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Abstract

The Neutrino Option is a scenario that, adopting the EFT approach, addresses two im-
portant issues of the Standard Model: the absence of a neutrino mass term in the SM
Lagrangian and the lack of a dynamical origin for the Higgs potential. In this mini-
mal scenario the neutrino masses and the Higgs potential are simultaneously generated
through the matching contributions given by the Type 1 Seesaw model. This imple-
mentation of the Neutrino Option predicts a mass for the heavy neutrino of 106 − 107

GeV, which is far out of the energy range of current experiments, making this model
untestable (at least for now). The aim of this project is to conduct a similar analysis
by implementing the Neutrino Option with the Inverse Seesaw (ISS) mechanism. Using
the additional freedom in the parameter space of the ISS, we show that it is possible to
lower the prediction of the heavy mass down to 103 − 106 GeV, reaching experimentally
testable energy scales. We first perform the analysis in the case of one flavour genera-
tion in order to get some order-of-magnitude predictions and we later introduce a more
realistic flavour structure, which however is consistent with the results of the first case.

1



Contents

Abstract 1

1 Introduction 4

2 Effective Field Theories 7
2.1 Handbook of Effective Field Theories . . . . . . . . . . . . . . . . . . . . 7
2.2 Dimensional Regularizations . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Matching a UV theory to an EFT . . . . . . . . . . . . . . . . . . . . . . 11
2.4 RG Improved Perturbation Theory . . . . . . . . . . . . . . . . . . . . . 14
2.5 The SMEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Constructing Operator Bases . . . . . . . . . . . . . . . . . . . . 18

3 The Problem of Neutrino Masses 20
3.1 Possible Fermion Mass Terms . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Dirac Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Majorana Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Dirac + Majorana Mass . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Possible Scenarios for Neutrinos . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Seesaw Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Type 1 Seesaw Model . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Inverse Seesaw Model . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Casas-Ibarra Parametrization . . . . . . . . . . . . . . . . . . . . 34

3.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Seesaw Matching 38
4.1 Tree level matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Weinberg operator . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Dimension 6 operator . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 1-loop matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 1-loop Matching of the Type 1 Seesaw Model . . . . . . . . . . . 41
4.2.2 1-loop Matching of the Inverse Seesaw Model . . . . . . . . . . . 46

2



5 Phenomenology 50
5.1 The Neutrino Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Numerical Implementation of SM RGEs . . . . . . . . . . . . . . . . . . 52
5.3 Results with 1 Flavour Generation . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Bounds from Direct Searches . . . . . . . . . . . . . . . . . . . . . 57
5.4 Results with 2 Massive Light Neutrinos . . . . . . . . . . . . . . . . . . . 58

5.4.1 Bounds from Direct Searches . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 Bounds from the Invisible Width of Z . . . . . . . . . . . . . . . . 60
5.4.3 Bounds from Lepton Flavour Violating Processes . . . . . . . . . 62
5.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Comparison between Type 1 and Inverse Seesaw . . . . . . . . . . . . . . 65

6 Conclusions 66

A EFT Amplitude Scaling 68

B Algebra of Gamma Matrices 70

C Overall factors in box-loop diagrams 74

D Additional Plots 76

Bibliography 86

3



Chapter 1

Introduction

The Standard Model (SM) [1–3] is certainly one of the greatest achievements of modern
theoretical physics and using it we are able to describe a very wide range of phenomena
at an astounding precision level. However, despite its enormous success, it is a well
established fact that the SM comes with several problems and open questions. Some of
them are: neutrino masses, Dark Matter, baryogenesis, hierarchy problems, unification
of matter and interactions, the strong CP problem and the flavour puzzle.

Throughout the years, several solutions have been proposed that address one or more
of the above mentioned issues. In this work we investigate an alternative realization of
the Neutrino Option [4,5], a scenario that simultaneously attempts to solve the problem
of neutrino masses and the Higgs hierarchy problem through an Effective Field Theory
approach.

Effective Field Theories are one of the most powerful and elegant tools we have to
search for beyond the Standard Model physics. It is not unusual to hear, especially since
the discoveries of the last century, that the great goal of theoretical physics is to find
the so called ”theory of everything”. Such fundamental theory should be able to consis-
tently describe every physical phenomenon, at any arbitrarily big or small energy scale.
However, until we find such a theory we must rely on what we have discovered so far in
order to make predictions. We could ask ourselves whether these predictions are reliable
or not, since they are made with theories that are not fundamental (in the above sense).
The answer in most cases is yes, and the reason is that Nature decouples [6]. This means
that some effects that are relevant at a certain energy scale, may be totally negligible at
another. A practical example is that engineers are able to build totally stable bridges
without knowing General Relativity and chemists can study any reaction without the
need of accounting for the strong interactions that take place inside of nucleons. This
is exactly the intuitive idea behind Effective Field Theories: we do not need to know
the exact theory to make good predictions. This concept may sound almost trivial, but
translating it into a consistent mathematical formulation is far from obvious.
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The problem of neutrino masses constitutes one of the main experimental evidence
that some BSM physics is required. Ever since Pauli first suggested their existence in
1930 [7], neutrinos have always been an intriguing puzzle, and despite the many dis-
coveries that followed, after almost a century they remain one of the most elusive and
mysterious particles we know of. In 1956, the same year neutrinos were discovered [8],
Madame Wu proved that weak interactions violate parity [9] and just two years later
Goldhaber, Grodzins and Sunyar [10] showed that neutrinos are left-handed particles.
This lead Landau [11], Lee and Yang [12] and Salam [13] to propose that they can be
described by a left-handed Weyl spinor. However, this implied that neutrinos could not
have a mass term in the SM Lagrangian, or at least not one like the other fermions.
In 1957 Pontecorvo put forward the idea of neutrino oscillations [14, 15], and the work
was later expanded and completed also thanks to Maki, Nakagawa, Sakata and Gri-
bov [16–22]. If neutrino oscillations proved to be true, it would necessarily indicate that
neutrinos (at least two of them) must be massive. This turned out to be exactly the
case, as proved by experiments on solar neutrino detection. The first observation came
from Kamiokande [23] and later in 2001 the SNO experiment [24] definitely confirmed it.
After this discovery, it was clear that the SM needs to be expanded in order to account
for a neutrino mass term. Among all the models that were proposed ever since to gen-
erate the neutrino masses, the Seesaw mechanisms are certainly the most promising ones.

Unlike the problem of neutrino masses, the Higgs hierarchy problem (HP) [25, 26]
is not something that requires the existence of BSM physics from some experimental
evidence, but it is rather a consequence of the presence of some new physics at higher
energy scales, which we are now convinced must exist (due to gravitational interaction if
nothing else). In the presence of some heavy BSM physics that couples to the Higgs its
mass receives corrections, in addition to the ones from the SM particles, that are pro-
portional to the heavy mass itself. If the new mass is much higher than the Higgs mass,
then we would have to perform some heavy fine tuning in order to have a cancellation
that leads to the much smaller measured value of the Higgs mass. However, if this were
not the case and the threshold for new physics were close in energy to the Higgs mass, we
would not have a HP because the cancellations (if needed) would be small with respect
to the starting point, making them more natural. So, another way to phrase the HP
is: why is the Higgs mass so much smaller than the threshold for new physics? Many
solutions have been proposed throughout the years, some of the most popular rely on
Supersymmetry [27,28] or composite Higgs models [29, 30].

The Neutrino Option attempts to solve the problem of neutrino masses and the HP
by generating the Higgs potential and neutrino masses through the matching contribu-
tions of the Type 1 Seesaw model starting from an almost conformal UV embedding,
where the only dimensional scale is the heavy mass. In particular, the neutrino masses
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are generated at tree-level at dimension 5 and the Higgs potential (that we recall is
set to zero in the UV) in generated through 1-loop diagrams. The matching procedure
fixes the generated quantities at some high energy scale, that can be taken equal to the
heavy mass. By requesting that they are generated simultaneously and imposing some
consistency with neutrino physics constraints, it is possible to get a prediction of the
mass of the heavy neutrino and the Yukawa coupling. The original implementation of
the Neutrino Option produces a prediction of 106 GeV ≲ M ≲ 107 GeV, which is far
above the energy range of current experiments.

In this work, we propose an alternative implementation of the Neutrino Option that
aims at lowering the prediction of the heavy mass. The idea is to generate the matching
contributions in the Inverse Seesaw model, which offers more freedom with respect to the
Type 1 Seesaw thanks to the introduction of an additional parameter in the Lagrangian.
Our goal is to identify a region in the ISS parameter space compatible with experimental
constraints on the Higgs and neutrino masses and to verify that this implementation of
the Neutrino Option produces a scenario compatible with a well-behaved theory, i.e. a
theory which is weakly interacting and does not require fine tuning. We first perform the
numerical analysis in the limit of one flavour generation to get some order-of-magnitude
predictions. Afterwards we repeat the analysis by considering a more realistic flavour
structure, but the results confirm the main conclusions of the one flavour case.
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Chapter 2

Effective Field Theories

Effective Field Theories can be seen as the low-energy limit of some more fundamental
theory, and they are an incredibly powerful and elegant tool that we can use to search
for BSM physics. Formally, an EFT is an expansion in a small quantity δ called the
power counting parameter, which is usually a ratio between masses or energy scales. We
can use this parameter to organize the terms appearing in the Lagrangian given their
order in δ. It is important to underline the fact that an EFT is a perfectly self-consistent
theory within its finite range of validity and it can be used to make predictions. In this
chapter, we show how to properly construct an EFT and how we can use it to perform
calculations.

2.1 Handbook of Effective Field Theories

Let us start the discussion about EFTs by pointing out some of the reasons why it is
convenient (or even mandatory) to use them [31]:

• Sometimes we have no other choice, because we may not have any knowledge of
the physics at higher energies.

• Every theory is an EFT. For example, QED is approximation of the Standard
Model and it is obtained by integrating out every particle except the photon and
the electron.

• Performing calculations in the EFT can be much simpler than using the full theory.

• It provides methods to sum large logarithms, using the renormalization-group im-
proved perturbation theory. This approach can be used just for UV logs, but this
is not an issue since it is possible to convert IR logs of the full theory into UV logs
in the EFT, which can then be summed.
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There are many ways to write a generic EFT Lagrangian, depending in which quantity we
choose to expand. In particular, we are interested in the case where the power counting
is the mass dimension of the operators. The general form of an EFT Lagrangian of this
kind is:

LEFT =
∑
D≥0, i

c
(D)
i O(D)

i

ΛD−d =
∑
D≥0

LD
ΛD−d , (2.1)

where D is the mass dimension and d is the number of spacetime dimensions. O(D)
i are

the allowed operators of dimension D and Λ is a mass scale that is introduced in order
to make the Wilson coefficients c

(D)
i dimensionless. Λ is considered the cut-off, i.e. the

energy scale at which the UV physics starts to arise and the EFT expansion breaks down.
For d = 4 we have:

LEFT = LD≤4 +
L5

Λ
+

L6

Λ2
+ ... (2.2)

and LEFT must be treated as a series expanded in 1/Λ. If we consider a scattering
amplitude, the insertion of a set of operators with d > 4 leads to:

A ∼ p4−N
( p
Λ

)n
, with n =

∑
i

(Di − 4) , (2.3)

where i runs on all the inserted operators, p is the external momentum and N the
number of external legs. A more detailed derivation can be fond in Appendix A. The
expression for n in eq.(2.3) is known as the power counting formula and indicates the
(p/Λ) suppression of a graph. One remarkable fact about EFTs, is that this formula
is valid not only for tree-level graphs, but also for loop diagrams in which we perform
an integration over loop momenta in the range −∞ < k < ∞, which includes also the
region where the EFT expansion in k/Λ breaks down.

Thanks to the power counting formula we can understand the difference between an
EFT and a renormalizable theory. If we start from only the operators in the renormaliz-
able Lagrangian LD≤4, we do not generate any new operator of higher dimension and the
counterterms needed for the renormalization all have D ≤ 4. This is however not true
for non-renormalizable operators. For example, two insertions of a dimension 5 operator
generate a dimension 6 operator, in fact:

n = (5− 4) + (5− 4) = 2 → A ∼
( p
Λ

)2
. (2.4)

So, to renormalize the theory we must include a L6 counterterm. More in general, by
multiple insertions of a higher dimension operator we can generate other operators up
to arbitrarily high dimension, so we end up with an infinite series. However, if we are
interested in evaluating corrections up to a finite value of n, then an EFT is just as good
as a renormalizable theory, since the series is truncated and therefore has a finite number
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of terms.

Now we want to start building an EFT and to do it we must perform two steps.
The first step is the so called the bottom-up approach, which consists in computing the
observables we are interested in as functions of the Wilson coefficients (WCs) of the
EFT. Since we are not specifying any UV theory, this first part is model-independent.
In particular, to build an EFT we must specify: its field content, the symmetries that
must be respected and the power counting parameter δ. Finally, to write the Lagrangian
we perform the following steps:

1. Write down all possible independent interaction terms allowed by the symmetries.
This point is discussed in more detail at the end of the chapter.

2. Sort the terms by orders in the power counting.

3. Truncate the series at a desired order in δ.

The second step consists in the top-down approach, in which we compute the WCs
in terms of the masses and couplings of a specific UV theory. This procedure is called
matching and it is performed by integrating out the heavy particles of the UV the-
ory. This can be done using either a diagrammatic approach or through the functional
method. Later in this work we show an explicit example of the latter method, but for
now we focus on the diagrammatic approach.
It is important to notice that different UV theories can have the same EFT as their
low-energy limit; but the opposite is never true, different EFTs have necessarily different
UV completions.

Before moving on to an explicit example, it is important to dedicate some time to
understand why we choose dimensional regularization as a regulator and to summarize
its key aspects.

2.2 Dimensional Regularizations

It is important to choose a good regulator for performing EFT calculations, because
otherwise we end up with incorrect results. For example, this is the case when we use a
cut-off. Let us consider the Lagrangian:

L = LD≤4 +
c6
Λ2

1

6!
ϕ6. (2.5)

The dimension 6 operator gives a contribution to the scattering ϕϕ→ ϕϕ of the form:

A = − c6
2Λ2

∫
d4k

(2π)4
1

k2 −m2
ϕ

(2.6)
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We recall that the EFT is valid only for k < Λ, so we can choose the cut-off such that
Λc < Λ. In the limit mϕ ≪ Λc we have:

A ≈ − c6
2Λ2

Λ2
c

16π2
. (2.7)

This result presents many issues:

• Since Λc is of the same order as Λ, it breaks down the expansion in 1/Λ, leading
to a violation of the power counting formula in eq.(2.3).

• Cut-offs do not allow to sum large logarithms, which is one of the main reasons we
use EFTs in the first place.

• It violates a set of axioms for good regulators [32,33], in particular it breaks chiral
and gauge symmetries.

For these reasons, we use dimensional regularization to perform EFT calculations. An
example of an integral computed in dim-reg is [34]:

I = µ2ε

∫
ddk

(2π)d
1

(k2 −M2)2
=

iµ2ε

(4π)2−ε
Γ(ε)

Γ(2)
(M2)−ε

=
i

16π2

(
1

ε
− γ + log

4πµ2

M2
+O(ε)

)
, (2.8)

where d = 4− 2ε. In the MS renormalization scheme we have:

µ2 = µ̄2 e
γ

4π
(2.9)

and we can cancel the divergence 1/ε using a counterterm, so that we are left with the
renormalized integral:

I + c.t. =
i

16π2
log

µ̄2

M2
. (2.10)

Dim-reg has many important features that are desirable when performing EFT calcula-
tions:

• µ̄2 does not appear in any power, just in logarithms.

• A property that we heavily rely on in the following sections is that scaleless integral
vanish:

µ2ε

∫
ddk

(2π)d
(k2)a

(k2)b
= 0. (2.11)
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• There are no power divergences, since there is no dependence on any UV scale such
as a cut-off, but only IR scales appear. For example:∫

ddk

(2π)d
k2

(k2 −m2)2
=
im2

16π2

(
1

ε
+ log

µ̄2

m2
+ 1 +O(ε)

)
. (2.12)

Evaluating integrals in dim-reg is similar to evaluating them by using the method of
residues. Under the assumptions that the integrand vanishes sufficiently fast as k → ∞,
it can be written as the sum of the residues at the pole. The poles are determined solely
by IR physical scales appearing in the denominators, so the results have no dependence
on any unphysical UV scale (like when we used the cut-off Λc).

2.3 Matching a UV theory to an EFT

In this section we show an example of a matching procedure. We compute a two-scale
loop integral using both the full theory and the EFT and then see how we can match
the two results. Consider the integral in the full theory:

IF = g2µ2ε

∫
ddk

(2π)d
1

(k2 −m2)(k2 −M2)
, (2.13)

where we have set all external momenta to zero for simplicity. We also have m≪M , so
that m is the IR scale and M the UV scale. Computing the integral in dim-reg we get:

IF =
ig2

16π2

(
1

ε
− log

M2

µ̄2
+

m2

M2 −m2
log

m2

M2
+ 1

)
. (2.14)

In order to evaluate the integral using the EFT we must integrate out the heavy particle,
i.e. we must expand the heavy propagator in the limit k/M ≪ 1:

1

k2 −M2
= − 1

M2

(
1 +

k2

M2
+

k4

M4
+ ...

