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Abstract

The current observational data deriving from the CMB and large-scale structures only
probes a limited range of cosmological scales, hence the majority of the inflationary
dynamics is still unconstrained. It is possible that processes of cosmological relevance,
such as the generation of dark matter, occurred during these unobserved stages. In this
context, primordial black holes (PBHs) represent an interesting dark matter candidate.

Higgs inflation is an interesting framework in which such phenomena may occur.
Quantum corrections can flatten the effective potential in localized regions and induce
an inflection point, leading to a temporary violation of the slow-roll conditions and to
a transient phase of ultra-—slow-roll. This phase amplifies the curvature perturbation
spectrum on scales smaller than CMB scales, potentially triggering PBH formation at
the end of inflation.

This thesis presents a Higgs inflation model that includes higher—order operators in
both the scalar potential and the non-minimal coupling, ensuring compatibility with
CMB observations while allowing for a significant enhancement of the power spectrum
at smaller scales. The enhancement is obtained by means of a quasi-inflection point in
the Einstein frame potential, and the parameter space of the model is compatible with
the current bounds on the value of the Higgs quartic self-coupling A. The resulting mass
and abundance of the produced PBHs are evaluated by means of a numerical analysis

and compared with current observational bounds.
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Introduction

Since its introduction in the 1980s, following the fundamental works of A. Guth, A.
Starobinsky and A. Linde |1, 2], inflation has become a cornerstone of modern cosmol-
ogy. Nowadays, it is widely accepted as the most successful theoretical framework for
describing the evolution of the Early Universe. Indeed, over the years, the inflationary
paradigm has consistently provided accurate predictions for the anisotropies of the Cos-
mic Microwave Background (CMB) and the formation of large-scale structures (LSS),
such as galaxy clusters, which are observable in the present Universe. Nevertheless,
the current experiments only probe the largest cosmological scales, namely the region
107* < k[Mpc]™' < 1071, This interval corresponds to only a small fraction of the early
stages of the inflationary dynamics, therefore the vast majority of the inflationary period
remains observationally unconstrained and may be characterized by dynamics that is not
described by standard slow-roll models. In particular, it is possible that, during these
unprobed phases, relevant phenomena, such as the generation of dark matter, may have
occurred.

The origin of dark matter represents one of the major open problems in contemporary
cosmology. Approximately ~ 25% of the total energy density of the present Universe is in
the form of dark matter, yet its nature remains unknown. Among the possible scenarios,
an intriguing possibility is that a fraction, or possibly the totality, of dark matter is com-
posed of primordial black holes (PBHs). Primordial black holes are cosmological objects
that form in the early Universe as a consequence of the gravitational collapse of density
fluctuations of primordial origin, and other subsequent processes such as clustering and
accretion. The interest in PBHs as dark matter candidates dates back to the 1970s with
the pioneering work of Carr and Hawking |3} 4]. During the 1990s, the MACHO, EROS
and OGLE experiments investigated micro-lensing events in our galaxy, suggesting that
a small fraction of matter in our galaxy could consist of sub-solar mass PBHs. More re-
cently, the detection of gravitational waves from black-hole mergers by the LIGO/VIRGO
collaboration has further increased interest in these objects, as it has been proposed that
some of these signals could originate from the coalescence of PBHs.

The formation of primordial black holes requires the presence of regions in which the

primordial density contrast exceeds a critical threshold §.. Once this condition is satisfied,



the overdense region collapses onto itself, leading to the formation of a PBH. The density
perturbations responsible for PBH formation originate from quantum fluctuations, gen-
erated during inflation. These quantum fluctuations are stretched to super-Hubble scales
during inflation, and in this peeriod they evolve classically according to the inflationary
dynamics. When these perturbations re-enter the horizon at late times, they result in
density fluctuations. The spectrum of such fluctuations depends entirely on the dynamics
of inflation, which in turn is determined by the inflation action. This action varies from
model to model.

In this thesis, we consider the case in which the inflaton is identified with the Higgs
field. This scenario provides an economical and theoretically appealing framework, as it
does not require the introduction of scalar fields beyond the Standard Model.

Higgs inflation requires a non-minimal coupling between the Higgs field and the Ricci
scalar. The presence of this term is motivated since the quantum corrections on the
dynamics of a scalar field on curved background are known to generate this contribution.
The generation of PBHs in this context requires a temporary violation of the standard
slow-roll conditions, which can be obtained by introducing features in the scalar poten-
tial that lead to a transient ultra-slow-roll phase. In particular, it is assumed that the
effective potential exhibits an (exact or quasi) inflection point, at which the potential be-
comes significantly flatter than in the surrounding regions. After a brief introduction on
the original Higgs inflation scenario, we study the influence of this ultra-slow-roll phase
on the curvature perturbations in the context of an effective field theory valid at infla-
tionary energy scales, with the aim of determining the resulting PBH mass spectrum and
abundance.

This thesis is organised as follows:

1. Chapter (1| provides an overview of the Big Bang model (that describes the Universe
at the present time) and its limitations, and introduces the inflationary paradigm as
a solution to these shortcomings. The explanation of the CMB anisotropies within

the inflationary framework is discussed in detail.

2. In Chapter [2| we study the theory of quantum perturbations generated during in-
flation. Starting from the dynamics of the inflaton, the expressions for the power
spectra of scalar and tensor perturbations are derived, as well as the expressions
of other important observable quantities (scalar spectral index and tensor-to-scalar
ratio), and we review some general amplification mechanisms capable of modifying

such spectra.

3. Chapter |3 introduces the physics of primordial black hole formation. In particular,
we discuss the conditions required for PBHs production, together with the cur-
rent relevant observational constraints and astrophysical bounds on the mass and
abundance of PBHs.



4. In Chapter[dwe present the concept of Jordan frame, focusing on the transformation
between the Jordan and Einstein frames. The relevant frame transformation formu-
las are derived, and the criteria for different inflationary regimes in the two frames

are specified, focusing in particular on the slow-roll and ultra-slow-roll regimes.

5. Chapter 5 introduces the original model of Higgs inflation proposed by Bezrukov
and Shaposhnikov [5, 6] and then discusses one of its possible extensions, the critical
Higgs inflation scenario, in which an inflection point is introduced in the effective
potential. An original Higgs inflation model, including higher-dimensional operators
in the potential and in the non-minimal coupling to gravity, is then constructed and
analysed numerically. The enhancement of the curvature perturbation spectrum,
due to the presence of a quasi-inflection point, is investigated for different choices of

model parameters, and the resulting mass and abundance of PBHs are computed.



Chapter 1

Introduction on inflation

In this introductory chapter, we will illustrate some basic concepts of modern cosmology,
such as FLRW spacetime and the Universe dynamics, to then explain the theory of

inflation and the motivations behind it.

1.1 Friedmann-Robertson-Walker spacetime

Cosmological models that describe the current state of the Universe are based on the
fundamental assumption, backed up by experimental evidence throughout the years, that
our Universe is homogeneous and isotropic. In this context, homogeneity means that the
Universe’s density is the same in every point in spacetime, while isotropy equals the
concept of the Copernican principle, according to which the Universe appears to have the
same properties regardless of which point it is observed from.

According to these assumptions, the general form of a spacetime metric describing

our Universe is the Friedmann-Lemaitre-Robertson-Walker metric (FLRW):

dr?
1 — kr?

ds* = —dt* + a*(t) ( + 7r2(d6* + sin29d¢2)) (1.1.1)
The constant k fixes the Universe’s constant-t hypersurfaces’ curvature as flat (k = 0),
open (k = 1) or closed (k = —1). Current observations on the CMB seem to suggest that
our Universe is flat, so & = 0. The other important element is the scale factor a(t), which
represents the relative size of constant-t hypersurfaces.

An important quantity that characterizes the evolution of the Universe is the Hubble

parameter, defined as:

=2Y (1.1.2)

In particular, the inverse of H(t) sets some fundamental time and length scales of the



Universe’s spacetime.

1.2 Universe dynamics

By solving Einstein equations in the FLRW spacetime ((1.1.1)), one obtains the Friedmann
equations, which describe the evolution of a given cosmological model in the FLRW
metric. Usually, it is assumed that the Universe is filled with a perfect fluid having the

following stress-energy tensor:

—p 0 00
™, = 8 ];08 (1.2.1)
p
0 00 p

In this expression, p is the energy density and p represents the pressure. The Friedmann

2 — (9)2 _ g _k (1.2.2)

equations are:

a a?
| . ;
H+H2="= —% (1.2.3)
a

These two equations are coupled, since the matter content satisfies the continuity equa-
tion:
p=—3H(p+p) (1.2.4)

The energy density and pressure of a perfect fluid follow the equation of state
p=wp (1.2.5)

where the factor w is different for each type of content: w = 0 for dust (weakly-interacting
matter), w = 1/3 for radiation, and w = —1 for the cosmological constant Hy = y/\/3
which can be originated by the quantum vacuum energy. This latter component is respon-
sible for the current expansion of the Universe, revealed mainly by observing cosmological
objects traveling away from each other.

To give another insight on the cosmological model that we are describing, the equation
can be rewritten in the following way:

1= 90) =~ (1.2.6)

The quantity Q(a) = pp, is a relative density, where p..;; is the value of density that

crit




corresponds to a flat Universe (to k = 0, according to Eq. ((1.2.6))). This form of the
equation is useful to understand the evolution of the density value and its relation to the
Universe’s spatial curvature k. In particular Eq. (1.2.6) indicates that, in an expanding

universe with dust and radiation, 1 — {)(a) increases as a increases.

1.3 Strong energy condition

The strong energy condition
p+3p>0 (1.3.1)

is a property of ordinary matter in the Universe, as opposed to cosmological constant
content. For cosmological fluids, this has an important implication. Indeed, by looking
at Eq. , it is evident that, if the strong energy condition is valid, the acceleration of
the scale factor has to be negative, because the scale factor a(t) is defined to be positive
at any time. This means that, if the Universe is filled with either matter or dust, its
expansion is slowing down as it expands.

In the case of cosmological constant, the equation of state is p = —p, which means that
the strong energy condition is violated, so the Universe filled with cosmological constant

undergoes accelerated expansion.

1.4 ACDM model

The picture of the current state of the Universe is commonly considered the ACDM

model, that describes it as spatially flat (k = 0), with an average density today:
Po = Perie = 1072 g/cm? . (1.4.1)

Contributions to this density come from four different sources:
1. Standard Model (SM) matter: £zatter ~ 5%

2. Dark matter (DM): £dm ~ 25%
PO

3. Dark energy: % ~ 70%
4. Radiation: 2= < 1%

The nature of dark matter and dark energy are two of the biggest puzzles in the current
cosmology landscape. Indeed, PBHs could explain a part of, if not all of, the DM content
present in the Universe, without invoking new physics beyond the Standard Model. This



is the main reason for which the topic of PBH formation is of significant interest in

modern cosmology.

1.5 Horizon and flatness problem

The standard cosmology picture of the ACDM Universe holds quite well in light of current
experimental results; however, it unfortunately has some shortcomings when it comes to
the primordial Universe. To illustrate them, it is necessary to introduce the concept of a
particle horizon and its importance in the causal structure of the Universe.

Starting from the current Universe state and going back in the time coordinate, the
ACDM model predicts the presence of a singularity, that can be referred to as the Big
Bang, at a time that can be set to t = 0, when the scale factor is a(0) = 0. By taking

the radial null trajectories in FLRW spacetime:
dr = — (1.5.1)

and integrating from ¢ = 0, which corresponds to r = 0, to the present time, we obtain
the comoving radial coordinate travelled by light particles from the Big Bang, and by
multiplying this quantity by a(t) we obtain the so-called particle horizon:

Ty = a(t)/o % . (1.5.2)

The particle horizon can also be written as the integral over a quantity called comoving

Hubble radius 1/aH:
“dlna
= . 1.5.
K /0 oH (1.53)

The two quantities are proportional. Indeed, considering the evolution of the Hubble

parameter with respect to a in a Universe filled with a generic cosmological fluid, H =

Hy(ap/a)™, the integral above gives the following result:

¢ da a2 1 a"t 1 1
—=[d = = — 1.5.4
/a a’H aHoag <n—1> Hyay (n—l) aH ( )

0

The comoving Hubble radius approximately sets the scale for regions in the Universe in
which all points are in causal contact at a given instant in time, as it roughly coincides
with the particle horizon, which represents the maximum distance between two points
for them to have been in causal contact at some time in the Universe history. Regions of

the Universe that are separated by a distance greater than r, could have never been in

10
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Figure 1.1: CMB fluctuations measured in multipole moments [7]

causal contact with each other in the Big Bang picture.

In 1964, the Cosmic Microwave Background signal was measured for the first time |[8].
This signal is the residual radiation from an event called recombination, the moment in
the Early Universe when radiation decoupled to matter, leaving behind a spectrum of high
energy photons. The peculiar feature of the CMB spectrum that is currently observed is
its isotropy. In fact, this spectrum appears to have an average temperature T,,,, = 2.725
K, and deviations from this temperature are very small, regardless of the directions of the
photons. This is illustrated in Fig. from [7], where it is clear that CMB spectrum
fluctuations are very small (the scale is uK') at all observed angular scales (the multipole
moment [ is inversely proportional to the length scale of the fluctuation). The CMB

fluctuations carry two shortcomings of the standard Big Bang cosmology model:

1. Horizon problem: according to the Big Bang picture, if we take two points in
the sky, whose distance is greater than the particle horizon rg, these will belong
to two regions which were causally disconnected at the time of recombination. So,
the question about how it is possible that the CMB radiation is so smooth, given
that many points from which we make correlation measurements were never put in

causal contact with each other before arises.

2. Flatness problem: as we have seen, the Universe appears to have a flat geometry,
that, from Friedmann equation ((|1.2.6])), corresponds to €(a) ~ 1. Since Q(a) — 1
increases in an expanding Universe with dust and radiation, it must have been

extremely close to zero immediately after the Big Bang.

11



1.6 Inflation as a solution

Inflation was first proposed in 1980 by Alan Guth [1]. In his article, it is stated that the
inflationary paradigm could be the solution to both flatness and horizon problems, and
throughout the years it has remained the most widely accepted theory for Early Universe
physics.

The premise of inflation theory is that, before recombination, the Universe underwent
a period of exponential expansion, when the Universe is in a state called a quasi-De
Sitter state, with the Hubble parameter H having an almost constant value (De Sitter
corresponds to constant H). During this period, the Universe is filled with some fluid
which approximately behaves as the cosmological constant (p = —p), and the scale factor

has the following evolution:
a(t) = et (1.6.1)

In this scenario, the acceleration of the scale factor is positive, because:

H=0 = 2-H’=0 = i>0 (1.6.2)
a
This follows from the fact that a(t) is always positive over time.
When the Universe expands exponentially, an important condition holds: the comov-
ing Hubble radius shrinks (instead of expanding like it does in the presence of radiation

or ordinary matter):

d a
H)'=1/a = —(aH)'=-—5<0 1.6.3
(aH) ™ =1/i ClaH) " = 4 (163)
The inflation mechanism then represents a possible solution to the aforementioned

shortcomings of Big Bang theory because:

1. If the inflationary period lasts long enough, the comoving Hubble radius shrinks
and allows for the existence of a time in the Early Universe in which the size of
causal patches is much larger than what the Big Bang picture allows (Fig. (L.2))).
In this way there is a point in the past in which all points in the Universe were
actually in causal contact with each other, solving the smoothness problem of the
CMB radiation.

