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Abstract

In this thesis we investigate Quantum Reservoir Computing (QRC) as a non-variational paradigm
for quantum machine learning on near-term neutral-atom devices. Motivated by the limitations
of NISQ hardware, we implement a QRC pipeline in Pasqal’s Pulser environment that encodes
classical inputs into detuning waveforms and extracts embeddings from Pauli-Z and ZZ observ-
ables. We design two encoding strategies: a global detuning applied to all atoms and a local
detuning. Their performance is benchmarked against a classical PCA baseline using logistic re-
gression. We find that QRC embeddings consistently outperform the classical features, with peak
test accuracies of 90.17% (global) and 89.61% (local) compared to ~ 85% for PCA. The advan-
tage is especially marked in low-data regimes, where quantum dynamics enrich the feature space
accessible to linear classifiers. We also identify practical challenges, such as symmetry-induced
redundancy in global encoding and the absence of per-qubit detuning in current hardware. This
establishes QRC as a promising and experimentally grounded framework to exploit the dynamical
richness of neutral-atom platforms for supervised learning in the NISQ era.
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1 Introduction

The idea of using quantum computers to simulate and model natural phenomena has his roots in
the famous article by Feynman [1]. In recent years significant progress has been achieved in the
physical realization of quantum devices. Current machines operate in the so-called NISQ (Noisy
Intermediate-Scale Quantum) regime, characterized by tens to hundreds of qubits, which makes
classical simulation intractable while still suffering from noise and the absence of full error correc-
tion.

In parallel, the rapid advances in artificial intelligence have motivated increasing interest in the
intersection between quantum computing and machine learning. These two fields are not inde-
pendent: quantum devices have the potential to enhance several subroutines relevant for machine
learning [2], while classical machine learning can be exploited to assist quantum computation [3].
This naturally motivates the exploration of hybrid classical-quantum approaches.

Among the different strategies, the most extensively studied paradigm is that of variational quan-
tum algorithms (VQAs), which rely on parameterized quantum circuits optimized by a classical
routine. Despite their success, these methods face important challenges such as barren plateaus
in the optimization landscape, as well as limitations imposed by hardware noise.

More recently, an alternative approach called quantum reservoir computing (QRC) has been pro-
posed. QRC is a non-variational model consisting of three layers: an input stage, where classical
or quantum data are embedded into a quantum system; a quantum reservoir, which evolves ac-
cording to a fixed unitary dynamics; and an output stage, where expectation values of observables
are collected and processed by a simple linear model. The key advantage of QRC lies in the
complex dynamics of the reservoir, which effectively maps the input data into a high-dimensional
Hilbert space, enabling the extraction of rich nonlinear correlations. As a consequence, only a lin-
ear readout layer is required, and no training of the quantum evolution is necessary. This makes
QRC inherently more robust to barren plateaus compared to variational approaches.

This thesis is organized as follows.

In the first chapter there is an introduction to the fundamental concepts of quantum comput-
ing, including qubits, unitary evolution, quantum operators, and the basic paradigms of quantum
machine learning such as variational quantum algorithms and kernel methods.

The second chapter is devoted to the presentation of the principles of analog quantum computing
with neutral atom systems, focusing on the Rydberg Hamiltonian and its experimental imple-
mentation. This chapter also describes the architecture of state-of-the-art neutral atom quantum
computers, with particular attention to the platforms developed by QuEra and Pasqal.



The third chapter is focused on the study of quantum reservoir computing. After introducing
the general idea of reservoir computing and its quantum extension, the chapter details the struc-
ture of the QRC algorithm, discussing encoding techniques, quantum evolution, data processing,
and reporting results obtained on neutral atom hardware.

The final chapter presents the main contributions of this thesis, focusing on the implementa-
tion and evaluation of the Quantum Reservoir Computing (QRC) algorithm . It introduces the
use of Pasqal’s Pulser library to simulate and control the quantum device, describes the problem
setup and design choices for the quantum reservoir, and reports the results obtained with dif-
ferent encoding strategies. The chapter highlights the performance improvements achieved with
quantum-enhanced embeddings compared to classical linear methods, providing insights into the
advantages, limitations, and potential applications of QRC.



2 Quantum Computing

2.1 Hilbert space and qubits

Any isolated quantum system is associated with a Hilbert space H known as the state space of
the system. It is a complex vector space whose elements are called state vectors.

The state of the physical system with which we are dealing is described by a unit vector |¢)
belonging to the Hilbert space.

Being a vector space, the Hilbert space admits a basis of vectors such that any state in the space
can be expressed as a linear combination of these basis elements. In the case of a finite-dimensional
Hilbert space, a generic quantum state can thus be written as:

dim(H)
)y =Y ali) (2.1.1)
i=1

where the coefficients ¢; are complex numbers and the states |i) are basis elements. The system
is said to be in superposition whenever at least two of the coefficients ¢; in the expansion are
non-vanishing.
The simplest physical system is the qubit, whose state space is H = C?. A qubit is a quantum
system that, unlike a classical bit which can only be in one of two states (0 or 1), can be in a
superposition of |0) and |1), allowing it to represent any linear combination of these states:

|) = «|0) + B|1). (2.1.2)

The states |0) and |1) are known as computational basis states and form an orthonormal basis of

‘H. Therefore, the state |¢)) must be a unit vector, (1|¢)) = 1, which implies that «, € C must
satisfy:

la? + |B]? = 1. (2.1.3)

Because |a|? + |3]> = 1, we may rewrite Eq.(1.2) as
: 0 v . 0
) = e (cos§|0> + ewszn§|1>>, (2.1.4)

where 6, ¢, and v are real numbers. By considering measurements and observables, as they will
be introduced in the next sections, we can drop the factor ¢ in front, since it has no observable
effects.

For this reason, we can rewrite the state of the qubit as:

|Y) = cosg]m + eiwsing\l). (2.1.5)



This expression suggests an intuitive way to think about the qubit: a point on a three-dimensional
sphere, known as the Bloch sphere, see Fig. 2.1.1.

0) —11)
V2

0) —4[1)
V2

1)

Figure 2.1.1: Bloch sphere representation of a qubit. The red dot indicates the current state |¢),
identified by the parameters 6 and .

The angles 6 and ¢ define a point on the unit-radius sphere, which represents the state of the
qubit. The poles of the sphere correspond to the computational basis states. Fig. 2.1.1 also high-
lights the presence of other relevant states, which turn out to be the eigenvectors of the Pauli
operators, on which we will focus in the next section.

In order to perform useful quantum computations, it is essential to consider systems composed
of multiple qubits. The state of a multi-qubit system is described by the tensor product of the
individual qubit states. If we denote the state of the i-th qubit as [¢;), then the overall state of
an n-qubit system is given by

(W) = [¢1) ® [¢P2) @ - - [t). (2.1.6)

This formalism naturally extends the superposition principle to composite systems: if a two-qubit
system can be in states |¢1) ® [19) and [¢]) ® [15), then any linear combination

a(lth) ® |v2)) + b(|P1) @ [¢5)) (2.1.7)

is also a valid physical state. However, not all states of a multi-qubit system can be written as a
simple tensor product of single-qubit states. For instance, the two-qubit state

1
V2

cannot be expressed as [¢) ® |¢) for any single-qubit states [i)) and |¢).
Such states are called entangled states. Entanglement is a unique quantum feature and plays a

(J01) + |10)) (2.1.8)



central role in quantum computing and quantum information. It enables correlations between
qubits that cannot be explained classically, allowing quantum computers to perform operations
and process information in ways that are fundamentally more powerful than classical systems.

2.2 Unitary evolution

So far, we have seen how to describe the state of a quantum system. However, in order to fix the
mathematical framework of quantum mechanics we need to understand how the state, |¢), change
with time.

The evolution of a closed quantum system is described by a unitary transformation. That is, the
state |1) of the system at time ¢; is related to the state [¢)) of the system at time ¢5 by a unitary
operator U which depends only on the times ¢; and ¢y [4]

Y (t2)) = Ulta, t1) (1)) (2.2.1)

In quantum computation there exists a set of particularly important unitary operators acting on
a single qubit.

Among these, the three most fundamental ones are those whose eigenstates correspond to the
extreme points along the axes of the Bloch sphere. Fig. 2.1.1:

X:{(l) (1)} Y:[? _OZ} Z:Ll) _01}. (2.2.2)

The operator X, often referred to as the quantum analog of the classical NOT gate, flips the
computational basis states: it maps |0) to |1) and [1) to |0). The operator Z leaves |0) invariant
while introducing a phase flip to |1), mapping it to —|1). The operator Y combines a bit flip and
a phase flip.

Geometrically, these operators are closely related to the orientation of the qubit on the Bloch
sphere: X, Y, and Z correspond to rotations and measurements along the x, y, and z-axes, re-
spectively. Their eigenstates define preferred measurement bases, which are crucial for interpreting
the outcome of quantum measurements.

The mathematical form of the unitary U in Eq.2.2.5 can be recovered leveraging the equation
of motion of quantum mechanical systems, that is, the Schrodinger’s equation.

L)

S = Hlw()) (2.2.3)

In this equation, A is the reduced Planck’s constant, H is the hamiltonian of the system and, since
it is an hermitian operator, has a spectral decomposition

H =Y Ele){el, (2.2.4)

with eigenvalues E and corresponding orthonormal eigenvectors |e€).
Solving the Schrodinger’s equation one gets

i

Ulty, ty) = ettt (2.2.5)



with i
[0(ts)) = e #1=2y(ty)) (2.2.6)

being the explicit expression of Eq.2.2.5.
A remarkable point to stress is that any unitary operator one may think of can be always written
as an imaginary exponential of a given hamiltonian.

2.3 Quantum operators

Up to this point, we have described the dynamics of a quantum system assuming it is isolated. We
introduced the state space of a quantum system, defined its state at a given time, and discussed
its unitary evolution within a closed system. However, to extract information about the system,
an interaction through a measurement is required, which inevitably opens the system and causes
its evolution to no longer be purely unitary.

2.3.1 Measurement in Quantum Mechanics

In quantum mechanics measurements are described by a collection {M,,} of measurement opera-
tors. These operators, acting on the state space of the system being measured, satisfy

> MM, =1 (2.3.1)

The index m refers to the measurement outcomes that may occur in the experiment.
When measuring a quantum system with state [¢), the probability of getting m as outcome is
given by

p(m) = (Y| M, My |0), (2.3.2)
and the state of the system after the measurement is
M,, |y
) — ) (2.3.3)
p(m)

Equation 2.3.1 implies that the probabilities add up to one, forming a valid probability distribution
Y pm) = (@Y My M) = (W) = 1. (2.3.4)

The simplest example of a measurement is the measurement of a qubit on the computational basis.
The observable in this case would be the Pauli matrix Z = |0)(0| — |1)(1|. The two measurement
operators are then

Py =M M =10)(0, P.,=M M, =]|1)1] (2.3.5)

If the general qubit state 1)) = a|0)+3|1) is measured, then the probability of having the outcome
+11is
p(+1) = (@[Pp|y) = (¢]0)(0[)) = |af?, (2.3.6)



and similarly the probability of getting the output —1 is p(—1) = |b|*.
Therefore, the state after the measurement is

‘O>TZ||W> _ |%:||0> = |0), (2.3.7)
DY) B
o= |ﬁ\‘1> 1), (2.3.8)

where we have used that the global phase of a quantum state can be ignored [4].

In a more general framework we can consider measuring several qubits in order to gain infor-
mation of correlation within the system. An important example is the two-qubit operator Z,;Z7;,
defined as the tensor product of Pauli-Z operators acting on qubits ¢ and j:

Z2:Z;=1® - - ®ZQIl® -2 ---QI, (2.3.9)

where the Z operators are placed at the i-th and j-th positions.
Given this structure for the operator this means that will leave invariant the states at k # ,j
while measuring the Pauli Z matrix at the proper positions:

ZiZi|¥) = [1) ® - @ Z|h) ® - @ Zihy) @ -+ @ [¢hy), (2.3.10)

for a system of n qubits.

The operator Z;Z; measures the correlation between qubits ¢ and j along the z-axis. If the two
qubits are in the same state (both |0) or both |1)), the measurement outcome is +1; if they are
in opposite states , the outcome is —1.

2.3.2 Quantum gates and universality

Once defined the basic unit of quantum computation, i.e. the qubit, we point our attention to the
backbone of a quantum computer: the quantum circuits.

Classical computers are based on bits, wires and logical gates that enable information manipula-
tion. In analogy quantum computers are formed by quantum circuit based on qubits and quantum
logic gates.

Single qubit gates

Single-qubit gates are the most basic quantum operations. Operations involving qubits must
preserve the norm, and are therefore represented by 2 x 2 unitary matrices. The Pauli matrices,
discussed in Section 1.2, correspond to rotations on the Bloch sphere by an angle 7 around the x,
y, and z-axes, respectively. Another essential quantum gate is the Hadamard gate, which allows
for the creation of a superposition between |0) and |1).

11 1
H=— L _1] (2.3.11)
oy 10+ 1)
H10) = |+) = 7 (2.3.12)
10) — 1)

H1) =|-) = (2.3.13)

V2



Another set of fundamental gates is the phase gates. These are parametrized gates since one needs
to specify the angle ¢ € R to fully define the gate.

1 e

p= [1 0} (2.3.14)

Given this definition we notice that the Z gate is a phase gate with ¢ = 7. Other relevant gates
are S and T, which are obtained by fixing ¢ = 7/2 and ¢ = 7/4 respectively.

— 1 [1 1
S L ARG [1 —1]
Pauli-X 1 [fl) (1]]
Pauli-y  _fy | ([) —0;]
Pauli-Z _Z_ (1) _01]
Phase ~[s l(l) (3]
i _Z_ [(1) (;f?gﬂ}

Figure 2.3.1: Symbols for the most common single-qubit gates.

Two qubits gates

When dealing with more than one qubits, more complex gates are needed. These gates are useful
because they allow for the creation of entangled states, which are pivotal in quantum algorithms.
Those gates are controlled operations, the most general form of a two qubits gates consist in a
4 x 4 matrix.

The most relevant is the CNOT which takes two input qubits, known as the control and target
qubits. If the control qubit is |1), then the target qubit is flipped, leaving the control qubit intact.

1000
0100

CNOT = |0 o o 1 (2.3.15)
0010



Universality

In classical computation, Boolean functions are expressed using gates such as AND, OR, NAND,
NOT, etc. The NAND gate is called universal because it can be combined to form NOT, OR, and
AND gates, and from these, all other operations can be constructed. For this reason, the NAND
gate is said to be universal.

A similar result can be achieved in quantum computation. If a set of quantum gates can ap-
proximate any unitary operation with arbitrary accuracy, we can say that they are universal for
quantum computation.

A possible set of gates can be derived from the assumption that any unitary operator can be
exactly expressed as the product of a CNOT gate and a single-qubit gate. The latter can be
approximated by the Hadamard, phase, and 7/8 gates, for proof see [Nielsen and Chuang]. Thus,
we can conclude that any unitary operation can be approximated using the Hadamard, phase,
7/8, and CNOT gates.

2.4 Quantum Machine Learning

The most general definition of Quantum Machine Learning is as a research area focused on ex-
ploring the relationship between classical Machine Learning and Quantum Computing, with the
aim of advancing both fields through mutual insights and innovation.

In order to clarify the meaning of QML in this work we will focus on four approaches to combine
quantum computing and machine learning (see Fig. 2.4.3).

data processing device

- classical, @ - quantum

data generating system

Figure 2.4.1: The first letter is associated with the system that generates the data, quantum (Q)
or classical (C), the second letter stands for the information processing device, quantum (Q) or
classical (C) [5].



1. CC refers to classical data being processed classically. This is the conventional approach
to machine learning, but in this context it relates to machine learning based on methods
borrowed from quantum information research. An example is the application of tensor
networks, which have been developed for quantum many-body-systems

2. QC investigates how machine learning can help with quantum computing. For example,
when we want to get a comprehensive description of the internal state of a quantum com-
puter from as few measurements as possible we can use machine learning to analyze the
measurement data

3. CQ uses quantum computing to process classical datasets. The datasets consist of observa-
tions from classical systems, such as text, images or time series, which are fed into a quantum
computer for analysis.

The central task of the CQ approach is to design quantum algorithms for data mining

4. QQ looks at ‘quantum data’ being processed by a quantum computer. The most powerful
approach comes when a quantum computer is first used to simulate the dynamics of a
quantum system and consequently takes the state of the quantum system as an input to a
quantum machine learning algorithm [5].