)
. (2.15)

Inserting this expansion in the integral we get:

IEFT = g2µ2ε

∫
ddk

(2π)d
1

(k2 −m2)

(
− 1

M2
− k2

M4
− k4

M6
− ...

)
=

ig2m2

16π2M2

(
−1

ε
+ log

m2

µ̄2
− 1

)
+

ig2m4

16π2M4

(
−1

ε
+ log

m2

µ̄2
− 1

)
+

ig2m6

16π2M6

(
−1

ε
+ log

m2

µ̄2
− 1

)
+ ...

=
ig2

16π2

(
−1

ε

m2

M2 −m2
+

m2

M2 −m2
log

m2

µ̄2
− m2

M2 −m2

)
. (2.16)

Looking at the two results we can make some important observations:
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• The first thing we can notice is that IF ̸= IEFT . Their difference IF − IEFT = IM
comes from the UV part of the integral and it is local (i.e. analytic) in the IR
parameter m. IM is called matching contribution to the Lagrangian and it is
included in the EFT result by absorbing it into shifts of the EFT Lagrangian
coefficients.

• The logm2 terms, which are non-analytical in the IR scale, agree in both theories.
This is correct because the purpose of EFTs is precisely to describe the physics at
low energies, so the dependence of IF on the IR scale must be reproduced.

• The logM2 terms, which are non-analytical in the UV scale, are present just in
IF . In fact, we obtained IEFT by performing an expansion in 1/M , eliminating all
non-analyticities in M .

• IF has a log(M2/m2) term, which contains a ratio between the UV and IR scales.
This types of logs can be summed using the RGE in the EFT.

Let us now focus on the matching contribution. Taking the expressions in eq.(2.14) and
eq.(2.16) and adding the counterterms to renormalize them, we have::

IM = (IF + IF,c.t.)− (IEFT + IEFT,c.t.)

=
ig2

16π2

[(
log

µ̄2

M2
+ 1

)
+
m2

M2

(
log

µ̄2

M2
+ 1

)
+ ...

]
. (2.17)

We now illustrate the ”method of regions”, which is a simpler way to evaluate IM that
does not require us to compute both IF and IEFT and then take the difference.

Method of Regions

Looking at eq.(2.13) we see that IF is divergent in two different regions:

k ∼ m≪M → soft region

m≪ k ∼M → hard region

The method of regions [35] tells us that we can compute the integral in eq.(2.13) by
expanding it in both the soft and the hard region and then summing the two results.
First of all, we can rewrite eq.(2.13) as:

IF =
g2µ2ε

M2 −m2

∫
ddk

(2π)d

(
1

k2 −M2
− 1

k2 −m2

)
. (2.18)
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Now we can start by expanding IF in the soft region k ≪M , which we point out is also
the EFT expansion:

IsoftF = IEFT =
g2µ2ε

M2 −m2

∫
ddk

(2π)d

[
− 1

M2

(
1 +

k2

M2
+

k4

M4
+ ...

)
− 1

k2 −m2

]
= − ig2

16π2

m2

M2 −m2

(
1

ε
+ 1 + log

µ̄2

m2

)
. (2.19)

The next step is to expand IF in the hard region k ≪ m:

IhardF =
g2µ2ε

M2 −m2

∫
ddk

(2π)d

[
1

k2 −M2
+

1

k2

(
1 +

m2

k2
+
m4

k4
+ ...

)]
=

ig2

16π2

M2

M2 −m2

(
1

ε
+ 1 + log

µ̄2

M2

)
. (2.20)

Computing IsoftF + IhardF and confronting the result with eq.(2.14) we can see that:

IsoftF + IhardF = IF . (2.21)

As previously mentioned, we also have that IsoftF = IEFT . It is interesting to see what
happens when we apply the method of regions to IEFT . Since IEFT is already expanded in
the soft region, i.e. it is non-analytical only in the IR scale, let us consider the expansion
in the hard region:

IhardEFT =
g2µ2ε

M2 −m2

∫
ddk

(2π)d

[(
− 1

M2
− k2

M4
− k4

M6
− ...

)
+

(
1

k2
+
m2

k4
+
m4

k6
+ ...

)]
= 0. (2.22)

The reason why IhardEFT vanishes is because every term in eq.(2.22) is a scaleless integral,
that when computed in dim-reg gives precisely zero, so we can write:

IF = IsoftF + IhardF = (IhardEFT + IsoftEFT ) + IhardF = IsoftEFT + IhardF . (2.23)

This is a very non-trivial result, because IsoftEFT and IhardF are different expansions of the
same quantity IF , so we could think that their sum would give 2IF , but from eq.(2.23)
we see that this is not the case. We recall that we got IsoftEFT by expanding in k ≪M and
IhardF by expanding in m ≪ k, so it might seem like we have double-counted the region
m ≪ k ≪ M . However, the contribution in this region from IEFT is precisely IhardEFT ,
which we have seen vanishes in dim-reg.

Finally, let us consider the matching contribution. Using the first line in eq.(2.17)
and eq.(2.23) we have (up to counter terms):

IM = IF − IEFT = IsoftF + IhardF − IsoftF = IhardF . (2.24)
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We can conclude that in order to get the matching contribution it is sufficient to expand
IF in the IR scale, without having to compute IEFT . Moreover, we notice that even if
IF and IEFT are non-analytic in m, their difference is analytical (i.e. local) in m, so it
can be matched to the local EFT Lagrangian.

At the beginning of this chapter we have mentioned that EFTs allow us to turn
IR poles of the full theory in UV poles in the EFT, and now we show how. Before
renormalization, we can write a general EFT amplitude as:

IE =

(
AE

εUV
+

B

εIR
+ CE

)
+

(
AE

εUV
− AE

εIR

)
, (2.25)

where the terms in the first bracket are the soft region contribution, while the ones in
the second bracket correspond to the hard region. As we previously showed, the EFT
contribution in the hard region vanishes, in fact it has no finite part CE, but just the
divergences, for which we have εUV = εIR. Similarly, we can write a general amplitude
for the full theory as:

IF =

(
DF

εUV
+

B

εIR
+ CF

s

)
+

(
AF

εUV
− DF

εIR
+ CF

h

)
. (2.26)

We notice that in general the UV poles of the two theories AE and AF are different, so
they have to be renormalized independently. Using the fact that soft regions must agree
in both theories, we find that:

AE = DF , CE = CF
s . (2.27)

This way, we have turned the IR pole of the full theory DF into the UV pole of the
EFT AE. By doing this we can turn IR logs into UV logs that can be summed using the
renormalization group equations of the EFT, that we present in the next section.

2.4 RG Improved Perturbation Theory

At the beginning of the previous section we computed IF in the full theory and we got
eq.(2.14). In the result we see a term like log(m2/M2), which contains the ratio between
the IR and the UV scale. At higher order, we get corrections like:(

g2

16π2
log

m2

M2

)n
. (2.28)

If M ≫ m, perturbation theory is spoiled when (g2/16π2) log(M2/m2) ∼ 1. However,
after performing the matching procedure, we see that the log is split in two pieces:

log
m2

M2
= log

m2

µ̄2
− log

M2

µ̄2
. (2.29)
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The first term is contained in the EFT result eq.(2.16) and second one is in the matching
contribution eq.(2.17). In this way, instead of having to compute a two-scale calculation
we are left with two one-scale calculations, which are much easier to deal with. In par-
ticular, we evaluate IM at µ̄ ∼M and IEFT at µ̄ ∼ m, and the change in µ̄ is taken care
by the renormalization group equations in the EFT.

There are two types of RGs [36]. One is the ”Wilsonian RG” [37], which is based on
an intuitive approach that however breaks gauge invariance, since it introduces a hard
cut-off. The RG that we use instead is the so called ”continuum RG”, which is a version
of the RG compatible with dim-reg.

Let us start by deriving the renormalization group equations [38]. A bare Wilson
coefficient C0 is renormalized by introducing a counterterm such that:

C0 = ZµnεCr. (2.30)

For a perturbative model we have:

Z = 1 +O(Cr, αr). (2.31)

The Callan-Symanzik equation [39–41] tells us that the bare Lagrangian cannot have
any dependence on the unphysical RG parameter µ̄:

µ̄
d

dµ̄
C0 = µ̄

d

dµ̄
(ZµnεCr) = 0. (2.32)

Working out the calculations we find that the RGE can be written as:

d

d log µ̄2
Cr
n = γnmC

r
m, (2.33)

where γnm is the anomalous dimension that accounts also for quantum effects and oper-
ator mixing. Its role is to account for the small change in the mass dimension of a WC
as it is evolved from a high scale µ̄H to a low scale µ̄L. From eq.(2.33) we see that in
order to sum large logs of the form log(M2/m2), it is necessary to split them in pieces
with an explicit dependence on µ̄, just like we did in the matching procedure.

Now we proceed by considering a toy model to give an explicit example of how we
can sum large logs. In particular, we use a single particle EFT with the interaction
Lagrangian:

LEFTint = − 1

4!
C4ϕ

4, (2.34)

then we compute the amplitude of the process ϕϕ → ϕϕ at the scale µ̄H up to 1-loop
precision. From the 1-loop contributions we generate the logs that we then sum by
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Figure 2.1: Tree-level and 1-loop diagrams contributing to ϕϕ→ ϕϕ.

running from µ̄2
H to µ̄2

L. In Fig.2.1 we can see the two diagrams that contribute to the
process we are interested in. The total renormalized amplitude is:

iAEFT = iAEFT
tree−lev. + iAEFT

1−loop = −iCr
4

[
1− 3

32π2
Cr

4

(
log

µ̄2
H

m2
− 2

3

)]
. (2.35)

We see that if µ̄H ≫ m the perturbative expansion breaks down, but we later show that
using the summing technique we presented above it is possible to have a well behaved
expansion across a wider range of scales. The anomalous dimension of C4 turns out to
be [38]:

γ44 =
3

32π2
Cr

4 . (2.36)

Inserting this expression in eq.(2.33) we get the RGE that runs Cr
4 :

d

d log µ̄2
Cr

4 =
3

32π2
(Cr

4)
2. (2.37)

This RGE can be solved by performing the integration:∫ Cr
4 (µ̄H)

Cr
4 (µ̄L)

dCr
4

(Cr
4)

2
=

3

32π2

∫ µ̄2H

µ̄2L

d log µ̄2 → Cr
4(µ̄L) =

Cr
4(µ̄H)

1 + Cr
4(µ̄H)

3
32π2 log

µ̄2H
µ̄2L

. (2.38)

This calculation gives us a running coupling, and using it to perform EFT calculations is
called “RG improved” perturbation theory. Now we have a well behaved theory for any
choice of the low scale µ̄L. However, it is still possible to break the perturbative regime.
Inverting the last expression in eq.(2.38) we get:

µ̄2
H = µ̄2

L exp

 1− Cr
4 (µ̄L)

Cr
4 (µ̄H)

3
32π2Cr

4(µ̄L)

 . (2.39)

We enter the non-perturbative regime at the scale µ̄H = Λpole such that Cr
4(Λpole) → ∞.

This condition automatically defines Λpole, known as the Landau pole, as:

Λ2
pole = µ̄2

L exp

(
1

3
32π2Cr

4(µ̄L)

)
. (2.40)
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In conclusion, we can say that even if cannot make predictions at arbitrarily high energy
as shown by eq.(2.40), RG improvement still gives us a very large range of validity for
our EFT. This method can be generalized to more complicated situations, but from this
toy model we were able to get the key points and understand the power of RG improved
perturbation theory.

2.5 The SMEFT

Even though we are (almost) certain of the existence of some heavy Beyond the Standard
Model physics, we can still use the SM to make good predictions without any knowledge
of what happens at higher energies. This is because of the decoupling theorem [42],
which is the reason why EFTs are valid theories: if we work at a certain scale, we are
not sensitive to the physics at much higher energies.

There are two ways to formulate the Standard Model as an EFT. If the SM Higgs
doublet is present in the EFT construction we have the Standard Model EFT (SMEFT),
otherwise we have the Higgs EFT (HEFT). In this work we use the SMEFT as frame-
work and we now illustrate its main features. See Refs. [43,44] for recent SMEFT reviews.

The SMEFT is an EFT constructed with the SM fields, the SM gauge symmetries and
canonical dimension as the power counting parameter. It is built using the bottom-up
approach: we know that the SM is the low energy limit, but we do not know what the
UV physics is. This way, we get a general description, in terms of higher-dimensional
operators, of the effects generated by integrating out heavy degrees of freedom that are
a priori unknown. The general SMEFT Lagrangian can be written as:

LSMEFT = LSM +
L5

Λ
+

L6

Λ2
+

L7

Λ3
+

L8

Λ4
+ ... , (2.41)

where the terms LD≥5 are the ones that capture potential BSM effects. This formulation
of the SMEFT is valid only if up to ∼ 100 GeV the only particles are the ones of the
SM and if the BSM physics is nearly decoupled. if we discovered some particle below
the GeV scale, then we would have to modify the SMEFT accordingly.

It is important to notice that if the SM were the ultimate theory of nature, then
we would not have any D ≥ 5 operator. Instead, if some BSM physics exists, then
we necessarily have some LD≥5 ̸= 0. On the other hand, from a top-down perspective,
every BSM theory must have the SMEFT as its low-energy limit, no other operators are
allowed. This is why EFT techniques are such a good tool to investigate potential BSM
phenomena.
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2.5.1 Constructing Operator Bases

If for every dimension D ≥ 5 we write down all the allowed interaction terms made of SM
fields, we would get hundreds of them. However, a lot of them are redundant, meaning
that they bring the same physical effect of a linear combination of other operators. We
must remove such redundancies and we can do it in several ways:

(a) Integration by parts. The action S =
∫
d4xL is always invariant under integra-

tion by parts (IBP). In QFT we generally assume that the field configurations
that describe physical states vanish sufficiently fast at infinity (except for some
non-perturbative configurations like instantons). Under this assumption, we can
neglect total derivatives when performing IBP, since their contribution to the ac-
tion vanishes. For example, we can write the kinetic therm of the Higgs in two
equivalent ways:

(DµH)†(DµH) = −H†D2H. (2.42)

We can do the same for higher-dimensional operators.

(b) Field redefinitions. The LSZ reduction formula [45] allows us to perform field re-
definitions, as long as they still create correctly all the relevant states from the
vacuum. Doing this has no effect on the physical observables, which remain un-
changed [46–48]. In many cases, including the SMEFT, using the equations of
motion is equivalent (at leading order) as performing a field redefinition. In par-
ticular, we can redefine a field as:

ϕ→ ϕ̃ = ϕ+ ε δϕ with ε≪ 1. (2.43)

Expanding the shifted action around ϕ we get:

S[ϕ] → S[ϕ̃] = S[ϕ̃]
∣∣
ϕ̃=ϕ

+ ε
δS[ϕ̃]

δϕ̃

∣∣∣∣∣
ϕ̃=ϕ

δϕ+O(ε2)

= S[ϕ] + ε

∫
d4xE[ϕ] δϕ+O(ε2), (2.44)

where E[ϕ] are the equations of motion of the field ϕ. The two generating function-
als Z[J ] and Z̃[J ] yield the same S-matrix element. We recall that the generating
functional is defined as:

Z[J ] =

∫
Dϕ exp

(
iS[ϕ] +

∫
d4x Jϕ

)
. (2.45)

(c) Fierz identities. We can use Fierz identities of the Lorentz group [49] to rearrange
the order of the spinors appearing in four-fermion operators. Consider the chiral
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basis for the Dirac algebra in four spacetime dimensions:

{Γn} = {PL, PR, γµPL, γµPR, σµν} (2.46)

{Γ̃n} = {PL, PR, γµPL, γµPR, σµν}. (2.47)

The chiral Fierz identities can than be written as [50]:

(ΓA)[ΓB] =
1

4
Tr{ΓAΓ̃CΓBΓ̃D}(ΓD][ΓC), (2.48)

where the parentheses ( ) and brackets [ ] indicate matrix indices, such that each
parenthesis/bracket represents a different index in an unambiguous way. One ex-
ample of application of a Fierz identity is:

(ℓ̄iγµqi)(d̄γµe) = −2 (ℓ̄ie)(d̄qi). (2.49)

Using these techniques, we can construct for each LD≥5 a basis of operators, i.e. a
set of operators which is complete and non-redundant. At D = 5 we have that the only
allowed term is the Weinberg operator:

L5 =
C5

Λ
(ℓ̄cLH̃

∗)(H̃†ℓL) + h.c. . (2.50)

We notice that this operator violates the lepton number symmetry by two units. In
general, it can be proven that any odd-dimension SMEFT operator violates baryon (B)
and/or lepton (L) number [51]. We know that B and L are accidental symmetries in the
SM, however if the are not respected in the UV, we expect them to be violated by the
higher-dimensional SMEFT operators.

