosen for their clinical relevance, their tissueheterogeneity and their inclusion in Whole-Body MRI assessments. Importantly, theyrepresent a mix of parenchymal and osseous tissues with varying microstructural prop-erties and diffusion behaviours, providing a comprehensive sampling of physiologicalADC values.
For each organ, three regions of interest (ROIs) were manually placed to improve sta-tistical robustness. ROIs were drawn with a cylindrical shape and a target volume ofapproximately 2.6 cm3. Based on voxel dimensions (1.8 × 1.8 × 6 mm3), this correspondsto an average of ∼140 voxels per ROI, although minor variations occurred due to pixelinterpolation introduced by the MIM®software during placement.Due to its smaller anatomical size and more irregular shape, the pancreas required areduced ROI volume of 0.5 cm3, in order to ensure precise placement and avoid partial
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volume effects.The ROIs were initially positioned on axial slices and subsequently refined using coronaland sagittal views to maximise anatomical accuracy across all three planes. An exam-ple of ROI placement across axial, sagittal and coronal planes is shown in Figure 2.1,illustrating the multi-organ sampling strategy adopted in this study. Note that not all 21ROIs are simultaneously visible across the three views, as only those intersecting theslice position defined by the reference cursor (green crosshair) in the MIM®viewer aredisplayed in each plane.
Special attention was given to anatomical consistency across patients: ROIs were placedin visually homogeneous areas of tissue, avoiding visible vessels, lesion-like structuresor partial volume effects. This approach was adopted to minimise bias and ensure in-ternal tissue uniformity in the sampled regions.

Figure 2.1: ROIs placement for ADC analysis.

2.2.2 Features Extraction

Quantitative feature extraction was carried out using SIBEX (Standardised Imaging Bio-marker EXtraction), a MATLAB®-based radiomic platform developed for reproducibleanalysis in accordance with IBSI guidelines for feature computation[44, 45]. Prior tofeature extraction, image volumes and corresponding ROI structures (RTSTRUCT) wereexported from MIM®in order to avoid potential inconsistencies related to the MobiView
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multistation reconstruction, particularly at station (i.e. coil) junctions.
SIBEX was configured to process each ROI individually, applying a fixed binning strat-egy (32 bins, fixed bin number rescaling) and a standard outlier exclusion preprocessingstep based on a 3σ rule. This means that for each ROI, voxels with intensities more thanthree standard deviations from the mean (3σ) were excluded to reduce noise and theinfluence of extreme values and all the remaining voxel intensities were rescaled to fit32 equally populated bins, ensuring feature comparability.The software computed a total of 144 radiomic features across several IBSI-defined cat-egories. The complete set of extracted features is reported in Appendix A with selectedcategories and representative features described below:

• First-order intensity features: mean, median, variance, skewness, kurtosis, per-centiles, energy and entropy;
• Histogram-based features: interquartile range, uniformity, mode and histogramgradient metrics;
• Grey Level Size Zone Matrix (GLSZM) and Grey Level Distance Zone Matrix (GLDZM):zone emphasis, non-uniformity and zone entropy;
• Neighbourhood Intensity Difference (NID): busyness, contrast, complexity andtexture strength;
• Neighbourhood Grey Level Dependence (NGLD): dependence emphasis, grey levelcount metrics, non-uniformity and entropy.

Additional categories included Local Intensity Features and Intensity-Volume Histogram(IVH) descriptors, providing a comprehensive characterisation of signal distribution andspatial heterogeneity within each ROI.All the extracted features were stored in structured matrices for subsequent statisticalanalysis.
2.3 ADC Statistical Analysis
The structure of the dataset enabled three distinct but complementary types of sta-tistical analysis, each contributing to the assessment of ADC measurement reliabilityfrom a different perspective. The analyses are presented in an order that reflects bothmethodological coherence and interpretative progression. First, a repeatability analy-sis was performed across the entire sample (ADC Repeatability Across the Sample), in-troducing the metrics recommended by the Quantitative Imaging Biomarkers Alliance
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(QIBA) and establishing a baseline estimation of intra- and inter-subject variability in re-alistic clinical conditions. A single-subject longitudinal analysis (Intra-Subject ADC Re-peatability) was then conducted to isolate intra-subject variability without the effectof inter-subject biological heterogeneity. Finally, an intra-organ analysis (Organ ADCVariability and Feature Stability) explored the spatial consistency of ADC values withinanatomical regions and extended the investigation to additional radiomic features be-yond the mean ADC value.
The conceptual and methodological framework for these analyses is based on QIBAguidelines which define standardised metrics and procedures to ensure the reliabilityand reproducibility of quantitative imaging biomarkers such as ADC across time, sub-jects and imaging platforms[46].
2.3.1 ADC Repeatability Across the Sample

To assess the repeatability of ADC measurements in healthy tissues, a statistical analy-sis was conducted on the subset of subjects who underwent multiple Whole-Body MRIscans. The aim was to quantify the intra-subject variability which is the expected vari-ation in ADC values for a given individual across different acquisitions.The analysis is in accordance to the statistical methodology and reporting metrics rec-ommended by QIBA[47, 48] adapted to a real-world clinical setting where follow-upacquisitions are typically taken some months apart, instead of applying a test-retestprotocol.
To reduce measurement noise, the ADC value was first averaged across all ROIs be-longing to the same subject, organ and acquisition date. This aggregated mean wasconsidered to be the representative ADC value for that subject, organ and scan combi-nation.In order to estimate the intra-subject repeatability, only the 16 patients with at leasttwo acquisitions were retained for this part of the analysis.
Subsequently, the inter-subject averages across sessions were calculated for each or-gan to serve as the reference values for the repeatability analysis. These averages formthe baseline for estimating the within- and between-subject standard deviations.The resulting distributions are graphically represented in the boxplot in Figure 2.2 andthe corresponding numerical results will be reported in Table 2.1 at the end of this sec-tion. In the boxplot, the maximum variation is represented by the whiskers, which ex-tend to the most extreme data points not considered outliers, while the coloured boxesindicate the interquartile range, representing the middle 50% of the data. The horizon-tal line inside each box represents the median value, whereas the upper and loweredges of the box correspond to the third and first quartiles, respectively. Circles mark

34



2 QUANTITATIVE ADC ANALYSIS IN HEALTHY TISSUES

outliers, defined as values lying more than 1.5 times the IQR above the third quartile orbelow the first quartile.

Figure 2.2: Boxplot of the mean intensity (ADC value) across the different organs for the ADCRepeatability Analysis Across the Sample.

For each of the seven organs, a linear mixed-effects model (MixedLM) was fitted to theADC values. The model included a random intercept for each subject and allowed thedecomposition of the total variance into σ2
b , a between-subject component represent-

ing the differences in mean ADC among the different patients of the sample, and σ2
w ,the within-subject residual component that represents the variability across repeatedmeasurements within the same individual. The total variance σ2 is given by the sum ofthese components.

The primary metric of interest was the within-subject standard deviation, from whichthe Repeatability Coefficient (RC) was computed following the QIBA definition. This co-efficient estimates the maximum expected difference between two repeated measure-ments on the same subject in 95% of cases. In addition, the within-subject Coefficientof Variation (wCV) was calculated to provide a normalised measure of dispersion.The definitions and mathematical formulas of the repeatability metrics used in this anal-ysis are reported in Appendix B.
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The results of the statistical analysis, computed across all organs across all the avail-able repeated scans, are summarised in Table 2.1.
Organ Mean ADC σ σw σb RC wCV (%) LOAL LOAULiver 1.10 0.08 0.06 0.05 0.17 7 -0.16 0.19Spleen 0.86 0.10 0.09 0.06 0.24 12 -0.21 0.26Pancreas 1.50 0.15 0.13 0.08 0.35 10 -0.34 0.33Kidney 1.92 0.09 0.05 0.08 0.14 5 -0.14 0.14Vertebra 0.37 0.08 0.07 0.02 0.20 21 -0.18 0.12Pelvic bone 0.38 0.07 0.05 0.05 0.15 19 -0.16 0.13Femoral head 0.25 0.10 0.09 0.04 0.24 38 -0.20 0.09

Table 2.1: Results for the ADC Repeatability Analysis Across the Sample. All values areexpressed in 10−3 mm2/s, except the ones explicitly expressed as percentages.

[A] [B]
Figure 2.3: Bland-Altman plots for the ADC Repeatability Analysis Across the Sample for theliver[A] and the femoral head[B].

Along with the quantitative analysis, Bland–Altman plots were generated for each organto visualise the distribution of differences between repeated measurements. For everypatient-organ pair with multiple acquisitions, only successive pairs were considered, or-dered chronologically. Each plot displays the individual differences as a function of theaverage ADC, along with the mean difference (bias) and Limits of Agreement (LoAs).LoAs were calculated as defined by the general form of the Bland-Altman method[49],deviating from the QIBA profile that defines LoAs using a symmetric formulation around
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zero. The general form explicitly accounts for any systematic bias between paired mea-surements, instead of assuming that no bias exists between repeated scans. In thisclinical setting, where repeated scans are separated by months, the general form wasconsidered to be more appropriate since it allows for the detection of systematic differ-ences between acquisitions without imposing the assumptions of perfect agreementand zero bias.Two representative plots are shown in Figure 2.3 for the liver and the femoral head,highlighting variability patterns in soft tissue and osseous structures with different dif-fusion characteristics.
2.3.2 Intra-Subject ADC Repeatability

Following the repeatability analysis conducted on the whole sample, a subject-specificinvestigation was conducted to assess the temporal consistency of ADC measurementsin the absence of inter-individual biological variability. For this purpose, the single pa-tient with six longitudinal scans (Patient 20) was considered.
Unlike standard test–retest protocols, which typically involve scan–rescan procedureswith patient repositioning and short intervals between acquisitions, the imaging ses-sions considered for this analysis were acquired over a period of 24 months, with inter-

Figure 2.4: Boxplot of the mean intensity (ADC value) across the different organs for theIntra-Subject ADC Repeatability Analysis.
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scan intervals ranging from three to nine months.This approach allows for the evaluation of ADC stability under realistic clinical follow-upconditions, where measurements are expected to remain consistent over time in theabsence of pathological changes or scanner-related inconsistencies.
For each of the seven anatomical regions considered, the three ROI values per organand acquisition were averaged to obtain a single ADC value per time point. For thepatient with six longitudinal acquisitions, the mean ADC value was computed for eachorgan across all time points. These values are expected to be consistent with those de-rived from the group-level analysis presented earlier.The graphical results are shown in Figure 2.4.
The time series for the patient were then processed to compute the within-subject vari-ance (σ2

w ), the within-subject coefficient of variation (wCV) and the repeatability coeffi-cient (RC). The lower and upper LoAs were computed and, for each organ, a Bland–Altmananalysis was performed by computing the pairwise differences between successive ac-quisitions.The results of this repeatability analysis for each organ are reported in Table 2.2 whilethe Bland-Altman plots for the liver and the femoral head are shown in Figure 2.5.
Organ Mean ADC σw RC wCV (%) LoAL LoAULiver 1.15 0.05 0.14 4 -0.17 0.16Spleen 0.85 0.05 0.14 6 -0.15 0.10Pancreas 1.50 0.16 0.46 11 -0.46 0.34Kidney 1.88 0.03 0.08 1 -0.10 0.08Vertebra 0.37 0.11 0.30 29 -0.22 0.14Pelvic Bone 0.39 0.05 0.14 13 -0.14 0.14Femoral Head 0.23 0.12 0.34 53 -0.19 0.06

Table 2.2: Results for the Intra-Subject ADC Repeatability Analysis for a single patient with sixlongitudinal acquisitions. All values are expressed in 10−3 mm2/s, except the ones explicitlyexpressed as percentages.
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[A] [B]
Figure 2.5: Bland-Altman plots for Intra-Subject ADC Repeatability Analysis for a single subjectfor the liver[A] and the femoral head[B].
2.3.3 Organ ADC Variability and Feature Stability

In order to quantify the statistical variability of the mean ADC value within each anatom-ical region, all 41 acquisitions of the dataset were considered, using the three ROIs de-fined for each acquisition, and an exploratory statistical analysis was performed organby organ.This methodology was extended to the full set of radiomic features extracted by SIBEX.The evaluation of the intra-organ stability of all the features allowed the identificationof those with consistent behavior within each anatomical region. These stable descrip-tors are the ones suitable for tissue characterisation and can be considered as candidateQuantitative Imaging Biomarkers (QIBs), potentially integrable into predictive modelsof clinical outcomes.
Initially, boxplots, histograms and violin plots were generated to visualise the distri-bution of mean ADC values within each organ. These plots allowed for the preliminaryidentification of organs exhibiting greater internal heterogeneity or the presence of po-tential outliers.Histograms were chosen to show the distribution shape and value range for ADC in eachtissue and the plots are shown in Figure 2.6 for all the seven organs.
Subsequently, descriptive statistics were computed for each organ, including mean,
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Figure 2.6: Histograms of the distributions of the mean ADC value in the different organs.

Figure 2.7: Boxplot of the mean intensity (ADC value) across the different organs.
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standard deviation, median, minimum and maximum value, interquartile range (IQR)and Coefficient of Variation (CoV). The CoV, defined as the ratio between the standarddeviation and the mean, provides a normalised measure of relative dispersion of dataaround the mean, usually expressed as a percentage, and is commonly used in radiomicand quantitative imaging to assess feature repeatability and robustness.The boxplot for the ADC values across the different organs is shown in Figure 2.7. Thisvisualisation provides a clear graphical summary of the central tendency, spread andpresence of statistical outliers in each anatomical region, allowing for direct compari-son of variability levels across organs and highlighting tissues with more homogeneousor more dispersed ADC distributions.
Outliers were removed using the standard IQR method, as suggested by QIBA guide-lines and reported in Appendix B, applied independently for each organ. This step isespecially important in this setting, as unreliable values may result from segmentationinaccuracies, image noise or atypical local tissue variability.Overall, the outlier removal step led to minimal data loss, with less than 2.5% of ROIsexcluded per organ: three outliers (2.4%) were removed for the kidney and spleen, two(1.6%) for the pelvic bone and vertebrae and only one (0.8%) for the liver and femoralhead. No outliers were detected in the pancreas and therefore the analysis proceededwith the full set of 123 available ROIs for this organ.After outlier removal, descriptive metrics were recomputed to provide more robust es-timates. The results are reported in Table 2.3.

Organ Mean ADC σ Median Min Max IQR CoV (%)Liver 1.09 0.09 1.09 0.90 1.35 0.13 8Spleen 0.85 0.10 0.84 0.64 1.17 0.16 12Pancreas 1.50 0.18 1.50 1.10 1.87 0.27 12Kidney 1.90 0.10 1.90 1.68 2.15 0.13 5Vertebra 0.35 0.09 0.34 0.13 0.56 0.11 26Pelvic bone 0.37 0.09 0.37 0.19 0.58 0.14 24Femoral head 0.24 0.11 0.22 0.00 0.52 0.15 46
Table 2.3: Results for Organ ADC Variability Analysis after outlier removal. All values areexpressed in 10−3 mm2/s, except the ones explicitly expressed as percentages.

Up to this point, the statistical analysis focused on the mean ADC value, correspondingto the Mean Intensity of Grey Level feature. However, the same methodology can beextended to the entire set of radiomic features extracted via SIBEX. For each feature,distribution plots were generated separately for each organ, using both boxplots andhistograms for a visual assessment.To quantitatively evaluate the intra-organ variability of each radiomic feature, the Co-
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efficient of Variation (CoV) was computed across all ROIs for each organ-feature pair,after outlier removal.Since CoV expresses relative variability as a percentage of the mean, lower values in-dicate higher stability. Based on this principle, features were categorised into threestability levels: high stability (i.e. low variability, CoV ≤ 15%), moderate stability (15% <CoV ≤ 30%) and low stability (30% < CoV ≤ 45%). Features with a CoV exceeding 45%were considered too unstable and excluded from further analysis. Features that areby definition constant or degenerate such as Discretised Intensity Range, Minimum orMaximum Discretised Intensity and Dependence Count Percentage were also excludedfrom the start.
To assess redundancy and reduce the dimensionality of the feature space, Pearson cor-relation matrices were computed for each organ within each CoV range. An illustrative

Figure 2.8: Pearson correlation matrix of ADC features with CoV ≤ 15% in the pelvic bone.
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example of the obtained correlation matrices is shown in Figure 2.8, for the case of thepelvic bone and radiomic features with CoV ≤ 15%.Regions of the matrix exhibiting strong linear correlation (r > 0.85) were interpretedas clusters of redundant features. From each group of highly correlated features, onerepresentative was selected, preferring lowest-order descriptors or, when equivalent,most stable ones, defined as those with the lowest CoV.
In parallel, feature stability was also assessed using the Intraclass Correlation Coeffi-cient (ICC), through a linear mixed-effects model accounting for inter-subject variabilityvia a random effect. In this model, all ROIs belonging to the same subject were groupedtogether, without distinguishing between separate acquisitions or timepoints. This re-flects the assumption that the three ROIs drawn for each organ within the same subjectare independent samples from the same underlying anatomical structure. As a result,the ICC quantifies the proportion of variance attributable to differences between sub-jects, relative to the total variance observed across all ROIs.The ICC and CoV are widely used and complementary metrics for quantifying featurereproducibility and variability in radiomics[50]. However, ICC is particularly suited torepeated measurements on identical anatomical locations, such as test-retest acqui-sitions of the same ROI[47]. In this context, ROIs were distinct and anatomically non-overlapping, though located within the same organ. As a result, the conditions requiredfor a proper application of ICC are not fully satisfied and its use must be interpreted withcaution.
Empirically, the ICC was computed for each feature and each organ, following the samestructure adopted for the CoV analysis.A threshold of ICC ≥ 0.5 was applied to identify features with at least moderate relia-bility.Compared to CoV-based selection, this resulted in a more restrictive filtering, with asmaller number of features kept and generally sparser Pearson correlation matrices.
2.4 Discussions
The results presented in this chapter have been interpreted with reference to the exist-ing scientific literature, in order to assess their methodological and clinical consistency.The discussion is structured into two main sections. The first one addresses the re-peatability of ADC measurements, based on two complementary test–retest analyses,both involving temporally separated acquisitions: one conducted on a cohort of healthysubjects and the other on a single subject. The second one instead focuses on the char-acterisation of physiological ADC values across healthy tissues, with particular attentionto their stability and intra-organ variability.
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It is important to highlight that all analyses were performed on WB-MRI acquisitions.Compared to region-specific MRI, WB-MRI faces additional challenges due to its broaderanatomical coverage, increased variability across tissue types and higher potential foracquisition-related artefacts. This context is essential when evaluating the reproducibil-ity and clinical applicability of the results.
2.4.1 Repeatability of ADC Measurements

Repeatability of ADC measurements was assessed using two extended test–retest de-signs, both involving temporally separated acquisitions in a real-world clinical setting.The first analysis, described in ADC Repeatability Across the Sample, was conducted onthe subset of subjects who underwent multiple Whole-Body MRI scans (at least two).The second, presented in Intra-Subject ADC Repeatability, was performed on a singlesubject who underwent six separate acquisitions over a total period of 24 months.The aim was to evaluate both the impact of biological variability and the technical re-peatability of ADC measurements under routine clinical conditions.
In parenchymal organs such as the liver, spleen, kidneys and pancreas, repeatabilitywas generally high across both analyses. In the liver, for example, the repeatability co-efficient (RC) and within-subject coefficient of variation (wCV) improved from 0.17 and7% across the sample to 0.14 and 4% in the intra-subject setting. In both cases, the LoAswere narrow and essentially symmetrically distributed around zero, as observed in thecorresponding Bland–Altman plots (Figure 2.3[A] and Figure 2.5[A]), suggesting robustrepeatability. Similar trends were found in the kidneys, where wCV decreased from 5%to 1% and in the spleen, where RC improved modestly (0.24 vs. 0.14).In the case of the liver, the repeatability coefficients also fell below the threshold of0.20×10−3 mm2/s defined in the QIBA Profile for Diffusion-Weighted Imaging[46], sup-porting the reliability of the measurements according to established quantitative imag-ing standards.
In the pancreas, repeatability was comparatively lower: although the mean ADC re-mained stable across both analyses at 1.50±0.11 and 1.50±0.16 ×10−3 mm2/s, RC in-creased from 0.35 to 0.46 and wCV from 10% to 11.0%. This reduced stability is likelyattributable to the anatomical and functional heterogeneity of the pancreas, whichis known to be affected by various physiological and technical factors, including BodyMass Index (BMI) and acquisition parameters[51].In this study, a single ROI encompassing the entire pancreatic parenchyma was used,without distinguishing between head, body and tail. This approach may have intro-duced additional anatomical heterogeneity compared to studies that analyse pancre-atic subregions separately[51] and could partly account for the slightly lower repeata-bility observed. However, the measured mean is consistent with previously reported
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reference values in healthy subjects[52], supporting the plausibility of the findings de-spite the observed intra-subject variability.Although no established reference values for RC and wCV in the pancreas are availablefor direct comparison, assuming a wCV below 15% as an acceptable threshold for sta-bility, the repeatability observed in this study can still be considered satisfactory.
In osseous tissues, repeatability was significantly lower, especially in the femoral head,where RC and wCV respectively reached 0.34 and 53% in the intra-subject design. Al-though the limits of agreement were not particularly wide, they appeared asymmetric(Figure 2.3[B] and Figure 2.5[B]), with a more pronounced lower bound. This is likelythe result of low signal-to-noise ratio in the femoral head region, which increases sen-sitivity to outlier effects and amplifies the impact of measurement noise on individualacquisitions.In the pelvic bone and vertebral bodies — analysed in this study without distinctionbetween thoracic or lumbar levels - repeatability was also limited. RC ranged from 0.14to 0.30×10−3 mm2/s and wCV from 13% to 29%, depending on the region and analysis.These findings are consistent with those reported by Michoux et al.[53], who observedRC values ranging from 0.23-0.44×10−3 mm2/s for the L5 vertebra, 22-46×10−3 mm2/sfor the iliac crest and 22-55 ×10−3 mm2/s for the femur in two separate test-retest set-tings.The close agreement in absolute values supports the robustness of the present data,despite the inherently reduced reproducibility observed in bone, which is documentedin the context of bone diffusion imaging[53, 46].