In this work we will focus on CQ approach, applying a quantum algorithm to classical data.

A quantum machine learning model deals with data, and thus is necessary to find a way to
encode such information onto the quantum computer. Suppose we are given a set of classical data
{z},, the idea is to map this data to the Hilbert space of the quantum computer, via a procedure
known as feature embedding.

This is done by using a parametrized unitary operation U(x) so that the feature embedding consist
of the map

p: X >H, XCRY H==C™ (2.4.1)
x = [p(x)) = U(x) 0)*"

The parameterized block U(.) that actually maps the data to a quantum state is general, and
various ansatze can be used to accomplish this task.

After the encoding phase, the chosen algorithm is ready to be implemented on the quantum
system. A unitary matrix V is applied to the system, causing the initial quantum state to evolve
in accordance with the dynamics defined by the algorithm. As we will explore in the subsequent
sections, there is a wide variety of quantum algorithms, each tailored to perform distinct tasks.
The final step involves probing the quantum computer by measuring the system’s state, thereby
obtaining the output, which is crucial for extracting useful information and making inferences
based on the quantum computation.

2.4.1 Variational Quantum Algorithm

Due to the current limitations in building fault-tolerant quantum computers, fully quantum al-
gorithms remain out of reach in the near term. One of the most studied approaches are hybrid
classical-quantum algorithms such as Variational Quantum Algorithms (VQAs), emerged as a

10



promising framework to exploit the capabilities of noisy intermediate-scale quantum (NISQ) de-
vices.

The key idea behind these algorithms is to use a quantum and a classical device in cooperation to
compute the value of an objective function C'(f), given a set of classical parameters 6. A classical
optimization routine is then used to update the parameters by iteratively querying the quantum
device [5].

Variational Quantum Algorithm

Quantum Computer

Ansatz (Parameterized Quantum Circuit)

|¢1)— — |1} — - — —
|¢2)— B |2} — — — —
. > ) — - = l¢s— B — — o
e =) : U(8) : : Ui(81) Uz(8s) _ Ur(8z) IZ/::» Output
) — — ) — H —— —
Ansatz 2 | ) Circuit with
u(e) E optimized
Cost Function £ . parameters
c(8) g Cost function u(e)
= Classical Computer
(Training) Data % C(6) = f(U(8),{p},{0})
=}
{p} 5 Classical Optimizer <
argmin C(0)
]

Figure 2.4.2: Components of a Variational Quantum Algorithm [6].

As shown in Fig. 2.4.2, the structure of the algorithm closely mimics that of a neural network.
The training data |¢;) are encoded into the quantum state, and a parameterized quantum circuit
(ansatz) U(0), typically structured in layers, evolves the system. The quantum device produces
an output that is processed by the classical optimizer, which updates the variational parameters.
These updated parameters are fed back into the quantum circuit, and the process repeats until
convergence is achieved.

This class of algorithms is promising for quantum machine learning applications, although they
also face significant challenges, which will be discussed in the following sections.

2.4.2 Quantum Kernel Methods

Kernel methods compute distance between data point z, the training input, and 2’ the new input
we aim to classify through a kernel k(z, 2’). Such a kernel corresponds to an inner product of data
points mapped to a higher dimensional feature space.

In the previous section we already faced some hints about kernels, that is input encoding.
Kernel methods compute a similarity measure between input data points z and z’ through a kernel
function x(x,2"). For every positive semi-definite kernel, there exists an associated feature space
F, induced by a nonlinear feature map ¢(x), such that the kernel corresponds to the inner product
in that space:

Kz, ') = ((x), o(a")).

11



In this framework, one can understand the kernel function as defining a notion of distance in
the input space. When used in classification tasks, the kernel allows for computing similarities
between a new input and each training input, ultimately favoring the class of training data that
is "closer” to the new point in the feature space. Let us consider an input domain X', a positive
semi-definite kernel £ : X x X — R, and a dataset D = {(zy,ym)} C X x R. We define a class
of functions f : X — R which can be written in the form

fla) = k()

with 4y € R, 2, € X, and || f]| < oco. A cost function C': D — R evaluates the quality of a model
by comparing predicted outputs f(z,,) with targets y,,, and includes a regularization term g(|| f||)
with ¢ : [0,00) — R strictly increasing. The solution to such a regularized optimization problem
lies in the span of the kernel functions evaluated at the training data. That is, any minimizer f
of the cost function admits a representation of the form:

fla) = Z VKT Tm),

where M is the number of training sample [5].

input space feature space

(p(x), p(2'))

k(z,z)

Figure 2.4.3: Relation between quantum feature map and quantum kernel [5].

This naturally extends to the quantum setting.

A quantum kernel is defined by interpreting the encoding of classical data z € X into quantum
states |¢(x)) as a quantum feature map. The quantum kernel is then simply the inner product
between these quantum feature states:

Kz, 2') = (¢(z)[d(2")).

Any quantum computer capable of estimating such inner products can be used to compute a
quantum kernel. If this kernel is classically intractable to simulate, then quantum advantage may
be achieved. In this setting, the only quantum component is the state preparation and inner

12



product estimation, while the rest of the learning algorithm remains entirely classical.

This hybrid approach opens a promising direction for quantum machine learning, provided that
one can design useful feature maps ¢(x) that exploit the high-dimensional structure of quantum
Hilbert spaces while being hard to replicate classically.

2.5 Quantum Computing Paradigm

Since the famous article by Feynman, significant progress has been made, leading to the devel-
opment of Noisy Intermediate-Scale Quantum (NISQ) devices, capable of controlling up to a few
hundred qubits [7]. However, these devices are inherently noisy and lack error correction, which
limits the depth of quantum circuits that can be reliably executed. In this context, two main
paradigms of quantum computing have emerged: the digital and the analog.

Digital quantum computing

follows a circuit-based model where quantum information is processed through discrete unitary
gates, much like in classical digital logic. Fault tolerance in this paradigm is achieved via reliable
quantum error correction codes, such as the surface code, which in principle enable arbitrarily long
computations, but require a large overhead in terms of physical qubits. As of today, fault-tolerant
quantum computing remains a long-term goal, due to the current limitations in qubit quality and
control.

Analog quantum computing

Another approach to simulating quantum systems by quantum mechanical means is analog quan-
tum computing, in which one quantum system mimics another.

The Hamiltonian of the system to be simulated, Hy,s, is directly mapped onto the Hamiltonian
of the simulator, Hy;,,, which can be controlled:

Hsys — Hsim (251)

An important advantage of analog quantum computing is that it could be useful even in presence
of errors, up to a certain tolerance level [8]. Analog quantum computation have demonstrated
useful applications in simulating quantum many-body physics and optimization problems in the
NISQ regime.

The choice between digital and analog paradigms is often determined by the nature of the task
and the available hardware.

In 2000, DiVincenzo [9] proposed a set of foundational criteria to evaluate the physical feasibility
of platforms for quantum information processing. Later, in 2012, Cirac and Zoller [10] introduced
an analogous framework tailored specifically to quantum simulators, outlining the essential re-
quirements such systems should meet (see Table 2.5 for a summary).

In this work, we will focus on analog quantum computation using a system based on Rydberg-
interacting atoms which fulfill both sets of criteria, making them a very attractive platform for
quantum computation.

13



Criteria

Quantum computers

Quantum simulators

Quantum system

A scalable physical system with
well characterized qubits

A system of quantum particles
(bosons, fermions, pseudo-spins)
confined in space and collectively
possessing a large number of de-
grees of freedom

Initialization

The ability to initialize the state
of the qubits to a simple fiducial
state, such as [000- - )

The ability to prepare (approxi-
mately) a known quantum state
(typically a pure state)

Coherence

Long relevant decoherence times,
much longer than the gate opera-
tion time

Interactions

A “universal” set of quantum

gates

An adjustable set of interactions
used to engineer Hamiltonian-
s/quantum master equations in-
cluding some that cannot be effi-
ciently simulated classically

Measurement

A qubit-specific measurement ca-
pability

The ability to perform measure-
ments on the system; either indi-
vidual particles or collective prop-
erties

Verification

A way to verify the results of the
simulation are correct

Table 2.1: Comparison between the key criteria that define a universal quantum computer and a
quantum simulator. While both platforms exploit quantum systems to process information, quan-
tum computers are designed to be scalable, programmable and capable of performing arbitrary
algorithms, whereas quantum simulators are tailored to reproduce specific models of interest with

controllable interactions.
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3 Analog Quantum Computing

In the previous chapter, we introduced the two main paradigms of quantum computing: digital
and analog.

We now turn our attention to analog quantum computing, which constitutes the core computa-
tional model used in this work.

In what follows, we provide a more in-depth discussion of its principles, mathematical formulation,
and physical realizations with a special focus on neutral atom platforms, such as those developed
by QuEra and Pasqal.

3.1 Principles of Analog Quantum Computing

Analog quantum computing is based on the idea of directly implementing the Hamiltonian evo-
lution of a quantum system on a controllable experimental platform [11]. In practice, continuous
physical parameters of the simulated system (such as interaction strengths) are exposed as pro-
grammable variables in the analog quantum device. As a result, an analog quantum program
consists of continuously modulating the system’s Hamiltonian over time, letting the initial quan-
tum state evolve according to the Schrodinger equation. This approach stands in contrast to the
digital paradigm, where the problem is compiled into a discrete sequence of quantum logic gates.
In other words, analog computation operates directly on the system’s Hamiltonian rather than
through the composition of discrete gate operations.

From a formal perspective, analog quantum simulation requires that the Hamiltonian of the simu-
lator, Hgm, has to be related in a known way to the Hamiltonian of the target system, Hyys. This
is often referred to as a direct mapping of the problem Hamiltonian onto the simulator hardware.
In such cases, the analog device mimics the target model by implementing a local, controllable
Hamiltonian that reproduces the behavior of the physical system under investigation [12].

For instance, if U is a suitable unitary transformation, one may require:

Hsim = Uv]——lsys(]_1 (311)

so that the evolution of a state |p(0)) of the system corresponds to the evolution of |1(0)) =
U |$(0)) on the simulator. After time evolution ruled by Hgy,, the final state of the simulator
|40(t)) yields the system’s final state via |¢(¢)) = U~ |¢(t)). This allows one to prepare physically
relevant quantum states directly on the device and to measure local observables without decom-
posing the evolution into gate sequences [8].

Operationally, the controlled dynamics in an analog quantum computer are achieved by tuning the
system’s Hamiltonian parameters—such as voltages, magnetic fields, or laser pulses—rather than
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by applying discrete logic gates. In certain platforms, like Rydberg atom quantum computers,
this corresponds to applying global pulses that simultaneously modulate the interactions among
all qubits [11]. The system evolves according to the time-dependent Schrédinger equation:

ihdy (1)) = H(t) [4(2) (3.1.2)

where the Hamiltonian H (t) is continuously programmable.

This analog quantum paradigm offers significant advantages in the NISQ era.

First, analog devices are typically tailored to narrower, physically-motivated problem—such as
local condensed matter models—thus requiring less demanding hardware than universal digital
quantum computers. In particular, they avoid the computational overhead of gate decomposi-
tion: no Trotterization is needed, which drastically reduces the number of quantum operations
and associated errors. Moreover, the observables of interest (e.g., local observables or short-range
correlations) are typically intensive and local, and therefore more robust to noise than the full
quantum state. This means that even in the presence of significant decoherence or experimental
noise, analog simulators can still produce reliable measurement outcomes [12].

In summary, the analog quantum computing paradigm can be formally defined as the use of
a controllable quantum system with continuous Hamiltonian dynamics to simulate another quan-
tum system. Unlike digital quantum computing, this model exploits the native time evolution of
the system’s Hamiltonian. These devices are not necessarily universal—they do not implement ar-
bitrary algorithms—but they aim to accurately replicate specific physical models. In today’s NISQ
context, analog quantum computing offers a promising complementary approach: lower overhead
and higher noise resilience for specific physical tasks, at the expense of general-purpose flexibil-
ity. Formal definitions and validation protocols in literature [13] provide a rigorous conceptual
framework for the ongoing development of this class of quantum devices.

3.2 Neutral Atom-Based Models

In the last two decade incredible progress has been made in studying quantum computation,
characterizing different and scalable platforms. One of the most promising platform for quantum
computation is the neutral atom-based model.

Beginning with the pioneering work in [14] proposing neutral atoms as a quantum computing
platform several proof-of-concept experiments with Rydberg atoms as qubit has been performed.
Key milestones include works that achieve deterministic loading of large neutral-atom qubit arrays
using optical tweezers [15], and the observation of non-equilibrium dynamics in a one-dimensional
chain of 51 atoms [16], showcasing the platform’s potential as an analog quantum computer.

In the following sections, we will describe the working principles of a quantum computer based on

neutral atoms, starting from its Hamiltonian and providing a detailed explanation of each of its
constituent terms.

3.2.1 Rydberg Hamiltonian

At the core of analog quantum computation there is the dynamics induced by the Hamiltonian
and how a state evolve through out time.
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The Hamiltonian of a typical neutral atom quantum computer is

Ht) = =~ €90 |g2) (il + €790 [12) (] — Zn +) |X e |6nznj (3.2.1)

% 1<J

In this work we use |g;) = |0) and |r;) = |1) as representations of the ground and excited state of
the i-th qubit. n; = |r;) (r;| counting Rydberg excitations.
Furthermore, there are four parameters to control the quantum evolution:

e ((t): Rabi drive amplitude. Defines the frequency at which an individual qubit transitions
between its ground and excited state.

e ¢(t): Rabi drive phase. Determines the axis of rotation on the Bloch sphere around which
the qubit undergoes evolution.

e A(t): detuning parameter. Quantifies the mismatch between the drive frequency and the
qubit’s natural transition frequency.

e Xx;: atom position in the array. Influences the interaction energy between qubits.

3.2.2 Qubits and register

A neutral atom quantum processor are based on configurable arrays of single neutral atoms. The
array can be seen as a register where each atom is precisely positioned in space with separations
of a few micrometers, each playing the role of a qubit.

A commonly used option is rubidium atoms, a widely studied species in atomic physics that ben-
efits from mature technological solutions, especially in laser systems.

Specifically, two electronic energy levels of the rubidium atom are selected to serve as the qubit
states, denoted as |0) and |1).

The most used way to arrange atoms in this programmable arrays is by laser cooling the atoms
and then trapping them in optical micro-trap generated by a spatial light modulator or digital
micro-mirror device, see Fig. 3.2.1.

This setup for constructing a neutral atom QPU not only allows each trap site to be filled with
exactly one atom—thanks to light-assisted collisions—but, remarkably, it also provides the flexi-
bility to reconfigure the spatial arrangement of atoms in the register after each processing cycle,
unlike superconducting devices where the qubit topology is fixed. These techniques have been
used to realize deterministically highly complex quantum register structure, assembled in different
geometry including 3D arrays, see Fig. 3.2.2.

Once defined the structure of the atomic register, the next step is to initialize the system in a
desired state. Due to the fact that in a given array the same atomic species, and thus, the energy
levels are all identical the state of the system can be initialized in a well defined state (e.g., [0)*").
Once prepared, these states exhibit significant stability. the qubit energy splittings—on the order
of several hundred megahertz—are much larger than both the typical strengths of external field
couplings and the thermal energy scale kgT/h < 1MHz.

Rydberg states generally have lifetimes around 100 microseconds, which is substantially longer
than both the scales of Rydberg-Rydberg interactions and typical gate durations ¢, = (0.05—6)us.
In contrast, ground-state atoms confined in a trap can remain stable for several seconds.
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Figure 3.2.1: Sketch of a typical setup consisting of ultra-cold atoms trapped in an array of
optical tweezers produced by a digital micro-mirror device (DMD) or spatial light modulator
(SLM). Qubits can be manipulated by optical fields controlled by acousto-optical modulators
(AOMs) and two-dimensional acousto-optical deflectors (AODs). The quantum register shows
two species of atomic qubits (blue and orange spheres). Semi-transparent green spheres depict the
Rydberg-Rydberg interactions (blockade spheres). Red shaded areas depict the addressing lasers
for implementing single and multi-qubit operations [17].

3.2.3 Single qubit manipulation

Transitions between different electronic states are implemented by absorption and emission of
photons, thus, the best way to manipulate Rydberg qubits is using laser fields or combined laser
and microwave fields.