The first attempt at constructing a basis for LD≥6 was done by Buchmüller and
Wyler [52], however their result was overcomplete. The actual basis was found in 2010
by Grzadkowski, Iskrzyński, Misiak, and Rosiek [53]. Today it is referred to as the
”Warsaw basis” and it is the most used one. To construct this specific basis, we use IBP
and equations of motion to remove operators with more derivatives in favour of operators
with fewer derivatives. Then we use the Fierz identities such that: leptons and quarks
do not appear in the same fermion currents, the gauge indices of the largest gauge group
are contracted within each bilinear, each current is a Hypercharge singlet. So far, we
have constructed the bases for L5, L6, L7, L8, L9, L10, L11, L12 [52–61].
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Chapter 3

The Problem of Neutrino Masses

The Standard Model Lagrangian LSM does not contain a mass term of any kind for
neutrinos and the reason is that in the SM we work under the assumption that the
right-handed component of the neutrino does not exist. However, from experimental
measurements of solar neutrino flux and neutrino oscillation, we strongly believe that at
least 2 of the light neutrinos must be massive, so we must include a mass term in LSM .
All the other SM fermions (quarks and charged leptons) have a Dirac mass term in LSM ,
but this is not the only possibility. In this chapter we present all possible mass terms
for fermion fields and we introduce the Seesaw mechanisms, which are the most popular
solution for generating neutrino masses. See Ref. [62, 63] for comprehensive reviews of
neutrino physics.

3.1 Possible Fermion Mass Terms

As we said, there are different ways to write a mass term for fermion field. In particular,
we can have a Dirac mass, a Majorana mass or even both terms, depending on the nature
of the spinor.

3.1.1 Dirac Mass

As mentioned above, quarks and charged leptons are Dirac spinors, which means that
they can be generically written as:

ψ = ψL + ψR, (3.1)

where ψL and ψR are the left-handed (LH) and right-handed (RH) Weyl components
respectively and together they form the 4-dimensional Dirac spinor ψ. We can write the
Weyl components as:

ψL = PLψ, ψR = PRψ, (3.2)
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where PL and PR are projection operators that can be written as:

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5). (3.3)

In Appendix B we show the algebra of the gamma matrices and we present some useful
relations that are used to derive the following results. Using these properties, we can
write the free fermion Lagrangian in terms of Weyl components. For simplicity, let us
start with the case of just one flavour:

Lkin = ψ̄iγµ∂µψ = ψ̄iγµ∂µ(PLψ + PRψ) = ψ̄Liγ
µ∂µψL + ψ̄Riγ

µ∂µψR, (3.4)

Lmass = −mψ̄ψ = −mψ†γ0(PLψ + PRψ) = −m (ψ̄RψL + ψ̄LψR). (3.5)

From the expression in Lmass it is clear that if νR does not exist (as we assume in the SM),
neutrinos cannot have a Dirac mass term. Now, considering the case with N flavours we
have:

Lfree = ψ̄Li1/∂ψL + ψ̄Ri1/∂ψR − (ψ̄LMψR + h.c.), (3.6)

where 1 is the N ×N identity matrix and M is the mass matrix, which is in general a
complex and non diagonal N ×N matrix. M can always be diagonalized and made real
via the rotation:

Mdiag = U †
LMUR with UL,R ∈ SU(N). (3.7)

Rotating also the Weyl spinors as: {
ψL = ULψ

′
L

ψR = URψ
′
R

, (3.8)

we get the diagonal free Lagrangian (where we omitted the prime):

Lfree = ψ̄Li1/∂ψL + ψ̄Ri1/∂ψR − (ψ̄LMdiagψR + h.c.). (3.9)

There are two important things to notice:

• Lfree can always be made diagonal simultaneously. However, if we consider also
the interaction Lagrangian, we can have some mixing left. For example, consider
the charged current Lagrangian:

Lcc ⊃ − g√
2
W+
µ ūLγ

µdL + h.c.. (3.10)

Rotating the the fields of the up and down quark as described above, we get:

Lcc ⊃ − g√
2
W+
µ ūL(U

†
uUd)γ

µdL + h.c., (3.11)

where U †
uUd = VCKM ∈ SU(3) is a unitary 3×3 matrix which can be parametrized

as a complex rotation by three real angles θ1,2,3 and a complex phase δ. VCKM is
not diagonal, so we have some mixing left.
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• Lfree conserves any charge. ψL and ψR carry the same charge as ψ, so the term
ψ̄LψR is indeed neutral. One important example of a charge which is conserved
by a Dirac mass term is lepton number, which as we shall see can be broken by a
different mass term.

3.1.2 Majorana Mass

As we previously mentioned, a Dirac mass term is not the only possibility. Since neutrinos
are the only SM fermions that are eligible to be Majorana particles, we now show how to
write a Majorana mass term. Majorana particles, are defined by the Majorana condition:

χ = χc, (3.12)

where c denotes the charge conjugation; in Appendix B we show some useful relations.
In terms of Weyl components, the Majorana spinor becomes:

χ = χL + χcL. (3.13)

Opposed to a Dirac spinor, the Weyl components of a Majorana spinor are not indepen-
dent, so it it has just 2 instead of 4 independent components. It easy to see that a spinor
defined as in eq.(3.13) satisfies the Majorana condition in eq.(3.12). The free Lagrangian
for a Majorana fermion with N flavours is:

Lfree =
1

2
χ̄i1/∂χ− 1

2
χ̄Mχ, (3.14)

which in Weyl components reads:

Lfree =
1

2
χ̄Li1/∂χL +

1

2
χ̄cLi1/∂χ

c
L − 1

2
(χ̄cLMχL + h.c.). (3.15)

Notice that in this case we have some extra 1/2 factors, that were not present in the
Lagrangian of a Dirac spinor. The relation between Dirac and Majorana fermions is
similar to the one between complex and real scalars. The mass matrix of a Majorana
field is a complex symmetric N ×N matrix which can be made diagonal and real via:

Mdiag = UTMU with U ∈ SU(N). (3.16)

Unlike for the Dirac case, now M is diagonalized with a single unitary matrix U instead
of two. This is due to the fact that the Weyl components are not independent from one
another, (so they cannot be rotated separately) and to the fact that we have M =MT .
In particular, performing the field rotation:

χL = Uχ′
L → χ̄cL = χ̄cL

′
UT , (3.17)
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We get the diagonal Lagrangian (where again we omit the prime):

Lfree =
1

2
χ̄Li1/∂χL +

1

2
χ̄cLi1/∂χ

c
L − 1

2
(χ̄cLMdiagχL + h.c.). (3.18)

Also in this case there are some important comments to be made:

• If neutrinos had a mass term (of any kind), this would lead to a mixing in the
charged currents and we would have the same exact situation as we had in the
quark sector:

Lcc ⊃ − g√
2
W−
µ ēL(U

†
eUν)γ

µνL + h.c., (3.19)

where (U †
eUν) = UPMNS ∈ SU(3) is the equivalent of VCKM and can be parametrized

in the same way. If neutrinos are Majorana fermions (so that their RH component
would be νcL), the total mixing matrix has two additional independent Majorana
phases α1,2:

Utot = UPMNS diag(1, e
iα1 , eiα2). (3.20)

• A very important property of a Majorana spinor is that it is not a charge eigen-
state (unlike a Dirac fermion), because it is a superposition of oppositely charged
states.Its components however can carry a charge and if they do, it is always vi-
olated by two units by the Majorana mass term. For this reason, if they carry a
charge which is associated to an exact symmetry of the theory, then the Majorana
mass term is forbidden. In order to write a mass term of this kind, the filed must
be neutral under all the exact symmetries. The only SM field that satisfies this
requirement is the neutrino.

3.1.3 Dirac + Majorana Mass

The most general mass term we can write is by including both Dirac and Majorana
masses in the Lagrangian:

Lmass = −1

2
ψ̄cLMLψL − 1

2
ψ̄RMRψ

c
R − ψ̄RmDψL + h.c., (3.21)

however from this expression it is not clear whether the mass eigenstate in a Dirac or
Majorana fermion. Diagonalizing the mass matrix we get:

Lmass = −1

2
n̄cLMnL + h.c., (3.22)

with

nL =

(
ψL
ψcR

)
, nR = ncL =

(
ψcL
ψR

)
and M =

(
ML mT

D

mD MR

)
. (3.23)
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SinceM =MT and n = nL+n
c
L = nc, we see that the mass term corresponds to the one

of a Majorana field. To get the mass eigenstates, we can diagonalize M as we previously
did for the Majorana mass using a rotation matrix U ∈ SU(NR + NL), where NR and
NL are the numbers of RH and LH fields respectively.

3.2 Possible Scenarios for Neutrinos

The SM does not contain a mass term for neutrinos because of the absence of the RH
counterpart of νL. As we showed in previous section, we can write the RH Weyl compo-
nent of light neutrinos either as νR or νcL, depending on how we want to build the mass
term. In particular, the two choices we must make is whether we want to allow for the
presence of νR and whether we want the lepton number symmetry to be conserved. In
Tab.3.1 we show all possible scenarios.

Forbid light νR Admit light νR

Conserve L Scenario A Scenario B

Violate L Scenario C Scenario D

Table 3.1: Possible options for building neutrino masses.

(a) Scenario A. This scenario corresponds to the Standard Model as it is, without any
mass term for neutrinos. This possibility however is ruled out by experiments.

(b) Scenario B. In this scenario we are adding νR to the SM particle content as a gauge
singlet under the SM gauge group. Since we want L to be conserved we cannot
have a Majorana mass, but just a Dirac mass. This would make the neutrino a
Dirac fermion, just like charged leptons and quarks, with a mass term like:

Lmass = −ν̄RYνH̃†ℓL + h.c.
EWSB
= − ν̄RmννL + h.c. with mν =

Yνv√
2
. (3.24)

The upsides of this scenario are that the mass term is renormalizable and that
there are no Majorana phases. However, if this were the case, the Yukawa coupling
should be much smaller that the ones for all other SM fermions, and there is no
way to justify such hierarchy.

(c) Scenario C. In this scenario we forbid the presence of νR, so the only possibility is
to have a Majorana mass term for the neutrino. It is possible to write such mass
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term at dim-5 in the SMEFT through the Weinberg operator:

Lmass =
C5

Λ
(ℓ̄cLH̃

∗)(H̃†ℓL) + h.c.
EWSB
=

v2

2Λ
ν̄cLC5νL + h.c. (3.25)

This is the minimal and most natural explanation for the smallness of mν , that is
suppressed by the mass scale Λ, which is also the scale of lepton number violation.

(d) Scenario D. In this scenario, since we admit both νR and L violation, we write all
possible Dirac and Majorana mass terms:

Lmass = −ν̄RYνH̃†ℓL +
C5

Λ
(ℓ̄cLH̃

∗)(H̃†ℓL)−
1

2
ν̄RmRν

c
R + h.c.

EWSB
= − ν̄R

Yνv√
2
νL +

v2

2Λ
ν̄cLC5νL − 1

2
ν̄RmRν

c
R + h.c. , (3.26)

wheremR = mT
R, C5 = CT

5 and Yν are complex 3×3 matrices. Lmass can be written
as in eq.(3.22), with:

nL =

(
νL
νcR

)
and M =

(
mL mT

D

mD mR

)
, (3.27)

where mD = Yνv/
√
2 and mL = v2C5/Λ. The issue with this scenario is that for

mR ∼ eV, it predicts the existence of light sterile neutrino, which do not contribute
to EW interactions. This scenario has been vastly studied because of the discovery
of some possible signals, that however have never been confirmed. If instead mR is
a heavier mass scale, we get the Seesaw models, that are discussed in the following
section.

3.3 Seesaw Models

The Seesaw mechanisms are to this day the most popular UV completions of the Wein-
berg operator in the Scenario C that we previously presented. The idea behind this
models is similar to one used for the Fermi theory, where a 4-fermion interaction at
low energies is mediated by a new particle at tree-level at higher energies. The Seesaw
models differ form one another by the type of new mediator they introduce, but they are
all based on the same logic. At tree-level, the Weinberg operator gives the interaction
shown in Fig.3.1. All possible tree-level UV completion [64] are represented by the three
”vanilla” options:

• Type 1 Seesaw [65–68] → introduces a heavy fermion singlet N .

• Type 2 Seesaw [69–72] → introduces a heavy scalar SU(2) triplet ∆.
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Figure 3.1: Weinberg operator at tree-level.
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Figure 3.2: Tree-level diagram of Type 1,2,3 Seesaw models, from left to right.

• Type 3 Seesaw [73,74] → introduces a heavy fermion SU(2) triplet Σ.

In Fig.3.2 we show the tree-level diagrams corresponding to each of these models. These
models are called ”Seesaw” because the smallness of mν is achieved through the sup-
pression of a heavy scale, generally the mass of the new mediator. The Type 2 Seesaw
gives us even more freedom, since the suppression of mν is given by the ratio of a small
mass scale over a heavy mass scale. Another reason that gives popularity to the Seesaw
models is that they can be embedded in GUT theories [75]. For instance, the Type 1
Seesaw naturally emerges in SO(10) models.

In this work we focus on the Type 1 Seesaw and one of its extension, called the
Inverse Seesaw. In the next sections we present these models.

3.3.1 Type 1 Seesaw Model

In the Type 1 Seesaw model, the particle content of the Standard Model is extended by
adding a heavy Majorana neutrino (also called heavy neutral lepton) that can be written
as:

N = NR +N c
R, (3.28)

where NR is a singlet under the SM gauge group. In order to give mass to at least 2 of
the light SM neutrino, we need to introduce 2 generations of heavy neutrinos. However
for now we do not make any assumption on the number of flavours and we write the
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most general Lagrangian, which is:

L =
1

2
N̄(i/∂ −M)N − (N̄Y H̃†ℓL + ℓ̄LH̃Y

†N), (3.29)

where Y is a complex matrix and M is complex symmetric matrix. This Lagrangian
corresponds to the Dirac+Majorana case and the mass term can be written as:

Lmass = −1

2
n̄cLMnL + h.c., (3.30)

with

M =

(
0 mT

D

mD MR

)
and nL =

(
ℓL
N c
R

)
, (3.31)

where MR is a symmetric matrix and mD = Y H̃†.

Now we discuss the matching with the Weinberg operator and the light neutrino
masses that arise from this model. There are several ways to it, for example in the next
chapter we show how to do it using the functional method. However, we now present
another way which can be very useful and it consists in the diagonalization of the mass
matrix. To diagonalize M we follow the procedure presented in [76], which consists in
two steps.The first one is to perform a block diagonalization. In particular, we want to
find the rotation matrix R1 such that:

RT
1MR1 = Mblock−diag. =

(
Mν 0
0 MN

)
. (3.32)

We recall that at this point Mν and MN are still not diagonal. To find R1, we use the
ansatz proposed in [77] and parametrize it as:

R1 =

(√
1−BB† B

−B†
√
1−BB†

)
. (3.33)

Inserting R1 in eq.(3.32) and imposing that the off-diagonal elements vanish, we get the
following constraint:√

1−BTB∗mD

√
1−BB† −BTmT

DB
† −
√
1−BTB∗MRB

† = 0. (3.34)

In the limit mD ≪MR, this equation is solved by the power series:

B = B1 +B2 +B3 + ... , (3.35)

where Bi ∼ (mD/MR)
i. The explicit expression of each Bi is found by solving recursively,

order by order, eq.(3.34). Finally, we can use the solution of B to find R1, which turns
out to be:

R1 ≃
(
1− 1

2
m†
D(MRM

†
R)

−1mD m†
D(M

†
R)

−1

−M−1
R mD 1− 1

2
M−1

R mDm
†
D(M

†
R)

−1

)
. (3.36)
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Performing this rotation on M we get (at leading order):

Mblock−diag. ≃
(
−mT

DM
−1
R mD 0

0 MR

)
. (3.37)

Substituting the explicit expression for mD and comparing with the Weinberg operator,
we get the prediction of the light neutrinos mass matrix from the type 1 Seesaw:

C5

Λ
=

1

2
Y TM−1

R Y
EWSB
= −Mν

v2
→ Mν = −v

2

2
Y TM−1

R Y. (3.38)

It is important to notice that this result is an approximation and it is valid only if
mD ≪ MR. The last step that we need to do, is to diagonalize the light and the heavy
block in eq.(3.32) by performing a second rotation R2 so that:

RT
2 (R

T
1MR1)R2 = Mdiag. =

(
diag(mi) 0

0 diag(Mi)

)
. (3.39)

The second rotation has the form:

R2 =

(
UPMNS 0

0 W

)
, (3.40)

where UPMNS is the known Pontecorvo-Maki-Nakagawa-Sakata matrix (the equivalent
of the CKM for the lepton sector), while W is the matrix that diagonalizes the heavy
block and depends on the explicit structure of MR. Now that we have both R1 and R2

we can write the total rotation:

R = R1R2 ≃

[1− 1
2
m†
D(MRM

†
R)

−1mD

]
UPMNS m†

D(M
†
R)

−1W

−M−1
R mD UPMNS

[
1− 1

2
M−1

R mDm
†
D(M

†
R)

−1
]
W

 ,

(3.41)
so that RTMR = Mdiag..