Across the Sample Intra-Subject Variation
Organ RC wCV (%) RC wCV (%) ∆RC ∆wCV (%)
Liver 0.17 7 0.14 4 -0.03 -3

Spleen 0.24 12 0.14 6 -0.10 -6
Pancreas 0.35 10 0.46 11 +0.11 +1
Kidney 0.14 5 0.08 1 -0.06 -4

Vertebra 0.20 21 0.30 29 +0.10 +8
Pelvic bone 0.15 19 0.14 13 -0.01 -6

Femoral head 0.24 38 0.34 53 +0.10 +15
Table 2.4: Comparison of RC (expressed in 10−3 mm2/s) and wCV between ADC RepeatabilityAcross the Sample and Intra-Subject ADC Repeatability, with the corresponding variationbetween analyses.

The relevant results for the two repeatability analyses are reported in Table 2.4, directlycomparing the ADC Repeatability Analysis Across the Sample and the Intra-Subject one.This table highlights how the restriction of the sample — corresponding to a reduced
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biological heterogeneity — is associated with improved repeatability metrics, as re-flected by lower RC and wCV values in several anatomical regions. This behavior con-firms the expected trend that measurement stability increases when variability due tointer-subject differences is minimised.
In summary, repeatability of ADC measurements was satisfactory in parenchymal tis-sues and improved when biological variability was controlled. In osseous tissues, theobserved variability was larger but consistent with existing literature. These results con-firm that ADC can serve as a repeatable quantitative imaging biomarker under clinicalconditions, particularly in soft-tissue organs where technical and biological variabilityare more easily controlled.Since measurement precision is a prerequisite for the interpretation of quantitative val-ues, repeatability was assessed first to ensure the stability of the method. The analysisof average ADC values and their physiological interpretation across organs is presentedas part of the organ-level analysis that follows, in a more general characterisation ofhealthy tissues.
2.4.2 Physiological Characterisation of ADC Values in Healthy Tissues

The intra-organ analysis presented in Organ ADC Variability and Feature Stability ex-plored the physiological distribution of ADC values across different anatomical regionsin the healthy population. Unlike the repeatability-focused analyses, this section in-cluded all 41 available WB-MRI acquisitions in the dataset, including multiple sessionsand subjects. The objective was to characterise the quantitative profile of normal tis-sues using a more general and exploratory approach, not constrained by test–retestdesign, but rather intended to reflect the variability and distribution of ADC values un-der routine clinical conditions.
To evaluate the plausibility of the measured values, average ADCs for each organ werecompared with those reported by Michoux et al.[53], who provided reference valueswith associated 95% confidence intervals in a smaller cohort of eight healthy volun-teers. While their protocol was optimised for reproducibility — using three b-values(0, 150, 1000 s/mm2), radiologist-defined 2D ROIs on identical slices and repeated ac-quisitions under highly standardised conditions — the present study relied on a morediverse sample acquired in a clinical setting, using two b-values (0 and 800 s/mm2) andbroader ROI placement across entire organs. These differences are expected to influ-ence absolute ADC values, particularly in perfused tissues, and justify small deviationsfrom the literature benchmarks.
Average ADCs and 95% confidence intervals (CI95) were compared with those reportedby Michoux et al.[53]. In the parenchymal organs, the measured values were generally
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compatible with published references. In the liver, the mean ADC was (1.09 ± 0.09) ×
10−3 mm2/s, corresponding to a CI95 of [1.06; 1.12], which lies below the reference in-terval of 1.20 [1.16; 1.23]. In the pancreas, the measured value was (1.50± 0.18) × 10−3mm2/s, with a CI95 of [1.44; 1.56], near to the reference of (1.40 ± 0.19) × 10−3 mm2/sreported in [52].The spleen and kidneys presented borderline compatibility. The measured ADC in thespleen was (0.85±0.10) ×10−3 mm2/s, CI95 [0.82; 0.88], compared with a reference of0.89 [0.86; 0.92]; for the kidney, the observed value was (1.90 ± 0.10) × 10−3 mm2/s,CI95 [1.87; 1.93], compared with 1.95 [1.93; 1.97] for the renal cortex and 1.77 [1.74; 1.80]for the renal medulla.
In osseous tissues, the measured ADC values showed greater deviation from publishedreferences. For the vertebrae the mean ADC was (0.35 ± 0.09) × 10−3 mm2/s, with a95% confidence interval of [0.32; 0.38], compared to the reference value of 0.29 [0.27;0.31] reported for the L5 vertebra. In the pelvic bone (ilium), the measured value was
(0.37 ± 0.09) × 10−3 mm2/s, CI95 [0.34; 0.40], versus a reference of 0.30 [0.29; 0.32].For the femoral head, the mean ADC was (0.24±0.11) ×10−3 mm2/s , CI95 [0.21; 0.27],compared with the reference 0.29 [0.28; 0.30].These small discrepancies were expected given the differences in acquisition parame-ters and ROI placement strategies.
Welch’s t -test was performed to assess the statistical significance of the observed differ-ences between the present measurements and the reference values from the literature.This test evaluates the null hypothesis that the means of two independent samples areequal, without assuming equal variances between groups. A small p-value (typically be-low 0.05) indicates that the difference in means is unlikely to have occurred by chance,suggesting a statistically significant deviation from the reference values.The resulting p-values (Table 2.5) were as follows: 1.41× 10−5 for the liver, 7.42× 10−2for the spleen, 1.01× 10−2 for the kidney, 2.57× 10−2 for the pancreas, 1.09× 10−3 forthe vertebra, 6.08 × 10−5 for the pelvic bone and 8.34 × 10−3 for the femoral head.All comparisons yielded statistically significant differences (p < 0.05) except for thespleen that exhibited statistical and physiological compatibility with the reference andthe pancreas and the kidneys that showed moderate but statistically significant devia-tions. The spleen’s compatibility is similarly supported by its well-known physiologicalstability and low ADC variability, which contribute to the consistent values observedacross studies[54].
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Organ Measured ADC [CI95] Reference Value [CI95] CompatibilityLiver 1.09 [1.06; 1.12] 1.20 [1.16; 1.23] ✗Spleen 0.85 [0.82; 0.88] 0.89 [0.86; 0.92] ✓Pancreas 1.50 [1.44; 1.56] 1.40 [1.33; 1.47] ✗Kidney 1.90 [1.87; 1.93] 1.95 [1.93; 1.97] ✗Vertebra 0.35 [0.32; 0.38] 0.29 [0.27; 0.31] ✗Pelvic bone 0.37 [0.34; 0.40] 0.30 [0.29; 0.32] ✗Femoral head 0.24 [0.21; 0.27] 0.29 [0.28; 0.30] ✗

Table 2.5: Comparison between measured ADC values, literature reference values[53, 52] andassessment of their compatibility. All values are expressed in 10−3 mm2/s.
Although the comparisons for the remaining tissues yielded statistically significant dif-ferences, the absolute deviations between the measured and reference ADC valueswere consistently small, typically in the range of 10−2×10−3 mm2/s. As discussed abovein this section, the slight discrepancies with respect to the reference values can be rea-sonably attributed to protocol differences and the limited sample size of the study byMichoux et al.The standard deviations associated with the mean values reported in this study weregenerally on the order of 10−4 mm2/s, i.e., one order of magnitude lower in most ofthe cases. This relative precision suggests that the observed discrepancies are minorin physiological terms and likely to be clinically acceptable. Overall, these results rein-force the plausibility of the measured ADC values and their reliability for tissue char-acterisation, particularly when considering the expected inter-subject variability anddifferences in acquisition protocols across studies, considering also the limitations inbone tissues.
Analysing the CoV and the IQR statistical measures across all tissues, as summarisedin Table 2.6, clear differences emerged between parenchymal and osseous regions.Parenchymal organs showed lower CoV values — ranging from 5% in the kidney to 12%in the spleen — while osseous tissues exhibited substantially higher CoVs, exceeding24% in the vertebra and pelvic bone and reaching 46% in the femoral head. The IQRvalues were more homogeneous across tissues, ranging from 0.11 to 0.27×10−3 mm2/s.The pancreas exhibited the highest IQR (0.27), consistent with its greater anatomicaland functional variability, as shown by its broader distribution in Figure 2.6. Thesetrends indicate limited relative variability in ADC values for homogeneous tissues andreflect, in the case of bone, the increased dispersion likely caused by the inherent het-erogeneity of bone structure, lower signal-to-noise ratio and susceptibility to imagingartefacts.
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Organ IQR CoV (%)Liver 0.13 8Spleen 0.16 12Pancreas 0.27 12Kidney 0.13 5Vertebra 0.11 26Pelvic bone 0.14 24Femoral head 0.15 46

Table 2.6: Summary of Organ ADC Variability metrics: IQR (expressed in 10−3 mm2/s) and CoV.

Although ADC-based variability was more pronounced in osseous tissues, extendingthe analysis to a broader set of radiomic features revealed several parameters with lowdispersion even in these anatomically heterogeneous regions. This was observed con-sistently across all organs. The pelvic bone is shown in Figure 2.8 as a representativeexample, given its relevance for the predictive modelling of pathological cases discussedin Clinical Application of ADC and FF in Multiple Myeloma. The matrix highlights a num-ber of features with limited variability (i.e. 0 ≤ Cov ≤ 15 %) in healthy subjects, includingmetrics from texture-based families such as GLCM, GLDZM, GLRLM and GLSZM, as wellas intensity-based descriptors (for example Root Mean Square Intensity, Intensity His-togram Entropy) and IVH-derived parameters.While the primary quantitative biomarker remains the mean ADC value ([ID] Mean In-tensity of ADC maps), the observed stability of several additional radiomic features sug-gests that they may serve as complementary biomarkers in classification tasks, evenwithin structurally complex regions such as the pelvic skeleton.
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3 PhantomValidationof Fat FractionSe-
quences

This chapter presents a quantitative validation of the sequences dedicated to Fat Frac-tion (FF) mapping, implemented on the Philips Ingenia 3T MRI scanner - Fat Fractionfrom mDixonAll and FatQuant from mDixonQuant.
An in-house built phantom, containing defined mixtures of water and lipid emulsions,was specifically constructed and subsequently imaged using the two available Dixon-based sequences.In order to establish FF as a reliable quantitative imaging biomarker, the linearity, accu-racy and calibration behaviour of each sequence were evaluated across a wide range offat concentrations. By characterising the performance of the two sequences, this anal-ysis aims to understand the limitations and diagnostic capabilities of each acquisitionstrategy within clinical and research contexts.
3.1 Phantom Preparation
The preparation of the fat–water phantom was based on the protocol developed byBush et al. for the construction of MRI-calibrated fat fraction phantoms using wa-ter–lipid emulsions[55]. This method provides a flexible and cost-effective approachto create a stable phantom using standard laboratory equipment and easily accessiblereagents. It enables the preparation of emulsions spanning a wide range of fat per-centages — from 0% to 100% — facilitating direct comparison between measured andknown fat content values for sequence validation purposes.
Following the published protocol, two separate base solutions were first prepared: awater-based solution and a fat-based solution.
The water solution consisted of 300mL of distilled water, 9.0 g of agar, 0.3 g of sodiumbenzoate and 0.6 mL of a water-soluble surfactant (Tween 20). In order to modulatethe relaxation properties of the acqueous solution, improving its similarity to biologicaltissues, 0.24 mL of gadolinium-DTPA contrast agent were added.The mixture was heated to 90°C under constant stirring (100 rpm) and then brought to350°C until the agar was completely melted, forming a uniform amber solution.
The fat solution was prepared by heating 300 mL of peanut oil to 90°C under constantstirring. Peanut oil was chosen as the lipid component due to its nuclear magnetic reso-nance spectrum, which exhibits spectral characteristics comparable to those of human
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adipose tissue triglycerides.To facilitate emulsification with the aqueous phase, the oil-soluble surfactant (soy lecithin)was added at a concentration of 1.0% of the oil volume, corresponding to 3 mL.The mixture was stirred at 1100 rpm for approximately 5 minutes to ensure completemixing, achieving a soluble and homogeneous solution.

Figure 3.1: Preparation of the fat–water emulsion.
Emulsion preparation was carried out by combining the pre-heated water and oil solu-tions in the appropriate proportions using calibrated volumetric pipettes. The volumeswere selected based on the target fat fraction of each sample.Throughout the process, the water solution was maintained on a stirring hotplate toprevent premature gelation and ensure homogeneous mixing. The oil solution wasslowly added and, as the emulsification progressed, the initially visible separation be-tween the two phases gradually disappeared. Once the mixture became fully opaqueand exhibited a creamy white consistency, the emulsion was immediately transferredinto a 50 mL Falcon tube and left to cool and solidify at room temperature.A representative image of the emulsification process is shown in Figure 3.1, illustratingthe early phase of mixing before the formation of a homogeneous, stable emulsion.
This process was repeated for each target fat concentration, adjusting the amount ofsoy lecithin in the oil phase as needed. In general, higher fat content required increasedsurfactant concentrations, due to the greater difficulty in achieving a stable dispersionof lipid droplets within the aqueous matrix.The optimal lecithin concentration for each sample was determined empirically to en-sure that, once solidified, the emulsion exhibited no significant local inhomogeneities,visible bubbles, phase stratification or fat–water separation.

51



3 PHANTOM VALIDATION OF FAT FRACTION SEQUENCES

Each prepared tube, corresponding to a specific target fat fraction, was labelled andsecurely placed inside a custom-built phantom designed to mimic realistic anatomi-cal conditions. The phantom consisted of a central water-filled cavity in which thesample tubes were arranged in fixed positions, two lateral compartments filled withpolystyrene beads to simulate lung tissue and a separate compartment filled with purepeanut oil to serve as a 100% fat reference. The water compartment also served as a0% fat reference and helped reduce susceptibility artefacts at air–interface boundariesduring MRI acquisition.
The fat-water phantom is shown in Figure 3.2 in its final assembled configuration.To ensure thermal equilibrium and minimise temperature-induced variability in MR sig-nal, the phantom was placed in the MRI suite one day prior to image acquisition.

Figure 3.2: Final configuration of the fat-water phantom.
The composition of all phantom regions is summarised in Table 3.1, which reports, foreach sample, the name, the nominal percentage of oil used in the mixture, the concen-tration of soy lecithin added to the oil solution and the resulting estimated fat fraction(FFtrue).The FFtrue values were calculated as the proportion of fat within the total emulsion,taking into account both the oil and the surfactant volumes in the lipid phase. In otherwords, the true fat content corresponds to the fraction of oil relative to the combinedvolume of oil and lecithin, as this mixture constitutes the effective fat-containing com-ponent introduced into the emulsion.
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Sample Name Oil Solution (%) Lecithin in Oil (%) FFtrue (%)Water 0.0 0.0 0.01 15.0 8.0 13.82 15.0 5.0 14.33 25.0 1.0 25.04 44.0 1.0 44.05 50.0 1.0 50.06 55.0 8.0 50.67 55.0 5.0 52.38 60.0 8.0 55.29 65.0 1.0 65.0Oil 100.0 0.0 100.0

Table 3.1: Composition of the fat–water phantom regions.

3.2 MRI Acquisition
The phantom was positioned on the scanner table, covered with the Q-Body coil andcarefully centred within the magnet using alignment lasers and the table positioningsystem.Once the correct placement was ensured, both fat fraction quantification sequences— Fat Fraction from mDixonAll and FatQuant from mDixonQuant — were acquired fivetimes under identical conditions to support subsequent validation.

Figure 3.3: Axial image of the fat–water phantom acquired with the mDixonAll-based FatFraction (FF) sequence.
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Figure 3.4: Axial image of the fat–water phantom acquired with the mDixonQuant-basedFatQuant sequence.
Figure 3.3 and Figure 3.4 show representative images of the phantom acquired withthe mDixonAll-based FF sequence and the mDixonQuant-based FatQuant sequence, re-spectively.
3.2.1 Comparison of Acquisition Parameters

The main acquisition parameters for both the acquired sequences - Fat Fraction (FF)from mDixonAll and FatQuant from mDixonQuant - are summarised in Table 3.2.
Acquisition Parameter FF (mDixonAll) FatQuant (mDixonQuant)Acquisition Duration [s] 13.81 14.09Pulse Sequence Name T1FFE T1FFEEcho Pulse Sequence GR GRAcquisition Plane Axial AxialSlice Thickness [mm] 3 6FOV [mm]/Acquisition Matrix 480/236 × 300 400/140 × 160Pixel Spacing [mm] 0.8 × 0.8 2.1 × 2.1Phase Encoding Direction RL RLSENSE Acceleration Yes YesTR/TE [ms] 3.66/shortest 6.27/shortestEcho Train Length 2 6Echo Numbers 1 1Flip Angle [◦] 10 3Pixel Bandwidth [Hz/pixel] 1344 2298Fat Quantification Model 2-point Dixon Multi-peak Dixon

Table 3.2: Acquisition parameters for the two sequences dedicated to FF mapping.
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The differences in acquisition parameters between the two sequences are clearly re-flected in the visual appearance of the resulting images.In particular, the larger acquisition matrix used in the FF (mDixonAll) sequence (236 ×300 vs 140 × 160 in FatQuant) leads to a higher in-plane spatial resolution and a widerfield of view, as already evident from the phantom images shown in Figure 3.3 and Fig-ure 3.4. The reduced slice thickness in FF (3 mm vs 6 mm) also enhance the anatomicaldefinition in coronal and sagittal reconstructions, owing to the increased through-planeresolution.
Beyond spatial resolution, several additional parameters are expected to influence thesequences’ behaviour in fat quantification, potentially leading to differences in the re-liability and precision of the resulting fat fraction estimates.The echo train length is considerably shorter in FF (2 vs 6), reflecting the use of a two-point Dixon model as opposed to the multi-echo, multi-peak spectral model employedby FatQuant. The latter enables more comprehensive modelling of fat and more robustcorrection for confounding factors such as B0 inhomogeneities and T∗2 decay.Furthermore, the flip angle differs substantially (10◦ for FF vs 3◦ for FatQuant), whichmay lead to greater T1-related bias in FF, particularly in voxels containing both fat andwater. FatQuant, by contrast, is designed to minimise such effects and is therefore ex-pected to provide more accurate and reproducible fat fraction estimates, despite itslower spatial resolution.
In summary, while the FF (mDixonAll) sequence offers superior image sharpness, FatQuant(mDixonQuant) is expected to provide improved quantitative reliability, particularly inchallenging regions or at intermediate fat concentrations.
3.3 Quantitative Results and Calibration
In order to quantitatively assess the performance of the two fat fraction sequences,numerical measurements were obtained from the phantom acquisitions and comparedagainst the known fat concentrations used during preparation. This evaluation involvedextracting fat fraction values from the parametric maps generated by each sequence,constructing calibration curves and examining their agreement with the reference val-ues. The analysis aimed to assess the accuracy, linearity and consistency of both meth-ods across a wide range of fat content.
3.3.1 Measured Fat Fraction Values

For each fat concentration present in the phantom, a cylindrical region of interest (ROI)with a target volume of 2.6 cm3 was manually placed in the centre of the correspondingsample region, in accordance with the nominal compositions reported in Table 3.1. The
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ROI volume was selected to ensure adequate voxel sampling while avoiding boundaryeffects or partial volume contamination.
Although 10 tubes are visible in the phantom images, the analysis was limited to 11well-defined fat–water regions, including the pure water and pure oil references.One additional tube — corresponding to a nominal fat content of 85.0% with 8.0%lecithin — was included in the phantom but excluded from the quantitative analysis.Due to its high fat concentration, the sample proved difficult to prepare with sufficientstability and the emulsion appeared visibly inhomogeneous upon inspection of the ac-quired images. For this reason, it was excluded from the analysis and was not includedin the summary table of phantom composition and in the measured fat fraction results.
For each of the five repeated acquisitions performed per sequence, ROIs were posi-tioned consistently using the same spatial coordinates and slice index, in order to min-imise variability due to repositioning or reader-dependent factors.Fat fraction values were extracted from each ROI through the MIM®software and thenaveraged across the five repetitions.The resulting mean values, along with the standard deviation of the mean, are reportedin Table 3.3 for both the FF (mDixonAll) and FatQuant (mDixonQuant) sequences. Allvalues are expressed as absolute fat fraction percentages (%) and have been rounded toone decimal place in order to preserve measurable differences between closely similarvalues.