2. Looking at Eq. (1.2.0), a shrinking comoving Hubble radius implies that the so-
lution where Q = 1 is an attractor for an expanding universe with H ~ 0. This
eliminates the need of fine tuning of initial conditions in the Early Universe to ob-
tain flatness. Even during the cosmological evolution after inflation, €2 does not

deviate from the critical value too much, so the flatness is preserved. The Universe

12
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Figure 1.2: Change of the Hubble radius during inflationary era [@]

flatness is therefore also explained by inflation.

1.7 (General characteristics of an inflationary theory

We have explained inflation theory premises, but how is it realized in practice? How do
we motivate the presence of such a period in the Universe history? A well-motivated
theory for the dynamics of inflation, that is robust against all experimental observations,
has yet to be found. The most studied assumption is that inflation is driven by one scalar
field, called the inflaton. The inflaton action can be added to the usual Einstein-Hilbert

action as follows:
4 M3
Sinfi = Sue +Sp = /d x\/—g _TR +0,0"0 —V(9)| . (1.7.1)

By varying this action with respect to the metric, as usual we obtain the two Friedmann

equations ((1.2.2)) and (1.2.3)), which we can write in a form that is more suitable to study

.1 (&
gty (%) in2

the inflaton dynamics:

13
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Figure 1.3: An example of potential for a possible inflation scenario.

. 1 .
H=— 2 1.7.
TTA (1.7.3)

Then, by varying the action with respect to the field ¢, we obtain the Klein-Gordon

equation for the inflaton field:
¢+3Hp+V'(6)=0. (1.7.4)

These three equations solved together determine the dynamics of inflation, that will
generally depend on the form of the potential V' (¢). The general idea is to take, at the
start, the inflaton field to sit on top of a quasi-flat region of the inflation potential V' (¢),
with a very small initial velocity, then slowly roll down this plateau, and, at the end of
inflation, fall into the true vacuum of the inflaton field. This regime is called slow-roll
regime, and it is the most common mechanism employed to achieve inflation. A generic
form for the inflaton potential is depicted in Fig. .

At a more formal level, the main requirement of inflation, which is the slow decrease
of the Hubble radius, can be expressed as a condition on the so-called slow-roll parameter
e:

H

Other slow-roll parameters can be defined, to describe the details of the inflaton motion.

For example, in the slow-roll regime mentioned above, we could impose:

s=-2 <1 (1.7.6)
Ho

14



where the slow-roll parameter ¢ is related to the acceleration of the inflaton. The accel-
eration ¢ has to be small enough in order for inflation to last long enough to solve the
horizon and the flatness problem. Other slow-roll parameters can be defined by further
differentiating the Hubble parameter and the field and obtaining the so-called Hubble
flow function hierarchy (starting from eq = Hy/H):

€

i1 = 1.7.
and the scalar field flow function hierarchy (starting from dg = ¢/¢y):
5
Sip1 = — 1.7.
i+1 H(SZ ( 7 8)
Applying the conditions (??) the equations of the inflaton dynamics become:
V(9)
H? ~ 1.7.
3013 (17.9)
L, V(9
N ——r 1.7.1
A (1710

1.8 Overview of inflationary models

Over the years, many models have been proposed in order to explain the dynamics of
inflation. Here we will list the main models that are representatives of the wide range

that has been studied in literature in the past years.

1.8.1 Large-field models

In large-field models, the inflaton spans a range of values that is comparable to the Planck
mass order of magnitude, A¢ > Mp. Remaining in the context of single-field inflation, a
prototype of large-field inflation is chaotic inflation [10], where the potential is dominated

by a term

V(g) =Ag". (1.8.1)

In this type of model, the self-coupling has to be very small in order to prevent large
density fluctuations that could disrupt the inflationary regime.
Another relevant model in this class is natural inflation |11], where the potential takes

the form

vior =1 s (2) 41] 152

15



In natural inflation the field is often taken to be an axion. Axions provide a shift symmetry
that can be employed to protect the potential from large quantum corrections at large
field values. The range of ¢ depends on the parameter f, indeed, the field can oscillate
between 0 and 27 f.

1.8.2 Small-field models

In small-field models, the field moves in a range that is smaller than the Planck mass,
A¢ < Mp, and these models are often linked to mechanisms of spontaneous symmetry

breaking. An example of such models is Higgs inflation [6], where the potential has the

. (g)T | 1s3)

Higgs inflation is interesting for its convenience, as it postulates that the Higgs boson

form

Vig) =V

could act also as the inflaton field. There are some variations to this model to accommo-
date also the possibility of primordial black holes production.
Another famous small-field model is the Coleman-Weinberg potential [2]

DEE-9 o

This potential was initially linked to radiatively-induced symmetry breaking in elec-

Vig) =V

troweak and grand unified theories, and although in this context the parameters in the
model cannot accommodate inflation, this potential remains a good phenomenological

model.

1.8.3 Hybrid models

In hybrid models, the inflaton field evolves towards a minimum with non-zero vacuum
energy, then a second field, called the auxiliary field, becomes unstable, causing the end
of inflation. This setup frequently appears in models in which inflation is incorporated

into supersymmetry or supergravity. An example of potential for hybrid inflation is [12]

2 2
V(0) = (M~ M)+ 2+ L (185

Different potentials can belong to different physical contexts, depending on the parame-

ters choice and the nature of the fields.

16



Chapter 2

Perturbations

Cosmological perturbations are a fundamental concept in cosmology, because they rep-
resent the contact point between theory and observations. In fact, what we observe from
experiments (the large-scale structure of the Universe, the CMB radiation spectrum,
gravitational waves and dark matter) is partially the product of the evolution over time
of these perturbations. Cosmological perturbations are the link between the macroscopic
observations of the Universe and the quantum field theory of the inflaton, that is why
this is a very important area to study.

In this chapter, we will discuss in detail the generation and dynamics of cosmological
perturbations, to then focus on the mechanisms that amplify the spectrum of perturba-
tions. This part is important for the study of primordial black holes generation, which is

the main focus of this thesis. The main references for this chapter are [13-16].

2.1 Generalities on perturbations

The main idea of the perturbation approach is to split physical quantities into two parts,
one being the background, which evolves in cosmic time, and the other being the pertur-
bation, which also depends on the space coordinates and is significantly smaller than the

background. The generic expression of a perturbed quantity is:

Qz,7) = Q(T) +0Q(z, 7) (2.1.1)

where () can be the metric field g, or any matter field. At linear order, expanding the
Einstein equations, the background evolves independently from the perturbations, and
the Einstein equations for the perturbations have the same form as the Einstein equations
of the background:

0G,, = 8rG T, . (2.1.2)

17



Being the Universe spatially flat, homogeneous and isotropic, there are symmetries that
allow for a decomposition of the metric and matter perturbations into three types of
components, called scalar, vector, and tensor perturbations, that evolve independently
at linear level. This decomposition is called the SVT decomposition, where the three
types are classified depending on their helicity. The helicity is a property that is defined

starting from the Fourier transform of a perturbation
Xu(t) = / dx X (£, %) ¢ (2.1.3)

which is characterized by a vector k, and the helicity is defined according to how the
perturbation behaves under a rotation of an angle # around this vector. The amplitude
of a perturbation will change by a factor e/, and m is the helicity. This number is 0 for
scalar, £1 for vector and £2 for tensor perturbations.

The SVT decomposition is a useful formalism because each type of perturbation
has different transformation properties and, because of the rotational invariance of the

background, each perturbation evolves separately at linear level.

2.1.1 Metric perturbations

Metric perturbations originate from fluctuations of the metric field g,,,. The most general

form for a spatially flat FLRW metric at first order in the perturbations is:
ds® = —(1 4 2®)dt* + 2aB;dx'dt + a*((1 — 2W)d; + Eyj)dx'da’ (2.1.4)

where the perturbations are ®, B;, ¥, F;;. In particular, these can be further decomposed,

according to the SVT decomposition, in the following components:

where 0'S; = 0, and

where 0°F; = 0 and hi; is traceless. Scalars don’t have indexes, vectors have one index

and tensors have two.

18



2.1.2 Matter perturbations

During inflation, the matter perturbations come from the perturbed inflaton field. The

perturbed stress energy tensor has the following components:

Ty = —(p+ dp) (2.1.7)
(2.1.8)
T} = (p+p) av; (2.1.9)
(2.1.10)
Ti = —(ﬁ+ﬁ)@ (2.1.11)
(2.1.12)
T; = 6:(p+ 6p) + X} . (2.1.13)

Perturbations dp and dp are scalar, as well as the momentum density, defined with the
relation

Other perturbations are B*, which is of the vector type, and the anisotropic stress tensor
%35 which is a tensor.
The inflaton perturbations influence the evolution of the metric perturbations through

Einstein equations, this means that the two sets are tightly connected.

2.1.3 Gauge invariance

While talking about perturbations, it is important to also mention the dependence on
the gauge choice. In fact, spacetime coordinates x and 7 are not uniquely defined in
generic perturbed spacetimes, and the way we choose the slicing (time coordinate choice)
and threading (space coordinate choice) can fundamentally change the definition of the
perturbations. Given a tensor field X and a vector X, a gauge transformation of the

coordinates is by definition a Lie derivative
X = X=X+4LsX (2.1.15)
that corresponds to a redefinition of spacetime coordinates of the form:

t — i+« (2.1.16)

7

g = 24698, (2.1.17)
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The perturbations generated by such transformations are not physical and need not be
considered, because they can be simply removed through another coordinate transforma-
tion. We report here the infinitesimal changes of the relevant perturbations under the

aforementioned gauge transformation:

1. Scalar metric perturbations:

> = Dd—a (2.1.18)
B — B+a'la—aB (2.1.19)
E — FE-0 (2.1.20)
vV — VY+Hao. (2.1.21)
2. Scalar matter perturbations:
dp — Op—pa (2.1.22)
dp —  Op— pa (2.1.23)
dq — 0q+ (p+pa. (2.1.24)

3. Tensor perturbations of both metric and matter are gauge-invariant, and such an

invariance is a defining characteristic of these perturbations

To solve the ambiguity of the spacetime coordinates definition for scalar perturba-
tions, it is convenient to work with gauge-invariant quantities that can be obtained by
linear combinations of the previously illustrated gauge-dependent perturbations. This
formulation of perturbation theory in a gauge-invariant framework was first proposed by
Bardeen [17].

A convenient example of gauge-invariant perturbation, that we are going to use in the
rest of this chapter, is the comoving curvature perturbation:

RE\II—_ijq = \11+£5¢. (2.1.25)
p+Dp 10)
The second relation comes from the fact that during inflation T = 9;,0q = —(Z 0;0¢. This

perturbation is linked to the choice for the slicing and threading, called comoving gauge,

associated to hypersurfaces with constant values of the inflaton ¢:

5 =0 (2.1.26)
(2.1.28)
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that is also equivalent to the choice:

5g =0 (2.1.29)
E=0. (2.1.30)

In this gauge, R parametrizes the scalar degrees of freedom, and measures the spatial

curvature, which is quantified by the Ricci tensor
@ _ oo
R =—=ZV'R. (2.1.31)
a

Other gauge-invariant quantities that are often used in literature are:

1. The constant-density-hypersurfaces curvature perturbation

=0 — gép : (2.1.32)
p

2. The inflaton perturbation on spatially flat slices

Q=66+ %\If . (2.1.33)

These quantities are all used in different contexts in the theory, according to which
one is more appropriate in each case, but the final results on observable quantities are
independent of the gauge choice.

The dynamics of all types of perturbations until now is described by the Einstein
equations ([2.1.2). Working at linear order in the perturbations introduced in (2.1.4) and

(2.1.7)), the resulting equations are:

1. Two constraint equations:

. 2 .
3H(U + H®) + k—Q [\11 + H(a*E — aB)] = —4xGop (2.1.34)
a

U+ HO = —4nGoq . (2.1.35)

2. Two evolution equations:

U+ 3HV + HO + (3H? + 2H)® = 47G (5p — ?&52) (2.1.36)
. B\ U-®
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3. The continuity equation (from conservation of energy-momentum tensor):
: k? o . o~ B
(6p) +3H (6p + 6p) = ¥5q+(p—|—p) 30+ k E—l—g : (2.1.38)

4. The Euler equation (also from the conservation of energy-momentum tensor):

: 2
(6q) +3Hoq = —6p + §k252 —(p+p)®. (2.1.39)

By combining these equations and writing them in terms of the comoving curvature

perturbation, we obtain the Einstein equations in the comoving gauge:

k2
?[—R —aHB| = —4nGép (2.1.40)
~R+ H® 4+ 2H® = 47CG <5p — §k252> (2.1.41)
B R+®
(0, +3H) = + ; — _8rGY (2.1.42)

The continuity and Euler equations are instead:

(0p) + 3H(3p +6p) = (5 + D) {—37'2 + k2§1 (2.1.43)
—0p + gk%z —(p+p)®=0. (2.1.44)

3

2.1.4 Observable quantities

From the gauge-invariant variables, we can derive quantities that can be compared with
experimental observations. In particular, we are interested in the amplitude of scalar
and tensor perturbations. To define the amplitude of a general variable X, first we start
by defining the power spectrum of the Fourier components of such variable, that can be

eXpanded as an Operalor ln lhe fOllOW lng W ay:
> T )age + T ), € 1.
Taking the expecl ation value of the modes in

(Xp X)) = (21)36(k + k)| X3 |? (2.1.46)
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We call the power spectrum associated to X the quantity:

kS
Px(k) = o] Xi|*. (2.1.47)

~ 2n?

