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Department of Physics and Astronomy “Augusto Righi”

Bachelor’s Degree in Physics

The Noether Theorem and its Applications

Supervisor:

Prof. Roberto Balbinot

Submitted by:

Stefano Doria

Academic Year 2024/2025



Contents

Abstract 2

Introduction 3

1 Special relativity 4
1.1 4-tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Relativistic field theory 7
2.1 Euler-Lagrange equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Klein-Gordon Lagrangian 10
3.1 Real Klein-Gordon theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Complex Klein-Gordon theory . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Lagrangian of the electromagnetic field 13

5 Noether theorem, conserved currents and charges 16

6 Translational symmetry 22
6.1 Energy-momentum tensor of a real scalar field . . . . . . . . . . . . . . . 25
6.2 Energy-momentum tensor of the electromagnetic field . . . . . . . . . . . 26

7 Scale symmetry 28

Bibliography 31

1



Abstract

In questo lavoro si è discussa la teoria relativistica dei campi e, in particolare, quali siano
le conseguenze della presenza di una simmetria in un sistema.

Innanzitutto si è costruito il framework necessario allo sviluppo di questa teoria richia-
mando concetti di relatività ristretta, in particolare i concetti di scalare, quadrivettore
e quadritensore sotto Lorentz.

Si è quindi proceduto introducendo la teoria relativistica dei campi. Ciò significa
costruire il formalismo lagrangiano che può poi essere usato per descrivere la dinamica
di una campo.

Si sono discusse due teorie di campo: la teoria relativa a campi scalari, trattando in
particolare la teoria di Klein-Gordon, e la teoria relativa al campo elettromagnetico.

Prossimo passaggio è stato presentare il teorema di Noether, che associa ad ogni
simmetria continua di un sistema delle correnti che sono conservate e delle cariche che
sono costanti del moto.

Si è infine applicato il teorema di Noether a due simmetrie. La prima di queste
è stata la simmetria traslazionale, presente in ogni sistema. Si è osservato che tale
simmetria è legata alla conservazione dell’energia e della quantità di moto. La seconda
è la simmetria di scala, che è invece presente solo quando una teoria è priva una scala
dimensionale caratteristica.
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Introduction

A fundamental aspect in modern physics is the study of symmetries. Symmetries are
often seen as the basic features that then determine the objects and the theories we use.

A fundamental result regarding symmetries is the Noether theorem, which allows us
to define conserved quantities when a system has a continuous symmetry. By using the
Noether theorem, we can see how fundamental conservation laws, like that of energy or
of momentum, are the result of the presence of a symmetry.

It’s important to note that the theories used to described physical systems are field
theories. Even objects classically considered as particles have a field associated to them.
This works also the other way around, meaning objects classically considered as fields
have a corresponding particle.

Our aim in this work will be, starting from some basics concepts of special relativity,
to work our way up to relativistic field theory and the Noether theorem, ending then by
discussing a couple of uses this theorem.

3



Chapter 1

Special relativity

The special theory of relativity is built upon two postulates, which are based on experi-
mental evidence:

1 Relativity principle: physical laws have the same form in every inertial frame of
reference, as it was for Galilean relativity.

2 Light speed invariance: the speed of light in vacuum has the same value in all
inertial frames.

These postulates affect the framework used to describe physical phenomena. Central
to this framework is the notion of an event, which is characterised by happening at a
certain point in space and a certain moment in time. This means that one can associate a
quadruple of real numbers (ct, x, y, z) to any event, where c is the light speed in vacuum,
t is the time of the event and x = (x, y, z) are the spatial coordinates of the point where
the event happens. We shall write these quadruples as xµ, with µ = 0, 1, 2, 3 and

x0 = ct, x1 = x, x2 = y, x3 = z. (1.1)

The 4-dimensional space to which these belong is called Minkowski spacetime and we
shall write it as M.

We want to see how xµ transforms under a change from one inertial frame to another.
This transformation has to be linear, so that, if d2x

dt2
= 0 in one inertial frame, it does so

in all inertial frames. Then, xµ will transform as x
′µ = Λµ

νx
ν 1, with Λµ

ν being a 4x4
matrix.

From the two postulates of special relativity one can obtain that the quadratic form

ds2 = c2dt2 − dx2 − dy2 − dz2 (1.2)

is invariant under a transformation between inertial frames.
Eq. 1.2 can also be written as

ds2 = dxµdx
µ = ηµνdx

νdxµ (1.3)

1We use Einstein notation, meaning that summation over repeated indices is implicit.
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where xµ = (ct,−x,−y,−z) and ηµν is called metric tensor, a 4x4 matrix of the form
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


in every inertial frame. The metric tensor ηµν has the property that, for any vector xν ,
xµ = ηµνx

ν , that is, it lowers the index of the vector. The inverse metric tensor ηµν ,
which is a matrix of the same form as ηµν , raises the index of a vector instead, meaning
xµ = ηµνxν .

From the invariance under a transformation between inertial frames of Eq. 1.3 we
obtain that the matrix Λµ

ν must satisfy

ηµνΛ
µ
αΛ

ν
β = ηαβ. (1.4)

We can note that, due to ηµν being symmetrical, Eq. 1.4 imposes 10 constraints on the
16 components of Λµ

ν , leaving 6 free parameters: the relative rotation angles around
three axes and the three components of the relative velocity between two inertial frames.

Transformations of the type
x′µ = Λµ

νx
ν (1.5)

with Λµ
ν satisfying Eq. 1.4 are called Lorentz transformations and they form the Lorentz

group O(3,1), that means det(Λµ
ν) = ±1 and Λ0

0 ≥ 1 or Λ0
0 ≤ −1. An important

subgroup of Lorentz transformations are the special Lorentz transformations. These
transformations belong to the group SO+(3,1), meaning that det(Λµ

ν)=1 and Λ0
0 ≥ 1.

Finally, we note that, to have the most possible generic transformation between
inertial frames, we should also consider a translation, so that

x
′µ = Λµ

νx
ν + aµ. (1.6)

These are called Poincaré transformations.

1.1 4-tensors

We can now define different kinds of objects based on how they transform under a special
Lorentz transformation.

An object ϕ(x) 2 such that ϕ′(x′) = ϕ(x) is called a scalar under Lorentz.
A generic quadruple Aµ(x) = (A0(x), A1(x), A2(x), A3(x)) that transforms as

A′µ(x′) =
∂x′µ

∂xν
Aν(x) = Λµ

νA
ν(x) (1.7)

is called a contravariant vector. The prototype of such an object is xµ, which represents
a point in M. Contravariant vectors are characterised by having a raised index and they
are regarded as rank (1, 0) tensors.

2We shall express that an object f is dependent on xµ by writing it as f(x)
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Another possible type of 4-vector is a quadruple Aµ(x) = (A0(x), A1(x), A2(x), A3(x))
that transforms as

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) = Λ ν

µ Aν(x), (1.8)

where by Λ ν
µ we mean (Λ−1)t ν

µ . Such objects are called covariant vectors and an example
of them is the quadrigradient of a scalar

∂µϕ(x) =
∂ϕ

∂xµ
(x) = (

1

c

∂ϕ

∂t
(x),

∂ϕ

∂x
(x),

∂ϕ

∂y
(x),

∂ϕ

∂z
(x)).

Covariant vectors are characterised by having a lowered index and they are regarded as
rank (0, 1) tensors.