An atom interacting with light whose energy matches a specific atomic transition can absorb or
emit a photon, allowing it to move between ground and excited states through quantum processes.
For this interaction to remain coherent, the electromagnetic field of the photons must be extremely
stable in frequency—within about 10 kHz, corresponding to a precision better than one part in
10'*. This level of stability is achieved using ultra-stable lasers that are frequency-locked to an
optical cavity. One of the main challenges in neutral-atom quantum computing lies here: achieving
high-fidelity operations requires lasers that are not only exceptionally stable, but also capable of
delivering high power at the same time.

In what follows we briefly describe the underlying physical model of interactions among Rydberg
qubits and a monochromatic field, in order to explain many of the terms present in Eq.3.2.1.

Atomic Hamiltonian in presence of a laser

Let us examine an atom characterized by a Hamiltonian involving two electronic energy levels,
denoted by |a) and |5). The Hamiltonian includes two main contributions: the first arises from
the interaction between the atomic dipole moment d and a time-dependent electric field E(t) =
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Figure 3.2.2: Examples of neutral atom arrays in 3D geometries [18].

Eycos(wot + ¢), with angular frequency wy = 27 f = 2wc/A. The interaction term represented by
the product of the electric field and the dipole moment, is commonly written as —FEyd = 2, the
Rabi frequency. The second term corresponds to the energy difference between the two states w,
and wg.

H{(t) = Q(la) (B] + [8) (al)cos(wot + ¢) + (ws — wa) [5) (5] (3.2.2)

This Hamiltonian can be simplified assuming |ws — ws| = wy > 2 and moving in the rotating
frame of reference |3) — ¢ |3), which adds an internal diagonal term to the Hamiltonian

H(t) = Q(e™™°" |a) (8] + € |B) (a)cos(wot + @) + (ws — wa — wo) |B) (B (3.2.3)

Next, we use the identity 2cos(wpt + ¢) = 0 + h.c. to expand

H(t) = 5 (e + 7207 Ja) (5] + hc. + (ws — wa —w0) |8) (5] (3.2.4)
Noticing that the exponential functions are sums or differences of different frequencies, one can
choose w, — wp + wp = 0 to set one at zero frequency, in other terms the second exponential is
e~%wot  Using the rotating wave approximation, this extremely high frequency exponential can be
neglected. Obtaining as final Hamiltonians:

H(t) = S a) (] + 5 18) (ol + (w5 — wo — w0) 8) (3] (325
In this final equation we have all of the necessary terms to describe atom-light interactions that
enable transitions among ground and excited states of Rydberg atoms.
The Rabi frequency (2 is the characteristic frequency at which the atom is driven between states
la) and |3). The value wg — w, — wy = —A, represents how off-resonant the laser is from the
atomic energy transition, called detuning. the value ¢, also called phase, is defined by the offset
time of the laser drive and can always be set to zero, according to the U(1) symmetry of the
system [19].
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3.2.4 Multi-qubit manipulation

A key enabling mechanism for multi-qubit manipulation in neutral-atom quantum processors is
the use of highly excited Rydberg states, whose exaggerated atomic properties offer strong, tunable
interactions between individual qubits. When a neutral atom is excited to a Rydberg state, its va-
lence electron occupies a large spatial volume, giving rise to an enormous electric dipole moment.
This leads to interatomic interactions governed by dipole-dipole couplings, which are fundamen-
tally distance-dependent. At first order in perturbation theory, two Rydberg atoms in states
such as [nS,n'P) and |n'P,nS) can exchange energy via resonant dipolar (flip-flop) interactions,
scaling as 1/R3, where R is the interatomic separation. However, in most quantum computing
architectures, it is the second-order van der Waals interaction that dominates. When both atoms
are excited to the same Rydberg state, such as |nS,nS), they are coupled off-resonantly to in-
termediate states like |n'P,n” P) with opposite parity. The resulting second-order energy shift,
which scales as o< | (nS,n.S| Vyq [0/ P,n" P)* /A(n/,n"), yields an effective van der Waals potential
of the form U = Cg(n) /RS, where the coefficient C increases rapidly with the principal quantum
number n.

This van der Waals interaction introduces an energy penalty when two qubits are simultaneously
excited to the Rydberg state, forming the basis for entangling operations. Crucially, if only one
or zero atoms are in the Rydberg state, no such energy shift occurs.

This lead to the Rydberg blockade effect (see Fig. 3.2.3): within a characteristic blockade radius,
the energy of the doubly excited state becomes so large relative to the Rabi frequency €2 and
detuning A that it can be effectively removed from the dynamics via adiabatic elimination. The
result is a constrained Hilbert space in which doubly excited states are energetically suppressed,
enabling robust, high-fidelity two-qubit gates. Importantly, this mechanism is insensitive to the
precise value of the interaction strength—what matters is the structure of the interaction, not its
fine-tuned value. As such, Rydberg-mediated interactions offer a powerful and scalable pathway
to entanglement generation in neutral-atom QPUs.

3.2.5 Measurement process

Currently the main method to read out Rydberg qubits is via single-atom sensitive fluorescence
imaging from the ground states. Rydberg excited atoms can be detected either by first transferring
them to a suitable ground state, or by removing them from the trap prior to imaging in which
case they show up as the absence of a signal. Rydberg state detection efficiencies > 0.95 are of
the entire array, with the best results reported so far of > 0996. While this type of detection is
usually destructive, high-fidelity lossless readout schemes for ground state qubits have also been
demonstrated using state-selective fluorescence in free space, using cavity enhancement, or using
state-dependent potentials. This would enable repeated measurements on qubits and to act on
measurement outcomes, e.g., for quantum feedback and quantum error correction protocols [17].
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Figure 3.2.3: The Rydberg blockade mechanism. Two atoms are at some distance away from each
other, where atom j is in the Rydberg state. Outside of the blockade radius (red), atom 4 can
freely be driven to the Rydberg state. Inside the blockade radius, the Rydberg state is significantly
detuned from the driving laser due to the strong interactions between nearby Rydberg-state atoms,
preventing the atom j from going into the excited state. This behavior is independent of the
specific position of the atoms, and so entanglement can be generated robustly not just through
the specific values of the interactions, but in the structure of the Hilbert space [19].

3.3 QuEra Quantum Computer

QuEra Computing is a leading company in the development of quantum computers based on
neutral atoms and Rydberg interactions. Building on advances in atomic physics and quantum
optics, QuEra has developed Aquila, a cutting-edge quantum computing platform that harnesses
individual atoms trapped in optical tweezers to perform coherent quantum operations. The sys-
tem enables the realization of highly tunable quantum many-body dynamics by arranging up
to 256 neutral-atom qubits in programmable geometries and controlling their interactions via
laser-induced Rydberg excitations. Aquila operates as an analog Hamiltonian simulator, offering
a powerful and flexible platform for investigating complex quantum phenomena and performing
quantum simulations with direct relevance to condensed matter physics, optimization problems,
and quantum information science.

3.3.1 Aquila’s set-up

Aquila is a neutral-atom quantum computing platform that operates at room temperature, uti-
lizing rubidium-87 (Rb-87) atoms cooled to the micro-Kelvin regime by means of laser cooling
techniques inside a high-vacuum glass cell. Quantum information is encoded in the internal elec-
tronic states of individual atoms, which are manipulated through precisely timed and shaped laser
pulses. State readout is achieved via state-dependent fluorescence, allowing for projective mea-
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surements on the qubit states.

At the heart of the system is a compact 2-centimeter-scale vacuum cell, observed through a high-
numerical-aperture microscope objective coupled to a low-noise camera. Around this core setup,
a combination of standard optical components delivers and shapes the laser beams needed for
atom cooling, trapping, and control, see Fig. 3.3.1. All subsystems are integrated into a data-
center-style infrastructure, including racks of electronics responsible for laser stabilization, timing
control, and data acquisition.

The atomic qubits are arranged in programmable two-dimensional geometries within a region
smaller than 200 micrometers—comparable to the width of a few human hairs—where quantum
operations are performed. To realize quantum computation, Aquila relies on four essential ele-
ments: (1) individual Rb-87 atoms as qubit carriers, (2) dynamically reconfigurable optical tweezer
arrays for creating custom qubit layouts, (3) ultra-stable laser systems to coherently manipulate
atomic states, and (4) Rydberg excitations, which mediate controllable interactions between qubits
through strong, long-range dipole—dipole coupling.

dynamic EMCCD
tweezers
] (¢, individual Rb-87 atoms as qubits
fixed with user-programmable
AOD-x R\(/jd!:)erg positions
rive
AOD-y at
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Figure 3.3.1: Functional block diagram of Aquila. There are six wavelengths of laser light that
focus on the computational area in the vacuum cell. One laser (pink) is controlled by a spatial
light modulator (SLM) to arbitrarily position up to 256 atom traps. Another laser (yellow)
uses a crossed set of acousto-optic deflectors (AOD) to dynamically move atoms in traps and
deterministically sort the array. A set of lasers (red) is used to cool the atoms to uK temperatures,
and two counter-propagating lasers (deep red and blue) implement a two-photon drive between
ground and Rydberg state. A final laser and camera (orange) is used to image the position of
atoms in each trap using fluorescence. An example image of individual atoms leveraging arbitrary
positioning is shown to the right [19].

3.3.2 Qubit Encoding and Readout in the Aquila Platform

In Aquila, each qubit is physically realized by a single rubidium-87 (Rb-87) atom. These atoms
must undergo a precise sequence of operations: isolation, laser cooling to micro-Kelvin tem-
peratures, spatial rearrangement into the desired geometry, qubit state initialization, coherent
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manipulation, and finally measurement.

The qubit states are encoded in the electronic orbitals of the atom’s valence electron. Specifically,
quantum information is stored in two distinct energy levels: the logical state |0) corresponds to
the electronic ground state |g) = [551/2) while the excited state |1) is mapped to a high principal
quantum number Rydberg state, typically |r) = |[705;2).

Intermediate electronic levels are employed during state preparation and manipulation processes.
The relevant level structure is illustrated schematically in Fig. 3.3.2.
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Figure 3.3.2: Rb-87 valence electron states utilized in Aquila to manipulate the atom as a qubit
and as a physical host to the qubit. Arrows are the various optical fields used to drive transitions.
Purple lines are the states that represent the qubit, while green lines represent other states used
in the various manipulations [19].

The Rydberg state plays a key role in enabling qubit—qubit interactions, as it possesses exagger-
ated atomic properties—such as strong dipole moments—that are essential for generating entan-
glement. During the quantum evolution phase, optical trapping potentials are temporarily turned
off to avoid perturbing the coherent dynamics. Once the evolution is complete, the traps are
reactivated to perform a projective measurement.

This measurement process exploits the fact that the ground state is tightly trapped by the optical
tweezers, whereas the Rydberg state experiences an anti-trapping potential that rapidly expels the
atom from the trap region. As a result, the presence or absence of an atom in a given site—detected
via fluorescence imaging—can be used to infer the qubit state: a detected atom indicates the qubit
was in |0), while its absence corresponds to |1).

Measurements in this system are inherently destructive. Atoms found in the Rydberg state are
lost during readout, and even ground-state atoms may occasionally escape or be misidentified due
to imperfections in the trapping and detection process.
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These errors can influence the measured fidelity of quantum operations, particularly in experiments
probing many-body dynamics. Because the atom array must be rebuilt after each experimental
shot, the repetition rate is limited (typically below 10 Hz). Nevertheless, this reconstruction
process offers a unique advantage: the system’s geometry can be reprogrammed between shots,
effectively allowing the quantum processor to be reshaped dynamically depending on the needs of
the computation or simulation being performed.

3.3.3 Optical Trapping and Atom Array Initialization

Aquila utilizes optical trapping to isolate and manipulate individual neutral atoms, enabling a
flexible and reconfigurable architecture for quantum information processing. This technique relies
on focused laser beams—optical tweezers—which use the optical dipole force to confine atoms in
space. Specifically, a laser near-resonant with an intermediate atomic transition (in this case, a
780 nm laser tuned to the 6P;/; level of Rubidium-87) induces a dipole moment in the atoms. The
resulting radiation pressure pulls the atoms toward the high-intensity region of the beam, where
they become trapped. Additional laser cooling then reduces the kinetic energy of the atoms, and
optical pumping prepares them in their electronic ground state.

Aquila employs two main trapping modes: static and dynamic.

In the static trapping mode, a spatial light modulator (SLM) generates a two-dimensional array
of tightly focused traps. The SLM, similar in concept to the technology used in digital projectors,
modulates the phase of the incoming laser wavefront using a matrix of liquid crystals. Through
holographic techniques, this phase modulation produces an interference pattern that forms hun-
dreds of discrete focal spots—each serving as a trap for a single atom. Although the SLM’s refresh
rate is too slow for real-time quantum operations, it can be reprogrammed between runs to de-
fine arbitrary atomic configurations. Some examples of such flexible positioning are illustrated in
Fig. 3.3.3, where fluorescence images reveal various trap geometries.

Figure 3.3.3: Examples of arbitrarily positioned atom arrangements enabled by reconfigurable
tweezers. Left: regular array of qubits as a quantum register in a gate-based architecture, Middle:
qubits arranged in a Kagome lattice to encode a quantum simulation problem, Right: qubits
arranged in the shape of the world coastlines to encode a geographical optimization problem [19].

Despite the flexibility of this approach, physical limitations apply. Due to the resolution of the
optics, no two trapping sites can be closer than 4 pum, and the total trapping area is confined to
a 75 um x 76 pum region. These constraints must be taken into account when designing qubit
arrays, although they can be partially relaxed under a “premium access” configuration.

The dynamic trapping mode makes use of acousto-optic deflectors (AODs) to actively move atoms
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within the array. AODs function by launching acoustic waves through a crystal, creating a tunable
diffraction grating that deflects laser beams according to the wave frequency. By combining two
crossed AODs, the system can precisely control multiple tweezers simultaneously in two dimen-
sions and move atoms on microsecond timescales.

The preparation sequence is illustrated in Fig. 3.3.4.

Pre-sorted array Post-sorted array

Figure 3.3.4: The deterministic loading process of an 11 x 11 square lattice. On the left is an image
of the presorted, stochastically loaded array; empty sites are indicated with x, and filled sites with
o. Using a laser tweezer, atoms are moved from the reservoir regions (purple) on each side to the
user region in the center to create a deterministically loaded array on the right image [19].

Initially, atoms are loaded probabilistically from a vapor into the SLM-generated traps, with each
site being filled with 60% probability. To reach the maximum configuration of 256 atoms in a
square array, about 600 traps are created, including auxiliary reservoir traps placed at the periph-
ery. After fluorescence imaging identifies which traps are filled, the AODs orchestrate a real-time
sequence of atom transfers, moving atoms from randomly occupied sites into the desired target
configuration with a success probability exceeding 99%.While these constraints can be limiting for
completely arbitrary qubit arrangements, they are typically compatible with structured configura-
tions like square or Kagome lattices. Moreover, these constraints are architectural design choices
rather than fundamental limitations and can potentially be lifted in enhanced-access modes.
Finally, it is important to emphasize that due to probabilistic loading and occasional measure-
ment errors, experiments typically require post-selection on successfully filled arrays to ensure
meaningful results.

3.3.4 Measurement cycle

All the individual stages of atom trapping, initialization, manipulation, and measurement in Aquila
are organized into a single, coherent experimental sequence, executed via a series of carefully timed
laser pulses. This process is illustrated in Fig. 3.3.5, which outlines the full measurement cycle.

A key characteristic of Aquila’s measurement protocol is that it is destructive: atoms are de-
tected by removing them from their optical traps, typically through fluorescence imaging or state-
dependent loss. As a result, after each measurement shot, the entire atomic array must be reloaded
and reinitialized from scratch.

While the quantum evolution itself typically lasts only on the order of 10us, the reload-and-
prepare phase is significantly slower. Consequently, Aquila’s current shot rate is limited to fewer
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Figure 3.3.5: A full cycle of the Aquila processor. First, the magneto-optical trap (MOT) is loaded
and then the static traps are loaded from the atoms in the MOT. Next, the occupancy of every
randomly filled trap is imaged (img) and processed (proc), and the dynamic laser tweezers sort
the array into the user-specified configuration. Another image is taken to determine the success of
the sorting and is returned as the pre sequence data key. Then, the quantum computation (QC) is
executed on a fast us time scale. Finally, the traps are turned back on, pushing away the Rydberg
state and trapping the ground state to perform a measurement. The atom occupancy is imaged
and returned as the post sequence data key, which is interpreted as the bitstring measurement in
the Z basis. Finally, the atoms are released back into the vacuum chamber and the cycle repeats,
up to 10 times per second [19].

than 10 repetitions per second. This limitation affects data acquisition rates and can pose a bot-
tleneck for applications requiring large statistical sampling or extensive circuit repetition.
However, ongoing development aims to address this constraint. Next-generation systems plan to
incorporate non-destructive measurement techniques and improved atom retention mechanisms,
which would allow the array to be reused across multiple measurement cycles. Such improve-
ments could increase the shot rate by several orders of magnitude, greatly enhancing the system’s
efficiency and making it more suitable for near-term quantum applications.