We can use this formalism to define the power spectra of scalar fluctuations:

kS
k) = —|Ry|? 2.1.4
PL(k) = IRyl (2149
and of tensor fluctuations: 13
Pu(k) = F|hk|2 : (2.1.49)

The power spectrum ([2.1.49)) is the sum of the spectra for the two polarization modes of
hijl

This motivates the extra factor of 2 present in (2.1.49)), we will see this in greater detail
in a following section.
Having derived the two power spectra, we can now define the two main observables

that are used to evaluate inflation models in the literature. These are the scalar spectral

index: dlnP (k)
n S
and the tensor-to-scalar ratio: k)
t
= 2.1.52
"= 5.0 ( )

2.1.5 Sub-horizon and super-horizon regimes

For the evolution of perturbation Fourier modes, it will be later important to distinguish
between two regimes, called sub-horizon and super-horizon regimes. The sub-horizon
regime is when k& > aH, this means that the characteristic length scale of the perturba-
tions is significantly smaller than the comoving Hubble scale; viceversa, the super-horizon
regime corresponds to k < aH. We call "horizon crossing” the moment in cosmic time
when k = aH, so when the mode enters or exits the super-horizon regime. This event is
important in the spectrum calculation, because in the standard slow-roll regime, which
is the starting point for treating inflationary perturbations, the spectrum approaches a
constant value with respect to cosmic time after horizon crossing. One usually says that
the mode freezes in super-horizon regime. When this transition happens, the quantum
fluctuations can be seen as classical, because the number of particles quanta related to

each quantum mode k is much larger than unity. In particular, for quantum modes
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Figure 2.1: In this graph from [13], the comoving Hubble radius evolution is illustrated,
along with the length scales of scalar perturbations, represented by k!, as function of the
number of e-folds. In particular, we have two important cases, which are the CMB scale,
which exits at the beginning of inflation, and the PBH scale, which exits many e-folds
later. Starting from reheating, the comoving Hubble radius starts to grow, and eventually
every mode re-enters the horizon, causing the formation of large-scale structures on a wide

range of scales.

related to scalar fluctuations, the result is

k —4

2.2 Mukhanov-Sasaki equation and power spectrum

In this section, we are going to examine the dynamics of scalar curvature perturbations,
starting from the action associated with the comoving curvature R. We are going to look
first at the dynamics of only the scalar perturbations, as this is the simpler case to treat,
and then we shall briefly discuss the case of tensor perturbations, where the procedure is
analogous to the scalar case for each of the two polarization directions. Also, to stick to

a simpler case, we are going to consider the inflaton as minimally coupled to gravity.
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2.2.1 Scalar perturbations spectrum

In the presence of a (quasi) de Sitter background, as it is during inflation, the scalar

perturbations dynamics is described by the second-order action :

87(? = %/d‘lx a32—22 [RQ - a*2(aﬂz)2] . (2.2.1)
This action is obtained starting from the inflaton action and inserting the per-
turbed quantities, keeping terms up to second order. This process is shown in appendix
[A] following the method used by Maldacena in [18].

On varying the action ([2.2.1) we can get the equation that describes the evolution of
the comoving curvature perturbation scalar through conformal time, but we are interested
in a scale-dependent analysis of the perturbations, so we can shift to Fourier space in order

to obtain the evolution equation of the modes Ry (7), each mode having wavenumber k:
R+ 22 R0 + K2Ry = 0 (2.2.2)
z

where the dot denotes the derivative with respect to conformal time, and the quantity

z(7) is called the pump field and is defined as:

ag
E.

z (2.2.3)
The pump field dynamics is extremely important for the amplification process, because
it represents the influence of the background dynamics on the perturbations. In general,

the pump field is a model-dependent function of the slow-roll parameters ¢;.
Another compact form of Eq. (2.2.2)) is:

Ui + <k2 - §> ve=0. (2.2.4)

In this form, we used the function v, = zR;.

To calculate the power spectrum, we have to start from the quantum origin of cos-
mological perturbations, so we have to quantize the v;’s. We start by promoting vy to
operators:

b = vp(7)ag + vi(7)al (2.2.5)

where, as in usual quantization processes, the annihilation-creation operators a; and &L

25



satisfy the commutation relations:
lar, al,] = (2m)36(k — k). (2.2.6)

To unambiguously define this Fock space, it is necessary to choose an additional initial
condition that identifies the vacuum. Indeed, this choice is not unique, as our spacetime is
curved and time-dependent. The standard choice is to impose a condition on the vacuum
in the far past at 7 — —o0, so that it coincides with the Minkowski vacuum. The modes

will have the following expression:

e—ikT

Vil o= —— . 2.2.7
k| — m ( )

This ansatz for the vacuum is called the Bunch-Davies vacuum [19]. Starting from the
Bunch-Davies vacuum |0), the "particle states” are defined by applying the creation
operators. This is how the perturbations are generated in the Early Universe.

In order to find the expression for the power spectrum, we have to calculate the
evolution of the modes functions v. In the case of slow-roll inflation, this is a relatively
easy task, as Ry becomes constant when the corresponding mode k crosses the horizon
( when k =~ aH). The amplitude of the power spectrum at horizon crossing is a crucial
quantity to compute, because the power spectrum reaches a constant value at the moment
of horizon crossing and then stops evolving, until it re-enters the horizon at a later time.

In a regime different from the slow roll, Ry may evolve outside of the horizon. In this
case, the evolution should always be calculated, and a numerical analysis is often used.
In this thesis we will be interested in the ultra-slow-roll regime. It can be shown that
evaluating the power spectrum in ultra-slow-roll dynamics by using the same expression
that is obtained for slow-roll dynamics |20, [21] is a fairly good approximation. However,
for a precise estimate of the spectrum, numerical solutions are necessary in order to find
the final power spectrum. Some techniques to compute the evolution of perturbations in
an analytical way do exist. In appendix[B]we will go over a technique that can be useful to
find a form of the evolution of the power spectrum, while actively including the transient
non-slow-roll phase. In this section, we limit ourselves to deriving the power spectrum
expression in slow-roll dynamics, following references [9] and [18] for calculations.

Assuming a minimal inflaton coupling, the pump field is described by the expression:

z = a\/e1 (2.2.8)

where ¢; is the order-1 term in the hierarchy (1.7.7). Considering this, and taking the
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limit £; — 0, the equation (2.2.4)) becomes:

2
. 2 .
where we have evaluated
lim 2/z = 2/7%. (2.2.10)
e1—0

The general solution to Eq. (2.2.9) is:

vp = ————H [C1(1 + ikT)e ™ + Cy(1 — ikT)e™ ] . 2.2.11
K N [Ci( ) o )e*T] ( )

In order to determine the two arbitrary constants C'; and C5y, we impose the Bunch-Davies

vacuum condition and the normalization condition, thus obtaining C; = 1 and C = 0:

o (o (2.2.12)

From this expression, it is immediate to calculate the power spectrum by its definition

(2.1.46):

H2 a2

2k3

(U, V) = (27)%6(k + K)|up|P= (27)*6 (k + k') (1+ k*72) . (2.2.13)
Now, remembering that the comoving curvature perturbation is Ry = “*, we can find the
power spectrum of R by evaluating:

1 H?a? H? H?

= 5o (1+k*7?) = ?ﬁ(l + k*7?) (2.2.14)

Ry|*=

’Uk;2
z

and, plugging this result in (2.1.48]), we obtain the power spectrum:

Pr(k )—k—372|2— ' (14 k*7?) (2.2.15)
R 77- _27T2 k _47T2(é2 T . L.

At superhorizon scales, from the defining condition k/aH < 1, we have that k*r? < 1,

because of the relation between conformal time and the scale factor:

dt dt 1 1 5 o k2
[ w2 Yo (221
7 / a(l) / T oH (aH)? < (2.2.16)

We obtain that, when the perturbation crosses the horizon, the term k%72 in (2.2.15))
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rapidly decreases, hence the power spectrum becomes constant and takes the value:

H4
C4r2 e

Pr(k) (2.2.17)

2.2.2 Tensor perturbations spectrum

Although we will not directly work with tensor perturbations in the next chapters, it is
important to study their original dynamics. In fact, the tensor perturbations spectrum
expression is present in the definition of the tensor-to-scalar ratio r, which is an important
parameter to be confronted with observations, that we will use later in this analysis. One
can also define, in analogy with , a tensor spectral index n;, which measures the
deviation from scale-invariance of the tensor power spectrum, and use it as a measurable
observable.
By expanding the perturbed Einstein-Hilbert action up to second order in h;;, one
obtains 2 ‘
s == F / d'za? (i) — (Ohiy)?] (2.2.18)
Since this type of perturbation is a massless scalar field, the idea to derive the spectrum is

to expand the tensor perturbation in Fourier modes and sum over the two polarizations:

d3k s S ik-x
hij 2/(27)325%(15) hi(T)e (2.2.19)

where the tensorial index s can have two ”values”, s = +, X, that represent the two types
of polarization.

For each value of s, we define the field

Mp b (2.2.20)

i~
=~
Il
(GRS

and by substituting in (2.2.18)), the second-order action becomes
1 s a s
S2) = 25: 5 /de?’k {(vk)Z - <k2 - 5) (vk)g] . (2.2.21)
Now we observe that this action leads to two equations of motion, one for each helicity,
that are identical to (2.2.4). Each polarization of the gravitational wave behaves as a

renormalized massless scalar field in de Sitter space, hj = 25 /Mp, for which the power
spectrum is proportional to (2.2.17)), this means that the power spectrum for each mode
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h; is
H?a®> 4 K3 H?
POk = = 2.2.22
w (F) 2k3 Mza?2m?  m2M3 ( )
To get the total power spectrum of tensor perturbations we can simply sum the two

spectra, obtaining the following result:

2H?
w2M3

Puk) = 2P, (k) =

(2.2.23)

We can then observe that the tensor perturbations spectrum and the scalar perturbations

spectrum satisfy the following relation:

8¢?

Ph= S

P . (2.2.24)

2.3 Amplification mechanisms

After the introduction on the dynamics of inflationary perturbations and the main related
observables, in this section we will discuss, in a model-independent way, the mechanisms
that can produce amplifications in the spectrum of scalar perturbations.

One way to produce amplifications is to design models in which the spectrum is heavily
scale-dependent at horizon crossing. The idea would be that slow-roll parameters change
considerably in a short time interval during inflation, contributing in a non-trivial way to
the Mukhanov-Sasaki equation solution. In this case, the late-time power spectrum can

be written in the following way:

H2

877'281

Pr(k)

(1+0) (2.3.1)

where O is the non-trivial contribution.

Another possibility is to construct a scenario in which the spectrum becomes scale-
dependent after horizon crossing. To explore this possibility, and keeping the discussion
model-independent, we can look at a general solution of Eq. , obtained by using a

gradient expansion approach:

-(0)  pr / T / T "
pp e 14T g / dr / dr 27y T )] . (23.2)
70 70

i Jry 20 2(r) o

ug(7) = ul(CO)

To produce this expression, we can start from the constant solution u,(co), which is the
limit for small k/aH, then we include momentum-dependent corrections that solve (12.2.2)
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order by order expanding around k/aH < 1. In slow-roll regime, after horizon crossing
the pump field rapidly increases, and reduces to the constant mode u,(co), that
produces a scale-invariant spectrum. Alternatively, if the pump field decreases after
horizon crossing, the terms contained in the integrals grow instead of decaying. In terms

of the gradient of the pump field, this condition can be written as:

/

z E9

S —aH[1+2] <0 2.3.3

S =al |1+ (2.3.3)
where €5 = % is the second slow-roll parameter of the Hubble flow function hierarchy.

Since the quantity aH stays positive during inflation, this is equivalent to saying that
the slow-roll parameter €5 becomes negative and O(1) in this transient period. This can
only happen in regimes different from slow-roll.

To understand the situation from a dynamical point of view, we can also look at the
expression for the amplitude of scalar perturbations in super-horizon regime that

was derived in the previous section, and we report it here too:

H4

Pr(l) = o

(2.3.4)

Starting from this expression in slow-roll regime, it is clear that, in order to increment
the spectrum at certain scales, either H has to get bigger, or the gradient of the squared
inflaton q52 has to become smaller. Since during inflation the Hubble parameter H is
(almost) constant, looking at the denominator we see that the inflaton field has to further

decelerate in order to produce an amplified spectrum.

2.4 Features of PBH-producing inflation models

In this section, we anticipate the general features of an inflationary model that leads to

PBH production by spectrum enhancement.

2.4.1 Potential

To start, we can expect at least three different phases during inflation:

1. The initial slow-roll phase, during which the perturbations that are linked to CMB
inhomogeneities exit the horizon, around the pivot scale ke, = 0.05 Mpe™ (N =
0). These perturbations are often used, in model building, in order to tune free

model parameters.

2. A second, intermediate phase in which the slow-roll regime is violated, and the
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second slow-roll parameter becomes negative and O(1). As a result, during this

phase the first slow-roll parameter also decays exponentially.

3. A third phase, which is again characterized by slow-roll regime, that leads to in-

flation end, and then reheating. Inflation ends when the parameter ; becomes

0(1).

In principle, there could be multiple sequences of non-slow-roll phases followed by
slow-roll. This would add structure to the spectrum, and would need a thorough probing

of the involved scales.

2.4.2 Power spectrum

To illustrate the features of the power spectrum during amplification, we can define, as

in ref. [22], the following quantity:

Pr(7)

Hk(T) = —PRk_m (7‘) .

(2.4.1)

This is the ratio between the power spectrum and its limit at large scales, and can be

expressed analytically as a function of the conformal time:

Hk(T) =1 + 7'2]{‘2“‘

4 T T

+ o! {(mr)? (a — i—T> — kAT (a - 2—7) sin(2kAT) + (a — 4) sin®(kAT)| . (2.4.2)

This representation is characterized by the interval A7, that is the interval of the non-
attractor phase, the length scale £ and the parameter «, that controls the growth of the
spectrum (it represents the influence of non-slow-roll phases on the spectrum). For k — 0
this function goes to 1. By tuning the parameters, this expression can parametrize the
characteristic spectral curve of a general model, so by using it we keep the discussion
model-independent.

It is useful to rewrite as function of the parameter n = k7:

Hk(7)21+772+
+oz_4 E i _4_T — H _2_T in 2& + (o — 4) in? E
4 777 @ AT 777’ @ AT > 777’ @ > nT
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Figure 2.2: In this graph we plot an approximate profile of the perturbation spectrum in
a model that admits amplification. The parameters used in this graph are a = 200 and
AT/T =0.5.

We can expand this expression for k7 < 1 (super-horizon regime) to obtain:

I, (1) = -—n2(a£;}-—1>+-00f). (2.4.4)

Here we notice that, while for k& — 0 the expression goes to 1. As k gets larger the second
term becomes more important in the expansion, causing the spectrum to decrease, until
the term ~ n* becomes large enough to cause the spectrum to increase. These two phases
are visible in the characteristic dip, which is present before the amplification in every en-
hanced spectrum. An example of such profile is shown in Fig. (2.2)), with parameters
a = 200 and A7/7 = 0.5. If we Taylor-expand the periodic functions in , and
consider larger values of k, we obtain that the highest order in k that contributes to the
growth of the spectrum is k*, this is because the higher-order term has a negative coeffi-
cient that causes the spectrum to decrease. We can then conclude that, independently of
the model, the maximum achievable growth of the spectrum is ~ k%, which corresponds

to a scalar spectral index n, — 1 = 4.

2.4.3 Ultra-slow-roll regime (USR)

The ultra-slow-roll regime was first studied by Kinney [23] and since then it has been the
most prominent mechanism used in literature in order to obtain spectrum amplifications.
Ultra-slow-roll inflation is realized when the potential’s gradient is negligible, V'(¢) ~ 0,
this happens when there is a flat plateau in V(¢). In this case, the inflaton field slows

down, and the Klein-Gordon equation (|1.7.4) will become:

¢+3H¢p~0. (2.4.5)
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In this situation, one of the slow-roll condition is violated because the slow-roll parameter
€9 has a negative and relatively large value, due to its connection to the dynamics of
parameter €.

A generalization of the ultra-slow-roll regime was proposed in 2014 by Motohashi,
Starobinsky and Yokoyama [24], and it is called constant-roll inflation. In this case, the

requirement is that the inflaton field has constant roll, so:

The ultra-slow-roll case is the specific case in which § = 3. From a dynamical point of
view, this regime can be realized with a non-flat potential, that has the inflaton going up
from a dip on a local maximum for a transient period, therefore the field velocity is not
constrained to be small.