Sample Name FFtrue (%) FF (%) σFF (%) FatQuant (%) σFatQuant (%)Water 0.0 3.6 2.6 0.7 0.51 13.8 15.0 0.0 16.1 1.82 14.3 10.8 0.8 15.6 0.63 25.0 26.6 1.3 22.9 1.44 44.0 43.6 1.5 44.4 0.75 50.0 60.8 1.1 52.5 0.66 50.6 64.0 1.0 58.8 0.47 52.3 42.0 1.2 57.5 1.08 55.2 66.4 0.6 64.6 0.49 65.0 64.4 4.2 65.3 1.4Oil 100.0 96.6 0.6 98.4 0.6
Table 3.3: True fat fraction values (FFtrue) and mean fat fraction measurements with standarddeviations from five repeated acquisitions using FF (mDixonAll) and FatQuant (mDixonQuant).
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3.3.2 Calibration Curve

To quantitatively assess the calibration performance of the two sequences, a linear re-gression analysis was conducted by fitting the measured fat fraction values against theknown reference concentrations (FFtrue).The analysis was based on the mean values obtained from the five repeated acquisi-tions for both FF (mDixonAll) and FatQuant (mDixonQuant), as reported in Table 3.3.The corresponding standard deviations were used to define horizontal error bars in theplot, reflecting the variability in the measured values.

Figure 3.5: Calibration curves for FF (mDixonAll) and FatQuant (mDixonQuant) with linearregression lines, 95% confidence bands and standard deviation error bars.
In the resulting calibration curves, shown in Figure 3.5, the reference values (FFtrue)are represented on the y -axis, while the measured fat fractions are plotted on the x -axis. Each point thus indicates how well a given measurement aligns with its true targetvalue.The fitted regression lines for both sequences are shown, together with 95% confidencebands that represent the uncertainty associated with the estimated regression func-tion. These confidence bands were calculated analytically using the standard error ofthe fit and the Student’s t -distribution. They define the interval within which the trueregression line is expected to lie with 95% probability, taking into account both theresidual variance and the spread of the data around the predictor mean.
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The regression lines were estimated using Ordinary Least Squares (OLS), according tothe general model
yi = β0 + β1 · xi + ϵi (3.1)

where yi is the reference value (FFtrue), xi is the measurand value from the sequenceunder analysis, β0 is the intercept, β1 is the slope and ϵi are the residual errors.For FF, the fitted model was
FFtrue = 0.11 + 0.95 · FFmeasured (R 2 = 0.94) (3.2)

while for FatQuant the best-fit equation was
FFtrue = −1.27 + 0.97 · FatQuantmeasured (R 2 = 0.98). (3.3)

Statistical tests confirmed the significance of both models and the strength of the linearrelationships, already supported by the slope estimates in Equation 3.2 and Equation 3.3(0.95 for FF and 0.97 for FatQuant). The corresponding coefficients of determination(R 2) were 0.94 for FF and 0.98 for FatQuant, indicating that 94% and 98% of the vari-ance in the reference values is explained by the respective regression models. Suchhigh R 2 values reflect an excellent fit of the linear calibration within the tested range offat fractions.The significance of the slope coefficients was evaluated using a two-sided t -test for thenull hypothesis H0 : β1 = 0, which assesses whether the slope is significantly differ-ent from zero. Both slopes were found to be highly significant (p = 1.02 × 10−6 for FFand p = 2.78× 10−9 for FatQuant), confirming a strong association between measuredand reference values. The corresponding model F -statistics (134.93 for FF and 522.82for FatQuant) assess the overall regression significance compared to an intercept-onlymodel. In simple linear regression with one predictor, the F -test is mathematicallyequivalent to the t -test of the slope (F = t 2), which explains why the F -tests yieldidentical p-values to those of the slope coefficients.Model residuals, defined as
ϵi = FFtrue,i − F̂Ftrue,i (3.4)

were tested for normality using the Shapiro-Wilk test, which evaluates the null hypoth-esis that the residuals follow a normal distribution, a necessary assumption for the va-lidity of the statistical tests reported above. A p-value greater than the conventional0.05 threshold indicates no evidence to reject normality. In this analysis, the p-values(p = 0.83 for FF and p = 0.71 for FatQuant) confirm that the residuals are consistentwith a normal distribution, supporting the validity of standard inference for the regres-sion coefficients.
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To formally assess whether the calibration behaviour differed between the two se-quences, a multiple linear regression was fitted including the measured fat fraction(x ), the sequence type (FF = 0, FatQuant = 1) and their interaction term (x × gr oup).This specification allows both the intercept and the slope to vary depending on the se-quence.This model achieved a coefficient of determination R 2 = 0.96 and an overall F -statisticof 145.00 (p = 8.53×10−13), confirming that the measured fat fractions strongly explainthe reference values. However, neither the interaction term (p = 0.79) nor the group-specific intercept difference (p = 0.78) reached statistical significance, indicating thatneither the slope nor the intercept differ between the two sequences. These resultssuggest that the linear calibration trends of FF and FatQuant are statistically compara-ble.
3.4 Evaluation of Sequences Performance
This section provides a critical evaluation of the performance of the two fat fractionsequences implemented in the MRI scanner used in this study, in order to clarify theirdifferences and justify their potential use in fat quantification studies.The phantom experiment was specifically designed to assess whether both sequences— FF (mDixonAll) and FatQuant (mDixonQuant) — can be considered suitable for quan-titative fat fraction estimation. This issue is particularly relevant in the context of retro-spective studies, where FatQuant may not be available due to its introduction in morerecent imaging protocols. Establishing whether these sequences provide comparableresults is therefore essential to ensure methodological consistency and interpretabilitywhen both are used across different datasets.
From a methodological point of view, the two sequences are based on different Dixonimplementations. FF uses a two-point Dixon model, which estimates fat and water con-tent from two echo times, without explicit correction for confounding factors such as
B0 inhomogeneities or T∗2 decay. In contrast, FatQuant employs a multi-echo acquisi-tion and incorporates a multi-peak spectral model of fat, along with corrections for B0field variation and T∗2 relaxation. These features are designed to improve the accuracyand reliability of fat quantification[19].On a qualitative level, as observed in the acquired phantom images (Figure 3.3 and Fig-ure 3.4), FF generally produces sharper and more stable fat–water separation, making itmore suitable for anatomical visualisation, whereas FatQuant is better suited for quan-titative applications due to its advanced signal modelling.
It is important to note that FatQuant images exhibited occasional fat-water swaps, whichare signal inversions where voxels expected to be water-dominant are instead recon-structed as fat-dominant and vice versa. These artefacts were not observed in the FF
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sequence and are typically caused by ambiguities in the phase estimation used to solvethe multi-echo Dixon model. The risk of swaps increases in regions affected by lowsignal-to-noise ratio (SNR), susceptibility effects or steep B0 field gradients, all of whichcan destabilise the field map estimation and phase unwrapping process used in multi-echo reconstructions.In the phantom used in this study, swaps were primarily observed in the most water-rich region (i.e. the water cavity where FFtrue = 0%), where the fat signal is virtuallyabsent. In such conditions, even small phase inconsistencies can dominate the decom-position process and lead to misclassification.Several strategies have been proposed in the literature to address these artefacts[15,56, 57, 58] but in the context of this study they were not implemented since fat-waterswaps did not affect the validity of the quantitative results. In the phantom, whereground-truth fat concentrations were known, artifactual regions were visually identifi-able and were excluded from the analysis. Similarly, in the patient data which will bepresented in Quantitative FF Analysis in Healthy Tissues, all images were manually in-spected and voxels affected by swaps were discarded prior to quantification, ensuringthe integrity of the quantitative analysis by retaining only high-confidence values.
Both sequences demonstrated an instability region around FFtrue ≈ 50 − 55%, wherefat and water signals are approximately equal in amplitude. In this regimen, the Dixonmodel becomes more sensitive to noise and small phase inconsistencies, as the phasedifference between fat and water approaches critical values that can make the systemill-conditioned[59]. This leads to greater variability and reduced precision in fat fractionestimation in regions where fat and water coexist in similar proportions. This effect isintrinsic to the Dixon reconstruction process and has been attributed to a reduction incontrast and sensitivity when fat and water signals are nearly equivalent, as observedin clinical studies[60].This behaviour is further illustrated in Figure 3.6. The plot shows the residuals of FF andFatQuant measurements relative to the reference values, displayed as a function of thetrue fat concentration. Each point corresponds to a phantom ROI, with the dashed lineindicating zero residual. The shaded band highlights the 50–55% range, where an in-creased spread of residuals is observed, visually supporting the reduced precision ofboth sequences in this instability region. It should be noted that, unlike the regressionresiduals defined above, here residuals are simply computed as the difference betweenthe measured and the true fat fraction values, in order to directly visualise estimationerrors across the full range of fat concentrations.
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Figure 3.6: Residuals of FF and FatQuant relative to reference values, with the shaded areamarking the 50–55% instability region.
Despite these limitations, the calibration results confirm that both sequences provideexcellent linear agreement with the known fat concentrations. FatQuant yielded a re-gression slope of 0.97 with R 2 = 0.98, while FF produced a slope of 0.95 with
R 2 = 0.94.The confidence bands associated with the FatQuant regression line were visibly nar-rower. Since both models were based on the same number of data points, the differ-ence in band width is primarily attributable to the residual variance: for the FatQuantsequence, the estimation of the regression line was more precise as data deviated lessfrom the fitted line. The smaller dispersion observed for FatQuant suggests that its fatfraction estimates were more consistent and less affected by random noise, resulting ina tighter and more stable linear relationship across the full range of fat concentrations.
However, a direct statistical comparison between the two calibration lines using a lin-ear model with interaction showed no significant difference in either slope or intercept(p = 0.79 and p = 0.78, respectively), indicating that the quantitative behaviour of thetwo sequences is statistically comparable.In other words, the data do not provide sufficient evidence to support a difference inthe linear calibration trends between FF and FatQuant. Despite this does not implythat the two models are identical, it suggests that any observed differences may be at-tributed to random variability rather than systematic bias between the sequences.
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Figure 3.7: Direct comparison between FatQuant (y-axis) and FF (x-axis) measurements in thephantom to assess the consistency between the two sequences.

Figure 3.7 further illustrates this comparability through a direct method-to-method anal-ysis. The scatter plot shows FatQuant measurements plotted against the correspond-ing FF measurements for each phantom ROI. The dashed line represents the identity(y = x ), which corresponds to the condition of perfect agreement between the twomethods, while the solid line indicates the fitted regression line. Points clustering closeto the identity denote strong concordance between the sequences, whereas deviationsfrom the line would reflect systematic or random differences. In the presented graph,the regression line is nearly overlapping with the identity, with a slope of 0.97 whichis close to the expected value of 1. The dispersion of points is limited, confirming theabsence of systematic bias and the overall consistency of the two sequences.
These findings support the use of both FF and FatQuant for fat quantification, providedthat their respective limitations are understood and appropriately accounted for.FatQuant should be preferred when available, due to its more advanced multi-echoand multi-peak spectral signal modelling, reduced susceptibility to B0 and T∗2 bias andtighter confidence intervals.FF can nevertheless be considered a valid and reliable alternative. Its simpler recon-
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struction algorithm and better visual contrast make it particularly suitable for anatom-ical interpretation and for retrospective analyses, where FatQuant may not have beenincluded in earlier imaging protocols.The statistical comparability demonstrated in the phantom analysis provides empiri-cal supports for the interchangeable use of FF and FatQuant sequences in studies con-strained by protocol variations or limited data availability, contributing to greater method-ological standardisation across heterogeneous datasets.
Finally, it is important to acknowledge the inherent limitations of the presented phantom-based experiment. The phantom was specifically designed to assess the comparabilityof FF and FatQuant sequences under controlled conditions, where the fat–water emul-sions exhibit stable and chemically homogeneous properties.Peanut oil was used as the fat component due to its spectral composition, which closelyresembles that of human adipose tissue, improving the physiological relevance of themodel. While this setup is well suited to test linearity and reproducibility, it does notreplicate the biological complexity of living tissues, such as spatially heterogeneous fatdistribution, microscopic susceptibility gradients and variability in relaxation parame-ters (T1, T2, and T∗2). Potential non-linear effects arising from differences in tissue com-position — such as those related to temperature variation, iron accumulation or patho-logical infiltration — cannot be reproduced in a synthetic phantom. Future validationstudies involving in vivo acquisitions will therefore be essential to confirm the general-isability of these results and to investigate how biological factors may affect the quan-titative performance of each sequence.
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4 Quantitative FF Analysis in Healthy
Tissues

The Fat Fraction (FF) is an emerging quantitative imaging biomarker used to charac-terise tissue composition and detect metabolic or infiltrative abnormalities[17, 61, 62,63, 64]. In this study, FF values were exclusively derived from maps generated using theFatQuant sequence, whose accuracy and reliability were previously validated throughphantom experiments (see Phantom Validation of Fat Fraction Sequences).
This chapter presents a quantitative analysis of FF in healthy tissues, following the samemethodology and anatomical sampling strategy used for ADC analysis in QuantitativeADC Analysis in Healthy Tissues. A consistent workflow was adopted for image selec-tion, ROIs placement and radiomic feature extraction. The statistical analysis followedthe same structure and includes intra-subject repeatability across the sample, longi-tudinal intra-subject repeatability for a single patient and intra-organ variability andfeature stability.This framework provides a comprehensive characterisation of FF in normal tissues andestablishes reference distributions to support future clinical applications and modellingbased on FF-derived biomarkers.
4.1 Patients
The dataset analysed in this chapter corresponds to the same cohort of 20 healthy adultfemale subjects described in Quantitative ADC Analysis in Healthy Tissues, with a meanage of 57 ± 13 years and a broad age range (35–79 years). All subjects underwent WB-MRI acquisitions at IRST ”Dino Amadori” (Meldola, Italy), using a standardised WB-MRIprotocol that includes both diffusion-weighted and fat quantification sequences. As aresult, the FatQuant maps analysed in this chapter were acquired during the exact sameimaging sessions as the ADC maps previously used in this work, ensuring full spatial andtemporal correspondence between the two quantitative biomarkers.
The 20 subjects collectively contributed to a total of 41 WB-MRI examinations, includ-ing 14 patients with two scans each (at different time points), four patients with a singlescan, one patient with three scans and one patient with six longitudinal acquisitions,with inter-scan intervals ranging from three to nine months.All the acquisitions were characterised by high diagnostic quality and anatomical in-tegrity, with complete absence of motion-related, acquisition or reconstruction arte-facts. Each dataset was reviewed to confirm uniform signal behavior, correct fat–waterdecomposition and consistency across anatomical stations, ensuring full suitability for
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quantitative analysis.
The WB-MRI protocol applied to the 20 subjects included both the standard fat fraction(FF) sequence — based on a two-point Dixon reconstruction — and the more advancedFatQuant sequence (Philips mDixonQuant), designed for accurate fat quantification us-ing a multi-echo and multi-peak spectral model.For the statistical analysis presented in this chapter, FF values were exclusively de-rived from FatQuant acquisitions, based on the findings reported in Phantom Valida-tion of Fat Fraction Sequences. The phantom validation demonstrated that FatQuantprovides superior accuracy, linearity and stability across a wide range of fat concentra-tions, while reducing susceptibility to signal bias and modelling limitations observed insimpler Dixon implementations.Although some fat–water swaps were noted in phantom data, they occurred only inregions with extremely low fat content and were easily identifiable. In all patient scans,each FF map was individually reviewed and any visibly affected regions were systemat-ically excluded from the analysis, ensuring artefact-free ROI placement.
Throughout this chapter, the acronym FF refers to the fat fraction biomarker as esti-mated from FatQuant images only. This choice reflects the quantitative nature of thesequence and aligns with standard nomenclature in the literature, where FF is used toindicate the biomarker regardless of the specific acquisition protocol employed.
4.2 Data Collection and Processing
The entire dataset underwent a standardised post-processing workflow identical to theone described for ADC analysis in Quantitative ADC Analysis in Healthy Tissues. Each FFmap was used to define organ-specific regions of interest (ROIs), from which quantita-tive radiomic features were extracted using a consistent and reproducible protocol.
Except for the early outlier removal strategy — discussed in Outlier Removal — all stepswere carried out following the same procedures applied to ADC maps, including ROIdefinition criteria, dimensional constraints and feature computation settings.
4.2.1 ROIs placement and Features Extraction

Organ-specific ROIs were manually placed on each FatQuant-derived FF map, follow-ing the same anatomical strategy described for the ADC analysis. ROI definition andvisualisation were performed using the MIM®software[43] which enabled multi-planarinspection and accurate positioning across axial, sagittal and coronal views.
Three cylindrical ROIs were drawn for each of the seven target organs - liver, spleen,
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pancreas, kidneys, vertebrae, pelvic bone and femoral head - in order to ensure consis-tent sampling and improve statistical robustness across repeated acquisitions.The ROI standard volume was fixed at 2.6 cm3 for all the organs except for the pancreasthat required a smaller volume (0.5 cm3) due to its limited anatomical size and complexgeometry.
ROIs initially defined on the ADC maps were transferred to the corresponding FF mapsby anatomical matching. Since the FF and DWI sequences were acquired in separateblocks of the whole-body protocol, slight spatial misalignments were observed — par-ticularly in abdominal organs affected by respiratory motion. All ROIs were thereforemanually realigned on the FF maps to ensure correct placement and tissue consistency.Each ROI was carefully positioned to sample homogeneous signal regions, free from fat-water separation artefacts, visible vessels and lesions that could bias the subsequentanalysis.The overall placement strategy is illustrated in Figure 4.1, which shows representativeexamples of ROI locations on FatQuant-derived FF maps across axial, sagittal and coro-nal planes. Only the ROIs intersecting the slice position defined by the reference cursorare visible in each view.