3.4 Pasqal Quantum Computer

Pasqal is a leading company in the development of quantum computers based on neutral atoms
and Rydberg interactions. Its platform offers a powerful architecture for quantum information
processing by trapping individual atoms in configurable arrays of optical tweezers and exploiting
their strong, controllable interactions via laser-induced Rydberg excitations.

In what follows, we present the main stages of computation on Pasqal’s hardware, outlining how
quantum registers are initialized, manipulated, and measured. Specifically, we discuss the process
of register loading, where atoms are cooled and trapped in optical tweezers to form the physical
qubits of the quantum processor. We then describe the quantum processing stage, during which
quantum gates or analog Hamiltonian dynamics are applied by precisely tuning laser pulses and
interatomic distances. Finally, we focus on the register read-out phase, where measurements are
performed to extract classical information from the quantum system. This modular structure
reflects the general workflow of a quantum computation on Pasqal’s hardware, see Fig. 3.4.1.

3.4.1 Register loading

Pasqal’s quantum processors are based on neutral rubidium atoms, a species widely used in atomic
physics due to the availability of mature and reliable laser technologies. In this platform, two in-
ternal energy levels of each atom are designated as the computational basis states |0) and |1),
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Figure 3.4.1: Schematic of the hardware components of a neutral atom quantum device. The
user sends, through the quantum software stack, instructions to the register actuators, which
initialize the quantum register, and to the processing actuators, which perform the computation.
Information in the quantum register is extracted through detection of an image. It serves as an
input for real-time rearranging of the register and as an output of the computation [20].

forming the qubit. The preparation of the quantum register is made possible thanks to the hard-
ware components shown in Fig. 3.4.2(a).
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Figure 3.4.2: (a) Overview of the main hardware components constituting a quantum processor.
The trap ping laser light (in red) is shaped by the spatial light modulator (SLM) to produce
multiple micro-traps at the focal plane of the lens (see inset). The moving tweezers (in purple),
dedicated to rearranging the atoms in the register, are controlled by a 2D acousto-optic laser beam
deflector (AOD) and super imposed on the main trapping beam with a polarizing beam-splitter
(PBS). The fluorescence light (in green) emitted by the atoms is split from the trapping laser light
by a dichroic mirror and collected onto a camera. (b) Photography of the heart of a neutral-atom
quantum co-processor. The register is prepared at the center of this setup [20].
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As a starting point, a dilute atomic vapor is formed inside an ultra-high vacuum system operated
at room temperature. With a first laser system (not shown), a cold ensemble of about 10° atoms
and 1 mm3 volume is prepared inside a 3D magneto-optical trap (3D MOT), leveraging numerous
laser cooling and trapping techniques. Then, a second trapping laser system isolates individual
atoms within this ensemble. Using high numerical aperture lenses, the trapping beam gets strongly
focused down to multiple spots of about 1 pum diameter: the so-called optical tweezers. Since the
spots are only 10 mm away from the lenses, the latter are placed inside the vacuum chamber (see
Fig. 3.4.2(b)). Within a trapping volume of a few um?, each tweezer contains at most one single
atom at a time. The configuration of the tweezers is fully programmable through a SLM, which
shapes the phase profile of the trapping laser before it enters the optical system. This modula-
tion produces a corresponding intensity pattern in the focal plane of the lens, enabling arbitrary
tweezer arrangements in one, two and even three dimensions (see Fig. 3.2.2).

Since atom loading in tweezers is probabilistic, each trap being filled with roughly 50% suc-
cess, an active rearrangement procedure is used to build a defect-free register. After the initial
image is processed, a control algorithm computes in real time the necessary moves to assemble
a sub-register with unit filling. These moves are executed via dynamically steerable tweezers,
controlled by acousto-optic deflectors (AODs), with the overall process orchestrated by an FPGA-
GPU pipeline that ensures low-latency feedback (see Fig. 3.4.3). Once rearrangement is complete,
a second image is taken to confirm the successful preparation of the atomic register.

Figure 3.4.3: Moving a single atom from one site to another in the register. The moving optical
tweezer first takes the atom, then transfers it and finally releases it into the other site. This
operation takes less than 1 ms [20].

3.4.2 (Quantum processing

Once the atomic register has been successfully assembled, the system is ready for quantum pro-
cessing. The execution of quantum operations occurs on very short timescales, typically under 100
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1s, whereas the full experimental sequence, including register loading and measurement, takes on
the order of 200 ms.PASQAL’s platform supports both digital and analog approaches to quantum
computation.

In the analog regime, quantum evolution is driven by engineered Hamiltonians implemented
through tailored laser configurations. The system evolves coherently under the Schrodinger equa-
tion, with interactions and dynamics dictated by the applied optical fields (see Fig. 3.4.4).
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Figure 3.4.4: Qubits evolve under a tailored Hamiltonian H, for instance by illuminating the
whole register with a laser beam. The wavefunction |¢)) of the system follows the Schrédinger
equation [20].

At the end of the evolution, the quantum state of each atom is measured to extract the compu-
tational result. This versatility allows the hardware to simulate complex quantum dynamics and
perform computational tasks by exploiting the native interactions between neutral atoms.
Rydberg atoms act as large electric dipoles, giving rise to dipole-dipole interactions that can be
described using spin Hamiltonians.

Each qubit in the register effectively behaves like a spin, with the states |g) = |0) and |r) = |1)
corresponding to the ground and Rydberg states of each atoms.

The Hamiltonian guiding the evolution in Pasqal’s set-up is:

:—Q Za — ho(t an—l—z 5 (3.4.1)

it

with n; = (1 + 0%/2) the rydberg state occupancy. The first terms are induced by the laser that
couples the qubit states and relate to an effective magnetic field, with transverse and longitudinal
components B o< Q(t) and B o< —d(t). Thus, one can modify them changing the intensity and
frequency of the laser field. The third term in Eq. 3.4.1 relates the interactions between individual
atoms, as previously discussed in Sec.3.2.4.

At this stage quantum processing can begin. The actual quantum operations are extremely fast,
typically taking less than 100 ps, while the full experimental sequence, including atom loading
and state readout, lasts approximately 200 ms.
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3.4.3 Register read-out

The standard method for reading out Rydberg qubits relies on single-atom-resolved fluorescence
imaging from the ground state. After processing, a final fluorescence image is acquired, in which
atoms in the |0) state appear bright, while those in the |1) state remain dark.
This state-dependent fluorescence is typically captured using an electron-multiplying charge-
coupled-device (EMCCD) camera, which converts the emitted photons into an amplified electronic
signal with very high sensitivity. Detection efficiencies exceeding 98.6% have been demonstrated
using this technique, which is on par with readout fidelities achieved in superconducting qubit

platforms.
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Figure 3.4.5: Temporal sequence of one computation cycle. The loading of the register being
random, atoms are first rearranged to realize a defect-free sub-register, on which the quantum
processing is performed [20].
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4 Quantum Reservoir Computing

This chapter is focused on the study of Quantum Reservoir Computing (QRC), a hybrid quantum-
classical machine learning model designed to process data by leveraging the complex dynamics of
a quantum system driven by classical inputs.

We begin by briefly reviewing the essential ideas behind classical Reservoir Computing, focus-
ing on the key intuition that underpins both classical and quantum versions.

We then turn to the quantum extension of this framework, examining how the intrinsic prop-
erties of quantum systems can be harnessed to enhance the expressive power and computational
efficiency of reservoir models. In particular, we highlight the advantages of QRC over other
paradigms, discuss its practical implementation, and outline the classes of tasks that can be ef-
fectively addressed using this approach.

Finally, we present in detail the algorithmic structure of QRC, focusing on the encoding of clas-
sical data, the evolution of the quantum reservoir, the extraction of observables, and the classical
post-processing steps.

4.1 Reservoir Computing

Reservoir Computing (RC) is a machine learning paradigm that leverages an input-driven dynam-
ical system. The core idea of RC is that a significant portion of the computational task is not
performed by a trained network, but by a high-dimensional system called the reservoir, which is
treated as a black box. The outputs of the reservoir are fed into a single readout layer, which is
the only component of the network that is trained, as shown in Fig. 4.1.1.

The foundational papers on which reservoir computing relies were independently introduced in
the early 2000s, in [22] and [23]. In these seminal works, although the term reservoir computing
was not explicitly used, the authors introduced the fundamental concept of exploiting complex
dynamical systems to process and enrich input features.

In the Echo State Network (ESN) approach, the reservoir consists of a recurrent neural net-
work (RNN) with randomly assigned weights that satisfy certain algebraic conditions (the echo
state property). The untrained part of the RNN acts as a reservoir, with its states representing
a nonlinear transformation of the recent input history. The trained component is a linear output
layer [24]. On the other hand, Liquid State Machines (LSMs) were inspired by neuroscience stud-
ies, with the term liquid referring to how input spikes induce ripples in neural activity, capturing
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SUBSTRATE

Figure 4.1.1: Schematic representation of the basic components of RC. The information from the
input is fed into the substrate, which acts as a hidden layer or reservoir. The response of the
substrate, through a selection of observables, is then used to produce the desired output after
optimization of the output connections by training [21].

temporal information in a distributed way. In this case, the reservoir is derived from a biological
context, but the underlying principles are the same.
Later on, these two approaches were unified under the common term reservoir computing, coined
in [25].
In order to implement this technique, a training input signal u; € R« is required, which is sup-
posed to lead to the desired N,-dimensional output y,. The most general form of this mapping
is:

X = f(uk, Xk—l), (411)

where f is a fixed function determined by the system and the encoding technique, and x; is the
state of the reservoir at the k' step. The final step is to extract information from the reservoir
using a readout function F:

F(x;) = ¥, (4.1.2)

The readout function contains free parameters that are optimized during the training process, and
is the only part of the algorithm affected by training. It is designed to minimize a loss function
that typically depends on the difference between the actual output y, and the desired output y;.
In most cases, F is obtained via linear regression. Once F is known, the system can be applied to
new inputs.

This strategy offers several advantages over conventional deep neural networks, which are usually
expensive to train:

e Training usually consists of a simple linear regression, which is computationally inexpensive
and easy to implement.

e Only the readout function F needs to be trained, not the entire system. This is especially
advantageous when dealing with a physical system where the precise interactions between
components are hard to modify or even fully understand.

e The same reservoir can be reused for different computing tasks by training different readout
functions F.
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4.1.1 Reservoir dynamics

Beyond serving as a computational black box, the reservoir plays a critical role in shaping the
performance of Reservoir Computing by embedding the input into a dynamically rich state space.
Its internal structure, typically composed of recurrent and nonlinear interactions, induces a form
of temporal processing, where the state of the system reflects not only the present input but also
a fading trace of its past history.

This implicit memory is crucial for time-dependent tasks: the reservoir state x; at a given step
does not simply mirror uy , but emerges from the combined influence of the current input and the
dynamical evolution from prior inputs. However, unlike in standard recurrent neural networks,
this temporal memory is not explicitly engineered via training, but rather emerges from the in-
herent dynamics of the fixed system.

An essential requirement for a functional reservoir is the so-called echo state property: over time,
the effect of initial conditions must vanish, and the system should asymptotically reflect only the
influence of the input stream. If this condition is not met e.g., if internal dynamics dominate too
strongly or chaos ensues, the reservoir may become insensitive to external inputs, thus undermin-
ing its ability to perform useful computations.

Another key feature of the reservoir is its ability to perform nonlinear expansion of the input
signal. Through the system’s intrinsic complexity, the input trajectory is projected into a high-
dimensional space where subtle differences or patterns become more distinguishable. This is
particularly beneficial in tasks where the original input features are not linearly separable. The
readout layer, though linear, can then recover complex input-output relationships thanks to this
enriched representation.

The interplay between memory and nonlinearity is what enables a fixed reservoir to generalize
across a wide range of computational tasks. This combination of fading memory, high-dimensional
representation, and dynamic sensitivity is what makes Reservoir Computing a powerful framework
for real-time processing, particularly in settings where the underlying substrate, be it digital or
physical, cannot be modified or trained internally.

4.2 Quantum Extension: Motivation and Advantages

Current NISQ devices faces significant limitations due to noise and decoherence. The predomi-
nant class of QML algorithms are VQA leveraging on a classical computer for the optimization
of parameters required in the quantum process. As anticipated in Sec. 2.4.1 these approaches
are fundamentally constrained from barren plateaus and complex training landscape, preventing
trainability of these models.

One of the main obstacles to trainability in VQA arise from the Barren Plateau (BP) phenomenon,
occurring when the loss function, or its gradients, become exponentially concentrated around their
mean as the number of qubits increases. This means that the optimization landscape is mostly
flat and featureless. Therefore, slightly changing the model’s parameters 6 results in only an ex-
ponentially small change in Ly, the loss function.

Considering that information can only be extracted from a quantum computer through a finite
number of measurements, the presence of Barren Plateaus in the optimization landscape means
that, for most choices of parameters, an exponentially large number of measurement shots is re-
quired to determine the direction that minimizes the loss. Ultimately, the exponentially large

33



Hilbert space, initially expected to give variational quantum computing an advantage over clas-
sical methods, leads instead to fundamental challenges in the practical application of variational
algorithms. [26]. These challenges make VQAs hard to be implemented in current NISQ devices,
motivating the exploration of alternative frameworks that avoid costly internal optimization.

The RC framework, as discussed in Sec. 4.1, provides an alternative machine learning paradigm
that bypasses the need for costly gradient-based optimization. By mitigating several of the lim-
itations currently affecting quantum machine learning methods, QRC has recently emerged as a
promising strategy for near-term quantum devices.

The structure of reservoir computing, see Fig. 4.1.1, allows huge flexibility in modifying each
part of the algorithm and thus, enabling different tasks and physical realization of the algorithm.
Specifically, as first pointed out by [21], with the quantum reservoir computing algorithm several
possibilities are opened: classical or quantum character of the input, the substrate used and the
task to assess.

Classical Substrate x) | Quantum Substrate H(¢)

ccc cQC

Classical Input s {sk}, 23" = To {s1}, {07} — Tc
cCqQ cQQ

{sk}, 27" — To {si}. {0} — Tq
QCC QQC

Quantum Input [¢y) [Yk) , 23" = T ) {07} — To
QCQ QQQ

|vw) 23" — To i) {0} = To

Table 4.1: All possible combinations of input, substrate and task being classical (C) or quantum

(Q) [21].

In table 4.1, all the opportunities in QRC are summarized. The sub-index k labels each time step
or instance. The sub-index i is associated to the internal degrees of freedom of the substrate. For
the classical input, {s;} is a data sequence, e.g. a string of real numbers. In the quantum case,
|tr) represents an input state. The state of the substrate at a given instant is defined by zj in
the classical regime and by the evolved state [¢(t)) = e /" ® |¢) in the quantum one. For the
training process with a classical substrate, a selection of the substrate variables are used, z{"™.
With a quantum substrate, the readout for the training is obtained after a set of measurements,
{0}, We distinguish between classical tasks, T, and quantum tasks, Tg.

The configurations that are currently feasible are CCC, CQC, and, to some extent, QQC. CCC
represents the classical baseline, while CQC—the most investigated case in QRC, it combines
classical inputs with quantum evolution and a classical task, and can already be implemented on
NISQ devices. QQC is possible only at small scale, being strongly limited by qubit number and
measurement, overhead.

All the other configurations remain mostly conceptual, as they require fully quantum inputs, tasks,
or readout stages that are either not accessible with today’s hardware or would scale exponentially
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in terms of qubits and measurements.
In this work, we focus on the CQC scheme. This configuration is the most natural extension of
the classical RC paradigm and can be summarized by the following sequence:

{s1.} — {0} — T¢ (4.2.1)

Classical inputs, {s;} are encoded into the quantum reservoir. After the quantum evolution, a
collection of observables {O9"} is measured and used as features for a simple classical readout
model (e.g., linear regression or a support vector machine) to solve a classical learning task T¢.
In this set-up, a complex quantum system replaces the classical reservoir, exploiting the dynamics
of its exponentially large Hilbert space to transform input data and generate rich, classically in-
tractable correlations. The key motivation for using quantum substrates lies in their vast number
of degrees of freedom: a reservoir of N qubits evolves in a 2"-dimensional space, enabling an
exponential nonlinear embedding of the input data. Thanks to this enriched data representation,
even a simple final layer such as a linear support vector machine is sufficient to achieve optimal
performance.