During this work, we are going to focus on the ultra-slow-roll regime, so we will
consider § = 3. We can rewrite Eq. in terms of the slow-roll parameters, obtaining
this form:

262 —g169 + 66, =0 (2.4.7)

This equation has one exact de Sitter solution where €; = 0, and one solution that is

approaching the de Sitter solution:
e — 0 , &9 — —6 (248)
This second solution is a consequence of the presence of the de Sitter solution, because
it’s the case in which the system is approaching the de Sitter attractor.
In terms of the field flow function hierarchy, Eq. (2.4.6) can be written as:

51(52 + (51 — 81) — 351 =0 (249)

Assuming that e; — 0, this system has one exact solution where 4; = 0, and one solution

where it’s approaching the latter:

5 =0 , 0—3 (2.4.10)
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Chapter 3

Primordial black holes formation

After going over the theory of inflationary perturbations in the previous chapter, we
will explain the physics of primordial black holes (PBHs) and study extensively how the
theory of PBHs is related to the spectrum amplification of inflation.

In the last decades, the theory of inflation has been thoroughly tested and sup-
ported by observations of the CMB inhomogeneities and large scale structures. How-
ever, these probes cover only a small portion of the cosmological scales that characterize
perturbations, namely the largest ones (the ones that exit the horizon at earlier times,
107* < k[Mpc™'] < 1071), so the observational data leaves out most of the inflation
epoch.

However, in the recent years, a new possibility has attracted a lot of interest. Following
the 2015 observation of gravitational waves, detected by the LIGO/VIRGO collaboration
[25], it has been considered the possibility that the merging of primordial black holes
originated these detected events. This possibility is very interesting because it would
offer a way to probe inflationary dynamics at new scales. Moreover, PBHs are interesting
dark matter candidates, because, given the experimental constraints, they satisfy the
requirements to be dark matter without the need to introduce new beyond-standard-
model physics in the picture.

In this chapter, we will first discuss the formation mechanism and key features of
PBHs, then we will explain how these features are related to the amplification of the
perturbation spectrum. We will conclude by discussing the current state of PBHs as
dark matter candidates, commenting on the experimental limits on the abundance and

the masses.
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3.1 PBH formation and relevant variables

Primordial black holes could originate from the gravitational collapse of density perturba-
tions in regions of the Early Universe where the density exceeds a critical value. Density
perturbations are seeded from scalar perturbations, which, as we studied in chapter ,
are generated by quantum fluctuations of the inflaton field in the early stages of inflation.
The evolution of scalar perturbations is characterized by three phases: first, they form
inside the comoving horizon (k > aH), then they exit this horizon at k ~ aH, to then
re-enter again after the end of inflation, when the comoving horizon starts to increase
again. At typical PBH scales, the perturbations re-enter during the radiation-dominated
era, which occurs after reheating but before the matter-dominated era. At that time, the
scalar inflaton perturbations are imprinted in the density perturbations, defined as:

5= %’) ~ Pr(k)/?. (3.1.1)

When the density fraction ¢ exceeds a certain threshold, that we will call ., the matter
collapses and forms a black hole. In the next sections we are going to see how this
collapse threshold is estimated, and we introduce other quantities that will be relevant
for connecting experimental results with theory. The main references for these sections

are the reviews |13, 26].

3.1.1 Threshold of collapse

The first estimate for the collapse threshold was made by Carr and Hawking in 1974 [3],
and is based on a Jeans-type instability argument in newtonian gravity. The overdensity
region collapses if § is larger than the square of the sound speed of density perturbations,
SO

§2c. (3.1.2)

~ S8

This condition means that the signal that carries the gravitational pull travels faster than

the pressure waves that contrast it, so that gravity dominates over pressure, allowing the

2

collapse. Since the sound speed of perturbations is c;

= w and during the radiation

domination era the equation of state is w = 1/3, the threshold estimate is
5.~ 0.4 . (3.1.3)

Throughout the years, more refined estimates were made and it became clear that the
threshold depends on the shape of the curvature perturbation, as well as on the equation

of state of the fluid, since the larger is w, the larger the pressure gradient is, and the
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higher is the threshold.

Another important criterion for the threshold was formulated in 1999 [27], when it
was suggested that the PBH formation may occur at the peak of the compaction function,
which is a function that represents the average mass excess in a given volume. In [28§]
simulations have been performed using many different perturbations profiles, leading to

a range of critical overdensities in the radiation-dominated Universe:
0.~ 0.4—2/3. (3.1.4)

In |29} 30] it was found that, although 4. is a profile-dependent quantity, an approximately
universal estimate is 0. ~ 0.4. This value only slightly depends on the nature of the cosmic

fluid and on the curvature around the peak of the compaction function.

3.1.2 Mass

An analytical estimate to obtain PBH masses was developed by Carr [4]:

e R
My, =YM") ( g@) = (—f) yMY . (3.1.5)
MH aeq

In this formula, My is the time-dependent mass contained in the Hubble horizon 1/H (t):

_ 4mp(t)
M = 3H(t)

(3.1.6)

and the subscripts f and eq respectively denote quantities evaluated at the time of PBH
formation and at matter-radiation equality time. The second equality is obtained because
in the radiation-dominated Universe we have H? ~ p ~ a~*. The mass M I(fq) is known
and its value is ~ 2.8 - 101" M.

It is useful to relate the PBH mass at formation to the perturbations modes leaving
the horizon during inflation. Rewriting as function of p and H, knowing that
the energy density scales as p o g,(T)T* during radiation domination and considering

entropy conservation for which g,(T)T3a® is a constant, we obtain:

o= ()" (S () i

where ¢.(T) and gg(T") are the effective numbers of degrees of freedom considered respec-
tively in the energy density and in the entropy.
Now, we can look at recent Planck results [31], that give us ke, ~ 0.0104Mpc™, and
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assuming that ¢,(7¢,) ~ 3.38 and that ¢.(7T") = gs(7') we obtain:

My (K )~<7> (7)) ™" il Caom (3.1.8)
oA =\ 0.2/ \ 106.75 3.2-105Mpc! o o

This equation tells us that, for a PBH mass My, ~ 30My, which could be observed
by LIGO, the scale k:;ljl is smaller than k_',. This direct relation ((3.1.8))) between k
and M, gives us an estimate of the inflationary perturbations modes eligible for PBH
formation, considering different mass ranges from observations.

We can also derive a relation between the mass at formation and the number of e-folds
at horizon exit, starting from (3.1.7)) and considering that kypp/kemp = (aH )pon/ (@ H )emp
at horizon exit time. Then, we can relate H and a at the two exit times, considering the

parameter £; to be nearly constant:
Hooh = Hepmi e €1 (Npbh—Nemp) s Qpbh = Qemb e Npoh=Nems) (3.1.9)

Using these two relations in (3.1.7) and considering ke, = 0.002Mpc~!, we find the

following equation:

T\ 6
Mo (N ) 22 7.7 - 10V M. e~ 2(Npbn = Nemp) (1—21) (l) 9-(Ty . 3.1.10
pon(Npon) o 0.2/ \106.75 (3.1.10)

3.1.3 Abundance

The abundance of PBHs is their fraction of energy density compared to the total energy
density in the Universe, and we refer to such fraction as {2,,,. The quantity €2 is defined
for each type of energy content present in the Universe. One is typically interested in

these ratios today:

Qi,O = Pio (3111)
Pe,0

where p.o is the critical density for having a flat Universe at the present time (p.o =

3HgM?). In particular, for PBHs we are interested in the following ratio:

fooh = “Lino
obh =

. 3.1.12
Qdm,O ( )

This represents the abundance of PBHs in dark matter, for which we know the energy

density in our Universe, which, according to the most recent data, is [31]

Qumoh? = 0.120 £ 0.001 (3.1.13)
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where h = [0.6736 4 0.0054] - 100 km s~ 'Mpc ™! is a measure of the Hubble rate Hy. The
quantity (3.1.12) can be linked to the density fraction of PBHs at the moment of their

formation:

— Prbht (3.1.14)
Py

where the subscript f denotes that the quantity is evaluated at the time of formation.

Considering that after formation pyp, o a’:

Ppbh, bh, crit,0 bh. crit,0 Pe 1 ays
pbhf _ Pobhf Perit dm,Ofpbh—pp £ Perito Pea o) dmOfpbh—ﬁ_ mO Qamofoorn (3.1.15)

Pr Ppbh,0  Pf Ppbh,0 Peq Pf Qegq

where €2, o is the current matter density in the Universe, and the scale factor today is
normalized ag = 1. This result can be related to the PBH mass by re-expressing the

factor ay/ae, as follows:

_ 1/2
ﬁ — & gs(Teq> 1/3 ~ 3 17 . 1079 <l)_1/2 g*(Tf> 1/12 Mgbh (3 1 16)
g T \ gs(T}) - 0.2 106.75 M, o

where in the last equality we used Eq. (3.1.7)) to make explicit the dependence on M;{bh

The resulting relation is:

~1/12 1/2
YN 2 (g(TH)\ T Mg
~133x 1 ( ) 9\7) Mpbh.f . 11
=183 10753 (106.75 M, ) (8:-1.17)

This formula allows us to evaluate the fraction of PBHs at formation for a range of
possible masses and fp, values.

Another way to interpret J is the fraction of regions in the Universe whose density is

over the threshold: -
8= / P(d)do . (3.1.18)
5c

P(9) is the probability distribution function that describes how likely it is for a given
region to have an overdensity 9, and we consider cases in which the overdensity is above
the critical value. This definition is based on the Press-Schechter model of gravitational
collapse |32, which is widely used in the study of large-scale structure formation. In
this model, masses are considered part of a "gas” and their interactions are modeled as
nonlinear N-body interactions.

Assuming that the probability distribution function can be modeled as a gaussian
distribution with mean value p = 0, integrating we find:

o 52
5:\/%5 expl =55 ) - (3.1.19)
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Comparing with Eq. (3.1.17)), we can find an estimate for the variance; for example, to
produce a population of PBHs having M ~ M, and fu;, = 1072 we need a ratio d./0 ~ 7.
Using the data on ¢., we can estimate o for several values of PBH masses, or directly as
a function of the PBH abundance.

3.2 Conditions on the amplification

Before commenting on the results of the latest experiments, we will see how PBH prop-
erties discussed in the previous section can be related to the theory of cosmological
perturbations, so that we will be able to link observations with theoretical models.

We can start by taking the fractional overdensity ¢ and Taylor expanding at leading

order in a gradient expansion, working in Fourier space:

_2(1+w)V?R A RN

where w is 1/3 in the radiation dominated epoch. Given this relation between Fourier
modes of the two functions ¢ and R, and given the definition of power spectrum ([2.1.46|),

we find the following relation between the spectra of § and R:

Ps(k) ~ g (a%) Pr(k) . (3.2.2)

Now, by looking at the variance of (3.1.19)), it is possible to relate this latter parameter
directly with Pgr. The variance can be written, as a function of the power spectrum, in

the following way [33]:
(R = [ dngW e BP0 (3:2:3)
0

where W(q, R) is the Fourier transform of a real space window function that is used to
smooth the overdensity on a scale R ~ k™! ~ (aH)~'. If the power spectrum P, is peaked

around the wave number k,p;,, the integral above can be approximated to 02 ~ Po(kppn),

and considering also the result (3.2.2)), the relation (3.2.3) becomes:
9 16
0°(R) ~ gPR(kpbh) . (3.2.4)
The final relation between the variance o and the perturbation power spectrum can be

written as:

PR(kpbh) ~ 50’2 . (325)

According to Eq. (3.1.19), the dependence of the abundance § on the variance o is
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exponential, therefore a small change in the latter can cause a large variation in the
former. This means that we can establish a criterion for Pgr (k) that covers a relatively

large interval of values for 3. For the range 1072 < fu, < 1, we find:
Pr(kpn) ~ 50% ~ 1072 . (3.2.6)

This result covers the mass range for PBHs 107 2M, < Mg{bh < Mg, but the estimate
doesn’t change much for even smaller PBH masses. Indeed, we could consider the smallest
value of PBH mass that is allowed by current experiments, which is My, ~ 1078 M,
and corresponds to fyn, < 107°. Considering the results in the previous section, this
would correspond to the constraint Pr(kppn) < 6 X 10~3, which is included in the latter
estimate.

We conclude by observing that, given that the typical order of magnitude of the
spectrum at CMB scales is Pr (kems) ~ 1079, the amplification that we need is about 7

orders
Pr(kpon)

AP = LR\
® PR(kcmb>

~10". (3.2.7)

3.2.1 Case of non-gaussian overdensity distribution

In the former section, it was assumed that the probability distribution function of the over-
density was gaussian and, since they are proportional, also that of primordial curvature
perturbations. In this section, we comment on the effects of the eventual non-gaussianity
of the PDF's, which can have an important impact on the overall result. In particular,
we comment on the representative case in which R = ¢ — (¢?), where ¢ is a gaussian
variable having mean 0 and variance (g*). The probability distribution function for R in

this case is:
o RH())/2(s?)

R) = . (3.2.8)
VBT(R +(g%)) {9
The fraction of regions that can collapse into PBHs is then:
> 1 1 Rcrit
= dR P(R) ~ —Erfc —+ 3.2.9
i [ = e (|4 B (329)

where the variance of P(R) has been approximated to Pg to include the curvature power
spectrum. Combining this result with the expression for the PBH abundance,
we observe that a population of solar-mass PBHs having f,, = 1072 would require, in
the case of non-gaussianity, an amplitude of the power spectrum Pr (kypn) ~ 107, This
result is valid for a large range of masses and values of the abundance. Compared to
the result in the previous section, the required amplification would be of about
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6 orders of magnitude. This less stringent constraint allows for a more efficient PBH

formation.

3.3 Primordial black holes as dark matter candidate

Primordial black holes within a certain mass interval satisfy all the necessary require-
ments to be good dark matter candidates. Indeed, they are cold, stable with respect
to cosmological time scales, and, since they formed before nucleosynthesis, they are also
non-baryonic, so they do not interact with other particles other than through gravity. A
great advantage is also that PBHs are not new particles, so their origin would not require
to modify or enlarge the Standard Model. However, there are many experimental limits

to consider, that strongly constrain their mass and abundance ranges.

3.3.1 Constraints

In this first section, we will review the most recent experimental constraints on PBH
abundance £, that is linked to PBH mass constraints through the relations presented in
the previous sections. We will also discuss which mass ranges allow for PBHs to be viable

dark matter candidates. We will mainly follow the review by Carr and Kuhnel [34].

Evaporation constraints

Considering Hawking radiation, a PBH of initial mass M will evaporate in a time scale
T oc M3. This scale is less than the present age of the Universe if the mass is lower
than M, = 5 x 10'* g, which is a lower bound for PBH masses, M 2 M,. Considering
M > 2M,, we can neglect the change in mass, and calculate a bound based on the
observed spectrum of photons coming from each PBH. Calculating the instantaneous

spectrum of primary photons, one finds at E™% oc M~
I (M) o< fopn(M) M2 . (3.3.1)
Whereas the observed intensity is
I°(M(E)) oc E~019 (3.3.2)

with 0.1 < € < 0.4. By requiring that ™ (M) < I°*(M) one obtains the following

constraint [35]

f(M)<2x107® (ﬁ)3+6 : (3.3.3)
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Other notable bounds for other ranges of M come from positron data from Voyager 1
[36] constraining f < 0.001 for masses M < 10® g, from observations of y—ray and radio
emissions from the galactic centre and from the observed reionization of the Universe in
the mass range 1016 — 107 g [37-39).