We can also have a rank (m,n) tensor, which will have m raised indices and n lowered
indices. A 4-tensor of this kind is written as T µ1...µm

ν1...νn
(x) and transforms as

T
′µ1...µm

ν1...νn
(x′) = Λµ1

α1
...Λµm

αm
Λ β1

ν1
...Λ βn

νn T
α1...αm

β1...βn
(x) (1.9)

We note that notions of symmetric and antisymmetric tensors are valid only if the
indices we swap are of the same kind.

We observe now some important properties of 4-tensors:

1 The linear combination of tensors of the same rank is a tensor of the same rank.

Example: aAµ
ν + bBµ

ν = T µ
ν .

2 The product of a rank (m,n) tensor and a rank (m′, n′) tensor is a rank (m +
m′, n+ n′) tensor.

Example: Aµ
γB

ν = T µ ν
γ .

3 Given a rank (m,n) tensor, we can contract two indices of different kind and we
obtain a rank (m− 1, n− 1) tensor.

Example: Aµ α
νµ = A0 α

ν0 + A1 α
ν1 + A2 α

ν2 + A3 α
ν3 = T α

ν .

4 By differentiating a rank (m,n) tensor with ∂µ = ∂
∂xµ , we obtain a rank (m,n+ 1)

tensor.

Example: ∂µT
α
β.

Lastly, we note that by multiplying a rank (m,n) tensor T by gµν and then contracting
a raised index of T with and index of gµν we are effectively just lowering an index of T .
In the same way, we can raise a lowered index using gµν .

Examples: gµνT
ν
γλ = Tµγλ, gµνT γ

νλ = T γµ
λ.
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Chapter 2

Relativistic field theory

One fundamental type of object we encounter in physics are fields, which are functions of
spacetime. The most basic example of a field is the electromagnetic field, represented by
the four-potential Aµ(x) = (ϕ(x),A(x)) where ϕ(x) and A(x) are the electrostatic and
the vector potential respectively. The strong and weak interactions can be described by
fields too. Moreover, we now know that it’s possible to associate a field to any particle
and vice-versa. For example, there is a field associated to the pion π0 and there is a
particle, the photon, associated to the electromagnetic field.

Fields can be of different kinds, such as:

- Scalar fields ϕ(x).

Example: particles of spin 0, like the pion π0 and the pair of pions π+ and π−.

- Vector fields V µ.

Example: particles of spin 1, like the photon, to which corresponds the electro-
magnetic four-potential Aµ(x).

- Spinor fields ψ(x).

Example: particles of spin 1
2
, like quarks and leptons.

We now want to see how fields evolve in the spacetime. To do so we shall assume
that the dynamics of a generic field ϕ(x) 1 is described by an action S[ϕ] of the form

S[ϕ] =

∫
dx0 L =

∫
d4x L (2.1)

where L is the Lagrangian of the field ϕ and L is the Lagrangian density 2, which could
be a function of xµ, ϕ(x), ∂µϕ(x), ∂

2
µϕ(x), ... . We will then use the principle of stationary

action to obtain the equations of motion that govern how ϕ(x) evolves.

1Here ϕ(x) is not necessarily a scalar field.
2We will often refer to L simply as Lagrangian.
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The action S must satisfy two important properties: it must be a scalar under
Poincaré transformations and it must be real. Reality directly translates to L. The
same happens for the second property because, by

d4x′ = |detΛ|d4x = d4x (2.2)

d4x is a scalar under Poincaré (due to Λ being the Jacobian matrix of a generic Poincaré
transformation), which means that, for S to be a scalar, L has to be one.

Requiring invariance under Poincaré transformations means requiring invariance un-
der translations and under Lorentz transformations. Since, under a generic transfor-
mation, the way a field transforms is given by ∂x′µ

∂xν or ∂xν

∂x′µ , any field is invariant under
translations, that is ϕ′(x′) = ϕ(x). This means that requiring invariance under transla-
tions reduces to requiring that L has no explicit dependence on xµ.

Moreover, we assume that L has no dependence on derivatives of ϕ higher than the
first order derivative. This is done to avoid equations of motion with derivatives higher
than the second order derivative, which would make the equations much more complex.

2.1 Euler-Lagrange equation

We are now ready to use the principle of stationary action to obtain the equations of
motion of the field ϕ(x) described by the Lagrangian L(ϕ(x), ∂µϕ(x)), The principle of
stationary action states that, given the action

S =

∫
Ω

d4x L(ϕ(x), ∂µϕ(x)), (2.3)

where Ω is a volume in spacetime, the configuration taken by the field ϕ(x) is such that
δS = 0 for an arbitrary infinitesimal variation of ϕ(x)

ϕ(x) → ϕ(x) + δϕ(x) with δϕ(x) = 0 on ∂Ω, (2.4)

where ∂Ω is the contour of Ω.
This variation has no effect on the integration volume or on the coordinates xµ, so

we have

δS = δ

∫
Ω

d4x L(ϕ(x), ∂µϕ(x)) =
∫
Ω

d4x δL(ϕ(x), ∂µϕ(x)) =

=

∫
Ω

d4x (
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)). (2.5)

Since xµ does not change we have

δ(∂µϕ) = ∂µ(ϕ(x) + δϕ(x))− ∂µϕ(x) = ∂µδϕ(x) (2.6)

which means that Eq. 2.6 becomes

δS =

∫
Ω

d4x (
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µδϕ). (2.7)
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Integrating by parts the second term of Eq. 2.7 and then using Gauss’s theorem we
obtain

δS =

∫
Ω

d4x (
∂L
∂ϕ

− ∂µ(
∂L

∂(∂µϕ)
))δϕ +

∫
∂Ω

dσµ
∂L

∂(∂µϕ)
δϕ, (2.8)

where the last term vanishes because δϕ = 0 on ∂Ω by Eq. 2.4.
Since δϕ is arbitrary, we have that

δS =

∫
Ω

d4x (
∂L
∂ϕ

− ∂µ(
∂L

∂(∂µϕ)
))δϕ = 0 → ∂L

∂ϕ
− ∂µ(

∂L
∂(∂µϕ)

) = 0, (2.9)

In general ϕ may have multiple components ϕi, with i = 1, 2, ..., N , so we have

∂L
∂ϕi

− ∂µ(
∂L

∂(∂µϕi)
) = 0 with i = 1, 2, ...N. (2.10)

These are known as Euler-Lagrange equations and solving them gives the equations of
motion for the field ϕ(x).

We see here the importance of requiring that L is real. It’s thanks to this requirement
that we have N equations for the N components ϕi of the field. If L was allowed to have
an imaginary part, it would result in having 2N independent equations, which would
make the problem overdetermined.

It’s important to note that there are multiple choices of L that give the same equa-
tions of motion. In fact, given the Lagrangian L of a certain field ϕ(x), the following
transformations are possible leaving the equations of motion unchanged:

- We can multiply L by a constant α

L → L′ = αL. (2.11)

Doing this is equivalent to multiplying the Euler-Lagrange equation by a constant.

- Given a generic function of ϕ(x) Λµ(ϕ), we can add it to L

L → L′ = L+ ∂µΛ
µ(ϕ). (2.12)

By doing so, S ′ becomes

S ′ = S +

∫
Ω

d4x ∂µΛ
µ(ϕ). (2.13)

Since the second term of Eq. 2.13 vanishes when we study a variation δϕ of the
type described in Eq. 2.6, we conclude that adding Λµ(ϕ) to L leaves the equations
of motions unchanged.
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Chapter 3

Klein-Gordon Lagrangian

The simplest field we can study is a real scalar field ϕ(x). Such fields represent particles
with spin 0 and with no electric charge, like the pion π0 or the Higgs boson.