This new set-up, introduced for solving both classical and quantum tasks, makes real advan-
tage of the exponentially large Hilbert space, avoiding by construction of the algorithm the BP
phenomenon.
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4.2.1 Hardware implementations

Recently, several proposal for QRC hardware implementation have been successfully tested, show-
ing the viability of the approach on current devices. In Fig. 4.2.1, an overview of the most
successful hardware implementations reported to date.
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Figure 4.2.1: Various examples of platforms to be used as quantum substrates for information
processing. Two suitable candidates to implement spin-network models are (a) nuclear magnetic
resonance in molecules, and (b) trapped ions. (c) State-of-the art ultra-cold atomic setups in
optical lattices with bosonic and fermionic species are well-suited for Bose-Hubbard and Fermi-
Hubbard discrete models, respectively. Additionally, other physical implementations are possible,
e.g. in arrays of quantum dots in semiconductor devices, and in (d) coupled superconducting
qubits. (e) Quantum circuits have been used as a substrate in the IBM platform. (f) Continuous-
variable models could be engineered in photonic experimental setups as well, i.e. by coupling
different frequency modes in non-linear media [21].

4.2.2 Use cases

The hardware implementations presented The hardware implementations presented above demon-
strate that quantum reservoir computing is not merely a theoretical construct, but can already be
implemented on several platforms in the NISQ era, each with its own advantages and challenges.
To further highlight the reliability of the QRC approach, in the following, many examples are
shown where QRC is applicable today. These tasks include quantum state tomography, chemistry
and high-energy experiments. In these tasks QRC is applicable bypassing the critical bottleneck
of most VQA models.

Conventional quantum tomography schemes rely on the full state reconstruction through exponen-
tially many projective measurements, in Ref. [27] the authors are able to reconstruct an arbitrary
quantum state by measuring only the average occupation numbers in a single physical setup. QRC
has also been applied to quantum chemistry tasks.
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In Ref. [28] the authors showed a theoretical scheme for predicting excited states of a molecule by
giving only their ground state wavefunction as input to the reservoir, significantly reducing the
computational cost. This algorithm was subsequently implemented in Ref. [29] [Domingo2023]
showing an improvement of performance in certain noisy conditions. Furthermore, even drug
discovery tasks can be enhanced by hybrid architectures including a QRC step. A notable ap-
plication of QRC in life science is reported in Ref. [30] where a hybrid quantum-classical neural
network is proposed for protein-ligand binding affinity prediction. In this architecture, classical
convolutional networks are fused with a quantum reservoir acting as a non-trainable feature trans-
former. The quantum reservoir is implemented using a quantum circuit composed of two blocks:
a data encoding layer, maps molecular descriptors to quantum states, and a reservoir evolution
layer, where random unitaries generate non-linear transformation of the input layer. This hybrid
model achieved a 6% accuracy increase, up to 40% shorter training times and 20% reduction in
parameters. This work validates the applicability of QRC to high-dimensional learning tasks, but
also demonstrates possible integration schemes in modern AI pipelines for real-world use cases.
In the digital approach to QRC, after the data encoding, random unitary operators are sampled
from carefully selected families in order to explore as much as possible the Hilbert space, important
results [31] identified families of random unitaries that optimize the QRC performances. Remark-
ably has been shown that QRC can benefit from noise under specific conditions. In particular,
in the paper [29] they showed that amplitude damping noise can improve QRC performance on
a quantum chemistry task, outperforming the noiseless case for sufficiently shallow circuits. Due
to the quantum nature of the data being analyzed, together with the high dimensionality and
temporal structure of collider experiments such as those at the LHC, quantum machine learning
techniques are naturally suited to address tasks such as rare signal detection, event classification,
and model-independent anomaly detection. In Ref. [32], the authors identify QML techniques as
promising tools to address these challenges, particularly for low-latency, online data processing
within the constraints of NISQ hardware. These requirements are naturally aligned with the QRC
paradigm, which combines training-free quantum evolution with the ability to extract complex
temporal correlations via shallow circuits or analog dynamics. QRC thus emerges as a well-
matched framework for real-time inference in next-generation high-energy physics experiments.
The advantages over the most popular choice for QML, hardware implementations and use cases
discussed in this section showed quantum reservoir computing as a solid alternative suited for
NISQ devices. Its training-free architecture, combined with rich nonlinear dynamics and robust-
ness to realistic noise, enables it to tackle a wide variety of tasks, from quantum state tomography
and molecular simulation to real-world data analysis in high-energy physics and drug discovery.
This broad versatility and concrete realizability provide strong motivation to further explore QRC
models, both in algorithmic design and in their deployment on near-term quantum platforms.
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4.3 Quantum Reservoir Computing Algorithm

Having discussed the principles of classical reservoir computing and the motivations behind its
quantum extension, we now turn to the specific quantum algorithm that forms the foundation of
this thesis work.

The approach is based on the recent proposal in Ref. [33], which presents a scalable and training-
free QRC scheme implemented on neutral-atom analog quantum hardware. This algorithm is
designed to operate without variational parameter optimization, leveraging the natural dynamics
of a highly controllable quantum system to perform nonlinear transformations on classical input
data. It stands out for being gradient-free, scalable, and well-suited to current NISQ devices.
The QRC framework consists of three main stages: classical pre-processing of the input data,
quantum evolution under a time-dependent Hamiltonian, and classical postprocessing for super-
vised learning tasks, see Fig. 4.3.1
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Figure 4.3.1: Overview of the quantum reservoir computing algorithm with neutral atoms [33].

In the pre-processing step, the training and testing datasets are organized as pairs {(x;[n], yi[n])},
where x;[n] denotes the input feature vector and y;[n] the corresponding labels. Here n is denot-
ing the data samples, while ¢ and j refer, respectively, to the components of the feature and label
vectors. Depending on the nature of the input data, this step may involve optional dimensionality
reduction (e.g., for high-dimensional data such as images) or feature engineering techniques.

Once appropriately preprocessed, the data is mapped onto the quantum reservoir through one
of three encoding strategies: encoding into the time profile of the global detuning pulse, modula-
tion of interaction strengths via atom position arrangement, or application of site-dependent local
detuning pulses. Once the data feature has been encoded in the reservoir, the quantum system
evolves under the specified Hamiltonian dynamics, which enrich the input data through non-linear
transformations in the Hilbert space.

After a sufficient evolution time, the system is probed through projective measurements, from
which expectation values of local observables are collected. These embeddings are then passed to
a fast classical training step, typically using linear support vector machines or regression. Once
trained, the model performs inference by applying the QRC pipeline to unseen inputs and pro-
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ducing predictions based on the resulting embeddings.

In the next sections we will deep dive in the methods employed in the article, focusing on the
different encoding strategies, the physical implementation of the quantum reservoir, the extraction
of features via projective measurements and finally the results obtained with the analog quantum
computer, Aquila.

4.3.1 Encoding techniques

The first step in the QRC pipeline is to find a proper encoding technique for the classical data
under consideration. Choosing the appropriate encoding strategy is a pivotal step in order to
obtain reliable results on a quantum computer. As shown in Fig. 4.3.1 in the QRC algorithm
three different encoding techniques are possible, each suited for different tasks. The availability
of these encoding strategies arises from the structure of the neutral-atom QRC, specifically we
aim to encode features into the parameters of the Rydberg Hamiltonian, the more flexible this
Hamiltonian is, the more encoding strategies become available.

The Rydberg Hamiltonian is:

H(t) = —~ D (g5 sl + 1) {gs) = D I8 (8) + s M(O)]ng + ) ————gnyme (4.3.1)

T
j j i X"“'
where () is the global Rabi drive amplitude between a ground |g;) and a highly-excited Rydberg
state of an atom |r;). The detuning term is split into a global A, (), and a site-dependent one
A(t), with site modulation «; € [0,1]. Therefore, these three tunable parameters allow the

exploration of three encoding scheme:

1. Global pulse encoding: implemented by mapping data features in the time varying profile
of the global detuning pulse, A, = AF**z;. Here the features are encoded as pulse param-
eters at different times. This is partlcularly convenient when one want to encode some
time-dependent feature, enabling a natural way to encode those data in the time varying
shape of the detuning pulse. Further the encoding capacity does not depend on the system
size (N,), depends only on the pulse control.

2. Position encoding: this encoding strategy is well suited when we want to preserve the
spatial information in the input data. The encoding is implemented by modifying the inter-
action strength between neighboring atoms such that Vi; = V(1 + \z;), where V© is the
unperturbed interaction value, A is a scaling parameter controlling the encoding strength,
and j identifies a nearest neighbor of the i** site. In a one-dimensional system composed
of N, qubits, this scheme allows the encoding of up to N, — 1 distinct features through the
tunable nearest-neighbor couplings.

3. Local pulse encoding: this encoding strategy enable to address single qubits via site
dependent local pulse. In this local encoding strategy the detuning is a local quantity and is
modified for each atoms in a different way according to a;A,(t) = Af™*x;, therefore, enable
to encode IV, features in a reservoir composed by IV, atoms.

These three encoding strategies differ not only in how the classical data is embedded into the
quantum system, but also in their practical effectiveness. The comparative performance of the
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different encoding strategies is discussed here in detail, as it provides critical insights into the
design of the QRC pipeline. While this section focuses specifically on the role of encoding, a
broader discussion of experimental results across all learning tasks is presented in Section 4.3.4.

Based on the specific control parameters involved, the encoding capacity, and whether the strategy
acts globally or locally, one can already anticipate that certain encoding methods may be better
suited for specific tasks than others. Moreover, guided by both physical intuition and numerical
simulations, it is possible to establish a hierarchy among the encoding strategies in terms of their
overall effectiveness.

According to physical arguments, we can already anticipate that global encoding techniques, de-
spite being conceptually well-suited for time series tasks, tend to perform less effectively than
other strategies. This can be understood by considering that quantum dynamics generally leads
to thermalization of local observables. As a result, if measurements are taken too late in the
evolution, there is a significant risk that the system has already reached a thermalized state,
and the local observables no longer retain meaningful information about the original input data.
Furthermore, due to the inherently noisy nature of current quantum devices, decoherence further
degrades the quality of the late-time measurements, enhancing the loss of information in global
pulse encoding schemes.

The limitation of global pulse encoding can, in principle, be mitigated by adopting protocols
that continuously extract information from the system during its evolution or to concentrate the
dynamics in a narrower evolution window. One possible approach is the use of mid-circuit mea-
surement techniques, which would allow the reservoir to emit meaningful embeddings at various
stages of the dynamics, thereby reducing the impact of thermalization and decoherence on the en-
coded information. This considerations are well supported from experimental results performed in
the Aquila neutral atom quantum computer. They apply the QRC algorithm to process the Santa
Fe timeseries task (further detail in Sec. 4.3.4) using the three different encoding techniques on
this task they compare the normalized mean-square error (NMSE) in a finite-sampled simulation
and experiment.
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Figure 4.3.2: Normalized mean-square error for different encodings [33].

As shown in Fig. 4.3.2, the experimental results support the previously discussed limitations of
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the global pulse encoding. When applied to the Santa Fe laser timeseries task, the normalized
mean-square error (NMSE) clearly indicates that global pulse encoding performs worse than both
position and local pulse encodings. This behavior is consistent across both finite-sampled simula-
tions and experimental runs on the Aquila quantum processor.

In contrast, local pulse and position encodings show approximately equivalent performance in
simulations, suggesting that both strategies effectively preserve the input information throughout
the evolution. This equivalence can be physically understood by noting that the position encoding
induces an effective site-dependent detuning. This becomes clear when expressing the Rydberg
interaction term in the Hamiltonian in Eq. 4.3.1 through Z operators, using Z; = 2n; — I; as

follows:
Z V;jnmj + Z Am, — le Z V;jZZZj — % Z (AZ + % Z Vb) -+ const. (432)
1<j ( 1<J ( 1#£]

Thus, the position encoding modulation effectively induces local detuning modulation, with the
local detuning modulation on one site being dominated by the features encoded at its nearest
neighbors. Since both methods apply the data-dependent modulation at the start of the evolu-
tion, their embeddings are less vulnerable to information degradation from thermalization and
decoherence, as discussed earlier. Overall, the results in Fig. 4.3.2 not only confirm the hierarchy
among the encoding strategies, but also highlight the practical trade-offs introduced by hardware
imperfections. While position and local pulse encodings offer similar robustness and accuracy,
their sensitivity to different types of experimental noise must be considered when selecting an
encoding scheme for specific tasks and hardware configurations.

4.3.2 Evolution

Once the data features have been encoded into the quantum reservoir, the next step is to let
the system evolve unitarily under the action of the Hamiltonian, following the transformation
e~#Ht]0). This is the most crucial step of the algorithm, as it is expected to induce a non-linear
and non-classically replicable transformation of the input data. Such transformation arises from
the quantum nature of the evolution, where superposition and entanglement play a central role
in enriching the structure of the quantum state. Furthermore, one of the main advantages of
this algorithm lies in the absence of variational parameters to optimize. Therefore, it is essential
to demonstrate that the dynamics governed by the Rydberg Hamiltonian alone is sufficient to
provide the necessary expressivity for the learning task.

As discussed in the previous section, data can be encoded into the quantum reservoir by appro-
priately setting the parameters of the Hamiltonian. Therefore, in order to achieve a rich and
expressive quantum dynamics, it is crucial to properly configure the remaining Hamiltonian pa-
rameters that are not determined by the input data. To do so, one need to understand the relevant
energy scale of the system:

e mixing scale, determined by the effective maximum Rabi amplitude, Q;

e entanglement scale, determined by the average Rydberg interaction strength in the array,

V;

e encoding scale, which, depending on the encoding method, can include average local detuning
(local pulse encoding), fluctuating part of the interaction strength (position encoding), or
average global detuning encoding carrying amplitude (pulse encoding), A;
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e probing frequency scale, given by the inverse of the quantum dynamics probing time, (At)™*

e encoding frequency scale, specific to global pulse encoding, defined as the inverse of the
data-point encoding interval, (A7)~!.

Based on physical reasoning, one can identify a region in the relevant QRC parameter space
where the system exhibits optimal performance. Once this regime is determined, there is no need
to perform variational optimization over these parameters, as the dynamics is already sufficiently
expressive. This region is referred to as the universal parameter regime, and can be discovered
through physically motivated design principles and verified via numerical simulations.

The universal parameter regime can be described by the rough equivalence of all the relevant

energy scales: - o _ _
A~V ~ A~ (At)*l ~ (AT)*1 (4.3.3)

This condition ensures that no single process (encoding, interaction, or measurement) dominates
the quantum evolution, allowing the system to exploit its full dynamical complexity. Physically,
this regime emerges from the need to balance key energy and time scales. If, for instance, the
scale responsible for mixing (i.e., Rabi oscillations) is much smaller than the interaction strength,
the resulting dynamics becomes slow and fails to generate sufficient entanglement. Conversely, if
the interactions are too weak compared to the encoding-driven terms, the system cannot correlate
features effectively, leading to poor transformation capacity.

A similar argument applies to the encoding scale: if it is too small, it cannot imprint the data
meaningfully into the quantum state; if too large, the system approaches a quasi-classical limit
where the quantum reservoir ceases to induce non-trivial transformations. Likewise, if the probing
and encoding frequencies are much higher than the characteristic energy scales of the Hamiltonian,
the system may yield highly redundant embeddings, which increase dimensionality without im-
proving performance and can reduce effective trainability. On the other hand, probing too slowly
may result in accessing observables that have already thermalized or decohered, thus carrying little
information about the input. Altogether, the universal regime represents a balanced configuration
where all relevant processes are simultaneously active and mutually reinforcing, enabling effective
and robust QRC performance.

Impressively, this balanced configuration of scales not only removes the need for any optimization
or fine-tuning procedure, but also demonstrates a remarkable level of generality: the underlying
physical reasoning that leads to the identification of the universal parameter regime applies con-
sistently across different encoding strategies. This suggests that the QRC framework possesses
a form of structural robustness, where optimal performance can be achieved through principled
parameter design rather than task-specific training. The transferability of these design principles
across encodings is a strong indication of the universality of the QRC approach itself, highlighting
its scalability and adaptability to a broad class of learning problems without the need for re-
optimization. Evidence of the existence and consistency of the universal parameter regime comes
from numerical simulations performed across different tasks and encoding strategies.