Gravitational lensing constraints

Gravitational lensing observations can be used to constrain the abundance of astro-
physical objects within a mass range ranging from 107°M, to 10%M,. Among the
most relevant observations we cite the search for PBH microlensing of stars lying in
the Milky Way and M31 galaxy halo regions [40] which constraints the mass interval
10719 < M < 1075M,,, then other observations in the galactic halo from MACHO project

and OGLE experiment whose combined results can be approximated to

f(M) < 1for 6 x 10°M, < M < 30M, (3.3.4)
f(M) < 0.1 for 107°M, < M < 1M, (3.3.5)
f(M) < 0.05 for 1073My < M < 0.4M,, . (3.3.6)

Then, JLA data was used in [41] to find the upper bound f < 0.35 for the mass range
1072 < M < 10*M,, but this limit could be weakened considering the option of an
extended mass function or clustered PBHs.

Other important results come from quasar microlensing [42] which suggest a limit
f(M) < 1 for 1073 < M < 60M,, and millilensing of compact radio sources [43] that

gives the limits:

f(M) < (M/2 x 10*My) "2 for M < 10° M, (3.3.7)
f(M) < 0.06 for 10° Mg, < M < 10°M,, (3.3.8)
f(M) < (M/4 x 10°My,)? for M > 10*M,, . (3.3.9)

Dynamical constraints

Dynamical constraints can be obtained from the study of the effects of collisions between
PBHs and astronomical objects. For example, many authors have studied the possibility
that PBHs could be captured by stars in the galactic disc [44], this leads to the lower
mass limit

f<(M/3x10%g). (3.3.10)

Other limits on different mass ranges have been considered and disputed, so we do not

report them here.
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Further constraints come from the destruction of astrophysical objects caused by the
passage of PBHs [45], considering multiple collisions, single collisions and non-impulsive

encounters. These can be summed up in the following relation:

M v

3
v
e oM< M, (— 3.3.11
GpdthRc< < ( ) ( )

c

where M, is the object mass, v, is its velocity dispersion and R, is its radius, ¢ is the
survival time and v is the velocity dispersion of PBHs. The limit values correspond
to values of M for which f = 1. Some examples of systems that are subject of these
observations are wide binaries, globular clusters, dwarf galaxies, and also galaxy clusters

(which cover PBHs that are too large to fit in a single galaxy halo).

Accretion constraints

Studying the effects on the Universe’s thermal history, we observe that the accreting PBH
radiates with luminosity [46]:
L =eMc*. (3.3.12)

This expression depends on the PBH mass and on the accretion specific dynamics, and
the impact of the PBH on the Universe’s temperature depends on the outgoing radiation.
This outgoing flux can leave observable traces in the CMB, that can be used to derive
bounds [47, 48]. These, however, are very model-dependent, and in the last years it has
been observed that constraints could be less stringent than what was thought. Moreover,
for smaller masses (M < 10My,) it is very difficult to constrain the abundance, because
of the smaller impact of the PBHs on the surroundings.

Other constraints can be obtained by considering PBHs emission at the present epoch,
particularly in the X-ray range, by studying the PBH contribution to the population of

compact X-ray objects in galaxies. Relevant results have been obtained in [49, 50| and

are shown in Fig. (3.1)).

CMB constraints

The process of dissipation of post-inflationary gaussian density fluctuations by Silk damp-
ing can cause a p—distortion in the CMB spectrum, resulting in an upper limit on the
overdensity

S(M) < \/p~10"% for 10° < M/M, < 10"*. (3.3.13)

This turns in a constraint on f(M), but relaxing the assumption that the fluctuations are

gaussian may also weaken this constraint (though a very high degree of non-gaussianity
would be needed).
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The p—distortion limit also implies a maximum mass for dark matter PBHs, related

to a limit on the steepness of the power spectrum in the theory of perturbations.

Gravitational wave constraints

As we reported before, recent years detections of gravitational waves by the LIGO/Virgo
experiment prompted the rise of interest in PBHs. There are two ways in which grav-
itational waves could be related to PBHs: one is that a population of massive PBHs
is expected to generate a gravitational wave background, that can be perturbed, in the
present epoch, by binary BH coalescence; the second is from the tensor perturbations gen-
erated by scalar perturbations in the epoch of PBH formation, for which the frequency
can be estimated and related to density perturbations, which in turn can be related to
)

Early LIGO data gives strong limits to f(M) in the mass range 0.5—30M, |51], which
are updated by more recent works [52-54] using more LIGO /Virgo data and pulsar-timing
observations. The robustness of these bounds depends on the accuracy of the description
of the PBH binaries formation. A 2018 estimate [55] gives a constraint on PBH fraction
of dark matter f ~ 0.001 — 0.01.

Future observations by LISA could also detect stochastic emissions in the center of
the Milky Way if PBHs of mass 107 — 1 M, were orbiting around a supermassive
black hole in that region, forming a dark matter spike predicted in [56]. All of the
constraints discussed in this section are graphically represented in Fig. taken from
Ref. [57]. In this graph, there are four interesting mass windows that are not constrained
or are less constrained, that could be considered for PBH dark matter. In window C the
gravitational-wave-related bounds are present, making it the most interesting window in
light of recent developments. Window D, instead, contains a very high mass range, that
would include the so-called SLABs (Stupendously Large Black Holes), that might provide
an intergalactic dark matter component. Such massive PBHs are unlikely to form (they
are in the tail of the overdensity distribution), however, by accretion, smaller PBHs could

also reach that mass range.

3.3.2 Possibility of an extended mass function

In the previous discussion it was assumed that the mass function is monochromatic,
meaning that PBHs are supposed to be generated all with the same mass. However, this
scenario is very unlikely, and there are many methods to extend the limits for monochro-
matic mass functions to ones that have a non-negligible width AM.

We review here the approach used in [58, 59|, where the authors introduce the function
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Figure 3.1: Constraints on f(M) for a monochromatic mass function, from evaporations
(red), lensing (blue), gravitational waves (GW) (gray), dynamical effects (green), ac-
cretion (light blue), CMB distortions (orange) and large-scale structure (purple). The
incredulity limits (IL) correspond to one PBH per relevant environment (galaxy, cluster,
Universe). There are four mass windows (A, B, C, D) in which PBHs could have an

appreciable density.

(M) so that the total fraction (3.1.12)) of dark matter in PBHs is

Minaz
Jpoh = / dM (M) . (3.3.14)

Mmin

Any astrophysical observable depending on fp,, can be expanded in the following way

The constant A is the background contribution, while K; and K5 depend on the details
of the physics related to the specific observable. If a measurement puts an upper bound

on the observable:

A[p(M)] < Agbs (3.3.16)

then, considering the case of a monochromatic mass function ¢,,,.(M) = fopn(M.)0(M —
M,), where logM, = (logM),, is the mean of the logarithmic distribution, the maximum
allowed fraction of PBH dark matter is

< Aobs - AO

fopn (M) < K, (0L)

(3.3.17)
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which then yields:

(M)
/deWT(M) <1. (3.3.18)

This equation can be applied in the case of an arbitrary mass function to obtain the
relative constraints, provided that f,., is known. The result is a function of M, and of
the variance of the distribution o = \/<10g2M>w — (logMﬁp.

In references [58| 59|, where the authors studied various mass functions, the general

result is that the allowed mass range for fixed value of f,, decreases when the width o
of the mass function increases. There are also more complicated scenarios that generally

require more parameters, however a study of such models would be beyond the scope of
this thesis.
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Chapter 4

Jordan frame formalism

This chapter’s purpose is that of establishing the theoretical framework for studying infla-
tionary models in two different frames, namely the Jordan frame and the Einstein frame.
The two frames are connected by a frame transformation, which affects the inflationary
formalism. We first present the transformation, then we discuss how important expres-
sions for inflationary dynamics are modified, and how the conditions that define different
inflationary regimes change. We will explore the two regimes that we consider important

in this analysis, namely the slow-roll and ultra-slow-roll regimes.

4.1 Dynamics in the Jordan frame

We will start with an introduction on the concept of Jordan frame. The Jordan frame was
first introduced in the context of general scalar-tensor theories as the frame in which the
Lagrangian contains a term where the scalar field is coupled non-minimally to the Ricci
scalar. In the context of inflation, many theories have been studied in the literature having
this non-minimal coupling term between the inflaton and gravity, and the transformations
between Jordan and Einstein frames are essential in order to study these theories.

The inflaton action in Jordan frame has the following generic form:

Sy = /d4x\/—_g |:—U(O')R + %g“”quaw — V(o) (4.1.1)

where the function U(co) describes the non-minimal coupling of the field to gravity.

It is important to show how the Friedmann and Klein-Gordon equations change in
form, and how the conditions for slow-roll and ultra-slow-roll map between the two frames,
so that we can adapt the requirements for inflation and non-slow-roll regimes in Einstein

frame to the more generic non-minimally coupled case.
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By varying the action (4.1.1)), the resulting equations are:

=2

GUH? + 6UH = % V. (4.1.2)

. . . G2
2U(2H+3H2)+4UH+2U+7 -V =0, (4.1.3)
G+ 3Ho 4V, =6(H+2H*)U, . (4.1.4)

The homogeneous equations for the inflaton-gravity system in the Jordan frame are more
cumbersome, due to the extra field dependence. The exact resolution of the system is
often equally cumbersome, therefore in many cases, authors choose to switch from the
Jordan frame to the Einstein frame, where the formalism is usually more suitable to
computations.

To go from the Jordan frame to the Einstein frame, it is necessary to perform a

conformal (Weyl) transformation of the metric in the following way:

Up

Guv = mgm/ . (415)

With this transformation, the term in the action containing R becomes the canonical
term UyR, where the constant is the usual Uy = M3 /2. As for the kinetic term, we have
to perform another transformation to obtain the canonical kinetic term through the field
redefinition defined by:

dgb \/Uo o) +3U(0)2)
Ul(o)

(4.1.6)

where ¢ is the field in the Einstein frame. After these two changes, the potential is
redefined as:

UsV(a()
W (o) = ( ) (4.1.7)

The action in the Einstein frame becomes:
Sg = / d*z\/—§ { UyR + gW@“gb "¢ —W(¢) (4.1.8)

which corresponds to (1.7.1]) in a different notation, and the equations of motion for this

action are (L7.2), (L73) and (T-74).

Before proceeding, we introduce a definition that will be useful in the rest of the

thesis:

(o) = U;"’ . (4.1.9)

We then introduce the field functions ny = oU, /U, ny,, = ony ,/ny, and we can define,
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in a similar way for V, the functions ny = oV, /V, n,, = anv,g/nv. The advantage
in using these functions is that the notation gets lighter, especially in more advanced
calculations, and in some models we can assume these functions as constants, at least
approximately.

Equations , and can be written in terms of the SR parameters
and of the functions defined by , by substituting them where possible. What we
obtain is:

H? = v ; (4.1.10)
6U (1 +nydy — IZ—U(S%)
w018y + Ny 81+ npdy — 1) + £67

41.11
“ 2+ nyoy (4.1.11)
025(5 Gy — o1 43) + oy = 6y (2 — 1) (4.1.12)
U11 2 — &1 HQUV—U €1) . 1.

Starting from these equations, we can perform some useful calculations in the Jordan
frame in order to express the SR parameters, in slow-roll approximation, as functions of
the field alone. In slow-roll regime, all the SR parameters are considered small, hence we
can neglect terms of order 2 in the parameters (~ §;0;). If the quantity "—U2 is O(1) and
ny is not too large, the second equation in becomes, under SR approximation:

nU(51
2

e~ — (4.1.13)

By substituting the first and second equation into (5.1.12), we obtain this form for the

Klein-Gordon equation:

2 o

2
0—51(51 +0o+1)+ny (1 + nydy — —5%) =

6U 12U
0.2
(- i5)

Applying the slow-roll approximation, we obtain the following expression for d;:

) nudy(0g + Ny, 01 +npdy — 1) + 3_12}5%
2+ TLU(Sl

2nU — Ny

% —f-TLU(TLV — TLU/2>

51 =~ (4.1.14)
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4.2 Slow-roll and ultra-slow-roll conditions

To discuss how the conditions for slow-roll and other regimes change between frames, we
have to relate the SR parameters in Jordan and Einstein frames. We start from writing

the scale factor a and the lapse function n, which in the Einstein frame become:
U
a=4\/— 4.2.1
a=/ 0 a ( )
n=4/—n (4.2.2)

where U = U(o(9)).
From the equations (4.2.1]), we can easily find the Hubble parameter:

=~ U ny
=2 (1 + 7&) H (4.2.3)
and also the number of e-folds:
~ 5 1
Nzlna:§(an—ano)+N. (4.2.4)

The fact that the number of e-folds changes between frames shows that the frame trans-
formation affects the physical meaning of inflationary scenarios. The length of inflation,
as well as the length of the transient USR period, are important quantities that are
constrained by observations.

To derive the slow-roll parameters in the Einstein frame, it is useful to find the ex-
pression dN /dN:

ClN nU(51
— =1 . 4.2.
aN T2 (4.2:5)
Now we can easily derive the expression for the first slow-roll parameter:
din H 5\ " [ nwd i (61 + O
f= nN _ 1+”U1 nU1+€1_ 2 ( U16 2) (4.2.6)
dN 2 2 1+ =22t

and by directly differentiating the former expression with respect to N, one obtains the

second slow-roll parameter:

o 51 [6nnUn2U + "—(]2(2 - nU)] 25, ng01(nn, 1 + d2)
€2 = 2 o2 nyd1 - nyd\ nydy )2 ' (427)
(Bng + %) (L+m52) (14257 (1+25%)

20



These relations are sufficient to exactly map the slow-roll and ultra-slow-roll conditions

from one frame to the other, as we shall explain in what follows:

1. The slow-roll conditions in the Einstein frame are:
E1rREK]. (4.2.8)

Assuming that the functions ny and n,,, are of order O(1), looking at expression

(4.2.6]), this is equivalent to assuming 0; =~ ¢; < 1, while looking at (4.2.7)) slow-
roll implies §; =~ d < 1. By further differentiating to find the successive slow-roll

parameters, it is possible to verify that if all the SR parameters in the Einstein
frame are small, then all the parameters in the Jordan frame have to be small as
well and viceversa. We can conclude that the slow-roll condition is the same in the

two frames.

2. For ultra-slow-roll, we can start by imposing £€; < 1, as in the former case, and this
implies once again d; &~ ¢; < 1. For the second parameter &;, Eq. reduces
to

€9 = 205 . (4.2.9)

Given the condition for ultra-slow-roll (2.4.8) that we derived in Chapter (2), we

obtain the following condition for the parameter ds:

5y~ —3. (4.2.10)

Another important definition that changes when considering the Jordan frame is that

of the pump field z (2.2.3)). Indeed, considering the modifications (4.2.1)), (4.2.3]) and the
change of field (4.1.6)), the expression of the pump field becomes:

6 _YlH3ma (4.2.11)
q 140 H -

This expression will be important when numerically computing the power spectrum of

perturbations in a non-minimally coupled scalar field model.