Figure 4.1: ROIs placement for FF analysis.
Image volumes and associated ROI structures (RTSTRUCT) were exported from MIM®and processed using the SIBEX (Standardised Imaging Biomarker Extraction) software,implemented in MATLAB®[44, 45]. Each ROI was analysed individually to extract a set of
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144 quantitative radiomic features covering intensity, histogram, texture and structuralcategories as described in Appendix A.
4.2.2 Outlier Removal

Differently from the ADC analysis described in Quantitative ADC Analysis in Healthy Tis-sues, an early outlier removal step was necessary prior to any statistical evaluation ofFF values.
The patient cohort used in this study included women with a history of breast can-cer, spanning a wide age range and displaying high biological heterogeneity. While allROIs were placed in homogeneous regions with no visible lesions or structural abnor-malities, some subjects may have been affected by systemic or metabolic conditions —such as obesity, hepatic steatosis, thyroid dysfunctions or sarcopenia — which can altertissue fat content without producing clear imaging findings.These factors have little to no effect on ADC values, but may introduce large inter-subject variability in fat fraction measurements, especially in parenchymal organs suchas the liver, spleen, pancreas or kidneys. For this reason, a pre-filtering step was appliedto remove non-physiological values and ensure the robustness of subsequent statisticalanalyses.
Outliers were identified and excluded based on the interquartile range (IQR) method,as recommended by the Quantitative Imaging Biomarkers Alliance (QIBA) for statisti-cal outlier detection in biomarker analysis[47]. Specifically, for each organ, ROI-level FFvalues falling below Q1 - 1.5 × IQR or above Q3 + 1.5 × IQR were flagged as outliers. Adetailed description of the method is provided in Appendix B.To better understand the origin of extreme FF values, clinical records were reviewedwhen available. Relevant information was retrieved from the institutional oncologyinformation system MOSAIQ®(Elekta AB, Stockholm, Sweden) which includes patienthistories, diagnostic reports and treatment documentation[65].
It is important to note that all patients included in this study were originally classified as“healthy” based on the normal appearance of their Whole-Body MRI scans. However,the outlier removal step was necessary to isolate cases in which clinical conditions —although not morphologically evident — might have influenced FF values at a biochem-ical or structural level.This approach ensured that the statistical analysis was based on physiologically consis-tent data, minimising the risk of hidden biases related to subclinical alterations in fatmetabolism, hormonal imbalances or localised anomalies such as cystic lesions.Table 4.1 reports the cases in which ROIs were excluded, grouped by patient and organ,with the number of removed ROIs and clinical rationale when available. The table shows
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that several outliers, although identified statistically, were also supported by relevantclinical context.
Patient Organ Removed ROIs Clinical JustificationPatient 1 Femoral Head 1 Bone lesion (right pelvic bone)Patient 3 Pancreas 1 Diabetes and hypothyroidismPatient 3 Kidneys 4 Renal insufficiencyPatient 4 Liver 6 Hepatic cystsPatient 6 Liver 3 Hepatic hemangiomaPatient 7 Spleen 4 HypercholesterolemiaPatient 12 Spleen 3 UnknownPatient 12 Pancreas 2 UnknownPatient 17 Kidneys 3 HypothyroidismPatient 18 Kidneys 1 Total thyroidectomy

Table 4.1: Summary of removed outlier ROIs in FF analysis.
In addition to statistical outliers, another correction was applied prior to feature analy-sis: all negative FF values were replaced with zero.Although fat fraction is expressed as a percentage and is by definition a non-negativequantity, small negative values can arise in magnitude-based Dixon reconstructions dueto low signal-to-noise ratio (SNR), imperfect fat–water separation or model fitting limi-tations, especially in tissues with very low fat content such as spleen, pancreas or kid-neys[66]. As these values are not physiologically meaningful, they were replaced withzero to ensure interpretability, consistently with the methods previously adopted in lit-erature[67].
4.3 FF Statistical Analysis
The overall approach for the statistical analysis performed on FF values replicated themethodology previously adopted for ADC in Quantitative ADC Analysis in Healthy Tis-sues, following QIBA recommendations to evaluate repeatability and precision in quan-titative imaging biomarkers[46, 47, 48]. These guidelines were used as a reference tochoose the statistical metrics and the structure of the analyses.
As done for ADC, three complementary analyses were conducted. First, a repeatabil-ity analysis was performed across the whole cohort and, focusing on the mean inten-sity feature (i.e. the average FF in each ROI), it was used to evaluate intra-subject andinter-subject variabilities. An intra-subject longitudinal analysis was then performedto assess the temporal stability of FF measurements, considering a single subject whounderwent six acquisitions. Finally, intra-organ variability and feature stability was eval-uated using the full cleaned dataset.

68



4 QUANTITATIVE FF ANALYSIS IN HEALTHY TISSUES

4.3.1 FF Repeatability Across the Sample

The statistical analysis of repeatability for Fat Fraction (FF) values was conducted fol-lowing the same methodology used for ADC analysis (see ADC Repeatability Acrossthe Sample). This analysis estimates both intra-subject and inter-subject variability ofthe average FF across different acquisitions, considering only patients with at least twoscans. In this way, it quantifies both the temporal repeatability of measurements andthe biological heterogeneity within the healthy cohort.
For each subject, organ, and acquisition time point, FF values were averaged across thethree corresponding ROIs — when available after outlier removal — to obtain a singlerepresentative value per observation. In cases where fewer than three ROIs remained,the available ones were used.The reference mean FF values for each organ were then computed across the entiresample of subjects and acquisitions, including the subset of 16 patients with at leasttwo acquisitions and using only cleaned data after the outlier removal procedure de-scribed in Outlier Removal. The graphical result is shown in Figure 4.2.

Figure 4.2: Boxplot of the mean intensity (FF value) across the different organs for the FFRepeatability Analysis Across the Sample.
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The aggregated values were then analysed using a linear mixed-effects model(MixedLM), which allowed the variance to be split into intra-subject (σ2
w ) and inter-subject (σ2

b ) components. From this model, the key repeatability metrics indicated byQIBA guidelines[47, 48] were derived, providing a quantitative assessment of FF con-sistency over time and across subjects.
Organ Mean FF σ σw σb RC wCV (%) LOAL LOAULiver 3.19 1.46 0.96 1.11 2.65 44 -1.33 2.95Spleen 0.67 0.80 0.60 0.52 1.67 117 -1.93 1.37Pancreas 4.12 4.17 2.09 3.61 5.78 98 -5.17 6.47Kidney 1.14 1.31 0.84 1.00 2.33 111 -2.21 1.92Vertebra 51.77 9.23 4.02 8.31 11.14 18 -11.46 11.29Pelvic bone 66.76 8.05 3.69 7.15 10.22 11 -10.12 10.18Femoral head 87.46 3.67 2.14 2.99 5.93 4 -4.79 6.11

Table 4.2: Results for the FF Repeatability Analysis Across the Sample. All values are expressedas absolute percentages of fat fraction, except the ones explicitly indicated as percentageswhich are expressed as relative percentages.
Table 4.2 shows the obtained results and reports the mean FF value, the overall stan-dard deviation (σ), the within-subject and between-subject standard deviations (σwand σb ), the repeatability coefficient (RC), the within-subject coefficient of variation(wCV) and the lower and upper limits of agreement (LoAL and LoAU).

[A] [B]
Figure 4.3: Bland-Altman plots for the FF Repeatability Analysis Across the Sample for theliver[A] and the femoral head[B].

To visually assess the agreement between repeated acquisitions, Bland–Altman plots
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were generated for each organ. For every patient-organ combination, only chronologi-cally successive acquisition pairs were considered. The plots were computed using thegeneral form of the Bland–Altman method[49], which does not assume zero bias andallows for the detection of potential systematic differences between scans.Two representative plots are shown in Figure 4.3: one for the liver, where FF values aretypically low and subject to biological variability, and one for the femoral head, whereFF is high.
4.3.2 Intra-Subject FF Repeatability

The intra-subject repeatability of Fat Fraction (FF) measurements was further evalu-ated through a longitudinal analysis conducted on a single subject who underwent sixWB-MRI scans over a period of 24 months. The methodology applied in this sectionmirrors the one used for ADC analysis in Intra-Subject ADC Repeatability, with the goalof assessing the temporal consistency of FF measurements within the same individual,in the absence of inter-subject biological variability.

Figure 4.4: Boxplot of the mean intensity (FF value) across the different organs for theIntra-Subject FF Repeatability Analysis.
For each time point and organ, FF values were averaged across the three correspondingROIs to obtain a single representative value per acquisition. In this subject, no outlierswere identified or removed during preprocessing, so all three ROIs were available and
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included in the analysis for each organ and time point.The mean FF value for the single patient considered was calculated for each organacross all time points and the graphical results are in Figure 4.4.
For each organ and each of the six longitudinal acquisition time points, the averageFF across the three ROIs was used to calculate the within-subject standard deviation(σw ), the repeatability coefficient (RC), the within-subject coefficient of variation (wCV)and the limits of agreement (LOAL and LOAU).Results of all metrics for the seven analysed organs are reported in Table 4.3.

Organ Mean FF σw RC wCV (%) LoAL LoAULiver 3.21 0.79 2.20 25 -1.72 2.51Spleen 0.13 0.29 0.79 224 -0.77 0.48Pancreas 1.49 0.93 2.59 63 -3.93 3.64Kidney 0.58 1.02 2.82 174 -1.98 1.00Vertebra 40.09 2.30 6.37 6 -7.37 6.83Pelvic Bone 66.71 5.13 14.23 8 -16.11 12.84Femoral Head 87.93 1.32 3.66 2 -2.28 3.51
Table 4.3: Results for the Intra-Subject FF Repeatability Analysis for a single patient with sixlongitudinal acquisitions. All values are expressed as absolute percentages of fat fraction,except the ones explicitly indicated as percentages which are expressed as relative percentages.

[A] [B]
Figure 4.5: Bland-Altman plots for Intra-Subject FF Repeatability Analysis for a single subjectfor the liver[A] and the femoral head[B].
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For each organ, Bland–Altman analysis was performed by computing the pairwise dif-ferences between successive acquisitions, using the general form of the Bland–Altmanmethod[49].The liver and femoral head were again selected as representative examples and arereported in Figure 4.5.
4.3.3 Organ FF Variability and Feature Stability

In analogy with the ADC analysis presented in Organ ADC Variability and Feature Stabil-ity, intra-organ variability of the Fat Fraction (FF) was evaluated across the full dataset,including all ROIs from the 41 WB-MRI acquisitions. The objective was to quantify thestatistical dispersion of FF values within each anatomical region, as measured acrossdifferent patients and time points, and to identify stable patterns in physiological fatcontent.
The same methodology was also applied to the entire set of radiomic features extractedvia the SIBEX platform, with the goal of identifying the most stable descriptors for tis-sue characterisation beyond mean FF value alone (i.e the Mean Intensity of Grey Levelfeature of FF maps).
All analyses were performed on the cleaned dataset, where outlier ROIs were excludedaccording to the IQR-based method described in Outlier Removal. In the cleaned dataset,all negative FF values were also replaced with zero to ensure physiological consistencyand prevent bias in the statistical summaries — a correction particularly relevant in or-gans with low fat content such as the spleen, pancreas and kidneys.
For each organ, FF values were averaged across ROIs per acquisition and their distri-butions were initially explored through boxplots, violin plots and histograms. Amongthese, the histograms were selected for visual presentation and are shown in Figure 4.6,representing the shape and range of FF distributions across the seven analysed tissues.
In addition to histograms, a single boxplot was generated to summarise the distribu-tion of mean FF values across all seven organs in a compact and comparative format.The resulting plot is shown in Figure 4.7.This representation complements the histograms by highlighting the differences in cen-tral tendency, variability and the presence of outliers between regions. It is importantto note that the outliers shown in the boxplot are not residual artefacts from the origi-nal dataset but rather statistical extremes recomputed locally by the plotting algorithm.These values are flagged as outliers based on the standard boxplot convention withinthe context of each organ’s distribution and are fully consistent with the cleaned datasetused in this analysis.
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Figure 4.6: Histograms of the distributions of the mean FF value in the different organs.

Figure 4.7: Boxplot of the mean intensity (FF value) across the different organs.
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The descriptive metrics for intra-organ FF variability are summarised in Table 4.4. Foreach of the seven analysed organs, the table reports the mean, standard deviation (σ),median, minimum and maximum value, interquartile range (IQR) and coefficient of vari-ation (CoV).As done for all the statistical analyses presented throughout this chapter, all values werecomputed on the cleaned dataset obtained after outlier removal and setting all nega-tive FF values to zero.
Organ Mean FF σ Median Min Max IQR CoV (%)Liver 3.35 1.64 3.14 0.16 7.16 2.07 49Spleen 0.59 0.83 0.01 0.00 3.39 1.14 140Pancreas 3.90 3.74 2.82 0.00 15.07 5.33 96Kidney 0.93 1.28 0.26 0.00 4.54 1.43 138Vertebra 51.84 10.22 51.52 30.57 81.09 16.06 20Pelvic bone 66.49 7.91 67.66 47.71 80.70 12.34 12Femoral head 87.65 4.14 87.83 79.29 95.56 5.82 5

Table 4.4: Results for Organ FF Variability Analysis. All values are expressed as absolutepercentages of fat fractions, except the ones explicitly indicated as percentages which areexpressed as relative percentages.
As in the ADC analysis (Organ ADC Variability and Feature Stability), the same methodol-ogy was extended to the entire set of radiomic features extracted via SIBEX, in order toevaluate their intra-organ variability and to identify stable descriptors for tissue charac-terisation. For each organ-feature pair, the coefficient of variation (CoV) was computedacross all available ROIs and features were classified into three stability ranges: CoV ≤15% (high stability), 15% < CoV ≤ 30% (moderate) and 30% < CoV ≤ 45% (low). Fea-tures with CoV > 45% or constant values were excluded from the analysis.
To assess redundancy, Pearson correlation matrices were generated within each sta-bility group and representative, non-redundant features were selected from clusters ofhighly correlated descriptors (r > 0.85). As done before, only the pelvic bone is shownhere as an example (Figure 4.8), with the matrix corresponding to the most stable group(CoV ≤ 15%).
Feature reliability was also assessed using the Intraclass Correlation Coefficient (ICC), asdescribed in Organ ADC Variability and Feature Stability. Although ICC captures the pro-portion of variance due to inter-subject differences, its assumptions are only partiallysatisfied in this context, where ROIs are anatomically distinct. As a result, ICC-basedselection produced much sparser correlation matrices and in this work only CoV wasadopted as the main stability criterion for future feature selection and modelling.
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Figure 4.8: Pearson correlation matrix of FF features with CoV ≤ 15% in the pelvic bone.

4.4 Discussions
As done for the ADC in Quantitative ADC Analysis in Healthy Tissues, the results ob-tained in this chapter have been interpreted with the aim of first assessing the sta-bility of the FF biomarker across repeated acquisitions, using the two complementaryrepeatability approaches illustrated in FF Repeatability Across the Sample and Intra-Subject FF Repeatability. Subsequently, the lipid content of different healthy tissueshas been characterised in terms of fat fraction percentage, examining the distributionsobserved through descriptive statistical metrics and, where available, comparing themwith reference values reported in the literature.
As previously noted for the ADC analysis discussion, it is important to emphasise thatall evaluations were performed on WB-MRI data. Compared to region-specific imag-
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ing, WB-MRI is characterised by additional complexity due to its extensive anatomicalcoverage, heterogeneous tissue composition and greater susceptibility to acquisition-related artefacts. These aspects must be considered when interpreting the stability andreliability of FF measurements.
4.4.1 Repeatability of FF Measurements

Repeatability of Fat Fraction (FF) measurements was assessed to evaluate the temporalstability of the biomarker across repeated MRI acquisitions, following an approach con-sistent with the one employed for ADC. The first analysis was conducted on patients ofthe dataset with at least two scans, providing a broad characterisation of intra-subjectrepeatability. A second longitudinal assessment was then performed on a single subjectwho underwent six WB-MRI scans over 24 months, enabling a controlled evaluation ofintra-individual variability over time.
The sample analysis revealed two distinct patterns depending on the tissue type. Inadipose-rich regions such as the femoral head, pelvic bone and vertebrae, repeatabil-ity was high across all metrics. In these regions, the within-subject standard devia-tion (σw ) was consistently smaller than the between-subject standard deviation (σb ),indicating that most of the variability originated from biological differences betweensubjects rather than measurement noise. For instance, in the femoral head, σw wasapproximately 2.14% compared to σb of 2.99%, resulting in a low wCV of 4% and anRC of 5.93%. Similar ratios were observed in the pelvic bone and vertebrae, where σwremained in the 3.69–4.02% range, consistently lower than σb (7.15–8.31%). These find-ings suggest that FF can be considered a stable, with changes over time that are smallrelative to inter-individual variation.
In contrast, parenchymal tissues such as the liver, spleen, pancreas and kidneys ex-hibited a different behaviour. Here, σw and σb were often of comparable magnitude,suggesting that temporal variability within subjects was not negligible. In the liver, forexample, σw was 0.96% versus σb of 1.11%; in the pancreas, the gap widened to σw =2.09% and σb = 3.61%, indicating greater measurement noise relative to inter-subjectvariation. In the spleen and kidneys, σw and σb were very close (0.60% vs 0.52% and0.84% vs 1.00%, respectively), making it difficult to distinguish between biological andtechnical sources of variability.A complete summary of mean FF values together with σw and σb from the repeatabil-ity analysis across the sample is reported in Table 4.5. This table, extracted from thebroader results presented in Table 4.2, is included here for clarity, summarising the be-haviours observed across parenchymal and skeletal tissues.
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Organ Mean FF σw σbLiver 3.19 0.96 1.11Spleen 0.67 0.60 0.52Pancreas 4.12 2.09 3.61Kidney 1.14 0.84 1.00Vertebra 51.77 4.02 8.31Pelvic bone 66.76 3.69 7.15Femoral head 87.46 2.14 2.99

Table 4.5: Mean values and corresponding σw and σb from the FF Repeatability AnalysisAcross the Sample. All values are expressed as absolute percentages of fat fractions.
Beyond the relative size of σw and σb , it is also important to consider the practicalimpact of measurement variability. The repeatability coefficient (RC), which estimatesthe maximum expected difference between two measurements acquired under iden-tical conditions, was lower in absolute terms for parenchymal tissues than for osseousregions, but often comparable to — or even greater than — the mean FF values them-selves. This limits the interpretability of small temporal changes in lean organs.The within-subject coefficient of variation (wCV), a normalised index of dispersion thatexpresses variability relative to the mean of the measurements, was consistently higherin parenchymal tissues, further highlighting the reduced stability of FF in low-fat re-gions.
The longitudinal analysis conducted on a single subject provided additional insight intothe repeatability of FF measurements over time. By eliminating inter-subject variability,it allowed for a clearer assessment of intra-subject temporal stability across organs.In adipose-rich tissues, the within-subject standard deviation remained small relativeto the mean FF, resulting in low RC values and confirming the high reliability of thebiomarker even over a 24-month period (Table 4.3). In contrast, parenchymal tissuesdisplayed similar or greater levels of dispersion despite biological constancy, with σwoften approaching or exceeding the mean, leading to RC values that were dispropor-tionately large in relative terms. This confirmed that technical variability dominatesin low-fat regions. Additionally, the analysis highlighted a known limitation of relativemetrics such as wCV: when the mean FF is close to zero, even small absolute deviationsgenerate inflated coefficients of variation, reducing the interpretability of the measure.A quantitative summary of RC and wCV from both the repeatability analyses is reportedin Table 4.6. Overall, RC and wCV values tended to be lower in the longitudinal setting,confirming greater stability of FF within the same subject over time. Exceptions wereobserved in organs with very low mean FF, such as the spleen and kidneys, where therelative coefficients were inflated by the near-zero signal, and in the pelvic bone, whereRC increased despite a reduction in wCV.
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Across the Sample Intra-Subject Variation
Organ RC wCV (%) RC wCV (%) ∆RC ∆wCV (%)
Liver 2.65 44 2.20 25 -0.45 -19

Spleen 1.67 117 0.79 224 -0.88 +107
Pancreas 5.78 98 2.59 63 -3.19 -35
Kidney 2.33 111 2.82 174 +0.49 +63

Vertebra 11.14 18 6.37 6 -4.77 -12
Pelvic bone 10.22 11 14.23 8 +4.01 -3

Femoral head 5.93 4 3.66 2 -2.27 -2
Table 4.6: Comparison of RC (in absolute percentage) and wCV between FF RepeatabilityAcross the Sample and Intra-Subject FF Repeatability, with the corresponding variationbetween analyses.