A general real scalar field ϕ(x) is described by the Lagrangian

L =
1

2
∂µϕ∂

µϕ− F (ϕ), (3.1)

where F (ϕ) is a potential for ϕ. The term 1
2
∂µϕ∂

µϕ is referred to as the kinetic term,
because its form mirrors that of the kinetic term in the Lagrangian of a particle.

We shall briefly check if this Lagrangian satisfies the requirements that we determined
in the previous section. The requirement of reality is obviously satisfied thanks to ϕ being
real. Lorentz invariance is also satisfied since ϕ and ∂µϕ∂

µϕ are scalars under Lorentz.
Using the Euler-Lagrange equation 2.10, we can now obtain the equation of motion

of ϕ(x). First we calculate the partial derivatives of L with respect to ϕ and ∂µϕ

∂L
∂(∂µϕ)

= ∂µϕ ;
∂L
∂ϕ

= −dF
dϕ

. (3.2)

Then, by inserting these into Eq. 2.10, we obtain

2ϕ+
dF

dϕ
= 0, (3.3)

where 2 = ∂µ∂
µ. We have thus obtained the equation of motion of a generic real scalar

field ϕ(x) with potential F (ϕ).

3.1 Real Klein-Gordon theory

We will now discuss the Klein-Gordon theory, which is the most basic theory for a real
scalar field. This theory describes particles associated to fields with the Lagrangian

LKG =
1

2
∂µϕ∂

µϕ− 1

2
µ2ϕ2, (3.4)
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known as the Klein-Gordon Lagrangian. The parameter µ can also be written as mc
ℏ ,

where m is a parameter associated to ϕ with the dimensions of a mass, c is the light
speed in vacuum and ℏ is the reduced Planck constant.

Using Eq. 3.3 with F (ϕ) = 1
2
µ2ϕ2 we obtain that

(2+ µ2)ϕ(x) = 0 (3.5)

is the equation of motion of a field described by LKG. Eq. 3.5 is known as the Klein-
Gordon equation.

The term 1
2
µ2ϕ2 in Eq. 3.4 is generally referred to as the mass term. To see why that

is let’s find a plane wave solution to the Klein-Gordon equation

ϕ(x) = e−ikαxα

with kα = (k0,k) = (
ω

c
,k), (3.6)

where kα has the dimensions of the inverse of a length. By inserting Eq. 3.6 into Eq.
3.5 we obtain that kµ must satisfy the relation

−kµkµ + µ2 = 0. (3.7)

With a few simple algebraic passages and by substituting µ = mc
ℏ and kµ = (ω

c
,k), we

obtain

(
ℏω
c
)2 = |ℏk|2 +m2c2. (3.8)

Finally, if we use the Planck-Einstein relation E = ℏω and the de Broglie relation p = ℏk
1 known for quantum mechanics, Eq. 3.8 becomes

E2

c2
= |p|2 +m2c2, (3.9)

which is the energy-momentum relation for a particle of mass m. We can thus conclude
that terms ∼ ϕ2 in LKG are related to the mass of the particle described by ϕ and that
a Lagrangian like that in Eq. 3.4 describes a particle of mass m.

Moreover, we note that the Klein-Gordon equation is linear, which is due to the pres-
ence only of terms ∼ ϕ2 in LKG. This means that we can use the superposition principle
for solutions of the Klein-Gordon equation: if we have multiple solutions, their sum is
also a solution. This highlights a fundamental aspect of the Klein-Gordon theory, which
is that it describes non interacting particles. To have a theory describing interacting
particles we should add terms ∼ ϕ3 or ∼ ϕ4 to LKG, leading to non-linear equations of
motion.

3.2 Complex Klein-Gordon theory

We can also consider the case of a complex scalar field ϕ(x), which corresponds to a
particle with spin 0 and with an electric charge. Such a particle is described by a
complex version of the Klein-Gordon Lagrangian

LKG = ∂µϕ
⋆∂µϕ− µ2ϕ⋆ϕ. (3.10)

1p is the linear momentum.
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An example of a particle described by this theory is the couple particle-antiparticle of
the pions π+ π−.

We shall briefly check the properties we require of the Lagrangian of a field. LKG is
Lorentz invariant due to ϕ and ∂µϕ

⋆∂µϕ being scalars under Lorentz. The requirement
of reality is satisfied too because the combinations ∂µϕ

⋆∂µϕ and ϕ⋆ϕ are real.
By calculating the partial derivatives of LKG with respect to ϕ and ∂µϕ

∂L
∂(∂µϕ)

= ∂µϕ⋆ ;
∂L
∂ϕ

= −µ2ϕ⋆ (3.11)

and ϕ⋆ and ∂µϕ
⋆

∂L
∂(∂µϕ⋆)

= ∂µϕ ;
∂L
∂ϕ

= −µ2ϕ (3.12)

and then inserting them into the Euler-Lagrange equation 2.10, we obtain the equations
of motion for ϕ(x)

(2+ µ2)ϕ⋆(x) = 0 (3.13)

and ϕ⋆(x)
(2+ µ2)ϕ(x) = 0. (3.14)

We note that, like what we had seen while treating real fields, particles described by
LKG have mass m and are non-interacting. To have a theory for interacting particles we
should add a term ∼ ϕ⋆2ϕ2 to the Lagrangian.
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Chapter 4

Lagrangian of the electromagnetic
field

Another type of field we encounter are vector fields. We will now study a field of
this type, the electromagnetic field, which is represented by the four-potential Aµ(x) =
(ϕ(x),A(x)).

Before proceeding with the construction of the Lagrangian Lem, it’s important to
make a couple considerations on the electromagnetic field. First, we know that the
components of electric field E(x) and of the magnetic field B(x) can be arranged in the
so-called electromagnetic tensor F µν(x)

F µν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 , (4.1)

which is antisymmetric. It’s possible to obtain F µν from Aµ through

F µν = ∂µAν − ∂νAµ. (4.2)

We note that F µν , Aµ, E and B are all real quantities. We also know that the four-
potential Aµ that determines a certain F µν is not unique. In fact, if we transform a
certain Aµ(x) like

A′µ(x) = Aµ(x)− ∂µχ(x), (4.3)

where χ(x) is an arbitrary real scalar function of xµ, the corresponding F µν obtained
through Eq. 4.2 does not change. Transformations like Eq. 4.3 are called gauge trans-
formations. Since F µν appears directly in the expression of the force acting on a charged
particle while Aµ does not, we expect the equations used to describe a system to be
invariant under gauge transformations.