4.3 Observable quantities in perturbations theory

Finally, we consider the transformations of the quantities related to the study of the
perturbations spectrum. We first look at how the spectrum amplitude is related to the

slow-roll parameters. Starting from expression ([2.2.17))
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Pr(k) = L:Z;Z} . (4.3.1)

In slow-roll approximation this can be written in the Einstein frame as

N w B w
T 24m2MiE, 1272 M2 3202

Pr (4.3.2)

To explain the second equality, we take the second equation in (4.1.10) and write it in
the Einstein frame (ny = n,, = 0):

252
%03

4U

& = (4.3.3)

Substituting this expression in that for Pgr, and considering the Einstein frame minimal
coupling U = Uy = M} /2 we obtain the result (4.3.2)).

Now, using the expression for £; in terms of Jordan frame parameters, and substituting
the Jordan frame SR parameters so that the expression is only a function of the field, we

can write the spectrum as

- V %‘FTLU(”V—”U/Q)
- 1272U0%(1 + 30} L) 2ny — ny

Pr (4.3.4)

This formula for the spectrum will provide an analytic result assuming the SR approxi-
mation.

The other interesting quantity to look at is the scalar spectral index , in par-
ticular we are interested in the CMB scales, and the long wavelength limit (small k/aH).
We derive an approximate expression at these scales, starting from the equation of motion
for scalar perturbations , and rewriting it in terms of the slow-roll parameters:

Ad*Ry €162 — 2(1 — 51)% dR, ¢?

ac ¢

2
‘ e ac F-en

SRy =0 (4.3.5)

where ¢ = k/(aH). The long wavelength limit corresponds to ¢ — 0, and in this limit,
assuming constant slow-roll parameters, Eq. (4.3.5) admits a solution of the form

Ry, ~ e Bl—=)N (4.3.6)
with .
£1€2 — 2(1 — 81) dlnz
B=1- N 4.3.7
(1 — 81)2 ( )
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In this case, the scalar spectral index has the following expression:

Now we can consider equations (4.2.11)) and (4.1.10|) in order to eliminate the dependence

from z and e9, and considering the slow-roll limit (where the CMB scale exits the horizon),

we obtain the following expression for ng, — 1:

3n61(2 — ny — 2ny,,)

ns—12—2((51+(52+€1)+ o2
371?]4—7

(4.3.9)

We can also calculate the expression of another important observable, the tensor-to-scalar

ratio r in slow-roll regime, by using the relation between scalar and tensor spectra

(2.2.24). The result is:

(1 + 37’%%)
i :

r = 2026}

(4.3.10)
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Chapter 5

PBHs production in Higgs inflation

In this chapter, we examine an inflationary scenario in which the Higgs boson plays the
role of the inflaton, within a framework that includes a non-minimal coupling between
the inflaton and the Ricci scalar. This model has been first proposed by Bezrukov and
Shaposhnikov in 2007 [5] with the aim of matching the model parameters with the CMB
measurements, as well as the Standard Model results for the Higgs boson mass and quartic
self-coupling.

In the first section of this chapter, we first provide an overview of the original Higgs
inflation model, and we follow with the study of the framework of critical Higgs inflation,
in which an inflection point is considered in the Higgs field potential. With the right
tuning of the parameters, this model could lead to amplifications of the curvature power
spectrum eligible for PBH production. We will reference [60] in this discussion.

In the second section, we consider an original model of Higgs inflation formulated
directly in the Jordan frame, where the physical potential is defined. We present the
proposed model, explaining the performed analysis of the relevant expressions and pa-

rameters, and the obtained results.

5.1 Higgs inflation in Einstein frame

5.1.1 Original model

In this section we review the original model of Higgs inflation. proposed by Bezrukov and
Shaposhnikov in [5] and further elaborated in [6]. The primary reason to consider the
Higgs boson as the inflaton is that it would eliminate the need to introduce a new field,
since the Higgs boson is already well integrated in the Standard Model. Moreover, Planck
data shows that single-field models such as Higgs inflation are favoured over multi-field

ones. This model can be easily generalized to a generic inflation field by not constraining
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the self-coupling to be the Higgs one.
The original model formulation of Higgs inflation includes a non-minimal coupling to

gravity. The action in the Jordan frame is given by:

M3 + Eh? 1 A ) (5.1.1)

SHiggs = /d4l‘\/ —g (_TR + §g,w8“h8“h - Z(hQ - 'U2)2

where £ is the non-minimal coupling constant and A\ denotes the quartic self-coupling. The
model is an example of large-field inflation with a chaotic inflation polynomial potential.
If the model didn’t include the non-minimal coupling, given the large field excursion,
the quartic self-coupling in the potential would have to be small in order to maintain
the flatness of the potential and suppress radiative corrections that could otherwise spoil
the slow-roll conditions. Typically, the requirement is A < 1072, The value of A at the
Planck scale calculated at tree level is A = 0.129 and does not satisfy this bound, so the
non-minimal coupling to gravity is introduced to compensate for the large value of .
Indeed, we will see that the constraint on the Higgs self-coupling contains the parameter
&, so A can be any value.

The non-minimal coupling to gravity is quadratic in the Higgs field and leads to an
effective change of the Planck mass M3, ~ Mz + £h*. After inflation, assuming that
the minimum of the inflaton potential is at h ~ 0, the effective Planck mass returns to
its standard value, M3, = Mp.

Following ref. [6], we can perform a conformal transformation to transition from the

Jordan frame to the Einstein frame. Such transformation is defined by:

g,uzl = QQg;w (512)
where the conformal factor is e
V=14 5.1.3

Combining this transformation with a redefinition of the scalar field according to (4.1.6|),

we obtain the following action in the Einstein frame:

M2 . §,,0"\O"
SH,E = /d4ZL’\/ —g <— 2PR+ gu QX X - U(X)) (514)

where x is the new field in the Einstein frame and, according to (4.1.7), the Einstein

frame potential is
(h(x)* —v?)%. (5.1.5)

Higgs inflation is characterized by a large non-minimal coupling £ > 1 and a negligible
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Figure 5.1: Characteristic form of Higgs inflation potential seen from two interesting scales of the field
values, for the choice of parameters A = 0.129 and v = 0.102

vacuum contribution of the non-minimal coupling to the effective Planck mass. In this

case, the potential in the Einstein frame takes the form:

(1)
—_— — e P , >>

Ulx) =4 * r (5.1.6)
2(x* = v%)?, X < Mp/¢

At large field values, the potential becomes flat, providing the necessary conditions for
slow-roll inflation, while for small field values, the potential becomes the SM Higgs boson
quartic potential with a negative mass. The characteristic shape of the potential
is shown in the Figure , with parameters A\ = 0.129, v = 0.102, and £ = 16 880.8.

In the slow-roll regime, the SR parameter €; can be easily expressed as a function of

the Higgs field h:
4MP

ST (5.1.7)

&1 =

Considering that inflation ends at £, ~ 1, the field value at the end of inflation is he,gq =~
(4/3)*Mp/\/€ ~ 1.07TMp/+/E. We can calculate the number of e-folds as a function of

h:
£
WUyt 3 1\ B} — 2 1+ 57)
N = / X _dn~ = <§+—) _end _ 1, . (5.1.8)
w MEU T 4 6) M2 (1+ L)

This relation allows one to identify the field value h(N) at which a given mode, associated
with N, exits the horizon. In particular, the modes imprinted in the CMB cross the
horizon when hen, =~ 9.14Mp/+/€. Using the observed amplitude of the scalar power
spectrum Pr at CMB scales, and the expression of the spectrum obtained with the SR
approximation , we can deduce that the following condition needs to be satisfied
at Aemp:

UJer ~ (0.0276 Mp)*. (5.1.9)
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Figure 5.2: In this plot from ref. [6], the results for ns, and r are shown for Higgs
inflation and Higgs inflation-inspired models, along with experimental data from the
Planck satellite.

This means that the non-minimal coupling £ is constrained by the following relation:
€ ~ 47000V/\. (5.1.10)

For suitable values of £ and A, this model yields inflationary observables in agreement with
current cosmological data. For the Higgs SM quartic coupling at tree level (A = 0.129),

to the lowest order in 1/&, the spectral index and the tensor-to-scalar ratio are:

ng — 1~ 0.967 (5.1.11)
r ~0.0031 (5.1.12)

This is shown in Fig. (5.2) (the green star marker at the bottom). In the same figure,
the pink straight line marks the values of £ and A that obey the relation . There
exists a parameter range in which the values of » and n, remain within observational
bounds, suggesting that the Higgs inflation scenario could also be realized with a generic
scalar field acting as the inflaton, rather than the Higgs field.

An important consequence of identifying the Higgs boson with the inflaton is that
the mechanism of preheating is effectively fixed by the Standard Model interactions.
After inflation ends, the Higgs field oscillates around the electroweak vacuum, efficiently
producing SM particles, primarily W and Z bosons. Once parametric resonance becomes
efficient, these gauge bosons live long enough to decay into lighter SM particles, leading
to thermalization of the universe.

The main shortcoming of Higgs inflation is that the theory is not UV-complete, mean-
ing that it has a strong scale dependence. The effective theory breaks down at an energy
scale A ~ Mp/€, below the inflationary Hubble scale for large £. This implies a violation

of tree-level unitarity during inflation, unless new physics enters before this cutoff [61].
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5.1.2 Critical Higgs inflation

The scenario of Higgs inflation was initially considered with the primary goal of matching
observations at CMB scales. However, more recent articles have explored the possibility
that quantum corrections to the Higgs potential could lead to features in the power
spectrum that might lead to the formation of primordial black holes. In this section,
we focus on the scenario of critical Higgs inflation, following in particular the analysis
presented in [60, 62].

The idea of critical Higgs inflation stems from the observation that quantum radiative
corrections can change the form of the effective potential, modifying the inflationary
dynamics and therefore the predictions of Higgs inflation.

From the analysis of quantum effects at 2-loop level in ref. [63], it emerges that the
stability of the SM vacuum at the electroweak scale depends, among other parameters,
on the Higgs mass M},. The stability condition is that the Higgs mass has to be above a

certain value:

(5.1.13)

hys

Y — 0.9361 a, — 0.1184

M.y = (1296 +2 _ 0. GeV
‘ ( + 0.0058 0.0007 ¢

where 3" is the coupling of h to the top quark ¢ and a, is the coupling to the Z
gauge boson. When the Higgs mass is above M,.; by at least O(100MeV), the values
of cosmological parameters are rather stable, and Higgs inflation is a good inflationary
scenario at CMB scales. The situation is different when M), approaches M., ;. In fact, in

this case, the running of A

Az) = Ao + ba(In 2)? (5.1.14)

and of its beta function 5
— == 5.1.15
B M@u ( )

where all the parameters are functions of yf s and a, approach zero near the Planck
scale, and this considerably changes the effective potential, as well as the behavior of the
inflationary parameters [62]. Without going into details about this mechanism, the result
is that, near the critical point, an inflection point, or even a local minimum, appears in
the potential. The presence of an inflection point considerably opens up the parameter
space. As shown in Fig. from ref. [62], the (ns, ) predictions are no longer confined
to a narrow line, as in standard Higgs inflation , but can span a much wider region
of the observationally allowed parameter space.

Considering the critical Higgs inflation would also solve the problem related to unitar-
ity at Planck scales. Indeed, given the small value of A(2) in this scenario, the electroweak

vacuum stability is preserved without requiring a large value of £, raising the cutoff scale
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Figure 5.3: Results from the analysis of critical inflation in ref. ||

of the theory.

In article , the previous analysis is extended by considering the possibility that
the non-minimal coupling ¢ is also subjected to changes in function of the Higgs mass.
Consider the running of both parameters A and &, expanded around the critical point

h = p that corresponds to the critical mass M.;:

Ah) = Xo + by In?(h/p) (5.1.16)
£(h) = & +beln(h/p). (5.1.17)

The effective potential in the Einstein frame in this case becomes

Us(1+a In®z) 2

U(x) = 5.1.18
(=) (14+c¢(1+blnx)a?)? ( )

where the rescaled parameters are defined by:
U() :)\0/14/4, a:b)\//\o, b:bg/&), C:§0M2/M]23. (5119)

The presence of an inflection point at x = x, requires that both first and second derivative

of the potential vanish, V'(x.) = V"(z.) = 0. Imposing these conditions on the potential
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(5.1.18]) gives the following relations between parameters:

4
B 1+ca?+2nz, —4Inz,’

a(z, c) (5.1.20)

2(1 + cx? + 4Inx, + 2ca?Inz,)

cx2(1+ca2 +2Inz,. —4ln°x)

b(xe, c) =

(5.1.21)

A quasi-inflection point is obtained by correcting the parameter b by a small factor,
b — (1—)b(z,,c). This correction makes it easy to control the length AN of the period
in which the inflaton rolls down the now quasi-inflection point by tuning /3 (this length
is inversely proportional to f3).

The results of the study of the parameter space (z., ¢, 5, AN) show that there are sev-
eral parameters that match cosmological observables at CMB scales, but do not provide
sufficient amplification of the spectrum. Furthermore, to obtain sufficient amplification,
it appears that the number of e-folds AN spent around the inflection point has to be at
least greater than 40, which is too long to be compatible with any model including CMB
constraints, in fact these cases appear to predict a low spectral index (ns < 0.956) and a

large tensor-to-scalar ratio (r > 0.019).

5.2 Higgs inflation in Jordan frame

In this section, we present an inflationary scenario inspired by Higgs inflation, but where
the physical potential is defined directly in the Jordan frame. In particular, we consider

the following expression for the potential:

A
V(h) = Zh4(1 + vah? + vgh*). (5.2.1)
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This potential becomes the Higgs quartic potential for small field values, and for simplicity
we neglect v = (h). Two correction terms of order ~ h® and ~ h® have been added in
order to introduce new features in the potential. For the non-minimal coupling, we
consider the expression

1
U(h) = i(Mﬁ + ugh® + ugh?®) (5.2.2)

introducing an additional term ~ h? with respect to the Bezrukov model in [6]. This
addition is necessary in the presence of the extra terms in the potential V' because these
contributions together ensure that V/U? is approximately constant in the large field
limit. This is necessary in order to obtain quasi-de Sitter solutions in the Jordan frame,
in analogy with the Einstein frame case requiring W ~ constant .