The Limits of Agreement (LoAs) further confirmed distinct behaviours between tissuetypes. In osseous structures, LoAs were narrow relative to the mean FF and generallysymmetric, indicating strong agreement across acquisitions while parenchymal tissuesshowed broader ranges, often approaching or exceeding the mean FF itself, reflectinglimited measurement stability. In most cases, the absence of inter-subject variability inthe single-subject analysis lead to slightly narrower LoAs compared to the cohort ones,with the only exception of the pelvic bone that can be attributed to single anomalousvalues, clearly observable in Figure 4.4.The Bland-Altman plots reported as examples in Figure 4.5 were representative of thebroader patterns observed across all tissues. In the liver, LoAs spanned approximately–1.7% to +2.5% around a mean FF of 3.21%, suggesting that measurement fluctuationscould mask small physiological changes, while for the femoral head LoAs remainedwithin -2.28% to 3.51% around a mean of 87.93%, confirming excellent repeatability.
These considerations demonstrate that FF is a repeatable and robust biomarker in adipose-rich tissues, where intra-subject variability remains low even across extended time in-tervals. In lean parenchymal organs, both absolute and relative dispersion limit theinterpretability of repeated FF measurements, particularly when the expected physio-logical values are close to the detection threshold.
Although these results demonstrate strong internal consistency, the lack of publishedtest–retest studies in healthy subjects prevents a systematic external validation. How-ever, several works indirectly support the reliability of FF in bone tissue. Chemical shiftencoding-based water–fat imaging is routinely employed to assess bone marrow com-position and detect physiological or pathological changes, implying that FF is sufficientlystable to reflect meaningful biological variations[68]. The robustness of FF measure-ments in osseous regions is further supported by the consistent spatial gradients ob-
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served across anatomical subregions of the proximal femur in large healthy cohorts[69]and by quantitative assessments of repeatability coefficients across acquisition proto-cols using CSE-MRI[18].
4.4.2 Physiological Characterisation of FF Values in Healthy Tissues

The physiological distribution of FF values across the seven anatomical regions in thehealthy cohort was derived from the analysis presented in Organ FF Variability and Fea-ture Stability, which included all 41 WB-MRI acquisitions in the dataset.As a methodological note, due to the exclusion of outlier ROIs based on the IQR method(Outlier Removal), not all acquisitions contributed uniformly to each organ and thenumber of retained acquisitions per organ ranged approximately between 38 and 41.
For the parenchymal organs considered in this study the mean fat fraction (FF) valuesreported in Table 4.4 were compared against reference values available in the literaturefor healthy tissues. Differently from skeletal structures, the fat content in parenchy-mal organs is more heterogeneous and subject to inter-individual variability since FF inthese tissues is influenced not only by structural anatomy but also by personal factorssuch as age, metabolic status and body composition. As a result, the literature typicallydoes not define strict physiological ranges for these organs but rather reports thresholdvalues below which the tissue is generally considered healthy in comparison to patho-logical states.
In the liver, the average FF value observed in this cohort was (3.35 ± 1.64)%, whichis considered normal and is below the commonly used diagnostic cut-off of 5.00% forhepatic steatosis (i.e. the excessive deposition of triglycerides in the liver)[70].For the spleen, the mean FF was (0.59% ± 0.83)%, in line with its known lack of physi-ologic fat: even using advanced CSE-MRI techniques, measured FF values in the spleenof healthy subjects remain close to zero and are often considered artefactual or noise-driven[71].The pancreas showed a mean FF of (3.90 ± 3.74)%, which aligns with values reportedfor metabolically healthy adults individuals such as a median pancreatic FF of 4.9%(IQR 3.1–7.4%)[72]. The variability observed in the dataset is in line with the knownheterogeneity of pancreatic fat distribution, which is sensitive to both anatomical andmetabolic factors and higly influenced by various metabolic, inflammatory and neoplas-tic diseases[64].For the kidneys, the mean FF was (0.93 ± 1.28)% which is compatible with a healthyrenal profile, as it remains well below the 4% threshold typically used to define ”fattykidney” (i.e. the pathological fat accumulation in the kidneys).
The vertebral marrow in our cohort exhibited a mean fat fraction of (51.84 ± 10.22)%,
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with a 95% confidence interval of [48.71; 54.97]. The discrepancy with reference valuesreported in the literature — such as a mean of 64.43 [64.09; 64.77]% for lumbar ver-tebrae in healthy subjects[73] — was found to be statistically significant (Welch’s t -testresulted in p = 1.11 × 10−9 but can be justified by several physiological and method-ological considerations. First, the vertebral analysis performed in this study includedall available vertebrae across the spine but ROI placement was limited to morpholog-ically healthy vertebrae, based on visual inspection, in order to avoid regions affectedby metastases or structural abnormalities. This selection was necessary given that thedataset consisted of oncological patients and only non-pathological tissues were in-cluded in the analysis. No distinction was made between vertebral anatomical levels,while literature has shown that vertebral fat content increases caudally along the spine.In addition, vertebral marrow fat fraction exhibits a wide physiological range and itsdistribution can vary considerably even within healthy populations, being influencedby factors such as sex and age[68]. For a more accurate comparison, a closer demo-graphic matching between cohorts would be necessary.
The femoral head in our cohort exhibited a mean fat fraction of (87.65 ± 4.14)%, witha 95% confidence interval of [86.37; 88.93] and an interquartile range (IQR) of 5.82%.This value is in close agreement with literature data for the proximal femoral epiphysisin healthy adults, where Teixeira et al. reported a median FF of 89% (IQR: 84–92%) ina cohort of 131 subjects[69]. Although a formal Welch’s t -test could not be performeddue to the lack of mean and standard deviation in the reference study, the substantialoverlap between our confidence interval and the interquartile range reported in theliterature supports the consistency of our results with established physiological values.The narrow confidence interval and limited IQR observed in the data further supportthe low inter-subject variability of FF in this region, likely due to the homogeneous com-position of yellow marrow typically found in the femoral epiphysis, where the adiposecontent in healthy adults is uniform.
No direct reference values were available in the literature for the iliac bone and no pre-vious studies were found to apply an analysis comparable to the one presented in thiswork. However, the consistency of our findings in the other skeletal districts - the strongagreement observed in the femoral head and the physiologically interpretable deviationin the vertebral marrow - supports the robustness of FF as a quantitative biomarker inbone tissue. The pelvic bone, like the femur and vertebrae, contains bone marrow witha predominantly adipose composition in healthy adults. In our dataset, the fat fractionmeasured in this region was (66.49 ± 7.91)%, with a 95% confidence interval of [64.07;68.91]. This value lies between the vertebral marrow and femoral head fat fraction andis physiologically plausible, reflecting the expected gradient in adipose content acrossskeletal regions, which generally increases from central axial regions towards periph-
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eral appendicular sites like the femur[74].
A summary of the measured FF values together with their comparison against avail-able literature evidence and physiological expectations is provided in Table 4.7. The ta-ble offers a structured summary of the considerations discussed for each of the sevenanalysed organs, while emphasising that the present analysis is not directly compara-ble with literature data, whose heterogeneous reporting formats often preclude a directone-to-one comparison.

Organ Measured FF [CI95]
Comparison with literature

and physiological expectationsLiver 3.35 [2.75; 3.95] Below the 5% cut-off for hepatic steatosis.Spleen 0.59 [0.33; 0.85] Consistent with the well-established absenceof physiological fat content.Pancreas 3.90 [2.74; 5.06] Aligned with values reported in metabolicallyhealthy adults, reflecting the known hetero-geneity of pancreatic fat distribution.Kidney 0.93 [0.53; 1.33] Below the 4% threshold for fatty kidney.Vertebra 51.84 [48.71; 54.97] Within the wide physiological range reportedin the literature; methodological differencesjustify potential discrepancies.Pelvic bone 66.49 [64.07; 68.91]% Intermediate between vertebral and femoralhead FF values, as expected for skeletal bonemarrow composition.Femoral head 87.65 [86.37; 88.93] The confidence interval showed substantialoverlap with literature IQR ranges.
Table 4.7: Comparison between measured FF values and literature or physiologicalexpectations. All values are expressed as absolute percentages.

The consistency observed across the three bone structures - vertebra, pelvic bone andfemoral head - supports the reliability of our measurements and confirms the suitabil-ity of FF as a robust imaging biomarker for the quantitative characterisation of healthybone marrow. This expectation is supported by the statistical indicators reported in Ta-ble 4.8. The interquartile range (IQR), although not normalised, appears well-containedwhen considered relative to the mean, indicating a limited spread of values in absoluteterms, in particular in the femoral head where the IQR was below 6%.In addition, the coefficient of variation (CoV), which expresses dispersion relative tothe mean, further highlights the contrast between skeletal and parenchymal tissues. Inthe latter, CoV values were generally above 50% and exceeded 100% in the spleen andkidneys due to their very low mean FF. In contrast, the skeletal regions demonstratedsubstantially lower variability and high stability: the vertebrae had a CoV of 20%, the
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pelvic bone of 12% and the femoral head of only 5%.
Organ IQR CoV (%)Liver 2.07 49Spleen 1.14 140Pancreas 5.33 96Kidney 1.43 138Vertebra 16.06 20Pelvic bone 12.34 12Femoral head 5.82 5

Table 4.8: Summary of Organ FF Variability metrics: IQR (in absolute percentage) and CoV.
In contrast to what was observed for ADC in Quantitative ADC Analysis in Healthy Tis-sues, where osseous tissues exhibited greater variability due to lower diffusivity andreduced signal-to-noise ratio, fat fraction showed an inverted trend: variability wasmarkedly lower in skeletal regions compared to parenchymal organs.This shift in behaviour was also reflected in the radiomic domain. As shown in Figure 4.8for the pelvic bone, the number and distribution of stable features (CoV ≤ 15%) werehighly comparable between the two biomarkers (49 for ADC and 52 for FF) but theiranatomical interpretation differed. For ADC, the identification of low-variability fea-tures in bone was necessary to mitigate the inherent instability of the primary metric,affected by low signal and noise. In contrast, FF was already physiologically homoge-neous in bone marrow and the feature matrix reflected this consistency across multiplefamilies, including GLCM, GLDZM, GLRLM and first-order descriptors.In both cases, extending the analysis to the full radiomic feature set yielded a broadselection of stable descriptors in the pelvic region. However, since these features act ascomplementary elements with divergent physiological implications, such biomarker-specific behaviours should be carefully considered when developing radiomic-basedpredictive models.
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5 Clinical Application of ADC and FF in
Multiple Myeloma

The characterisation of healthy tissues in Quantitative ADC Analysis in Healthy Tissuesand Quantitative FF Analysis in Healthy Tissues highlighted distinct behaviours for theimaging biomarkers ADC and FF in different anatomical regions, especially in terms ofrepeatability and stability.In particular, the findings observed in bone tissues such as the pelvic bone, vertebraeand femoral head provide the foundation for their clinical application in diseases thatalter the composition of bone marrow. Among these, a particularly relevant and clin-ically significant target is Multiple Myeloma (MM) - a malignant plasma cell disordercharacterised by the clonal proliferation of plasma cells in the bone marrow.
In this chapter, the expected behaviour of ADC and FF is first examined in relation tomyeloma disease progression, as pathological infiltration alters the marrow microenvi-ronment. This is followed by an exploratory analysis of a new dataset including patientswith multiple myeloma at different clinical stages. Predictive modelling approaches arethen applied, using both mean values and additional radiomic features extracted fromADC and FF maps. Finally, the clinical relevance of these findings is discussed, withparticular focus on the potential integration of imaging biomarkers with genetic andlaboratory data to enable more comprehensive patient stratification.
5.1 Biomarker Expectations in Disease Progression
Quantitative Imaging Biomarkers (QIBs) such as the Apparent Diffusion Coefficient (ADC)and Fat Fraction (FF) are central in the evaluation of bone marrow involvement in Multi-ple Myeloma (MM). These biomarkers reflect microstructural changes occurring in thebone marrow and can be used for the non-invasive assessment and monitoring of tu-mour burden. Due to their distinct signal properties and physiological sensitivity, theircombined interpretation is essential to characterise marrow composition, allowing ef-fective discrimination between healthy and pathological conditions.
In the context of Whole-Body MRI (WB-MRI), the two biomarkers exhibit markedly dif-ferent behavior in healthy bone marrow, as demonstrated in Quantitative ADC Analysisin Healthy Tissues and Quantitative FF Analysis in Healthy Tissues.ADC is a well-established biomarker that reflects water diffusivity within tissues. Inhealthy bone marrow, ADC values tend to be low due to the limited water content andcompact microarchitecture, resulting in low signal intensity and a poor signal-to-noiseratio (SNR) in diffusion-weighted sequences. This combination leads to higher measure-
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ment variability and makes ADC less sensitive to subtle changes in normal bone tissue,although its responsiveness increases significantly in the presence of pathological infil-trations.FF, on the other hand, is an emerging imaging biomarker that quantifies the proportionof fat in the bone marrow[64]. In healthy conditions, FF values are typically high, owingto the physiological abundance of adipocytes, which serve as an energy reservoir forthe skeletal system and play a regulatory role in haematopoiesis. This high fat contentgenerates a strong and homogeneous FF signal, which translates into excellent stabilityand repeatability in quantitative measurements. The FF signal remains robust even inrepeated acquisitions and its intrinsic stability makes FF particularly effective in distin-guishing healthy bone marrow from pathological infiltration.
Given their distinct biophysical sensitivities — ADC to water mobility and FF to fat con-tent — the combined use of both biomarkers is essential to obtain a complete and reli-able characterisation of bone marrow tissue. While ADC is more responsive to changesin cellularity and tissue microstructure, FF reflects variations in fat composition. To-gether, they allow for the detection of alterations in marrow architecture and fat con-tent that occur during the progression of infiltrative bone marrow diseases, enablinga more accurate distinction between physiological and pathological states and poten-tially supporting longitudinal assessment of disease burden.
Multiple Myeloma (MM) is an haematological cancer characterised by the clonal pro-liferation of plasma cells within the bone marrow.As outlined in WB-MRI in Multiple Myeloma, this malignant plasma cell disorder evolvesthrough a continuum of clinical stages: Monoclonal Gammopathy of Undetermined Sig-nificance (MGUS), Smoldering Multiple Myeloma (SMM) and finally Multiple Myeloma(MM), which represents the symptomatic and clinically active phase of the disease.This biological progression reflects increasing tumour burden and marrow infiltration,transitioning from indolent to active disease. The shift from SMM to MM is clinically de-fined by the appearance of Myeloma-Defining Events (MDEs), such as 60% bone mar-row plasma cells, elevated serum free light chain ratios or the presence of more thanone focal lesion on MRI[28, 30, 31].
While these clinical stages reflect systemic tumour evolution, WB-MRI allows for spatialcharacterisation of marrow involvement, capturing not only the extent of disease butalso its distribution pattern. The MY-RADS guidelines[28] describe how infiltration pat-terns can be assessed through diffusion-weighted imaging, where healthy bone marrowtypically appears with a low, homogeneous signal on high b-value DWI, consistent withnormal fat-rich composition and absence of disease. In contrast, tumour-infiltratedmarrow presents as hyperintense areas on DWI and shows increased ADC values due
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to higher cellularity and water content.
Marrow involvement in MM can be radiologically classified into several progression-linked patterns. The focal pattern is characterised by one or more discrete lesions withinthe marrow and reflects localised infiltration, marking the transition from smoldering toactive disease. In the diffuse pattern, the entire marrow appears uniformly infiltrated,with globally increased signal on DWI that indicates widespread replacement of fat bytumour cells and is typically associated with advanced disease and high tumour burden.Focal on diffuse is considered an even more severe pattern, where focal lesions emergeon a background of diffuse infiltration, suggesting both structural disorganisation andactive proliferative disease. At more advanced stages, tumour growth can extend be-yond the marrow cavity: in the paramedullary pattern, the tumour mass lies adjacentto but external to the bone marrow and in the extramedullary pattern infiltration pro-gresses further into surrounding soft tissues, indicating highly aggressive disease withextensive systemic dissemination[75].
These radiological patterns not only correspond to distinct morphological stages of infil-tration but also correlate with quantitative changes in bone marrow composition, par-ticularly in ADC and FF values. As the disease progresses, their interpretation providesboth visual and quantitative insight into the extent and aggressiveness of marrow in-volvement.From a tissue composition standpoint, the infiltration of bone marrow by malignantplasma cells leads to significant microstructural alterations. The progressive replace-ment of adipocytes and haematopoietic elements by dense, lipid-poor tumour tissueresults in

• an increase in ADC, due to greater extracellular water content and reduced mi-crostructural restriction;
• a decrease in FF, reflecting the depletion of marrow fat.

This transformation reflects the remodelling of the marrow environment during diseaseprogression, as bone marrow adipose cells are replaced by focal or diffuse malignantinfiltration[76]. This trend is also supported by quantitative MRI studies, which haveshown consistent increases in ADC and decreases in FF across infiltration patterns, incorrelation with clinical and prognostic markers[77], and form the basis to use Quantita-tive Imaging Biomarkers (QIBs) in the non-invasive assessment of disease progression,from diagnosis to longitudinal follow-up.A visual summary of these expected microstructural and quantitative changes betweenhealthy and myeloma-infiltrated bone marrow is presented in the following schematicoverview (Figure 5.1).
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Figure 5.1: Schematic comparison of marrow structure and corresponding ADC and FFbehaviour in healthy and myeloma-infiltrated bone.
The conceptual trends illustrated above are corroborated by quantitative imaging stud-ies that validate the expected behavior of ADC and FF in the clinical setting. Thesebiomarkers have been shown to correlate with bone marrow plasma cell percentage(BMPC), serum monoclonal protein levels and other prognostic indicators such as β2-microglobulin, hemoglobin concentration and flow cytometry findings[78, 77]. From atherapeutic perspective, their quantitative dynamics are also useful for treatment mon-itoring, with FF emerging as the more stable and reproducible parameter to assess earlyresponse to therapy[79].
To support the theoretical trends described above, a preliminary visual inspection canprovide qualitative confirmation of the expected behaviours of ADC and FF in healthyand myeloma-infiltrated bone marrow. This comparison can be performed by analysingaxial images extracted from WB-MRI-derived ADC and FF maps.Figure 5.2 displays axial slices from WB-MRI acquisitions, comparing healthy and myeloma-infiltrated bone marrow in both ADC and FF maps. The pelvic bone has been selecteddue to its high clinical relevance, frequent involvement in MM and the availability ofhistological confirmation from diagnostic bone marrow biopsies routinely performed inthis location. In Figure 5.2, the right and left pelvic bones have been manually contouredin red to clearly identify the regions of interest. It should be noted that the images [A]and [C] belong to the same healthy subject, a female patient, while the pathologicalcases [B] and [D] come from two different male patients. Minor anatomical differences
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between scans are thus attributable to physiological inter-subject variability.

[A] [B]

[C] [D]
Figure 5.2: Qualitative comparison between healthy and myeloma-infiltrated pelvic bonemarrow (outlined in red) in WB-MRI. ADC maps are shown in [A] for a healthy subject and in[B] for a patient with myeloma. FF maps are displayed in [C] and [D], respectively for a healthysubject and a myeloma patient.

In Figure 5.2, images [A] and [B] show the ADC maps: in the healthy subject ([A]), thebone marrow of the pelvic region appears dark, reflecting the typically low ADC signaldue to compact structure and limited water diffusivity. In the pathological case ([B]),the marrow shows slightly hyperintense areas, indicating increased diffusivity. The dis-tinction remains visually subtle and affected by noise, which is a known limitation ofADC imaging in osseous tissue due to inherently low signal-to-noise ratio.In contrast, the FF maps shown in [C] and [D] reveal a more apparent qualitative differ-ence. In the healthy subject ([C]), the pelvic bone displays uniformly high signal, con-sistent with the expected high fat content of normal haematopoietic marrow. In thepathological case ([D]), several darker areas are clearly visible within the red contours
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of the pelvic bone, indicating reduced fat fraction in the infiltrated marrow.
5.2 Patient Cohort and Exploratory Analysis
The theoretical expectations regarding the behaviour of ADC and FF in healthy ver-sus myeloma-infiltrated bone marrow were further examined through the analysis of acomprehensive patient cohort, including subjects across different clinical stages. A vi-sual exploration of biomarker variations in relation to disease progression is presentedto qualitatively assess emerging trends and provide context for the predictive modellingpresented in the subsequent sections.
5.2.1 Patient Groups and Image Data

The dataset used for this analysis includes both healthy and diseased subjects acrossdifferent clinical stages of multiple myeloma. A total of 148 regions of interest (ROIs)were analysed, each positioned within the right iliac bone of the pelvis and with a fixedvolume of 2.6 cm3. The pelvic region was selected due to its clinical relevance in de-tecting marrow infiltration. To minimise variability in signal intensity, the right side wasconsistently chosen for all subjects as the pelvis lies near the interface between thebody and lower-limb coil arrays in WB-MRI and this transition zone could introducesubtle signal discontinuities between the left and right sides.
The healthy group of the cohort consists of 20 patients from a breast cancer imag-ing protocol, previously analysed in Quantitative ADC Analysis in Healthy Tissues andQuantitative FF Analysis in Healthy Tissues. Although these individuals were oncolog-ical patients, the tissues selected for analysis were free from pathological infiltrationand considered physiologically normal. Several patients underwent multiple MRI ac-quisitions and one ROI was selected from the right pelvic bone in each acquisition. Thisresulted in a total of 41 non-pathological ROIs.The pathological portion of the dataset includes three distinct clinical groups:

• SMM (n = 38): patients in an early, asymptomatic stage with detectable plasmacell proliferation in the marrow but no clinical end-organ damage.
• MM (n = 46): patients in the active, symptomatic form of the disease, charac-terised by marrow infiltration and CRAB criteria.
• RRMM (n = 23): relapsed/refractory patients who did not achieve remission orshowed progression after treatment.