We are now ready to start building the Lagrangian Lem of the electromagnetic field.
We’ll start by considering the case with no electric charge density and no electric current
density. Thanks to the previous considerations, we know that Lem must be invariant
under gauge transformations. To satisfy this requirement, we will use F µν , which contains

13



the first order derivatives of the field Aµ and is invariant under gauge transformations,
to build the Lagrangian. Since Lem must also be a scalar under Lorentz, we will need
scalar quantities obtained from F µν . The only two objects of this kind are

F µνFµν = −2(|E|2 − |B|2), (4.4)

εµναβFµνFαβ = −8 E ·B 1. (4.5)

It can easily be seen that

εµναβFµνFαβ = 4∂µ(ε
µναβAν∂αAβ), (4.6)

which means, thanks to what we have seen in Sec. 2.1, that εµναβFµνFαβ gives no
contribution to the equations of motion. We are then left only with F µνFµν , which
satisfies also the condition of reality since F µν is real. The Lagrangian Lem of the
electromagnetic field is then

Lem = − 1

16π
F µνFµν . (4.7)

The derivative of Lem with respect to the field Aν vanishes, while the derivative with
respect to the first order derivatives of the field ∂µAν are given by

∂Lem

∂(∂µAν)
=
∂Lem

∂Fαβ

∂Fαβ

∂(∂µAν)
= − 1

8π
Fαβ(δµαδ

ν
β − δµβδ

ν
α) = − 1

4π
F µν . (4.8)

Substituting the derivatives of Lem into the Euler-Lagrange equations 2.10, we obtain
the equations of motion for Aµ

∂µF
µν = 0. (4.9)

These are the inhomogeneous Maxwell equations when there are no electric charge density
and no electric current density. We can also write Eq. 4.9 in terms of the field Aµ as

2Aν − ∂ν(∂µA
µ) = 0. (4.10)

The homogeneous Maxwell equations, which can be written as

∂µ(ε
µναβFαβ) = 0, (4.11)

are automatically satisfied by an electromagnetic tensor F µν obtained through Eq. 4.2.
Let’s now show that the Maxwell equations can be obtained from a Lagrangian L

also when there are an electric charge density ρ(x) and an electric current density J(x).
We know that we can define the four-vector Jµ(x) = (cρ(x),J(x)) which is called four-
current, where c is the light speed in vacuum. We now have to add to Lem a term Lint

expressing the coupling between Aµ and Jµ

L = Lem + Lint = − 1

16π
F µνFµν −

1

c
JµA

µ. (4.12)

1εµναβ is a tensor antisymmetric in any two indices. It’s completely defined by the property that
εµναβ = 1 if (µ, ν, α, β) is an even permutation of (0, 1, 2, 3), εµναβ = −1 if (µ, ν, α, β) is an odd
permutation of (0, 1, 2, 3) and εµναβ = 0 if any two indices are equal.

14



The new term Lint = −1
c
JµA

µ is clearly a scalar under Lorentz. Reality is also im-
mediate since Jµ and Aµ are real. However, this term is not invariant under a gauge
transformation. In fact, if we perform a transformation like Eq. 4.3, the variation of L
is

δL = L′ − L =
1

c
Jµ∂µχ. (4.13)

Exploiting the fact that Jµ satisfies the continuity equation ∂µJ
µ = 0, we have

δL =
1

c
Jµ∂µχ =

1

c
Jµ∂µχ+

1

c
χ∂µJ

µ =
1

c
∂µ(J

µχ). (4.14)

We know, thanks to what we have seen in Sec. 2.1, that such a variation does not change
the equations of motion. This means that the Lagrangian in Eq. 4.12 is physically
acceptable, since the equations of motion we obtain from it are invariant under a gauge
transformation.

We will now obtain the equations of motion in presence of a Jµ. We note that the
derivative of L with respect to ∂µAν is equal to that of Lem given by Eq. 4.8. The
derivative of L with respect to Aν is

∂L
∂Aν

= −1

c
Jν . (4.15)

Using the Euler-Lagrange equations 2.10 we obtain the equations of motion

∂µF
µν =

4π

c
Jν , (4.16)

which are the inhomogeneous Maxwell equations.
We are left with an important remark to be made on L. The field Aµ appears in the

Lagrangian through F µν , which is given by Eq. 4.2, or together with Jµ. This means that
there are no terms with only the field Aµ itself in L. This is because scalars obtained
directly from Aµ alone would not be gauge invariant and would make the equations
of motion not gauge invariant. Since, like what we have seen with the Klein-Gordon
Lagrangian in Ch. 3, terms ∼ AµAµ would be related to the mass of the field and such
terms are not allowed because they would break gauge invariance, the electromagnetic
field Aµ is massless.
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Chapter 5

Noether theorem, conserved
currents and charges

We will now consider the concept of symmetry and its fundamental role in field theory.
First, let’s define what we mean by symmetry. We say that a system is invariant under

a certain transformations if the equations of motion of the system remain unchanged after
performing one of these transformations. This means that the system has a symmetry
with respect to these transformations.

One important type of transformation are continuous transformations. These trans-
formations are characterised by the fact that we can obtain them from the identity
transformation through a series of infinitesimal transformations. When a system is in-
variant under a certain continuous transformation we shall say that the system has a
continuous symmetry. We will now see how the presence of a continuous symmetry for a
system implies that there are conserved currents and constants of motions. This result
is known as the Noether theorem.

First, let’s consider a generic field ϕ(x) and the associated Lagrangian L(ϕ, ∂µϕ).
Let’s now consider an infinitesimal transformation of the field ϕ(x) and the coordinates
xµ {

x′µ = xµ + δxµ

ϕ′(x′) = ϕ(x) + δϕ(x).
(5.1)

By operating at the first infinitesimal order, the total variation δϕ(x) of the field can
be expressed as the sum of two terms

δϕ(x) = ϕ′(x′)− ϕ(x) = ϕ′(x+ δx)− ϕ(x) = ϕ′(x) + ∂µϕ
′δxµ − ϕ(x) =

= δ0ϕ(x) + ∂µϕδx
µ, (5.2)

where in the last passage we have put ∂µϕδx
µ = ∂µϕ

′δxµ, which is justified since ∂µϕ
′δxµ−

∂µϕδx
µ ∼ |δxµ|2 and we are operating at the first infinitesimal order, and δ0ϕ(x) =

ϕ′(x) − ϕ(x). The term δ0ϕ(x) is connected to the change of just the form of the field
ϕ(x) caused by the transformation, while ∂µϕδx

µ is due to the transformation of the
coordinates. We note that we can formally write Eq. 5.2 as

δ = δ0 + δxµ∂µ. (5.3)
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We want to study transformations which depend continuously on a certain set of
parameters ωa, with a = 1, 2, ..., n . For such transformations we can write δxµ and δ0ϕ
as

δxµ =
∑
a

ωaδ̄ax
µ, δ0ϕ =

∑
a

ωaδ̄aϕ, (5.4)

where δ̄ax
µ and δ̄aϕ are finite quantities. We note that if ωa → 0 this transformation

becomes the identity transformation.
We explained before that, if a transformation is a symmetry of a system, the equa-

tions of motions remain unchanged by performing such transformation. If a system is
described by the action S, saying that the equations of motion don’t change means that
the variation of the action is

δS =

∫
d4x ∂µΛ

µ(ϕ), (5.5)

as we have seen in Sec. 2.1.
The total variation of S is given by

δS =

∫
d4x δL(ϕ, ∂µϕ) +

∫
δd4x L(ϕ, ∂µϕ). (5.6)

We’ll first deal with δL(ϕ, ∂µϕ). The variation of the Lagrangian can be written as

δL(ϕ, ∂µϕ) =
∂L
∂ϕ

δ0ϕ+
∂L

∂(∂µϕ)
δ0(∂µϕ) + (∂µL)δxµ, (5.7)

where here ∂µL are used to signify the total derivatives of L with respect to the coor-
dinates xµ. Since δ0 represents a variation only of the form of a field and not of the
coordinates, we have that

δ0(∂µϕ) = ∂µ(ϕ+ δ0ϕ)− ∂µϕ = ∂µ(δ0ϕ). (5.8)

Using this result we can rewrite the second term of Eq. 5.7

∂L
∂(∂µϕ)

δ0(∂µϕ) =
∂L

∂(∂µϕ)
∂µ(δ0ϕ) = ∂µ(

∂L
∂(∂µϕ)