3.3.2 Inverse Seesaw Model

A common feature of the three ”vanilla” Seesaw models, is that they point to heavy
BSM particles with a mass far out of the experimental range, making them untestable.
One way to resolve this issue and lower the mass of the heavy particle, is to introduce
some new parameters in the model in order to have more freedom, similarly to what
happens in the Type 2 Seesaw. One of the minimal extensions of the Type 1 Seesaw
model that provides such a solution is the Inverse Seesaw [78,79], where we introduce 2
heavy Majorana singlets, each with its flavours, instead of just one:

N = NR +N c
R and S = SR + ScR. (3.42)
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One important feature of this model is the lepton number charge assignment:

L =

{
+1 for NR

−1 for SR
. (3.43)

The Lagrangian of this model is:

L = − 1

2
n̄cMn+ h.c. , (3.44)

where n is the vector containing all left-handed neutrinos and M is the mass matrix:

n =

 ℓL
N c
R

ScR

 ; M =

 0 Y T H̃∗ 0

Y H̃† 0 Λ
0 ΛT µ

 . (3.45)

From the charge assignments in eq.(3.43) we see that the terms on the diagonal of M
are lepton number violating, since they are the ones giving rise to Majorana mass terms.
In our case, the only parameter of this kind is µ. Since setting µ = 0 would increase the
symmetry of the Lagrangian (we would recover lepton number conservation), µ is said
to be naturally small in ’t Hooft sense.

As we did before, now we diagonalize the mass matrix to get the prediction for the
light neutrino masses. To do it, we can actually use the result that we got from the Type
1 Seesaw. Following the procedure in [80], let us start by rewriting the mass matrix in
as:

M =

 0 mT
D 0

mD 0 Λ
0 ΛT µ

 ≡
(

0 MT
D

MD MR

)
. (3.46)

where we have defined:

MD =

(
mD

0

)
, MR =

(
0 Λ
ΛT µ

)
. (3.47)

From eq.(3.46) we see that the mass matrix has the same form as the one of the type 1
Seesaw. In the limit Λ ≫ mD, so when the eigenvalues of the heavy block MR are grater
than mD, we can apply the same exact procedure that we used in the previous case and
get the block diagonal matrix:

Mblock−diag. ≃
(
−MT

DM
−1
R MD 0

0 MR

)
. (3.48)

The explicit expression of M−1
R is:

M−1
R =

(
−ΛT

−1
µΛ−1 ΛT

−1

Λ−1 0

)
, (3.49)

29



and substituting it in eq.(3.48), along with the expression of MD, we get:

Mblock−diag. ≃
(
mT
DΛ

T−1
µΛ−1mD 0
0 MR

)
. (3.50)

We notice that the expression of M−1
R is exact and that we have made no assumption

on µ. From eq.(3.50), we get the mass matrix of the light neutrinos predicted by the
Inverse Seesaw:

C5

ΛEFT
= −1

2
Y TΛT

−1

µΛ−1Y
EWSB
= −Mν

v2
→ Mν =

v2

2
Y TΛT

−1

µΛ−1Y. (3.51)

The diagonalization of the light and heavy blocks can be done in same way as in the
previous case and the total rotation matrix can be written in the same way. So in order
to diagonalize eq.(3.44) we perform the rotations:

M = RMdiagR
T and

 νL,i
N c
R,j

ScR,k

 = R

ψ1,i

ψc2,j
ψc3,k

 , (3.52)

where ψn are the mass eigenstates and i, j, k are the number of flavour generations of
the light and heavy neutrinos. Notice that we have substituted the doublet ℓL in n with
just the light neutrinos νL.

One way that we have to test the Inverse Seesaw, is to look at how some physical
SM processes are modified. We are interested in the interactions between the mass
eigenstates and the SM particles at tree level, and such interactions come mainly from
the charged currents. To see how they are modified, we substitute the field νL in the SM
Lagrangian with the corresponding superposition of mass eigenstates. First of all, let us
rewrite the rotation matrix R in eq.(3.41) as [81]:

R =

(
U V
X W

)
. (3.53)

The flavour structure that we eventually consider is 3 generations of light neutrinos and
2 generations for each of the heavy neutrinos. In this case, U is a 3 × 3 matrix and
V can be split in two 3 × 2 blocks V1 and V2 such that V = (V1 V2), and each block
parametrizes the mixing with one of the heavy eigenstates ψ2,j and ψ3,k. Using this
notation we have:

νL,ℓ =
3∑
i=1

Uℓi ψ1,i +
2∑
j=1

V1,ℓj ψ
c
2,j +

2∑
k=1

V2,ℓk ψ
c
3,k , (3.54)
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where ℓ = e, µ, τ . Now we can substitute this expression in the SM Lagrangian to get:

L ⊃− g√
2
W+
µ

τ∑
ℓ=e

3∑
i=1

ψ1,iU
∗
ℓiγ

µℓ−L − g√
2
W+
µ

τ∑
ℓ=e

2∑
j=1

ψc2,jV
∗
1,ℓjγ

µℓ−L

− g√
2
W+
µ

τ∑
ℓ=e

2∑
k=1

ψc3,kV
∗
2,ℓkγ

µℓ−L

− g

2 cos θW
Zµ

τ∑
ℓ=e

3∑
i=1

ψ1,iU
∗
ℓiγ

µνL − g

2 cos θW
Zµ

τ∑
ℓ=e

2∑
j=1

ψc2,jV
∗
1,ℓjγ

µνL

− g

2 cos θW
Zµ

τ∑
ℓ=e

2∑
k=1

ψc3,kV
∗
2,ℓkγ

µνL

− g

2MW

h
τ∑
ℓ=e

2∑
j=1

mψ2,j
ψc2,jV

∗
1,ℓjνL − g

2MW

h
τ∑
ℓ=e

2∑
k=1

mψ3,k
ψc3,kV

∗
2,ℓkνL + h.c. (3.55)

We see that the matrix V parametrizes the mixing between active and heavy neutrinos
and its explicit expression is model dependent. We are interested in evaluating V in the
limits of one and two flavours per each heavy neutrino.

1 Flavour

In the limit of just one flavour generation, the mass matrix of the Inverse Seesaw in
eq.(3.46) is a 3× 3 symmetric matrix where Y , Λ and µ are just real numbers. In order
to write the total rotation matrix R in eq.(3.53), we need to find the matrix W that
diagonalizes the heavy block MR. In this limit, the heavy block is a 2 × 2 matrix that
can be written as:

MR =

(
0 Λ
Λ µ

)
, (3.56)

and it can be diagonalized via the 2× 2 rotation:

W =

(
i cos θ sin θ
−i sin θ cos θ

)
with tan(2θ) =

2Λ

µ
. (3.57)

Applying this rotation we have:

Mdiag.
R = W TMRW =

(
m1 0
0 m2

)
with

m1 =
1
2
(−µ+

√
4Λ2 + µ2)

m2 =
1
2
(µ+

√
4Λ2 + µ2)

. (3.58)

Notice that we inserted the i factors in W such that in the limit µ ≪ Λ, both masses
m1 and m2 are positive at leading order in Λ, while µ is a tiny splitting that lifts the
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degeneracy. Now that we have everything we need (in this limit UPMNS = 1), we can
use eq.(3.41) to write the explicit expression of the total rotation matrix in eq.(3.53) as:

R ≃

 1 − iY v
Λ2

√
2
(µ cos θ + Λ sin θ) Y v

Λ2
√
2
(Λ cos θ − µ sin θ)

Y vµ

Λ2
√
2

i cos θ sin θ

− Y v
Λ
√
2

−i sin θ cos θ

 , (3.59)

which gives us the following expression for the diagonal form of the mass matrix of the
Inverse Seesaw:

Mdiag. =

Y 2v2µ
2Λ2 0 0

0 1
2
(−µ+

√
4Λ2 + µ2) 0

0 0 1
2
(µ+

√
4Λ2 + µ2)

 , (3.60)

where the entries correspond to the mass eigenvalues of the 3 mass eigenstates. In
particular, the relation between the flavour and mass eigenstates is: νL

N c
R

ScR

 =

ψ1 + ψc2(− iY vµ√
2Λ2 cos θ − iY v√

2Λ
sin θ) + ψc3(

Y vµ√
2Λ

cos θ − Y vµ√
2Λ2 sin θ)

ψ1
Y vµ√
2Λ2 + ψc2 i cos θ + ψc3 sin θ

−ψ1
Y v√
2Λ

+ ψc3 cos θ − ψc2 i sin θ

 . (3.61)

It is easy to see that inverting this expression we find that the mass eigenstate ψ1 is
mainly composed of the left-handed SM neutrino, while the eigenstates ψc1,2 are mainly
composed of the heavy neutrinos N c

R,S
c
R. This is due to the 1/Λ suppression. From

eq.(3.59) we can get the elements of the mixing matrix V and in particular we have:Veψ2 = − iY v√
2Λ2 (µ cos θ + Λ sin θ)

Veψ3 =
Y v√
2Λ2 (Λ cos θ − µ sin θ)

. (3.62)

2 Flavours

In the one flavour limit we are able to generate a mass term for just one of the light
neutrinos. However, as we previously mentioned, we want at least two of them to be
massive, so now we perform the diagonalization of the mass matrix by considering 3
generations of light neutrinos and 2 generations for each heavy neutrino. In this case the
mass matrix in eq.(3.45) is a 7× 7 matrix, and we define:

Y =

(
Y11 Y12 Y13
Y21 Y22 Y23

)
, Λ =

(
Λ1 0
0 Λ2

)
µ =

(
µ1 0
0 µ2

)
. (3.63)

We can always assume that one among Λ and µ is diagonal without loss of generality,
but to simplify calculations we take them both to be diagonal. Now the heavy block MR
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is diagonalized by the rotation matrix:

W =


i cosϕ1 sinϕ1 0 0

0 0 i cosϕ2 sinϕ2

−i sinϕ1 cosϕ1 0 0
0 0 −i sinϕ2 cosϕ2

 , (3.64)

where the rotation angles ϕ1,2 are defined by:

tan(2ϕ1) =
2Λ1

µ1

and tan(2ϕ2) =
2Λ2

µ2

. (3.65)

Applying this rotation we get the diagonal heavy block:

Mdiag.
R = W TMRW =


m1a 0 0 0
0 m1b 0 0
0 0 m2a 0
0 0 0 m2b

 , (3.66)

with:m1a =
1
2
(−µ1 +

√
4Λ2

1 + µ2
1)

m1b =
1
2
(µ1 +

√
4Λ2

1 + µ2
1)

and

m2a =
1
2
(−µ2 +

√
4Λ2

2 + µ2
2)

m2b =
1
2
(µ2 +

√
4Λ2

2 + µ2
2)

, (3.67)

where mi are the masses of the eigenstates ψ2a, ψ2b, ψ3a, ψ3b. Now that we have the
rotation matrix W , we can get the mixing matrix V as defined in the top-right element
of eq.(3.41). It turns out to be a 3 × 4 matrix, each column containing the mixings of
one of the of the 4 heavy eigenstates with each of the 3 light eigenstates. In particular
we have:

V =

Veψ2a Veψ2b
Veψ3a Veψ3b

Vµψ2a Vµψ2b
Vµψ3a Vµψ3b

Vτ ψ2a Vτ ψ2b
Vτ ψ3a Vτ ψ3b

 , (3.68)

where the elements are given by:
Veψ2a = − ivY †

11√
2Λ2

1

(µ1 cosϕ1 + Λ1 sinϕ1)

Vµψ2a = − ivY †
12√

2Λ2
1

(µ1 cosϕ1 + Λ1 sinϕ1)

Vτ ψ2a = − ivY †
13√

2Λ2
1

(µ1 cosϕ1 + Λ1 sinϕ1)

,


Veψ2b

=
vY †

11√
2Λ2

1

(Λ1 cosϕ1 − µ1 sinϕ1)

Vµψ2b
=

vY †
12√

2Λ2
1

(Λ1 cosϕ1 − µ1 sinϕ1)

Vτ ψ2b
=

vY †
13√

2Λ2
1

(Λ1 cosϕ1 − µ1 sinϕ1)
Veψ3a = − ivY †

21√
2Λ2

2

(µ2 cosϕ2 + Λ2 sinϕ2)

Vµψ3a = − ivY †
22√

2Λ2
2

(µ2 cosϕ2 + Λ2 sinϕ2)

Vτ ψ3a = − ivY †
23√

2Λ2
2

(µ2 cosϕ2 + Λ2 sinϕ2)

,


Veψ3b

=
vY †

21√
2Λ2

2

(Λ2 cosϕ2 − µ2 sinϕ2)

Vµψ3b
=

vY †
22√

2Λ2
2

(Λ2 cosϕ2 − µ2 sinϕ2)

Vτ ψ3b
=

vY †
23√

2Λ2
2

(Λ2 cosϕ2 − µ2 sinϕ2)

.

(3.69)
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3.3.3 Casas-Ibarra Parametrization

The Casas-Ibarra parametrization [82] is a very useful way to write the Yukawa matrix
in terms of all the other quantities of the model, and it can be applied to both the
Type 1 and the Inverse Seesaw. This parametrization depends on the ordering of the
light neutrino masses. Normal ordering (NH) corresponds to the choice of ν1 being the
lightest (or potentially massless) neutrino, while in inverted ordering (IO) it would be
ν3. In this work we choose to adopt the NH:

mν1 = 0

mν2 =
√
∆m2

21

mν3 =
√
∆m2

31

, (3.70)

where ∆m2
21 and ∆m2

31 are the measured mass squared differences. For the Type 1
Seesaw, the Casas-Ibarra parametrization of the Yukawa is:

Y =
i
√
2

v
diag(

√
M1,

√
M2) ·R · diag(0,√mν2,

√
mν3), (3.71)

where R is an arbitrary orthogonal matrix such that RTR = 1.

We now derive the same result for the Inverse Seesaw [83,84]. Let us start by writing
the mass matrix of the light neutrino masses that we previously found:

Mν =
v2

2
Y TΛT

−1

µΛ−1Y. (3.72)

We are working in the assumption that the mass matrix of the charged leptons is diagonal
to begin with, so that Mν is diagonalized exactly by the measured U = UPMNS matrix,
so we can write:

diag(0,mν2,mν3) ≡ mD
ν = UTMνU =

v2

2
UTY TΛT

−1

µΛ−1Y U. (3.73)

Let us now define the square root of a matrix D such that
√
D
√
D = D. If the matrix

is diagonal, we have: √
D ≡ diag(

√
d1, ...,

√
dn). (3.74)

Using this definition and assuming that µ is diagonal, we can write:

mD
ν =

v2

2
UTY TΛT

−1√
µ
√
µΛ−1Y U. (3.75)

34



Now we impose the following relation:

1 =
v2

2

√
(mD

ν )
−1mD

ν

√
(mD

ν )
−1

=
v2

2

(√
(mD

ν )
−1UTY TΛT

−1√
µ
)(√

µΛ−1Y U
√

(mD
ν )

−1
)

=
v√
2

(√
µΛ−1Y U

√
(mD

ν )
−1
)T v√

2

(√
µΛ−1Y U

√
(mD

ν )
−1
)
.

From this equation we can identify the orthogonal matrix:

R ≡ v√
2

√
µΛ−1Y U

√
(mD

ν )
−1, (3.76)

and inverting this expression we get:

Y =

√
2

v
Λ
√
µ−1R

√
mD
ν U

†. (3.77)

Since in this work we assume that only 2 of the light neutrinos are massive, we choose
to parametrize R as in [4]:

R =

(
0

√
1− r2 r

0 −r
√
1− r2

)
. (3.78)

We notice that this procedure depends on the convention used to define the mass matrix
of the Inverse Seesaw. Frequently it is defined from the term that in our case is the
hermitian conjugate. In such convention the corresponding result of the Casas-Ibarra
parametrization can be found in Ref. [85,86].

3.4 State of the Art

The problem of neutrino masses is just one of the many open questions presented by
neutrino physics, namely:

1. What is the mass hierarchy?

2. What is the absolute value of neutrino masses?

3. Is CP violated in the lepton sector? If so, by how much?

4. Are neutrinos Dirac or Majorana particles?

5. Do light sterile neutrinos exist? If so, how many of them are there?
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Even if we do not have definitive answers to these questions yet, there a lot of active
experiments and future ones that are improving our predictions.

There are a lot of data coming from neutrino oscillation experiments, such as Super-
Kamiokande, SNO+, T2K, NOvA, IceCube/DeepCore and many others. From these
experiments we can extract predictions for the following quantities:

∆m2
ij ≡ m2

i −m2
j

θ1, θ2, θ3

δCP (3.79)

Some predictions are more accurate than others, for example there is still a lot of un-
certainty on the δCP phase. The most recent values are shown in Tab.3.2, that contains
the results of NuFIT-6.0 [87, 88].