In Fig. 4.3.3, by scanning key ratios between the characteristic energy scales (encoding-to-mixing
and interaction-to-mixing ratios) one observes that optimal performance tends to concentrate
around configurations where these quantities are of comparable magnitude. This behavior emerges
as a broad region of enhanced accuracy, stable across moderate parameter variations, and has been
consistently identified in benchmarks involving both local pulse and position encodings. Interest-
ingly, the location of the optimal regime can often be predicted from simple estimates based on
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Figure 4.3.3: An example of universal parameter regime in numerical simulations of QRC.(a)
Test classification accuracy of local pulse encoded QRC on an 8-PCA 10-class MNIST task as
a function of local pulse encoding scale (A]***/Q1), and effective blockade radius (R,/a).(b) Test
accuracy of the position-encoded QRC on the same task as a function of position encoding scale
(A) and effective initial blockade radius (RIEO) /a) [33].

the typical scale of the input features, further reinforcing the physical intuition behind the design
of this parameter regime and reducing the need for exhaustive parameter sweeps.

Beyond its dynamical role, the evolution of the quantum reservoir also has a direct interpretation
in terms of quantum kernel methods. Specifically, the reservoir embeddings obtained after evolu-
tion can be viewed as mapping the classical inputs into a high-dimensional feature space, where
the inner products between embedding vectors define a kernel function.

That is, given two inputs z[n] and z[m]|, the kernel is defined as:

K (x[n],x[m]) = (u[n], u[m]) (4.3.4)

where (-, -) denotes the inner product in the embedding space.

This kernel matrix redefines the notion of similarity between inputs, effectively altering the ge-
ometry of the data in a task-dependent way. Such a perspective reinforces the idea that the QRC
evolution implicitly performs a powerful, non-linear feature transformation analogous to kernel
methods in classical machine learning.

4.3.3 Data processing

The last step in the QRC pipeline is to extract relevant information from the reservoir and train
a simple model to evaluate the performance of the approach.

To obtain measurement results from the evolved dynamics, the system must be probed at several
successive time steps, with each instance repeated using /N, measurement shots. From these mea-
surement results, one can compute expectation values of local observables, e.g., (Z;) and (Z,;Z;),
which represent the enriched input features encoded in the quantum reservoir.

After data extraction, the flattened vector of local observable expectation values forms the QRC
embeddings, namely u;. The final step is classical post-processing, where a supervised machine
learning model is trained. In practice, since the dynamics induced by the reservoir is highly
nonlinear, a simple linear support vector machine (SVM) is typically sufficient to achieve good
performance on the test set.
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Once the data has been processed and trained a model with different algorithms depending on the
task assessed (classification or regression) a key step for understanding the QRC performances is
to compare this new method with standard classical machine learning models.

A natural baseline for comparison is to assess whether the quantum reservoir dynamics actually
implement a meaningful nonlinear transformation of the input data. To this end, the authors
consider a version of the QRC pipeline in which the quantum evolution step is omitted. In this
setting, the classical SVM is trained directly on the raw input features (those encoded in the
Hamiltonian), using the same training protocol and hyperparameter settings. This setup effec-
tively represents a linear model acting on unprocessed data.

In addition to this linear baseline, nonlinear classical models were also explored. One example is
a fully connected feedforward neural network with four layers, trained on the same input features.
Furthermore, due to its conceptual similarity with kernel-based quantum methods, a Gaussian
kernel (RBF) SVM was tested, providing a nonlinear mapping of the data through kernel geome-
try. Finally, an important comparison was made with the Classical Reservoir Computing (CRC)
counterpart, obtained by taking the classical limit S — oo of the Rydberg Hamiltonian. The
embeddings were constructed from the classical spin dynamics, and fed into the same linear SVM
models as in the QRC pipeline. These comparisons serve to evaluate the expressive power of
quantum correlations and the advantage brought by the quantum evolution itself.

A more detailed discussion of the performance differences is presented in the next section, where
benchmark results are analyzed.

4.3.4 Results on Aquila hardware

Having described the key components involved in designing an effective QRC pipeline, this section
presents the results of the extensive experimental studies conducted on the Aquila neutral-atom
quantum processor.

Timeseries prediction

One of the most successful applications of classical reservoir computing has been in timeseries
prediction, largely thanks to the echo state property first referred in [22] that ensures stable and
memory-rich dynamics. Motivated by these results, and by the particularly natural way in which
temporal data can be encoded in QRC, through global pulse encoding, the first task explored is a
timeseries forecasting benchmark. More specifically the QRC process have been applied to process
the Santa Fe timeseries task, which represents the intensity profile of a laser in a chaotic regime.
All the three different encodings has been applied for this tasks, enabling the establishment of a
hierarchy of encodings, as clear from Fig. 4.3.2.

In all encoding schemes, the feature extraction procedure follows the same principle: features are
obtained from a time window of d steps, and the task is to predict future values of the sequence.
The Santa Fe laser timeseries task served as a benchmark to evaluate the QRC algorithm across
the three encoding strategies—global pulse, position, and local detuning—all implemented on 12-
qubit chains with consistent probing and evolution protocols.

Global pulse encoding provides a particularly natural framework for temporal data, as time-
window features are directly mapped onto segments of a piecewise linear global detuning pulse.
This results in intuitive and expressive embeddings, where local observables reflect different as-
pects of the input. However, its performance was more susceptible to experimental noise, resulting
in a noisy background but still enabling feature interpretability (see Fig. 4.3.4).
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Figure 4.3.4: Timeseries prediction with QRC. (a) The profile of the window feature is encoded
into the piecewise linear global detuning pulse. The selected local observables obtained by probing
the quantum evolution are shown for exact simulation and experiment, with the vertical axis
corresponding to different embedding components and the horizontal to the timeseries steps. (b)
An example of test outcomes predicted by local pulse encoded QRC with 12 qubits, compared to
the equivalent finite-sampled simulation (110 shots per data point) and the true outcomes [33].

On the other hand, position and local pulse encodings showed greater robustness. In particular,
local pulse encoding produced predictions that closely matched simulated results and test out-
comes, except for minor deviations at the edges of the dynamic range. Importantly, the relative
performance ranking observed in simulation, local and position encodings outperforming the global
pulse, was preserved experimentally, confirming the reliability of the encoding hierarchy even in
the presence of hardware noise.

MNIST classification

The QRC algorithm is also suited for image classification tasks. In the paper they applied the
pipeline to the MNIST dataset, a dataset containing gray-scaled handwritten digits (from 0 to 9) ,
each image is a 2D matrix composed of 28 x 28 pixel. As a starting point the binary classification
of digits 3/8 has been studied, in order to check the performance of the QRC algorithm and
evaluating the comparison with other classical and non-linear approaches.

In order to fit the Aquila’s hardware constraint, images are down-sampled into an 8-dimensional
vector using principal component analysis (PCA). The extracted features are then positionally-
encoded in a 9-atom qubit chain. In order to facilitate and optimize hardware runtime quantum
dynamics has been performed in parallel across six decoupled chains, collecting N, measurements
per embedding.

The first classification task explored has been the 3/8 binary classification, using 1000 train and
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Figure 4.3.5: Binary classification with QRC. (a) The MNIST images of handwritten digits are
down sampled to feature vectors that are encoded into the modulation of the nearest neighbor
Rydberg interaction strengths via the position encoding. The quantum reservoir consists of paral-
lel, well-separated neutral-atom chains evolving under the Rydberg Hamiltonian. The equivalent
classical spin reservoir(CRC), where the vector spins precess in the external and neighbor mag-
netic field, is simulated for comparison. (b) The test classification accuracy of several classical
machine learning methods and QRC on the 3/8-MNIST binary classification tasks [33].
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200 test data. In order to evaluate the performance of the method both quantum and classical
reservoir has been tested, Fig. 4.3.5 (a). In the Classical Reservoir Computing (CRC) framework,
the quantum spins (qubits, treated as spin-1/2 particles) are replaced by classical unit vectors.
This transforms the quantum system into a classical one, where each spin evolves according to a
classical precession equation:
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_ oHl 4.3.5
=T (13.5)
Here, the term 9H[S]/dS; acts as an effective magnetic field experienced by spin S;, given by:
OH[S]  Q(t) . Ai(t) 1 A(2)
) _ - =2 (14 89) 4.3,
5. Soh+ > +4;VJ( + 3 (4.3.6)

This formulation enables the simulation of the system by numerically integrating a set of 3 N,
classical differential equations, one for each spatial component of each spin. The CRC procedure
mirrors the QRC pipeline, using the same time-dependent control parameters and Hamiltonian
profiles. The features used for learning tasks are extracted from the z-components of the classical
spins at readout time, along with their pairwise products. Depending on the application, the same
linear models employed in QRC are used for training and prediction.

Importantly, since each classical spin configuration corresponds uniquely to a quantum product
state, the CRC can be interpreted as the non-entangled classical limit of the QRC.

The test accuracy comparison is shown in Fig. 4.3.5(b), it is clear how linear methods do not suffice
in capturing the data expressivity, non linear methods are needed. QRC, CRC and 4 layer-neural
network reaches same performance, when QRC is exactly simulated. performances in quantum
hardware are constrained by the finite number of shots Ny, = 220, nevertheless QRC in real hard-
ware and with constrained shot number is still capable of reaching comparable performance with
other CML techniques, reaching 0.935 test accuracy.

To further investigate how the shot number influence the QRC’s performances, the 10-class MNIST
task has been explored. In this case 1500 train and 500 test data has been used. The 10-class
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MNIST classification task is remarkably more complex on current quantum hardware but serves
as a more stringent test for experimental noise.
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Figure 4.3.6: Test accuracy of QRC simulation and experiment as a function of the number of
shots drawn per data point, N for the 10-class MNIST classification task [33].

From the previous plot QRC performances tends to plateau approximately Ny ~ 1000. There-
fore, in order to fill the performance gap, among simulation and experimental results on QRC, in
Fig. 4.3.5(b) increasing the number of shots per data point should be sufficient.

This performance gap is strictly connected to the stochastic nature of quantum mechanical mea-
surements, a limited number of of samples introduces statistical fluctuations. This effect introduces
a sampling overhead, which, in this context, remains moderate due to the use of local observables
for generating the reservoir features. In practice, performance improves as more shots are used,
up to a point where it stabilizes and becomes nearly indistinguishable from that of the noiseless
simulation. Interestingly, this saturation point appears to be insensitive to the size of the quan-
tum system, and instead is likely determined by factors such as the complexity of the classification
task and the inherent noise in the dataset itself. This implies that once a sufficient number of
measurements is reached, further increasing them has a negligible impact on the accuracy.

Tomato leaf classification

In the previous use cases, the QRC algorithm demonstrated solid performance across different
tasks, achieving good agreement with test outputs in regression problems and outperforming linear
baselines in classification tasks. These results highlight the non-linear transformations induced
by the quantum reservoir. The authors initially tested the algorithm on small-sized reservoirs,
observing a consistent advantage over linear methods and confirming the effectiveness of the QRC
approach in both regression and classification settings. To further investigate the scaling behavior
and predictive accuracy of the model, the algorithm was subsequently tested on larger quantum
reservoirs, reaching up to 108 qubits, a substantial leap compared to previous quantum machine
learning results e.g., [34].

For this purpose, the authors considered a tomato disease classification task based on leaf images.
The dataset consisted of three classes of tomato leaf images, with a total of 498 samples, 400 of
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which were used for training. All images were converted to grayscale and resized to a uniform
resolution of 256 x 256 pixels. Feature extraction was performed by down-scaling each image to
a lower resolution of R, x R, pixels, where each pixel value represents the average intensity over
a square region centered at the corresponding location in the original image. These down-scaled
features were then encoded into a two-dimensional Aquila array of N, = (R, + 1) x R, qubits
using the position encoding strategy, as illustrated in Fig. 4.3.7.
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Figure 4.3.7: Down-scaling procedure of tomato leaf images [33].

In order to investigate the scaling behaviour of the QRC, several IV, has been tested, reaching the
final configuration of a rectangural geometry of 9 x 12.

The results showing the test accuracy as a function of the system size, is shown in Fig. 4.3.8,
where it is compared with classical linear and non-linear models. The experiment conducted with
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Figure 4.3.8: Test accuracy as a function of qubit numbers [33].

108 qubits represents a significant step forward in terms of scale for quantum machine learning
implementations. At this size, the QRC not only outperforms the linear support vector machine
baseline, but also begins to approach the performance of a fully classical 4-layer neural network
containing approximately 20000 trainable parameters. Interestingly, the performance does not
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appear to saturate at 100 shots per data point: results obtained with 1000 shots suggest a potential
for further improvement, indicating that increased sampling may still offer benefits.
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5 Results and Discussion

This chapter presents the original contributions of this thesis, focusing on the implementation and
evaluation of the Quantum Reservoir Computing (QRC) algorithm on a neutral-atom quantum
platform. Building on the theoretical foundations and algorithmic framework described in pre-
vious chapters, the aim here is to explore how quantum-enhanced embeddings can improve the
performance of supervised learning tasks compared to fully classical approaches.

The discussion begins with an overview of Pasqal’s Pulser library, the tool used to simulate and
control neutral-atom devices at the pulse level.

Subsequently, the chapter details the problem setup, including the dataset selection, classical
pre-processing steps, and the design choices for the quantum reservoir. This section establishes
the parameters and constraints under which the QRC algorithm is applied.

Finally, the chapter presents the results obtained with different encoding strategies, highlighting
how global and local encoding schemes affect the expressivity of the quantum reservoir. Compar-
isons with classical methods and insights gained from the simulations conclude the discussion.

5.1 Implementation on the Pasqal platform

Pasqal, a leading company in the development of neutral atoms quantum computers, have re-
cently presented Pulser, an open-source Python library for programming neutral atom devices at
the pulse level. The low-level nature of Pulser makes it a versatile framework for quantum control
both in the digital and analog framework [35].

Pulser allows full control over all physically relevant parameters, enabling the creation of pro-
grams that can either be run locally using the built-in emulator, which faithfully reproduces the
hardware behavior, or sent directly to the QPU to execute the sequence of pulses composing the
simulation. In order to run a full simulation on a Pasqal device we need to carefully go through
each needed step presented in Figure 3.4.1.

In Pulser the first step to run a simulation is the initialization of atoms in trapped arrays, this
process goes under the name of Register creation. A register is a collection of atoms and their
positions. For each atom in a register, the quantum information is encoded in specific electronic
energy levels, which are reached through optical addressing techniques. In Pulser the addressing
of single or multiple atoms is enabled by Channels and the emission of Pulses.

A pulse is defined as the modulation of a channel’s output amplitude, detuning and phase over a
finite duration. For a channel targeting the transition between energy levels a and b, with reso-
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nance frequency wq, = |F, — Ep|/h , the output amplitude determines the Rabi frequency €2(t),
and the detuning §(¢) is defined relatively to w,, and the frequency of the channel’s output signal
w(t), as 0(t) = w(t) —wap. Additionally, the phase ¢ of a pulse can be set to an arbitrary, constant
value. Furthermore, Pulser enable the control over different basis for the quantum computation
and thus, different types of interactions. In what follows we will focus on the so-called "Ising”
configuration, obtained when the spin states are one of the ground state |g) and a Rydberg state
|r), referred in Pulser as the ground-rydberg basis. A described in Eq. 3.2.1 the Hamiltonian
describing the transition between those states is dependent on the constant parameter Cg and the
Rydberg blockade effect, the interaction prevents the simultaneous excitation of two atoms in the
state |r) if Q) << CgRS.