δ0ϕ)− ∂µ(
∂L

∂(∂µϕ)
)δ0ϕ (5.9)

By substituting Eq. 5.9 into Eq. 5.7 we obtain

δL(ϕ, ∂µϕ) = (
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δ0ϕ+ ∂µ(

∂L
∂(∂µϕ)

δ0ϕ) + (∂µL)δxµ. (5.10)

We will now study δd4x. In general we have that

d4x′ = |detJ(x)|d4x, (5.11)

where J(x) = δx′µ

δxν is the Jacobian matrix of the transformation x′ = x′(x). The transfor-
mation we are considering now is x′µ = xµ + δxµ, as expressed in Eq. 5.1, which means
that in our case

J(x) = δµν + ∂ν(δx
µ), (5.12)
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where δµν is the Kronecker delta 1. The determinant of a generic matrix A can be
obtained using the formula

detA = eTr lnA. (5.13)

Since we are operating at the first order of δxµ, we have that

Tr lnJ(x) = Tr ln(δµν + ∂ν(δx
µ)) = Tr(∂ν(δx

µ)) = ∂µ(δx
µ) (5.14)

and
|detJ(x)| = |eTr lnJ(x)| = |e∂µ(δxµ)| = |1 + ∂µ(δx

µ)| = 1 + ∂µ(δx
µ), (5.15)

where in the last passage we exloited the fact that we are considering infinitesimal trans-
formations. Then, by substituting Eq. 5.15 into Eq. 5.11, we have that

d4x′ = (1 + ∂µ(δx
µ))d4x. (5.16)

Finally, we obtain that

δd4x = d4x′ − d4x = d4x ∂µ(δx
µ). (5.17)

We can now use Eq. 5.17 and Eq. 5.10 to rewrite Eq. 5.6 expressing δS as

δS =

∫
d4x

[
(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δ0ϕ+ ∂µ(

∂L
∂(∂µϕ)

δ0ϕ) + (∂µL)δxµ + ∂µ(δx
µ)L

]
=

=

∫
d4x

[
(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δ0ϕ+ ∂µ(

∂L
∂(∂µϕ)

δ0ϕ) + ∂µ(δx
µL)

]
=

=

∫
d4x

[
(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δ0ϕ+ ∂µ(

∂L
∂(∂µϕ)

δ0ϕ+ Lδxµ)
]
. (5.18)

For the equations of motion to be invariant, δS is required to satisfy Eq. 5.5. For
simplicity, we will first consider the case δS = 0, and then we will add to the final result
the contribution of

∫
d4x ∂µΛ

µ(ϕ).
Using Eq. 5.18, the condition δS = 0 becomes∫

d4x

[
(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δ0ϕ+ ∂µ(

∂L
∂(∂µϕ)

δ0ϕ+ Lδxµ)
]
= 0. (5.19)

Due to the arbitrariness of δxµ and δ0ϕ, the integrand must vanish for Eq. 5.19 to hold

(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δ0ϕ+ ∂µ(

∂L
∂(∂µϕ)

δ0ϕ+ Lδxµ) = 0. (5.20)

The first term vanishes due to the Euler-Lagrange equations 2.10, which a field is required
to satisfy. We are then left with

∂µ(
∂L

∂(∂µϕ)
δ0ϕ+ Lδxµ) = 0. (5.21)

1The Kronecker delta δµν is characterised by being = 1 if µ = ν and = 0 if µ ̸= ν.
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By substituting Eq. 5.4 into Eq. 5.21 we have∑
a

∂µ(
∂L

∂(∂µϕ)
δ̄aϕ+ Lδ̄axµ)ωa = 0. (5.22)

Since the parameters ωa are independent, we obtain the n equations

∂µ(
∂L

∂(∂µϕ)
δ̄aϕ+ Lδ̄axµ) = 0. (5.23)

We can now define the n currents

jµa =
∂L

∂(∂µϕ)
δ̄aϕ+ Lδ̄axµ. (5.24)

Thanks to Eq. 5.23, we have that these currents satisfy the continuity equations

∂µj
µ
a = 0 (5.25)

and therefore are conserved. We note that we have as many currents as we have param-
eters for the transformation we are considering.

As said before, we could also have δS =
∫
d4x ∂µΛ

µ(ϕ). By writing Λµ as Λµ =∑
a ω

aδ̄aΛ
µ, where δ̄aΛ

µ are finite quantities, the n conserved currents jµa become

jµa =
∂L

∂(∂µϕ)
δ̄aϕ+ Lδ̄axµ − δ̄aΛ

µ. (5.26)

We have just proven the Noether theorem, which states that, if a system is invariant
under a transformation which depends continuously on n parameters, it’s possible to find
n four-currents, known as Noether currents, which are conserved.

It’s also possible to define the n quantities, called Noether charges,

Qa(σ) =

∫
σ

dσµj
µ
a , (5.27)

where σ is a space-like hypersurface 2 that extends to spatial infinity and covers all space
in the Minkowski spacetime M.

If we assume, as it’s usually done, that ϕ and ∂µϕ vanish rapidly enough when going
to spatial infinity, we can use Gauss’s theorem to prove that Qa does not depend on
σ. In fact, given any two spacetime hypersurfaces σ1 and σ2 that cover all space and
the time-like 3 hypersurface σ∞ located at spatial infinity that connects σ1 and σ2, by
Gauss’s theorem we have that∫

Ω

d4x ∂µj
µ
a =

∫
σ1

dσµj
µ
a −

∫
σ2

dσµj
µ
a +

∫
σ∞

dσµj
µ
a , (5.28)

2A space-like hypersurface σ in the Minkowski spacetime M is a hypersurface such that, if xµ, yµ ∈ σ
and xµ ̸= yµ, (xµ − yµ)(xµ − yµ) < 0

3A time-like hypersurface σ in the Minkowski spacetime M is a hypersurface such that, if xµ, yµ ∈ σ
and xµ ̸= yµ, (xµ − yµ)(xµ − yµ) > 0
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where Ω is the volume enclosed by σ1, σ2 and σ∞. By Eq. 5.25 and thanks to the
assumptions just made on ϕ and ∂µϕ, the integrals over Ω and σ∞ vanish and we obtain
that ∫

σ1

dσµj
µ
a =

∫
σ2

dσµj
µ
a , (5.29)

which proves that the Qa do not depend on the choice of σ.
One particular choice we can make is that of a surface for which the time t is constant.

That means that the surface element is dσµ = (d3x, 0, 0, 0) and the charges Qa are given
by

Qa(t) =

∫
d3x j0a(x, t), (5.30)

where we are integrating over all R3 at a fixed time t. Having proven before that the Qa

do not depend on the surface chosen and since, by Eq. 5.30, choosing a surface means
choosing a time, we conclude that the Qa do not depend on time, proving that they are
constants of motion. From Eq. 5.30, we can explicitly write an expression for the Qa

using Eq. 5.24

Qa =

∫
d3x (

1

c

∂L
∂t
δ̄aϕ+ cLδ̄at). (5.31)

We are now able to give an interpretation of the jµa . We see that, thanks to Eq. 5.30,
we can interpret the j0a(x, t) as the density of the Qa(t). To see what interpretation we
may give to the other components of the jµa , we integrate the continuity equations Eq.
5.25 over a finite 3-dimensional volume V

0 =

∫
V

d3x ∂µj
µ
a =

1

c

∂

∂t

∫
V

d3x j0a +

∫
V

d3x ∇ · ja, (5.32)

where ja = (j1a, j
2
a, j

3
a). By using Gauss’s theorem in 3 dimensions on the second term we

obtain
1

c

∂Qa

∂t
= −

∫
∂V

dσ · ja, (5.33)

where ∂V is the contour of V. From Eq. 5.33 we see that the variation of Qa

c
inside a

volume V is equal to the flux of ja through the surface ∂V enclosing said volume. We
conclude then that the ja can be interpreted as the flux density of the Qa

c
.