Regarding the neutrino masses, there are several quantities that can be measured
from experiments other than ∆m2

ij. In particular, from neutrino-less double β-decays
we can test the Majorana nature of neutrinos and get an upper limit on the effective
Majorana mass of the electron neutrino mββ [89]:

mββ = |
∑
i

U2
eimi| < 0.16 eV at 90% CL. (3.80)

The KATRIN experiment [90] gives us the upper limit on the effective electron antineu-
trino mass mν :

mν =
∑
i

|Uei|mi < 0.45 eV at 90% CL. (3.81)

From cosmology we get the upper limits on the sum of the masses of the three light
active neutrinos [91]:∑

i

mi < 0.07− 0.12 eV at 95% CL depending on the choice of data,

and on the absolute mass of the lightest neutrino [92]:

mlight < 0.037 eV at 95% CL for normal ordering (3.82)

mlight < 0.042 eV at 95% CL for inverted ordering. (3.83)

In Fig.3.3 we show the plot from [93] that shows the link between the mass of the lightest
neutrino mlight and the effective Majorana mass mββ.

36



Figure 3.3: The red (green) band corresponds to the normal (inverted) ordering, re-
spectively, in which case mlight is equal to m1(m3). The bands are drawn by varying the
masses and mixing parameters in the range permitted by oscillation experiments. The
horizontally excluded region comes from ββ0ν constraints.

Normal Ordering (∆χ2 = 0.6) Inverted Ordering (best fit)
bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.307+0.012
−0.011 0.275 → 0.345 0.308+0.012

−0.011 0.275 → 0.345

θ12/
◦ 33.68+0.73

−0.70 31.63 → 35.95 33.68+0.73
−0.70 31.63 → 35.95

sin2 θ23 0.561+0.012
−0.015 0.430 → 0.596 0.562+0.012

−0.015 0.437 → 0.597

θ23/
◦ 48.5+0.7

−0.9 41.0 → 50.5 48.6+0.7
−0.9 41.4 → 50.6

sin2 θ13 0.02195+0.00054
−0.00058 0.02023 → 0.02376 0.02224+0.00056

−0.00057 0.02053 → 0.02397

θ13/
◦ 8.52+0.11

−0.11 8.18 → 8.87 8.58+0.11
−0.11 8.24 → 8.91

δCP/
◦ 177+19

−20 96 → 422 285+25
−28 201 → 348

∆m2
21

10−5 eV2 7.49+0.19
−0.19 6.92 → 8.05 7.49+0.19

−0.19 6.92 → 8.05

∆m2
3ℓ

10−3 eV2 +2.534+0.025
−0.023 +2.463 → +2.606 −2.510+0.024

−0.025 −2.584 → −2.438

Table 3.2: Three-flavor oscillation parameters from the fit to global data. The numbers
in the 1st (2nd) column are obtained assuming NO (IO), i.e., relative to the respective
local minimum. Note that ∆m2

3ℓ ≡ ∆m2
31 > 0 for NO and ∆m2

3ℓ ≡ ∆m2
32 < 0 for IO.
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Chapter 4

Seesaw Matching

In this chapter we perform the matching of the Seesaw models to the SMEFT. The way
we do it is by deriving the results for the Type 1 Seesaw and then use them to get the
ones for the Inverse Seesaw, similarly to what we did diagonalizing the mass matrix.

4.1 Tree level matching

In this section we show how to use the functional method to perform the tree-level
matching. The operators that are generated up to order O(Λ−2) in the SMEFT, for
both the Seesaws we are considering, are:

Ltree−levSMEFT ⊃
[
C5

ΛEFT
(ℓ̄cLH̃

∗)(H̃†ℓL) + h.c.

]
+

C6

Λ2
EFT

(ℓ̄LH̃) i/∂ (H̃†ℓL). (4.1)

The first one is the Weinberg operator that we already discussed, and second one is the
dim-6 operator. To perform the matching, it is useful to rewrite the Type 1 Seesaw
Lagrangian in as:

L =
1

2
N̄(i/∂ −M)N − 1

2

(
N̄Y H̃†ℓL + ℓ̄cLH̃

∗Y TN c + ℓ̄LH̃Y
†N + N̄Y ∗H̃T ℓcL

)
, (4.2)

where we have split the Yukawa terms in eq.(3.29) using eq.(B.26). To apply the func-
tional method we start by finding the classical equations of motion of the heavy fields
we want to integrate out. Using:

∂L
∂N

− ∂µ
∂L

∂(∂µN)
= 0, (4.3)

we get: {
(−i/∂ +M)N = − (Y H̃†ℓL + H̃TY ∗ℓcL)

(i/∂ +M) N̄ = − (ℓ̄cLY
TH∗ + ℓ̄LH̃Y

†)
. (4.4)
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4.1.1 Weinberg operator

Let us start by performing the matching to the Weinberg operator. Since it is the lower-
dimensional operator in the SMEFT, we keep only the solutions of eq.(4.4) at O(M−1):{

N ≈ −M−1(Y H̃†ℓL + H̃TY ∗ℓcL)

N̄ ≈ −M−1(ℓ̄cLY
TH∗ + ℓ̄LH̃Y

†)
. (4.5)

By substituting these solutions in eq.(4.2) and keeping only the solutions of orderO(M−1)
we get:

L =
1

2
ℓ̄cLH̃

∗ (Y TM−1Y ) H̃†ℓL + h.c. . (4.6)

Comparing with eq.(4.1) we have:

C5

ΛEFT
=

1

2
Y TM−1Y, (4.7)

which gives us the tree-level matching of the Type 1 Seesaw to the Weinberg operator.
To extend this result to the Inverse Seesaw, we just need to make the substitutions:

Y →
(
Y
0

)
and M →MR =

(
0 Λ
ΛT µ

)
, (4.8)

where MR is the heavy block of the mass matrix. Performing these substitutions and
using eq.(3.49) we get:

C5

ΛEFT
= −1

2
Y TΛT

−1

µΛ−1Y, (4.9)

which is exactly the result that we got in eq.(3.51).

4.1.2 Dimension 6 operator

Let us now proceed by performing the matching of the dim-6 operator and let us start as
usual from the Type 1 Seesaw. To get the contributions to the dim-6 operator we need
to keep the terms up to O(M−2) in the solution of eq.(4.4):{

N ≈ −M−1
(
1 +M−1 i/∂

)
(Y H̃†ℓL + H̃TY ∗ℓcL)

N̄ ≈ −M−1
(
1−M−1 i/∂

)
(ℓ̄cLY

TH∗ + ℓ̄LH̃Y
†)

. (4.10)

Substituting these expressions in eq.(4.2) and keeping only the terms of O(M−2) we get:

L = ℓ̄LH̃ (Y †M−2Y ) i/∂(H̃†ℓL), (4.11)
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which leads to the result:
C6

Λ2
EFT

= Y †M−2Y, (4.12)

in agreement with [94]. The contribution in eq.(4.11) actually comes just from the kinetic
term in eq.(4.2), since the ones in the mass and Yukawa terms cancel each other out.
We notice that the dim-6 operator is hermitian, in fact we do not write the h.c. in the
Lagrangian. More details are shown in Appendix B. Now, to extend this result to the
Inverse Seesaw we again perform the substitutions in eq.(4.8). The expression for M−2

R

is:

M−2
R =

(
(ΛT

−1
µΛ−1)2 + ΛT

−1
Λ−1 −ΛT

−1
µΛ−1ΛT

−1

−Λ−1ΛT
−1
µΛ−1 Λ−1ΛT

−1

)
, (4.13)

and substituting it in eq.(4.11) we get:

C6

Λ2
EFT

= Y †
(
(ΛT

−1

µΛ−1)2 + ΛT
−1

Λ−1
)
Y. (4.14)

As a last step of the tree level matching, we write the dim-6 operator as a linear combi-
nation of two different operators in Warsaw basis:

(ℓ̄LH̃) i/∂ (H̃†ℓL) =
1

4

[(
ℓ̄Lγ

µℓL
)
(H†i

↔
DµH)−

(
ℓ̄Lγ

µτ IℓL
)
(H†i

↔
DI
µH)

]
, (4.15)

where
↔
Dµ ≡ Dµ −

←
Dµ and

↔
DI
µ ≡ τ IDµ −

←
Dµτ

I with τ I (for I = 1, 2, 3) being the Pauli

matrices and
←
Dµ acting on the left.

Both operators in eq.(4.15) lead to a modification in the neutral current and charged
current interactions. Since there are very strong bounds on the neutral current interac-
tions with the charged leptons, we could think of using them to impose some physical
constraints when performing the phenomenological analysis. However, these interactions
appear with opposite signs in eq.(4.15) and cancel out, so we cannot use the correspond-
ing bounds in our analysis. The interactions that we can use are the neutral currents
with the neutrinos, even though the corresponding bounds are not as strong as the ones
coming from the Zℓ+ℓ− interactions. Moreover, the lack of a precise knowledge of the
neutrino flavour structure makes it difficult account for flavours.

4.2 1-loop matching

In this section we to perform the 1-loop matching of the Seesaw models. Among all the
operators we can generate at 1-loop, we are interested just in the Higgs potential, because
the other would all be of dimension ≥ 5 and would thus be even more suppressed. We
can write the SMEFT Lagrangian as:

L1−loop
SMEFT =

1

2
m2(H†H)− λ(H†H)2. (4.16)
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We now proceed with evaluating the 1-loop corrections to these operators, that we call
δm2 and δλ.

4.2.1 1-loop Matching of the Type 1 Seesaw Model

As usual, we start from the Type 1 Seesaw, so we take eq.(3.29) as the UV theory.

Let us start with the correction to the Higgs mass. In Fig.4.1 we show the loop
diagram that gives δm2. Since we expect divergences to arise from this loop, we must

H̃ H̃†

ℓbL

NR,a

Figure 4.1: Loop diagram contributing to δm2.

go in dimensional regularization before writing down the amplitude. It is easy to show
that the Yukawa vertex in d = 4− 2ε dimensions has the form:

L(d) ⊃ −µεN̄Y H̃†ℓL + h.c. (4.17)

Using the Feynman rules in [95], we can write the amplitude as:

iM = (−1)(Y Y †)aa µ
2ε

∫
ddk

(2π)d
Tr
[
(/k +Ma)PL(/p+ /k)PR

]
(k2 −M2

a )(p+ k)2
, (4.18)

where p is the external momentum and k the loop momentum. Since the mass of the
heavy neutrinos is much higher than all the other energy scales involved, we can consider
the limit in which all external momenta go to zero p → 0. In this limit, the amplitude
becomes:

iM = (−1) 2 (Y Y †)aa µ
2ε

∫
ddk

(2π)d
1

(k2 −M2
a )
. (4.19)

We notice that the integral in the last expression is a Tadpole integral that can be
evaluated using the formula [34]:∫

ddk

(2π)d
1

(k2 −∆)n
=

(−1)ni

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

, (4.20)

that for n = 1 and ∆ =M2
a reads:∫

ddk

(2π)d
1

(k2 −M2
a )

=
(−i)

(4π)d/2
Γ

(
1− d

2

)
(M2

a )
d
2
−1. (4.21)
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Inserting this result in the amplitude we get:

iM = (−1) 2 (Y Y †)aa µ
2ε (−i)
(4π)d/2

Γ

(
1− d

2

)
(M2

a )
d
2
−1. (4.22)

The last thing we have to do is to make the substitution d = 4− 2ε and expand in the
limit ε→ 0:

µ2ε = eε log µ
2

= 1 + ε log µ2 +O(ε2),

(4π)−
d
2 = (4π)−2+ε =

1

(4π)2
(1 + ε log 4π) +O(ε2),

Γ

(
1− d

2

)
= Γ(ε− 1) = −1

ε
+ γE − 1 +O(ε),

Md−2
a =M2

ae
−ε logM2

a =M2
a (1− ε logM2

a ) +O(ε2). (4.23)

Working out the calculations and keeping only the terms up to order O(ε0), we can write
the final result as:

iM = i (−1)
(Y Y †)aa

8π2
M2

a

(
1 + log

µ2

M2
a

− γE +
1

ε
+ log 4π

)
. (4.24)

If we use the MS renormalization scheme, we can reabsorb the constant terms γE and
log 4π in the definition of µ as in eq.(2.9) and the divergence is eliminated by a coun-
terterm, so the renormalized amplitude is:

iM = i (−1)
(Y Y †)aa

8π2
M2

a

(
1 + log

µ2

M2
a

)
. (4.25)

Using this result we can now perform the matching to the Higgs mass term in eq.(4.16).
The 1-loop correction that we get is:

δm2 = (−1)
(Y Y †)aa

4π2
M2

a

(
1 + log

µ2

M2
a

)
. (4.26)

We must make an important comment on the notation that we are using. In eq.(4.26)
there is no sum over the index a, instead we are just taking the (a, a) element of Y Y †.

From dimensional analysis we expect δm2 to scale as a mass squared, in fact we have
δm2 ∼ M2

a . This is also a manifestation of the hierarchy problem, in fact whenever we
have some BSM physics that couples to the Higgs, it produces corrections to m2 that
scale as M2.

Now we can proceed to evaluate the correction δλ to the self-interaction of the Higgs
and to do so, we follow the same procedure as we did for the previous calculation.
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H̃†

H̃†

H̃
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(A2)

H̃

H̃†

H̃†

H̃

ℓbL

NR,c

ℓdL

NR,a

(A1)

H̃

H̃

H̃†

H̃†

ℓdL

NR,c
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(B1)

H̃

H̃†

H̃

H̃†

NR,a

ℓbL

NR,c

ℓbL

(B2)

Figure 4.2: Box-loop diagrams contributing to δλ.

However, as we shall see, in this case there are some additional technicalities that must
be taken into consideration.

In Fig.4.2 we can see the four diagrams that contribute to the amplitude. Let us
start by considering diagrams (A1) and (A2), which are two independent diagrams that

contribute to the amplitude. They are identical up to a swap of the two H̃†, so we can
evaluate just one of them and multiply the result by 2. The same can be said for diagrams
(B1) and (B2). In addition, it is important to notice that diagrams (B) violate lepton
number, because the arrows of the Dirac fermion lines point in opposite directions.

Now we can proceed by writing down the contribution of the diagrams (A). Using
the Feynman rules in [95,96] we have1:

iMA = (−1) 4 (Y Y †)ac(Y Y
†)ca µ

4ε

∫
ddk

(2π)d
1

(k2 −M2
a )(k

2 −M2
c )
. (4.27)

In order to solve the integral we must write it in the form of a Tadpole, and to do so we
can use the Feynman parametrization. The general formula is [34]:

1

Dα1
1 ...D

αN
N

=
Γ(α)

Γ(α1)...Γ(α1)

∫ 1

0

dx1...dxN
xα1−1
1 ...xαN−1

N δ(1− Σixi)

(x1D1 + ...xNDN)α
, (4.28)

1We write it directly in dimensional regularization and considering the limit pi → 0.
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where α = Σiαi and Di are the denominators that we get from the propagators and they
have the form Di = (p2 −M2). In our case, we can write:

1

D1D2

=
1

(k2 −M2
a )(k

2 −M2
c )

=

∫ 1

0

dx

[x(k2 −M2
a ) + (1− x)(k2 −M2

c )]
2

=

∫ 1

0

dx

(k2 −∆)2
, (4.29)

where ∆ = xM2
a +M

2
c (1−x). Inserting this expression in the amplitude, we see that we

have again a Tadpole integral that we can solve using eq.(4.20):

iMA = (−1) 4 (Y Y †)ac(Y Y
†)ca µ

4ε

∫ 1

0

dx

∫
ddk

(2π)d
1

(k2 −∆)2
. (4.30)

After solving the Tadpole, we must take the limit ϵ→ 0, substitute the expression for ∆
and perform the integral over x. This leads to the result (already expressed in the MS
scheme):

iMA = iµ2ε(−1)(Y Y †)ac(Y Y
†)ca

1

4π2

(
1−

M2
c log

µ2

M2
c
−M2

a log
µ2

M2
a

M2
a −M2

c

)
, (4.31)

where we have factored out the term µ2ε, which we is needed later to perform the
matching procedure.