Program structure

The elements necessary for executing a program on Pulser are illustrated in Fig. 5.1.1 and can be
summarized as follows:

e Device consists of a series of specifications that characterize the hardware, including the
chosen Rydberg level, the ranges of the amplitudes and frequencies of the lasers, the minimal
and maximal distance between the atoms, and the different channels that can be declared.

e Register stores the information about the coordinates of the atoms and their respective
ID’s, which serve to identify them when targeting specific operations.

e Channels represent the action of the lasers and are organized by addressing (local or global)
and the type of transition (Rydberg or Raman).

e Waveforms are the basic building blocks of a pulse. They can have custom or predetermined
shapes, all of them indicating the specific profile of the waveform and its duration.

e Pulses consist of waveforms for the amplitude and the detuning. They can be further shifted
by a phase. Once a Pulse is constructed it has to be added to the sequence indicating which
atom(s) are targeted and what channel will implement it.

e Sequence contains the schedule of the pulses in each channel. It is also linked with a
Register and the Device in which it is to be executed. This is the information that can be
sent to a real neutral-atom QPU or simulated on a classical computer.

e Simulation is included to emulate results for the application of sequences. In Pulser, we
have made use of the QuTiP library [36] for the simulation of quantum systems. Each
simulation run returns a specialized object that holds the results and features methods for
postprocessing them.
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Figure 5.1.1: Relationship between the main Pulser classes. The central object is the Sequence,
which is linked to a Device. The Device holds the available Channels, which are selected and
declared in the Sequence, and information of the hardware constraints. These constraints are
enforced upon the Register, where the neutral-atom array is defined, and upon the Pulses. Each
Pulse, defined by its amplitude and detuning Waveforms and a fixed phase, populates the declared
channels alongside other commands like target, which points local addressing channels to specific
qubits, and delay, which idles the channel. The resulting Sequence can then be sent for execution
on the neutral-atom QPU or emulated through Pulser’s Simulation class [35].

5.2 Problem set-up

In this section, we will describe the specific problem addressed in this thesis. The main objective
is to evaluate the performance of the QRC algorithm on a 10-class supervised machine learning
task and to compare the performances with those obtained using a fully classical pipeline.

5.2.1 Dataset

The reference dataset used is the "Modified National Institute of Standards and Technology”, also
known as MNIST dataset [37]. The dataset is a collection of 70000 handwritten digits from 0 to
9, with each image being 28x28 pixels.

In more details the dataset is composed by:

e Number of instances: 70000 images divided in 60000 representing the training set and
10000 the test set.

e Number of Features: 784.

e Pixel: each image is a composed by 784 pixels with values ranging from 0 to 255 representing
the grayscale intensity of the corresponding pixel.

This dataset is well suited for benchmarking classical supervised machine learning. However, given
the current hardware limitations of NISQ devices and the actual Pasqal QPU (see Section 3.4),
we decided to use a reduced version of the original MNIST dataset that is compatible with these
constraints. This reduced version allows us to map each feature to a controllable parameter on
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the Pulser without exceeding hardware limitations.

This alternative version is composed:
e Number of instances: 1797.
e Feature number: 64.
e Pixel: 8x8 image of integer pixels in the range 0 to 15.

is provided by scikit-learn and can be loaded via the function load digits() [38].
An intuitive understanding of the dataset is provided in 5.2.1 that shows a selection of handwritten
digits from the scikit-learn digits dataset.

label=0 label=1 label=2 label=3 label=4

] 2 4 6 ] 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

label=5 label=6 label=7 label=8 label=9

Figure 5.2.1: Examples of handwritten digits from the scikit-learn digits dataset. Each image
comes with his associated label and are composed by 8x8 pixels, with grayscale values ranging
from 0 to 15.

5.2.2 Pre-processing

The reduced dataset contains 64 features per instance. Mapping this amount of feature to the
quantum reservoir is not feasible, as there is no encoding techniques that enable the simulation of
64 features classically, this would exceed the classical computational resources available. Therefore,
to address this limitation we applied PCA to reduce the dimensionality of the inputted feature.

PCA is a linear dimensionality reduction technique that linearly transform the original data onto
a new coordinate system such that the directions (principal components) capture the largest
variation in the original dataset. By projecting high-dimensional data onto the directions of
maximum variance, PCA reduces model complexity while preserving the most relevant features.

As showed in Fig. 5.2.2, for this work we selected the first 5 principal components. From the 6
component onward, there is significant overlap between classes, indicating that these directions
add minimal useful information for the classification task. Once completed PCA reduction and
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Figure 5.2.2: Histograms of the PCA-transformed features for the reduced digits dataset. Each
subplot corresponds to one principal component obtained from PCA. The histograms display the
distribution of values for each component, separated by digit class (from 0 to 9). Overlapping
colors indicate contributions from different classes, allowing comparison of their distributions along
each principal component.

obtained the new coordinate system the next step is to split the original dataset of 1797 instances
into a train and test set. In order to do so, we used the train test_split() function from
sklearn.model selection and defined the train set as 70% out of the full dataset and the test
set as 30%.

The last step required in order to avoid bias in the model is to normalize the data feature to the
range [0, 1].

The preprocessed features are now prepared for encoding into the quantum reservoir.

5.2.3 Quantum Reservoir design

Once the data have been classically pre-processed, they are ready to be fed either into the quantum
reservoir or directly into a classical ML, model for performance comparison.

Device

The first step in setting up a proper Quantum Reservoir is the choice of the encoding technique.
As discussed in Sec. 4.3.1, different encoding strategies are, in principle, possible. However,
Pasqal QPU has limitations that prevents control of single atoms. Therefore, positional and local
encodings are not allowed on the QPU.

In the following, although we work with emulators of the real QPU, we enforce the same hardware
restrictions in order to ensure consistency with potential results obtained on the actual device.
In Pulser, these restrictions are encoded in the device specification. In particular, we adopt the
constraints of the real device FRESNEL as reference:

e Dimensions: 2

e Minimum atom distance: 5 ym

e Maximum number of atoms: 61

e Maximum layout filling fraction: 0.5

e Maximum sequence duration: 6000 ns
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e Pre-calibrated layout: triangular lattice

e Channels: global addressing

e Maximum absolute detuning: 48.69 rad/us
e Maximum Rabi amplitude: 12.56 rad/us

This device is not the one directly used for the simulations, but it provides reference values that
guide the emulated experiments. The distinction between global and local addressing corresponds
to two different device types, which will be discussed in Sec. 5.3.

Register

Once the hardware limitations imposed by the QPU are defined, the next step is to build a register
starting from the available pre-calibrated layout. As shown in Fig. 5.2.3, the pre-calibrated layout
at this stage corresponds to a triangular lattice.
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Figure 5.2.3: The triangular lattice layout as available for QPU emulation. Each o is a trap that
can be filled with an atom.

According to the pre-processing step, we retain 5 PCA-reduced features out of the full set of 64
per instance. This information is used to build the register on top of the pre-calibrated layout.
Consistently with the PCA reduction, for both global and local encoding, the register will consist
of 5 atoms selected from the available traps, forming a linear chain in which the PCA-reduced
features are encoded.

Along with the definition of the register, another fundamental parameter that must be specified
in order to enable interactions and entanglement among atoms is the Rydberg blockade radius.
According to the principle outlined in Sec. 4.3.2, the blockade radius should not be too large
(which would lead to excessive interactions and unrealistic simulation times), nor too small (in
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which case no interaction would occur). Given the spatial separation of 5um between adjacent
atoms along the same row, a blockade radius of 7um was adopted in the simulations, as shown in
Fig. 5.2.4.

Based on the blockade radius, a built-in function is used to determine the magnitude of the Rabi
frequency required to construct the sequence according to the selected encoding technique.

10.0
7.5
5.0 1
2.5
EL 0.0+ &0 a $2 &3 &4
>
-2.54
-5.01 » atoms
-7.54
-10.01

-10 -5 0 5 10
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Figure 5.2.4: Register used for the QRC algorithm. Green dots represent qubits while light green
circles denote the interaction range between them, defined by the blockade radius.

Simulation

The final step before running the simulation is the definition of the sequence and channel, which
depend on the chosen encoding technique and will be detailed in the following sections.

Once the register has been defined and the constraints of the real device enforced, the simulation
of the dynamics can be performed through the Pulser emulator based on QuTiP. The emulator is
initialized as:

emulator = QutipBackend(sequence=sequence, mimic_gpu=True)
results = emulator.run()

where the option mimic_gpu=True ensures that the same hardware constraints of the Pasqal QPU
are applied during the emulation.

In order to extract meaningful observables from the quantum evolution, we define both single-
qubit and two-qubit operators. The single-qubit operators correspond to the Pauli-Z expectation
values on each atom, while the two-qubit operators encode correlations between pairs of atoms
within a cutoff distance, here set to 7 pum to match the blockade radius:

For each input sample, the corresponding sequence is run on the emulator and the quantum state
is obtained at different time steps. At every step, we compute the expectation values of the Z
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and ZZ operators, which together form the embedding vector associated with that time step.
Formally, for input x and time ¢, the embedding reads:

e(x,t) = <<Zl>, Ceey <ZN>, <leg>7 .. )

By concatenating the embeddings across all time steps, we obtain a high-dimensional representa-
tion for each input, which is then used for the subsequent machine learning tasks:

embeddings_train = build_embeddings(x_train, QRC_parameters, positions)
embeddings_test = build_embeddings(x_test, QRC_parameters, positions)

5.2.4 Post-processing

After obtaining the embeddings from the quantum reservoir, we evaluate their performance on
a supervised classification task. The main objective of this post-processing step is to assess how
well the quantum embeddings capture the relevant features of the input data, and to compare the
results with a classical baseline.

Model selection and training

To this end, a logistic regression classifier is trained on the embeddings. Logistic Regression is
a supervised machine learning algorithm used for classification tasks, it predicts the probability
that an observation belongs to one or more discrete classes. The model belongs to the family of
Generalized Linear Models (GLM) and relies on the logistic (or sigmoid) function to map a linear
combination of inputs into a value within the range [0, 1].
In the binary case, given an input x = (21, s, ..., ,), the probability that the output is y = 1 is
modeled as:

Ply =11%) = o(fo+ Brr + - + Byy) (5.2.1)

1

where 0(z2) = ;= is the sigmoid function.

The model does not estimate the probability directly, but the log-odds (the logarithm of the odds
ratio):

log <ﬂ> = fo + iﬁx (5.2.2)

1 —p(x)

The coefficients ; are estimated via Maximum Likelihood Estimation, i.e., by maximizing the
likelihood of the observed data.

For our 10-class classification problem, we use Multinomial Logistic Regression. In this case, the
probability that an observation belongs to class k € {1,..., K} is given by:

exp(Bro + Briz1 + - - + Biptyp)

Ply=Fk|x)= : (5.2.3)
> exp(Bjo + Bpan + -+ + Bipy)
The predicted class is then the one with the highest probability:
y = arg max Py =k|x). (5.2.4)

To reduce the risk of overfitting, logistic regression is often combined with regularization terms.
In particular, one can use:
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e L1 (Lasso): promotes sparsity of the coefficients;
e L2 (Ridge): penalizes large coefficients and stabilizes the solution;
e Elastic Net: combines both approaches.

In our case, the logistic regression has been employed as the final classifier to compare the classical
data and the quantum-generated embeddings [39].

Hyper-parameters tuning

To improve the performance of the logistic regression model and avoid underfitting or overfitting,
we perform hyperparameter tuning using Grid Search.

Grid Search is a systematic approach to explore a predefined set of hyper-parameters and identify
the combination that maximizes the model’s performance. The parameters of the estimator are
optimized via a cross-validation procedure: the original dataset is divided in 5 equal parts, at each
interaction 4 of them are used to train and the remaining 1 for test. Every possible combination
of train and test split is tested in order to reduce the risk of overfitting.

In our case, the hyper-parameters to tune are:

e Penalty: type of regularization, such as L1, L2, or Elastic Net;

e Regularization strength (C): inverse of regularization strength, controlling the amount
of shrinkage applied to coefficients;

e Solver: the optimization algorithm used to fit the model (e.g., saga);
e L1 ratio: used for Elastic Net, balancing L1 and L2 contributions.

After identifying the best combination of hyper-parameters through cross-validation, the selected
logistic regression model is applied to both the classical and the quantum-enhanced datasets. The
performance of the model is then evaluated using the accuracy score, and the classification results
are further analyzed with a confusion matrix.

A confusion matrix is a table that summarizes the performance of a classification model. More
specifically, a confusion matrix C' is such that Cj; is equal to the number of observation known
to be in group ¢ but predicted to be in group j. Thus in binary classification, the count of true
negatives is Cy, false negatives is Cj, true positives is Cy; and false positives is Cyy [40].
Having established the framework of the algorithm, we next investigate two distinct encoding
strategies and their outcomes.

o8



5.3 Global encoding

In the context of neutral-atom quantum computing, a natural strategy for encoding data consists
in mapping the input features onto the time-varying profile of the global detuning pulse:

Ag(tz) == )\Aznaxxi7 (531)

where A,(t;) denotes the global detuning at different time intervals, A is the encoding scale (prop-
erly tuned as discussed in Section 4.3.2), A7 is the maximum absolute detuning supported by
the FRESNEL device, and x; are the pre-processed and normalized data features.

As explained in Section 5.2.3, the QRC algorithm has been executed locally, with reference pa-
rameters derived from the FRESNEL device specifications. In this framework, the simulation of the
global encoding technique is enabled by the ANALOG device, which allows the simultaneous control
and evolution of all the atoms in the defined chain register.

The main parameters defining the simulation are the following:

e Number of atoms: 5, matching the reduced dimensionality of the PCA input

Encoding scale: A = 1, ensuring that all relevant energy scales remain comparable

Blockade radius: 7 um

Rabi frequency: Q = 7.35rad/us

e Maximum global detuning: AT ~ 48.7 rad/ps, in accordance with FRESNEL specs
e Time interval: ¢;,, = 500 ns for the encoding and probing of each feature

e Total evolution time: 7" = 2500 ns

The atomic register is initialized on a TriangularLatticeLayout of the ANALOG device, selecting
five traps at fixed positions, as shown in Fig. 5.2.4. Each trap is assigned to a qubit identifier
i, resulting in a chain register with known inter-atomic distances. The blockade radius is then
used to compute the effective Rabi frequency, 2 = 7.35rad/us, which fixes the amplitude of the
driving pulse.

For each input vector x = (x1,...,xs), we build one pulse sequence whose detuning is determined
segment-by-segment by the components of z. Specifically, we define target detunings

Ag(tz) :/\A;’wmxz (121,,d),

and construct a piecewise-linear waveform by concatenating d segments of equal duration tiy.
For each consecutive pair (A;, A;11) we create a RampWaveform of duration ¢;,, that interpolates
linearly from A; to A; .1, while the last segment holds the final value A, for the same duration. The
full, input-conditioned detuning profile is assembled as a CompositeWaveform with total duration

T=d- tintervaL

In the case d = 5 and tipgerval = 500 ns, the resulting sequence lasts 2.5 us.
For each input z, a fresh sequence is compiled on the rydberg global channel, which drives all
atoms simultaneously. A constant-amplitude pulse is applied with

Qt) =Q, A, (t) = CompositeWaveform(A,(t1), ..., Ay(tq)), ¢ =0,
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Figure 5.3.1: Typical pulse sequence employed in the global encoding scheme. The plot shows
the constant Rabi frequency 2 (green) and the global detuning A, (purple) over time. The data
features are encoded in the detuning amplitude. A short initialization delay of approximately 50
ns is present between the trigger signal and the onset of the detuning pulse. This delay is an
intrinsic feature of the experimental setup, accounting for hardware response times.

so that the amplitude remains fixed at the Rabi frequency while the detuning follows the input-
dependent, piecewise-linear trajectory defined above.

As described in Sec. 5.2.3, the simulation is executed by inputting the desired pulse sequence,
with the option to mimic the QPU. The observables used as input for the classical post-processing
are single and two-qubit Pauli-Z operators. At each time step and for each feature vector, these
measurements are collected into the embeddings matrix, which constitutes the output of the QRC.

Before presenting the results obtained with this global encoding scheme, it is important to high-
light a subtlety inherent to this approach. Since the encoding is global, the same detuning profile
is applied to all atoms simultaneously. If the register is arranged in a symmetric chain, as in
our current setup, significant information can be lost or become redundant: atoms located sym-
metrically with respect to the chain’s center produce identical embeddings, as evident from the
time-resolved expectation values shown above (see Tab. 5.1).

t =500ns | t =1000ns | t=1500ns | ¢t = 2000 ns | t= 2500ns
(Z), -0.785 -0.529 -0.513 -0.655 -0.761
(Z), -0.593 -0.417 -0.820 -0.615 -0.549
(Z)q -0.777 -0.605 -0.625 -0.614 -0.574
(Z)4 -0.593 -0.417 -0.820 -0.615 -0.549
(Z), -0.785 -0.529 -0.513 -0.655 -0.761
(ZZ)o1 0.395 -0.033 0.344 0.284 0.325
(ZZ) 1, 0.390 0.034 0.450 0.243 0.147
(ZZ) 9 0.390 0.034 0.450 0.243 0.147
(Z2Z) 5, 0.395 -0.033 0.344 0.284 0.325

Table 5.1: Time-resolved expectation values of (Z) single-qubit and (ZZ) nearest-neighbor two-
qubit operators for a 5-qubit chain under the sequence showed in Fig. 5.3.1. Symmetry in the
chain leads to some redundant embeddings.
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In practical hardware such as FRESNEL, where atoms are constrained in fixed positions, this
symmetry-induced redundancy limits the expressivity of the reservoir. In principle one could
mitigate this effect by slightly perturbing the atomic positions to break perfect symmetry. How-
ever, the inability to freely place atoms remains a fundamental limitation for the performance of
global encoding schemes.