We can prove that the conserved currents jµa are not uniquely defined. In fact, given
an antisymmetric tensor Xνµ(x), we can transform any one of the Noether currents by
adding to it ∂νX

νµ(x)
j′µ = jµ + ∂νX

νµ, Xνµ = −Xµν (5.34)

without altering the property that the current is conserved and without changing the
corresponding Noether charge. We can first prove that j′µ still satisfies the continuity
equation Eq 5.25

∂µj
′µ = ∂µ(j

µ + ∂νX
νµ) = ∂µj

µ + ∂µ∂νX
νµ = ∂µj

µ = 0, (5.35)

where in the second to last passage we have used that ∂µ∂νX
νµ = 0 since Xνµ is antisym-

metric and ∂µ∂ν is symmetric. Let’s now call Q′ the charge associated to j′µ and Q the
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one associated to jµ. We now want to prove that Q′ = Q, which reduces to proving that∫
σ
dσµ ∂νX

νµ = 0 over any space-like hypersurface σ covering all space. If we assume
that ∂νX

νµ vanishes rapidly enough at spatial infinity, with the same reasoning used for
Eq. 5.28 and Eq. 5.29 we can prove that the value of

∫
σ
dσµ ∂νX

νµ does not depend on
the choice of σ. We then choose a surface σ at fixed time so that dσµ = (d3x, 0, 0, 0). We
now have that ∫

σ

dσµ ∂νX
νµ =

∫
d3x ∂νX

ν0, (5.36)

integrating over all R3. Since X00 = 0 due to Xνµ being antisymmetric and by using
Gauss’s theorem in 3 dimensions, we obtain∫

d3x ∂νX
ν0 =

∫
d3x ∂iX

i0 =

∫
∞
dσi X

i0, (5.37)

where i = 1, 2, 3 and where we are integrating over a surface in R3 located at infinity. If
we assume that X i0 vanishes rapidly enough at spatial infinity, we have that Eq. 5.37,
and therefore

∫
σ
dσµ ∂νX

νµ, vanishes, proving that Q′ = Q. We have thus proven that
we are free to transform any Noether current by adding to it ∂νX

νµ, with Xνµ(x) being
an antisymmetric tensor. Quantities like Xνµ(x) are sometimes called superpotentials.

We end our brief general study of symmetries with an important remark. Based on
what is involved in their corresponding transformations, symmetries can be divided into
two categories:

- Spacetime symmetries, whose corresponding transformations involve a change in
the coordinates.

- Internal symmetries, whose corresponding transformations act only on the fields,
not on the coordinates.

21



Chapter 6

Translational symmetry

We will now consider a continuous spacetime symmetry, the translational symmetry.
The corresponding infinitesimal transformation for the coordinates xµ is a spacetime

translation by an infinitesimal vector εµ

x′µ = xµ + εµ. (6.1)

It’s possible to write the variation of xµ as

δxµ = εµ = δµνε
ν . (6.2)

We see that we can identify εµ as the four parameters of an infinitesimal translation and,
using δxµ = εν δ̄νx

µ from Eq. 5.4, we have that

δ̄νx
µ = δµν . (6.3)

As previously discussed, since the transformation of a field depends only on ∂x′µ

∂xν and
∂xν

∂x′µ , any generic field ϕ(x) is invariant under translations, meaning

ϕ′(x′) = ϕ(x) → δϕ(x) = 0. (6.4)

Since δϕ(x) = δ0ϕ(x) + ∂µϕδx
µ by Eq. 5.2 and using Eq. 6.2, we have that

δ0ϕ(x) = −∂νϕδxν = −∂νϕ εν . (6.5)

We can write δ0ϕ = εν δ̄νϕ thanks to Eq. 5.4, which means that

δ̄νϕ = −∂νϕ. (6.6)

We now ask ourselves which systems show a translational symmetry. We remind
that, in Ch. 2, we required a generic Lagrangian L to be invariant under Poincaré
transformations, which include translations. Moreover, since the Jacobian matrix of a
translation is J(x) = δµν , we have that d4x′ = |detJ(x)|d4x = d4x. From these two facts
we obtain that, under translations, the variation of the action is zero for any system.
We conclude then that any system is invariant under translations. This means that the
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Noether currents related to the translational symmetry will always be conserved and the
corresponding Noether charges will always be constants of motion.

We obtain the n Noether currents jµν(x) by substituting the expressions for δ̄νx
µ from

Eq. 6.3 and for δ̄νϕ from Eq. 6.6 into Eq. 5.24

jµν(x) =
∂L

∂(∂µϕ)
δ̄νϕ+ Lδ̄νxµ = − ∂L

∂(∂µϕ)
∂νϕ+ Lδµν . (6.7)

We note that the jµν(x) appear arranged in the form of a rank (1, 1) tensor. We can now
define the rank (2, 0) tensor Θµν(x), called the canonical energy-momentum tensor,

Θµν(x) = −jµν =
∂L

∂(∂µϕ)
∂νϕ− Lηµν 1 (6.8)

with the corresponding continuity equation

∂µΘ
µν = 0. (6.9)

The Noether charges associated with translations are given by

Qν = cP ν =

∫
σ

dσµΘ
µν , (6.10)

where σ is a space-like hypersurface covering all space. We can then choose as σ a surface
at fixed time so that the surface element is dσµ = (d3x, 0, 0, 0). With this choice, the
cP ν become

cP ν =

∫
d3x Θ0ν , (6.11)

where we are integrating over all R3. Using Eq 6.8, we can write the components of P ν

as

cP 0 =

∫
d3x Θ00 =

∫
d3x (

∂L
∂(∂0ϕ)

∂0ϕ− L),

cP i =

∫
d3x Θ0i =

∫
d3x

∂L
∂(∂iϕ)

∂0ϕ,

(6.12)

with i = 1, 2, 3. The four Noether charges cP ν we just obtained correspond to the four
components of the four-momentum P ν = (E

c
, Px, Py, Pz) = (E

c
,P) times the light speed

in vacuum c. We can thus say that, since any system is invariant under translations, the
four-momentum P ν of a system is always conserved.

From Eq. 6.12 we see that we can interpret Θ00 as the density of E and Θ0i as the
density of the i-th component of cP. For the interpretation of the other elements of Θµν ,
we can integrate Eq. 6.9 over a finite volume V in R3 with contour ∂V

1

c

∂

∂t

∫
V

d3x Θ0ν = −
∫
V

d3x ∂iΘ
iν . (6.13)

1Raising an index of δµν means doing ηναδµα, which, given the properties of the Kronecker delta and
thanks to ηµν being symmetrical, is equal to ηµν .
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Then, by using Gauss’s theorem in 3 dimensions and remembering Eq. 6.11, we obtain

∂P ν

∂t
=

1

c

∂

∂t

∫
V

d3x Θ0ν = −
∫
∂V

dσiΘ
iν . (6.14)

This constitutes a continuity equation for the components of the four-momentum, mean-
ing we can interpret each Θiν as the flux density of P ν in the i-th direction. In particular,
the Θij, which represent the flux density of the P j in the i-th direction, are organised in
the so-called stress tensor 2.