Now let us consider the diagrams (B). We can write their contribution to the ampli-
tude as:

iMB =(−1) 4 (Y †Y )ac(Y Y
†)ca µ

4ε

∫
ddk

(2π)d
MaMc

k2(k2 −M2
c )(k

2 −M2
a )
. (4.32)

Using the Feynman parametrization, we get:

iMB = (−1) 4 (Y †Y )ac(Y Y
†)caMaMc µ

4ε

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddk

(2π)d
Γ(3)

(k2 −∆)3
, (4.33)

with ∆ = M2
a (1 − x − y) +M2

c y. We must notice that in this case we can directly set
ϵ = 0, because the result of the Tadpole integral gives the term:

Γ

(
3− d

2

)
= Γ

(
3− 4− 2ϵ

2

)
= Γ (1− ϵ) . (4.34)
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Since the poles of Γ(ϵ) are at ϵ = 0,−1,−2, ..., setting ϵ = 0 doesn’t give rise to any
divergence. As before, the only term in ε than we keep is µ2ε. Performing the same steps
as we did before, we get the result:

iMB = iµ2ε(−1) (Y †Y )ac(Y Y
†)ca

1

4π2

−MaMc

log M2
a

M2
c

M2
a −M2

c

 . (4.35)

Putting together results (4.31) and (4.35) we get the total amplitude:

iM = iµ2ε(−1)(Y Y †)ac(Y Y
†)ca

1

4π2

(
1−

M2
c log

µ2

M2
c
−M2

a log
µ2

M2
a

M2
a −M2

c

)

+ iµ2ε(−1) (Y †Y )ac(Y Y
†)ca

1

4π2

−MaMc

log M2
a

M2
c

M2
a −M2

c

 . (4.36)

Now we need to perform the matching. To do it, we must impose that the amplitudes
in the UV are equal to the amplitudes in the SMEFT. Eq.(4.36) is the UV amplitude,
which we rewrite in the following way:

iM = µ2ε iM′. (4.37)

From the Lagrangian in eq.(4.16) we can get the SMEFT (tree-level) amplitude that
contributes to the Higgs self-coupling, which in dim-reg is:

iMSMEFT = −4iµ2ελ. (4.38)

Imposing iM = iMSMEFT we get:

λ = −1

4
M′ ≡ δλ, (4.39)

where the explicit expression of δλ is:

δλ =
(Y Y †)ac(Y Y

†)ca
16π2

(
1−

M2
c log

µ2

M2
c
−M2

a log
µ2

M2
a

M2
a −M2

c

)

+
(Y †Y )ac(Y Y

†)ca
16π2

−MaMc

log M2
a

M2
c

M2
a −M2

c

 . (4.40)

There are a few non trivial steps in determining the overall factor of the result we just
got, that come from the symmetry factors of the box-loops and the matching with the
SMEFT. A more detailed derivation of this overall factor can be found in Appendix C.
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Again, we must comment the notation we are using. Similarly to what we had before,
there is no sum on the indexes a, c.

As a last step, we show also the results in the limit where we have just one flavour,
i.e. when Ma →Mc =M :

δm2 = (−1)
|Y |2
4π2

M2

(
1 + log

µ2

M2

)
, (4.41)

δλ =
|Y |4
16π2

(
log

µ2

M2
− 1

)
. (4.42)

Let us now briefly discuss the decoupling limit. One could naively expect that LSM
is recovered in the limit of M → ∞ and that in such limit the matching contributions
that we just evaluated would vanish. However, the issue is more subtle than this and
requires further consideration. Let us consider the correction to the self-coupling. Since
it is dimensionless, the box loops that contribute to δλ should scale as:

1

M2
× (some mass scale)2. (4.43)

The issue arises since in our case the only mass scale in the UV theory isM , so we end up
with an expression proportional to M2/M2. It is obviously impossible to make it vanish
by sending the denominator to infinity by keeping the numerator finite, since they are
literally the same quantity. We can than conclude that the real decoupling limit is for
Y → 0 and it easy to see that in such limit the matching contributions actually vanish.
Let us now look at δm2. Just as δλ, it does not vanish for M → ∞, however in this case
it is a manifestation of the Higgs hierarchy problem.

4.2.2 1-loop Matching of the Inverse Seesaw Model

Now we show see how to use the results we just derived to get the matching contributions
from the Inverse Seesaw. One substantial difference is that in the previous case N was
both a flavour and mass eigenstate. This however in nor true for N and S in the Inverse
Seesaw, as we can see from the Lagrangian in eq.(3.44). In the previous chapter, we
showed how to diagonalize the mass matrix by performing first a block-diagonalization
and then diagonalize the light and heavy block separately. However, this is not the ideal
way to proceed to get the matching contributions. Instead, we directly diagonalize the
heavy block, without performing any operation on the light one. This leads to two heavy
mass eigenstates χ1 and χ2 (each with its flavours) that are both coupled to the Higgs.
In particular, we rotate the mass matrix in eq.(3.45) with the rotation matrix:

O =

(
1 0
0 W

)
, (4.44)
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whereW is the matrix that diagonalizes the heavy block. In the case where we only have
one flavour we write it as in eq.(3.57), while if we consider two flavours for the heavy
states we write it as in eq.(3.64). Performing this rotation we get:

M′ = OTMO =

 0 Y T
1 H̃

∗ Y T
2 H̃

∗

Y1H̃
† m1 0

Y2H̃
† 0 m2

 . (4.45)

Again, we must make the distinction between the one and two flavours case. When con-
sidering one flavour, m1 and m2 are the ones in eq.(3.58) and the new Yukawa couplings
are defined by: {

Y1 = i Y cos θ

Y2 = Y sin θ
. (4.46)

Instead, if we are considering 2 flavours for the heavy eigenstates, m1 and m2 are 2× 2
diagonal matrices with the eigenvalues shown in eq.(3.67). We recall that in this case
the Yukawa matrix Y is defined as in eq.(3.63), so that we have:

Y1 =

(
i Y11 cosϕ1 i Y12 cosϕ1 i Y13 cosϕ1

Y11 sinϕ1 Y12 sinϕ1 Y13 sinϕ1

)
≡
(
Y1a
Y1b

)
Y2 =

(
i Y21 cosϕ2 i Y22 cosϕ2 i Y23 cosϕ2

Y21 sinϕ2 Y22 sinϕ2 Y23 sinϕ2

)
≡
(
Y2a
Y2b

)
. (4.47)

The last thing to do before writing the Lagrangian is to perform the rotations:{
n = On′

n̄c = n̄c′OT
with n′ =

 ℓL
χc1
χc2

 . (4.48)

Now we can write the Lagrangian of the ISS as:

L = − 1

2
(χ̄1m1 χ

c
1 + χ̄2m2 χ

c
2)−

(
χ̄1Y1H̃

†ℓL + χ̄2Y2H̃
†ℓL

)
+ h.c.. (4.49)

We notice that the Lagrangian written in this notation is valid regardless of the number
of flavours we are considering.

Now we can proceed to evaluate the matching contributions. In Fig.4.3 and Fig.4.4
are shown (some of) the diagrams that contribute to δm2 and δλ respectively. It is
clear that the form of the diagrams is the same as the ones we had in the Type 1 Seesaw.
In Fig.4.3 and Fig.4.4 we have kept the index structure of the previous case to highlight
the similarities, but we adopt a different notation to write the results. In particular, we
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Figure 4.3: Loop diagrams contributing to δm2.
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Figure 4.4: Some of the box-loop diagrams contributing to δλ.

rename the flavour indices of the heavy eigenstates as (α, β) and the flavour indices of
the SU(2) doublet as (k, l). For clarity, we write all the explicit sums:

δm2 = − 1

4π2

∑
α

[
3∑

k=1

(
Yα,kY

∗
α,k

)
m2
α

(
1 + log

µ2

m2
α

)]
, (4.50)

δλ =
1

16π2

∑
α,β

 3∑
k=1

(
Yα,kY

∗
β,k

) 3∑
l=1

(
Yβ,lY

∗
α,l

)1−
m2
β log

µ2

m2
β
−m2

α log
µ2

m2
α

m2
α −m2

β

+

1

16π2

∑
α,β

( 3∑
k=1

Y ∗
α,kYβ,k

)2
−mαmβ

log m2
α

m2
β

m2
α −m2

β

 . (4.51)
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All the possible values of the indices (α, β) are:

α, β = 1a, 1b, 2a, 2b, (4.52)

and the corresponding values of the masses and the Yukawas are the ones in eq.(3.67)
and eq.(4.47).

Now, as we did in the previous section, we show the results in the one flavour limit:

δm2 =(−1)
|Y1|2
4π2

[
m2

1

(
1 + log

µ2
R

m2
1

)]
+ (−1)

|Y2|2
4π2

[
m2

2

(
1 + log

µ2
R

m2
2

)]
(4.53)

δλ =
|Y1|4
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In this case masses and the Yukawas are the ones in eq.(3.58) and and eq.(4.46). We
have relabelled the the energy scale µ that comes from dimensional regularization as
µ → µR, so that it is not confused with the parameter µ appearing in the mass matrix
of the Inverse Seesaw model.

It can be shown that in the limit µ → 0 all the contributions that come from the
lepton number violating diagrams cancel out. This is justified by the fact that µ is the
only parameter in the model that violates lepton number.

As for the Seesaw 1 case, we can see that the decoupling limit is for Y → 0.
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Chapter 5

Phenomenology

In this chapter we carry out a phenomenological analysis using the results that we pre-
viously derived. In particular, we want to investigate whether it is possible to have a
successful realization of the Neutrino Option also with the Inverse Seesaw.

After explaining the details of the Neutrino Option and presenting the methods that
we use to reproduce the running of the parameters, we present the results of our analysis.
For simplicity, we carried out a first broad analysis using the results in the limit of just
one flavour generation for both the light and heavy neutrinos. This is done to get an
estimate of the orders of magnitude that we are dealing with and to get some coarse
constraints on the parameters. Then, to make contact with the fact that at least two
of the light SM neutrinos are massive, we consider the case of three generations of light
neutrinos and two generations for each of the heavy neutrinos, following the example of
the original implementation of the Neutrino Option.

5.1 The Neutrino Option

The Neutrino Option [4, 5] is a minimal scenario that, adopting the EFT approach,
radiatively generates the Higgs potential together with neutrino masses in the Type 1
Seesaw model starting from an almost conformal Lagrangian, where the only dimensional
scale is the mass of the heavy neutrino. Integrating out the heavy particle it is possible
to generate the light neutrino masses at dimension 5 through the Weinberg operator and
the Higgs potential at 1-loop. By requesting that they are generated simultaneously, we
can obtain a prediction for the heavy mass and the Yukawa coupling. In particular, the
matching contributions fix the parameters of the Higgs potential and neutrino mass at a
certain high energy scale Λ as functions of the Yukawa and the high scale itself. Λ is taken
to be the heavy mass. Below this scale, all quantities evolve with the SMEFT RGEs down
to the electroweak scale, where they can be compared with experimental measurements.
We note that the running is actually relevant just for Higgs self-coupling. The goal is to
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verify if there are any values of Y and Λ that make this construction compatible with
the values of m,λ and mν measured at the EW scale. In order to perform the numerical
analysis, we take the inverse approach and require that the Higgs and neutrino masses
are compatible with the experimental measurements at the EW scale and solve for the
parameters of the model, namely Y and Λ. Technically also λ should be included in the
system, but due to its non-negligible running it is more convenient to verify afterwards
at which scale the condition is satisfied.

The numerical analysis of this scenario is carried out in Ref. [5], and we use it for
comparison with our implementation. As previously mentioned, this scenario is realised
considering two generations of heavy Majorana neutrinos with masses M2 = xM1 with
1 < x < 10. In addition to the matching contributions, a term λ0(H

†H)2 is allowed in
the scalar potential, so that the Neutrino Option is realised for values of (M1, λ0) that
simultaneously satisfy:

m2(M1) = δm2(M1) (5.1)

λ(M1) = λ0 + δλ(M1). (5.2)

The Yukawa couplings are required to reproduce the observed neutrino masses and
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∆m2(M1), M2 = 10 M1

Figure 5.1: Numerical comparison between the values of the threshold correction
δm2(M1) compatible with neutrino physics constraints in the cases x = 1, 10 with the
running Higgs massm2(µ) determined by the SM RGE and the measured SM parameters
(red line). The figure is taken from Ref. [5].

mixings. The range of values for δm2(M1), δλ(M1) compatible with this condition is de-
termined scanning the low energy parameter space with a sample of 1000 points randomly
selected within the 3σ allowed ranges for the neutrino masses and the UPMNS parameters
(including the Majorana phases). In Fig.5.1 and Fig.5.2 are shown the results.

The Neutrino Option predicts a heavy mass in the range 106 GeV < M1 < 107 GeV
for a value of the Yukawa coupling Y ∼ 10−4.5−10−6. In the following sections, we show
how we can lower the prediction of the heavy mass exploiting the extra freedom in the
parameter space of the Inverse Seesaw, reaching experimentally testable scales.
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Figure 5.2: Numerical comparison between the values of the threshold correction
δλ(M1) compatible with neutrino physics constraints in the cases x = 1, 10 with the
running quartic coupling λ(µ) determined by the SM RGE and the measured SM pa-
rameters (red lines), shown in both linear and logarithmic scale. The right figure has
been split in two symmetric panels for λ > 0 and λ < 0. The dotted vertical lines mark
the mass regions where the matching for m2 is fulfilled (cf. Fig. 5.1). The figures are
taken from Ref. [5].

In Refs. [97–100] also conformal UV embeddings are explored. They consist in the
addition of a set of scalar fields that generate the Majorana scale spontaneously by
satisfying a Gildener-Weinberg condition [101]. As pointed out in [4], these scalars also
turn out to be good Dark Matter candidates. A possible conformal embedding for the
ISS is presented in Ref. [102], but we do not investigate these matters any further in this
work.

5.2 Numerical Implementation of SM RGEs

In this section we present the methods that we used to perform the running of the
SM parameters. The SM RGEs are taken from the files of the Mathematica package
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DsixTools [103,104], while the boundary conditions are taken from Ref. [105]1:

λ(Mt) = 0.12604 + 0.00206

(
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GeV
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)
− 0.00004

(
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GeV
− 173.34

)
± 0.00030th
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GeV
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)
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(
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)
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)
+
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)
+ 0.00011
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,

gY (Mt) = 0.35830 + 0.00011
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)
− 0.00020

MW − 80.384GeV

0.014GeV

g3(Mt) = 1.1666 + 0.00314
α3(MZ)− 0.1184
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− 0.00046

(
Mt

GeV
− 173.34

)
. (5.3)

The boundary conditions for the remaining Yukawa couplings are set to zero since they
do not make any significant contribution to the running of the quantities we are interested
in.

5.3 Results with 1 Flavour Generation

In this section we show the numerical analysis done using the results in the one flavour
limit. We use the Higgs and light neutrino masses given by the ISS as physical con-
straints to get a solution for µ and Y , both as a function of Λ, and then substitute the
results in the expression for δλ.

Let us start by considering the expressions of the matching contributions in the
one flavour limit in eq.(4.53) and eq.(4.54). The first thing we need to do is to fix
the renormalization scale µR. For simplicity, we consider the limit µ ≪ Λ, so that
the two heavy masses m1,2 in eq.(3.58) are almost degenerate and both equal to Λ at
leading order. This way, since the energy scales m1 and m2 are close to one another, we
can neglect the running between them without risking to miss any important physical
effects. In this approximation, we fix the renormalization scale as µR = mi e

−3/4, where
mi is either mass m1 or m2 appearing in the logarithms of eq.(4.53) and eq.(4.54). The
reason for the presence of the exponential in the substitution is related to the choice of
renormalization scheme, as explained in [106]. After performing these substitutions, we

1The convention used for the Higgs potential in Refs. [103,104] is different from the one in Ref. [105].
This has been taken into account in order to properly implement the RGEs.
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are left with the expressions:

δm2 =
Y 2Λ2

8π2
, (5.4)

mν =
v2Y 2µ

Λ2
, (5.5)

δλ = − Y 4

32π2
f(µ,Λ), , (5.6)

where f(µ,Λ) is a more complicated function of µ and Λ. Solving eq.(5.4) and eq.(5.5)
for Y and µ gives us:

Y =
2
√
2 π δm

Λ
and µ =

mν Λ
4

4π2 v2 δm2
. (5.7)

As we previously mentioned, we now impose the physical constraints:

δm2 = (125.1± 0.2)2GeV2 and

{
mν = 1 eV

mν = 10−3 eV
. (5.8)

Imposing these constraints we are momentarily neglecting the running of the Higgs and
neutrino masses, but this can be justified by the fact that their running is almost neg-
ligible anyway. We wrote two values for mν in eq.(5.8) in order to account for the lack
of a precise knowledge of the neutrino masses; however, as we show, only one quantity
is affected by the value of mν .

In Fig.5.3 we show the order-of-magnitude predictions of the values of the Yukawa
coupling and of µ/Λ that we got by substituting the values in eq.(5.8) in eq.(5.7). From
plot (a) of Fig.5.3 we see that the Yukawa coupling takes perturbative values at almost
all energy scales. Let us now look at plot (b) in Fig.5.3, that shows the ratio µ/Λ. First of
all, we point out that this is the only quantity affected by different values of the neutrino
mass in eq.(5.8). An important information that we get from this plot, is that we can
identify two different physical regimes:

• µ/Λ ≪ 1 → in this region our initial approximation of µ ≪ Λ is self consistent.
Also, this regime is theoretically protected by the technical naturalness of µ, which
justifies its smallness.