In all diseased patients, one ROI was positioned in the right pelvic bone, in proximity tothe biopsy site used for diagnosis.
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The composition of the entire dataset is summarised in Table 5.1.
Group Description Number of Patients Total ROIsHealthy Control 20 41SMM Early, asymptomatic stage 38 38MM Active disease 46 46RRMM Relapsed or refractory disease 23 23
Total 127 148

Table 5.1: Composition of the multiple myeloma dataset.
Each ROI was placed on both the ADC and FF maps obtained from the patients’ WB-MRI acquisitions, carefully adjusting for potential spatial misalignments between thesequences to ensure anatomically consistent placement within the pelvic bone tissue.The acquisition protocols followed are described in detail in WB-MRI Protocols andAcquisition Parameters for Quantitative Sequences. All myeloma patients underwentimaging according to the MY-RADS-based WB-MRI protocol, while healthy controls werescanned using the breast cancer protocol. As discussed in the corresponding section,although the acquisition protocols slightly differ, their technical characteristics are suf-ficiently comparable to ensure that FF and ADC values can be consistently interpretedacross the two protocols.Since this dataset includes patients who underwent WB-MRI in years prior to the in-troduction of the FatQuant sequence, fat fraction estimation was based on the FF mapderived from the mDixonAll acquisition for all patients. As highlighted in Phantom Vali-dation of Fat Fraction Sequences, this sequence has been validated as suitable for quan-titative fat assessment in bone marrow.
Each ROI was processed using the SIBEX radiomics platform[44, 45] to extract not onlythe mean signal intensity values of ADC and FF but also a comprehensive set of radiomicfeatures. This approach allowed for an extended analysis in the radiomic domain, con-sistent with the methodology adopted in Quantitative ADC Analysis in Healthy Tissuesand Quantitative FF Analysis in Healthy Tissues.
5.2.2 Distribution of ADC and FF Across Clinical Groups

To investigate the behaviour of quantitative imaging biomarkers across clinical stages,an initial exploratory analysis was conducted on the dataset comprising both healthycontrols and multiple myeloma patients. Specifically, the cohort was subdivided intofour clinical categories: Healthy, SMM, MM and RRMM. Additionally, an aggregated cat-egory labelled ”All Diseased” was included to represent the entire spectrum of patho-logical cases. This group combines all stages of myeloma and provides a summarised
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view of disease-related alterations, which is particularly useful in the context of binaryclassification tasks presented later in this chapter.
The analysis focused on the distribution of the mean values of ADC and FF within eachgroup. For each biomarker, a boxplot was generated to provide a visual representa-tion of its variation across categories and to identify potential trends related to diseaseprogression. To support these qualitative observations, non-parametric statistical testswere also performed to assess whether the observed differences between groups werestatistically significant.
The first biomarker analysed was the Apparent Diffusion Coefficient (ADC). Figure 5.3shows the distribution of mean ADC values across all clinical groups. Each box repre-sents the interquartile range of the ADC values in the corresponding group, with themedian indicated by the horizontal line.

Figure 5.3: Boxplot of the mean intensity (ADC value) across the different categories of themultiple myeloma dataset.
As illustrated in the figure, ADC values tend to increase with disease severity. TheHealthy group exhibits low median values, consistent with the limited water diffusivityof normal, fat-rich bone marrow. A progressive rise is observed in the MM and RRMMgroups, reflecting the increased cellularity and extracellular water content associatedwith pathological infiltration.Interestingly, the SMM group shows slightly lower ADC values than the Healthy group,a finding that diverges from the expected monotonic trend. This inversion may be par-
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tially explained by technical factors: all WB-MRI scans of myeloma patients were ac-quired in earlier years compared to those of healthy controls, possibly before full op-timisation of DWI sequences. Additionally, SMM is a biologically heterogeneous stagewhere some patients may exhibit minimal or indolent marrow involvement, contribut-ing to this variability.The variance in ADC values is notably higher in the diseased groups compared to thehealthy cohort. This observation is consistent with the diversity of infiltration patternsin multiple myeloma, which range from focal to diffuse and lead to broader heterogene-ity in tissue composition and water diffusivity.
To determine whether the visual trends observed in ADC values were statistically sig-nificant across clinical categories, non-parametric tests were employed. Given the non-Gaussian distribution of the data and the unequal group sizes, the Kruskal–Wallis testwas applied to compare ADC distributions across the four clinical stages: Healthy, SMM,MM, and RRMM. This test evaluates the null hypothesis that all groups originate fromthe same population distribution and is a rank-based method that does not assumenormality[80]. The result revealed a statistically significant difference ( H = 20.79,
p = 1.16×10−4), confirming that at least one group differs significantly from the othersin terms of marrow diffusivity.
In order to identify which specific groups were responsible for this difference, Dunn’spost-hoc test with Bonferroni correction was performed. This non-parametric post-hocprocedure evaluates all possible pairwise comparisons between groups while control-ling the family-wise error rate; the Bonferroni correction adjusts the significance thresh-old to account for multiple testing, thereby reducing the risk of false positives[80]. Theresults for ADC are reported in Table 5.2, showing adjusted p-values for all pairwisecomparisons in matrix form.

Healthy SMM MM RRMM
Healthy 1.00 0.64 1.00 0.01
SMM 0.64 1.00 0.05 5.20 × 10−5

MM 1.00 0.05 1.00 0.11
RRMM 0.01 5.20 × 10−5 0.11 1.00

Table 5.2: Pairwise group comparisons for ADC mean values using Dunn’s test with Bonferronicorrection (adjusted p-values). Statistically significant results are highlighted in bold.
These results indicate that statistically significant differences in ADC are primarily asso-ciated with the RRMM group, which showed elevated values compared to both Healthyand SMM subjects. No significant differences were detected between Healthy, SMMand MM, suggesting that ADC alone may have limited discriminative power in distin-
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guishing early or intermediate stages of myeloma.
To further assess the potential of ADC as a binary classifier between healthy and patho-logical marrow, an additional Kruskal–Wallis test was performed comparing Healthysubjects with the aggregated category All Diseased (comprising SMM, MM and RRMM).Interestingly, this test did not yield statistical significance (H = 0.55 and p = 0.46),highlighting that while ADC values tend to increase in advanced disease, their variabil-ity and overlap across early and intermediate stages limit their ability to clearly sepa-rate healthy from diseased marrow in a dichotomous setting. This finding reinforcesthe importance of incorporating disease staging into any ADC-based stratification andsuggests that additional biomarkers may be necessary to enhance diagnostic accuracyin early-phase multiple myeloma.
The same exploratory analysis was applied to the Fat Fraction (FF) biomarker. Figure 5.4displays the distribution of mean FF values across the clinical groups, including the ag-gregated All Diseased category.

Figure 5.4: Boxplot of the mean intensity (FF value) across the different categories of themultiple myeloma dataset.
A general decreasing trend in FF values is observable along the clinical continuum, con-sistent with the expected reduction in marrow adiposity due to tumour infiltration.RRMM patients, in particular, exhibit markedly low FF values, in some cases approach-ing ∼10%, which reflects extensive degradation of fat content in the bone marrow.Conversely, the SMM group displays higher median FF values than the healthy controls.
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This unexpected result may be attributed to the technical differences between the opti-misation of acquisition protocols or to biological heterogeneity within the SMM cohort,as previously discussed.As observed for ADC, the variance in FF is visibly greater among diseased patients,supporting the notion that myeloma infiltration alters marrow composition in a non-uniform manner across individuals and disease stages.
To assess statistical significance, a Kruskal–Wallis test confirmed a significant differencein FF values among the four clinical groups (H = 37.53 and p = 3.56×10−8). In contrastto ADC, the FF biomarker also demonstrated a significant difference when comparingHealthy subjects against the aggregated All Diseased group (H = 4.24 and p = 0.04),suggesting a more robust ability to distinguish healthy from infiltrated marrow evenwhen early-stage patients are included.
Pairwise comparisons using Dunn’s test with Bonferroni correction are reported in Ta-ble 5.3. Statistically significant differences were found between Healthy and RRMM(p = 6.63 × 10−5), SMM and MM (p = 3.69 × 10−4) and SMM and RRMM (p =
2.05 × 10−7).

Healthy SMM MM RRMM
Healthy 1.00 1.00 0.05 6.63 × 10−5

SMM 1.00 1.00 3.69 × 10−4 2.05 × 10−7

MM 0.05 3.69 × 10−4 1.00 0.14
RRMM 6.60 × 10−5 2.05 × 10−7 0.14 1.00

Table 5.3: Pairwise group comparisons for FF mean values using Dunn’s test with Bonferronicorrection (adjusted p-values). Statistically significant results are highlighted in bold.
These results highlight the superior discriminative power of FF in differentiating bothbetween and within disease stages. In particular, the sharp reduction in fat content ob-served in RRMM patients reinforces the role of FF as a sensitive biomarker for advancedmarrow infiltration. The presence of significant differences across multiple pairwisecomparisons also suggests that FF may have stronger potential than ADC for early dis-ease detection and stratification.
5.3 Predictive Modelling
The exploratory analyses presented in Distribution of ADC and FF Across Clinical Groupshave demonstrated that both Apparent Diffusion Coefficient (ADC) and Fat Fraction (FF)exhibit systematic variations across different clinical stages of multiple myeloma. Thesefindings suggest that Quantitative Imaging Biomarkers (QIBs) may have potential not
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only for descriptive analysis but also for classification and disease stratification.The aim of this section is to explore whether such biomarkers can support automateddisease classification and contribute to clinically meaningful patient stratification.
Predictive modelling approaches were applied to investigate the diagnostic performanceof ADC and FF in discriminating healthy subjects from patients at different disease stages.Logistic regression models were implemented to evaluate the ability of these biomark-ers to distinguish between classes based on imaging features extracted from the rightpelvic bone. Receiver Operating Characteristic (ROC) curves were generated to quan-tify classification performance, using the Area Under the Curve (AUC) as the primaryevaluation metric. In the initial phase, models were tested using only the mean inten-sity values of ADC and FF, both individually and in combination, as outlined in Prelimi-nary Results. This was followed by the development of extended models incorporatingradiomic features, selected through a two-step process based on statistical variabilityand regularised regression, as described in Methods and Feature Selection. Final per-formance metrics and classification outcomes are reported in Multiparametric Classifi-cation Modelling with ADC, FF and Radiomic Features.
5.3.1 Preliminary Results

In the preliminary phase of modelling, the diagnostic potential of ADC and FF was as-sessed using only their respective mean intensity values, computed from the right pelvicbone regions of interest (ROIs) previously defined in the study cohort described in Pa-tient Groups and Image Data. The objective was to evaluate whether these individualimaging biomarkers are sufficient to effectively discriminate between healthy subjectsand patients at different clinical stages of multiple myeloma.
For each comparison, a binary classification problem was formulated: one class con-sisted of healthy controls, while the second class included patients in a specific dis-ease stage (SMM, MM, RRMM) or all stages combined (All Diseased). Classification wasperformed using logistic regression, a statistical model commonly used for binary out-comes. It estimates the probability that a sample belongs to a given class as a functionof one or more input features — in this case, either ADC or FF mean intensity values.The model outputs a probability score for each sample, which is then compared to athreshold to assign a predicted class[81].
To ensure robust evaluation, a Repeated Stratified K-Fold cross-validation strategy wasemployed, with three splits and 30 repeats. This method divides the dataset into strat-ified folds (preserving class proportions), repeatedly training and testing the model ondifferent partitions. This approach mitigates overfitting and provides a more reliableestimate of the model’s generalisability[82].
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Model performance was assessed using Receiver Operating Characteristic (ROC) curves.These curves plot the true positive rate (i.e. sensitivity) against the false positive rate(i.e. 1 – specificity) across all classification thresholds. The Area Under the Curve (AUC)provides a scalar summary of performance: a value of 1.0 indicates perfect classifi-cation, while a value of 0.5 indicates random guessing. For each model, the meanAUC across cross-validation folds was computed along with its 95% confidence inter-val (CI95), reflecting the uncertainty around the estimate.
The results for ADC and FF, tested independently, are summarised in Table 5.4.

ADC Mean Intensity FF Mean Intensity
Comparison AUC [CI95] AUC [CI95]Healthy vs SMM 0.63 [0.62; 0.65] 0.63 [0.61; 0.65]Healthy vs MM 0.52 [0.50; 0.55] 0.70 [0.68; 0.72]Healthy vs RRMM 0.78 [0.76; 0.80] 0.82 [0.80; 0.85]Healthy vs All Diseased 0.52 [0.50; 0.53] 0.61 [0.59; 0.62]

Table 5.4: AUC values and 95% confidence intervals (CI95) for logistic regression models usingADC or FF mean intensity as single predictors.
Both biomarkers showed progressively higher AUC values with increasing disease sever-ity, particularly in the RRMM group, where ADC and FF reached values of 0.78 and 0.82,respectively.In early-stage comparisons, however, classification performance was limited. For in-stance, in the Healthy vs SMM setting, both ADC and FF achieved modest AUCs of 0.63,suggesting weak but symmetrical predictive ability. A marked discrepancy was observedin the Healthy vs MM comparison: while FF achieved an AUC of 0.70, ADC yielded a sub-stantially lower value of 0.52, suggesting no classification ability. This trend persistedin the aggregated comparison between Healthy and All Diseased subjects, where ADCagain resulted in an AUC of 0.52 — a value approaching random classification — whileFF reached 0.61.These results are consistent with the findings of the exploratory statistical analysis pre-sented in Distribution of ADC and FF Across Clinical Groups, where no significant differ-ence was found for ADC between Healthy and All Diseased groups, while FF exhibiteda significant distinction.Overall, the results indicate that neither ADC nor FF mean intensity values, when usedindividually, are sufficient to robustly classify disease status across the full clinical spec-trum.
To assess whether combining information from both biomarkers improves classifica-tion performance, a second set of models was tested using the joint mean intensity
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values of ADC and FF as input features.The same logistic regression framework and validation strategy were applied. The re-sulting AUC values are reported in Table 5.5 and the ROC curves are shown in Figure 5.5.
ADC and FF Mean Intensities

Comparison AUC [CI95]Healthy vs SMM 0.66 [0.64; 0.68]Healthy vs MM 0.70 [0.68; 0.71]Healthy vs RRMM 0.83 [0.81; 0.85]Healthy vs All Diseased 0.61 [0.59; 0.62]
Table 5.5: AUC values and 95% confidence intervals (CI95) for logistic regression models usingcombined ADC and FF mean intensities as predictors.

Figure 5.5: ROC curves for logistic regression models using combined ADC and FF meanintensities.
While the inclusion of both biomarkers led to slightly higher AUC values in most com-parisons, the improvement was modest relative to using FF alone. In particular, thecombined model achieved AUC values of 0.66 [0.64; 0.68] for Healthy vs SMM, 0.70
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[0.68; 0.71] for Healthy vs MM, 0.83 [0.81; 0.85] for Healthy vs RRMM and 0.61 [0.59;0.62] for Healthy vs All Diseased — values that closely reflect those obtained using FFmean intensity as a single predictor.These findings reinforce the superior predictive performance of FF over ADC when us-ing mean intensity values alone, while also supporting the potential of multiparametricapproaches to improve classification when extended to more complex feature sets.
5.3.2 Methods and Feature Selection

As observed in the previous section, both ADC and FF mean intensity values showed aclear association with disease stage, reflecting biologically meaningful changes in bonemarrow composition. However, their standalone predictive power remained limited,particularly for intermediate stages such as smoldering myeloma. While the combina-tion of ADC and FF mean intensities provided a slight improvement, the overall perfor-mance suggested that additional information would be needed to capture more subtleor spatially heterogeneous disease patterns. These observations motivated a shift to-wards a multiparametric radiomic approach, intended to exploit the rich textural andstructural information encoded in ADC and FF maps beyond simple average signal lev-els.
In selecting candidate features for classification, a natural strategy was to prioritisethose with low variability in healthy tissues, particularly in the pelvic bone, as previ-ously analysed in Organ ADC Variability and Feature Stability and Organ FF Variabilityand Feature Stability. In those sections, several features were identified as stable basedon a Coefficient of Variation (CoV) below 15%, with a total of 49 ADC features and 52FF features falling within this low-variability range, as illustrated in the correspondingcorrelation matrices in Figure 2.8 and Figure 4.8.Directly using this extended set of stable features was not appropriate given the rela-tively small size of the multiple myeloma dataset (148 ROIs in total as described in Pa-tient Groups and Image Data): including such a large number of predictors in a modelwith limited observations would have led to poor generalisability and a high risk of over-fitting, violating standard principles of statistical learning.
For this reason, a dedicated selection strategy was developed to identify a compact, ro-bust and non-redundant subset of radiomic features specific to the classification task.Among the features previously extracted using the SIBEX platform[44, 45], only thoseexhibiting a CoV between 0% and 5% within the healthy control group were selected,carrying out the procedure independently for ADC and FF maps.Redundancy among the retained features was addressed by computing pairwise Pear-son correlation coefficients. When two features exhibited high linear correlation (ab-solute value above 0.85), only the more stable of the pair — that is, the one with the
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lower CoV — was kept. This ensured that the selected feature set was not only stablebut also minimally redundant, providing complementary information and reducing therisk of multicollinearity in the model.These steps reduced the initial high-dimensional feature set to a smaller, more stablesubset for each modality: 9 features were retained for ADC and 7 for FF.
Following this, an embedded selection method was applied to identify the most infor-mative predictors (features) for classification. Specifically, a multiclass logistic regres-sion model with L1 regularisation (LASSO) was trained to distinguish between the fourdiagnostic groups: Healthy, SMM, MM and RRMM. In this framework, the feature se-lection occurs automatically during model fitting: the L1 penalty encourages sparsity inthe model coefficients by driving many of them exactly to zero. Features with non-zerocoefficients in at least one class are retained, as these contribute to the discrimina-tion between groups. This regularised approach yields compact models with only a fewactive predictors, improving generalisability and reducing the risk of overfitting whileconcentrating on the most relevant descriptors[83].
In addition to the selected radiomic features, the mean intensity of each map was alsoincluded in the analysis. This decision was justified by the biological interpretation ofthese metrics: the mean ADC reflects water diffusivity, which tends to increase withmarrow infiltration, while the mean FF represents fat content, which typically decreasesas disease progresses. Including these values thus added a complementary summaryof tissue composition with known clinical relevance, as already demonstrated in Distri-bution of ADC and FF Across Clinical Groups.
To facilitate a structured comparison between different modelling strategies, three dis-tinct datasets were prepared: one containing only features derived from ADC maps andtheir corresponding mean intensity, one including only FF-based features and mean in-tensity and a third one combining all features from both modalities. This design enableda systematic evaluation of the predictive contribution of each biomarker, both individ-ually and in combination.
The final feature sets consisted of the following descriptors:

• ADC [GLDZM] Zone Distance Entropy;
• ADC [NGLD] Dependence Count Entropy;
• ADC [GLSZM] Zone Size Entropy;
• ADC [ID] Mean Intensity;
• FF [IH] Discretised Intensity Entropy;
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• FF [NGLD] Dependence Count Entropy;
• FF [ID] Mean Intensity.