It’s important to note that the canonical energy-momentum tensor Θµν is not unique.
In fact, we have seen in Ch. 5 that we are free to transform any Noether current by
adding to it ∂νX

νµ, provided that Xνµ(x) is an antisymmetric tensor. This means that,
if Gνρµ is a tensor antisymmetric with respect to ρ and µ, we are free to add ∂ρG

νρµ to
Θµν

Θ′µν = Θµν + ∂ρG
νρµ, Gνρµ = −Gνµρ (6.15)

without changing the corresponding Noether charges cP µ and still satisfying the conti-
nuity equation ∂µΘ

′µν = 0. This ambiguity can be exploited to obtain a symmetrical
energy-momentum tensor, which is a property that the Θµν obtained through the Noether
theorem does not generally satisfy outright. For example, Θµν is symmetrical for scalar
fields but not for vector fields.

We will now show how the need for a symmetrical energy-momentum tensor arises
through some simple arguments. First we show that we must have Θi0 = Θ0i. Since Θi0

is the flux density of E
c
in the i-th direction, it is equal to the density of E

c
times the flux

velocity in the i-th direction. Using the mass–energy equivalence E = mc2, we have that
the density of E

c
is equal to that of mc. Now, we have that Θi0 is equal to the density

of mc times the flux velocity in the i-th direction, which clearly corresponds to the i-th
component of the momentum times c cP i = Θ0i. We have thus shown that Θi0 = Θ0i.
We now consider the components Θij. To prove that we must have Θij = Θji, we’ll study
an infinitesimal cube with side length dL. The mass inside such a cube, thanks to the
mass-energy equivalence, is dM = c2Θ00dL3. Since the moment of inertia I of a cube is
proportional to ML2 we have that

dI ∝ dM dL2 = Θ00dL6. (6.16)

We proceed by centering the cube in the origin of a reference frame with its faces per-
pendicular to the axes of the frame. We can now say that ΘijdL2 is the j-th component
dF j of the force exerted by the field on the face of the cube perpendicular to the i
axis. Considering any even permutation (i, j, k) of (1, 2, 3), we can obtain that the k-th
component dτ k of the torque exerted on the cube is equal to (Θij −Θji)dL3

dτ k = (ΘijdL2) · (dL
2
) + (−ΘijdL2) · (−dL

2
)− (ΘjidL2) · (dL

2
)− (−ΘjidL2) · (−dL

2
) =

= (Θij −Θji)dL3. (6.17)

2The 3x3 matrix called stress tensor is a tensor under rotations in R3, not under Lorentz.
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Since the components of the angular acceleration αk are given by τk

I
, using Eq. 6.16 and

Eq. 6.17 we have that

αk ∝ 1

dL2
. (6.18)

For a cube with infinitesimal side length dL that would mean having an infinite angular
acceleration. Since this can’t be possible, we see from Eq. 6.17 that the only way to avoid
it is to have Θij = Θji. We have thus completed the proof that Θµν = Θνµ, meaning
that the energy-momentum tensor has to be symmetrical. We note that the symmetry of
the spatial components Θij has been obtained only with the use of classical arguments,
without involving relativity. We instead used relativistic concepts to prove the symmetry
of the mixed components Θ0i and Θi0 by exploiting the mass-energy equivalence.

Since, as said before, the canonical energy-momentum tensor Θµν is generally not
symmetrical and we have proven that a physically sound energy-momentum tensor has
to be symmetrical, Θµν may have no direct physical meaning. In general, we will need to
symmetrize Θµν through a transformation like Eq 6.15 in order to obtain a symmetrical
energy-momentum tensor T µν which is physically acceptable.

6.1 Energy-momentum tensor of a real scalar field

Let’s consider a real scalar field ϕ(x) described by the Lagrangian L in Eq. 3.1. Using
Eq. 6.8 we see that the corresponding canonical energy-momentum tensor Θµν(x) is

Θµν =
∂L

∂(∂µϕ)
∂νϕ− Lηµν = ∂µϕ∂νϕ− 1

2
∂αϕ∂

αϕ ηµν + F (ϕ)ηµν . (6.19)

Since this tensor is symmetrical, it’s already a physically acceptable energy-momentum
tensor. Thanks to Eq. 6.12, we can obtain expressions for the energy E and the momen-
tum P of the system

E =

∫
d3x

[
(∂0ϕ)2 − 1

2
∂αϕ∂

αϕ+ F (ϕ)

]
=

∫
d3x

[
1

2
(∂0ϕ)2 +

1

2
(∇ϕ)2 + F (ϕ)

]
, (6.20)

P = −1

c

∫
d3x ∂0ϕ∇ϕ 3. (6.21)

If the form of L is that of the Klein-Gordon Lagrangian LKG given by Eq. 3.4, the
energy momentum tensor is

Θµν = ∂µϕ∂νϕ− 1

2
∂αϕ∂

αϕ ηµν +
1

2
µ2ϕ2ηµν . (6.22)

Seeking to observe Eq. 6.20 and Eq. 5.21 in this case, we notice that the expression of
the momentum doesn’t change by specifying F (ϕ), while the energy becomes

E =

∫
d3x

[
1

2
(∂0ϕ)2 +

1

2
(∇ϕ)2 + 1

2
µ2ϕ2

]
. (6.23)

3The − sign is due to the fact that ∂i = −∂i and ∇ = (∂1, ∂2, ∂3).
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6.2 Energy-momentum tensor of the electromagnetic

field

We’ll now obtain the energy-momentum tensor of the electromagnetic field Aµ(x). Sub-
stituting the Lagrangian of the field Lem given by Eq. 4.7 into Eq. 6.7, we obtain the
canonical energy-momentum tensor Θµν

em(x)

Θµν
em =

∂Lem

∂(∂µAρ)
∂νAρ − Lemη

µν = − 1

4π
F µρ∂νAρ +

1

16π
F ρσFρση

µν . (6.24)

Contrary to what we have seen with scalar fields, this canonical energy-momentum
tensor Θµν

em is not symmetrical. Moreover, it’s not invariant under a gauge transformation.
To obtain an energy momentum tensor T µν

em(x) which is symmetrical and gauge invariant,
we’ll transform Θµν

em using an appropriate tensor Gµρν
em like in Eq. 6.15. In this case, the

tensor Gµρν
em is given by

Gµρν
em = − 1

4π
F ρµAν . (6.25)

Since F ρµ is antisymmetric, Gµρν
em satisfies the requirement of being antisymmetric in ρ

and µ. Through the transformation shown in Eq. 6.15 we obtain T µν
em

T µν
em = Θµν

em − 1

4π
∂ρ(F

ρµAν) =

= − 1

4π
F µρ(∂νAρ − ∂ρA

ν)− 1

4π
Aν∂ρF

ρµ +
1

16π
F ρσFρση

µν =

= − 1

4π
F µρF ν

ρ +
1

16π
F ρσFρση

µν , (6.26)

where in the last passage we exploited the inhomogeneous Maxwell equations for when
Jµ = 0, which can be written as ∂ρF

ρµ = 0. The energy-momentum tensor T µν
em just

obtained is clearly symmetrical. T µν
em is also invariant under a gauge transformation

since only the electromagnetic tensor, which is gauge invariant, appears in Eq. 6.26.
We can thus say that T µν

em is a physically acceptable energy-momentum tensor for the
electromagnetic field.