• µ/Λ ≫ 1 → in this region the energy separation between m1 and m2 can be
potentially very high and neglecting the running between them (as we did in our
calculations) would be incorrect, because we could miss effects that may be relevant.
Evaluating each log in eq.(4.53) and eq.(4.54) at its corresponding scale would also
be incorrect, because in this case the two different matching scales m1,m2 cannot
both be approximated to Λ. Moreover, we would need a way to justify a big value
for µ, which we do not have.
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Figure 5.3: Here we present the plots of the (a) - Yukawa coupling and (b) - ratio
µ/Λ, compatible with realistic values of the Higgs and neutrino masses in eq.(5.8) for
the 1-flavour toy example. The green line corresponds to mν = 1 eV and the blue line to
mν = 10−3 eV. The x-axis of every plot is the energy scale Λ.

By looking at the plots in Fig.5.3 we can say that the most viable region for the realiza-
tion of this version of the Neutrino Option is 500 GeV ≲ Λ ≲ 106 GeV. Below this range
the Yukawa is not perturbative any more and the EFT approach breaks down due to the
fact that we are matching onto the SMEFT, so we are required to stay above the EW
scale. On the other hand, above this range we enter the region where µ/Λ ≫ 1, which
we exclude for the reasons mentioned above. So we can conclude that this is the ideal
energy range for the realisation of our scenario. As we showed, we can safely solve the
constraints in eq.(5.8) and get a prediction for Λ which is lower than the one from the
original implementation of the Neutrino Option, which was our goal.

Let us now consider the self-coupling. Substituting the solutions for µ and Y in the
expression of δλ in eq.(5.6), we get the expression of the matching contribution as a
function of the energy scale Λ. Ideally, we would like for it to intersect the plot of the
running of λ in the SM at some point. From there, we would get the matching condition
at the scale where the intersection happens and then going to lower scales, λ would
follow the SM running down to its measured value at the Electroweak scale. However,
since δλ is a correction given by a fermionic loop, it is negative by construction. This
issue is actually unavoidable, because we are simultaneously generating both the Higgs
mass and the self-coupling, that must have opposite sign in order to have Electroweak
symmetry breaking. There are two possible approaches to resolve the problem. One
possibility is to introduce scalar fields to the theory, so that their contribution could
lead to a positive value of δλ. However, we take the approach proposed in Refs. [4,102],
which is to introduce a λ0 ≥ 0 so that:

λ = δλ+ λ0 . (5.9)
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Since the self-coupling is not protected by any symmetry, there is no way of forbidding
the presence of a term like λ0(H

†H)2 in the scalar potential. However, this cannot be
said for the Higgs mass, that can be set to zero in the UV by imposing a conformal
symmetry. In particular, what we do is introducing λ0 at tree-level so that at the EW
scale λ has the corresponding measured value. Introducing this new parameter may
bring some fine tuning issues, that can be quantified by the quantity:

δλ+ λ0
λ0

=
λ

λ− δλ
. (5.10)

In Fig.5.4 we show |δλ|, the running of λ in the SM (with its error bars), λ0 and the
tuning. It is important to notice that these plots make sense only in the limit where
µR ∼ Λ (i.e. in region where µ/Λ < 1), because δλ is a function of Λ and the SM running
is a function of µR. From Fig.5.4 we see that δλ (red line) is always be negligible with
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Figure 5.4: Here we present the plots of |δλ| (red line), the running of λ in the SM
(green line), λ0 (blue line) and the tuning (yellow line). The only difference between the
two plots is the scale on the y-axis, which is linear (left) or logarithmic (right). The error
bars on the SM running correspond to mt = 171.1 − 175.6 GeV, as in [105]. The error
on |δλ| given by varying the Higgs mass within the 3σ range and varying the neutrino
mass is negligible, so the error on λ0 is dominated by the one on the SM running. σ is
given in eq.(5.8).

respect to λ0 (blue line), since δλ goes to zero very rapidly. The only region where this is
not true is at low energies, where λ is given by a cancellation between λ0 and δλ. That
is also the only region where we have a non negligible fine tuning (yellow line). However,
we mentioned above that we are interested in the region Λ ≳ 500 GeV, in which the
tuning is always below 10%, which is an acceptable value.

We can now make some considerations based on the results that we got so far. In
particular, we recognize 3 different physical regions:

• Λ ≲ 103 GeV → in this region it is possible to have direct searches for the heavy
neutrinos, which should have almost degenerate masses since we have µ/Λ ≪ 1.
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• 103 GeV ≲ Λ ≲ 106 GeV → this is the most viable region, since the tuning needed
is almost negligible and the approximation µ≪ Λ is still consistent.

• Λ ≳ 106 GeV → above this scale we enter the region where µ/Λ ≫ 1, which we
already excluded for the above mentioned reasons.

5.3.1 Bounds from Direct Searches

As we previously said, in the region Λ ≲ 103 GeV we can have direct searches for the
heavy neutrinos. For example, colliders can look for same-sign dilepton signatures and
trilepton signatures through the s-channel Drell–Yan process, shown in Fig.5.5. We

q

q̄′ ℓ±α

ℓ±β

q

q̄′

W
N W

q

q̄′ ℓα

ℓβ

ν

ℓγ

W
N W

Figure 5.5: s-channel Drell–Yan process that generates same-sign dilepton signatures
(left) and trilepton signature (right).

notice that the observation of a same-sign dilepton signature would constitute direct evi-
dence of lepton number violation. Ref. [107] presents a search by the CMS collaboration
that infers some of the most stringent upper bounds on the values of the elements of
the mixing matrix V in eq.(3.53) as a function of the mass of the heavy neutrinos. The
bounds are shown in the left plot of Fig.5.6. They come from the trilepton channel and
are represented in a plane mixing vs mass. Since in this section we are working with
the results in the one flavour limit, we can consider just the electron channel. Ref. [107]
presents bounds for the muon channel as well, that are numerically similar.

In our case, the expressions of the masses are the ones in eq.(3.58) and the mixings
are the ones in eq.(3.62). They are both functions of µ and Λ, however the mixings
depend also on the Yukawa. We can get the function Y (µ,Λ) by inverting eq.(5.5) and
fixing mν . Doing this leads to an expression of masses and mixings that are functions
of just µ and Λ, so we can project the CMS bound in a µ/Λ vs Λ plane. In particular,
we can see what the forbidden regions are, given that a point in this parameter space
is forbidden if it lies above the CMS upper bound. Since the bound is valid only for
the plotted range of mi, we are not able to exclude anything outside of this region. In
Fig.5.6 we show both the CMS bound (left) and the corresponding forbidden region in
our case (right), from which we see we can exclude the region 101.5 ≲ Λ[GeV] ≲ 102.8.
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Figure 5.6: On the left we show the CMS bound from Ref. [107]. The constraints
shown in this plot come from EWPD [108], DELPHI [109], L3 [110, 111], ATLAS [112]
and CMS [113, 114]. On the right we show the corresponding forbidden regions in our
case for the two different values of mν in eq.(5.8): purple for mν = 10−9 GeV and blue
for mν = 10−12 GeV. Once mν is fixed, both mixings Veψ2 and Veψ3 lead to the same
forbidden regions, which are the ones where the purple (blue) line enters the purple
(blue) area. In both cases this happens for 101.5 ≲ Λ[GeV] ≲ 102.8.

We notice that we plot the forbidden regions for both Veψ2 and Veψ3 in the same plane
because we recall that at these energy scales we have m1,2 ∼ Λ.

5.4 Results with 2 Massive Light Neutrinos

In this section we present the results of the same analysis described above, but considering
3 flavours of light neutrinos and 2 flavours for each of the 2 heavy neutrinos, as in Ref. [5].

The analysis is performed with the same logic of the previous one, so we start by
fixing the renormalization scale in eq.(4.51) in the same way we previously described.
This leads to expressions of δm2 and δλ that depend on µ1,2, Λ1,2, the massesmi(µ1,2,Λ1,2)
defined in eq.(3.67) and the elements of the Yukawa matrix defined in eq.(3.63). Again,
we want to use use the Higgs and neutrino masses as physical constraints, but we do it in
a slightly different way. First of all, we invert the expression of the mass matrix of light
neutrinos to write the Yukawa using the Casas-Ibarra parametrization as in eq.(3.77). At
this point, the Yukawa depends on µ1,2, Λ1,2, the free parameter r and the parameters of
the UPMNS matrix, namely the neutrino masses and mixings (including the 2 Majorana
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phases). We recall that UPMNS has the form:

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

1 0 0
0 eiα1 0
0 0 eiα2

 .

(5.11)
We fix the parameters appearing in the Yukawa matrix in the following way:

• We fix the UPMNS parameters as the central values in the first column of Tab.3.2,
while for the Majorana phases we chose the values:

α1 = 180◦ and α2 = 0◦. (5.12)

• To fix µ1,2 and Λ1,2 we define µ1 ≡ µ and Λ1 ≡ Λ. Then we consider the following
range for the remaining parameters:

0.1 ≤ µ2

µ
≤ 10 and 0.1 ≤ Λ2

Λ
≤ 10. (5.13)

As before, we work in the limit µ ≪ Λ. This way we ensure that the four heavy
masses are almost degenerate, so that again all the matching scales are close to
one another and are equal to Λ at leading order. We also recall that this limit is
protected by the technical naturalness of µi.

• Fixing r is a more delicate business. Since it is a free parameter, we could in
principle assign it any value. However, for big values of r the elements of the
Yukawa matrix behave like |Y1i| = |Y2i|. This is actually a fine tuning due to the
fact that no matter the value of r, the matrix R of the Casas-Ibarra parametrization
is ensured to be orthogonal. For this reason, we choose a small value for r:

r = 0.5. (5.14)

Performing these substitutions, the elements of the Yukawa matrix are functions of only
µ and Λ, so we use them to solve the constraint on the Higgs mass and get a solution
for µ(Λ), which we then substitute in the expression of δλ. All the plots are similar to
the ones obtained in the one flavour case, so the same conclusions are valid.

Considering the results that are sensitive to flavours makes it possible to investigate
several experimental constraints. In this work we consider bounds from direct searches
for heavy neutral leptons (as for the previous case), the invisible width of the Z boson
and lepton flavour violating processes.
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5.4.1 Bounds from Direct Searches

Now that we are working with multiple flavour generations we can consider both bounds
for the electron and muon channel presented in Ref. [107]. In Fig.5.7 we present the
resulting forbidden regions for a value of the ratios in eq.(5.13) equal to 10. Additional
plots for different values of the ratios are shown in Appendix D.
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Figure 5.7: Here we present the forbidden regions coming from the upper bounds on the
electron channel (left) and the muon channel (right) for a value of the ratios in eq.(5.13)
equal to 10. The green (blue) areas correspond to the mixing with the heavy eigenstates
ψ2a or ψ2b (ψ3a or ψ3b). The exclusion regions for the ”a” and ”b” eigenstates completely
overlap. The red line corresponds to µ/Λ evaluated with the corresponding ratio.

5.4.2 Bounds from the Invisible Width of Z

As we mentioned after performing the tree-level matching of the dim-6 operator, we can
impose some physical constraints on the neutral current interaction with neutrinos. In
particular, we consider the bound on the invisible width of the Z boson. Taking into
account also the SMEFT contribution, the invisible width is written as:

Γinv. =
∑
i,j

ΓZ→νiνj with ΓZ→νiνj =
GF m

3
Z

3π
√
2

[
δij
2

− v2

2
(C

(1)
Hℓij − C

(3)
Hℓij)

]2
, (5.15)

where GF is the Fermi constant and mZ is the mass of the Z boson. From eq.(4.14)
we have the expression of the Wilson coefficient of the dim-6 operator resulting from
the matching procedure. In Warsaw basis the dim-6 operator is written as in eq.(4.15)

and C
(1)
Hℓij, C

(3)
Hℓij are their corresponding Wilson coefficients. In our case we have that

C
(3)
Hℓij = −C(1)

Hℓij = C6/4, so we get:

ΓZ→νiνj =
GF m

3
Z

3π
√
2

(
δij
2

− v2C
(1)
Hℓij

)2

≃ GF m
3
Z

3π
√
2

(
δij
4

− v2 δij C
(1)
Hℓij

)
, (5.16)
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where we have kept only the terms up to linear order in C
(1)
Hℓij. From this expression we

see that only the diagonal elements of C
(1)
Hℓ contribute, so we can write the Z invisible

width as:

Γinv. =
∑
i,j

ΓZ→νiνj =
GF m

3
Z

3π
√
2

(
3

4
− v2Tr[C

(1)
Hℓ ]

)
. (5.17)

The expression of C
(1)
Hℓ , keeping only the leading term in eq.(4.14), is:

C
(1)
Hℓ =

C6

4
≃ 1

4
Y †ΛT

−1

ΛTY, (5.18)

where Λ is defined in eq.(3.63) and Y is the Yukawa matrix given by the Casas-Ibarra
parametrization.

According to the PDG [115] the experimental value of the total invisible width is:

Γinv. = 499.3± 1.5 MeV, (5.19)

and according to ATLAS [116] and CMS [117] the most precise measurement of the
invisible width of Z in the Standard Model is:

ΓSMinv.,exp = 501.445± 0.047 MeV. (5.20)

In our case we have:

ΓSMinv. =
GF m

3
Z

3π
√
2

3

4
= 497.493 MeV. (5.21)

The measurement of ΓSMinv.,exp is highly precise and takes into account also radiative cor-
rections, so the value that comes from eq.(5.21) is out of the permitted range in eq.(5.20).
To resolve this issue and compare our prediction to the experimental values, we introduce
a scale factor k such that:

Γinv. =
∑
i,j

k ΓZ→νiνj with k =
501.445

497.493
. (5.22)

From Ref. [115] we have that at 95% CL the bound we need to enforce is:

χ2(c)− χ2
min(c) ≤ 3.84, (5.23)

where c = Tr[C
(1)
Hℓ ] and χ

2(c) is the function:

χ2(c) =
(Γth(c)− Γexp)

2

σ2
th + σ2

exp

, (5.24)

with:

Γth(c) = Γinv. σth = 0.047 MeV

Γexp = 499.3 MeV σexp = 1.5 MeV. (5.25)

As for the previous case, we can project the bound obtained by enforcing eq.(4.14) in
a plane µ/Λ vs Λ. In Fig.5.8 we present the result for different values of the ratios in
eq.(5.13).
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Figure 5.8: Here we present the forbidden regions resulting from enforcing the bound
in eq.(4.14) for the following values of the ratios in eq.(5.13): 0.1 (red), 1 (purple) and
10 (blue). Following the same colour pattern, the lines represent the corresponding plots
of µ/Λ compatible with a successful realization of the Neutrino Option.

5.4.3 Bounds from Lepton Flavour Violating Processes

As in Ref. [102], we also consider bounds coming from lepton violating processes. In
particular, we take into account the branching ratio of lepton flavour violating (LFV)
processes, which are mediated by heavy neutrinos at 1-loop. The contribution from these
type of diagrams is:

BR(ℓα → ℓβγ) =
α3 sin2 θW
256π2

(
mℓα

mW

)4
mℓα

Γℓα
|Gαβ|2, (5.26)

where α is the fine-structure constant, θW is the Weinberg angle, mℓα is the mass of the
decaying lepton, mW in the mass of the W boson, Γℓα is the total decay width of the
decaying lepton, and:

Gαβ ≡
∑
j

V ∗
αjVβjGγ

(
m2
Nj

m2
W

)
, (5.27)

where V is the mixing matrix and its elements are given by eq.(3.69) and mNj
are the

heavy masses in eq.(3.67). Gγ(x) is a photonic composite form factor obtained from
expanding the loop integrals up to the first non-vanishing order [118], and is given by:

Gγ(x) = −2x3 + 5x2 − x

4(1− x)3
− 3x3

2(1− x)4
lnx. (5.28)

The total widths of τ and µ are:

Γµ =
G2
Fm

5
µ

192π3

(
1− 8

m2
e

m2
µ

)[
1 +

α

2π

(
25

4
− π2

)]
[119]

Γτ = (2.267± 0.004) · 10−2GeV [120]. (5.29)
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From experiments we have the upper bounds on the following branching ratios:

BR(µ→ eγ) < 4.2 · 10−13 [121]

BR(τ → eγ) < 1.5 · 10−10 [122]

BR(τ → µγ) < 1.5 · 10−10 [122]. (5.30)

In Fig.5.9 we show the forbidden regions resulting from enforcing the bounds in eq.(5.30)
for a value of the ratios in eq.(5.13) equal to 10. Additional plots for different values of
the ratios are shown in Appendix D. All the numerical values have been taken by the
PDG summary tables [115].
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Figure 5.9: Here we present the forbidden regions resulting from enforcing the bound
in eq.(5.30) for a value of the ratios in eq.(5.13) equal to 10. The blue line represents
the corresponding plots of µ/Λ compatible with a successful realization of the Neutrino
Option.