We focus on scenarios in which the Einstein frame potential W (h) = V/U? exhibits
an inflection point at h = hy. For simplicity, from this point forward we will consider
Mp = 1. By imposing

W'(ho) =0, W"(hg) =0, (5.2.3)

which in terms of U and V are equivalent to

QHU(ho) = TLv(h()) s nnU(ho) = nnv(hg) s (524)

we can express v, and vy in terms of us, uy and hg:

vy — — 2(4 —+ 3u2h(2) + UzU4h8) (5 9 5)
27 R2(6 + 6ush? + (u2 + 2ug)hd) -

3 + 2ugh? + uihd

= . 5.2.6
YT hE6 + 6ush + (43 + 2ug)hd) (5:2.6)

As a result, V and U only depend on the three parameters us, uy and hg, along with A.
These are the parameters that will be adjusted to produce the desired power spectrum.
Following expressions ({4.3.4]) and , we have searched for parameters that match
the value of Pz and ny —1 at CMB scales. These correspond, according to measurements

[64], to:
Pr ~22x 107" (5.2.7)

and
ng ~ 0.9641 £ 0.0044 . (5.2.8)

An example of how such matching is searched for is illustrated in figures (5.5 and (5.6)). In
Figure (/5.6]) one can notice two horizontal colored lines. These represent the experimental
bounds on the quantity n, within 3o. Since it has been observed that the scalar spectral

index value tends to be redshifted (typically ns ~ 0.950) when the 7-order magnitude
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Figure 5.5: Plot of the approximated power spectrum expression as function of the field, with
the choice of parameters uy = —107%, uy = 3.50752 x 107, hg = 0.0110917 and A = 0.129. On the
left, the entire field range covered during inflation is showed; the horizontal lines correspond to the
experimental boundaries to the quantity Pr(kemsp), while the vertical line marks the value of the field
where the exiting £ mode has an amplitude at horizon exit that corresponds to Pr(kemp). The power
spectrum intersects the vertical line within the required boundaries, as shown on the right, where the

plot around the intersection is magnified.

amplification is realized, we search for the match in the lower half of the band delimited
by the two horizontal lines.

At the same time, we can plot the slow-roll approximation of the parameter ¢, ex-
pression , to see if the fundamental condition for inflation, £; < 1, is satisfied
throughout the field excursion. We suppose that inflation will start around the point in
which the potential W starts to slowly decrease. The exact initial conditions for the field
value do not have to be finely tuned, as the slow-roll inflation regime is an attractor for
the field dynamics.

To obtain amplification of the scalar spectrum, we are interested in the value of the
parameter do. Our target value during the transient phase is d, ~ —3, as we have seen in
section (4)) while discussing the condition for ultra-slow-roll regime.

To ensure that the intermediate phase lasts for an appropriate amount of e-folds,
we have to consider the relative importance of the friction and acceleration terms in
the Klein-Gordon equation, and how they affect the inflaton dynamics. Consider the
Klein-Gordon equation in the ultra-slow-roll regime (2.4.5)):

¢+3Hp~0. (5.2.9)

For a successful ultra-slow-roll phase, it is important that the field passes through the
inflection point, and this can happen if the velocity of the field at the beginning of the
USR phase is not too small. However, if the velocity is too large, the inflaton could
get through the USR plateau too fast, meaning that the ultra-slow-roll epoch would be
too small. The dynamics of the slow-roll phase therefore plays an important role in the

realization of the desired amplifications.
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Figure 5.6: Plot of the scalar spectral index ns as function of the field (in blue), with the choice of
parameters ug = —1076, uy = 3.50752 x 107, hg = 0.0110917 and A = 0.129. On the left we see the
complete field dependence (for small field values the slow-roll approximation is inaccurate); the horizontal
lines correspond to the experimental bounds to the quantity ng(kemp), while the vertical line marks the
CMB scale. On the right, the area around CMB scales is shown in greater detail, and the value of ng

looks compatible with the observational bounds.

Firstly, we considered models in which there is an exact inflection point, by imposing
conditions on the model parameters. We searched for parameters that reproduce
the CMB data for Pr and ngs—1, and that also satisfy the condition d2 < —3 (USR condi-
tion). To evaluate d, we first solve numerically the Klein-Gordon equation, obtaining the
field evolution as a function of the number of e-folds. We then calculate the parameter
01 using its definition, §; = % Then, using (4.1.11) and (4.1.12), we find J, as a
function of d;:

1
(—0%h — 24(—2ny + ny)Uh? + 1206, h* (3ny (—ny + ny)U + h?)

%= 5

— 8 R (np (2(ny + Ny, — 1) +ny)U + B?) + 2U8h* (607 (ny + 1y, +ny — 1)U

+ (Tny — ny)h?) /(AUR(3n3U + h?)) .

By numerically computing the power spectrum, we observe that, in the current frame-
work, we cannot reach the required amplification of the power spectrum. To achieve a
more efficient enhancement, we must add a small correction to the term ~ A® in order
to create a quasi-inflection point in the Einstein frame. The correction will modify the

potential in the following way:
Ay 2 4
V(h) = Zh (1+ (1 + €)ueh® 4+ v4h") . (5.2.10)

By adding a small bump and tuning the parameter € properly, we will see in the next

section that the required 7 orders of magnitude of amplification can be achieved. We will
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also evaluate the model in terms of the observables by calculating the relevant parameters

(ns and r) using expressions (4.3.9)) and (4.3.10)), as well as the PBH mass, and evaluating
the results in light of recent experimental data.

5.2.1 Exploring the Higgs Inflation parameter space

We first present the results obtained considering the parameter A to be the Higgs quartic

self-coupling. We consider the reference value obtained from Standard Model theory:

A= (5.2.11)

Considering the values of mpy and v obtained from combined ATLAS and CMS exper-
iments [65], my ~ 125 GeV and v ~ 246 GeV, the Higgs quartic self-coupling value in
the SM is Agps =~ 0.129. With this value, we obtain a match to the CMB scales and a

sufficiently large and negative parameter §; for the following parameter choice:

uy = —107° (5.2.12)
ugy = 3.50752 x 107 (5.2.13)
ho = 0.0110917.. (5.2.14)

In this Higgs inflation model, the slow-roll phase occurs in the regime where the potential
V is proportional to ~ h®, it therefore requires a large value of the coefficient u4 in order
to flatten the potential W = V/U? While we have observed that the parameters uy and
ho are highly tuned, the coefficient us has to be small in modulo (Jus|< 1) but we have
observed that its precise value, as well as the sign, is not relevant for the model.

The estimated number of e-folds between CMB scales horizon exit and the inflection
point is AN =~ 39 e-folds. In order to obtain an acceptable duration of inflation of about
50 — 60 e-folds [66, 67], we selected a value of the parameter € that allows for a sufficiently
long USR period. The chosen value is:

e = 0.00227585 . (5.2.15)
With these parameters, we obtain that inflation lasts ~ 52 e-folds in total, and the scalar

spectral index value is
n, = 0.9494 (5.2.16)

which is in fairly good agreement with the measured value. We can also calculate the

64



running of the scalar spectral index, oy = doe’ for which we obtain the value
as = —0.00127. (5.2.17)

Experiments have estimated that the value of the running of n, is a, = —0.0041 £ 0.0067
[31], therefore this result lies within the acceptable bounds.
To evaluate the PBH mass, we use expression (3.1.10)), that we report here:

) ~1/6
Moo (Nopp) 2 7.7 - 107 ¢~ 2ot Nemp) (1=¢1) (l> 9-(Ty) M. . 5.2.18
pon (Npon) c 0.2/ \106.75 © ( )

Assuming a constant parameter €1, we consider the evolution of H between the time of
PBH formation and CMB. The factor e?(Npn—Nemb)et i then written as:

2
2(Npon—Nemp)er _ Hemb (5.2.19)

e _ =
2
Hpbh

We also assume g, (T) ~ 3.38, Mp = 1 and choose an efficiency factor v ~ 0.015 in order

to obtain the following expression:

H2
My = 1.058 x 1017 [ ==emb | o= 2(0Npon=Nems) pf (5.2.20)
Hpbh

Using ((5.2.20]), we obtain a mass of

My, = 1.7617 x 107 M, . (5.2.21)
Referencing the Figure , we can see that this value for M, is included in window A.
In this interval, the parameter f,, can take any value, which means that PBHs having this
mass could potentially constitute the entire dark matter content in the present Universe.
Such a large range for f,, is also indicative of this model being adaptable to multiple
theories for PBH formation.

Below, in Fig. (5.7) we present a series of plots in which we show and comment the
relevant functions and parameters, and how they change during inflation.

Let us now note that estimating the amplification with the analytical expression for
the spectrum of scalar perturbations amplitudes in slow-roll approximation fails
to reproduce the correct model predictions. Indeed, using the result for the field evolution
shown in Fig. , we obtain the Figure and the peak of the amplified spectrum
does not reach the required value Pr ~ —2, but in order to complete the analysis we

have to look at the result for the numerical computation of the spectrum. The result is
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Figure 5.8: Logarithmic plot of amplitude spectrum of scalar perturbations for A = 0.129.
The green solid line is the spectrum, while the bottom dashed line is the value of Pgr at
CMB scales, logyy Premy = —8.66.

shown in Figure (/5.9)).

log,, Pr numerical evaluation
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Figure 5.9: Logarithmic plot of the scalar spectrum Pr. The thick green line is the
numerically evaluated spectrum, while the thinner line is the previously calculated an-
alytical SR approximation. The horizontal dashed lines mark the value —2, which is a

reference for sufficient amplifications, and —8.66, which is the value of Pr at CMB scales.

In this plot, the previous estimate of the spectrum is in dashed green, while the
exact numerical result is the thicker, darker green line. As we can see, the slow-roll

approximation underestimates the amplification, and fails in the region between N ~ 67
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and N ~ 83, which, comparing with Figures (5.7¢]) and (5.7d]), corresponds to the interval

in which the parameters d, and €; deviate from SR behavior. Again, the horizontal dashed
lines mark the value —2, which is the goal, and —8.66, which is the value of log;,Pr at
CMB scales. Let us note that, if the peak of the spectrum exceeds the value 1072, there
is an overproduction of PBHs.

We also report the resulting scalar spectral index value
ns = 0.9494 (5.2.22)
and the tensor-to-scalar ratio value
r=0.01133. (5.2.23)

We conclude that this numerical estimate confirms the presence of an amplification of
scalar perturbations that is sufficient to produce primordial black holes in a mass range
which is within experimental bounds.

So far, we considered the Standard Model tree-level value for A\, but we can also take
into account higher-order corrections, that depend on the Higgs mass and on masses of
other particles in the SM, such as the top quark or the W gauge boson, which are also
modified by corrections. This means that A is associated to a range of possible values
that is constantly evolving as the research progresses in looking for bounds for the SM
parameters. We consider the results of the CMS collaboration presented in ref. [65] in
2023. In this review, the boundaries for the Higgs quartic self-coupling are presented in

terms of the modifier

A

k?)\ = Asm

(5.2.24)

which is the ratio between the coupling effective value A\ after renormalization and the

tree-level value \,,. The bounds are:
—1.24 < k) <6.49. (5.2.25)

This means that:
~0.16 <A< 0.84. (5.2.26)

What we can do now is to consider other values for the parameter \ that are inside
this interval, and see how the model behaves and how much the model parameters are
constrained.

In Figure , we plotted the resulting spectra for different values of A, covering the
range between 0.02 and 0.25. The numerical evaluation becomes problematic for values

above this interval, however, we believe that it could be extended using more powerful
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numerical computation techniques. Nonetheless, we can conclude that in the mentioned
range, amplification for PBH production is in fact possible, with the right parameters
choice.

log,, Pr numerical evaluation for different A values

40,02 A=0.0375
T T T T T T

0PR

logy

ho PR

og

ho PR

og

Figure 5.10: Logarithmic plots of spectrum amplitude for many values of A. All the
models are normalized to have starting amplitude corresponding to the CMB measure
(log1o[Pr(kemp)] = —8.66), and both —2 and —8.66 are marked with a horizontal line. On
the horizontal axis, the coordinate is always the number of e-folds, and the starting point
is different in each case, as it depends on the number of e-folds that the system needs to
stabilize itself in the slow-roll attractor dynamics, given certain initial conditions for the
inflaton field. In each graph, the initial N coordinate is taken to be the CMB modes exit

time for each case.
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We gathered the results for PBH masses in table (5.1). The resulting values all lie
in window A of Fig. (3.1). This window is the less constrained in terms of the PBH
abundance 3, meaning that those values for M,,, could represent any fraction of dark

matter. In table (5.2), we report all parameters for each studied model.

A PBH Mass [M)] N r o Ning [N]

0.0200 6.79 x 107 0.9497 0.011 -0.0014  57.05
0.0250 5.26 x 107 0.9501 0.011 -0.0013  56.58
0.0350 4.40 x 10715 0.9525 0.010 -0.0012  51.09
0.0375 6.07 x 10715 0.9514 0.011 -0.0013  66.08
0.0500 5.68 x 107 0.9501 0.011 -0.0013  62.44
0.0600 9.12 x 107 0.9504 0.011 -0.0013  60.53
0.0700 4.79 x 10715 0.9523 0.010 -0.0012  52.34
0.0800 9.24 x 10717 0.9541 0.009 -0.0011 53.86
0.1250 9.75 x 1071 0.9511 0.011 -0.0013  59.53
0.1290 1.71 x 10~ 0.9511 0.011 -0.0013  51.39
0.1900 9.39 x 10715 0.9519 0.011 -0.0012  57.36
0.2300 1.71 x 1071¢ 0.9526 0.010 -0.0012  60.66
0.2500 6.93 x 10716 0.9564 0.010 -0.0007  50.10
0.3500 5.35 x 10715 0.9520 0.010 -0.0012  55.39

Table 5.1: Results for PBH masses and cosmological parameters
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A Us Uy ho
0.0200 | =107 5.01187 x 10° 0.01819700
0.0250 | —107% 6.30957 x 10 0.01717910
0.0350 | =107 1.00000 x 107 0.01513560
0.0375 | =107 1.00000 x 107 0.01531090
0.0500 | =107 1.25893 x 107 0.01445440
0.0600 | —107% 1.58489 x 107 0.01348960
0.0700 | —10=% 1.99526 x 107 0.01273500
0.0800 | =107 2.51189 x 107 0.01202260
0.1250 | =107 3.23594 x 107 0.01145510
0.1290 | =107 3.50752 x 107 0.01109170
0.1900 | =107 5.01187 x 107 0.01023290
0.2300 | =107 6.30957 x 107 0.00977237
0.2500 | —107% 7.94328 x 107 0.00891251
0.3500 | =107 1.00000 x 10® 0.00851138

Table 5.2: List of studied parameters

71




In the graph , we show the results of table (5.1 in the parameter space (ng,r). The
blue region represents the joint constraints of Planck TT, TE, EE+lowE+lensing with
BAO and BICEP2/Keck; the red and green region represent the Planck TT, TE, EE+lowE
and Planck T'T, TE, EE+lowE+lensing bounds respectively.

Figure 5.11

The points shown in the plot are compatible with the latest constraints imposed by the
Planck experiment within 30. Let us note that, considering a running scalar spectral
index (dns/dInk # 0), the CMB observations favour smaller values of nys compared to
the constant case plotted in Fig. . This could reduce the tension between the model

and the experimental bounds.
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We also show the results of Table (5.1)) in the plane (ng, ) in Fig. (5.12). Results from
Planck TT,TE,EE+lowE are shown in grey, Planck TT, TE,EE+lowE+lensing in red,
and Planck TT,TE,EE+lowE+lensing+BAO in blue.
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0.90 0.95 1.00 1.05

Figure 5.12

The values of the running «, all lie within the acceptable bounds.