Since these features were selected through the combined application of variability fil-tering, redundancy reduction and embedded modelling, they were both stable in healthytissue and informative for classification. This dual property suggests that the selecteddescriptors capture relevant alterations in marrow architecture and composition asso-ciated with disease. Notably, many of these features are entropy-based — quantifyingthe degree of spatial or distributional disorder within the ROI — and belong to dis-tinct radiomic families: GLDZM (Grey Level Distance Zone Matrix), GLSZM (Grey LevelSize Zone Matrix), NGLD (Neighbourhood Grey Level Dependence) and IH (IntensityHistogram). Their selection indicates that pathological marrow infiltration introducesstructural disorganisation and heterogeneity, which manifests as increased entropy inaffected regions.
5.3.3 Multiparametric ClassificationModelling with ADC, FF and Radiomic Features

The final set of radiomic features described in the previous section was used to developpredictive models for classifying healthy and diseased subjects. The goal was to assesswhether a multiparametric approach — combining mean intensity values and radiomicdescriptors from both ADC and FF maps — could improve the classification of bone mar-row infiltration in multiple myeloma compared to the performance achieved by usingonly ADC and FF mean intensities as done in Preliminary Results.
Classification was performed by comparing healthy subjects against the pathologicalclasses of the dataset, using the three different feature configurations: ADC-derivedfeatures (radiomic descriptors and mean intensity), FF-derived features and a combinedmultiparametric set including both modalities.To evaluate the predictive performance of each configuration, a Repeated Stratified K-Fold cross-validation strategy was applied (3 folds, 30 repetitions), ensuring balancedclass distributions and robust estimation. A logistic regression model without regulari-sation was used, and performance was summarised by the average AUC across repeti-tions, with 95% confidence intervals computed via percentile bootstrapping.
The ROC curves for the classification task ”Healthy vs All Diseased” are shown in Fig-ure 5.6, comparing the three tested feature configurations. Each curve represents themean true positive rate across 90 validation folds and the shaded areas indicate thestandard deviation. The FF-based model achieved the highest classification perfor-mance (AUC = 0.97), closely followed by the combined ADC+FF model (AUC = 0.96).The ADC-based configuration alone showed reduced discriminative power (AUC = 0.60)but still contributed complementary information in the multiparametric setting.
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Figure 5.6: ROC curves for logistic regression models using multiparametric features from ADCand FF maps, including both mean intensities and radiomic descriptors.
Only the ”Healthy vs All Diseased” task is shown in the ROC plot for clarity and brevity:this specific comparison was selected for visualisation as it represents the most clini-cally relevant scenario, aiming to distinguish healthy bone marrow from any degree ofpathological infiltration, without stratifying disease severity. Despite being the mostchallenging task — as also reflected in the lower AUC values reported in PreliminaryResults — it provides a comprehensive summary of the model’s overall discriminativeability.AUC values with 95% confidence intervals were computed for all binary classificationtasks, comparing healthy subjects against a specific disease stage. The complete resultsare summarised in Table 5.6.
The results reported in Table 5.6 confirm the trends already observed in the analysis ofPreliminary Results, with FF-derived features systematically outperforming ADC-basedones across all classification tasks. The FF feature set alone achieved remarkably highAUC values — exceeding 0.95 in all comparisons — and showed excellent discriminativepower even in the most challenging cases such as “Healthy vs All Diseased”. In contrast,the ADC feature set resulted in moderate classification performance, with AUC values

101



5 CLINICAL APPLICATION OF ADC AND FF IN MULTIPLE MYELOMA
ADC Feature Set FF Feature Set ADC and FF Feature Sets

Comparison AUC [CI95] AUC [CI95] AUC [CI95]Healthy vs SMM 0.64 [0.48; 0.82] 0.98 [0.90; 1.00] 0.91 [0.73; 1.00]Healthy vs MM 0.68 [0.53; 0.81] 0.95 [0.89; 1.00] 0.93 [0.76; 0.99]Healthy vs RRMM 0.73 [0.53; 0.92] 0.99 [0.91; 1.00] 0.93 [0.77; 1.00]Healthy vs All Diseased 0.60 [0.47; 0.69] 0.97 [0.93; 0.99] 0.96 [0.91; 1.00]
Table 5.6: AUC values and 95% confidence intervals (CI95) for logistic regression models usingradiomic and intensity features from ADC, FF and both modalities combined.

ranging from 0.61 to 0.73 depending on the comparison. When the two modalities werecombined in a multiparametric model, the performance remained comparable to thatof FF alone, without significant improvement. This indicates that, although ADC de-scriptors may offer some complementary insight, their contribution does not appear tosubstantially enhance the classification performance beyond what is already achievedusing FF-derived features.
The fact that the dominant predictive value is associated with the fat fraction signalwas further confirmed by an additional validation based on a stratified 70/30 train/testsplit, ensuring that the relative proportions of the four diagnostic groups were pre-served in both sets. This evaluation assesses the model’s ability to generalise to pre-viously unseen data, thereby providing an indirect check for overfitting. Even underthis independent partition, models based on FF - as well as the combined configuration- mantained high classification performance, whereas ADC-based classifiers remainedless reliable. The close agreement between training and test set accuracies across allbinary classification tasks indicates that the models did not overfit the training data.These results, although obtained with a simplified evaluation protocol, further supportthe consistency and robustness of the FF modality in detecting pathological infiltrationacross the different stages of multiple myeloma.
Overall, the proposed multiparametric classification approach — integrating radiomicdescriptors and quantitative intensities from ADC and FF maps — demonstrated high ac-curacy in distinguishing healthy from diseased bone marrow. The combination of quan-titative MRI and radiomic analysis provided an effective framework to characterise bonemarrow alterations, supporting the potential of imaging biomarkers in non-invasive dis-ease assessment and patient stratification.
5.4 Future Directions
The findings presented in this chapter confirm the potential of ADC and FF as Quantita-tive Imaging Biomarkers (QIBs) for the assessment of bone marrow involvement in mul-
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tiple myeloma (MM). Both biomarkers demonstrated systematic variations across clin-ical stages and enabled highly accurate classification performance, particularly whencombined and when radiomic descriptors were integrated. These results not only sup-port the relevance of QIBs in clinical imaging but also reveal methodological and prac-tical limitations, which define clear and actionable directions for future research.
A primary limitation of this study was the relatively small sample size of the myelomapatient dataset, particularly in the relapsed/refractory subgroup. Although the radiomicanalysis was grounded in a solid foundation of feature stability derived from healthypelvic bone tissue, the limited cohort size imposed constraints on the number of fea-tures that could be reliably employed. Many radiomic descriptors that demonstratedlow variability in healthy tissues (CoV ≤ 15%) had to be excluded due to insufficient sta-tistical power. Expanding the dataset would allow for the inclusion of a broader set ofstable features, potentially enhancing predictive performance — particularly for ADC.To improve statistical robustness and model generalisability, future studies should con-sider multicentric data collection. The inclusion of a larger and more diverse patientpopulation, scanned across multiple centers with standardised acquisition protocols,would be essential to assess reproducibility and to develop clinically applicable models.
Another distinguishing aspect of this work lies in its methodological design. Unlikemany studies that begin directly with pathological analysis, this study originated from asystematic characterisation of healthy bone marrow. This approach allowed for theidentification of intrinsically stable features, providing a biologically and statisticallygrounded basis for radiomic selection. Such a bottom-up strategy improves interpretabil-ity and improves the robustness and transparency of subsequent modelling.
The proposed workflow, based on reproducible radiomic extraction from fixed-volumeROIs, could be integrated with automated tools to facilitate clinical translation and scal-ability. In this study, segmentation was performed manually, introducing inter-operatorvariability and limiting overall efficiency. Future implementations could incorporate Ar-tificial Intelligence (AI)-based solutions for automated ROI definition, feature extractionand classification. Such automation would improve reproducibility, reduce processingtime and support integration into routine radiological practice.
Although this work focused on imaging-derived features, the integration of QIBs withcomplementary clinical, laboratory and genetic data represents a natural and neces-sary evolution. This type of integrative approach — known as multi-omics — combinesheterogeneous data sources (such as imaging, genomics and blood biomarkers) to en-able more comprehensive disease characterisation and personalised risk stratification.In future studies, the inclusion of bone marrow plasma cell percentage (BMPC), serum
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markers such as the free light chain (FLC) ratio and β2-microglobulin, as well as geneexpression profiles like SKY92, could significantly enhance the predictive power of ra-diomic models. While such parameters were not available in the current dataset, theproposed workflow is readily adaptable to multi-omic integration and could supportthe development of more robust and personalised decision-support tools, enabling acomprehensive characterisation of disease progression from multiple biological per-spectives.
Finally, while this analysis was cross-sectional, longitudinal applications represent aparticularly promising area for future development. Quantitative biomarkers such asADC and FF could serve as dynamic indicators of therapeutic response, detecting mar-row changes before conventional laboratory markers become abnormal. IncorporatingQIBs into longitudinal follow-up may support early treatment adaptation and allow formore precise monitoring of minimal residual disease. Moreover, by providing image-based assessments of marrow composition and disease dynamics, these biomarkerscould reduce the clinical need for repeated bone marrow biopsies, offering a less inva-sive alternative for disease monitoring.
In conclusion, this study provides a solid foundation for the use of QIBs in multiplemyeloma imaging, demonstrating the applicability and value of radiomic modellingbased on ADC and FF. Future work should prioritise dataset expansion, workflow au-tomation, integration with multi-omic data and longitudinal validation in order to fullyrealise the clinical potential of quantitative imaging in this context.
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Conclusions
This thesis has focused on the quantitative validation and clinical application of imag-ing biomarkers in 3T Whole-Body Magnetic Resonance Imaging (WB-MRI), with specificattention to the Apparent Diffusion Coefficient (ADC) and the Fat Fraction (FF).The research followed a consistent and methodically connected framework, beginningwith the technical validation of acquisition protocols on dedicated phantoms to ensuremeasurement accuracy and — for FF — linearity. Afterwards, the in vivo character-isation of both biomarkers in healthy tissues was carried out to establish physiolog-ical reference values in seven distinct organs, assessing repeatability across subjectsand over time and comparing results with existing literature. Building on this founda-tion, the study then examined the behaviour of ADC and FF in pathological conditions,specifically multiple myeloma, visualising their variation across distinct clinical stagesand quantifying disease-related changes. Finally, predictive models were developed toexplore the potential of these biomarkers — both through mean values and throughstable radiomic features — to distinguish healthy from infiltrated bone marrow directlyfrom WB-MRI data, thereby enabling a fully non-invasive imaging-based assessmentcapable of supporting diagnosis, patient stratification and potentially treatment moni-toring.
The technical validation phase ensured that both biomarkers met the fundamental re-quirements expected of quantitative imaging biomarkers, including accuracy, repeata-bility and, where applicable, linearity across the physiologically relevant range.For ADC, validation on a temperature-controlled water phantom produced measure-ments in close agreement with known physical reference standards (ADC = 2047 ± 61mm2/s), confirming the accuracy of the well-established diffusion-weighted imagingprotocol and requiring no further optimisation beyond this accuracy check.For FF, a more in-depth investigation was necessary, as the quantification process is in-fluenced by the modelling approach used in the available sequences. A custom-builtfat–water emulsion phantom was therefore employed to simulate a broad range oflipid concentrations, allowing a detailed evaluation of stability, accuracy and linearityand enabling direct comparison between the simplified fat fraction estimation from themDixonAll sequence and the more advanced multi-peak fat spectral modelling imple-mented in mDixonQuant. Both sequences performed well and produced comparablequantitative estimates across the tested range: linear regression against reference fatfractions yielded R 2 = 0.94 for mDixonAll and R 2 = 0.98 for mDixonQuant. Multiplelinear regression further confirmed that slope and intercept were not significantly dif-ferent from the identity line (p > 0.05), supporting quantitative agreement betweenthe two sequences. The mDixonQuant sequence showed slightly superior linearity andnarrower confidence intervals, although occasional fat–water swaps were clearly ob-
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servable at very low fat fractions. Based on these results, mDixonQuant was selectedfor the subsequent in vivo analyses but, given the close agreement between the twomethods, it was concluded that FF values from mDixonAll can be confidently used whenmDixonQuant data are not available.
The in vivo characterisation was performed on a cohort of 20 female patients undergo-ing WB-MRI for breast cancer imaging, from whom only morphologically healthy tissueswere selected to represent the healthy reference sample, yielding a total of 41 acquisi-tions across the cohort.Both biomarkers were assessed across seven anatomical regions - liver, spleen, pan-creas, kidney, vertebra, pelvic bone, femoral head - to establish physiological referencevalues and to quantify stability and repeatability across subjects, time points and re-gions. Repeatability was evaluated both at the cohort level and through a longitudinalsingle-subject analysis.For ADC, the across-sample results showed relatively low within-subject variability inparenchymal tissues (wCV < 12%) and greater variability in skeletal regions (19% <wCV < 38%), largely attributable to the lower signal-to-noise ratio and restricted diffu-sivity typical of bone marrow.FF exhibited the opposite behaviour, with excellent repeatability in adipose-rich bonemarrow regions such as the femoral head (wCV = 4 %), pelvic bone and vertebrae andlower stability in lean parenchymal organs with inherently low fat content.The single-subject longitudinal analysis, removing the component of inter-subject bi-ological heterogeneity, confirmed these patterns: FF remained consistently stable inskeletal regions, whereas low-fat parenchymal organs produced less constant mea-surements, reflecting the combined influence of technical noise and the proximity oftrue values to the detection threshold. Conversely, ADC values were more stable inparenchymal tissues and less in skeletal regions, consistently with the trends observedin the across-sample analysis.
The intra-organ variability analysis extended the assessment beyond repeatability, pro-viding a detailed characterisation of both biomarkers across the seven distinct tissuetypes. This evaluation confirmed the opposing patterns of variability observed in therepeatability analysis, with ADC showing lower variability (i.e. lower coefficients of vari-ation) in parenchymal organs and higher variability in skeletal regions and FF displayingthe inverse trend.Where literature reference values were available, the measured biomarker distribu-tions demonstrated good agreement.For ADC, all organs showed values that, although statistically different from literaturereferences, deviated only marginally in absolute terms, within ranges attributable toprotocol differences and inter-study variability. In skeletal tissues, these differences
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were accompanied by the expected lower diffusivity and greater heterogeneity of bonemarrow, further supporting the physiological plausibility of the measurements. All theobserved discrepancies remained minor in clinical terms.For FF, this study provides the first comprehensive reports of WB-MRI measurements,as reference data are limited and not systematically published in the literature. Accord-ingly, comparisons with previous studies were more qualitative and focused on phys-iological plausibility rather than formal statistical testing. Liver values matched non-steatotic thresholds, pancreatic FF fell within ranges reported for metabolically healthyadults and spleen and kidney values were consistent with the expectation of negligi-ble physiological fat. Vertebral marrow FF was significantly different from some pub-lished data, a discrepancy attributable to the inclusion of vertebrae from multiple spinallevels, the exclusion of morphologically abnormal vertebrae and demographic differ-ences between cohorts. Femoral head FF closely matched reported values in healthyadults, while pelvic bone FF laid between vertebral and femoral measurements, reflect-ing known gradients of marrow adiposity from axial to appendicular sites.The overall consistency of these results, together with physiologically interpretable de-viations, confirmed the robustness of the acquisition and analysis workflow, while theradiomic stability analysis identified a substantial set of features with a coefficient ofvariation ≤15 % across all analysed organs for both biomarkers, providing a reliable ba-sis for subsequent clinical modelling.
The clinical application of this work focused on Multiple Myeloma (MM), a malignantplasma cell disorder characterised by progressive bone marrow infiltration and struc-tural disruption of the medullary environment that accounts for 1 % of all cancers, withnearly 50000 new cases each year in Europe and about 5500-6000 in Italy. In MM,as adipocyte-rich marrow is progressively replaced by densely cellular, lipid-poor tu-mour tissue, its microstructural and compositional properties change in a predictableway: water diffusivity increases, leading to elevated ADC values, while fat content de-creases, resulting in reduced FF.To investigate these effects, the pelvic bone was selected as the site of analysis, owingto its high clinical relevance, frequent involvement in MM and the availability of histo-logical confirmation from diagnostic bone marrow biopsies routinely performed in thislocation. The study cohort comprised 20 healthy controls and 107 patients across threeclinical stages — 38 smouldering myeloma (SMM), 46 active myeloma (MM) and 23relapsed/refractory myeloma (RRMM) — enabling assessment of biomarker behaviouralong the disease continuum.Qualitative inspection of ADC and FF maps, supported by quantitative analysis, con-firmed the expected trends of increasing ADC and decreasing FF with disease progres-sion, although FF consistently demonstrated greater discriminative power. Statisticalcomparisons revealed that FF could significantly distinguish healthy from diseased mar-
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row even when early-stage patients were included, whereas ADC achieved statisticalsignificance primarily at advanced stages.Predictive models based solely on mean biomarker values reflected these findings, withFF outperforming ADC across all binary classifications and combined models offeringonly marginal improvements. The inclusion of stable radiomic features markedly en-hanced classification performance, particularly for FF-derived models, which consis-tently achieved AUC values greater than 0.95 in all pairwise group comparisons, includ-ing the most challenging Healthy versus All Diseased task. ADC-based models showedmoderate performance (AUC between 0.60 and 0.73) but retained complementaryvalue in multiparametric configurations. Model robustness was further confirmed onindependent test sets, indicating the absence of overfitting and reinforcing the potentialof this framework as a non-invasive, image-based approach able to reliably distinguishhealthy from diseased bone marrow.
A notable methodological strength of this work lies in its bottom-up design: by startingwith a rigorous technical and in vivo characterisation of healthy tissue, feature selectionfor clinical modelling was grounded in demonstrated stability, improving interpretabilityand reproducibility. The standardised ROI-based pipeline further supported the validityof cross-cohort comparisons. Limitations included the relatively small patient cohort,especially in the relapsed/refractory subgroup, manual ROI definition introducing po-tential inter-operator variability and minor differences in acquisition protocols betweencontrols and patients, although both were technically comparable and clinically vali-dated.
Future research should prioritise expanding the dataset through multicentre collabo-rations, incorporating automated ROI definition and feature extraction and integratingimaging biomarkers with clinical, laboratory and genomic data to enable multi-omiccharacterisation of disease. Longitudinal studies will be essential to evaluate ADC andFF as dynamic indicators of therapeutic response and minimal residual disease, poten-tially reducing the need for invasive bone marrow biopsies.
Overall, this work has demonstrated that ADC and FF can be robustly quantified in WB-MRI following careful technical validation and in vivo characterisation. FF emerges asthe more stable and discriminative biomarker for detecting bone marrow infiltration inMM, while ADC retains complementary value in multiparametric frameworks. By com-bining rigorous methodological groundwork with clinical application, the study providesa reproducible framework for the development of QIB-based radiomic models, support-ing the translation of these biomarkers into non-invasive tools for diagnosis, staging andpotentially treatment monitoring in multiple myeloma.
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Appendix A
Radiomic Features Extracted with SIBEX

This appendix provides a comprehensive list of the radiomic features extracted fromthe WB-MRI acquisitions analysed in this study. Feature extraction was performed us-ing SIBEX (Standardised Imaging Biomarker Extraction), a MATLAB®-based radiomicsplatform developed in accordance with the Image Biomarker Standardisation Initiative(IBSI) guidelines[44, 45].
A feature is a numerical descriptor extracted from an image that summarises a propertyof the signal within a given region such as its intensity, texture or spatial organisation.These values are computed algorithmically from the voxel data and are designed to cap-ture underlying biological or structural characteristics in a reproducible way.Each feature in this study quantifies a specific aspect of signal distribution or spatial het-erogeneity within the manually defined regions of interest (ROIs), enabling the quanti-tative characterisation of anatomical structures and supporting comparisons betweenhealthy and pathological tissues.
The extracted features are grouped into ten major IBSI-defined categories, each basedon a different mathematical model or statistical formulation. These include first-orderintensity statistics, texture matrices (e.g. GLCM, GLRLM, GLSZM), histogram-based mea-sures, intensity-volume histograms and local or global intensity peaks.
The extraction process, implemented using the SIBEX platform, followed the IBSI guide-lines for feature computation and terminology. For intensity- and texture-based fea-tures requiring discretisation, a fixed bin number of 32 was used with full-image rescal-ing. Other categories, such as Local Intensity Features and Intensity Direct statistics,were computed directly from the continuous image data without discretisation. Out-lier exclusion was applied using a 3σ threshold on voxel intensities within each ROI.
The SIBEX software provides a graphical user interface in MATLAB®, through which theuser first loads the imaging datasets and the corresponding ROI definitions, typicallyin DICOM RTSTRUCT format. Once the images and structures are registered, the usersaves them as an internal dataset, which is later processed using the predefined featureset. In this study, this pipeline was applied consistently to all ADC and FF maps acrossall subjects and timepoints.
These extraction steps yielded a resulting dataset comprising exactly 144 radiomic fea-tures per ROI for each image modality (ADC and FF). The extracted features were sub-
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sequently used in the statistical analyses presented in Quantitative ADC Analysis inHealthy Tissues, Quantitative FF Analysis in Healthy Tissues and Clinical Application ofADC and FF in Multiple Myeloma to assess repeatability, intra-organ variability and fea-ture stability in healthy tissues and pathological alterations in multiple myeloma pa-tients.
A detailed listing of all extracted features, organised by category and accompanied by adescription of the mathematical basis behind each group, is presented below[84, 85].
Grey Level Co-occurrenceMatrix (GLCM) The grey level co-occurrence matrix (GLCM)describes the frequency with which combinations of discretised grey levels occur be-tween neighbouring voxels, measured along a specific spatial direction. A separateGLCM is computed for each direction vector and the matrix elements define a jointprobability distribution that serves as the basis for texture feature calculation.