5.4.4 Summary

Here we present the summary plots of the forbidden regions resulting from enforcing the
bounds coming from direct searches of heavy neutral leptons, the invisible width of Z
and lepton flavour violating processes. Each plot in Fig.5.10 contains all the forbidden
regions for a chosen value of the ratio in eq.(5.13). Each coloured area in the plots cor-
responds to the total forbidden region coming from the respective physical constraint.
For example, the purple region in the bottom plot of Fig.5.10 is the union of the green
and blue areas of both plots in Fig.5.7, the orange one corresponds to the blue one in
Fig.5.8 and the yellow one corresponds to the union of the three regions in Fig.5.9. The
plots for different values of the ratios are obtained in the same way.

From the summary plots in Fig.5.10 we can conclude that the experimental bounds
allow us to exclude the region Λ ≲ 103−4 GeV.
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Figure 5.10: Here we present the summary plots of the forbidden regions resulting
from all the experimental constraints we considered. The purple region corresponds to
the bounds from direct searches of heavy neutral leptons. The orange regions corresponds
to the bounds on the invisible width of Z. The yellow region corresponds to the bounds
on the branching ratios of LFV processes. The red line corresponds to µ/Λ for the chosen
values of the ratios in eq.(5.13), namely 0.1 (top), 1 (middle) and 10 (bottom).
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5.5 Comparison between Type 1 and Inverse Seesaw

Now that we have concluded the analysis of our implementation of the Neutrino Option,
we can compare our results to the ones in Ref. [5]. The crucial difference between
these two scenarios, is that the Inverse Seesaw gives us more freedom by introducing an
additional parameter with respect to the Type 1 Seesaw. This is particularly clear from
the predictions of the light neutrino masses from the two Seesaw models:

Type 1 Seesaw → mν ∼
Y 2

Λ
(5.31)

Inverse Seesaw → mν ∼
Y 2µ

Λ2
. (5.32)

The Type 1 Seesaw presents a greater interplay between all the quantities involved.
Specifically, mν controls both the Yukawa and the matching contribution of the Higgs
mass, as shown in Fig.5.1. The Inverse Seesaw instead presents a different scenario,
where mν controls the ratio µ/Λ, while the Yukawa depends only on δm2, as we can see
from eq.(5.7). A remarkable consequence of the difference between the two models is the
resulting prediction of the heavy mass:

Type 1 Seesaw → 106GeV ≲ Λ ≲ 107GeV (5.33)

Inverse Seesaw → 103−4GeV ≲ Λ ≲ 106GeV. (5.34)

As we can see, the Inverse Seesaw predicts a much lower mass for the heavy neutrino,
reaching experimentally testable energy scales. Moreover, we notice that the bounds
coming from the invisible width of Z and LFV processes are almost irrelevant for the
Type 1 Seesaw, since they do not reach the energy scales at which this implementation
of the Neutrino Option is viable.
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Chapter 6

Conclusions

In this work we have presented an alternative implementation of the Neutrino Option, a
scenario that simultaneously addresses two of the open problems of the Standard Model:
neutrino masses and the hierarchy problem. In particular, using the EFT approach it
simultaneously generates the light neutrino masses at tree-level at dimension 5 and the
Higgs potential through 1-loop diagrams. Different from existing studies in the literature,
we have adopted an Inverse Seesaw model instead of a Type 1 Seesaw for the realiza-
tion of the Neutrino Option, and we have performed an original phenomenological study
exploring the viability of this scenario from an EFT perspective, without committing
to any specific UV completion. Specifically, our goal was to investigate the possibility
of getting a lower prediction for the mass of the heavy neutrinos exploiting the extra
freedom given by the parameter space of the ISS.

In Chapter 2 we have presented the technical tools of the EFT approach, empha-
sising the importance and advantages of using Effective Field Theories. In particular
we showed how to perform the matching of an EFT onto a UV theory, how to use the
Renormalization Group Equations and we introduced the Standard Model Effective Field
Theory.

In Chapter 3 we extensively discussed the problem of neutrino masses in the SM and
we presented different scenarios that could potentially solve it. We focused on the Seesaw
models, with particular attention to the Type 1 and Inverse Seesaw. For both models,
we derived the prediction of the light neutrino masses and we showed the Casas-Ibarra
parametrization of the Yukawa matrix. Finally, we presented the state of the art of
neutrino physics showing the latest results from several experiments.

In Chapter 4 we performed the tree-level and 1-loop matching of the Seesaw models
onto the SMEFT, going up to dimension 6 at tree-level and dimension 4 at 1-loop. We
started by reproducing the results for the Type 1 Seesaw and later we generalized them
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to obtain the matching contributions given by the Inverse Seesaw. The 1-loop matching
of the ISS constitutes the first original part of this work.

In Chapter 5 we showed the original results of the alternative implementation of the
Neutrino Option. Our goal was to find an energy scale at which the ISS predictions
are compatible with constraints coming from neutrino physics, the measured value of
the Higgs mass and some experimental constraints. In the first place, we performed the
numerical analysis using the results of the matching contributions in the limit of just
one flavour generation for both light and heavy neutrinos in order to get some order-of-
magnitude predictions. Afterwards, in order to get more realistic results, we extended
the analysis by considering three generations of light neutrinos and two generations for
each of the two heavy neutrinos. In this limit we were able to enforce some experimental
bounds from direct searches for heavy neutral leptons, the invisible width of Z and some
lepton number violating processes. Since our goal was not to perform an accurate study
of the flavour structure, we made some simplifications by considering both the matrices
µ and Λ to be diagonal and neglecting the running of the light neutrino masses. How-
ever, we point out that the results in the one flavour limit remain valid also in the more
general case.

From our analysis, we conclude that the prediction for the masses of the heavy neu-
trinos that is compatible with this realization of the Neutrino Option is:

103−4GeV ≲ Λ ≲ 106GeV.

This is exactly the result we were hoping for, since it lowers the prediction of the Type
1 Seesaw, reaching experimentally testable energy scales.

There are several directions that can be explored in order to expand the study that
we proposed in this work:

• Starting from a conformal UV embedding we can have a fully scale invariant UV
theory.

• We can refine the flavour structure by removing the simplifications that we previ-
ously mentioned. This would also lead to additional free parameters.

• We can introduce additional sources of lepton number violations, such as a second
Yukawa in the ISS Lagrangian that couples SR to the SM SU(2) doublet, as well
as a Majorana mass term for N .

• We can explore additional physical constraints in addition to the ones we considered
in this work, such as existing bounds the meson decay B → Kνν̄.
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Appendix A

EFT Amplitude Scaling

An amplitude obtained from the insertion of V dimension > 4 scales as:

A ∼ pNp+F/2

(
1

Λ

)∑
NΛi

, (A.1)

where the factor F/2 at the exponent of the momentum comes from the polarizations of
external fermions scaling as: u, v ∼ √

p. An operator of dimension > 4 can in general be
written as:

O(D)
i ∼ ϕbi ψfi ∂qi , (A.2)

where ϕ are boson fields, ψ are fermion fields and ∂ are derivatives. Using this expression
we can write: ∑

NΛi
=
∑(

bi +
3

2
fi + qi − 4

)
, (A.3)

where bi + (3/2)fi + qi = Di is the mass dimension of the Lagrangian term. We recall

that we are considering only O(D>4)
i operators, for which Di ≥ 5. Let us now consider

the following relations: ∑
bi = B + 2IB (A.4)∑
fi = F + 2IF (A.5)

Np = 4L− 2IB − IF +
∑

qi, (A.6)

where B and F are the number of external bosons and fermions respectively, IB/F is the
number of internal lines and L the number of loops. Substituting these expressions in
eq.(A.3) we get: ∑

NΛi
= B +

3

2
F +Np + 4IB + 4IF − 4L− 4V, (A.7)
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where V is the number of vertices. Finally, using the relation:

L = I − V + 1, (A.8)

we get: ∑
NΛi

= B +
3

2
F +Np − 4. (A.9)

Inverting this expression we get:

Np +
F

2
=
∑

NΛi
+ 4−B − F =

∑
NΛi

+ 4−N, (A.10)

where N is the number of external legs. Putting everything together we get that the
amplitude scales as:

A ∼ p4−N
( p
Λ

)n
with n =

∑
(Di − 4). (A.11)
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Appendix B

Algebra of Gamma Matrices

The gamma matrices γµ are 4 × 4 complex matrices, that in the Dirac notation are
defined as:

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (B.1)

where σi are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.2)

The algebra of gamma matrices is defined by the anti-commutation relation:

{γµ, γν} = 2ηµν1, (B.3)

where ηµν = diag(+,−,−,−) is the Minkowski metric. The gamma matrices satisfy the
relations:

γµγµ = 41, (γµ)† = γ0γµγ0. (B.4)

Starting from the gamma matrices we can define the γ5 matrix as:

γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
, (B.5)

which satisfies the properties:

(γ5)2 = 1, Tr
[
γ5
]
= 0, {γ5, γµ} = 0. (B.6)

There are several properties of the gamma matrices that are particularly useful when
performing calculations that involve fermions:

Tr[γµ] = 0, (B.7)

Tr[γµγν ] = 4ηµν , (B.8)

Tr[γµ1 ...γµN ] = 0 for N odd, (B.9)

Tr
[
γµγνγ5

]
= 0, (B.10)

Tr
[
γµ1 ...γµNγ5

]
= 0 for N odd. (B.11)
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Other important quantities that are defined using the gamma matrices are the projection
operators and the charge conjugation matrix. The projector operators are defined as:

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5), (B.12)

and they satisfy the following properties:

P 2
L,R = PL,R (B.13)

P †
L,R = P †

L,R (B.14)

PLPR = PRPL = 0 (B.15)

PL + PL = 1. (B.16)

The notation independent definition of the charge conjugation matrix is:

CγµC−1 = −(γµ)T , (B.17)

which in Dirac notation corresponds to C = iγ2γ0, and satisfies the relations:

C† = C−1, CT = −C, CΓTi C
−1 = ηiΓi, (B.18)

with:

ηi =

{
+1 for Γi = 1, iγ5, γµγ5

−1 for Γi = γµ, σµν
. (B.19)

Using all the properties that we presented above, we can demonstrate the relations we
used to perform some of the calculations in this work:

(a) A useful relation that is often used is:

ψ̄L = ψ†
Lγ

0 = (PLψ)
†γ0 = ψ†

LPLγ
0 = ψ†

Lγ
0PR = ψ̄LPR. (B.20)

(b) The charged conjugate of a LH spinor behaves as a RH spinor and vice versa. The
charge conjugate is defined as:

ψc = C(ψ̄)T . (B.21)

Using this definition we have:

(ψL)
c = Cψ̄L

T
= C(ψ̄LPR)

T = CPRψ̄L
T
= PRCψ̄L

T
= PR(ψL)

c. (B.22)

(c) The bar of a charge conjugate spinor is:

ψ̄c = (Cψ̄L
T
)†γ0 = (ψ†γ0)∗C†γ0 = ψTγ0C†γ0 = −ψTC−1. (B.23)
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(d) The mass Lagrangian of a Dirac spinor in Weyl components is:

Lmass = mψ̄ψ = mψ̄(ψL + ψR) = mψ†γ0P 2
Lψ +mψ†γ0P 2

Rψ

= mψ†PRγ
0PLψ +mψ†PLγ

0PRψ

= m(ψ̄RψL + ψ̄LψR). (B.24)

Following the same steps we can get the mass Lagrangian of a Majorana spinor.

(e) The mass matrix in a Majorana mass term is symmetric:

ψ̄cLMψL = −ψTLMT (ψ̄cL)
T = ψ̄cLCM

T (−ψTLC−1)T

= ψ̄cLCM
T (−C−1)TψL = ψ̄cLM

T (−C−1C)TψL

= ψ̄cLM
TψL, (B.25)

where we have used the relation ψ̄Mχ = −χTMT ψ̄T .

(f) The type 1 Seesaw mass Lagrangian is:

Lmass = −1

2

(
N̄Y H̃†ℓL + ℓ̄cLH̃

∗Y TN c + ℓ̄LH̃Y
†N + N̄Y ∗H̃T ℓcL

)
. (B.26)

We can show that the first and the second terms are equivalent:

ℓ̄cLH̃
∗Y TN c = −ℓTLC−1H̃∗Y TCN̄T = −ℓTLH̃∗Y T N̄T = N̄Y H̃†ℓL. (B.27)

This is true also for the third and fourth terms.

(g) Writing N or NR in the mass Lagrangian is the same, since only the RH component
of N contributes:

N̄ℓL = (N̄RPL + N̄ c
RPL)PLℓL = N̄RℓL. (B.28)

(h) The Inverse Seesaw mass Lagrangian is:

Lmass =− 1

2

(
ℓ̄LY

†H̃NR + N̄ c
RY

∗H̃T ℓcL

)
+ h.c.

− 1

2

(
N̄ c
RΛSR + S̄cRΛ

TNR + S̄cRµSR
)
+ h.c. (B.29)

Similarly to the previous case, the two terms in the first line are equivalent:

N̄ c
RY

∗H̃T ℓcL = −NT
R C

−1 Y ∗ H̃T Cℓ̄L
T
= −NT

R Y
∗ H̃T ℓ̄L

T
= ℓ̄L H̃ Y †NR. (B.30)
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(i) Performing the matching of the Type 1 Seesaw to the dim-6 operator, after inserting
the solutions of the EOMs in the kinetic term of the Lagrangian we get:

L =
1

2

[
ℓ̄LH̃ (Y †M−2Y ) i/∂(H̃†ℓL) + ℓ̄cLH̃

∗ (Y TM−2Y ∗) i/∂(H̃T ℓcL)
]
. (B.31)

When writing the equivalent of the second term, we must put a minus as eq.(B.19)
tells us, In this way we have:

L =
1

2

[
ℓ̄LH̃ (Y †M−2Y ) i/∂(H̃†ℓL)− H̃†ℓL (Y

†M−2Y ) i/∂(ℓ̄LH̃)
]
. (B.32)

Now the second term is actually equivalent to the first by IBP, so we have:

L = ℓ̄LH̃ (Y †M−2Y ) i/∂(H̃†ℓL). (B.33)
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Appendix C

Overall factors in box-loop diagrams

The overall factors of loop diagrams can be tricky to evaluate since they keep track of
many things, such as symmetry factors (that require some careful considerations) and
in our case also constants that come from the matching between the EFT and the UV
theory.
We now consider one of the box diagrams that give a contribution to the correction of λ
given by the type 1 See-Saw Model and derive explicitly its overall factor, then the same
procedure can be applied to the other diagrams. Let us start by considering the loops
(A1) in Fig.4.2. From the Feynman rule we have the factors:

× 2 → from the trace

× 2 → from the Feynman parametrization

× 1

32
→ from the Tadpole integral .

Now we can start to consider the symmetry factors. At first sight we might think that
diagrams (A1) and (A2) in Fig.4.2 are a multiplicity of the same digram, as the case of a
1-loop correction to a propagator where the internal lines are identical. The factor 1/2
that appears in this kind of diagrams is due to an exchange of internal lines that gives
rise to a diagram with the same topology. However, diagrams (A1) and (A2) differ from
an exchange of external lines, so they are not multiplicities of the same diagram, but
rather two independent diagrams. In this particular case though, they have the same
Feynman rule, so we have an additional:

× 2 → from having 2 independent diagrams with the same Feynman rule .

Even after this considerations, we still have to evaluate the symmetry factor of the
diagram and to do it we use the rules in Appendix D of [96]. Let us proceed by steps:

• We have four external lines in the diagram and each of them can be chosen in 2
different ways, so we have a factor 2× 2. Once the external lines are chosen, there
is a unique way to connect the internal lines for each topology.

74



• The number of permutations of points having identical vertices is: 2!2!.

Putting these things together we get the symmetry factor of the diagram:

S =
2× 2

2!× 2!
= 1 .

The last thing we need to do is consider the matching with the SMEFT. The loop we
are evaluating is a 1PI diagram (evaluated in the UV theory) and we must impose that
it is equal to the tree-level diagram of the interaction term appearing in the SMEFT1:

LH ⊃ λ (H†H)2 → iMtree−lev = i 4λ .

Since λ is what we are interested in, we must divide the result of the loop by 4, giving
us the additional factor:

× 1

4
→ from the matching with the SMEFT .

Now, putting together everything we have said so far, we get the overall factor of the
1-loop correction to λ given by the type 1 See-Saw Model:

O =
2× 2× 2× S

32× 4
=

1

16
.

1The 4 in the tree-level amplitude comes from having two pairs of identical particles.
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Appendix D

Additional Plots
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Figure D.1: Here we present the forbidden regions coming from the upper bounds on
the branching ratios of lepton number violating processes. The first (second) plot is
derived with a value of the ratio in eq.(5.13) equal to 1 (0.1). The blue line corresponds
to µ/Λ evaluated with the corresponding ratio.
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Figure D.2: Here we present the forbidden regions coming from the upper bounds on
the electron channel (left) and the muon channel (right). The plots in the first (second)
row are derived with a value of the ratio in eq.(5.13) equal to 1 (0.1). The green (blue)
areas correspond to the mixing with the heavy eigenstates ψ2a and ψ2b (ψ3a and ψ3b).
The red line corresponds to µ/Λ evaluated with the corresponding ratio.
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