In conclusion, this analysis of Higgs inflation in the Jordan frame, including the study
of ultra-slow-roll dynamics and its implications for primordial black hole (PBH) produc-
tion, shows that the explored parameter space is compatible with current observational
constraints. In particular, the predictions for the spectral index and the tensor-to-scalar
ratio lie within the bounds established by Planck data, and the scenarios leading to power
spectrum enhancement at small scales are capable of satisfying the necessary amplifica-

tion conditions for PBH formation.
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Conclusions

In this thesis we focused on the study of a particular inflationary scenario that in-
cludes a transient ultra—slow—roll phase induced by the presence of an inflection (or
quasi-inflection) point in the inflaton potential. In particular, we studied a model in
which the inflaton is identified with the Higgs field, since such an approach features a
convenient framework that does not require the addition of any new scalar field beyond
those already present in the Standard Model. In this context, the aim was to determine
whether a modified Higgs inflation action could lead to the generation of a large enhance-
ment of the curvature perturbation spectrum, sufficient to produce a phenomenologically
relevant abundance of primordial black holes (PBHs) at the end of inflation.

In order to achieve this goal, we considered the Higgs inflation action supplemented by
higher-order operators in the potential and in the non-minimal coupling. These operators
do not affect the power spectrum at CMB scales, therefore they do not invalidate the
predictions at those scales, which remain in agreement with current observations 31}, |64].
However, the additional operators alter the shape of the potential, creating a sufficiently
flat region that induces a transient ultra-slow-roll phase. Such a regime modifies the
standard slow-roll dynamics, generating a strong amplification of the primordial power
spectrum on scales that exit the Hubble radius during the ultra—slow-roll interval.

Within this extended theoretical framework, a new effective potential featuring a
quasi-inflection point was constructed by introducing a small correction to term ~ hS
in V. The resulting model was investigated numerically, analyzing the evolution of the
background dynamics and the curvature perturbations for different choices of the model
parameters. The parameters were first selected to reproduce the CMB observables in the
initial slow-roll regime, and the parameter associated with the quasi-inflection point was
chosen in order to obtain a peak amplitude of log,, Pr ~ —2 (larger peak values would
lead to an overproduction of PBHs). The explored parameter space range was based on
the allowed range of the Higgs self-coupling A in Higgs inflation [65]. Since higher-order
renormalization corrections prevent the exact determination of A, it is still reasonable to
search within this interval in the context of Higgs inflation.

We have shown that, for a small region of parameter space, the perturbation spec-

trum exhibits an enhancement of approximately seven orders of magnitude relative to the
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standard slow—roll prediction. This level of amplification is compatible with the value
required for PBH formation and leads to the production of a non-negligible PBH popu-
lation (24, depending on the PBHs mass). Moreover, the resulting PBH masses lie in
a region of the mass spectrum that is not excluded by current bounds. We have also
calculated the values of the main cosmological observables (ng, r and «ay) and compared
the results with the current relevant bounds.

Several open issues nevertheless remain. Firstly, the effective action considered in this
work includes only a restricted number of higher-order operators. A complete assessment
of the stability of the model with respect to radiative corrections has not been performed
and requires further investigation. Secondly, the present analysis has focused exclusively
on the linear perturbation regime. A study of the associated non-Gaussianities is neces-
sary in order to determine whether higher-order statistical moments of the perturbation
spectrum might place additional constraints on the model. Furthermore, a detailed study
of the reheating phase could help in determining more precisely the PBHs masses, al-
though we expect the results not being very different from the standard Higgs inflation
results. It also has been shown that gravitational-wave observatories such as NANOGrav
[68] and future detectors may probe the stochastic gravitational-wave background asso-
ciated with the amplified perturbations, offering complementary ways to test this class

of inflationary models.
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Appendix A

Second-order action of scalar

perturbations

Following ref. [15], in this section we derive the second-order action to describe the
dynamics of scalar perturbations in FLRW spacetime.

We start by considering the background metric (1.1.1)) with & = 0 (flat) in the
Arnowitt-Deser-Misner (ADM) formalism [69]:

ds® = —n’dt* + g;j(da’ + N'dt)(da? + N7dt). (A.0.1)

In this formalism, the metric g;; covers only the spatial slicing, while the local parametriza-

tion of the coordinates is described by four functions: the lapse function n(x) and the

shift functions N;(x). We want to treat these four functions as Lagrange multipliers and

find their algebraic equations of motion. The lapse and shift functions are not physical

degrees of freedom, they instead represent the gauge symmetry of the FLRW spacetime.
Using the ADM formalism, the action becomes

1 y .
Sapym = §/d4x\/—g[nR(3) —2nV + nil(EijE” — (EHH)+

+n " Yp — N'0,¢)? — ng0,00;6 — 2V] (A.0.2)

where we define

By = 5(gij — ViN; — V;N;) . (A.0.3)

1
2
After imposing the conditions for the comoving gauge (2.1.26]), by varying the action
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(A.0.2)) we find two constraint equations:

Viln (B, = 0'E)] =0 (A.0.4)
R®) — 2V —n 3 (E,;EY — E*) —n%* =0. (A.0.5)

To solve these equations, we decompose the shift vector introducing one irrotational part

and one incompressible part:

and redefine the lapse function as
n=1+a. (A.0.7)

Then, we expand 1, N; and « in powers of R:

¢ =11+ + O(R?)

a= o1+ oy + O(RS)

where each term represents one order in R. We can write the constraint equations in terms
of these terms and then solve order by order in R. To obtain the second-order action, it
is sufficient to solve the constraint equations at first order. The equation (A.0.5) implies

. PNV =o0. (A.0.8)

o =

| -

The parameters Ni(l) can be set to zero by choosing the boundary conditions accordingly.

Equation (A.0.4)) implies

R a® [(Vu\? . .
Yy = g+ ;—H (7“5) O ’R. (A.0.9)

Substituting the first-order solutions for n and V; into the action (A.0.2)), we obtain the

second-order action for R:

so -1 / T L [R? - a—Q(a-Rﬂ (A.0.10)
R =3 7 R)?| . 0.
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Appendix B

Analytical modes evolution in

non-slow-roll phases

In this appendix, following ref. [70], we describe a technique that can be used to find an
analytic form for the power spectrum evolution from matching the initial SR, intermediate
USR and final SR periods. Although the result is still approximate, it can provide
contact between numerical results and an analytical formalism. We assume that, in these
intermediate phases, the SR parameters are constant.

We start from the definition of the pump field z (2.2.3), and, differentiating with

respect to conformal time, the term 2”/z in the Mukhanov-Sasaki equation becomes:

2" 9 3 1, 1 1n
;—(CLH) (2—814—5774‘17] —58177+§ﬁ (BOl)
where the parameter 7 is:
n=2 (51 + qz;iH) . (B.0.2)

The slow-roll regime corresponds to n < 1 (we approximate to n ~ 0), while in the
ultra-slow-roll regime 1 ~ —6, because £; < 1 and, from Eq. ({2.4.5)), q;iH ~ —3.
Assuming ¢; < 1, we can write Eq. (2.2.4) as:

2_1/4
vy + (k2 — %) v, =0 (B.0.3)
T
where the new parameter is
9 3 1, n
=+ = - — B.0.4
V=171 Tay (B.0.4)
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The solutions to Eq. (B.0.3|) are:

o = geum/mg S HO) (— k) (B.0.5)

and their complex conjugates, where H, 51)(—1{17) is the Hankel function of the first kind.
For the slow-roll phase and ultra-slow-roll phase, we find respectively v = 3/2 and v =
—3/2. Now, we can write the solution R = v/z for the modes equation in each phase

and match them with appropriate boundary conditions:

1. At the beginning we have a slow-roll phase (n = 0). The mode functions for the

curvature perturbations are given by:

. H 1

R(l) Y
k Mp \/4€1k3

[c(1 + ikT)e ™ — s(1 — ikT)e™ ] . (B.0.6)

Implementing the Bunch-Davies vacuum condition at early conformal time, (B.0.6))

becomes:
H e—ikT

B Zﬁp vV 481 k3
This is the solution that we found in chapter .

R (1 + ikT). (B.0.7)

2. To find R in the ultra-slow-roll period, we write the parameter ¢; as

e ey (L) e, (2 (B.03)

where 77 is the time of transition between SR and USR, and the second equality

comes from aH = —1/7, considering that H is constant during inflation. Notation-
wise, from this point forward the symbol £; will refer to the SR parameter in the

first slow-roll phase.

The canonically normalized mode functions during the USR phase are:

H (n/7)°
MP vV 461]{33

Rl(f) — [61(1 4 Z’kr)eﬂ"” —s51(1 — ikT)eikT} . (B.0.9)

The coefficients ¢; and s; are found by matching with the initial SR phase. The

matching conditions are given by the Israel junction conditions:
[Ri]+ =0 (B.0.10)
[2*R/i]+ =0 (B.0.11)
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The first corresponds to the requirement that the metric be continuous across the

transition, and the second follows from Eq. (2.2.2)), which implies:
(2’R},) = —2’K°Ry. . (B.0.12)

Integrating the above expression over an infinitesimal interval around the transition,
and recalling that R and z? are continuous, the result is (B.0.11]).

The two junction conditions result in the following two equations:

(1 +ikr)e ™™™ = ¢y (1 + ikm)e ™™™ — 51(1 — ikr)e*™ (B.0.13)

szleiile = Cleiikn (kQTl - i(l + ZkTQ)) - sleikﬁ <k27—1 — i(1 — Zk'TQ)) .

m 1
(B.0.14)
Solving these, the results for the two coefficients are:
32'6—22'197'1
= ———(1+ikn)? B.0.15
S1 2(k7‘1)3 ( +1 Tl) ( )
3i(1+ k*rf)
=14 — 1 B.0.16
“ 2(]<77'1)3 ( )

3. We now consider a second transition to the final SR phase, in which the slow-roll

parameter £ is the constant

6
D) _ (:—j) (B.0.17)

where 7 is the conformal time at the end of the USR period. The mode functions

are:

L H /)
Mp \/4€1k3
By applying the junction conditions ({B.0.10)) and (B.0.11)), we find, for the coeffi-

cients ¢y and ss:

Rf) [ea(1+ikT)e ™ T — s5(1 — ikT)e™ ] . (B.0.18)

80



1

Cy = —4]{:6—7_137_;[9 62ik(7—2_7—1) (le — i)2(]€72 —+ @')2_
— (K212 (2km + 3i) + 3i) (k*12(2kmy — 3i) — 3i)] (B.0.19)
e—2i/€(7’1+7’2) )
82 = 3™ (3 + k273 (3 — 2ikm)) (kmy — 4)*+

6,33
AKSTPTs

+ 30 e * 7 (K212 (2kT + 3d) + 3d) (ko —i)?] (B.0.20)

The power spectrum for the curvature perturbation at late times is then (see ([2.1.46])):

H266Nus'r
8772M]23€1

Pr

(c5co + 8580 — S5Co — SaCy) (B.0.21)
and it differs from the power spectrum in pure slow-roll regime by a factor

eONusr (Chey + shsy — 85Cy — 59C5) (B.0.22)
that depends on the wavelength k£ and on the conformal time at the start (77) and at
the end (72) of USR. This three-phase matching is approximate, many short intermediate
phases of constant 7 should be considered in order to improve the accuracy. For example,
it would be realistic to add an intermediate phase where n = —2, or with positive 7 at

the beginning of the transient phase.
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Appendix C

Numerical resolution of

Mukhanov-Sasaki equation

In this section, we describe the method that we used for the numerical resolution of the
Mukhanov-Sasaki equation.
Starting from Eq. (2.2.4), that we report here:

P
Uk + <k2 - —> v =0. (C.0.1)
z
This equation can be rewritten as a harmonic oscillator equation of motion:
Oy + W = 0 (C.0.2)

where we defined
Wr=k*—-3/z2 (C.0.3)

which, because of the term Z/z, is a time-dependent frequency. As initial conditions, we
want to implement the Bunch-Davies vacuum conditions (2.2.7)), that we also report here:

1 o[k
k(7o) = Worlk Ok (70) = \/g (C.0.4)

The Mukhanov-Sasaki equation with Bunch-Davies initial conditions is a rather cum-
bersome equation to treat, as the solution is complex and highly oscillating. Moreover,
the physical quantity we need to calculate from its physical solutions is real and propor-
tional to |vg|*>. To solve it in a more efficient way, we first note that, given its
identification with a time-dependent harmonic oscillator, the modulo of v, is related to a

variable p, called Pinney variable. This quantity is the solution of the Ermakov-Pinney
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equation:

1
p+wip= rk (C.0.5)
Indeed, if vy = Ae, then (C.0.2) is:
Ae? + 2iA0e” + iAGe” — AD%e” + w2 Ae? = 0. (C.0.6)

Once the phase is simplified, one finds:
A+ 20404+ iA0 — A? + Aw® = 0. (C.0.7)
The real and imaginary parts of this last equation lead to two independent, real equations:

A— A%+ Aw? =0

.. . (C.0.8)
2A0 + A9 =0.
The second equation can be solved for 0:
0 A 0 A2 e

where Cy = A2 0o. Substituting this result into the first equation gives the Pinney

equation:
2

. O
A— A—g + Aw?=0. (C.0.10)
This result comes also from the theory of invariants, developed by Lewis and Riesenfeld
[71]. For the time-dependent harmonic oscillator, one can define the following invariant

operator:

= (pp—p-oP+ (/o)) (C.0.11)

where z is the variable, p is the momentum and p is the Pinney variable. Eigenstates of
the non-hermitian Hamiltonian operator can be expressed, with a difference in phase, as
eigenstates of the invariant operator I.

Once we find the solution to Eq. , we can write the power spectrum as:

3

k
Pr = 2_7T2’U13| — Pr=

2
p
7| (C.0.12)

/{Z3
pre
As the Pinney equation is quite complex to solve, because of its non-linearity, we

consider a general solution of the Pinney equation written in terms of two independent
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solutions of the associated homogeneous equation:
. 2
prwip=0

which has the same form of the Mukhanov-Sasaki equation but is real.

Let  and y be two independent solutions; then, a solution to (C.0.5) is

2
p=2*+

where W = &y — xy is their Wronskian (constant).

As initial conditions for x and y, we choose

Z/(To) =0, ?)(To) = A;

for y, and

x(19) = po, E(10) = po

(C.0.13)

(C.0.14)

(C.0.15)

(C.0.16)

for . A, is arbitrary, while the constant py/ V2 is the modulo of the Bunch-Davies

solution. This set of real initial conditions allows for a more efficient numerical resolution

of Eq. (C.0.13)). By setting the initial conditions (C.0.15) and (C.0.16|), we recover the

Bunch-Davies initial conditions for vy.

We want to solve the Mukhanov-Sasaki equation with N as the independent vari-

able. To do so, we switch variables in the terms that contain derivatives with respect to

conformal time, using:

d d d? d? d
S _gs < 1— )=
& T 7 = ave tUegy

The first term in (2.2.4)) becomes:
U = v + (1 —e1)vy,

and the term Z/z becomes:

" /
¥4

P
z oz ( 1 z
where the prime denotes the derivative with respect to N.

The Wronskian, calculated in Ny, is:

W = —po - 9(10) = —po - Ax - H(N)
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(C.0.17)

(C.0.18)

(C.0.19)

(C.0.20)



where the constant Ay = y/(NVy) is the arbitrary initial condition if N is considered as

the independent variable.
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