Features (n = 24): Joint Maximum, Joint Average, Joint Variance, Joint Entropy, Dif-ference Average, Difference Variance, Difference Entropy, Sum Average, Sum Vari-ance, Sum Entropy, Angular Second Moment, Contrast, Dissimilarity, Inverse Dif-ference, Normalised Inverse Difference, Inverse Difference Moment, NormalisedInverse Difference Moment, Inverse Variance, Correlation, Autocorrelation, Clus-ter Tendency, Cluster Shade, Cluster Prominence, Information Correlation 1, Infor-mation Correlation 2.
Grey Level Distance ZoneMatrix (GLDZM) The grey level distance zone matrix (GLDZM)counts the number of groups (or zones) of connected voxels that share a specific dis-cretised grey level and are located at the same distance from the ROI boundary. Thismatrix captures the relationship between spatial location and grey level, highlightingstructural homogeneity with respect to distance from the edge.

Features (n = 16): Small Distance Emphasis, Large Distance Emphasis, Low GreyLevel Zone Emphasis, High Grey Level Zone Emphasis, Small Distance Low GreyLevel Emphasis, Small Distance High Grey Level Emphasis, Large Distance Low GreyLevel Emphasis, Large Distance High Grey Level Emphasis, Grey Level Non-uniformity,Normalised Grey Level Non-uniformity, Zone Distance Non-uniformity, NormalisedZone Distance Non-uniformity, Zone Percentage, Grey Level Variance, Zone Dis-tance Variance, Zone Distance Entropy.
Grey Level Run Length Matrix (GLRLM) The grey level run length matrix (GLRLM) is astatistical representation that quantifies the length of consecutive sequences — knownas runs — of voxels sharing the same discretised grey level along a given direction. Un-like GLCM, which measures co-occurrence between neighbouring voxels, GLRLM cap-

A2



APPENDIX A

tures the distribution and frequency of uniform grey-level runs, providing informationon texture smoothness and directional patterns.
Features (n = 16): Short Runs Emphasis, Long Runs Emphasis, Low Grey Level RunEmphasis, High Grey Level Run Emphasis, Short Run Low Grey Level Emphasis,Short Run High Grey Level Emphasis, Long Run Low Grey Level Emphasis, Long RunHigh Grey Level Emphasis, Grey Level Non-uniformity, Normalised Grey Level Non-uniformity, Run Length Non-uniformity, Normalised Run Length Non-uniformity,Run Percentage, Grey Level Variance, Run Length Variance, Run Entropy.

Grey Level Size ZoneMatrix (GLSZM) The grey level size zone matrix (GLSZM) quanti-fies the number of homogeneous zones within a region, where each zone is defined asa group of connected voxels sharing the same discretised grey level. In 3D images, voxelconnectivity is typically assessed using a 26-neighbourhood criterion. GLSZM featuresreflect the size and distribution of these zones, capturing information about texturegranularity and spatial uniformity.
Features (n = 16): Small Zone Emphasis, Large Zone Emphasis, Low Grey Level ZoneEmphasis, High Grey Level Zone Emphasis, Small Zone Low Grey Level Emphasis,Small Zone High Grey Level Emphasis, Large Zone Low Grey Level Emphasis, LargeZone High Grey Level Emphasis, Grey Level Non-uniformity, Normalised Grey LevelNon-uniformity, Zone Size Non-uniformity, Normalised Zone Size Non-uniformity,Zone Percentage, Grey Level Variance, Zone Size Variance, Zone Size Entropy.

Intensity Direct (ID) These first-order statistical features describe the distribution ofvoxel intensities within the region of interest (ROI), without requiring discretisation.They characterise properties such as central tendency, dispersion and shape of the in-tensity histogram. This family of features is particularly relevant when the intensityscale carries meaningful physical information, as in quantitative parametric maps likeADC or FF.
Features (n = 18): Mean Intensity, Intensity Variance, Intensity Skewness, (Excess)Intensity Kurtosis, Median Intensity, Minimum Intensity, 10th Intensity Percentile,90th Intensity Percentile, Maximum Intensity, Intensity Interquartile Range, In-tensity Range, Intensity-based Mean Absolute Deviation, Intensity-based RobustMean Absolute Deviation, Intensity-based Median Absolute Deviation, Intensity-based Coefficient of Variation, Intensity-based Quartile Coefficient of Dispersion,Intensity-based Energy, Root Mean Square Intensity.

IntensityHistogram (IH) This family of features is derived from the intensity histogramof the ROI, which is generated by discretising the original continuous intensity valuesinto a fixed number of bins. These features provide statistical measures that describe
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the shape, spread and uniformity of the discretised intensity distribution, offering in-sights into tissue composition and heterogeneity.
Features (n = 23): Mean Discretised Intensity, Discretised Intensity Variance, Dis-cretised Intensity Skewness, (Excess) Discretised Intensity Kurtosis, Median Dis-cretised Intensity, Minimum Discretised Intensity, 10th Discretised Intensity Per-centile, 90th Discretised Intensity Percentile, Maximum Discretised Intensity, Dis-cretised Intensity Interquartile Range, Discretised Intensity Range, Intensity His-togram Mean Absolute Deviation, Intensity Histogram Robust Mean Absolute De-viation, Intensity Histogram Median Absolute Deviation, Intensity Histogram Co-efficient of Variation, Intensity Histogram Quartile Coefficient of Dispersion, Dis-cretised Intensity Entropy, Discretised Intensity Uniformity, Maximum HistogramGradient, Maximum Histogram Gradient Intensity, Minimum Histogram Gradient,Minimum Histogram Gradient Intensity.

Intensity Volume Histogram (IVH) The cumulative intensity-volume histogram (IVH)describes the relationship between discretised intensity levels and the proportion ofthe ROI volume that contains voxel values greater than or equal to each intensity thresh-old. IVH features provide information about signal distribution in terms of both inten-sity and spatial extent and are particularly relevant when evaluating heterogeneity inparametric maps.
Features (n = 7): Volume at Intensity Fraction 10, Volume at Intensity Fraction 90,Intensity at Volume Fraction 10, Intensity at Volume Fraction 90, Volume FractionDifference between Intensity Fractions, Intensity Fraction Difference between Vol-ume Fractions, Area Under the IVH Curve.

Local Intensity Features (LIF) Local intensity features are computed by analysing voxelintensities within a defined neighbourhood surrounding each centre voxel. Unlike mostother feature families, these features are not limited to values strictly within the ROI:although only voxels inside the ROI can serve as centre voxels, their neighbourhoodsmay include voxels outside the ROI boundary. This approach allows for the assessmentof local contrast and peak intensities across boundaries.
Features (n = 2): Local Intensity Peak, Global Intensity Peak.

Neighbourhood Grey Level Dependence (NGLD) The neighbourhood grey level de-pendence matrix (NGLDM) provides an alternative approach to texture analysis com-pared to the co-occurrence matrix. It quantifies the number of neighbouring voxelsthat depend on a central voxel, based on grey level similarity within a defined neigh-bourhood. NGLDM features are rotationally invariant and aim to characterise texture
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coarseness. All voxels within the ROI are evaluated as centre voxels, with their neigh-bourhoods contributing to the overall matrix.
Features (n = 17): Low Dependence Emphasis, High Dependence Emphasis, LowGrey Level Count Emphasis, High Grey Level Count Emphasis, Low DependenceLow Grey Level Emphasis, Low Dependence High Grey Level Emphasis, High De-pendence Low Grey Level Emphasis, High Dependence High Grey Level Emphasis,Grey Level Non-uniformity, Normalised Grey Level Non-uniformity, Grey Level Vari-ance, Normalised Dependence Count Non-uniformity, Dependence Count Non-uniformity, Dependence Count Percentage, Dependence Count Variance, Depen-dence Count Entropy, Dependence Count Energy.

Neighbourhood Intensity Difference (NID) Neighbour intensity difference (NID) fea-tures are derived from the neighbourhood grey tone difference matrix (NGTDM), whichprovides an alternative to the co-occurrence matrix for describing texture. The matrixrecords the sum of absolute differences between the intensity of a voxel with a certaingrey level and the average grey level of its neighbours, within a specified distance. Aneighbourhood is considered valid if at least one neighbouring voxel lies within the ROImask. These features capture local contrast, complexity and coarseness.
Features (n = 5): Coarseness, Contrast, Busyness, Complexity, Strength.
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Appendix B
Statistical Measures

In the evaluation of Quantitative Imaging Biomarkers (QIBs) such as the Apparent Dif-fusion Coefficient (ADC) and Fat Fraction (FF), it is essential to employ statistical metricsthat ensure the reliability, comparability and interpretability of measurements acrossrepeated acquisitions, sessions and subjects.The Quantitative Imaging Biomarkers Alliance (QIBA), promoted by the Radiological So-ciety of North America (RSNA), provides technical recommendations and methodolog-ical standards to evaluate and validate such biomarkers. These recommendations areintended to minimise variability in quantitative measurements and to enhance the re-liability of results in both clinical practice and research applications[46, 47, 48].
A Quantitative Imaging Biomarker (QIB) is defined as “an objective characteristic de-rived from an in vivo image measured on a ratio or interval scale as an indicator ofnormal biological processes, pathogenic processes, or a response to a therapeutic inter-vention”[86]. In order to meet the criteria of a QIB, a biomarker is required to generatequantitative data that are robust in terms of both technical performance and clinicalapplicability.
To be technically valid and clinically useful, a QIB must demonstrate key measurementproperties including accuracy, precision, linearity and reliability[48].Accuracy refers to the degree of closeness between a measured value and the trueor accepted reference value, reflecting the level of systematic bias in the imaging pro-cess. In this study, accuracy was evaluated through phantom-based measurements: atemperature-controlled water phantom was used to verify the ADC values and a fat–waterphantom provided reference standards for FF quantification.Precision, in contrast, reflects the variability of repeated measurements under the sameconditions and is concerned with random error rather than systematic bias.Linearity refers to the ability of the imaging method to produce results that are directlyproportional to the true values across a range of measurements.Reliability is a more general concept that integrates these properties to express the con-fidence with which a QIB can be interpreted.
Within the framework of precision and technical validation of QIBs, two important com-ponents are repeatability and reproducibility.Repeatability describes the degree of agreement among repeated measurements takenunder identical conditions (same measurement procedure, same subject, same scan-ner and same operator) within short time intervals.
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Reproducibility, on the other hand, accounts for the variability introduced when one ormore of these conditions change, such as the imaging system, site or operator[48].
The present work specifically focuses on repeatability, as all measurements were ac-quired under tightly controlled and standardised conditions. This includes the use ofconsistent imaging protocols, scanner hardware and operator procedures. Althoughthe analysis is centred on repeatability, it should be noted that the imaging protocoldid not adhere to a strict test–retest design as defined by QIBA: rather than perform-ing repeated acquisitions within the same imaging session, the measurements wereobtained across separate time points. This approach was chosen to reflect a more real-istic clinical scenario, allowing for a broader assessment of short-term variability whilemaintaining stable acquisition conditions.The analyses presented in Quantitative ADC Analysis in Healthy Tissues and Quantita-tive FF Analysis in Healthy Tissues were carried out to quantify measurement variabilityin the absence of true biological change, finally characterising physiological ADC and FFvalues in healthy tissues.
The following notations and statistical measures were used in this work to quantify re-peatability, variability and measurement precision of imaging biomarkers, in agreementwith QIBA protocols and international standards in quantitative imaging metrology[47].
Within-Subject Standard Deviation (σw ) The within-subject (or intra-subject) stan-dard deviation, denoted as σw , represents the core measure of repeatability in quanti-tative imaging. It reflects the variability observed when the same subject is measuredmultiple times under identical conditions. It is used to characterise the random er-ror inherent to the measurement process and serves as the basis for calculating otherprecision-related metrics. σw is typically estimated from repeated measures designsor analysis of variance models by isolating the within-subject component of varianceand it is expressed in the same unit as the analysed biomarker. In general, when σw issmall relatively to the measured value or the expected biomarker differences betweennormal and abnormal tissues, it is reasonable to assume reliability with confidence.
Between-Subject Standard Deviation (σb ) The between-subject standard deviation(σb ) quantifies the natural variability observed across different subjects in a given popu-lation. It reflects biological differences as well as potential sources of technical variationthat persist despite standardisation. This measure captures the inter-subject compo-nent of variance and its accurate estimation enables meaningful interpretation of howwell a biomarker discriminates between individuals beyond random noise.
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Repeatability Coefficient (RC) The Repeatability Coefficient (RC) quantifies the maxi-mum expected difference between two repeated measurements on the same subjectunder identical conditions, with a 95% confidence level. It reflects the combined in-fluence of random noise and intra-subject variability in a single number and is par-ticularly useful to assess whether a change in biomarker value exceeds the expectedmeasurement error, providing a statistical threshold: any difference between two mea-surements exceeding the RC is unlikely to be attributable to measurement variabilityalone.The RC is calculated from the within-subject standard deviation, assuming normally dis-tributed measurement differences and is given by
RC = 1.96 ·

√
2σ2

w = 2.77 · σw . (B.1)
Within-subject Coefficient of Variation (wCV) The within-subject coefficient of vari-ation (wCV) is a dimensionless metric that expresses intra-subject variability relative tothe mean value of the measurement. It is particularly useful when comparing biomark-ers with different units or magnitudes, as it normalises variability across scales. ThewCV is calculated as the ratio of the within-subject standard deviation to the mean ofthe measurements (µ), according to

wCV =
σw
µ

. (B.2)
This allows for a percentage-based expression of precision that is independent of theabsolute values being measured. In this study, wCV values are reported as percentagesand rounded to the nearest integer for clarity and consistency across all biomarkers andanatomical locations.
Interquartile Range (IQR) The interquartile range (IQR) is a non-parametric measureof statistical dispersion based on the division of a dataset into quartiles. The first quar-tile (Q1) corresponds to the 25th percentile and marks the value below which 25% ofthe observations fall, while the third quartile (Q3) corresponds to the 75th percentile,indicating the point below which 75% of the data lie. The IQR represents the rangewithin which the central 50% of the data are distributed and is defined as

IQR = Q3 − Q1 . (B.3)
Unlike standard deviation, the IQR is robust to outliers and does not assume any specificdistribution of the data. In this work, the IQR was used as a descriptive measure ofvariability in the intra-organ analysis, by summarising the spread of biomarker valuesacross all acquisitions and subjects without making distributional assumptions.
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Coefficient of Variation (CoV) The coefficient of variation (CoV) is a relative measureof dispersion defined as the ratio between the standard deviation (σ) and the meanvalue (µ) of a dataset:
CoV =

σ

µ
. (B.4)

The higher the coefficient of variation, the greater the level of dispersion around themean. It is generally expressed as a percentage and, being dimensionless, it enablescomparison between distributions of values that have different units or scales. Whenused to characterise estimated quantities, a lower CoV indicates greater precision ofthe estimate[87].In this study, the CoV was not used in the repeatability analysis but instead to char-acterise the general behaviour of the biomarkers within each organ by aggregating allacquisitions from all subjects as independent observations. This allowed for a descrip-tive assessment of biomarker stability across the population, providing insight into thevariability of measurements in a broader, clinically relevant setting.For consistency with wCV, in all the analyses CoV was expressed as a percentage, roundedto the nearest integer.
Intraclass Correlation Coefficient (ICC) The intraclass correlation coefficient (ICC) is astatistical measure of repeatability that quantifies the consistency of repeated measure-ments relative to the total variability in the population, commonly used in quantitativeimaging to evaluate the stability of biomarker values under repeated acquisitions. It isdefined as the proportion of total variance that is not attributable to measurement er-ror and provides an aggregate assessment of measurement reliability across subjects.Mathematically, it is expressed as

ICC =
σ2
b

σ2
b
+ σ2

w

. (B.5)
Although the ICC is often interpreted as a measure of relative variance, high values maynot always reflect high measurement precision. When the between-subject variance(σ2

b ) greatly exceeds the within-subject variance (σ2
w ), the ICC can approach 1 even inthe presence of considerable intra-subject noise. Therefore, ICC values should alwaysbe interpreted cautiously, evaluating intra and inter-subject variances first.

The following sections describe a set of additional methods used to support the in-terpretation and quality of the statistical analyses. Although most of these tools arereferenced within the QIBA framework[47], they are not considered statistical metricsin the strict sense, but rather graphical methods, confidence intervals or technical pro-cedures that complement the core measures of repeatability and variability.
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95% Confidence Interval (CI95) The 95% confidence interval (CI95) provides a rangewithin which the true value of a population parameter is expected to lie with 95% prob-ability, based on sample data. It reflects the uncertainty associated with the estimationof a mean or other summary statistic.In this work, CI95 was not part of the QIBA-defined precision metrics, but was calcu-lated to support the comparison between the values obtained in this study and thosereported in the literature.Given the relatively large sample sizes and the use of sample standard deviations, theconfidence intervals were estimated approximating the t -distribution using to the nor-mal approximation, as justified by the Central Limit Theorem. .Specifically, the 95% confidence interval for the sample mean was computed as
CI95 = µ ± 1.96 · σ

√
n

. (B.6)
where µ is the sample mean, σ is the sample standard deviation and n is the numberof independent observations[88].
Limits of Agreement (LoAs) According to QIBA[47], the limits of agreement (LoAs)represent the interval within which the difference between two repeated measure-ments under repeatability conditions for a randomly selected subject is expected to lie95% of the time. In this framework, the LoA are assumed to be symmetric and centredaround zero and are expressed as

LoA = [-RC; +RC] . (B.7)
This formulation implicitly assumes that there is no systematic bias between repeatedmeasurements, and that the expected difference between them is zero.
In this study, the LoA were instead estimated using the standard Bland–Altman method,which explicitly accounts for any systematic bias between paired measurements. Thisapproach allows for asymmetry around the origin and directly incorporates the empir-ical mean and standard deviation of the observed differences. The general equation isdefined as LoA = d̄ ± 1.96 · σd (B.8)
where d̄ is the mean difference and σd is the standard deviation of the differencesbetween the two measurements[49].This formulation provides a more realistic characterisation of measurement agreement,particularly when small biases are present and was therefore adopted throughout theanalysis presented in this work.
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APPENDIX B

Bland–Altman Plots Bland–Altman plots are graphical tools used to assess the agree-ment between two repeated measurements of the same variable. Each point on theplot represents a subject, with the x -axis showing the mean of the two measurementsand the y -axis showing their difference. This allows for the visual inspection of poten-tial systematic bias, magnitude-dependent variability and outliers.In the context of quantitative imaging, Bland–Altman plots are particularly valuable foridentifying trends in measurement differences across the range of biomarker values.The central horizontal line corresponds to the mean difference (d̄ ) and the lower andupper lines represent the 95% LoAs (LoAL and LoAU).This graphical representation complements the numerical LoA values and helps revealwhether measurement differences are consistent or vary depending on biomarker mag-nitude. In an ideal scenario, the differences should be randomly scattered around themean difference, without any discernible trend and the majority of points should liewithin the limits of agreement. A narrow spread of differences and a clustering of pointsclose to the zero line typically indicate good measurement agreement and low variabil-ity across the range of values.In this work, Bland–Altman plots were used alongside the numerical LoAs to visuallyevaluate the agreement between repeated acquisitions and to support the detectionof systematic trends or inconsistencies in the biomarker measurements.
Outlier Detection and Removal Outliers are data points that deviate substantiallyfrom the rest of the dataset and can distort statistical estimates, particularly in smallor moderately sized samples. In quantitative imaging studies, such extreme values mayarise from technical artifacts, segmentation errors or unmodelled physiological vari-ability. For this reason, outlier removal should be applied prior to statistical analysis toensure the robustness and interpretability of the results.In QIBA guidelines, the identification of outliers is based on the interquartile range(IQR). Specifically, a data point is considered an outlier if it satisfies the condition

QIBoutlier < Q1 − 1.5 · IQR or QIBoutlier > Q3 + 1.5 · IQR . (B.9)
This criterion is adopted in exploratory data analysis after visual inspection of the datadistributions, in order to ensure that the exclusion of values is justified and not theresult of natural variation or expected heterogeneity within the dataset.Outlier filtering was applied independently to each biomarker and at different stagesof the analysis for ADC and FF, depending on the context. In all cases, the exclusionof outliers was explicitly reported in the corresponding sections of this work to ensuretransparency and reproducibility.
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