We briefly note that the trace of T µν
em vanishes

T µ
em, µ = − 1

4π
F µρFµρ +

1

16π
F ρσFρσδ

µ
µ = − 1

4π
F µρFµρ +

1

4π
F ρσFρσ = 0. (6.27)

We can now see what the components of T µν
em represent by using the relations F 0i =

−Ei and F ij = −εijkBk:

- T 00
em is the energy density u of the electromagnetic field

T 00
em = − 1

4π
F 0ρF 0

ρ +
1

16π
F ρσFρσ =

= − 1

4π
F 0iF 0

i +
1

16π
F ρσFρσ =

1

4π
F 0iF 0i +

1

16π
F ρσFρσ =

=
1

4π
|E|2 − 1

8π
(|E|2 − |B|2) = 1

4π
(|E|2 + |B|2) = u. (6.28)
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- The T 0i
em = T i0

em are the components of S
c
, where S is the Poynting vector and c is

the light speed in vacuum

T 0i
em = T i0

em = − 1

4π
F 0ρF i

ρ = − 1

4π
F 0jF i

j =
1

4π
F 0jF ij =

=
1

4π
εijkEjBk =

1

4π
(E×B)i =

Si

c
. (6.29)

- The T ij
em are the elements of the Maxwell stress tensor.
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Chapter 7

Scale symmetry

The last topic we will discuss is another spacetime symmetry, the scaling symmetry. The
corresponding transformation is of the type

x′µ = λxµ, (7.1)

where λ is a real parameter. The group of transformations made up by Poincaré transfor-
mations and scale transformations is the Weyl group. We note that, if ds2 = dxµdx

µ = 0
1, ds2 is invariant under a scale transformation.

If a generic field ϕ(x) has dimensions [length]n, under a scale transformation it trans-
forms like

ϕ′(x′) = λnϕ(x) (7.2)

Let’s now consider an infinitesimal scale transformation. By writing λ = 1−ε, where
ε is an infinitesimal real parameter, the transformation of the coordinates is given by

x′µ = (1− ε)xµ, (7.3)

which means that the variation δxµ is

δxµ = x′µ − xµ = −εxµ. (7.4)

Since clearly a scale transformation is a transformation depending continuously on the
one parameter ε, using Eq. 5.4 we can write δxµ as

δxµ = εδ̄xµ. (7.5)

Putting Eq. 7.4 and Eq. 7.5 together, we get

δ̄xµ = −xµ. (7.6)

Regarding the field ϕ, we can write Eq. 7.2 as

ϕ′(x) = λnϕ(λ−1x) (7.7)

1A ds2 = dxµdx
µ such that ds2 = 0 is referred to as a light-like interval.
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Then, if we consider an infinitesimal transformation with λ = 1− ε and operating at the
first infinitesimal order, we get

ϕ′(x) = (1− nε)ϕ(x+ xε) = ϕ(x)− nεϕ(x) + εxµ∂µϕ, (7.8)

from which we get that

δ0ϕ = ϕ′(x)− ϕ(x) = ε(−nϕ+ xµ∂µϕ). (7.9)

Using Eq. 5.4, we can write δ0ϕ also as

δ0ϕ = εδ̄ϕ. (7.10)

Putting Eq. 7.4 and Eq. 7.5 together, we obtain

δ̄ϕ = −nϕ+ xµ∂µϕ. (7.11)

Since, by a scale transformation, d4x results simply multiplied by a constant, for
a system to be invariant under scale transformations we just need the variation of the
Lagrangian to be zero or to be of the form ∂µΛ

µ(ϕ).
Let’s suppose that the Lagrangian of the system we are studying is scale invariant,

meaning it’s variation under scale transformations is zero. We can substitute δ̄xµ from
Eq. 7.6 and δ̄ϕ from Eq. 7.11 into Eq. 5.24 to obtain the conserved Noether current jµ

jµ =
∂L

∂(∂µϕ)
δ̄ϕ+ Lδ̄xµ =

∂L
∂(∂µϕ)

· (−nϕ+ xν∂
νϕ)− Lxµ =

= (
∂L

∂(∂µϕ)
∂νϕ− Lηµν)xν − n

∂L
∂(∂µϕ)

ϕ = Θµνxν − n
∂L

∂(∂µϕ)
ϕ, (7.12)

where Θµν is the canonical energy-momentum tensor of the field ϕ. The current jµ

satisfies the continuity equation
∂µj

µ = 0. (7.13)

Let’s now consider a real scalar field ϕ(x) with the Lagrangian L

L =
1

2
∂µϕ∂

µϕ− F (ϕ). (7.14)

Such a field has dimensions ∝[length]−1. Using Eq. 7.12 with n = −1, we obtain the
Noether current jµ related to scale transformations for ϕ

jµ = Θµνxν + ϕ∂µϕ. (7.15)

We thus have that ∂µj
µ is

∂µj
µ = ∂µ(Θ

µνxν) + ∂µ(ϕ∂
µϕ) = Θµ

µ + ∂µϕ∂
µϕ+ ϕ 2ϕ, (7.16)

where in the last passage we used ∂µxν = ηµν and the continuity equation for Θµν Eq.
6.9. Using Eq. 6.19, we can see that Θµ

µ is

Θµ
µ = −∂µϕ∂µϕ+ 4F (ϕ). (7.17)
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Substituting Eq. 7.17 into Eq. 7.16 we obtain

∂µj
µ = ϕ 2ϕ+ 4F (ϕ), (7.18)

If our real scalar field ϕ is described by the Klein-Gordon Lagrangian LKG in Eq.
3.4, Eq. 7.18 becomes

∂µj
µ = ϕ 2ϕ+ 2µ2ϕ2 = µ2ϕ2, (7.19)

where in the last passage we exploited the Klein-Gordon equation Eq. 3.5, which is the
equation of motion of the field. Having seen that, in this case, ∂µj

µ ̸= 0, we can conclude
that the current jµ corresponding to scale transformations is not conserved for a field
described by the Klein-Gordon Lagrangian, meaning that the Klein-Gordon theory is
not scale invariant.

To have a scale invariant theory for real scalar field we can consider the so-called ϕ4

theory. In this theory the Lagrangian L describing the field ϕ is

L =
1

2
∂µϕ∂

µϕ− g

4
ϕ4. (7.20)

Using the Euler-Lagrange equation 2.10 with this Lagrangian, we obtain the equations
of motion

2ϕ = −gϕ3. (7.21)

Taking into account Eq. 7.20 and Eq. 7.21, Eq. 7.18 becomes a continuity equation for
jµ

∂µj
µ = 0. (7.22)

This means that the current jµ is conserved, which leads us to conclude that the ϕ4

theory is scale invariant.
To see why the ϕ4 theory is scale invariant and the Klein-Gordon theory is not, it is

useful to reason using natural units, which means setting c = ℏ = 1, with c being the
light speed in vacuum and ℏ being the reduced Planck constant. In these units, ϕ has
exactly dimensions [length]−1. The ϕ4 theory is scale invariant because the only constant
g that appears in its Lagrangian is dimensionless, meaning there is no characteristic
dimensional scale in this theory. The constant µ in the Klein-Gordon theory has instead
the dimensions of a [length]−1=[mass], which means that µ constitutes a characteristic
dimensional scale for the field and therefore the theory can’t be scale invariant. Using
the same reasoning, if we observe the Lagrangian of the electromagnetic field Lem in Eq.
4.7, we notice that there are no characteristic dimensional scales and we can conclude
that electromagnetism is scale invariant.
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