Once the embeddings matrix has been obtained from the QRC simulation, it is used as input for a
logistic regression model to perform classification. As described in Sec. 5.2.4, the hyper-parameters
of the logistic regressor are optimized via a grid search procedure. Importantly, this optimization
is carried out separately for the QRC-enhanced embeddings and for the fully classical embeddings,
in order to account for potential differences in feature scale and correlations between the two repre-
sentations. The resulting best hyper-parameters for each case are reported in Tables 5.3 and 5.4, re-
spectively.

Penalty C Test Accuracy
12 10 0.849
elasticnet 10 0.847
elasticnet 10 0.847
11 100 0.844
elasticnet | 100 0.844

Table 5.4: Top 5 hyperparameter combinations for the logistic regression model using classical
features and the saga solver, selected from the full grid search. Test accuracy is reported for each
combination.

Model evaluation

After hyperparameter optimization, the QRC-enhanced features are fed into the best logistic re-
gression model, an [;-regularized regressor, as reported in Tab. 5.3. Figure 5.3.2 shows the test
accuracy evaluated on the QRC-enhanced training and test sets as a function of the training set
size.

As shown in the plot, the QRC embeddings allow the model to achieve high accuracy even with a
small number of training samples, indicating that the quantum encoding captures relevant infor-
mation for the classification task.

To further assess the performance of the QRC-enhanced model, the confusion matrix was com-
puted on the test set (Fig. 5.3.3). The confusion matrix confirms that the QRC embeddings
improve class separability, reducing mis-classification errors, even for classes with subtle differ-
ences in the input space.

In order to compare the performance of QRC-enhanced features with a purely classical approach,
we evaluated the logistic regression model on PCA-reduced classical data, using the top hyperpa-
rameter combinations shown in Tab. 5.4. Figure 5.3.4 shows the learning curve for the classical
dataset.

To provide a direct comparison between QRC-enhanced and classical features, Fig. 5.3.5 reports
the test accuracy for both models across different training set sizes.
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Figure 5.3.2: Learning curve for QRC-enhanced features. The model accuracy was evaluated on
a fixed test set, corresponding to 30% of the 1797 samples, achieving a maximum accuracy of

90.17%.
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Figure 5.3.3: Confusion matrix for QRC-enhanced features. The matrix highlights the model’s

ability to correctly classify each class and identifies potential confusions between similar classes,
such as 2/8 and 3/9.

From the comparison, it is evident that the QRC model consistently achieves higher accuracy
than the classical model across all training sizes. This is possible thanks to the non linearity
induced by the quantum reservoir step. Despite the fully classical model is able to reach great
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Figure 5.3.4: Learning curve for classical PCA-reduced features. The model accuracy was evalu-

ated on a fixed test set, corresponding to 30% of the 1,797 samples, achieving a maximum accuracy
of 85.15%.
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Figure 5.3.5: Comparison of learning curves for QRC-enhanced and classical features. The models

were evaluated on the test set for varying training sizes with QRC consistently outperforming the
classical approach.

performances over the test set (= 85%), those are significantly improved by introducing a quan-
tum step that takes into account the non linear correlation among the classical input feature.
This analysis shows that, despite the symmetry-induced redundancy in the register, the global
encoding scheme enables QRC embeddings that significantly outperform the purely classical base-
line, confirming the role of the quantum reservoir in enhancing feature expressivity.
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5.4 Local encoding

An alternative strategy for data injection into the quantum reservoir is the so-called local encoding,
where each input feature z; is directly mapped onto the detuning of an individual qubit:

Ay = AA™ (5.4.1)

with A,; the detuning applied to qubit g;, A the encoding scale, and A™** the maximum local
detuning value.

Unlike the global encoding scheme (Sec. 5.3), this method requires the ability to independently
address each atom in the register with a local detuning channel.
In the current generation of neutral-atom devices such as FRESNEL, this type of control is not
physically available, since only global channels are supported and the detuning cannot be targeted
at individual qubits. For this reason, the local encoding scheme cannot be directly implemented on
the actual hardware. However, it can be emulated using the MockDevice, a virtual device without
hardware constraints. To preserve physical relevance, we nevertheless constrained the parameters
of the mock simulation to values consistent with the FRESNEL specifications, thus ensuring that
the numerical study remains physically meaningful.
As showed in Fig. 5.2.4, the atomic register consists of 5 atoms placed on a one-dimensional chain
with coordinates

qubit_coords = {qy = (—10,0), ¢1 = (—5,0), ¢2 = (0,0), g5 = (5,0), g4 = (10,0)},

matching the reduced dimensionality of the PCA input.
The main parameters are:

e Number of atoms: 5, equal to PCA feature vector dimension

Encoding scale: A =1

Blockade radius: 7 um

e Maximum local detuning: A ~ 48.7rad/us, in accordance with FRESNEL specs

Rabi frequency: Q = 7.35rad/us

Time interval: t;,; = 100ns for the probing of each feature

Total evolution time: 7' = 500 ns per qubit

Each feature x; of the input vector is mapped to a detuning value A,; acting only on qubit g;.
For each input x = (1, ..., rs), the simulation builds a sequence where all qubits are driven with
constant-amplitude pulses at frequency €2, while the detuning of each channel follows the locally

assigned value:
Qt) = Q, Ay, (t) = NA™ 2, o= 0.

As described in Sec. 5.2.3, the simulation is executed by inputting the desired pulse sequence,
with the option to mimic the QPU. The observables used as input for the classical post-processing
are single and two-qubit Pauli-Z operators. At each time step and for each feature vector, these
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measurements are collected into the embeddings matrix, which constitutes the output of the QRC.

Once the embeddings matrix has been obtained from the QRC simulation, it is used as input for a
logistic regression model to perform classification. As described in Sec. 5.2.4, the hyper-parameters
of the logistic regressor are optimized via a grid search procedure. Importantly, this optimization
is carried out separately for the QRC-enhanced embeddings and for the fully classical embeddings,
in order to account for potential differences in feature scale and correlations between the two repre-
sentations. Differently from the global encoding case, here no redundancy arises from symmetries
in the register, since each qubit is assigned a distinct detuning profile. The resulting best hyper-
parameters for the QRC-enhanced and fully classical method are reported in Tables 5.4 and 5.7, re-
spectively.

Penalty C Test Accuracy
12 10 0.847
elasticnet 10 0.848
elasticnet 10 0.847
11 100 0.846
12 100 0.844

Table 5.7: Top 5 hyperparameter combinations for the logistic regression model using classical
features, selected from the full grid search. Test accuracy is reported for each combination.

Model evaluation

After hyperparameter optimization, the QRC-enhanced features obtained with the local encoding
scheme are fed into the best logistic regression model, an [,-regularized regressor, as reported in
Tab. 5.4. Figure 5.4.1 shows the test accuracy evaluated on the QRC-enhanced training and test
sets as a function of the training set size.

As illustrated in the plot, the locally encoded QRC embeddings allow the model to reach high
accuracy levels even with a relatively small training set, confirming that the quantum encoding
provides an expressive feature representation even with a restricted training set. Compared to
the global encoding case, the local detuning reaches similar performances across the different sets.
This result is consistent with the observation in literature, see Fig. 4.3.2 especially in the emula-
tion case where performances across the different encoding schemes are similar.

To further assess the performance of the locally encoded QRC model, the confusion matrix was
computed on the test set (Fig. 5.4.2). The confusion matrix confirms that the local encoding
provides a rich embedding space, with few overlap between classes.

To benchmark these results against a fully classical baseline, we again trained the logistic regres-
sion model on PCA-reduced classical features, using the top hyperparameter combinations shown
in Tab. 5.7. Figure 5.4.3 shows the corresponding learning curve.
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Figure 5.4.1: Learning curve for QRC-enhanced features with local encoding. The model accuracy

was evaluated on a fixed test set, corresponding to 30% of the 1,797 samples, achieving a maximum
accuracy of 89.61%.
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Figure 5.4.2: Confusion matrix for QRC-enhanced features with local encoding. The matrix

highlight the model’s accuracy reached in each classes, showing potential confusions between
classes 9 and 3.

Finally, a direct comparison between QRC-enhanced embeddings with local encoding and the
purely classical features is reported in Fig. 5.4.4. From the comparison, the local encoding scheme
achieves performance improvements over classical features, with no redundancy issues arising from
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Figure 5.4.3: Learning curve for classical PCA-reduced features (local encoding baseline). The

model accuracy was evaluated on a fixed test set, corresponding to 30% of the 1,797 samples,
achieving a maximum accuracy of 85.15%.
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Figure 5.4.4: Comparison of learning curves for QRC-enhanced and classical features with local
encoding. The QRC consistently achieves higher accuracy across training sizes.

register symmetry. This demonstrates that QRC consistently extracts non-linear correlations,
regardless of the chosen encoding strategy.
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5.5 Future works

The work presented in this thesis has focused on the simulation of the Quantum Reservoir Com-
puting algorithm on neutral-atom devices, implementing both the global and the local encoding
schemes, emulating the behavior of the FRESNEL quantum processor. A natural future develop-
ment consists in extending the described procedure to direct execution on a real QPU, in order
to experimentally validate the results obtained in simulation.

Since the current FRESNEL hardware does not yet support local qubit addressing, such an extension
is currently feasible only in the global encoding mode.

The procedure for running the QRC protocol on real hardware remains conceptually identical
to the simulated one: for each input x, a sequence of global detuning pulses is constructed ac-
cording to the linear register configuration already described in this work. Measurements are then
performed on single and two-qubit Pauli-Z operators. The key difference is that embeddings are no
longer computed from Schrodinger-based simulations (e.g., QuTiP), but directly from bit-strings
obtained through quantum measurements on the device.

To enable execution on a QPU, the sequences are serialized and submitted to the Pasqal SDK.
For each evolution time ¢, a batch is created, containing as many jobs as there are input instances.
Each job specifies the detuning parameters for the sequence together with the number of repeti-
tions IV, which controls the statistical accuracy of the measurement.

Once the jobs have been processed by the QPU, each of them returns a distribution of bit-strings
in the computational basis. These bit-strings are mapped to 1 values, from which the expecta-
tion values (Z;) and correlations (Z;Z;) are derived as averages over the available repetitions.
By repeating the measurement at each time step, it is possible to estimate embeddings with con-
trolled accuracy, at the cost of increased computational resources.

The overall software workflow can thus be summarized as follows:

1. Construction and serialization of the global detuning pulse sequences corresponding to the
inputs;

2. Submission of batches of jobs to the QPU via the Pasqal SDK;
3. Collection of bit-strings returned for each input and evolution time;

4. Conversion into expectation values (Z) and (ZZ7) through averaging over repeated measure-
ments;

5. Assembly of the embedding matrix, concatenating the features obtained at different time
steps, to be used as input to the machine learning model.

In this way, the simulated framework can be seamlessly extended to execution on real quantum
hardware, with the embedding quality explicitly depending on the number of shots and on the
intrinsic noise of the device.

Beyond experimental validation, several research directions naturally emerge from the results
of this thesis:
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e Dependence on observables. A systematic analysis may clarify to what extent measure-
ments of (Z) and (ZZ) are sufficient to saturate performance, or whether the inclusion of
higher-order correlators provides a significant contribution to the expressivity of the reser-
VOIT.

e Thermalization phenomena. Since embeddings are collected as a function of time, it is
important to investigate whether expectation values converge to a stationary regime after a
certain evolution time, thereby reducing the effective temporal window available for compu-
tation. This aspect is crucial for optimizing hardware resources and for the design of more
efficient reservoirs.

e Improvement of global encoding. The main limitation observed in global encoding is
redundancy arising from the symmetry of the atomic register. A possible improvement would
consist in introducing controlled asymmetries in the spatial arrangement of the atoms, in
order to break degeneracies and enrich the embedding space. This direction represents a
promising development both at the simulation level and in hardware design.

e Extensions to complex tasks. A further step will be to apply the QRC framework
to more complex problems, such as recognition of excited states in quantum chemistry or
multiclass classification tasks in real-world domains, in order to assess to what extent the
advantages observed in this thesis can be generalized beyond the reduced MNIST dataset.

In conclusion, the transition from simulation to experimentation on real hardware, together with
the exploration of richer observables, dynamics, and configurations, constitute the main future
research directions, with the ultimate goal of consolidating QRC as a promising paradigm for
quantum data processing.
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6 Conclusions

This thesis investigated Quantum Reservoir Computing (QRC) as a distinct, non-variational
paradigm for quantum machine learning, suited for near-term quantum hardware. Motivated
by the limitations of current NISQ devices (noise, limited qubit connectivity and trainability is-
sues such as barren plateaus), the work developed, implemented and benchmarked two encoding
strategies, global and local detuning encodings, within a QRC pipeline simulated using Pasqal’s
Pulser environment.

The main technical contributions are threefold. First, a QRC pipeline for Pasqal devices was de-
signed and implemented to map classical inputs into time-dependent pulses and to collect single-
and two-qubit Pauli-Z expectation values as embeddings; the implementation adheres to realistic
device constraints (5 atoms, blockade radius 7 ym, Q = 7.35 rad/us, AP*™* ~ 48.7 rad/us) and
employs Pulser primitives to construct physically plausible sequences. Second, two concrete en-
coding strategies were compared: a global detuning waveform affecting all atoms simultaneously,
and a local per-qubit detuning scheme. Finally, a systematic evaluation against a classical PCA
baseline was carried out using logistic regression with grid-searched hyper-parameters, reporting
learning curves, confusion matrices and model-selection statistics.

The empirical findings show that QRC-enhanced embeddings consistently outperform the classical
PCA baseline across encoding schemes and training-set sizes. Quantitatively, the global-encoding
QRC achieved a peak test accuracy of 90.17% (vs. 85.15% for the classical baseline), while the
local encoding delivered 89.61%. The improvement is observed throughout the learning curves
and is particularly pronounced in low-data regimes: QRC embeddings provide richer, more sep-
arable feature representations that allow simple linear readouts to reach higher accuracy with
fewer training examples. Confusion matrices indicate improved class separability and reduced
mis-classification for closely related classes.

These results support two key conclusions. First, the quantum reservoir step effectively induces
nonlinear embeddings that are difficult to reproduce with simple classical PCA pre-processing;
this enriches the feature space in a way that benefits linear classifiers. Second, the advantages
of QRC are not limited to a single encoding strategy: both global and local encodings produce
meaningful gains, although they come with different practical constraints.

The work also identifies clear limitations and practical challenges.

The global encoding suffers from symmetry-induced redundancy when the atomic register is ar-
ranged symmetrically: symmetric atoms produce nearly identical embeddings and reduce effective
expressivity. The local encoding avoids this redundancy but could only be studied here in emula-
tion because the current FRESNEL hardware does not support per-qubit detuning. More generally,
all results presented are simulated: embedding quality on a real QPU will depend on finite-shot
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statistics, device noise, and compilation overhead.

As immediate next steps, we prioritize experimental validation of the global-encoding sequences on
the Pasqal QPU and targeted strategies to mitigate symmetry-induced redundancy in the reservoir
layout. Additionally, a focused study on the choice of observables and on optimal evolution times
would clarify the trade-off between expressivity and measurement cost. For a detailed road-map
and further technical directions see Sec.5.5

In summary, this thesis demonstrates that QRC, implemented with realistic neutral-atom primi-
tives, is a promising and experimentally grounded route to harness near-term quantum dynamics
for supervised learning. The observed accuracy gains over classical baselines, together with the
non-variational, training-free nature of the reservoir step, indicate that QRC can offer practical
benefits on NISQ hardware. The transition to real-device experiments and the systematic study
of observables, asymmetries and scaling will be decisive to confirm and extend the advantages
demonstrated here. Overall, QRC appears as a robust and flexible framework worth further ex-
perimental investment, well positioned to exploit the dynamical richness of neutral-atom platforms
in the near term.
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